

Erasmus+ FITPED-AI
Future IT Professionals Education in Artificial Intelligence
(Project 2021-1-SK01-KA220-HED-000032095)

Advanced Artificial Intelligence
Techniques in Cyber Threat Detection

Cyril Klimeš
Ján Skalka
Peter Švec
Tomáš Sochor
Jiří Balej
Jan Francisti

www.fitped.eu 2024

Advanced Artificial Intelligence
Techniques in Cyber Threat Detection

Published on

November 2024

Authors

Cyril Klimeš | Mendel University in Brno, Czech Republic

Ján Skalka | Constantine the Philosopher University in Nitra, Slovakia

Peter Švec | Teacher.sk, Slovakia

Tomáš Sochor | Mendel University in Brno, Czech Republic

Jiří Balej | Mendel University in Brno, Czech Republic

Jan Francisti | Constantine the Philosopher University in Nitra, Slovakia

Reviewers

Piet Kommers | Helix5, Netherland

Małgorzata Przybyła-Kasperek | University of Silesia in Katowice, Poland

Vladimiras Dolgopolovas | Vilnius University, Lithuania

Erasmus+ FITPED-AI

Future IT Professionals Education in Artificial Intelligence

Project 2021-1-SK01-KA220-HED-000032095

Funded by the European Union. Views and opinions expressed are however those of
the author(s) only and do not necessarily reflect those of the European Union or Slovak
Academic Association for International Cooperation. Neither the European Union nor
the granting authority can be held responsible for them.

Licence (licence type: Attribution-Non-commercial-No Derivative Works) and may be
used by third parties as long as licensing conditions are observed. Any materials
published under the terms of a CC Licence are clearly identified as such.

All trademarks and brand names mentioned in this publication and all trademarks and
brand names mentioned that may be the intellectual property of third parties are
unconditionally subject to the provisions contained within the relevant law governing
trademarks and other related signs. The mere mention of a trademark or brand name
does not imply that such a trademark or brand name is not protected by the rights of
third parties.

© 2024 Constantine the Philosopher University in Nitra

ISBN 978-80-558-2234-1

TABLE OF CONTENTS
1 Spam Detection ... 6

1.1 Spam .. 7

1.2 Spam detection ... 10

2 Spam Detection Projects .. 15

2.1 Simple methods .. 16

2.2 Naive Bayes classifier .. 22

2.3 Bayes theorem .. 31

2.4 TF-IDF... 33

3 Machine Learning in Spam Detection .. 43

3.1 AI spam detection ... 44

3.2 Implementation ... 48

3.3 AI projects ... 51

4 Phishing Protection ... 90

4.1 Introduction into phishing .. 91

4.2 Fake web sites .. 95

4.3 Phishing emails ... 98

4.4 Smishing and phishing ... 103

5 AI in Phishing Protection ... 109

5.1 Role of AI ... 110

5.2 AI models... 113

5.3 AI projects ... 118

5.4 Challenges in phishing detection .. 173

6 Malicious Code Detection ... 175

6.1 Introduction ... 176

6.2 Malware detection .. 178

6.3 Signature based detection ... 182

6.4 Anomaly detection .. 186

7 AI in Malware Detection .. 191

7.1 Role of AI ... 192

7.2 Projects.. 196

7.3 Benefits and advantages ... 217

8 Access Attacks Detection ... 220

8.1 Network traffic analysis ... 221

8.2 Benefits and chalenges .. 223

8.3 Projects.. 225

9 Appendix ... 253

9.1 Packet filtering firewalls... 254

9.2 Bibliography and sources... 257

Spam Detection

Chapter 1

Spam Detection | FITPED AI

7

1.1 Spam

🕮 1.1.1

Spam, or junk mail, refers to unsolicited communication sent in bulk, primarily via
email but also through text messages, social media comments, or phone calls.
Understanding spam is crucial in today’s digital landscape, where the prevalence of
unwanted messages can hinder effective communication.

Spam messages are typically characterized by their unsolicited nature; recipients do
not anticipate receiving these messages and have not requested them. Additionally,
spam is marked by mass distribution, often reaching a vast audience simultaneously.
Many spam messages contain manipulative content designed to prompt the
recipient to take action, such as clicking on a link or providing personal information.

📝 1.1.2

What is a characteristic of spam?

• It is always welcomed by the recipient.
• It is sent in bulk to many recipients.
• It is personalized for each recipient.
• It is typically sent by friends or family.

🕮 1.1.3

Spam can be categorized into various types, each with distinct characteristics and
purposes.

The most common type is advertising spam, which promotes products or services
without the recipient's consent.

Phishing spam, on the other hand, aims to deceive recipients into divulging sensitive
information like bank account details or credit card numbers.

Lastly, malware spam includes harmful software, such as viruses or spyware, often
disguised as legitimate messages to trick recipients into clicking on links.

Understanding these types helps users recognize and avoid potential threats
associated with spam.

📝 1.1.4

Select the types of spam from the options below:

• Advertising spam
• Phishing spam

Spam Detection | FITPED AI

8

• Malware spam
• Genuine customer feedback

🕮 1.1.5

Engaging with spam can lead to significant risks for individuals and organizations.

One major risk is the spread of malware, which can compromise a recipient's
computer system, leading to data loss or theft.

Phishing attacks, another serious concern, manipulate recipients into sharing
sensitive information, which can result in identity theft and financial loss.

Additionally, spam can consume valuable time and reduce productivity. The process
of sifting through and deleting spam messages can distract users from more critical
tasks. Furthermore, a high volume of spam can erode trust in email as a reliable
communication method, making individuals wary of legitimate messages.

📝 1.1.6

Spam can lead to the spread of _____ and increase the risk of _____. Additionally, it
can cause a loss of _____ as users spend time deleting unwanted messages.

• malware
• phishing attacks
• productivity

🕮 1.1.7

Recognizing spam is essential for maintaining a secure online environment.
Common indicators of spam include generic greetings, unsolicited offers, and urgent
language urging immediate action. Users should be cautious of messages that
contain suspicious links or attachments, as these are often tools used by spammers
to compromise personal information or install malware.

Being able to differentiate between legitimate communications and spam can help
users protect their personal information and maintain their digital security. It’s also
vital to report spam to help improve filtering systems and reduce its prevalence in
digital communication channels.

📝 1.1.8

Which of the following is an indicator of spam?

• Generic greetings and unsolicited offers.
• Personalized greetings.
• Messages from known contacts.
• Requests for feedback.

Spam Detection | FITPED AI

9

🕮 1.1.9

Ignoring spam can lead to a range of negative consequences. For individuals, the
most immediate impact is the potential compromise of personal information.
Engaging with spam can inadvertently provide spammers with access to sensitive
data, leading to identity theft or financial fraud. For organizations, a spam attack can
result in data breaches, loss of customer trust, and legal repercussions.

Moreover, the accumulation of spam can lead to system slowdowns, as excess
messages clog email servers and disrupt normal operations. It is essential for users
to be proactive in managing spam to mitigate these risks effectively.

📝 1.1.10

Which of the following are potential consequences of ignoring spam?

• Compromised personal information
• Data breaches in organizations
• Increased productivity
• Enhanced system performance

🕮 1.1.11

To combat spam effectively, users should implement best practices for managing
their digital communications. One essential practice is to use spam filters, which
automatically detect and move suspicious messages to a separate folder. Regularly
updating email settings to enhance privacy and security can also help reduce the
influx of spam.

Users should also be cautious about sharing their email addresses online and
consider using secondary email accounts for subscriptions or less important
communications. Educating oneself about the latest spam techniques and remaining
vigilant can significantly decrease the likelihood of falling victim to spam-related
threats.

📝 1.1.12

To manage spam effectively, users should use _____ and regularly update their _____.
It’s also advisable to limit sharing of email addresses and stay informed about the
latest _____.

• privacy settings
• spam techniques
• spam filters

Spam Detection | FITPED AI

10

🕮 1.1.13

As technology evolves, so do the tactics used by spammers. Emerging technologies,
such as AI, are being utilized to create more sophisticated spam that can bypass
traditional filters. This ongoing battle between spammers and cybersecurity
professionals means that awareness and education are more critical than ever.

In the future, users may need to adopt new tools and strategies to combat spam
effectively. Keeping abreast of the latest developments in cybersecurity and
participating in training programs can empower individuals and organizations to stay
ahead of potential threats posed by spam.

📝 1.1.14

What is a potential future challenge in combating spam?

• Increased use of AI by spammers.
• The decline of email usage.
• The complete eradication of spam.
• Simpler spam detection methods.

1.2 Spam detection

🕮 1.2.1

Detecting spam is a fundamental task in digital security, with implications for both
users and email providers. Spam detection involves an imbalance in potential costs.
For example, when a spam email is misclassified as legitimate, the user only needs
to delete it. However, when a legitimate email is classified as spam, the user may
lose important information or waste time checking the spam folder for valid
messages.

The approach to spam detection often begins with simple criteria. If a message
matches known spam indicators, it is flagged as spam. However, defining these
criteria is complex due to evolving spam tactics. Unlike early approaches that flagged
basic phrases like “cheap products,” modern spam detection considers factors like
message structure, attachments, and sender address.

📝 1.2.2

Which of the following best describes an "unbalanced cost" in spam detection?

• The higher cost of recovering important emails marked as spam.
• The inconvenience of manually deleting a legitimate message.
• The preference to flag emails rather than delete them immediately.
• The decision to use machine learning algorithms for spam detection.

Spam Detection | FITPED AI

11

🕮 1.2.3

Although defining spam might seem straightforward, the process is highly
challenging. Spam content changes frequently, adapting to avoid detection.
Spammers use techniques like replacing characters in words (e.g., “V1agra” instead
of “Viagra”) or adding invisible characters to hide their messages.

Today, spam detection uses multicriterial classification, which considers various
message aspects such as the presence of attachments, risk scores, and overall
structure. Messages often receive a cumulative score, and if they exceed a specific
threshold, they are classified as spam. This score-based approach helps adapt to
evolving spam techniques and reduces the likelihood of misclassification.

📝 1.2.4

Which of the following tactics are commonly used by spammers to avoid detection?

• Adding invisible characters in words
• Frequently changing sender addresses
• Using exact phrases like "cheap V1agra"
• Using verified sender authentication

🕮 1.2.5

The Simple Mail Transfer Protocol (SMTP) dialog plays a central role in email
transmission. During this process, the sender’s and recipient's addresses are
exchanged, which the receiving server can use for preliminary spam filtering.
Blocking messages based on the sender’s address is possible, but ineffective alone
because spammers can easily alter the sender address, bypassing basic filters.

To improve detection, advanced techniques like greylisting are used. Greylisting
temporarily rejects messages from unfamiliar senders. If the sender attempts to
resend after a delay, the server considers the message as more legitimate, reducing
the likelihood of it being spam. Simple spam systems often don’t retry, allowing
greylisting to filter them out effectively.

📝 1.2.6

During an SMTP dialog, the _____ and recipient email addresses are exchanged.
Techniques like _____ reject emails from unknown addresses temporarily.

• sender
• greylisting

Spam Detection | FITPED AI

12

🕮 1.2.7

Verification Techniques

Sender verification techniques such as DKIM, SPF, and DMARC help to ensure the
authenticity of email messages.

DomainKeys Identified Mail (DKIM) is an email authentication method that allows
the receiver to check that an email was actually sent and authorized by the owner of
that domain. It uses a digital signature based on public-key cryptography, which is
added to the email’s header. Here’s how it works:

• When an email is sent, DKIM signs specific parts of the message with a
unique hash (signature) that’s encrypted with a private key held by the
sending domain.

• The receiving server can use the sender’s public key, stored in the DNS
record, to verify the integrity of the email.

• If the signature matches the email content, the email is deemed authentic.
Any modifications to the email in transit would invalidate the signature,
signaling that the email might have been tampered with.

Sender Policy Framework (SPF) helps prevent spammers from sending unauthorized
emails on behalf of your domain. It does this by defining which IP addresses are
allowed to send emails from your domain. Here’s how SPF works:

• A domain’s DNS records contain a list of authorized mail servers allowed to
send emails on its behalf.

• When an email is received, the recipient’s server checks the DNS SPF record
to verify that the sending IP address is authorized.

• If the IP address matches the SPF record, the email passes the SPF check. If
it doesn’t, the email may be flagged as suspicious or rejected

Domain-based Message Authentication, Reporting, and Conformance (DMARC)
builds on both DKIM and SPF, giving domain owners control over what happens to
emails that fail these checks. DMARC provides a policy framework that defines how
receiving servers should handle emails that fail SPF or DKIM validation, and it offers
a reporting feature for visibility. Here’s how DMARC works:

• The domain owner sets a DMARC policy in their DNS record that instructs
receiving servers on what to do if an email fails SPF or DKIM validation (e.g.,
reject, quarantine, or allow but mark as suspicious).

• DMARC records also specify where to send reports, allowing the domain
owner to monitor any unauthorized email activity.

• By combining SPF and DKIM with a specified policy, DMARC provides a more
robust defense against email spoofing and phishing, offering greater security
and accountability.

Spam Detection | FITPED AI

13

📝 1.2.8

Which of the following sender verification techniques uses cryptographic keys to
confirm that the message content hasn't been altered?

• DKIM
• SMTP
• SPF
• DMARC

🕮 1.2.9

After message delivery, the receiving server assesses whether the email should go
to the inbox or the spam folder. In some cases, messages flagged as high-risk (like
those containing malware) are quarantined. In quarantine, emails may be kept for
further inspection or placed in the spam folder with warnings. This delay gives time
to evaluate the email's legitimacy and, if necessary, allow retrieval if the message
was wrongly flagged.

Post-Delivery Filtering

Post-delivery filtering is a process applied to emails after they’ve been accepted and
initially delivered to the recipient’s inbox. Here’s how it works:

• Behavioral Analysis: Even after delivery, emails can be analyzed for
suspicious behavior based on user interaction. For instance, if users
frequently mark a particular email as spam or a phishing attempt, the system
can flag future emails from this source or with similar content.

• Content and URL Re-scanning: Some emails may include links or
attachments that initially seem safe but are later identified as malicious.
Post-delivery filtering continually re-scans these elements against updated
threat intelligence databases, blocking access to newly detected harmful
links or attachments.

• Machine Learning & AI Detection: Using machine learning algorithms, post-
delivery filtering systems can detect unusual patterns in email content,
structure, or sender behavior, refining their detection based on the collective
interactions of all users and patterns of known spam emails.

• Flagging & Moving: If an email is detected as spam or risky post-delivery, it
can be automatically flagged and moved from the inbox to a spam or
quarantine folder. This minimizes potential exposure without needing user
intervention.

Quarantine Methods

Quarantine methods involve holding suspicious emails in a secure area rather than
delivering them directly to the recipient’s inbox. This adds an additional layer of

Spam Detection | FITPED AI

14

security by isolating potentially harmful emails until they can be thoroughly
evaluated. Quarantine typically offers the following processes:

• Initial Isolation: Instead of immediately delivering all emails to user inboxes,
emails flagged with a high-risk score or unknown sender details are directed
to a quarantine area. This isolates potentially dangerous content, such as
malware or phishing links, from users while allowing security teams to
investigate.

• Review and Release: The email remains in quarantine for a certain period
(often set by system administrators). During this time, users or
administrators can review the quarantined emails and decide whether to
allow delivery, block the sender, or permanently delete the email. In some
cases, users may receive daily or weekly summaries of quarantined emails,
allowing them to request specific emails if needed.

• Automated Re-assessment: Quarantined emails are periodically re-assessed
based on updated threat intelligence (e.g., new malware signatures). If an
email is cleared of suspicion, it may be automatically delivered to the user’s
inbox with a “Spam” label or similar warning.

• Notifications and Reporting: Many quarantine systems notify users or
administrators if an email they expect was quarantined, especially if it has a
high potential risk. Quarantine methods also provide reports on blocked,
delivered, and flagged emails, helping security teams monitor and refine their
filtering processes.

These post-delivery and quarantine methods enhance security by providing
continuous monitoring, minimizing the chance of false positives, and giving
recipients a way to recover legitimate emails that may have been incorrectly flagged.

📝 1.2.10

Which of the following actions might a receiving server take with a message detected
as high-risk?

• Quarantine the message for review
• Deliver it to the inbox with a warning
• Delete it immediately
• Block the sender permanently without notice

Spam Detection Projects

Chapter 2

Spam Detection Projects | FITPED AI

16

2.1 Simple methods

🕮 2.1.1

Simple methods

• Keyword filtering: This method blocks emails containing specific words or
phrases typical of spam messages. Although simple to implement, it is not
very effective because spammers easily adapt and use different variations of
words.

• Blacklisting: Sending emails from known spam addresses or domains is
blocked. However, maintaining an up-to-date list is difficult and spammers
can easily change addresses.

• Header Filtering: Email headers are analyzed and look for discrepancies such
as wrong sender domain or invalid IP address. This method is effective in
blocking some types of spam, but is not reliable in detecting more
sophisticated techniques.

Statistical methods

• Naive Bayes classifier: It is a probabilistic model that calculates the
probability that an email is spam based on the frequency of occurrence of
individual words in spam and legitimate messages. This method is simple
and relatively effective, but it does not take into account context and word
order.

• TF-IDF: This method assigns a weight to each word according to its
frequency in the email and the inverse frequency in the entire dataset. Words
that occur frequently in spam emails and rarely in legitimate emails will be
given a higher weight. Subsequently, these weights are used to train the
classification model.

Methods based on AI

• Machine Learning: Various machine learning algorithms such as Support
Vector Machines, Random Forest, Naive Bayes and Neural Networks are
used to train models that can recognize spam. These models learn from
large datasets of emails labeled "spam" or "ham" and can identify complex
patterns and characteristics of spam. Procedure: To implement machine
learning for spam detection, you need:

• Get a dataset of emails labeled "spam" and "ham".
• Clean and preprocess the data (removal of punctuation, stop words,

lemmatization, etc.).
• Extract numeric attributes from emails (eg TF-IDF, word count, etc.).
• Train a machine learning model on prepared data.
• Evaluate the performance of the model on the test dataset.
• Implement the model in the spam filter.
• Natural Language Processing (NLP): NLP techniques are used to analyze the

text of emails and identify semantic meaning. This makes it possible to more

Spam Detection Projects | FITPED AI

17

accurately distinguish spam from legitimate emails, which may contain
similar words or phrases.

• Anomaly detection: This method identifies emails that deviate from normal
behavior, such as having unusual word frequency, structure or sender.

🕮 2.1.2

Keyword filtering

Keyword filtering is one of the most basic and simple approaches to identifying
spam. This method works on the principle of blocking emails that contain specific
words or phrases typically associated with spam messages.

How keyword filtering works

• Creating a list of keywords: First, you need to create a list of words and
phrases that are typical for spam. This list may contain words such as "free",
"money", "win", "medicine" and the like.

• Email scanning: Received emails are scanned and searched for keywords
from the list.

• Email blocking: If the email contains one or more keywords, the system will
automatically block it and move it to the spam folder or delete it completely.

Advantages

• Simplicity: The implementation of keyword filtering is relatively simple and
does not require complex algorithms.

• Speed: Scanning emails and identifying keywords is a fast process.

Disadvantages

• Low accuracy: Spammers adapt easily and use different variations of words
to avoid detection. Therefore, this method can be ineffective and block even
legitimate emails that contain some of the keywords.

• False alarms: Keyword filtering can lead to false alarms when legitimate
emails containing some of the keywords are incorrectly classified as spam.

• Static list: The list of keywords needs to be constantly updated to catch new
spam techniques. This requires manual work and is not very efficient.

Specific examples of "spam" keywords are often given, such as "free", "money",
"product" and the like. These words often appear in spam emails, but they can also
appear in legitimate emails, which reduces the effectiveness of keyword filtering.

Keyword filtering is a basic spam detection method that has its limitations. Currently,
it is not used on its own, but rather as part of more complex antispam systems that
combine various methods, including statistical methods and artificial intelligence
techniques.

Spam Detection Projects | FITPED AI

18

📝 2.1.3

Project: Keyword filtering I.

Build a spam filter that can identify spam messages based on specific words or
phrases.

Follow these steps:

Import libraries

import pandas as pd

import nltk

from nltk.corpus import stopwords

from nltk.tokenize import word_tokenize

Data Collection:

• Find a dataset that includes examples of spam and non-spam messages.
You can use online databases or create your own dataset.

• Load data - load the dataset into the DataFrame. You can use
https://www.kaggle.com/datasets/balaka18/email-spam-classification-
dataset-csv

load data

Data Preprocessing:

Clean the data by:

• Removing any accents or special characters.
• Converting all text to lowercase.
• Breaking the text into individual words (this process is called tokenization).

use separate functions

Create a List of Keywords:

• Analyze the spam messages to identify common words or phrases.
• Make a list of these keywords (e.g., "free," "win," "click here," "increase your

sales").

List of keywords

keywords = ['free', 'click', 'win', 'money', 'guarantee']

https://www.kaggle.com/datasets/balaka18/email-spam-classification-dataset-csv
https://www.kaggle.com/datasets/balaka18/email-spam-classification-dataset-csv

Spam Detection Projects | FITPED AI

19

Implement the Filter:

• Write a function that checks each message against your list of keywords.
• If a message contains at least one keyword from your list, mark it as spam.

def isSpam:

Evaluation:

• Test how well your spam filter works by calculating metrics like accuracy,
recall, and F1 score.

• Analyze the results to find ways to improve your filter.

Visualize results with graphs.

import matplotlib.pyplot as plt

📝 2.1.4

Project: Keyword filtering II.

Build a more advanced spam filter that can identify spam messages based on
specific words or phrases, while also considering the importance of those words and
analyzing email headers.

Data Collection:

• Find a dataset that includes examples of spam and non-spam messages.
You can use online databases or create your own dataset.

Data Preprocessing:

Clean the data by:

• Removing any accents or special characters.
• Converting all text to lowercase.
• Breaking the text into individual words (this process is called tokenization).

Create a List of Keywords:

• Analyze the spam messages to identify common words or phrases.
• Make a list of these keywords (e.g., "free," "win," "click here," "increase your

sales").

Spam Detection Projects | FITPED AI

20

Weighting Keywords:

• Assign a weight to each keyword based on how likely it is to indicate spam.
For example, the word "million" might have a higher weight than "free."

Use techniques like TF-IDF (Term Frequency-Inverse Document Frequency):

• Implement TF-IDF to automatically calculate the weight of each keyword
based on its frequency in spam messages relative to its occurrence in the
entire dataset. This helps highlight more significant terms.

Implement the Filter:

• Write a function that checks each message against your list of keywords.
• For each keyword found, add its corresponding weight to a total spam score

for that message.
• If the total spam score exceeds a certain threshold, mark the message as

spam.

Evaluation:

• Test how well your spam filter works by calculating metrics like accuracy,
recall, and F1 score.

• Analyze the results to find ways to improve your filter.

from sklearn.feature_extraction.text import TfidfVectorizer

...

🕮 2.1.5

Blacklisting

Blacklisting is a simple and straightforward method to identify and filter spam. It
works on the principle of creating and maintaining a list (blacklist) of known spam
addresses and domains. Received emails are compared to this list and if a match is
found, the email is marked as spam and blocked.

Blacklisting process:

1. Creating a blacklist: A blacklist can be created manually, automatically or by a
combination of both methods.

• Manual blacklists are managed by humans and contain addresses and
domains that have been identified as sources of spam.

• Automatic blacklists are generated by algorithms that analyze emails and
identify characteristics typical of spam.

Spam Detection Projects | FITPED AI

21

• Publicly available blacklists are managed by organizations that specialize in
spam detection.

2. Comparison of emails with the blacklist: Received emails are compared with the
blacklist. This comparison is usually done based on the sender's email address or
their domain.

3. Spam blocking: If a match is found, the email is marked as spam and blocked.
Blocking can mean moving an email to a spam folder, deleting it or rejecting delivery.

Advantages

• Ease of implementation: Blacklisting is a relatively simple method to
implement and does not require complex algorithms or extensive computing
resources.

• Effectiveness: Blacklisting is an effective way to block spam from known
sources.

• Speed: Checking emails against the blacklist is a fast process.

Disadvantages

• Limited effectiveness: Blacklisting is only effective against spam from
known sources. New addresses and domains that are not yet in the blacklist
are not blocked.

• False alarms: Blacklisting can lead to false alarms if a legitimate sender is
accidentally blacklisted.

• Need to be updated: The blacklist must be updated regularly to be effective.
• Bypassing blacklists: Spammers are constantly trying to bypass blacklists

and are developing new techniques to mask their addresses and domains.

📝 2.1.6

Project: Blacklist

Develop a Python program that identifies spam emails by comparing the sender's
email address with a predefined list (blacklist) of known spam sources.

Follow these steps:

Creating a blacklist

• Create or download a text file or database that contains a list of email
addresses and domains that are known to be sources of spam.

• Use publicly available blacklists or create your own based on spam email
analysis.

• Make sure the blacklist is structured clearly, with one entry per line for easy
reading and processing.

Spam Detection Projects | FITPED AI

22

you can find black-list at

http://www.joewein.de/sw/blacklist.htm

you can find emails with address at

https://www.kaggle.com/datasets/nanditapore/spam-email-dataset

Load the blacklist:

• Write a Python function that retrieves a blacklist from a text file or database.
• Store the retrieved blacklist in a suitable data structure (eg list or set) for

efficient searching.

def extract:

Retrieve and analyze emails:

• Create a function to retrieve emails from a text file, email server or database.
• Extract sender information (email address or domain) from each email.

Blacklist comparison:

• Compare the extracted email address or domain with the loaded blacklist.
• If the address or domain is blacklisted, mark the email as spam.

Evaluation of the results:

• Test the program using sample data that contains both spam and legitimate
emails.

• Calculate precision, recall, and F1 scores to evaluate program performance.

2.2 Naive Bayes classifier

🕮 2.2.1

The Naive Bayes classifier

The Naive Bayes classifier is a probabilistic machine learning algorithm often used
for text classification, such as spam detection. It is based on Bayes' theorem, which
describes the probability of an event occurring based on prior knowledge of the
conditions associated with that event.

Principle of operation

The algorithm assumes that individual attributes (in this case, words in the text) are
independent. This means that the occurrence of one word does not affect the
probability of occurrence of another word. Although this assumption is often not met
in the real world, the Naive Bayes classifier achieves surprisingly good results in
practice.

Spam Detection Projects | FITPED AI

23

The Naive Bayes classifier works in two phases:

1. Learning phase: The algorithm analyzes the training data, which contains
emails marked as spam or ham (legitimate emails). Based on this analysis, it
calculates the probability of occurrence of individual words in spam and ham
emails.

2. Classification phase: When classifying a new email, the algorithm calculates
the probability that the email belongs to the spam and ham categories,
based on the probabilities of occurrence of individual words in the training
data. The email is then assigned to a category with a higher probability.

An example

Let's imagine that we have the following training data:

Email Category

Get a million dollars for free! Spam

Meeting tomorrow at 2pm Ham

You won the lottery! Spam

Important message from your bank Ham

Based on this data, the algorithm calculates the probability of occurrence of
individual words in spam and ham emails. For example, the word "free" occurs only
in spam emails, while the word "meeting" occurs only in ham emails.

If we receive a new email with the text "Get a free gift!", the algorithm calculates the
probability that the email belongs to the spam and ham category. Since the word
"free" only occurs in spam emails, the probability that the email is spam will be higher
and the email will be classified as spam.

Advantages

● Ease of implementation and speed

● Good results in practice, although the assumption of independence of attributes is
not always fulfilled

Disadvantages

● Sensitivity to "zero" probabilities - if a word in the training data does not appear in
any category, the algorithm assigns it a zero probability, which can distort the results

● Limited accuracy - Naive Bayes classifier does not achieve as much accuracy as
more complex machine learning algorithms

Naive Bayes classifier is a simple and efficient algorithm for text classification.
Although it has its limitations, it achieves surprisingly good results in practice and is
often used for spam detection.

Spam Detection Projects | FITPED AI

24

📝 2.2.2

The Naive Bayes classifier - more sophisticated example

Let's expand the dataset to include more varied emails:

Email Category

Get a million dollars for free! Spam

Meeting tomorrow at 2pm Ham

You won the lottery! Spam

Important message from your bank Ham

Claim your free gift now! Spam

Project update for next week Ham

Congratulations! You've won a prize! Spam

Reminder: Doctor's appointment tomorrow Ham

Get paid for your opinions! Spam

Can we reschedule our meeting? Ham

Analyzing the Training Data

• Word Occurrence: Count the occurrence of each word in both spam and ham
emails.

Spam Detection Projects | FITPED AI

25

Word Spam Occurrences Ham Occurrences

get 2 1

million 1 0

dollars 1 0

for 2 1

free 3 0

meeting 1 2

tomorrow 1 2

won 2 0

lottery 1 0

important 1 1

message 1 1

bank 1 1

project 0 1

update 0 1

congratulations 1 0

prize 1 0

paid 1 0

opinions 1 0

reschedule 0 1

Spam Detection Projects | FITPED AI

26

Probability Calculation

Calculate the probability of a word given the category (spam or ham). This can be
calculated as follows:

P(word ∣ spam) = Count of word in spam / Total words in spam

P(word ∣ ham) = Count of word in ham / Total words in ham

Total Words

• Total words in spam: 15
• Total words in ham: 14

Example probabilities

for the word "free":

P(free ∣ spam) = 3 / 15 = 0.2P

P(free ∣ ham) = 0 / 14 = 0.0

For the word "meeting":

P(meeting ∣ spam) = 1 / 15 = 0.067

P(meeting ∣ ham) = 2 / 14 = 0.143

Classifying a New Email

Now, let’s classify a new email: "Get a free gift!"

1. Extract Words: The words are "get", "a", "free", "gift".

2. Calculate Probabilities:

• Using Bayes' Theorem, we can compute the probabilities:

P(spam ∣ email) = P(get ∣ spam) × P(free ∣ spam) × P(gift ∣

spam)

P(ham ∣ email) = P(get ∣ ham) × P(free ∣ ham) × P(gift ∣ ham)

3. Calculate Individual Probabilities:

For "get":

P(get ∣ spam) = 2 / 15 = 0.133

P(get ∣ ham) = 1 / 14 = 0.071

Spam Detection Projects | FITPED AI

27

for the word "free":

P(free ∣ spam) = 3 / 15 = 0.2P

P(free ∣ ham) = 0 / 14 = 0.0

For "gift":

• Since "gift" is not in the training set, we can apply Laplace smoothing.
Assuming a vocabulary size of V=20:

P(gift ∣ spam) = (0 + 1) / (15 + 20) = 1 / 35 = 0.029

P(gift ∣ ham) = (0 + 1) / (14 + 20) = 1/34 = 0.029≈0.029

Final Probability Calculation:

P(spam ∣ email) = (0.133 × 0.2 × 0.029) = 0.000771

P(ham ∣ email) = (0.071 × 0.0 × 0.029) = 0

Classification:

Since P(spam ∣ email) is greater than P(ham ∣ email), the email "Get a free gift!" is
classified as SPAM.

📝 2.2.3

Laplace smoothing

Laplace smoothing, also known as add-one smoothing, is a technique used in
probabilistic models, especially in natural language processing and machine
learning, to handle the problem of zero probabilities in categorical data. It is
particularly useful in applications such as language modeling, text classification, and
spam detection.

Understanding the need for Laplace smoothing

In many probabilistic models, especially when estimating the probability of events
based on training data, it is common to encounter situations where some events (or
words, in the case of text data) do not appear at all in the training set. For instance,
if you're calculating the probability of a specific word occurring in a document, and
that word does not appear in any of your training samples, the estimated probability
would be zero. This is problematic because:

1. Zero probability problem: If any single event has a probability of zero, it can
lead to misleading results when calculating probabilities for combinations of
events, particularly in tasks like classification or generating sequences.

2. Sparsity: In text data, especially in large vocabularies, many words may not
appear in every training sample, leading to a sparse representation of data.

Spam Detection Projects | FITPED AI

28

How Laplace smoothing works

Laplace smoothing addresses these issues by adjusting the probability estimates to
ensure that no probability is ever zero. Here’s how it works mathematically:

1. Basic Formula:

• For a given event (like a word) w in a training set, the probability of w is
estimated as:

P(w) = (C(w)+1) / (N + V)

Where:

• C(w) is the count of occurrences of word www in the training set.
• N is the total number of words (tokens) in the training set.
• V is the size of the vocabulary (the total number of unique words in the

training set).

2. Adjustment

By adding 1 to the count of each word, and adding the vocabulary size V to the total
count N, Laplace smoothing effectively distributes some probability mass to words
that were not seen in the training data.

3. Example

Suppose you have the following counts from your training data:

• Word "spam": 3 occurrences
• Word "ham": 2 occurrences
• Vocabulary size V: 4 (words: spam, ham, free, click)
• Total count N: 5 (3 spam + 2 ham)

The probability for "spam" would be:

P(spam) = (3 + 1) / (5 + 4) = 4 / 9

The probability for "ham" would be:

P(ham) = (2 + 1) / (5 + 4) = 3 / 9

For a word like "free", which has zero occurrences:

P(free)= (0 + 1) / (5 + 4) = 1 / 9

Spam Detection Projects | FITPED AI

29

Benefits of Laplace Smoothing

1. Avoids Zero Probabilities: Ensures that all possible outcomes have a non-
zero probability, which is crucial in many probabilistic models.

2. Improves Generalization: By smoothing the probabilities, the model can
generalize better to unseen data, especially in sparse datasets.

3. Simple to Implement: Laplace smoothing is easy to understand and
implement, making it a popular choice for many applications.

Limitations

1. Assumption of Uniformity: By adding a constant value (1), Laplace
smoothing assumes that all unseen events should be treated equally, which
may not always be true.

2. Bias Towards Rare Events: It can lead to overestimation of probabilities for
rare events, particularly in cases where some events may be significantly
less likely than others.

3. More Advanced Methods Available: While effective, there are other
smoothing techniques (like Lidstone smoothing or Kneser-Ney smoothing)
that may yield better results for specific applications.

📝 2.2.4

Project: Naive Bayes classifier

Develop a Naive Bayes classifier that can categorize emails as either "Spam" or
"Ham" (non-spam) based on their content. You will utilize a training dataset to
compute probabilities and apply the classifier to new emails.

Dataset Preparation

• Collect a dataset of emails labeled as "Spam" or "Ham." You can use publicly
available datasets like the Enron Email Dataset or
https://www.kaggle.com/datasets/venky73/spam-mails-dataset or create
your own.

• Ensure that the dataset contains a diverse set of emails, covering different
topics and spam characteristics.

import pandas as pd

from sklearn.model_selection import train_test_split

from sklearn.feature_extraction.text import TfidfVectorizer

from sklearn.naive_bayes import MultinomialNB

from sklearn.metrics import accuracy_score, precision_score,

recall_score

ready

https://www.kaggle.com/datasets/venky73/spam-mails-dataset

Spam Detection Projects | FITPED AI

30

Data Preprocessing

• Clean the email texts by removing any irrelevant information, such as HTML
tags, special characters, and stop words.

• Tokenize the email content to extract individual words or phrases.

Function to preprocess and tokenize emails

def preprocess(emails):

 #...

preprocessing data

spam_tokens = preprocess(spam_emails)

ham_tokens = preprocess(ham_emails)

Feature Extraction

• Create a frequency distribution of words in both spam and ham emails. This
will help in calculating the probability of each word given the email category.

• Implement Laplace smoothing to handle words that may not appear in one of
the categories.

Frequency distributions

spam_freq = defaultdict(int)

ham_freq = defaultdict(int)

for token in spam_tokens:

 spam_freq[token] += 1

for token in ham_tokens:

 ham_freq[token] += 1

Probabilistic Model Development

• Calculate the prior probabilities for spam and ham categories based on their
occurrence in the dataset.

• For each word, calculate the likelihood probabilities conditioned on each
category (i.e., the probability of a word appearing in spam vs. ham).

• Use Laplace smoothing to ensure that words not present in the training set
do not lead to a zero probability.

def laplace_smoothing(word, category_freq, total_words,

vocabulary_size):

 return (category_freq[word] + 1) / (total_words +

vocabulary_size)

for each word ...

Spam Detection Projects | FITPED AI

31

Classifying New Emails

• Create a function that classifies a new email based on calculated
probabilities.

new emails

Evaluation

• Use test data to evaluate the classifier's performance and compute metrics.

evaluation

2.3 Bayes theorem

📝 2.3.1

Bayes’ theorem is a fundamental principle in probability theory and statistics that
calculates the likelihood of an event based on prior knowledge of related conditions.
It’s especially useful in machine learning for developing probabilistic models, such
as the Naive Bayes classifier, to make predictions based on data.

Bayes’ theorem can be written as:

Where:

• P(A∣B) is the posterior probability: the probability of event A occurring given
that B is true.

• P(B∣A) is the likelihood: the probability of observing B given that A is true.
• P(A) is the prior probability: the probability of A occurring independently of

B.
• P(B) is the marginal probability: the overall probability of B occurring.

📝 2.3.2

Example of Bayes’ Theorem in Use

Let’s say a bank wants to determine if a transaction is fraudulent based on prior data.
Let:

• A be the event “transaction is fraudulent.”
• B be the event “transaction is from a foreign country.”

Spam Detection Projects | FITPED AI

32

Assume:

• The probability that a transaction is fraudulent, P(A), is 1%.
• The probability that a transaction is from a foreign country, P(B), is 10%.
• The probability that a transaction from a foreign country is fraudulent,

P(B∣A), is 5%.

Using Bayes’ theorem, we can find P(A∣B), the probability that a foreign transaction
is fraudulent:

So, given the data, the probability that a foreign transaction is fraudulent is 0.5%.

📝 2.3.3

Bayes Classifier

The Bayes classifier is a probabilistic model based on Bayes' theorem, often used for
classification tasks. One of the most common forms is the Naive Bayes classifier,
which assumes that features are independent of each other (hence "naive"). This
assumption makes it computationally efficient and useful for text classification
tasks like spam detection.

How the Bayes Classifier Works for Spam Detection

Training Phase:

• Gather data with labeled examples (e.g., spam and ham emails).
• Calculate the probability of each word appearing in spam and ham emails.
• Calculate prior probabilities for each class (spam and ham).

Prediction Phase:

• For a new email, break it down into individual words.
• Using Bayes' theorem, compute the probability of the email being spam or

ham based on the frequency of each word.
• Classify the email as spam or ham based on the higher probability.

Spam Detection Projects | FITPED AI

33

2.4 TF-IDF

🕮 2.4.1

TF-IDF

TF-IDF (Term Frequency-Inverse Document Frequency) is a statistical method used
to search and recognize important words in a document with respect to the entire
corpus of documents. In the context of spam filtering, it allows us to determine which
words are characteristic of spam administrations and which are less important or
even typical of legitimate administrations.

How does it work?

Term Frequency (TF):

• It measures how often a given word occurs in a specific document.
• The higher the TF, the more important the word can be for that particular

document.
• For example, the word "free" will appear with high frequency in spam

messages offering something for free.

Inverse Document Frequency (IDF):

• It measures how unique a given word is in the entire corpus of documents
(emails).

• The fewer documents a given word contains, the higher its IDF.
• Words like "and", "that", "is" occur in most documents and thus have a low

IDF.

TF-IDF:

• It is the product of TF and IDF.
• A higher TF-IDF value means that the word is important for the given

document and at the same time is relatively rare in the entire corpus.
• Words with a high TF-IDF value are often good candidates for characteristic

words for a given document category (in our case, spam).

📝 2.4.2

Which of the following best describes the purpose of TF-IDF in spam filtering?

• To identify important words within a document compared to the entire
corpus

• To detect grammatical errors in documents
• To highlight frequently used words in the entire corpus
• To measure the length of documents in the corpus

Spam Detection Projects | FITPED AI

34

📝 2.4.3

Select statements that are true about Term Frequency (TF) and Inverse Document
Frequency (IDF):

• TF calculates word frequency within a specific document.
• IDF gives a higher score to words found in fewer documents.
• IDF assigns a higher value to common words found in most documents.
• TF measures how often a word appears across all documents.

📝 2.4.4

The TF in TF-IDF stands for _____ frequency, which shows the importance of a word
in a particular document.

A higher TF indicates that a word is more _____ within a specific document.

Calculating _____ helps to find words that are repeated often in a single document.

• frequency
• frequent
• term

🕮 2.4.5

TF-IDF and Bayes Classifier for spam detection

TF-IDF (Term Frequency-Inverse Document Frequency) is a method to evaluate the
importance of a word in a document relative to a collection of documents (corpus).
In spam detection, TF-IDF is used to assign weights to words based on how
frequently they appear in spam emails versus legitimate (ham) emails. This is how
TF-IDF strengthens the Bayes classifier’s effectiveness.

Steps to integrate TF-IDF with Bayes Classifier

1. Calculate TF-IDF values:

• For each word in the training dataset, calculate the term frequency (TF) of
the word in each email.

• Calculate the inverse document frequency (IDF) across all emails in the
dataset.

• Multiply TF and IDF to get the TF-IDF score for each word in both spam and
ham categories.

• Example: Assume that “win” appears often in spam but rarely in ham emails.
TF-IDF will assign it a high value, making it a strong spam indicator.

2. Incorporate TF-IDF into Bayes Classifier:

Spam Detection Projects | FITPED AI

35

• Use the TF-IDF score as a weight in the Bayes classifier’s calculation. Words
with higher TF-IDF values will contribute more to the likelihood of the email
being spam.

• For each new email, calculate the probability of it being spam or ham by
incorporating the weighted contributions of each word’s TF-IDF score.

3. Final classification:

• After calculating the probabilities for both spam and ham categories, classify
the email based on the category with the higher weighted probability.

📝 2.4.6

Detailed example of spam detection

Imagine a small dataset with four training emails:

Email Category

Get a million dollars for free! Spam

Meeting tomorrow at 2pm Ham

You won the lottery! Spam

Important message from your bank Ham

Step 1: Calculate word frequency for spam and ham

Word Spam Frequency Ham Frequency

get 1 0

a 2 2

million 1 0

dollars 1 0

free 1 0

meeting 0 1

tomorrow 0 1

Spam Detection Projects | FITPED AI

36

Step 2: Calculate TF-IDF scores

Using the TF-IDF formula, we get:

Word TF-IDF Score (Spam) TF-IDF Score (Ham)

get 0.6 0.0

a 0.2 0.2

million 0.5 0.0

dollars 0.5 0.0

free 0.6 0.0

meeting 0.0 0.6

tomorrow 0.0 0.6

Step 3: Apply TF-IDF scores in Bayes calculation

We use the TF-IDF scores to improve the accuracy of the Naive Bayes classifier in
identifying spam messages. This involves applying Bayes' theorem and incorporating
the TF-IDF scores for words that appear in a new email message to determine the
likelihood that the message is spam. Here’s a step-by-step breakdown:

1. Identify words in the incoming email:

Suppose we receive a new email message with the text: "Get a free gift!".

2. Extract relevant words from the message:

The main words here are:

• "get"
• "a"
• "free"
• "gift"

3. Retrieve TF-IDF scores:

Using the TF-IDF scores from Table 3 for each word, we get:

Spam Detection Projects | FITPED AI

37

• "get" - TF-IDF (Spam): 0.6, TF-IDF (Ham): 0.0
• "a" - TF-IDF (Spam): 0.2, TF-IDF (Ham): 0.2
• "free" - TF-IDF (Spam): 0.6, TF-IDF (Ham): 0.0
• "gift" - Since "gift" wasn’t in the training data, we can assume an equal

likelihood for both Spam and Ham (or use smoothing techniques to avoid
zero probabilities).

4. Apply Bayes' theorem for classification:

We’ll use Bayes' theorem to determine the probability that the email is spam P(Spam
∣ Email) and the probability that the email is ham P(Ham ∣ Email).

Where:

• P(Email∣Spam): The probability of this email being observed given it’s spam.
• P(Spam): The prior probability of spam (often taken as the percentage of

spam emails in the dataset).
• P(Email): The overall probability of observing this email.

Step 5: Calculate P(Email∣Spam) and P(Email∣Ham)

Calculate P(Email∣Spam)

Using the formula:

P(Email∣Spam) = TF-IDF("get", Spam) × TF-IDF("a", Spam) × TF-

IDF("free", Spam) × TF-IDF("gift", Spam)

Substitute the values:

P(Email∣Spam) = 0.6 × 0.2 × 0.6 × 0.5 = 0.036

Calculate P(Email∣Ham)

Using the same method:

P(Email∣Ham) = TF-IDF("get", Ham) × TF-IDF("a", Ham) × TF-

IDF("free", Ham) × TF-IDF("gift", Ham)

Substitute the values:

P(Email∣Ham) = 0.0 × 0.2 × 0.0 × 0.5 = 0.0

Spam Detection Projects | FITPED AI

38

Step 6: Apply Bayes' theorem

Since

P(Email∣Ham) = 0

the probability that this email is ham is essentially zero.

Therefore:

P(Spam∣Email) > P(Ham∣Email)

Result

Since P(Email∣Spam) = 0.036 and P(Email∣Ham) = 0.0, the classifier would label this
email as Spam.

This result aligns with the intuition: the presence of terms like "get" and "free," which
are common in spam messages, indicates that this email is likely spam.

📝 2.4.7

Project: Spam Classifier with TF-IDF and Naive Bayes

(by https://hussnain-akbar.medium.com/understanding-and-implementing-
na%C3%AFve-bayes-algorithm-for-email-spam-detection-85a14b330fc6)

Create a spam classifier using a Naive Bayes algorithm in combination with TF-IDF
(Term Frequency-Inverse Document Frequency) for feature extraction.

The Naïve Bayes classifier is a supervised machine learning model that predicts the
probability of an event by analyzing related features. Here, "Naïve" means that the
model assumes that all features are independent, meaning that each feature
contributes to the prediction independently. In simpler terms, the model considers
each feature separately, without assuming any relationships between them.

For now, we will start with a simple version of the model to make it easier to
understand. To do this, we will create a small, sample dataset.

#Essential libraries required for this model

import pandas as pd

import numpy as np

from sklearn.feature_extraction.text import TfidfVectorizer

from sklearn.model_selection import train_test_split

from sklearn.naive_bayes import MultinomialNB

from sklearn.metrics import accuracy_score,

classification_report

https://hussnain-akbar.medium.com/understanding-and-implementing-na%C3%AFve-bayes-algorithm-for-email-spam-detection-85a14b330fc6
https://hussnain-akbar.medium.com/understanding-and-implementing-na%C3%AFve-bayes-algorithm-for-email-spam-detection-85a14b330fc6

Spam Detection Projects | FITPED AI

39

This code will create a data frame with random emails and their corresponding labels
(spam or not spam). Each email will consist of a random selection of words from the
word_list. However, the above code will have the following output.

Create a random dataset

np.random.seed(42) # For reproducibility

Generate random words for features (words in emails)

word_list = ['discount', 'offer', 'sale', 'free', 'click',

'buy', 'win', 'money', 'gift', 'limited']

Generate random emails

num_emails = 1000

emails = []

labels = []

for _ in range(num_emails):

 email = ' '.join(np.random.choice(word_list,

size=np.random.randint(5, 15)))

 emails.append(email)

 # Assign labels (spam or not spam)

 labels.append(np.random.choice(['spam', 'not spam'],

p=[0.3, 0.7]))

Create a DataFrame

data = pd.DataFrame({'email': emails, 'label': labels})

Display the first few rows of the dataset

print(data.head())

Program output:

 email label

0 free money click win limited sale win money cl... not spam

1 click offer money buy offer click discount lim... spam

2 sale win free gift sale click sale win click g... not spam

3 limited gift limited click offer free spam

4 money sale discount free offer money free offe... not spam

Let's walk through the steps to build and train a Naïve Bayes classifier using the
dataset we created. Here is a breakdown of the four main steps:

1. Data preprocessing

In this step, we will convert the text data to numeric characters. We will use the TF-
IDF (Term Frequency-Inverse Document Frequency) technique, which transforms the

Spam Detection Projects | FITPED AI

40

text into a format understood by the Naïve Bayes classifier. The TF-IDF approach
helps highlight important words in a dataset while reducing the impact of common
words that may not provide significant meaning.

Steps:

• Tokenization: Splitting text into individual words or tokens.
• Lowercase: Convert all text to lowercase for consistency.
• Eliminating Stop Words: Eliminate common words (such as "the", "is", "and")

that do not add much to the meaning.
• TF-IDF Calculation: Calculate the TF-IDF score for each word in each

document.

In following code we apply only conversion of text data into numerical features using
techniques like TF-IDF.

from sklearn.feature_extraction.text import TfidfVectorizer

from sklearn.model_selection import train_test_split

from sklearn.naive_bayes import MultinomialNB

from sklearn.metrics import accuracy_score,

classification_report

Preprocessing: Convert text data to numerical features

tfidf_vectorizer = TfidfVectorizer(max_features=1000) # Limit

features to 1000 for simplicity

X = tfidf_vectorizer.fit_transform(data['email'])

y = data['label']

2. Splitting the data

Next, we need to split the dataset into two parts: one for training the model and
another for testing its performance. A typical split might allocate 70-80% of the data
for training and the remaining 20-30% for testing.

We will use a library sklearn to split the dataset into training and testing sets,
ensuring that both sets contain a representative distribution of classes (e.g., spam
and not spam).

Split the data into training and testing sets

X_train, X_test, y_train, y_test = train_test_split(X, y,

test_size=0.2, random_state=42)

Spam Detection Projects | FITPED AI

41

3. Training the Naïve Bayes Model

Now we can train the Naïve Bayes classifier using the training data. The model will
learn from the features extracted in the preprocessing step.

Steps:

• Create an instance of the Naïve Bayes classifier.
• Fit the model on the training data, allowing it to learn the relationship

between the features and the labels (spam or not spam).

Initialize and train the Naive Bayes classifier

naive_bayes = MultinomialNB()

naive_bayes.fit(X_train, y_train)

4. Evaluating the Model

After training the model, we’ll evaluate its performance on the testing data to see
how well it predicts new, unseen data.

Steps:

• Use the trained model to make predictions on the testing set.
• Compare the predicted labels to the actual labels to calculate performance

metrics such as:
• Accuracy: The proportion of correctly classified instances.
• Precision: The proportion of true positive predictions to the total positive

predictions.
• Recall (Sensitivity): The proportion of true positive predictions to the total

actual positives.
• F1 Score: The harmonic mean of precision and recall, providing a balance

between the two.

y_pred = naive_bayes.predict(X_test)

accuracy = accuracy_score(y_test, y_pred)

report = classification_report(y_test, y_pred,

zero_division=0)

print(f'Accuracy: {accuracy}')

print('Classification Report:\n', report)

Program output:
Accuracy: 0.66

Classification Report:

 precision recall f1-score support

 not spam 0.66 1.00 0.80 132

Spam Detection Projects | FITPED AI

42

 spam 0.00 0.00 0.00 68

 accuracy 0.66 200

 macro avg 0.33 0.50 0.40 200

weighted avg 0.44 0.66 0.52 200

The accuracy of our Naive Bayes classifier on the test data is 66%. This means that
the model correctly identified about two-thirds of the emails in our test set. However,
when we look closer at the classification report, we notice that the precision, recall,
and F1 score for the “spam” class are quite low.

Low precision means that when the model predicts an email is spam, it often turns
out to be wrong. Low recall indicates that the model is missing many actual spam
emails, failing to identify them correctly. Essentially, this suggests that our model
struggles to accurately recognize spam emails, which is a significant concern for
applications that rely on effective spam detection.

The final step is to use our trained Naive Bayes model to predict whether new emails
are spam or not. To do this, we run the following code, which takes the new email
data and applies the model we’ve trained. After running the prediction, we can
analyze the output to see how well the model identifies spam in this new data.

Example of a new email to be predicted

new_email = "Limited time offer! Click here to win a free

gift."

Preprocess the new email using the TF-IDF vectorizer from

the training

new_email_features = tfidf_vectorizer.transform([new_email])

Make prediction using the trained Naive Bayes classifier

predicted_label = naive_bayes.predict(new_email_features)

Print the predicted label

print(f"Predicted Label: {predicted_label[0]}")

Program output:
Predicted Label: not spam

Machine Learning in Spam
Detection

Chapter 3

Machine Learning in Spam Detection | FITPED AI

44

3.1 AI spam detection

🕮 3.1.1

Spam detection is a dynamic challenge due to the constantly evolving nature of
spam. Machine learning (ML) algorithms are well-suited for this task because they
can adapt to new spam patterns without human intervention. ML models analyze
vast data, including message patterns, user behaviors, and known spam indicators,
to detect likely spam.

An ML model calculates a risk score based on these factors, classifying messages
accordingly. This approach is highly effective in identifying subtle variations in spam
messages, making detection more accurate and reducing the number of legitimate
emails marked as spam.

📝 3.1.2

In spam detection, _____ _____ algorithms adapt to evolving spam by analyzing
message _____ and user _____ to identify probable spam content.

• machine
• patterns
• learning
• behavior

🕮 3.1.3

In today's age of digital communication, spam is a ubiquitous problem. Traditional
spam filters, based on rules and keyword detection, are no longer sufficient to
combat the constantly evolving techniques of spammers. AI is thus becoming
increasingly important in the fight against spam as it improves traditional methods
through advanced data analysis and pattern recognition.

Content analysis

AI algorithms excel at content analysis by examining the text in emails to determine
their legitimacy. They consider various elements including word choice, sentence
structure and semantic meaning. For example, spam emails often contain specific
phrases such as "Click here to claim your prize!" or "Act now to secure your offer!"
Artificial intelligence can be trained to recognize these linguistic signals and
associate them with the characteristics of spam.

In addition, AI can analyze the overall tone and context of messages, distinguishing
between promotional content and genuine communication. By leveraging natural
language processing (NLP), AI systems can further understand the intent of words
and identify manipulative or deceptive language commonly used in spam. In-depth

Machine Learning in Spam Detection | FITPED AI

45

analysis thus enables a more accurate classification of e-mails, reduces the number
of false alarms and improves the user experience.

Additionally, while spammers develop their language to bypass filters, AI constantly
updates its understanding and ensures that new spam tactics are effectively
identified.

📝 3.1.4

Which of the following elements does AI analyze in email content to determine its
legitimacy?

• Text, structure, and semantic meaning
• Subject line
• Recipient’s email address
• Time of day the email was sent

🕮 3.1.5

Pattern detection

AI's ability to recognize patterns in spam messages is another critical aspect of its
effectiveness. Over time, AI systems learn to identify recurring themes, such as
common keywords or phrases that appear frequently in spam. For example, terms
like "urgent," "limited time," or "guaranteed" often signal promotional emails intended
to elicit an immediate response.

In addition, artificial intelligence can detect suspicious URLs and email templates
that are typical of spam campaigns. For example, a URL pointing to a domain with a
long string of random characters may indicate phishing attempts. By analyzing large
data sets, AI can uncover hidden correlations between different email features,
facilitating accurate categorization of messages.

Additionally, machine learning algorithms improve their accuracy as they process
more data, allowing them to quickly adapt to emerging spam tactics. Proactive
approach to pattern detection not only identifies existing spam, but also predicts
future threats based on historical data.

📝 3.1.6

What type of elements does AI recognize in spam messages to improve detection
accuracy?

• Images included in the email
• Recurring themes, keywords, and suspicious URLs
• The sender's location
• The length of the email

Machine Learning in Spam Detection | FITPED AI

46

🕮 3.1.7

Identification of anomalies

AI's ability to detect anomalies is critical to identifying unusual behavior that may
indicate spam activity. For example, if a user normally receives ten emails a day, but
suddenly sees an increase to a hundred, the AI may flag this as suspicious. This
increase in message volume could indicate that the user is being targeted by a spam
campaign.

Similarly, AI monitors sending patterns to detect anomalies, such as sending multiple
emails to new senders in a short time frame. For example, if an email address that
has never sent messages before suddenly sends a large number of emails, this may
indicate hacked accounts or spam activity.

AI systems use statistical methods to determine underlying behavior, allowing them
to identify deviations with high accuracy. This capability is especially valuable in
enterprise environments where large volumes of email are exchanged daily.

📝 3.1.8

What does AI monitor to detect anomalies that might indicate spam activity?

• Sending patterns and volume of emails
• The color scheme of the email
• User interaction with emails
• The sender’s font choice

🕮 3.1.9

Adaptability

One of the most significant advantages of AI in spam detection is its adaptability. AI
algorithms are designed to constantly learn from new data, allowing them to adapt
to changing spam tactics.

For example, as spammers develop new techniques to avoid detection—such as
using image-based messages or obfuscating links - AI can update its models to
recognize these evolving patterns. This ongoing learning process is facilitated by
feedback loops where the AI receives information about its classifications, allowing
it to refine its accuracy over time.

As a result, AI systems can quickly adapt to new threats without the need for manual
updates to filtering criteria. For example, if a new phishing technique emerges that
combines social engineering with legitimate-looking websites, the AI can quickly
incorporate that information into its detection framework.

Machine Learning in Spam Detection | FITPED AI

47

📝 3.1.10

How does AI maintain its effectiveness against evolving spam tactics?

• By relying solely on user reports
• By continuously learning from new data
• By using static rules from the past
• By limiting analysis to only the most recent emails

🕮 3.1.11

The importance of AI in spam detection lies in:

● Increased accuracy: AI systems can identify spam messages with greater accuracy
and reduce the number of false positives and false negatives.

● Efficiency improvements: AI automates the spam detection process and enables
more efficient filtering of large volumes of messages.

● Threat protection: AI helps protect users from spam-related threats, such as
phishing attacks, the spread of malware, and the loss of sensitive information.

● Keeping the inbox clean: AI helps keep the inbox clean and makes it easier for users
to sort through important messages.

📝 3.1.12

The importance of AI in spam detection lies in increased accuracy, efficiency
improvements, threat protection, and keeping the inbox _____ and making it easier
for users to sort through _____ messages.

Additionally, AI significantly enhances the _____ of spam detection by learning from
past data and adjusting to new tactics. This adaptability ensures that users are better
protected against _____ that can compromise their sensitive information.

• efficiency
• clean
• important
• threats

Machine Learning in Spam Detection | FITPED AI

48

3.2 Implementation

🕮 3.2.1

Process of implementing AI-based spam detection

Implementing an AI-based spam detection system involves several key steps. First,
it’s essential to choose the right AI tools and platforms, as there are various options
designed for different levels of complexity and technical requirements. After
selecting a tool, the next step is to train the AI model on a large dataset that includes
both spam and legitimate messages. This allows the model to learn what spam looks
like and what differentiates it from legitimate messages. The training phase is
crucial, as the quality and diversity of the data directly affect the accuracy of the AI
model.

Once the model is trained, the next phase is deployment, where the model is
integrated into the desired application, such as an email server or social media
platform. After deployment, continuous testing is necessary to ensure the model
maintains its accuracy, especially as spam tactics evolve. Regular updates and fine-
tuning of the AI model are often required to keep up with these changes. This iterative
process ensures that AI-based spam detection remains effective over time, adapting
to new challenges and maintaining online security.

📝 3.2.2

Which steps are part of implementing an AI-based spam detection system?

• Choosing the right AI tools
• Training the AI model
• Deploying and testing the AI model
• Manually filtering spam messages

🕮 3.2.3

While AI-based spam detection offers many benefits, it also presents certain
challenges. One major consideration is data privacy. AI-based systems require large
amounts of data to train effectively, but this data often includes sensitive or private
information. Ensuring that data privacy is protected is a critical step, often involving
data anonymization or using synthetic data to avoid compromising user information.

Another challenge is managing false positives and false negatives. Even with
advanced AI, there can still be mistakes, where legitimate emails are flagged as spam
or spam messages slip through. Reducing these errors requires careful tuning of the
AI model and ongoing improvements based on feedback. Finally, AI-based spam
detection systems need continuous adaptation. Spammers constantly change their
tactics, so models must be updated to handle new types of spam and emerging
threats. This ongoing process keeps spam detection accurate and reliable.

Machine Learning in Spam Detection | FITPED AI

49

📝 3.2.4

In AI-based spam detection, data _____ is crucial to protect user information, while
constant _____ helps the system adapt to new spam techniques.

• adaptation
• privacy

🕮 3.2.5

Data privacy

Data privacy is a critical concern in AI-based spam detection, as these systems
analyze large volumes of message data to distinguish spam from legitimate content.
Since this data may contain sensitive information, organizations must implement
robust measures to protect user privacy. Encryption, access controls, and data
anonymization are key strategies that help safeguard this information, ensuring
compliance with data protection regulations. Furthermore, transparency in data
collection and usage practices is essential. By informing users about how their data
is used in spam detection and obtaining consent, organizations can build trust,
helping users feel secure in the system’s operations.

In addition to these measures, it is essential for organizations to stay informed about
updates to data protection laws and implement necessary changes proactively. By
prioritizing data privacy, AI-based spam detection can function effectively while
respecting user privacy rights, building a safer and more responsible digital
environment.

📝 3.2.6

Which is a crucial aspect of AI-based spam detection related to data?

• Data anonymization
• Increasing spam accuracy
• Reducing spam messages
• Preventing phishing attacks

🕮 3.2.7

Minimizing false positives and negatives

Balancing false positives and false negatives is a significant challenge in AI-based
spam detection. False positives, where legitimate messages are incorrectly flagged
as spam, can lead to user frustration and a loss of trust in the spam filter. On the
other hand, false negatives allow spam messages to slip through, potentially
exposing users to security risks. To address this, AI models must be continuously
fine-tuned and trained with diverse datasets to improve accuracy. This process

Machine Learning in Spam Detection | FITPED AI

50

includes regularly analyzing user feedback and adjusting model parameters to
minimize errors, ensuring that legitimate messages reach users while spam is
effectively filtered out.

Furthermore, ongoing evaluation of the model’s performance is essential, as it helps
detect shifts in message patterns over time. A combination of user input and
technical adjustments creates a balanced spam detection system, minimizing
disruptions while maximizing security for users.

📝 3.2.8

What can help reduce false positives and negatives in AI-based spam detection?

• Regular model updates
• User feedback analysis
• Stopping all spam checks
• Using rule-based filters

🕮 3.2.9

Adapting to evolving spam techniques

Spam techniques evolve constantly, with spammers developing new tactics to
bypass detection. For AI-based spam filters to stay effective, they must adapt
continuously to these changing methods. This involves regular retraining of the AI
model on new data, updating the system to recognize emerging spam patterns, and
staying aware of recent trends in spam behavior. By doing so, the model can detect
even advanced spam methods, such as zero-day attacks, which may initially evade
simpler filters. Proactive adaptation keeps spam detection systems effective,
blocking new threats as soon as they appear.

Organizations can enhance this adaptability by collaborating with industry peers and
security experts. Sharing insights on recent spam trends enables faster responses
to new threats, creating a more resilient spam detection framework. This continuous
adaptation keeps online environments safe and spam-free for users.

📝 3.2.10

Why is continuous adaptation necessary in AI-based spam detection?

• Spammers regularly evolve their techniques
• It’s cheaper than traditional spam detection
• Users prefer it over other methods
• It ignores user privacy

🕮 3.2.11

Machine Learning in Spam Detection | FITPED AI

51

Performance and scalability

AI-based spam detection is computationally intensive, requiring substantial
resources to process large volumes of messages accurately. Ensuring the system's
performance and scalability is essential, particularly for organizations handling high
message traffic. Allocating sufficient processing power and memory allows the
spam filter to operate smoothly without delays. Optimizing algorithms and using
efficient data processing techniques can further enhance the model’s performance,
allowing it to scale with increasing demand without compromising speed or
accuracy.

Scalability also involves planning for future growth, enabling the system to handle
larger data volumes as the organization expands. By investing in both performance
optimization and scalability, organizations can maintain a reliable and efficient spam
detection system that supports the demands of a growing user base.

📝 3.2.12

To handle the large volumes of _____ in spam _____, organizations need to focus on
both performance and _____.

• messages
• scalability
• detection

3.3 AI projects

📝 3.3.1

Project: Multinomial Naive Bayes

(by
https://github.com/Apaulgithub/oibsip_taskno4/blob/main/Email_Spam_Detection
_with_Machine_Learning.ipynb)

In the rapidly developing digital world, the fight against spam emails will become an
increasingly important challenge. Spam emailsare expected to continue to flood
inboxes.

The main points of the project:

• Data Preprocessing: We start by preparing a large email dataset, which
includes cleaning the data, handling missing values, and transforming the
text data into a machine learning-ready format.

• Feature Extraction: We will use a variety of feature extraction techniques to
capture the defining characteristics of spam emails, a critical step in making
the data interpretable for models.

https://github.com/Apaulgithub/oibsip_taskno4/blob/main/Email_Spam_Detection_with_Machine_Learning.ipynb
https://github.com/Apaulgithub/oibsip_taskno4/blob/main/Email_Spam_Detection_with_Machine_Learning.ipynb

Machine Learning in Spam Detection | FITPED AI

52

• Machine learning models: A machine learning algorithms will be used to
train and evaluate the spam detection model.

• Evaluation metrics: We carefully select evaluation metrics such as accuracy,
precision, recall, and F1-score to measure model effectiveness and gain
valuable performance information.

• Tuning and Optimization: Fine-tuning the hyperparameters and optimizing
the model will increase the accuracy of the prediction, allowing the model to
better adapt to future data.

• Validation: Thorough cross-validation and testing on a separate data set will
ensure that the model generalizes well to unseen data.

1. Known your data

• import libraries
• upload dataset

Import Libraries

Importing Numpy & Pandas for data processing & data

wrangling

import numpy as np

import pandas as pd

Importing tools for visualization

import matplotlib.pyplot as plt

import seaborn as sns

Import evaluation metric libraries

from sklearn.metrics import confusion_matrix, accuracy_score,

precision_score, recall_score, f1_score, roc_auc_score,

roc_curve, classification_report

Word Cloud library

from wordcloud import WordCloud, STOPWORDS

Library used for data preprocessing

from sklearn.feature_extraction.text import CountVectorizer

Import model selection libraries

from sklearn.model_selection import train_test_split

Library used for ML Model implementation

from sklearn.naive_bayes import MultinomialNB

Importing the Pipeline class from scikit-learn

from sklearn.pipeline import Pipeline

Machine Learning in Spam Detection | FITPED AI

53

Library used for ignore warnings

import warnings

warnings.filterwarnings('ignore')

%matplotlib inline

Dataset Loading

• original source:
https://raw.githubusercontent.com/Apaulgithub/oibsip_taskno4/main/spam
.csv

• system copy:
https://priscilla.fitped.eu/data/cybersecurity/spam/spam_908.csv

Load Dataset from repository

df =

pd.read_csv("https://priscilla.fitped.eu/data/cybersecurity/sp

am/spam_908.csv", encoding='ISO-8859-1')

Dataset First View

• Show 5 lines of data

Dataset First Look

View top 5 rows of the dataset

print(df.head())

Program output:
 v1 v2

Unnamed: 2 \

0 ham Go until jurong point, crazy.. Available only ...

NaN

1 ham Ok lar... Joking wif u oni...

NaN

2 spam Free entry in 2 a wkly comp to win FA Cup fina...

NaN

3 ham U dun say so early hor... U c already then say...

NaN

4 ham Nah I don't think he goes to usf, he lives aro...

NaN

 Unnamed: 3 Unnamed: 4

0 NaN NaN

1 NaN NaN

2 NaN NaN

3 NaN NaN

4 NaN NaN

https://raw.githubusercontent.com/Apaulgithub/oibsip_taskno4/main/spam.csv
https://raw.githubusercontent.com/Apaulgithub/oibsip_taskno4/main/spam.csv
https://priscilla.fitped.eu/data/cybersecurity/spam/spam_908.csv

Machine Learning in Spam Detection | FITPED AI

54

Dataset Rows & Columns count

Dataset Rows & Columns count

Checking number of rows and columns of the dataset using

shape

print("Number of rows are: ",df.shape[0])

print("Number of columns are: ",df.shape[1])

Program output:
Number of rows are: 5572

Number of columns are: 5

Dataset Information

Dataset Info

Checking information about the dataset using info

df.info()

Program output:

RangeIndex: 5572 entries, 0 to 5571

Data columns (total 5 columns):

 # Column Non-Null Count Dtype

--- ------ -------------- -----

 0 v1 5572 non-null object

 1 v2 5572 non-null object

 2 Unnamed: 2 50 non-null object

 3 Unnamed: 3 12 non-null object

 4 Unnamed: 4 6 non-null object

dtypes: object(5)

memory usage: 217.8+ KB

Duplicate values

Dataset Duplicate Value Count

dup = df.duplicated().sum()

print(f'number of duplicated rows are {dup}')

Program output:
number of duplicated rows are 403

Machine Learning in Spam Detection | FITPED AI

55

Missing Values/Null Values

Missing Values/Null Values Count

print(df.isnull().sum())

Program output:
v1 0

v2 0

Unnamed: 2 5522

Unnamed: 3 5560

Unnamed: 4 5566

dtype: int64

What did i know about the dataset?

• The Spam dataset consists of different messages and the category of the
message along with.

• There are 5572 rows and 5 columns provided in the data.
• 403 duplicate rows are present in the dataset.
• No Null values exist in v1 & v2 column, but lots of null values present in

unnamed 2,3,4 columns (will drop those 3 columns later).

2. Understanding The Variables

Dataset Columns

print(df.columns)

Program output:
Index(['v1', 'v2', 'Unnamed: 2', 'Unnamed: 3', 'Unnamed: 4'],

dtype='object')

Dataset Describe (all columns included)

print(df.describe(include= 'all').round(2))

Program output:
 v1 v2 \

count 5572 5572

unique 2 5169

top ham Sorry, I'll call later

freq 4825 30

 Unnamed: 2 \

count 50

unique 43

top bt not his girlfrnd... G o o d n i g h t . . .@"

freq 3

Machine Learning in Spam Detection | FITPED AI

56

 Unnamed: 3 Unnamed: 4

count 12 6

unique 10 5

top MK17 92H. 450Ppw 16" GNT:-)"

freq 2 2

Check unique values for each variable.

Check Unique Values for each variable using a for loop.

for i in df.columns.tolist():

 print("No. of unique values in",i,"is",df[i].nunique())

Program output:
No. of unique values in v1 is 2

No. of unique values in v2 is 5169

No. of unique values in Unnamed: 2 is 43

No. of unique values in Unnamed: 3 is 10

No. of unique values in Unnamed: 4 is 5

3. Data Wrangling

Change the v1 & v2 columns as Category and Message

df.rename(columns={"v1": "Category", "v2": "Message"},

inplace=True)

Removing the all unnamed columns (its include much number of

missing values)

df.drop(columns={'Unnamed: 2','Unnamed: 3','Unnamed: 4'},

inplace=True)

Create a binary 'Spam' column: 1 for 'spam' and 0 for 'ham',

based on the 'Category' column.

df['Spam'] = df['Category'].apply(lambda x: 1 if x == 'spam'

else 0)

Updated new dataset

print(df.head())

4. Data explanation

Vizualization, Storytelling & Experimenting with charts : Understand the relationships
between variables

Machine Learning in Spam Detection | FITPED AI

57

Chart 1: Distribution of Spam vs Ham

Chart - 1 Pie Chart Visualization Code For Distribution of

Spam vs Ham Messages

spread = df['Category'].value_counts()

plt.rcParams['figure.figsize'] = (5,5)

Set Labels

spread.plot(kind = 'pie', autopct='%1.2f%%', cmap='Set1')

plt.title(f'Distribution of Spam vs Ham')

Display the Chart

plt.show()

Program output:

What is/are the insight(s) found from the chart?

We got to know that the dataset contain 13.41% of spam messages and 86.59% of
ham messages.

Chart 2: Most Used Words in Spam Messages

Filter Spam Messages

df_spam = df[df['Category'] == 'spam'].copy()

Machine Learning in Spam Detection | FITPED AI

58

String to Store All Words

comment_words = '

'.join(df_spam['Message'].astype(str).str.lower())

Stopwords

stopwords = set(STOPWORDS)

Create WordCloud Object with Parameters

wordcloud = WordCloud(width=1000, height=500,

 background_color='white',

 stopwords=stopwords,

 min_font_size=10,

 max_words=1000,

colormap='gist_heat_r').generate(comment_words)

Plot WordCloud

plt.figure(figsize=(10, 6), facecolor=None)

plt.title('Most Used Words In Spam Messages', fontsize=15,

pad=20)

plt.imshow(wordcloud, interpolation="bilinear")

plt.axis("off")

plt.tight_layout(pad=0)

plt.show()

Program output:

Machine Learning in Spam Detection | FITPED AI

59

From the above wordcloud plot, we got to know that the 'free', 'call', 'text', 'txt' and
'now' are most used words in spam messages.

5. Feature Engineering & Data Pre-processing

Data Splitting

Splitting the data to train and test

X_train,X_test,y_train,y_test=train_test_split(df.Message,df.S

pam,test_size=0.25)

6. ML Model Implementation

def evaluate_model(model, X_train, X_test, y_train, y_test):

 '''The function will take model, x train, x test, y train,

y test

 and then it will fit the model, then make predictions on

the trained model,

 it will then print roc-auc score of train and test, then

plot the roc, auc curve,

 print confusion matrix for train and test, then print

classification report for train and test,

 then plot the feature importances if the model has feature

importances,

 and finally it will return the following scores as a list:

 recall_train, recall_test, acc_train, acc_test,

roc_auc_train, roc_auc_test, F1_train, F1_test

 '''

 # fit the model on the training data

 model.fit(X_train, y_train)

 # make predictions on the test data

 y_pred_train = model.predict(X_train)

 y_pred_test = model.predict(X_test)

 pred_prob_train = model.predict_proba(X_train)[:,1]

 pred_prob_test = model.predict_proba(X_test)[:,1]

 # calculate ROC AUC score

 roc_auc_train = roc_auc_score(y_train, y_pred_train)

 roc_auc_test = roc_auc_score(y_test, y_pred_test)

 print("\nTrain ROC AUC:", roc_auc_train)

 print("Test ROC AUC:", roc_auc_test)

 # plot the ROC curve

Machine Learning in Spam Detection | FITPED AI

60

 fpr_train, tpr_train, thresholds_train =

roc_curve(y_train, pred_prob_train)

 fpr_test, tpr_test, thresholds_test = roc_curve(y_test,

pred_prob_test)

 plt.plot([0,1],[0,1],'k--')

 plt.plot(fpr_train, tpr_train, label="Train ROC AUC:

{:.2f}".format(roc_auc_train))

 plt.plot(fpr_test, tpr_test, label="Test ROC AUC:

{:.2f}".format(roc_auc_test))

 plt.legend()

 plt.title("ROC Curve")

 plt.xlabel("False Positive Rate")

 plt.ylabel("True Positive Rate")

 plt.show()

 # calculate confusion matrix

 cm_train = confusion_matrix(y_train, y_pred_train)

 cm_test = confusion_matrix(y_test, y_pred_test)

 fig, ax = plt.subplots(1, 2, figsize=(11,4))

 print("\nConfusion Matrix:")

 sns.heatmap(cm_train, annot=True, xticklabels=['Negative',

'Positive'], yticklabels=['Negative', 'Positive'],

cmap="Oranges", fmt='.4g', ax=ax[0])

 ax[0].set_xlabel("Predicted Label")

 ax[0].set_ylabel("True Label")

 ax[0].set_title("Train Confusion Matrix")

 sns.heatmap(cm_test, annot=True, xticklabels=['Negative',

'Positive'], yticklabels=['Negative', 'Positive'],

cmap="Oranges", fmt='.4g', ax=ax[1])

 ax[1].set_xlabel("Predicted Label")

 ax[1].set_ylabel("True Label")

 ax[1].set_title("Test Confusion Matrix")

 plt.tight_layout()

 plt.show()

 # calculate classification report

 cr_train = classification_report(y_train, y_pred_train,

output_dict=True)

Machine Learning in Spam Detection | FITPED AI

61

 cr_test = classification_report(y_test, y_pred_test,

output_dict=True)

 print("\nTrain Classification Report:")

 crt = pd.DataFrame(cr_train).T

 print(crt.to_markdown())

 # sns.heatmap(pd.DataFrame(cr_train).T.iloc[:, :-1],

annot=True, cmap="Blues")

 print("\nTest Classification Report:")

 crt2 = pd.DataFrame(cr_test).T

 print(crt2.to_markdown())

 # sns.heatmap(pd.DataFrame(cr_test).T.iloc[:, :-1],

annot=True, cmap="Blues")

 precision_train = cr_train['weighted avg']['precision']

 precision_test = cr_test['weighted avg']['precision']

 recall_train = cr_train['weighted avg']['recall']

 recall_test = cr_test['weighted avg']['recall']

 acc_train = accuracy_score(y_true = y_train, y_pred =

y_pred_train)

 acc_test = accuracy_score(y_true = y_test, y_pred =

y_pred_test)

 F1_train = cr_train['weighted avg']['f1-score']

 F1_test = cr_test['weighted avg']['f1-score']

 model_score = [precision_train, precision_test,

recall_train, recall_test, acc_train, acc_test, roc_auc_train,

roc_auc_test, F1_train, F1_test]

 return model_score

ML Model: Multinomial Naive Bayes

ML Model - 1 Implementation

Create a machine learning pipeline using scikit-learn,

combining text vectorization (CountVectorizer)

and a Multinomial Naive Bayes classifier for email spam

detection.

clf = Pipeline([

 ('vectorizer', CountVectorizer()), # Step 1: Text data

transformation

 ('nb', MultinomialNB()) # Step 2: Classification using

Naive Bayes

Machine Learning in Spam Detection | FITPED AI

62

])

Model is trained (fit) and predicted in the evaluate model

Explain the ML Model used and it's performance using Evaluation metric Score
Chart.

Visualizing evaluation Metric Score chart

MultinomialNB_score = evaluate_model(clf, X_train, X_test,

y_train, y_test)

Program output:
Train ROC AUC: 0.9826282171205603

Test ROC AUC: 0.9657622739018088

Confusion Matrix:

Machine Learning in Spam Detection | FITPED AI

63

Train Classification Report:

| | precision | recall | f1-score |

support |

|:-------------|------------:|---------:|-----------:|--------

----:|

| 0 | 0.995041 | 0.997514 | 0.996276 | 3621

|

| 1 | 0.983607 | 0.967742 | 0.97561 | 558

|

| accuracy | 0.993539 | 0.993539 | 0.993539 |

0.993539 |

| macro avg | 0.989324 | 0.982628 | 0.985943 | 4179

|

| weighted avg | 0.993514 | 0.993539 | 0.993517 | 4179

|

Test Classification Report:

| | precision | recall | f1-score |

support |

|:-------------|------------:|---------:|-----------:|--------

----:|

| 0 | 0.990083 | 0.995017 | 0.992543 | 1204

|

| 1 | 0.967213 | 0.936508 | 0.951613 | 189

|

| accuracy | 0.987078 | 0.987078 | 0.987078 |

0.987078 |

| macro avg | 0.978648 | 0.965762 | 0.972078 | 1393

|

| weighted avg | 0.98698 | 0.987078 | 0.98699 | 1393

|

Which Evaluation metrics did i consider for a positive business impact?

• After carefully considering the potential consequences of false positives and
false negatives in the context of our business objectives, I have selected
recall as the primary evaluation metric for our email spam detection model.
Its gives 98.49% accuracy for recall test set.

Defining a function for the Email Spam Detection System

def detect_spam(email_text):

 # Load the trained classifier (clf) here

 # Replace the comment with your code to load the

classifier model

Machine Learning in Spam Detection | FITPED AI

64

 # Make a prediction using the loaded classifier

 prediction = clf.predict([email_text])

 if prediction == 0:

 return "This is a Ham Email!"

 else:

 return "This is a Spam Email!"

Example of how to use the function

sample_email = 'Free Tickets for IPL'

result = detect_spam(sample_email)

print(result)

Program output:
This is a Spam Email!

Conclusion - key information

• Dataset Distribution: We found that about 13.41% of the messages were
classified as spam while 86.59% were ham. This ratio provided a crucial
starting point for our analysis and helped us understand the prevalence of
spam in email communications.

• Exploratory Data Analysis (EDA): Through EDA, we identified commonly
used words in spam messages such as "free", "call", "text", "txt" and "now".
These keywords, often detected by spam filters, became important features
of our model.

• Model Selection and Performance: Among the models we examined, the
Multinomial Naive Bayes classifier stood out with an impressive 98.49%
accuracy on the recall test set. This high recall means the model was
excellent at catching spam, which is vital for email security and improves the
user experience by keeping inboxes cleaner.

📝 3.3.2

Project: SMS spam classifier

(by https://www.milindsoorya.co.uk/blog/build-a-spam-classifier-in-python)

In today's instant messaging world, SMS a IM spam is becoming a growing problem.
As unwanted advertising messages, scams and phishing attempts are on the rise, it
is essential to have effective tools to identify and filter these spam messages. In this
project, we will develop a machine learning model to classify SMS/IM messages as
spam or ham.

Our goal is to create a model that can analyze the content of an message and
accurately predict whether it is spam. Machine learning models can learn patterns in
the text itself, making them more adaptive and robust.

https://www.milindsoorya.co.uk/blog/build-a-spam-classifier-in-python

Machine Learning in Spam Detection | FITPED AI

65

Used Spam Collection is a set of SMS tagged messages that have been collected for
SMS Spam research. It contains one set of SMS messages in English of 5,574
messages, tagged according to being ham (legitimate) or spam. The data was
obtained from UCI’s Machine Learning Repository,

The local version is available at
https://priscilla.fitped.eu/data/cybersecurity/spam/sms_spam_894.txt

The steps in the project will be focused on

Data processing

• Import packages
• Loading data
• Data set preprocessing and exploration
• Creating a word cloud to see which message is spam and which is not.
• Removing stop words and punctuation
• Convert text data to vectors

Creating a spam classification model for SMS

• Splitting data into train and test files
• Use built-in Sklearn classifiers to build models
• Training data on the model
• Making predictions based on new data

Import the required packages

import matplotlib.pyplot as plt

import csv

import sklearn

import pickle

from wordcloud import WordCloud

import pandas as pd

import numpy as np

import nltk

from nltk.corpus import stopwords

from sklearn.feature_extraction.text import CountVectorizer,

TfidfTransformer

from sklearn.tree import DecisionTreeClassifier

from sklearn.model_selection import

GridSearchCV,train_test_split,StratifiedKFold,cross_val_score,

learning_curve

https://archive.ics.uci.edu/ml/datasets/SMS+Spam+Collection
https://priscilla.fitped.eu/data/cybersecurity/spam/sms_spam_894.txt

Machine Learning in Spam Detection | FITPED AI

66

Loading the Dataset

data =

pd.read_csv('https://priscilla.fitped.eu/data/cybersecurity/sp

am/sms_spam_894.txt', encoding='latin-1', delimiter='\t',

header=None)

print(data.head())

Program output:
 0 1

0 ham Go until jurong point, crazy.. Available only ...

1 ham Ok lar... Joking wif u oni...

2 spam Free entry in 2 a wkly comp to win FA Cup fina...

3 ham U dun say so early hor... U c already then say...

4 ham Nah I don't think he goes to usf, he lives aro...

Name the columns for better processing.

data.rename(columns={0: 'label', 1: 'text'}, inplace=True)

print(data.head())

Program output:
 label text

0 ham Go until jurong point, crazy.. Available only ...

1 ham Ok lar... Joking wif u oni...

2 spam Free entry in 2 a wkly comp to win FA Cup fina...

3 ham U dun say so early hor... U c already then say...

4 ham Nah I don't think he goes to usf, he lives aro...

print(data['label'].value_counts())

Program output:
ham 4825

spam 747

Name: label, dtype: int64

Preprocessing and Exploring the Dataset

Build word cloud to see which message is spam and which is not

ham_words = ''

spam_words = ''

Creating a corpus of spam messages

Machine Learning in Spam Detection | FITPED AI

67

for val in data[data['label'] == 'spam'].text:

 text = val.lower()

 tokens = nltk.word_tokenize(text)

 for words in tokens:

 spam_words = spam_words + words + ' '

Creating a corpus of ham messages

for val in data[data['label'] == 'ham'].text:

 text = text.lower()

 tokens = nltk.word_tokenize(text)

 for words in tokens:

 ham_words = ham_words + words + ' '

Create Spam word cloud and ham word cloud.

spam_wordcloud = WordCloud(width=500,

height=300).generate(spam_words)

ham_wordcloud = WordCloud(width=500,

height=300).generate(ham_words)

#Spam Word cloud

plt.figure(figsize=(10,8), facecolor='w')

plt.imshow(spam_wordcloud)

plt.axis("off")

plt.tight_layout(pad=0)

plt.show()

Machine Learning in Spam Detection | FITPED AI

68

Program output:

#Creating Ham wordcloud

plt.figure(figsize=(10,8), facecolor='g')

plt.imshow(ham_wordcloud)

plt.axis("off")

plt.tight_layout(pad=0)

plt.show()

Program output:

Machine Learning in Spam Detection | FITPED AI

69

from the spam word cloud, we can see that "free" is most often used in spam.

Now, we can convert the spam and ham into 0 and 1 respectively so that the machine
can understand.

data = data.replace(['ham','spam'],[0, 1])

print(data.head(10))

Program output:
 label text

0 0 Go until jurong point, crazy.. Available only ...

1 0 Ok lar... Joking wif u oni...

2 1 Free entry in 2 a wkly comp to win FA Cup fina...

3 0 U dun say so early hor... U c already then say...

4 0 Nah I don't think he goes to usf, he lives aro...

5 1 FreeMsg Hey there darling it's been 3 week's n...

6 0 Even my brother is not like to speak with me. ...

7 0 As per your request 'Melle Melle (Oru Minnamin...

8 1 WINNER!! As a valued network customer you have...

9 1 Had your mobile 11 months or more? U R entitle...

Removing punctuation and stopwords from the messages

• Punctuation and stop words do not contribute anything to our model, so we
have to remove them. Using NLTK library we can easily do it.

#remove the punctuations and stopwords

import string

def text_process(text):

 text = text.translate(str.maketrans('', '',

string.punctuation))

 text = [word for word in text.split() if word.lower() not

in stopwords.words('english')]

 return " ".join(text)

data['text'] = data['text'].apply(text_process)

print(data.head(10))

Program output:
 label text

0 0 Go jurong point crazy Available bugis n great ...

1 0 Ok lar Joking wif u oni

2 1 Free entry 2 wkly comp win FA Cup final tkts 2...

Machine Learning in Spam Detection | FITPED AI

70

3 0 U dun say early hor U c already say

4 0 Nah dont think goes usf lives around though

5 1 FreeMsg Hey darling 3 weeks word back Id like ...

6 0 Even brother like speak treat like aids patent

7 0 per request Melle Melle Oru Minnaminunginte Nu...

8 1 WINNER valued network customer selected receiv...

9 1 mobile 11 months U R entitled Update latest co...

Now, create a data frame from the processed data before moving to the next step.

text = pd.DataFrame(data['text'])

label = pd.DataFrame(data['label'])

Converting words to vectors

We can convert words to vectors using either Count Vectorizer or by using TF-IDF
Vectorizer.

TF-IDF is better than Count Vectorizers because it not only focuses on the frequency
of words present in the corpus but also provides the importance of the words. We
can then remove the words that are less important for analysis, hence making the
model building less complex by reducing the input dimensions.

I have included both methods for your reference.

Converting words to vectors using Count Vectorizer

Counting how many times a word appears in the dataset

from collections import Counter

total_counts = Counter()

for i in range(len(text)):

 for word in text.values[i][0].split(" "):

 total_counts[word] += 1

print("Total words in data set: ", len(total_counts))

Program output:
Total words in data set: 11426

Sorting in decreasing order (Word with highest frequency

appears first)

vocab = sorted(total_counts, key=total_counts.get,

reverse=True)

print(vocab[:60])

Machine Learning in Spam Detection | FITPED AI

71

Program output:
['u', '2', 'call', 'U', 'get', 'Im', 'ur', '4', 'ltgt',

'know', 'go', 'like', 'dont', 'come', 'got', 'time', 'day',

'want', 'Ill', 'lor', 'Call', 'home', 'send', 'one', 'going',

'need', 'Ok', 'good', 'love', 'back', 'n', 'still', 'text',

'im', 'later', 'see', 'da', 'ok', 'think', 'Ã¼', 'free',

'FREE', 'r', 'today', 'Sorry', 'week', 'phone', 'mobile',

'cant', 'tell', 'take', 'much', 'night', 'way', 'Hey',

'reply', 'work', 'give', 'make', 'new']

Mapping from words to index

vocab_size = len(vocab)

word2idx = {}

#print vocab_size

for i, word in enumerate(vocab):

 word2idx[word] = 1

Text to Vector

def text_to_vector(text):

 word_vector = np.zeros(vocab_size)

 for word in text.split(" "):

 if word2idx.get(word) is None:

 continue

 else:

 word_vector[word2idx.get(word)] += 1

 return np.array(word_vector)

Convert all titles to vectors

word_vectors = np.zeros((len(text), len(vocab)),

dtype=np.int_)

for i, (_, text_) in enumerate(text.iterrows()):

 word_vectors[i] = text_to_vector(text_[0])

print(word_vectors.shape)

Program output:
(5572, 11426)

Converting words to vectors using TF-IDF Vectorizer

#convert the text data into vectors

from sklearn.feature_extraction.text import TfidfVectorizer

vectorizer = TfidfVectorizer()

Machine Learning in Spam Detection | FITPED AI

72

vectors = vectorizer.fit_transform(data['text'])

print(vectors.shape)

Program output:
(5572, 9459)

You can choose type of converted data

#features = word_vectors

features = vectors

Splitting into training and test set

#split the dataset into train and test set

X_train, X_test, y_train, y_test = train_test_split(features,

data['label'], test_size=0.15, random_state=111)

Classifying using sklearn's pre-built classifiers

• In this step we will use some of the most popular classifiers out there and
compare their results.

#import sklearn packages for building classifiers

from sklearn.linear_model import LogisticRegression

from sklearn.svm import SVC

from sklearn.naive_bayes import MultinomialNB

from sklearn.tree import DecisionTreeClassifier

from sklearn.neighbors import KNeighborsClassifier

from sklearn.ensemble import RandomForestClassifier

from sklearn.metrics import accuracy_score

#initialize multiple classification models

svc = SVC(kernel='sigmoid', gamma=1.0)

knc = KNeighborsClassifier(n_neighbors=49)

mnb = MultinomialNB(alpha=0.2)

dtc = DecisionTreeClassifier(min_samples_split=7,

random_state=111)

lrc = LogisticRegression(solver='liblinear', penalty='l1')

rfc = RandomForestClassifier(n_estimators=31,

random_state=111)

#create a dictionary of variables and models

clfs = {'SVC' : svc,'KN' : knc, 'NB': mnb, 'DT': dtc, 'LR':

lrc, 'RF': rfc}

#fit the data onto the models

Machine Learning in Spam Detection | FITPED AI

73

def train(clf, features, targets):

 clf.fit(features, targets)

def predict(clf, features):

 return (clf.predict(features))

pred_scores_word_vectors = []

for k,v in clfs.items():

 train(v, X_train, y_train)

 pred = predict(v, X_test)

 pred_scores_word_vectors.append((k, [accuracy_score(y_test

, pred)]))

Predictions using TFIDF Vectorizer algorithm

print(pred_scores_word_vectors)

Program output:
[('SVC', [0.9784688995215312]), ('KN', [0.9342105263157895]),

('NB', [0.9832535885167464]), ('DT', [0.9629186602870813]),

('LR', [0.9509569377990431]), ('RF', [0.9772727272727273])]

Model predictions

#write functions to detect if the message is spam or not

def find(x):

 if x == 1:

 print ("Message is SPAM")

 else:

 print ("Message is NOT Spam")

newtext = ["Free entry"]

integers = vectorizer.transform(newtext)

x = mnb.predict(integers)

find(x)

xx = knc.predict(integers)

find(xx)

Program output:
Message is SPAM

Message is SPAM

Machine Learning in Spam Detection | FITPED AI

74

Check Classification Results with Confusion Matrix

insert code

🕮 3.3.3

Support Vector Machine

Support Vector Machine (SVM) is a supervised machine learning algorithm that is
widely used for classification and regression tasks, especially in high-dimensional
spaces. SVM works by finding the optimal hyperplane that best separates data points
of different classes with maximum margin. This "margin" is the distance between the
hyperplane and the nearest data points from each class, known as support vectors.
The larger the margin, the better the generalization of the classifier to new data.

How SVM works in practice

For classification, SVM creates a decision boundary between two classes. In higher
dimensions, it still tries to separate classes by finding the best boundary with
maximum margin.

For regression (known as SVR - Support Vector Regression), the SVM finds a line or
plane that fits within a specified margin around the data points.

Advantages and applications

• High dimensionality: SVM is efficient in high dimensional spaces and is
memory efficient because it only uses support vectors in the decision
function.

• Versatility: With different kernel functions, SVM can be applied to different
types of data, including non-linearly separable data.

• Applications: Commonly used in text classification, image recognition,
bioinformatics, and others where it is crucial to classify data with high
accuracy.

SVM is powerful but may require careful tuning of parameters and can be
computationally intensive for very large datasets. Nevertheless, its robustness and
flexibility make it a popular choice in many machine learning tasks.

Machine Learning in Spam Detection | FITPED AI

75

📝 3.3.4

Project: Super Vector Machine

(by https://medium.com/@Coursesteach/spam-detection-using-machine-learning-
methods-dd5dbc799b6b)

This project again brings a different approach with an emphasis on the preparation
of a suitable dataset through several standard adjustments.

The basic sequence of steps remains of course unchanged.

Dataset:

• original https://raw.githubusercontent.com/Sanjay-dev-
ds/spam_ham_email_detector/master/spam.csv

• local: https://priscilla.fitped.eu/data/cybersecurity/spam/spam_909.csv

Lets go to start!

Import libraries

import pandas as pd

import numpy as np

from sklearn.feature_extraction.text import CountVectorizer

from sklearn.model_selection import train_test_split

from sklearn.naive_bayes import MultinomialNB

from sklearn.model_selection import train_test_split ,

GridSearchCV , KFold

from sklearn.svm import SVC

from sklearn.metrics import accuracy_score ,

classification_report , confusion_matrix

import seaborn as sns

import matplotlib.pyplot as plt

import re

import nltk

from nltk.stem import PorterStemmer

from sklearn import metrics

Data Loading

df =

pd.read_csv("https://priscilla.fitped.eu/data/cybersecurity/sp

am/spam_909.csv", encoding= 'latin-1')

print(df.head())

https://medium.com/@Coursesteach/spam-detection-using-machine-learning-methods-dd5dbc799b6b
https://medium.com/@Coursesteach/spam-detection-using-machine-learning-methods-dd5dbc799b6b
https://raw.githubusercontent.com/Sanjay-dev-ds/spam_ham_email_detector/master/spam.csv
https://raw.githubusercontent.com/Sanjay-dev-ds/spam_ham_email_detector/master/spam.csv
https://priscilla.fitped.eu/data/cybersecurity/spam/spam_909.csv

Machine Learning in Spam Detection | FITPED AI

76

Program output:
 Label EmailText

0 ham Go until jurong point, crazy.. Available only ...

1 ham Ok lar... Joking wif u oni...

2 spam Free entry in 2 a wkly comp to win FA Cup fina...

3 ham U dun say so early hor... U c already then say...

4 ham Nah I don't think he goes to usf, he lives aro...

Data Preprocessing

• Remove duplicate values

df = df.drop_duplicates(keep='first')

Independent and dependent variables

To divide the data set into independent and dependent variables for training a spam
detection model, we can define a dependent variable (the target we want to predict)
and an independent variable (the features we will use for prediction).

Independent and dependent variables

Dependent variable (goal):

• Class: This column indicates whether the message is spam or not (eg
"spam" or "ham").

Independent variable (function):

• Message: This column contains the actual text of the messages that we will
analyze to determine if they are spam.

x = df['EmailText'].values

y = df['Label'].values

Text Pre-Processing

We will create a function to preprocess the text by converting it to lowercase,
removing special characters, normalizing certain words, and applying stemming
using the Porter Stemmer algorithm. This process will help ensure that our text data
is clean and consistent, making it more suitable for analysis and modeling.

porter_stemmer=PorterStemmer()

def preprocessor(text):

 text=text.lower()

 text=re.sub("\W"," ",text)

Machine Learning in Spam Detection | FITPED AI

77

 text=re.sub("\s+(in|the|all|for|and|on)\s+"," _connector_

",text)

 words=re.split("\s+",text)

 stemmed_words=[porter_stemmer.stem(word=word) for word in

words]

 return ' '.join(stemmed_words)

We will create a tokenizer function that performs two key tasks: it will add spaces
around special characters and then split the text based on whitespace. This will help
break down the text into individual tokens, making it easier to analyze and process
further.

new

def tokenizer(text):

 text=re.sub("(\W)"," \1 ",text)

 return re.split("\s+",text)

Feature Extraction

To use text data for predictions, we need to break it down and remove unnecessary
words through a tokenization. After tokenization, we convert the remaining words
into numerical values, either as integers or floating-point numbers, so they can be
utilized in machine learning. This process is known as feature extraction (or
vectorization).

One effective tool for this purpose is the CountVectorizer from Scikit-learn. It
transforms a collection of text documents into a numerical representation by
counting the occurrences of words. Additionally, it allows for text cleaning before
conversion, making it a valuable asset for handling text data.

CountVectorizer converts a text corpus into a vector of terms, and we can customize
its behavior with various parameters:

• min_df = 0.06: This parameter ensures that we only include words that
appear in at least 6% of the documents, filtering out infrequent terms.

• ngram_range = (1, 2): This setting allows the extraction of both unigrams
(single words) and bigrams (pairs of consecutive words), providing richer
information from the text.

vectorizer =

CountVectorizer(tokenizer=tokenizer,ngram_range=(1,2),min_df=0

.006,preprocessor=preprocessor)

x = vectorizer.fit_transform(x)

Machine Learning in Spam Detection | FITPED AI

78

Data balance check

sns.countplot(data=df, x='Label', palette='pastel')

Program output:

To solve the problem of uneven distribution in the target class, we use a random
resampling method to balance the observations of the target variable. This is a
random duplication of examples in the minority class, which in this case is "Spam".

A random resampling process

• Identify the class distribution: First, we check our class distribution to
confirm the imbalance between "ham" and "spam".

• Implement random resampling: We create a balanced dataset by randomly
duplicating instances of the "spam" class until the number of "spam"
messages matches the number of "ham" messages.

• Combine datasets: Finally, we combine the resampled "spam" instances with
the original "ham" instances to create a balanced dataset.

from imblearn.under_sampling import NearMiss

from collections import Counter

from imblearn.over_sampling import RandomOverSampler

ros = RandomOverSampler(random_state=42)

print('Original dataset shape', Counter(y))

Machine Learning in Spam Detection | FITPED AI

79

fit predictor and target

x,y = ros.fit_resample(x, y)

print('Modified dataset shape', Counter(y))

Program output:
Original dataset shape Counter({'ham': 4516, 'spam': 653})

Modified dataset shape Counter({'ham': 4516, 'spam': 4516})

Data Splitting

x_train , x_test , y_train , y_test = train_test_split(x, y,

test_size =0.2,random_state = 0)

Model Training and Testing

• MultinominalNB

MultinomialNB()

clf = MultinomialNB()

clf.fit(x_train,y_train)

Accuracy

y_pred_NB = clf.predict(x_test)

NB_Acc=clf.score(x_test, y_test)

print('Accuracy score= {:.4f}'.format(clf.score(x_test,

y_test)))

Program output:
Accuracy score= 0.9590

Let’s test this model by taking a user input as a message to detect whether it is spam
or not:

input_message = input('Enter a message:')

Step 1: Preprocess the input message

processed_message = preprocessor(input_message)

Step 2: Transform the processed message using the same

vectorizer used for training

Assuming `vectorizer` is your trained CountVectorizer

vectorized_message = vectorizer.transform([processed_message])

Step 3: Make a prediction using the trained model

Assuming `model` is your trained Naive Bayes classifier

prediction = clf.predict(vectorized_message)

Machine Learning in Spam Detection | FITPED AI

80

Display the result

if prediction[0] == 'spam':

 print("The message is classified as: Spam")

else:

 print("The message is classified as: Ham")

Program output:
Enter a message: i am not a spam but you can win in lotteryThe

message is classified as: Ham

• SVM approach

Initialize the model

model = SVC(C=1, kernel='linear')

Fit the model on the training data

model.fit(x_train, y_train)

Accuracy

accuracy = metrics.accuracy_score(y_test,

model.predict(x_test))

accuracy_percentage = 100 * accuracy

print(accuracy_percentage)

Program output:
98.83785279468734

Hyperparameter Optimization using Grid Search CV

MultinomialNB

from sklearn.model_selection import KFold, GridSearchCV

from sklearn.naive_bayes import MultinomialNB

params = {

 'alpha': [0.1, 0.5, 1.0], # Different values for alpha

 'fit_prior': [True, False] # Whether to fit class prior

probabilities

}

cval = KFold(n_splits=2)

model = MultinomialNB() # Using Multinomial Naive Bayes

TunedModel1 = GridSearchCV(model, params, cv=cval)

TunedModel1.fit(x_train, y_train)

Machine Learning in Spam Detection | FITPED AI

81

accuracy = metrics.accuracy_score(y_test,

TunedModel1.predict(x_test))

accuracy_percentage = 100 * accuracy

print(accuracy_percentage)

Program output:
96.1261759822911

SVM

GridSearchCV(cv=KFold(n_splits=2, random_state=None,

shuffle=False),

 estimator=SVC(),

 param_grid={'C': [0.2, 0.5], 'kernel': ['linear',

'sigmoid']})

params = {"C":[0.2,0.5] , "kernel" : ['linear', 'sigmoid'] }

cval = KFold(n_splits = 2)

model = SVC();

TunedModel = GridSearchCV(model,params,cv= cval)

TunedModel.fit(x_train,y_train)

accuracy = metrics.accuracy_score(y_test,

TunedModel.predict(x_test))

accuracy_percentage = 100 * accuracy

print(accuracy_percentage)

Program output:
99.0038738240177

Explanation

• GridSearchCV: This class is used for hyperparameter tuning. It exhaustively
searches through a specified parameter grid to find the best combination of
hyperparameters for a given model.

• cv=KFold(n_splits=2, random_state=None, shuffle=False): This specifies the
cross-validation strategy.

1. KFold: This is a cross-validator that divides the dataset into n_splits (in this
case, 2) parts.

2. The data will be split into two subsets for cross-validation. The model will be
trained on one subset and validated on the other, and this process will be
repeated, swapping the training and validation sets.

Machine Learning in Spam Detection | FITPED AI

82

3. random_state=None: This means that the splitting will not be random; it will
use the default behavior of KFold.

4. shuffle=False: This means that the data will not be shuffled before splitting.

• estimator=SVC(): This specifies the machine learning model to be used for
tuning—in this case, a Support Vector Classifier.

• param_grid={'C': [0.2, 0.5], 'kernel': ['linear', 'sigmoid']}: This is the dictionary
that defines the hyperparameters to be tuned and the values to be tested for
each hyperparameter.

1. 'C': This parameter controls the trade-off between achieving a low training
error and a low testing error. It can take values of 0.2 or 0.5.

2. 'kernel': This defines the type of kernel function to be used in the algorithm.
In this case, it will test both a linear kernel and a sigmoid kernel.

What it Does:

• The GridSearchCV object will test all combinations of the specified
parameters:

• C = 0.2 with kernel = linear
• C = 0.2 with kernel = sigmoid
• C = 0.5 with kernel = linear
• C = 0.5 with kernel = sigmoid
• For each combination, it will perform cross-validation (using KFold with 2

splits) to evaluate the model's performance.

Final Output:

• The end result will be a fitted GridSearchCV object that contains the best
combination of hyperparameters based on the model's performance across
the validation sets. You can retrieve the best parameters using
grid_search.best_params_ and the best score with grid_search.best_score_.

Model Evaluation

Confusion-svm

sns.heatmap(confusion_matrix(y_test,TunedModel.predict(x_test)

),annot = True , fmt ="g")

plt.xlabel("Predicted")

plt.show("Actual")

plt.show()

Machine Learning in Spam Detection | FITPED AI

83

Program output:

📝 3.3.5

Logistic regression

Logistic regression is a popular and effective tool in data science, especially when it
comes to solving classification problems. Known as the “workhorse” of machine
learning, it is valued for being simple and reliable.

What is logistic regression?

Logistic regression is a supervised machine learning technique that helps categorize
data into two groups, assuming there is a relationship between the input features
and the output. Think of it as a sorting tool that classifies data into one of two
categories, such as "spam" or "not spam". It is designed for situations where there
are only two possible outcomes, often labeled as "yes" or "no" or "0" and "1".

Unlike linear regression, which is also based on relationships between variables but
predicts continuous outcomes, logistic regression predicts the probability that an
outcome will be in one category. For example, it might assign a 90% chance that the
email is spam or a 2% chance that it will be important.

Logistic regression does not just provide a simple answer. Instead, it calculates the
probability that an instance belongs to one group over another. This likelihood-based
approach makes logistic regression powerful and practical for applications such as
spam detection, disease prediction, and more.

Machine Learning in Spam Detection | FITPED AI

84

The ability of logistic regression to estimate probabilities makes it an invaluable tool
for many real-world applications. Here are some key examples:

• Spam Filtering: Logistic regression can effectively classify emails as spam or
not, helping to keep spam out of your inbox.

• Fraud detection: Banks use logistic regression to identify suspicious
transactions to help protect customers' finances.

• Loan approval: Financial institutions can evaluate the applicant's likelihood
of repaying the loan, making the approval process more reliable.

• Medical diagnosis: Doctors can use it to assess the likelihood of a disease
based on symptoms, which helps in early and accurate diagnosis.

• Predicting customer churn: Businesses use logistic regression to predict
which customers may stop using their services, enabling proactive customer
retention efforts.

How does logistic regression make predictions?

Now that you understand the basics, let's go explain how logistic regression actually
works and the basic steps to prepare data to build a model.

1. Data preparation

Proper data preparation is critical to creating an accurate logistic regression model.
The performance of the model depends largely on the quality of the data it is trained
on. For example, if you are building a spam filter, using data that is not relevant to
spam emails (such as disease prediction data) will lead to poor results. Here are the
main steps of data preparation:

• Features: These are the characteristics or attributes used to make
predictions. The following functions can be important in spam filtering: the
words in the email subject, sender information, the presence of attachments.
Choosing the right features helps the model distinguish between spam and
non-spam messages. Including irrelevant features can confuse the model
and reduce accuracy.

• Labels: Labels indicate the correct category for each data point. In spam
filtering, the labels are simply "spam" or "not spam" for each email, which the
model learns from during training.

• Data cleaning: Like cleaning ingredients before brewing, data preparation
involves handling missing values, correcting inconsistencies, and correcting
typos. Clean data ensures that the model learns accurately without being
misled by errors.

Logistic regression equation

Let's look at the basic math behind logistic regression. Logistic regression combines
the features of our data into a formula that assigns weight (importance) to each
feature. It works like this:

Machine Learning in Spam Detection | FITPED AI

85

• Each attribute is multiplied by its assigned weight.
• These weighted values are then summed.
• The sum provides a score that represents the probability that a particular

data point (e.g. email) belongs to a particular class (e.g. "spam").

This score is converted to a probability, and logistic regression uses this probability
to predict whether a data point belongs to one class or the other (eg spam or not).
By training on labeled data, logistic regression adjusts the weights of each feature to
improve its predictions.

Logistic regression uses an equation where the inputs are combined linearly using
weights or coefficient values to predict the modeled output, but here the result is a
binary value (0 or 1).

Equation for logistic regression:

Where:

• x - input value
• y - predicted output
• b0 - bias or intercept
• b1 - coefficient for input (x)

This score of the model isn't directly our probability yet. Logistic regression uses the
sigmoid function to map predicted values to probabilities and also convert the value
into a range between 0 and 1.

Logistic regression uses the concept of the threshold value for instance 0.5, where:

1. values below 0.5 get squashed towards 0 (very unlikely spam)
2. values above get pushed towards 1 (almost definitely spam)

where

• e - base of natural logarithms
• x - numerical value to be transformed

Machine Learning in Spam Detection | FITPED AI

86

2. Model training

In this step, the model is "learned" by analyzing labeled data, such as whether emails
are marked as spam or not. It compares its predictions to these actual labels, and
when it makes mistakes, it adjusts its internal weights to improve accuracy. This
entire process is called optimization, where the model is refined based on errors,
ultimately increasing its ability to make accurate predictions.

3. Making predictions

After training, the model is ready to classify new emails. For each email, it calculates
a score using the same formula and uses a sigmoid function to convert that score
into a probability. We can then set a threshold, such as 70%, for classification. If the
model calculates a probability above this threshold that the email is spam, we
classify it as spam.

4. Model evaluation

To check the performance of the model, we use metrics that provide insight into how
well it is doing.

• Accuracy shows the overall percentage of correct predictions.
• Accuracy tells us how many emails classified as spam were actually spam.
• Recall shows the percentage of real spam emails that the model correctly

identified.

It is essential to evaluate the model on a separate test set that was not used in
training to get an unbiased assessment of its performance. This is similar to giving
the student a new test instead of repeating the one they practiced with.

Machine Learning in Spam Detection | FITPED AI

87

📝 3.3.6

Project: Build a Logistic Regression Model

(by https://dev.to/oluwadamisisamuel1/how-to-build-a-logistic-regression-model-a-
spam-filter-tutorial-261b)

Based on the previous explanation, we can now proceed to the creation of a concrete
model

Dataset:

• original https://raw.githubusercontent.com/Sanjay-dev-
ds/spam_ham_email_detector/master/spam.csv

• local: https://priscilla.fitped.eu/data/cybersecurity/spam/spam_909.csv

Lets go to start!

1. Import libraries

import pandas as pd

from sklearn.model_selection import train_test_split

from sklearn.feature_extraction.text import TfidfVectorizer

from sklearn.linear_model import LogisticRegression

from sklearn.metrics import accuracy_score

2. Load and prepare data

To make this as simple as possible we have a simple dataset with two columns,
"EmailText" containing the email text, and "Label" indicating spam ("spam") or not
spam ("ham").

We read data from a CSV file using pandas.read_csv.

train_test_split splits the data into training and test sets, ensuring that the model
generalizes well to unseen data. The test_size parameter controls the size of the test
suite (20% in this case).

data =

pd.read_csv("https://priscilla.fitped.eu/data/cybersecurity/sp

am/spam_909.csv")

Split data into training and testing sets

X_train, X_test, y_train, y_test =

train_test_split(data["EmailText"], data["Label"],

test_size=0.2, random_state=42)

https://dev.to/oluwadamisisamuel1/how-to-build-a-logistic-regression-model-a-spam-filter-tutorial-261b
https://dev.to/oluwadamisisamuel1/how-to-build-a-logistic-regression-model-a-spam-filter-tutorial-261b
https://raw.githubusercontent.com/Sanjay-dev-ds/spam_ham_email_detector/master/spam.csv
https://raw.githubusercontent.com/Sanjay-dev-ds/spam_ham_email_detector/master/spam.csv
https://priscilla.fitped.eu/data/cybersecurity/spam/spam_909.csv

Machine Learning in Spam Detection | FITPED AI

88

3. Feature engineering

Since our model works with numeric data, we need to convert text emails into
functions. We will use a technique called TF-IDF (Term Frequency-Inverse Document
Frequency), which takes into account the importance of each word in the document.

We will create a TfidfVectorizer object and use it to fit (learn the vocabulary) and
transform the training data.

The transformed data (X_train_features) now contains numeric characters
representing the importance of each word in each email. We repeat the same process
for the test data (X_test_features).

Create a TF-IDF vectorizer

vectorizer = TfidfVectorizer()

Transform training and testing data into TF-IDF features

X_train_features = vectorizer.fit_transform(X_train)

X_test_features = vectorizer.transform(X_test)

4. Train the model

We will create a LogisticRegression object representing the model.

We use the fit method to train the model on prepared training features
(X_train_features) and labels (y_train). During this process, the model learns the
relationships between features and spam/non-spam labels and adjusts its internal
weights.

Create a logistic regression model

model = LogisticRegression()

Train the model on the training data

model.fit(X_train_features, y_train)

5. Make predictions

We use the trained model to predict labels (spam/not spam) for unseen test data
using a prediction method.

We calculate the accuracy of model predictions using the accuracy_score function.

Predict labels for the test data

y_pred = model.predict(X_test_features)

Calculate accuracy

accuracy = accuracy_score(y_test, y_pred)

Machine Learning in Spam Detection | FITPED AI

89

print("Accuracy:", accuracy)

Program output:
Accuracy: 0.9659192825112107

6. Interpretation of results

The output shows the accuracy of the model. While this is a decent starting point, it's
important to note that accuracy alone may not be the most informative metric in all
situations, especially when dealing with unbalanced data sets (where one class, such
as spam, may be much smaller than the other).

Key features and limitations of logistic regression

Logistic regression is a versatile tool, but it is important to recognize its limitations:

• Assumptions: Assumes a linear relationship between properties and result. If
the data shows non-linearity, the model may have problems. It shares this
limitation with another regression model "Linear Regression". Nonparametric
models such as decision trees or kernel methods such as support vector
machines can handle such complexities.

• Overfitting: Overly complex models or models trained on limited data may
become too specific to the training data and perform poorly on unseen data.
Regularization techniques such as L1 or L2 regularization can help alleviate
this problem by penalizing models with high complexity.

• Binary classification: Logistic regression is designed for problems with two
result categories (eg spam/not spam). For multi-class problems (eg
classification of different flower species) you may need to explore models
such as multinomial logistic regression or random forests.

Phishing Protection

Chapter 4

Phishing Protection | FITPED AI

91

4.1 Introduction into phishing

🕮 4.1.1

Phishing is a common type of cyber attack where attackers try to steal sensitive
information like login credentials, credit card numbers, and other personal details. In
phishing, the attacker poses as a trusted organization, convincing the victim to open
an email, SMS, or visit a fake website.

The main goal of phishing is to trick the victim into willingly sharing their sensitive
information. Attackers often use several techniques, including:

• Fake Websites: Attackers create sites that look like real ones (e.g., banks,
social networks) to make people believe they’re on a trusted site.

• Phishing Emails: These emails appear to come from reliable sources and
contain links to fake websites designed to capture personal information.

• Smishing (SMS Phishing): Attackers send fake SMS messages with links to
malicious pages or requests for personal data.

• Vishing (Voice Phishing): Attackers make phone calls pretending to be from
a bank or other institution, asking the victim to “verify” personal information.

Phishing can happen in many forms, but it always involves pretending to be a
legitimate source to gain a victim’s trust and steal their information.

📝 4.1.2

Fill in the blanks with the correct term to complete each sentence:

- _____ _____: Attackers create sites that look like real ones (e.g., banks, social
networks) to make people believe they’re on a trusted site.

- _____ _____: These emails appear to come from reliable sources and contain links
to fake websites designed to capture personal information.

- _____ (SMS phishing): Attackers send fake SMS messages with links to malicious
pages or requests for personal data.

- _____ (Voice phishing): Attackers make phone calls pretending to be from a bank or
other institution, asking the victim to “verify” personal information.

• Smishing
• Fake
• websites
• emails
• Phishing
• Vishing

Phishing Protection | FITPED AI

92

🕮 4.1.3

Phishing and spam are both forms of unwanted digital communication that are often
used in cyber attacks, but they have different goals and methods:

Purpose

• Spam: Includes primarily unsolicited messages, usually promotional, that
attempt to sell products or services. Spam is not necessarily intended to
harm the recipient, but it can be annoying as it fills the inbox with unwanted
advertisements.

• Phishing: Specially designed to trick the recipient into sharing sensitive
information such as passwords, credit card numbers, or other personal
information. Phishing is a malicious act aimed at causing harm, often
resulting in identity theft or financial loss.

Techniques

• Spam: Often involves sending mass emails to a wide audience without
personal targeting. These emails may advertise products, services or links to
legitimate websites.

• Phishing: Phishing emails or messages, which are often more targeted and
deceptive, are made to appear to come from trusted sources (eg banks,
social media). They often contain links to fake websites that mimic
legitimate ones in order to capture the victim's information.

Overlay

• Phishing attacks can sometimes be disguised as spam messages. For
example, an email that appears to promote a new service may contain a
malicious link or attachment. Spam filters are generally designed to detect
and block these emails, but sophisticated phishing emails can bypass
standard spam filters.

Impact

• Spam: Although it is annoying, the main risk is a waste of time and a
cluttered inbox.

• Phishing: Much more dangerous because it directly threatens the victim's
security and privacy by attempting to collect sensitive data.

In summary, spam is broad and usually has a harmless intent, while phishing is a
targeted, malicious subset of spam that uses deception to obtain sensitive
information from the recipient.

Phishing Protection | FITPED AI

93

📝 4.1.4

What is a key difference between spam and phishing emails?

• Spam is usually bulk, unsolicited advertising, whereas phishing is designed
to deceive users into sharing sensitive information.

• Spam is usually bulk, unsolicited advertising, whereas phishing is designed
to deceive users into sharing sensitive information.

• Spam emails typically contain links, while phishing emails never do.

📝 4.1.5

How does the intent of phishing differ from that of typical spam?

• Phishing aims to collect personal data under false pretenses, while spam
primarily advertises products or services.

• Phishing messages are usually harmless, while spam is always malicious.
• Phishing messages are only sent via SMS, while spam is only sent via email.

🕮 4.1.6

According to another point of view, phishing attacks can be divided into categories,
according to specific methods and goals. Here's an overview:

• Spear Phishing: This is a highly targeted attack targeting a specific individual
or organization. The attacker collects detailed information about the victim
in order to send a personalized email or message that looks particularly
convincing. Unlike general phishing, spear phishing focuses on making the
message look credible in order to increase the chance of success.

• Whaling: A specialized form of spear phishing that targets executives and
high-level executives, often referred to as "big fish." Because these
individuals have access to sensitive company information, they are valuable
targets for attackers.

• Spoofing: This technique involves disguising communications from an
unknown or malicious source to appear as if they are from a trusted source.
Spoofing can involve emails, phone calls, websites, or even technical aspects
like your computer's IP address. Its goal is to trick victims into trusting and
interacting with the attacker's message or website.

• Smishing: This form of phishing occurs via SMS (text) messages, where
attackers attempt to obtain unauthorized data by sending fake alerts or links
that direct the victim to a malicious website or prompt them for personal
information.

• Vishing: Similar to smishing, but involves voice calls instead. Attackers
impersonate trusted sources, such as a bank or government agency, and
attempt to obtain sensitive information over the phone. This often involves
asking the victim to "verify" personal information.

Phishing Protection | FITPED AI

94

Phishing attacks are constantly evolving and becoming more sophisticated.
Therefore, it is essential to remain cautious and apply basic security measures such
as verifying sender information, avoiding suspicious links and using multi-factor
authentication to reduce the risk of falling victim to phishing.

📝 4.1.7

Match the following scenarios with the correct type of phishing attack.

- An attacker sends a fake SMS message with a link to a malicious website asking
for personal data. This type of attack is called _____.

- An attacker disguises their email address to look like it’s from a trusted source,
tricking recipients into responding. This tactic is known as _____.

- An attacker targets a high-level executive or senior manager with a phishing attack
to obtain confidential business data. This attack type is called _____.

- An attacker sends a highly personalized email to a specific individual, like a
company employee, to gain sensitive information. This is known as _____.

- An attacker calls pretending to be a representative from a bank, asking the victim
to "verify" personal details. This technique is known as _____.

• spear phishing
• whaling
• vishing
• spoofing
• smishing

📝 4.1.8

Which of the following are effective security measures to protect against phishing
attacks?

• Verifying the sender’s email address
• Using multi-factor authentication
• Avoiding clicking on suspicious links
• Sharing personal information only with verified contacts
• Ignoring all messages from unknown sources
• Downloading files from unfamiliar sources

Phishing Protection | FITPED AI

95

4.2 Fake web sites

🕮 4.2.1

Creating fake websites in phishing attacks

One of the most common phishing techniques is the creation of fake websites
designed to capture sensitive information from users. Attackers create websites that
closely mimic the look and feel of legitimate sites, such as those of banks, online
stores, or social media platforms. The goal of these fake websites is to trick users
into entering confidential information such as login information, credit card numbers,
or social security numbers.

How attackers create fake websites:

• Skinning: Attackers replicate HTML code, images, and other design elements
from legitimate sites to create nearly identical fake sites. This helps make
the fake page look trustworthy, which often fools users who don't pay much
attention to detail.

• URL manipulation: Attackers use URLs that look like legitimate site
addresses but contain minor changes or typos (eg "g00gle.com" instead of
"google.com"). This tactic takes advantage of small differences that can be
easily overlooked.

• Look-Alike Domains: Attackers register domains that look like legitimate
domains by changing the domain ending (eg using ".net" instead of ".com")
or making minor changes such as adding or removing a single letter. This
can make a fake page look very close to the original, making it more likely to
trick users.

• Redirection: Redirection methods are used so that clicking on a link in a
phishing email takes the victim to a fake page, even if the link appears to
lead to a legitimate address. This trick relies on the user trusting the
displayed URL in the email.

• Hide the real URL: Attackers use JavaScript or other techniques to mask the
real URL in the browser's address bar, making the fake URL look like it
belongs to a trusted site. This scam makes it more likely that the user will
feel safe on the fake site.

📝 4.2.2

Fill in the gaps:

Match each scenario with the correct technique used in creating fake websites in
phishing attacks.

- Attackers replicate the HTML code and design elements of a legitimate website to
build a visually similar fake page. This method is called _____.

Phishing Protection | FITPED AI

96

- Attackers register a domain with a slight change in spelling or an alternative ending,
like ".net" instead of ".com", to mimic a legitimate site. This tactic is known as _____.

- The URL in the phishing email looks legitimate, but clicking it redirects the user to a
fake page. This method is called _____.

• redirecting
• skin copying
• look-alike domains

📝 4.2.3

Which of the following techniques involves altering the appearance of the browser's
address bar to display a fake URL instead of the real one?

• Hiding the real URL
• URL manipulation
• Skin copying
• Look-alike domains

📝 4.2.4

URL manipulation in phishing relies on changing the actual content of the legitimate
website to deceive users.

• True
• False

🕮 4.2.5

Why fake websites are effective at phishing?

• Trusted appearance: Fake websites are designed to look almost identical to
legitimate sites, making them difficult to distinguish from the real ones. By
using similar logos, layouts, and colors, attackers create a sense of trust that
can lead users to believe they are on a safe, familiar site.

• Urgency and psychological manipulation: Phishing messages often create a
sense of urgency and compel users to act quickly. Common tactics include
messages urging the recipient to "verify account details", "confirm payment"
or "immediately update personal information". This psychological
manipulation makes users more likely to overlook warning signs and enter
sensitive information.

• Lack of user vigilance: Many users don't check URLs or take extra steps to
confirm the legitimacy of a site, which can leave them vulnerable. Attackers
rely on this tendency because they know that users are less likely to notice
small inconsistencies that reveal a site as fake.

Phishing Protection | FITPED AI

97

📝 4.2.6

Fill in the blank:

Match each statement with a reason why fake websites are effective in phishing
attacks.

- Fake websites are often visually similar to real websites, making it difficult for users
to tell the difference. This tactic is called _____.

- Phishing messages often contain urgent calls to action, making users feel the need
to act quickly. This technique is known as _____.

- Many users fail to check the URL of a website, making it easy for them to be fooled
by a fake page. It is caused by _____.

• urgency and psychological manipulation
• trustworthy appearance
• lack of user vigilance

📝 4.2.7

Which of the following best describes how urgency is used in phishing attacks?

• To pressure users into acting without thinking
• To mimic legitimate branding
• To verify the user’s credentials accurately
• To redirect users to the original website

📝 4.2.8

Phishing websites are often effective because users can easily spot the fake URL if
they check carefully.

• True
• False

🕮 4.2.9

How to protect from fake websites

• Always verify the URL: Before entering sensitive information, take a moment
to verify that the website URL is correct and belongs to a legitimate site.
Small differences, such as an extra letter or a slightly modified domain (eg
.net instead of .com) can signal a fake site.

• Look for security certificates: Trusted websites use SSL certificates, which
create a secure, encrypted connection. You can identify them by the

Phishing Protection | FITPED AI

98

"https://" at the beginning of the URL and often by the padlock icon in the
browser's address bar.

• Be careful with emails and messages: Do not click on links in emails or
messages from unknown senders, especially those asking for sensitive
information. Phishing attempts often come via unsolicited emails or text
messages asking you to "verify" or "update" your account information.

• Use antivirus software: Antivirus programs often have built-in protection
against known phishing sites. They can help detect and block access to
malicious sites before they pose a risk.

• Educate yourself about phishing: Knowing phishing techniques is one of your
best defenses. Understanding common tactics like fake URLs or urgent
requests will help you spot potential scams and stay safe.

📝 4.2.10

One way to ensure a website is safe before entering personal information is to check
for _____ in the URL, which indicates an encrypted connection.

• ftps://
• .net
• http://
• ftp://
• .com
• https://
• http:

📝 4.2.11

Clicking on links in unsolicited emails or messages is generally safe, especially when
they ask for personal information.

• False
• True

4.3 Phishing emails

🕮 4.3.1

Fake emails

Phishing is one of the most common and effective online scams. Attackers often
send emails that appear to come from trusted sources, such as banks or popular
websites, to trick recipients into clicking on malicious links. These links lead to fake
websites designed to steal sensitive information such as usernames, passwords or
credit card numbers.

Phishing Protection | FITPED AI

99

How attackers create fake emails

• Impersonating the sender: Attackers often forge email headers, which are
the parts of an email that contain information about the sender. In this way,
they can give the impression that the email is from a legitimate organization
such as your bank, online store or social media platform. This deception
builds trust and increases the chances that the recipient will interact with the
email.

• Use of email templates: Many phishing attacks use professional-looking
email templates that mimic the style and format of genuine emails from
trusted senders. These templates often contain the same logos, colors and
layout as authentic communications, making it difficult for recipients to tell
the difference at first glance.

• Email Address Manipulation: Attackers can use email addresses that are
almost identical to those of legitimate senders, but contain slight variations.
This may include replacing a letter with a similar-looking character (such as
using a "0" instead of an "O") or adding additional characters. These subtle
changes can mislead users into thinking that the email is from a trusted
source.

• Inserting links to fake websites: Emails sent by attackers usually contain
links that direct recipients to fake websites. These scam sites are designed
to look as similar as possible to the legitimate sites they mimic, both visually
and functionally. When a victim clicks on a link and enters their information,
attackers capture that data for malicious purposes.

• Use of social engineering techniques: In order for the victim to take
immediate action, phishing emails often use social engineering techniques.
This may include urgent messages indicating that the recipient needs to
update their account details, verify information or confirm payment. A sense
of urgency is a psychological tactic designed to compel individuals to act
quickly without fully considering the consequences of their actions.

It is important to exercise caution when receiving unsolicited email and verify the
authenticity of any communication before taking action. Always double-check the
sender's email address, look for signs of tampering, and watch out for unexpected
requests for sensitive information.

📝 4.3.2

Select two methods that attackers use to create fake emails:

• Using email templates that resemble genuine communications.
• Manipulating email addresses to look like legitimate ones.
• Sending emails with attachments that cannot be opened.
• Writing emails without any formatting or structure.

Phishing Protection | FITPED AI

100

📝 4.3.3

Which of the following statements best describes how attackers create fake emails?

• They impersonate trusted senders by forging email headers.
• They use generic email addresses that cannot be traced.
• They send emails with no links to avoid detection.
• They use random words in the subject line to grab attention.

🕮 4.3.4

Why phishing emails are effective

Phishing emails remain a prevalent threat in the digital world, and understanding their
effectiveness can help students recognize and avoid them. Here are some reasons
why these emails can fool even careful users:

• Trusted appearance - Fake emails are often designed to look almost
identical to legitimate emails from trusted organizations. Attackers use
professional layouts, logos, and fonts that mimic those of real companies,
which can make it difficult for recipients to tell the difference. This
trustworthy appearance creates a false sense of security and leads
individuals to believe that they can trust the content of the email. As a result,
they may not examine the details as carefully as they should.

• Urgency and psychological manipulation - Phishing emails often use urgency
to manipulate recipients into taking quick action. Attackers may claim that
the account has been compromised or that immediate verification is
required to avoid consequences. This sense of urgency can create anxiety
and prompt individuals to act without thinking, such as clicking on links or
providing personal information. By exploiting human emotions, attackers
increase their chances of success.

• Lack of user vigilance - Many users fail to verify the sender's email address
or check the content of the email, making them vulnerable to phishing
attacks. Some individuals may not recognize signs of a phishing attempt,
such as poor grammar, suspicious links, or unusual requests for sensitive
information. This lack of vigilance can lead to users inadvertently providing
their information to fraudsters, making it easier for attackers to carry out
their schemes.

📝 4.3.5

What is one reason why phishing emails can be difficult to detect?

• They are often visually indistinguishable from genuine emails.
• They often come from unfamiliar senders.
• They are always sent during business hours.
• They contain multiple attachments.

Phishing Protection | FITPED AI

101

📝 4.3.6

Select factors that contribute to the effectiveness of phishing emails:

• They create a sense of urgency for immediate action.
• They are designed to look credible and professional.
• They are always written in formal language.
• They often lack any links to external websites.

📝 4.3.7

Complete the following sentences:

Phishing emails can take advantage of a user's lack of _____, leading them to fall for
scams.

Attackers often rely on a sense of _____, making recipients feel they need to act
quickly.

A _____ appearance in a phishing email can mislead users into thinking it's legitimate.

• urgency
• vigilance
• credible

🕮 4.3.8

How to protect from phishing emails

Phishing attacks can take many forms, including emails, text messages and phone
calls. Here are some important steps you can take to protect yourself from phishing
emails:

• Always verify the sender - Before clicking on any link in an email, it is
important to verify that the email is indeed from a trusted sender. Check the
sender's email address carefully; look for typos, unusual domain names, or
other suspicious signs that could indicate the email is fraudulent. If you are
unsure about the legitimacy of an email, feel free to contact the sender
directly using another method, such as calling them or visiting their official
website. This extra step can help confirm whether the email is genuine or a
phishing attempt.

• Do not click on links in suspicious emails - If the email raises any suspicion,
do not click on the links it contains. Instead, manually type the website
address into your browser to make sure you're visiting the right page. This
procedure will help you bypass potentially dangerous links that could lead to
phishing sites that aim to steal your personal information.

• Be wary of requests for sensitive information - Legitimate organizations will
never ask you to provide sensitive information such as login information,

Phishing Protection | FITPED AI

102

credit card numbers, or social security numbers via email. If you receive a
request for such information, please ignore this email and contact the
organization directly using the official communication channel. Trust your
instincts; if something doesn't seem right, it's better to check it than to risk
your personal information.

• Use antivirus software - Investing in antivirus software can be an effective
defense against phishing emails. Good antivirus programs can identify and
block malicious links and attachments before they can cause damage. Make
sure your software is regularly updated to provide the best protection against
emerging threats.

• Educate yourself about phishing - Staying informed about phishing
techniques is one of the best ways to protect yourself. Familiarize yourself
with terms like spoofing, spear phishing, whaling and smishing.
Understanding these concepts will improve your ability to spot potential
threats and avoid becoming a victim of fraud. The more you know, the better
prepared you will be to defend against phishing attempts.

In addition to these strategies, it is important to remain vigilant and use common
sense when dealing with emails. If something seems suspicious, take the time to
investigate before risking your personal information. By following these precautions,
you can significantly reduce the risk of becoming a victim of phishing attacks.

📝 4.3.9

What should you do before clicking on any link in an email?

• Verify that the email is from a trusted sender.
• Forward the email to an admin.
• Reply to the email asking for clarification.
• Click the link to see where it goes.

📝 4.3.10

Select actions you should take if you receive a suspicious email:

• Manually type the website address into your browser.
• Contact the sender through another method to verify the email.
• Click on the links to check their safety.
• Ignore the email and delete it without any further action.

📝 4.3.11

Complete the following sentences with the correct word:

Antivirus software can help block phishing emails by identifying and blocking
malicious _____ and attachments.

Phishing Protection | FITPED AI

103

Trusted organizations will never ask you for sensitive _____ like credit card numbers
through email.

It is essential to be aware of common _____ techniques to protect yourself from
phishing attacks.

• links
• information
• scam

4.4 Smishing and phishing

🕮 4.4.1

Understanding Smishing: a form of SMS phishing

Smishing is a type of phishing attack that uses Short Message Service (SMS)
messages to trick users into providing sensitive information. Attackers often
impersonate trusted institutions such as banks, mobile operators or delivery services
to gain the victim's trust. These deceptive messages may include links to fraudulent
websites or directly ask users to share personal information, including login
information, credit card numbers, social security numbers, or PINs.

How Smishing works

• Obtaining a phone number: Attackers can obtain phone numbers in a variety
of ways. They could exploit personal data leaks, obtain numbers from online
directories, or even generate random phone numbers. This ability to obtain a
victim's phone number is a critical first step in executing a smishing attack.

• Creating fake messages: Once a phone number is obtained, attackers create
SMS messages designed to appear trustworthy and authoritative. These
messages often attempt to create a sense of urgency or fear in the recipient
and encourage them to act quickly. For example, the message may claim
that there is a problem with the recipient's bank account that requires
immediate attention, prompting them to click on a link or provide
information.

• Embedding links to fake websites: Smishing messages often contain links
that lead to fake websites imitating legitimate sites. These scam sites are
designed to capture the victim's login credentials or other sensitive
information when they try to log in or update their information. The look and
feel of these fake sites can be remarkably similar to the authentic ones,
making it easy for users to be fooled.

• Direct request for data: In some cases, smishing messages may explicitly
ask the victim to provide personal data. This can be presented as a need to
verify an account, confirm a payment or update personal information. By
creating a sense of necessity, attackers try to manipulate individuals into
sharing sensitive data without taking the time to think critically about the
request.

Phishing Protection | FITPED AI

104

📝 4.4.2

What is a primary goal of smishing attacks?

• To obtain sensitive information from users.
• To steal physical property.
• To promote legitimate services.
• To increase internet traffic.

🕮 4.4.3

Why Smishing is effective

• Mobile devices are always connected: Mobile devices keep users constantly
connected to the Internet and individuals usually check their phones
frequently. When an SMS message arrives, users often open it immediately
without hesitation. This immediate attention makes them more likely to click
on a link or respond to a request without fully considering the risks involved.
For attackers, this behavior is advantageous because it plays on the user's
instinct to respond quickly to messages.

• Limited display of information: On mobile devices, only part of the URL
address is displayed in the SMS message. This restriction makes it difficult
for users to judge whether a link is legitimate. For example, a link may
appear to be from a well-known bank, but if the full URL is not visible, it may
lead to a fraudulent site. This ambiguity allows attackers to create
convincing messages that are difficult to verify at first glance.

• Trust in SMS messages: Many people have come to expect important
notifications such as transaction alerts or updates from trusted institutions
via SMS. This built-up trust can lead users to limit themselves when they
receive messages that appear to be from reputable sources. As a result,
users may not think critically about the content of these messages, making
them more susceptible to manipulation.

📝 4.4.4

Which of the following factors contribute to the effectiveness of smishing?

• Only part of the URL is displayed on mobile devices.
• Users often receive important messages via SMS from trusted institutions.
• Users rarely check their phones.
• SMS messages are never exploited by users.

Phishing Protection | FITPED AI

105

🕮 4.4.5

How to protect from Smishing

• Be careful with SMS messages from unknown senders: Be careful when
receiving SMS messages from unknown sources. Do not click on any links or
enter personal information in these messages. Instead, take a moment to
assess the situation. If you don't know the sender, it's best to ignore or delete
the message rather than risking your personal information.

• Always verify the sender: If you receive a message that raises doubts about
its authenticity, verify the identity of the sender. Contact the institution listed
in the message using its official phone number or website - not the contact
details provided in the SMS. This extra step can help confirm whether the
message is genuine or a phishing attempt.

• Don't click on links in suspicious messages: If a message looks suspicious,
don't click on any links in it. Instead, manually enter the address of the
institution's website into the browser. This procedure ensures that you are
going to a legitimate site and not a fraudulent site that wants to steal your
information.

• Be careful when entering sensitive data: Be aware that trusted organizations
will never ask for sensitive data such as passwords or financial information
via SMS. If you receive such a request, it is a clear sign that the message
may be a phishing attempt. Always ignore such requests and report them if
possible.

• Use security software: Installing security software on your mobile device can
provide an additional layer of protection. Such software can help block
phishing SMS messages, detect malicious websites and alert you to
potential threats, allowing you to navigate the digital world more safely.

• Educate yourself about smishing: Knowledge is a powerful tool in the fight
against smishing. Take the time to familiarize yourself with common
smishing techniques and signs of a phishing attempt. The more you
understand about how these attacks work, the better prepared you will be to
detect and avoid them.

📝 4.4.6

Which of the following actions are recommended when you receive an SMS message
from an unknown sender?

• Verify the sender by contacting them through official channels.
• Ignore the message and delete it without responding.
• Click on any links provided in the message.
• Provide personal information to the sender if asked.

Phishing Protection | FITPED AI

106

🕮 4.4.7

Overview of Vishing

Vishing, short for voice phishing, is a form of cyberattack in which an attacker uses
telephone communications to obtain sensitive data from a victim. Attackers often
pretend to be trustworthy people, such as employees of banks, insurance companies,
technical support services or government institutions. The primary goal of vishing is
to get the victim to voluntarily provide sensitive information, including login
information, credit card numbers, social security numbers, PIN codes, or other private
information.

Vishing methods:

• Caller ID spoofing: This technique involves the attacker using technologies to
mask their phone number so it looks like they are calling from an official
number associated with a bank or other trusted institution. This can mislead
the victim into believing they are talking to a legitimate agent, making it more
likely that they will share personal information.

• Urgency and fear-mongering: Vishing calls often contain false warnings
about security threats, suspicious account activity, or payment problems to
induce panic in the victim. This sense of urgency can lead individuals to act
rashly without properly evaluating the situation, making them more
vulnerable to manipulation.

• Spoofing: This broader technique refers to the general practice of disguising
communications from an unknown source as if they were from a trusted
source. In the context of vishing, this means that attackers can make their
calls appear more legitimate by impersonating well-known organizations or
individuals.

• Using social engineering: Attackers often use social engineering tactics to
build a relationship with the victim. They may flatter victims, act friendly, or
pretend to help them, creating a false sense of security that encourages the
victim to divulge sensitive information.

• Collecting information from public sources: Attackers can obtain personal
information about a victim from publicly available sources, such as social
networks. By tailoring their approach with specific details, attackers can
increase their credibility and make their attacks more convincing.

📝 4.4.8

What is one common tactic used in vishing to persuade victims to provide sensitive
information?

• Requesting immediate action due to a security threat.
• Providing a refund for a non-existent purchase.
• Offering a free vacation.
• Sending a promotional code.

Phishing Protection | FITPED AI

107

🕮 4.4.9

Why Vishing is effective

• Telephone communication feels more trustworthy: Many individuals perceive
telephone conversations as more personal and authentic compared to email
or text messages. This perception may lead them to more easily trust
information transmitted over the phone, making them more susceptible to
manipulation by the caller. The human voice can convey emotion and
urgency in a way that written communication cannot, increasing the
likelihood that victims will comply with requests for sensitive information.

• Emotional pressure: Vishing calls often use emotional tactics to manipulate
victims. Attackers can create a sense of fear, panic, or urgency, causing the
victim to react quickly without fully considering the situation. This emotional
pressure can cloud judgment and make it difficult for the victim to think
critically and assess the legitimacy of the call. As a result, they may reveal
personal information that they would normally protect.

• Lack of vigilance: Many individuals are not sufficiently aware of the risks
associated with vishing attacks. This lack of awareness can lead to
complacency, causing them to miss red flags during phone conversations.
Some may not have been educated on the signs of a vishing attempt, making
them more vulnerable to falling victim to these types of scams.

📝 4.4.10

Which of the following factors contribute to the effectiveness of vishing?

• The emotional pressure placed on victims to act quickly.
• The perceived trustworthiness of telephone communication.
• The use of well-designed phishing scenarios.
• The fact that all phone calls are recorded.

🕮 4.4.11

How to protect against Vishing

• Beware of calls from unknown numbers: If a number you do not recognize
calls you and the caller asks for personal information, proceed with caution.
Unknown numbers may belong to scammers trying to trick you into providing
sensitive information. It is wise to let such calls go to voicemail or ask for
more information about the caller before connecting.

• Never share sensitive information over the phone: Reputable institutions will
never ask you to share sensitive information, such as social security
numbers, passwords, or bank account details, over the phone. If the caller
requests such information, it is probably a vishing attempt. Always prioritize
your privacy and security by keeping your personal information private.

• Verify the identity of the caller: If you are not sure about the legitimacy of the
call, do not hesitate to verify the identity of the caller. Hang up and contact

Phishing Protection | FITPED AI

108

the institution directly using its official phone number or website. This extra
step can help confirm whether the call was genuine or part of a phishing
scheme.

• Hang up and call back: If you suspect a call is in progress, it's best to hang
up immediately. Then use the institution's official contact number and call
back. This approach ensures that you are communicating with a legitimate
agent, eliminating the risk of providing information to a potential fraudster.

• Use call blocking: Use the call blocking features available on your phone.
Most smartphones allow you to block specific numbers, which can be useful
if you notice repeated calls from known numbers when you hang up. This
proactive measure can help reduce the number of unwanted calls received.

• Educate yourself about vishing: Staying informed about vishing techniques
and tactics is one of the best defenses against these types of scams. Learn
about common methods used by attackers and stay up-to-date on the latest
cybersecurity trends. The more knowledge you have, the better you will be
able to recognize and avoid vishing attempts.

📝 4.4.12

f you receive a call from an unknown number asking for personal _____, it is important
to verify the _____ of the caller before providing any information. If you suspect it’s a
scam, hang up and call back using the official _____.

• information
• number
• identity

AI in Phishing Protection

Chapter 5

AI in Phishing Protection | FITPED AI

110

5.1 Role of AI

🕮 5.1.1

The role of AI in phishing

AI plays a key role in the cyber threat landscape, especially in the creation and
distribution of phishing messages. One of the main uses of AI in this context is AI-
powered language models that can be (not) used to create highly persuasive
messages. These messages are often tailored to manipulate the recipient's
emotions and trust, prompting them to take risky actions such as clicking on links
that lead to fraudulent websites or providing confidential information. The
sophistication of AI-generated content makes it increasingly difficult for individuals
to distinguish between legitimate communications and malicious attempts to extract
sensitive data, increasing the overall threat level.

In addition to creating fake news, AI technology can also be used to create realistic
copies of legitimate websites. This capability allows attackers to design phishing
sites that closely resemble trusted entities such as banks, social media platforms, or
e-commerce sites. By mimicking the appearance and functionality of these
legitimate websites, attackers can effectively trick victims into believing they are
interacting with a trusted source. This tactic not only increases the likelihood that
victims will enter their sensitive information, but also complicates efforts to identify
and mitigate phishing attacks. As a result, using AI in this way greatly increases the
effectiveness of phishing campaigns and poses a significant risk to users who may
not be aware of the tactics being used against them.

The role of AI in phishing is not limited to facilitating attacks; it also offers potential
defense options. The same artificial intelligence technologies that enable attackers
to launch sophisticated phishing attempts can be repurposed to develop tools to
detect and prevent such threats. For example, machine learning algorithms can
analyze communication patterns and identify characteristics common to phishing
attempts. These algorithms can be trained to recognize signs of suspicious activity,
such as unusual sender behavior or the presence of known malicious links. By
implementing these advanced detection methods, organizations and individuals can
improve their security posture and reduce the likelihood of falling victim to phishing
scams.

Phishing methods are constantly evolving, with attackers constantly refining their
strategies to bypass detection measures. For example, they may use social
engineering techniques that use psychological factors such as urgency or fear to
force victims to make rash decisions. In response, cybersecurity professionals must
remain vigilant and adaptable, using AI-based solutions that can keep up with
emerging threats. Ongoing battle between attackers and defenders underscores the
importance of ongoing education and awareness of phishing tactics, ensuring that
users are equipped with the knowledge to effectively recognize and respond to
potential threats.

AI in Phishing Protection | FITPED AI

111

In short, AI has a dual role in phishing – acting as a tool for attackers to create more
convincing messages and fake websites, and as a resource for defenders to identify
and combat these threats. The growing sophistication of AI technology poses
significant challenges to cyber security, requiring a proactive approach to awareness,
detection and prevention.

📝 5.1.2

https://towardsdatascience.com/phishing-classification-with-an-ensemble-model-
d4b15919c2d7

📝 5.1.3

What are two primary tasks AI can perform in relation to phishing?

• Generating compelling phishing messages
• Creating fraudulent copies of legitimate webpages
• Sending spam emails
• Protecting users from all cyber threats
• Providing financial advice

📝 5.1.4

How do AI-generated phishing messages typically deceive recipients?

• By manipulating emotions and trust
• By mimicking legitimate communication styles
• By prompting immediate action or urgency
• By appearing as marketing emails
• By using official government email addresses

📝 5.1.5

Why is the ability to replicate legitimate webpages significant in phishing attacks?

• It increases the likelihood of victims entering sensitive information
• It makes the phishing attack seem more credible
• It helps to bypass traditional security measures
• It allows attackers to track user activity
• It provides attackers with a direct communication line to victims

🕮 5.1.6

AI as a defense against phishing

AI is increasingly recognized as a powerful tool in the fight against phishing attacks.
While AI-powered language models can be used by cybercriminals to create

AI in Phishing Protection | FITPED AI

112

convincing phishing messages, the same technologies can be used to strengthen
defenses against such threats. One of the most promising applications of AI in this
area is the detection of phishing messages. This application is particularly important
because it aligns with previous discussions about the role of AI in spam detection.
However, it is essential to understand that phishing detection requires a more
nuanced approach than traditional spam detection, focusing heavily on the content
of the message itself.

When detecting spam, metadata such as sender information, delivery timestamps,
and message routing can help identify unwanted communications. Unfortunately,
when it comes to phishing attempts, this metadata is often insufficient. Phishing
messages are typically designed to closely mimic legitimate communications,
making it difficult to distinguish between genuine and fraudulent messages based
solely on metadata. As a result, AI-based phishing detection systems must analyze
the actual content of messages to identify potentially malicious links or requests for
sensitive information.

One effective strategy for detecting phishing messages is to identify the
characteristic features that are commonly found in such attacks. For example,
phishing emails often contain clickable links that direct users to fraudulent websites
designed to obtain sensitive information. Using AI algorithms, it is possible to scan
these links in messages and assess their legitimacy. In addition, advanced AI
techniques can evaluate the surrounding context and language used in the message
to determine if it matches patterns typically associated with phishing attempts. This
comprehensive approach increases the accuracy of phishing detection systems and
allows them to flag suspicious messages more effectively.

Spear phishing, a targeted form of phishing aimed at specific individuals or
organizations, presents a unique challenge. Detection methods effective for general
phishing may not be sufficient for spear phishing, as these messages often contain
customized information that can make them appear credible. Artificial intelligence
can play a key role in developing adaptive detection mechanisms that learn from new
phishing techniques and patterns and continuously improve their ability to identify
even the most sophisticated attacks. Machine learning models can analyze huge
amounts of data, adjusting their algorithms based on the latest phishing trends,
keeping them one step ahead of cybercriminals.

Although AI technology can significantly reduce the risk of falling victim to phishing
attacks, users must remain vigilant. Organizations can use AI tools not only to detect,
but also to train employees to recognize phishing attempts. By incorporating AI-
based insights into training programs, users can become more adept at detecting
suspicious communications and understanding attacker tactics.

AI in Phishing Protection | FITPED AI

113

📝 5.1.7

What characteristics of phishing messages can AI detection systems analyze?

• Presence of clickable links
• The emotional tone of the message
• The sender's email address
• Requests for sensitive personal information
• Frequency of message delivery

📝 5.1.8

In what ways can AI enhance phishing detection mechanisms?

• By recognizing patterns in previous phishing attempts
• By analyzing the content of messages in real time
• By learning from user feedback on detected phishing messages
• By relying only on metadata for detection
• By generating automated responses to phishing attempts

📝 5.1.9

Which of the following are true about spear phishing?

• It is targeted at specific individuals or organizations.
• It often includes personalized information to increase credibility.
• AI can assist in identifying patterns unique to spear phishing attacks.
• It typically uses generic messages to reach a broad audience.
• It is less harmful than regular phishing attacks.

5.2 AI models

🕮 5.2.1

Artificial intelligence and machine learning in phishing detection

Artificial intelligence and machine learning are key tools in identifying phishing
websites. Traditional methods such as blacklists and heuristics rely on lists of known
phishing websites or rule-based systems, but may miss newly created or slightly
modified phishing sites. However, AI and ML are adaptive and can learn to detect
new phishing patterns by analyzing website features and behavior. This makes them
more effective and reliable at detecting phishing sites compared to older methods,
as they are constantly improving with more data. Their ability to analyze complex
patterns in data gives them an edge in predicting and preventing phishing attacks
before they are exposed.

AI in Phishing Protection | FITPED AI

114

Phishing detection

• Identifying suspicious URLs: Machine learning algorithms are trained to
recognize suspicious characteristics in URLs that are often associated with
phishing attempts. For example, they may notice typos in domain names, the
use of an IP address instead of a regular domain name, or the presence of
unusual characters such as the "@" symbol that may mislead users.
Shortened URLs can also be a warning as they can hide the actual
destination of the link. By identifying these URL features, ML algorithms help
filter out potentially dangerous links before users click on them.

• Website Content Analysis: AI and ML algorithms can go beyond a URL to
examine website content and detect phishing attempts. They analyze site
elements commonly found on phishing sites, such as fake login forms,
prompts for sensitive information, or redirects to other suspicious sites. For
example, phishing websites often mimic the appearance of legitimate sites,
but have minor inconsistencies that AI can detect. These algorithms can
identify differences in content structure, language or images that are likely
signs of a phishing site. This in-depth content analysis helps ensure that
even well-disguised phishing sites are flagged.

• Anomaly detection: Websites that harvest data without authorization often
display unusual patterns of behavior that can be detected using anomaly
detection algorithms. For example, these websites may load certain
elements differently or have abnormal interaction sequences. AI can learn
what typical, secure websites look like, and then identify behavior that
doesn't fit those patterns and flag them as suspicious. Anomaly detection is
especially useful when detecting new phishing methods that do not yet exist
in databases.

• Predictive Modeling: By analyzing historical data from previous phishing
attacks, AI and ML algorithms can create predictive models. These models
are designed to recognize patterns and features typical of phishing sites and
predict with high accuracy whether a new site is likely to represent a phishing
threat. For example, predictive modeling can estimate risk levels based on
how similar a new site is to known phishing sites.

📝 5.2.2

Which of the following are characteristics that machine learning algorithms may look
for in a URL to identify it as potentially phishing?

• Typos in the domain name
• Use of an IP address instead of a domain name
• Use of unusual symbols like "@" in the URL
• Presence of a long, complex URL path
• Presence of HTTPS encryption

AI in Phishing Protection | FITPED AI

115

📝 5.2.3

What types of website content can AI and ML algorithms analyze to help detect
phishing attempts?

• Presence of fake login forms
• Requests for sensitive information
• Redirection to other suspicious pages
• Large images or videos embedded on the page
• Use of a search bar on the page

📝 5.2.4

Which of the following are indicators that anomaly detection algorithms might flag
as suspicious on a phishing website?

• Which of the following are indicators that anomaly detection algorithms
might flag as suspicious on a phishing website?

• Unusual interaction sequences on the website
• Use of strong, complex passwords for login
• Requests for personal information from users
• Consistent layout with secure websites

🕮 5.2.5

Examples of AI and ML algorithms used in phishing detection

• Decision trees: These algorithms work by creating a series of decision rules
that divide data into categories, such as phishing or legitimate sites. A
decision tree is easy to understand because it visually breaks down the steps
taken to achieve a classification. This clarity makes it a popular choice for
interpreting how different features contribute to phishing identification.
Decision trees can capture complex relationships, but may require fine-
tuning to avoid misclassification. They are particularly useful in educational
contexts because students can follow the decision-making process step by
step.

• Random Forests: Random forests are an extension of decision trees that
combine the results of many trees to produce a final prediction. This "voting"
process increases the overall accuracy and reliability of the model. Random
forests can handle a large number of input variables and are less error-prone
than individual decision trees. However, they can be slower due to the
number of trees involved. Random forests are widely used because of their
balance between accuracy and interpretability.

• Multilayer Perceptrons: This is a type of artificial neural network that can
classify data by learning complex patterns in multiple layers. Each layer
transforms the input data, allowing the network to capture deeper
relationships between variables. Multilayer perceptrons are ideal for cases
where there are many input features because they can handle and learn from

AI in Phishing Protection | FITPED AI

116

this complexity. However, they require more computing power and can be
more difficult to interpret. They are suitable for phishing detection where
there are many subtle factors to consider.

• XGBoost: Known for its high accuracy and fast performance, XGBoost is a
popular choice in machine learning competitions and real-world applications.
This algorithm uses gradient boosting, which combines multiple weak
models to produce a strong predictor. XGBoost is efficient in processing
noisy data and can achieve high performance with minimal modifications. It
can detect phishing sites by focusing on small details that may be missed by
other algorithms. Due to its complexity, XGBoost is often used in large
applications where accuracy is critical.

• Support Vector Machines (SVM): Support Vector Machines are powerful
classifiers that work well with high-dimensional data, making them suitable
for analyzing multiple characteristics of web pages. SVMs create a boundary
that best separates phishing from legitimate sites based on their features.
This threshold helps ensure that even small differences in data are taken into
account when classifying a site. Although SVMs can be computationally
intensive, they are highly accurate when properly configured. SVMs are
particularly effective in applications where both accuracy and robustness are
required.

• K-Nearest Neighbors (KNN): KNN is a simple algorithm that classifies web
pages based on their similarity to the "K" nearest examples in the training
data set. It's easy to understand and implement, but KNN can be slow if the
data set is large because it compares each new data point to all existing
points. For phishing detection, KNN works well if there are clear clusters of
phishing compared to legitimate sites. This simplicity makes KNN a good
choice for initial survey or educational purposes, although it may not always
be the most accurate option.

• Artificial Neural Networks (ANN): Inspired by the human brain, artificial
neural networks can learn from complex data patterns and relationships.
They are efficient at working with unstructured data such as images and text,
which is useful for analyzing web page layouts and content. ANNs can adapt
to various phishing detection tasks, but they require significant computing
resources and large amounts of training data. Their flexibility makes them
valuable in phishing detection, although they can be more difficult to
interpret. ANNs are often used in advanced applications where the detection
of subtle patterns is critical.

📝 5.2.6

Which machine learning algorithms are best suited for analyzing large datasets with
complex, non-linear relationships, such as those often found in phishing detection?

• Random Forests
• Multilayer Perceptrons
• Support Vector Machines
• Decision Trees
• K-Nearest Neighbors

AI in Phishing Protection | FITPED AI

117

📝 5.2.7

When aiming for a balance between model accuracy and interpretability in phishing
detection, which algorithms would be appropriate choices?

• Decision Trees
• Random Forests
• XGBoost
• Artificial Neural Networks
• Support Vector Machines

📝 5.2.8

Which algorithms would be most suitable for detecting phishing by identifying subtle
patterns within high-dimensional data?

• Multilayer Perceptrons
• Support Vector Machines
• Artificial Neural Networks
• K-Nearest Neighbors
• Decision Trees

📝 5.2.9

Which algorithms are generally preferred for their simplicity and ease of
implementation in educational contexts or initial surveys for phishing detection?

• Decision Trees
• K-Nearest Neighbors
• Random Forests
• Support Vector Machines
• Artificial Neural Networks

📝 5.2.10

If the goal is to detect phishing websites with high speed and minimal computational
resources, which algorithms are best suited for this requirement?

• Decision Trees
• XGBoost
• K-Nearest Neighbors
• Support Vector Machines
• Random Forests

AI in Phishing Protection | FITPED AI

118

🕮 5.2.11

Choosing the best AI model for phishing detection

Choosing the best AI model for phishing detection depends on specific priorities
such as balance accuracy and recall. For example, if the goal is to minimize false
alarms and focus on accuracy, a high-accuracy model such as XGBoost may be more
appropriate. On the other hand, if it is essential to catch as many phishing sites as
possible, even if it means some false positives, a model with a high recovery rate
may be more appropriate. Some algorithms are also more interpretable than others,
which can be important for understanding decision-making processes. Ultimately,
the choice of model should be consistent with the goals and constraints of a given
phishing detection task.

5.3 AI projects

📝 5.3.1

Project: Phishing email detection

(by https://www.kaggle.com/code/kirollosashraf/phishing-email-detection-using-
deep-learning/notebook)

Compare different algorithms to identify phishing emails.

Dataset:

• original: https://www.kaggle.com/datasets/subhajournal/phishingemails
• reduced:

https://priscilla.fitped.eu/data/cybersecurity/phishing/phishing_email_reduc
ed.csv

import pandas as pd

import matplotlib.pyplot as plt

import seaborn as sns

import numpy as np

import plotly.express as px

from sklearn.feature_extraction.text import

TfidfVectorizer,CountVectorizer

from sklearn.linear_model import LogisticRegression

from sklearn.tree import DecisionTreeClassifier

from sklearn.ensemble import RandomForestClassifier

from sklearn.neural_network import MLPClassifier

from sklearn.model_selection import train_test_split

from tensorflow.keras.preprocessing.text import Tokenizer

https://www.kaggle.com/code/kirollosashraf/phishing-email-detection-using-deep-learning/notebook
https://www.kaggle.com/code/kirollosashraf/phishing-email-detection-using-deep-learning/notebook
https://www.kaggle.com/datasets/subhajournal/phishingemails
https://priscilla.fitped.eu/data/cybersecurity/phishing/phishing_email_reduced.csv
https://priscilla.fitped.eu/data/cybersecurity/phishing/phishing_email_reduced.csv

AI in Phishing Protection | FITPED AI

119

from tensorflow.keras.layers import

Embedding,GRU,LSTM,Bidirectional,SimpleRNN

from tensorflow.keras.utils import pad_sequences

from sklearn.preprocessing import LabelEncoder

from keras.models import Sequential

from keras.layers import Dense,Dropout

import tensorflow as tf

import warnings

warnings.filterwarnings('ignore')

1. Data understanding

df =

pd.read_csv("https://priscilla.fitped.eu/data/cybersecurity/ph

ishing/phishing_email_reduced.csv", delimiter=",")

be patient

print(df.head())

Program output:
 id Email Text

Email Type

0 0 re : 6 . 1100 , disc : uniformitarianism , re ...

Safe Email

1 1 the other side of * galicismos * * galicismo *...

Safe Email

2 2 re : equistar deal tickets are you still avail...

Safe Email

3 3 \nHello I am your hot lil horny toy.\n I am...

Phishing Email

4 4 software at incredibly low prices (86 % lower...

Phishing Email

Drop duplicates and null values

df.dropna(inplace=True,axis=0)

df.drop_duplicates(inplace=True)

print("Dimension of the row data:",df.shape)

Program output:
Dimension of the row data: (16705, 3)

Dataset visualisation

import matplotlib.pyplot as plt

AI in Phishing Protection | FITPED AI

120

Get value counts for the 'Email Type' column

email_counts = df['Email Type'].value_counts()

Define colors for each bar (adjust this list based on the

number of categories)

colors = ['blue', 'red'][:len(email_counts)]

Create a figure with two subplots: one for the bar chart,

one for the pie chart

fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(14, 6))

Bar chart

ax1.bar(email_counts.index, email_counts.values, color=colors)

ax1.set_title("Categorical Distribution (Bar Chart)")

ax1.set_xlabel("Email Type")

ax1.set_ylabel("Count")

Pie chart

ax2.pie(email_counts, labels=email_counts.index,

colors=colors, autopct='%1.1f%%', startangle=140)

ax2.set_title("Categorical Distribution (Pie Chart)")

Adjust layout and display

plt.tight_layout()

plt.show()

Program output:

AI in Phishing Protection | FITPED AI

121

2. Data preprocessing

• Integer Encoding

le = LabelEncoder()

df["Email Type"] = le.fit_transform(df["Email Type"])

print(df)

Program output:
 id Email

Text Email Type

0 0 re : 6 . 1100 , disc : uniformitarianism , re

... 1

1 1 the other side of * galicismos * * galicismo

*... 1

2 2 re : equistar deal tickets are you still

avail... 1

3 3 \nHello I am your hot lil horny toy.\n I

am... 0

4 4 software at incredibly low prices (86 %

lower... 0

... ...

... ...

16700 16703 \nRick Moen a Ă�Â©crit:> > I'm confused. I

th... 1

16701 16704 date a lonely housewife always wanted to date

... 0

16702 16705 request submitted : access request for anita

.... 1

16703 16706 re : important - prc mtg hi dorn & john , as

y... 1

16704 16707 press clippings - letter on californian

utilit... 1

[16705 rows x 3 columns]

Remove hyperlinks, punctuations, extra space

import re

def preprocess_text(text):

 # Remove hyperlinks

 text = re.sub(r'http\S+', '', text)

 # Remove punctuations

 text = re.sub(r'[^\w\s]', '', text)

AI in Phishing Protection | FITPED AI

122

 # Convert to lowercase

 text = text.lower()

 # Remove extra spaces

 text = re.sub(r'\s+', ' ', text).strip()

 return text

Apply the preprocess_text function to the specified column

in the DataFrame

df["Email Text"] =df["Email Text"].apply(preprocess_text)

print(df.head())

Program output:
 id Email Text

Email Type

0 0 re 6 1100 disc uniformitarianism re 1086 sex l...

1

1 1 the other side of galicismos galicismo is a sp...

1

2 2 re equistar deal tickets are you still availab...

1

3 3 hello i am your hot lil horny toy i am the one...

0

4 4 software at incredibly low prices 86 lower dra...

0

WordCloud

• of avaiable stopwords

from wordcloud import WordCloud

#combine all rows into a single string

all_mails = " ".join(df['Email Text'])

#create a wordcloud object

word_cloud =

WordCloud(stopwords="english",width=800,height=400,background_

color='white').generate(all_mails)

plt.figure(figsize=(10,6))

plt.imshow(word_cloud,interpolation='bilinear')

plt.axis("off")

plt.show()

AI in Phishing Protection | FITPED AI

123

Program output:

• wordcloude of unique words

#combine all rows into a single string

all_mails = " ".join(df['Email Text'])

#create a wordcloud object

word_cloud =

WordCloud(width=800,height=400,background_color='white',max_wo

rds=10000).generate(all_mails)

plt.figure(figsize=(10,6))

plt.imshow(word_cloud,interpolation='bilinear')

plt.axis("off")

plt.show()

AI in Phishing Protection | FITPED AI

124

Program output:

Converting text into vector

• Tfidf vectorizer

from sklearn.feature_extraction.text import

TfidfVectorizer,CountVectorizer

tf = TfidfVectorizer(stop_words="english",max_features=10000)

#dimension reduction

feature_x = tf.fit_transform(df["Email Text"]).toarray()

y_tf = np.array(df['Email Type']) # convert the label into

numpy array

Splitting into train and test

x_train,x_test,y_train,y_test =

train_test_split(feature_x,y_tf,train_size=0.8,random_state=0)

3. Applying different algorithm

a. Naive Bayes

#naive bayes works with condtional probability

from sklearn.naive_bayes import MultinomialNB

nb = MultinomialNB()

nb.fit(x_train,y_train)

AI in Phishing Protection | FITPED AI

125

from sklearn.metrics import

accuracy_score,f1_score,classification_report,ConfusionMatrixD

isplay,confusion_matrix

pred_nav = nb.predict(x_test)

Checking the performance

print(f"accuracy from native bayes:

{accuracy_score(y_test,pred_nav)*100:.2f} %")

print(f"f1 score from naive bayes:

{f1_score(y_test,pred_nav)*100:.2f} %")

print("classification report

:\n\n",classification_report(y_test,pred_nav))

#confusion matrix

clf_nav = confusion_matrix(y_test,pred_nav)

cx_ =

ConfusionMatrixDisplay(clf_nav,display_labels=['pishing_mail',

'safe_mail']).plot()

plt.show()

Program output:
accuracy from native bayes: 97.04 %

f1 score from naive bayes: 97.63 %

classification report :

 precision recall f1-score support

 0 0.97 0.95 0.96 1262

 1 0.97 0.98 0.98 2079

 accuracy 0.97 3341

 macro avg 0.97 0.97 0.97 3341

weighted avg 0.97 0.97 0.97 3341

AI in Phishing Protection | FITPED AI

126

b. Logistic Regression

lg = LogisticRegression()

lg.fit(x_train,y_train)

prediction

pred_lg = lg.predict(x_test)

performance

print("")

print(f"accuracy from logistic

regression:{accuracy_score(y_test,pred_lg)*100:.2f} %")

print(f"f1 score from logistic regression:

{f1_score(y_test,pred_lg)*100:.2f} %")

print("classification report :

\n",classification_report(y_test,pred_lg))

clf_lg = confusion_matrix(y_test,pred_lg)

cx_ =

ConfusionMatrixDisplay(clf_lg,display_labels=['pishing_mail','

safe_mail']).plot()

plt.title("confusion matrix")

plt.show()

Program output:
accuracy from logistic regression:97.40 %

f1 score from logistic regression: 97.92 %

classification report :

AI in Phishing Protection | FITPED AI

127

 precision recall f1-score support

 0 0.98 0.95 0.97 1262

 1 0.97 0.99 0.98 2079

 accuracy 0.97 3341

 macro avg 0.97 0.97 0.97 3341

weighted avg 0.97 0.97 0.97 3341

c. SGD Classifier

from sklearn.linear_model import SGDClassifier

passing object

sgd = SGDClassifier()

sgd.fit(x_train,y_train)

prediction

pred_sgd = sgd.predict(x_test)

performance

print(f"accuracy from logistic

regression:{accuracy_score(y_test,pred_sgd)*100:.2f} %")

print(f"f1 score from logistic regression:

{f1_score(y_test,pred_sgd)*100:.2f} %")

print("classification report :

\n",classification_report(y_test,pred_sgd))

AI in Phishing Protection | FITPED AI

128

clf_sgd = confusion_matrix(y_test,pred_sgd)

cx_ =

ConfusionMatrixDisplay(clf_sgd,display_labels=['pishing_mail',

'safe_mail']).plot()

plt.title("confusion matrix")

plt.show()

Program output:
accuracy from logistic regression:97.87 %

f1 score from logistic regression: 98.29 %

classification report :

 precision recall f1-score support

 0 0.97 0.97 0.97 1262

 1 0.98 0.98 0.98 2079

 accuracy 0.98 3341

 macro avg 0.98 0.98 0.98 3341

weighted avg 0.98 0.98 0.98 3341

d. XGBoost

applying boosting algorithm

from xgboost import XGBClassifier

xgb = XGBClassifier()

AI in Phishing Protection | FITPED AI

129

xgb.fit(x_train,y_train)

#prediction

pred_xgb = xgb.predict(x_test)

#performance

print(f"accuracy from

XGB:{accuracy_score(y_test,pred_xgb)*100:.2f} %")

print(f"f1 score from XGB: {f1_score(y_test,pred_xgb)*100:.2f}

%")

print("classification report :

\n",classification_report(y_test,pred_xgb))

#confusion matrix

clf_xgb = confusion_matrix(y_test,pred_xgb)

cx_ =

ConfusionMatrixDisplay(clf_xgb,display_labels=['pishing_mail',

'safe_mail']).plot()

plt.show()

Program output:
accuracy from XGB:97.04 %

f1 score from XGB: 97.60 %

classification report :

 precision recall f1-score support

 0 0.95 0.97 0.96 1262

 1 0.98 0.97 0.98 2079

 accuracy 0.97 3341

 macro avg 0.97 0.97 0.97 3341

weighted avg 0.97 0.97 0.97 3341

AI in Phishing Protection | FITPED AI

130

e. Decision tree

dtr = DecisionTreeClassifier() #passing object

dtr.fit(x_train,y_train)

#prediction

pred_dtr = dtr.predict(x_test)

#performance

print(f"accuracy from Decision

Tree:{accuracy_score(y_test,pred_dtr)*100:.2f} %")

print(f"f1 score from Decision Tree:

{f1_score(y_test,pred_dtr)*100:.2f} %")

print("classification report :

\n",classification_report(y_test,pred_dtr))

#confusion matrix

clf_dtr = confusion_matrix(y_test,pred_dtr)

cx_ =

ConfusionMatrixDisplay(clf_dtr,display_labels=['pishing_mail',

'safe_mail']).plot()

plt.title("confusion matrix")

plt.show()

Program output:
accuracy from Decision Tree:92.79 %

f1 score from Decision Tree: 94.15 %

AI in Phishing Protection | FITPED AI

131

classification report :

 precision recall f1-score support

 0 0.89 0.92 0.91 1262

 1 0.95 0.93 0.94 2079

 accuracy 0.93 3341

 macro avg 0.92 0.93 0.92 3341

weighted avg 0.93 0.93 0.93 3341

f. Random forest

rnf = RandomForestClassifier() #passing object

rnf.fit(x_train,y_train)

#prediction

pred_rnf = rnf.predict(x_test)

#performance

print(f"accuracy from rnadom

forest:{accuracy_score(y_test,pred_rnf)*100:.2f} %")

print(f"f1 score from random forest:

{f1_score(y_test,pred_rnf)*100:.2f} %")

print("classification report :

\n",classification_report(y_test,pred_rnf))

AI in Phishing Protection | FITPED AI

132

#confusion matrix

clf_rnf = confusion_matrix(y_test,pred_rnf)

cx_ =

ConfusionMatrixDisplay(clf_rnf,display_labels=['pishing_mail',

'safe_mail']).plot()

plt.title("confusion matrix")

plt.show()

Program output:
accuracy from rnadom forest:97.22 %

f1 score from random forest: 97.75 %

classification report :

 precision recall f1-score support

 0 0.95 0.97 0.96 1262

 1 0.98 0.97 0.98 2079

 accuracy 0.97 3341

 macro avg 0.97 0.97 0.97 3341

weighted avg 0.97 0.97 0.97 3341

g. MLP Classifier (Multi-Layer perceptrons)

mlp = MLPClassifier() # passing object

mlp.fit(x_train,y_train)

AI in Phishing Protection | FITPED AI

133

#prediction

pred_mlp = mlp.predict(x_test)

#performance

print(f"accuracy from

MLP:{accuracy_score(y_test,pred_mlp)*100:.2f} %")

print(f"f1 score from MLP: {f1_score(y_test,pred_mlp)*100:.2f}

%")

print("classification report :

\n",classification_report(y_test,pred_mlp))

#confusion matrix

clf_mlp = confusion_matrix(y_test,pred_mlp)

cx_ =

ConfusionMatrixDisplay(clf_mlp,display_labels=['pishing_mail',

'safe_mail']).plot()

plt.title("confusion matrix")

plt.show()

Program output:
accuracy from MLP:97.99 %

f1 score from MLP: 98.39 %

classification report :

 precision recall f1-score support

 0 0.97 0.98 0.97 1262

 1 0.99 0.98 0.98 2079

 accuracy 0.98 3341

 macro avg 0.98 0.98 0.98 3341

weighted avg 0.98 0.98 0.98 3341

AI in Phishing Protection | FITPED AI

134

4. EDA comparison of the models performances

import matplotlib.pyplot as plt

Data

models = ['Naive Bayes', 'Logistic Regression', 'SGD

Classifier', 'XGBoost', 'Decision Tree', 'Random Forest',

'MLPClassifier']

accuracies = [accuracy_score(y_test,pred_nav)*100,

accuracy_score(y_test,pred_lg)*100,

accuracy_score(y_test,pred_sgd)*100,

accuracy_score(y_test,pred_xgb)*100,

accuracy_score(y_test,pred_dtr)*100,

accuracy_score(y_test,pred_rnf)*100,

accuracy_score(y_test,pred_mlp)*100]

Create the bar chart

plt.figure(figsize=(10, 6))

bars = plt.bar(models, accuracies, color='magenta')

Add text labels above bars

for bar, accuracy in zip(bars, accuracies):

 plt.text(bar.get_x() + bar.get_width() / 2,

bar.get_height(), f'{accuracy:.2f}%',

 ha='center', va='bottom')

AI in Phishing Protection | FITPED AI

135

Add titles and labels

plt.title("Performance of the Models")

plt.xlabel("Models")

plt.ylabel("Accuracy (%)")

Show the plot

plt.show()

Program output:

📝 5.3.2

Project: Phishing email detection using Neural Networks

(by https://www.kaggle.com/code/kirollosashraf/phishing-email-detection-using-
deep-learning/notebook)

Compare different algorithms to identify phishing emails by Neural Networks.

Dataset:

• original: https://www.kaggle.com/datasets/subhajournal/phishingemails
• reduced:

https://priscilla.fitped.eu/data/cybersecurity/phishing/phishing_email_reduc
ed.csv

https://www.kaggle.com/code/kirollosashraf/phishing-email-detection-using-deep-learning/notebook
https://www.kaggle.com/code/kirollosashraf/phishing-email-detection-using-deep-learning/notebook
https://www.kaggle.com/datasets/subhajournal/phishingemails
https://priscilla.fitped.eu/data/cybersecurity/phishing/phishing_email_reduced.csv
https://priscilla.fitped.eu/data/cybersecurity/phishing/phishing_email_reduced.csv

AI in Phishing Protection | FITPED AI

136

import pandas as pd

import matplotlib.pyplot as plt

import seaborn as sns

import numpy as np

import plotly.express as px

from sklearn.feature_extraction.text import

TfidfVectorizer,CountVectorizer

from sklearn.linear_model import LogisticRegression

from sklearn.tree import DecisionTreeClassifier

from sklearn.ensemble import RandomForestClassifier

from sklearn.neural_network import MLPClassifier

from sklearn.model_selection import train_test_split

from tensorflow.keras.preprocessing.text import Tokenizer

from tensorflow.keras.layers import

Embedding,GRU,LSTM,Bidirectional,SimpleRNN

from tensorflow.keras.utils import pad_sequences

from sklearn.preprocessing import LabelEncoder

from keras.models import Sequential

from keras.layers import Dense,Dropout

import tensorflow as tf

import warnings

warnings.filterwarnings('ignore')

1. Data understanding

df =

pd.read_csv("https://priscilla.fitped.eu/data/cybersecurity/ph

ishing/phishing_email_reduced.csv", delimiter=",")

be patient

print(df.head())

Program output:
 id Email Text

Email Type

0 0 re : 6 . 1100 , disc : uniformitarianism , re ...

Safe Email

1 1 the other side of * galicismos * * galicismo *...

Safe Email

2 2 re : equistar deal tickets are you still avail...

Safe Email

3 3 \nHello I am your hot lil horny toy.\n I am...

Phishing Email

4 4 software at incredibly low prices (86 % lower...

Phishing Email

AI in Phishing Protection | FITPED AI

137

 id Email Text

Email Type

0 0 re : 6 . 1100 , disc : uniformitarianism , re ...

Safe Email

1 1 the other side of * galicismos * * galicismo *...

Safe Email

2 2 re : equistar deal tickets are you still avail...

Safe Email

3 3 \nHello I am your hot lil horny toy.\n I am...

Phishing Email

4 4 software at incredibly low prices (86 % lower...

Phishing Email

2. Data preprocessing

• Drop duplicates and null values
• Integer Encoding
• Remove hyperlinks, punctuations, extra space
• Converting text into vector

df.dropna(inplace=True,axis=0)

df.drop_duplicates(inplace=True)

le = LabelEncoder()

df["Email Type"] = le.fit_transform(df["Email Type"])

import re

def preprocess_text(text):

 # Remove hyperlinks

 text = re.sub(r'http\S+', '', text)

 # Remove punctuations

 text = re.sub(r'[^\w\s]', '', text)

 # Convert to lowercase

 text = text.lower()

 # Remove extra spaces

 text = re.sub(r'\s+', ' ', text).strip()

 return text

Apply the preprocess_text function to the specified column

in the DataFrame

df["Email Text"] =df["Email Text"].apply(preprocess_text)

Define the maximum length for the padded sequences

max_len = 150

AI in Phishing Protection | FITPED AI

138

Initialize a tokenizer, which will convert text to a

sequence of integers

tk = Tokenizer()

Fit the tokenizer on the text data in the 'Email Text'

column

This step creates a vocabulary based on word frequency in

the text data

tk.fit_on_texts(df['Email Text'])

Convert the text data into sequences of integers, where each

integer represents a word

This step maps each word in the text to a unique integer

based on the tokenizer's vocabulary

sequences = tk.texts_to_sequences(df['Email Text'])

Pad the sequences so they all have the same length of

`max_len`

Padding is applied to the end of each sequence ('post') to

make them uniform in size

vector = pad_sequences(sequences, padding='post',

maxlen=max_len)

x = np.array(vector)

y = np.array(df["Email Type"])

print(len(vector))

Program output:
16705

Splitting into train and test

#Split the dataset into train and test set

x_train, x_test, y_train, y_test =

train_test_split(vector,df['Email Type'], test_size=0.2,

random_state =0)

a. Simple RNN

Import necessary modules

from keras.models import Sequential

from keras.layers import Embedding, SimpleRNN, Dropout, Dense

Initialize the model using the Sequential API

AI in Phishing Protection | FITPED AI

139

model_smp = Sequential() # Sequential API allows adding

layers step-by-step.

Add an Embedding layer

model_smp.add(Embedding(

 input_dim=len(tk.word_index) + 1, # Vocabulary size (+1

for padding)

 output_dim=50, # Embedding dimension

(50-dimensional vector for each word)

 input_length=150 # Input sequence length

(each sequence has 150 words)

))

Add a SimpleRNN layer

model_smp.add(SimpleRNN(units=100)) # RNN layer with 100

units (neurons), designed to capture temporal dependencies.

Add a Dropout layer

model_smp.add(Dropout(0.45)) # Dropout layer with a rate of

0.45 (randomly sets 45% of input units to zero during

training).

Add a Dense output layer

model_smp.add(Dense(1, activation='sigmoid')) # Output layer

for binary classification with a sigmoid activation.

Compile the model

model_smp.compile(

 loss='binary_crossentropy', # Binary cross-entropy is

appropriate for binary classification.

 optimizer='adam', # Adam optimizer, a popular

and efficient optimization algorithm.

 metrics=['accuracy'] # Accuracy metric to evaluate

model performance during training and testing.

)

Display the model architecture summary

model_smp.summary() # Shows layer details, output shapes, and

number of parameters.

Program output:
Model: "sequential_1"

__

 Layer (type) Output Shape Param #

AI in Phishing Protection | FITPED AI

140

==

===

 embedding_1 (Embedding) (None, 150, 50) 8262150

 simple_rnn_1 (SimpleRNN) (None, 100) 15100

 dropout_1 (Dropout) (None, 100) 0

 dense_1 (Dense) (None, 1) 101

==

===

Train the model with the training data (x_train and y_train)

The model will train for 7 epochs with a batch size of 16

During training, it also evaluates performance on the

validation data (x_test, y_test)

historical_smp = model_smp.fit(

 x_train, # Training features

 y_train, # Training labels

 epochs=7, # Number of times to iterate over the

training data

 batch_size=16, # Number of samples per gradient

update

 validation_data=(x_test, y_test) # Data for validation

after each epoch

)

import matplotlib.pyplot as plt

pd.DataFrame(historical_smp.history)

pd.DataFrame(historical_smp.history)[['accuracy',

'val_accuracy']].plot()

plt.title('Training Accuracy')

plt.xlabel('Epochs')

plt.ylabel('accuracy')

pd.DataFrame(historical_smp.history)[['loss',

'val_loss']].plot()

plt.title('Model Loss')

plt.xlabel('Epochs')

plt.ylabel('Loss')

Predict probabilities on the test data

AI in Phishing Protection | FITPED AI

141

The model outputs probabilities for each sample in x_test

y_pred_prob_smp = model_smp.predict(x_test)

Convert probabilities to binary predictions (0 or 1)

A threshold of 0.5 is used: values greater than 0.5 are

classified as 1, otherwise as 0

y_pred_smp = (y_pred_prob_smp > 0.5).astype(int)

Import necessary libraries for confusion matrix

from sklearn.metrics import confusion_matrix,

ConfusionMatrixDisplay

import matplotlib.pyplot as plt

Generate a confusion matrix to evaluate the model’s

predictions

cnf_smp = confusion_matrix(y_test, y_pred_smp)

Create a ConfusionMatrixDisplay object for better

visualization

The display labels ('phishing' and 'normal') are used to

indicate the two classes

ax_smp = ConfusionMatrixDisplay(confusion_matrix=cnf_smp,

display_labels=['phishing', 'normal']).plot()

Add a title to the confusion matrix plot

plt.title("Confusion Matrix")

Display the confusion matrix plot

plt.show()

Program output:
 1/105 [..............................] - ETA: 30s

 5/105 [>.............................] - ETA: 1s

 9/105 [=>............................] - ETA: 1s

 14/105 [===>..........................] - ETA: 1s

 19/105 [====>.........................] - ETA: 1s

 24/105 [=====>........................] - ETA: 1s

 29/105 [=======>......................] - ETA: 0s

 34/105 [========>.....................] - ETA: 0s

 39/105 [==========>...................] - ETA: 0s

 44/105 [===========>..................] - ETA: 0s

 49/105 [=============>................] - ETA: 0s

 54/105 [==============>...............] - ETA: 0s

 59/105 [===============>..............] - ETA: 0s

 64/105 [=================>............] - ETA: 0s

AI in Phishing Protection | FITPED AI

142

 69/105 [==================>...........] - ETA: 0s

 74/105 [====================>.........] - ETA: 0s

 79/105 [=====================>........] - ETA: 0s

 84/105 [=======================>......] - ETA: 0s

 89/105 [========================>.....] - ETA: 0s

 94/105 [=========================>....] - ETA: 0s

 99/105 [===========================>..] - ETA: 0s

104/105 [============================>.] - ETA: 0s

105/105 [==============================] - 2s 12ms/step

b. LSTM

Long Short-Term Memory (LSTM) networks are a type of recurrent neural network
(RNN) designed to capture long-term dependencies in sequential data, making them
particularly useful for tasks such as time series prediction, natural language
processing, and more.

Importing necessary libraries

from keras.models import Sequential

from keras.layers import Embedding, LSTM, Dropout, Dense

Initialize a sequential model using the Sequential API

model = Sequential() # This creates an empty model where

layers can be added sequentially.

Add an Embedding layer

model.add(Embedding(

AI in Phishing Protection | FITPED AI

143

 input_dim=len(tk.word_index) + 1, # Size of the

vocabulary (+1 for padding)

 output_dim=50, # Dimension of the

dense embedding (50-dimensional vectors)

 input_length=150 # Length of input

sequences (150 words)

))

Add an LSTM layer

model.add(LSTM(units=100)) # This layer contains 100 LSTM

units (cells) for learning sequences.

Add a Dropout layer

model.add(Dropout(0.5)) # This layer randomly sets 50% of the

input units to 0 during training to prevent overfitting.

Add a Dense output layer

model.add(Dense(1, activation='sigmoid')) # Output layer with

a single unit for binary classification, using a sigmoid

activation function.

Compile the model

model.compile(

 loss='binary_crossentropy', # Loss function for binary

classification problems

 optimizer='adam', # Adam optimizer for

adjusting weights during training

 metrics=['accuracy'] # Metric to evaluate the

model's performance during training and testing

)

Display the model summary

model.summary() # This prints a summary of the model

architecture, including layer types, output shapes, and number

of parameters.

Program output:
Model: "sequential_2"

__

 Layer (type) Output Shape Param #

==

===

 embedding_2 (Embedding) (None, 150, 50) 8262150

AI in Phishing Protection | FITPED AI

144

 lstm (LSTM) (None, 100) 60400

 dropout_2 (Dropout) (None, 100) 0

 dense_2 (Dense) (None, 1) 101

Train the model with the training data (x_train and y_train)

The model will train for 5 epochs with a batch size of 16

During training, it also evaluates performance on the

validation data (x_test, y_test)

historical = model.fit(

 x_train, # Training features

 y_train, # Training labels

 epochs=2, # Number of times to iterate over the

training data

 batch_size=16, # Number of samples per gradient

update

 validation_data=(x_test, y_test) # Data for validation

after each epoch

)

3. Performance

Evaluate the model on the test data (x_test and y_test)

results = model.evaluate(x_test, y_test)

Extract the loss value from the evaluation results

loss = results[0] # First element is the model's loss on the

test data

Extract the accuracy value from the evaluation results

accuracy = results[1] # Second element is the model's

accuracy on the test data

Print out the results with formatted strings

print(f"Model Loss: {loss}")

print(f"Model Accuracy: {accuracy * 100}")

Generate predicted probabilities for the test set

y_pred_prob = model.predict(x_test)

Apply a threshold of 0.5 to convert probabilities to binary

predictions (1 or 0)

AI in Phishing Protection | FITPED AI

145

y_pred = (y_pred_prob > 0.5).astype(int)

Convert the training history into a DataFrame for easier

analysis

pd.DataFrame(historical.history)

Plot training and validation accuracy over epochs

pd.DataFrame(historical.history)[['accuracy',

'val_accuracy']].plot()

plt.title('Training Accuracy')

plt.xlabel('Epochs')

plt.ylabel('Accuracy')

Plot training and validation loss over epochs

pd.DataFrame(historical.history)[['loss', 'val_loss']].plot()

plt.title('Model Loss')

plt.xlabel('Epochs')

plt.ylabel('Loss')

cnf = confusion_matrix(y_test,y_pred)

ax =

ConfusionMatrixDisplay(confusion_matrix=cnf,display_labels=['p

ishing','normal'])

ax.plot()

plt.title("Confusion Matrix")

plt.show()

AI in Phishing Protection | FITPED AI

146

Program output:

c. Bidirectional

This bidirectional LSTM model is designed for binary classification of text
sequences. It starts with an embedding layer that converts words into vectors,
followed by a bidirectional LSTM layer that captures context from both past and
future words. A dropout layer is added to prevent overfitting, and a dense layer with
sigmoid activation outputs the probability of the positive class. The model is
compiled with binary cross-entropy loss, Adam optimizer, and accuracy metric for
training and evaluation.

Import necessary modules

from keras.models import Sequential

from keras.layers import Embedding, LSTM, Dropout, Dense,

Bidirectional

Initialize the model using the Sequential API

model_bi = Sequential() # Allows adding layers in sequence.

Add an Embedding layer

model_bi.add(Embedding(

 input_dim=len(tk.word_index) + 1, # Vocabulary size (+1

for padding)

 output_dim=50, # Embedding dimension

(50-dimensional vector for each word)

AI in Phishing Protection | FITPED AI

147

 input_length=150 # Input sequence length

(each sequence has 150 words)

))

Add a Bidirectional LSTM layer

model_bi.add(Bidirectional(LSTM(units=100))) # Bidirectional

LSTM with 100 units, processing input in both directions.

Add a Dropout layer

model_bi.add(Dropout(0.5)) # Dropout with rate 0.5 to reduce

overfitting by randomly zeroing out 50% of inputs during

training.

Add a Dense output layer

model_bi.add(Dense(1, activation='sigmoid')) # Output layer

for binary classification with sigmoid activation.

Compile the model

model_bi.compile(

 loss='binary_crossentropy', # Binary cross-entropy loss

for binary classification.

 optimizer='adam', # Adam optimizer, effective

for a wide range of tasks.

 metrics=['accuracy'] # Track accuracy during

training and evaluation.

)

Display the model architecture summary

model_bi.summary() # Shows model layers, output shapes, and

parameter counts.

Train the model

historical = model_bi.fit(

 x_train, # Training data features

 y_train, # Training data labels

 epochs=2, # Number of epochs (iterations over

the entire dataset)

 batch_size=16, # Number of samples per gradient

update

 validation_data=(x_test, y_test) # Data for evaluating

loss and accuracy at the end of each epoch

)

Evaluate the model on the test set

AI in Phishing Protection | FITPED AI

148

model_bi.evaluate(x_test, y_test)

Generate predicted probabilities on the test set

y_pred_prob_bi = model_bi.predict(x_test)

Apply a threshold to convert probabilities to binary

predictions

y_pred_bi = (y_pred_prob_bi > 0.5).astype(int)

Create and display a confusion matrix

from sklearn.metrics import confusion_matrix,

ConfusionMatrixDisplay

cnf_bi = confusion_matrix(y_test, y_pred_bi)

Plot confusion matrix

ax_bi = ConfusionMatrixDisplay(confusion_matrix=cnf_bi,

display_labels=['Phishing', 'Normal'])

ax_bi.plot()

plt.show()

d. GRU (Gated Recurrent Unit)

This GRU model is designed for binary classification of text sequences. It starts with
an embedding layer that maps words to dense vectors, followed by a GRU layer to
capture sequence dependencies. A dropout layer helps reduce overfitting, and a
dense layer with sigmoid activation outputs the probability of the positive class. The
model is compiled with binary cross-entropy loss, Adam optimizer, and accuracy
metric for training and evaluation.

Import necessary modules

from keras.models import Sequential

from keras.layers import Embedding, GRU, Dropout, Dense

Initialize the model using the Sequential API

model_gru = Sequential() # Sequential model to stack layers

linearly.

Add an Embedding layer

model_gru.add(Embedding(

 input_dim=len(tk.word_index) + 1, # Vocabulary size (+1

to account for padding index)

 output_dim=50, # Embedding dimension

(each word is represented by a 50-dimensional vector)

 input_length=150 # Input sequence length

(each input has 150 words)

AI in Phishing Protection | FITPED AI

149

))

Add a GRU layer

model_gru.add(GRU(units=100)) # GRU layer with 100 units to

capture sequential patterns in the input.

Add a Dropout layer

model_gru.add(Dropout(0.5)) # Dropout layer with a 50%

dropout rate to prevent overfitting by randomly setting half

of the input units to zero during training.

Add a Dense output layer

model_gru.add(Dense(1, activation='sigmoid')) # Output layer

for binary classification; sigmoid activation outputs a

probability between 0 and 1.

Compile the model

model_gru.compile(

 loss='binary_crossentropy', # Binary cross-entropy loss

for binary classification tasks.

 optimizer='adam', # Adam optimizer, commonly

used for text and sequence tasks.

 metrics=['accuracy'] # Track accuracy during

training and evaluation.

)

Display the model architecture summary

model_gru.summary() # Summarizes the model architecture,

displaying each layer, output shape, and parameter count.

model_gru.fit(x_train,y_train, epochs=3, batch_size=16,

validation_data=(x_test,y_test))

y_pred_prob_gru = model_gru.predict(x_test)

y_pred_gru = (y_pred_prob_gru > 0.5).astype(int)

cnf_gru = confusion_matrix(y_test,y_pred_gru)

ax_gru =

ConfusionMatrixDisplay(confusion_matrix=cnf_gru,display_labels

=['Pishing','normal'])

ax_gru.plot()

plt.show()

AI in Phishing Protection | FITPED AI

150

📝 5.3.3

Project: Phishing identification based on URL (Dataset description)

(by https://www.kaggle.com/code/akashkr/phishing-url-eda-and-modelling)

Dataset:

• original: https://www.kaggle.com/datasets/akashkr/phishing-website-
dataset?select=dataset.csv

• local:
https://priscilla.fitped.eu/data/cybersecurity/phishing/phishing_website_dat
aset.csv

Phishing often begins by delivering a message that contains malware targeting the
user's computer or contains links to direct victims to malicious websites in order to
trick them into divulging sensitive information.

The following analysis presents what all functions we can derive and use from the
domain/URL of a website to determine whether it is phishing or not.

URL components

A Uniform Resource Locator (URL) is an address used to locate web pages. The
image below highlights the key parts of a typical URL.

In a phishing attack, the phisher (attacker) has full control over parts of the URL, such
as the subdomain and path, and can modify them to create convincing fake
addresses. For example, a phisher can use a known subdomain and path to trick
users. We refer to these changeable parts of the URL as "FreeURL".

While an attacker can only register any available domain name (the main part of a
URL) once, they can often modify FreeURL and create new URLs. This flexibility
makes it difficult for security guards to detect phishing domains, as each FreeURL
can look unique even if it leads to the same fake page. However, once a domain is
confirmed to be fraudulent, defenders can block it to prevent users from accessing
it.

https://www.kaggle.com/code/akashkr/phishing-url-eda-and-modelling
https://www.kaggle.com/datasets/akashkr/phishing-website-dataset?select=dataset.csv
https://www.kaggle.com/datasets/akashkr/phishing-website-dataset?select=dataset.csv
https://priscilla.fitped.eu/data/cybersecurity/phishing/phishing_website_dataset.csv
https://priscilla.fitped.eu/data/cybersecurity/phishing/phishing_website_dataset.csv

AI in Phishing Protection | FITPED AI

151

Source: https://www.kaggle.com/code/akashkr/phishing-url-eda-and-
modelling/notebook

Domain analysis and dataset description

Dataset Description

In this dataset, URLs have been analyzed for certain features that can indicate
whether a URL is legitimate or phishing. These features fall into four main categories:

1. Address bar-based features
2. Abnormal-based features
3. HTML and JavaScript-based features
4. Domain-based features

1. Address bar-based features

These features help identify phishing URLs based on suspicious patterns in address
bars, domains, and structure.

Using an IP address

• If the URL uses an IP address (e.g., http://125.98.3.123/fake.html), it’s
likely phishing.

• Rule: If Domain Part has IP Address → Phishing; otherwise → Legitimate.

Long URL to hide suspicious parts

• Phishing URLs often use long URLs to conceal suspicious information.
• Rule: URL length < 54 → Legitimate; length ≥ 54 and ≤ 75 → Suspicious;

otherwise → Phishing.

AI in Phishing Protection | FITPED AI

152

Using URL shortening services (e.g., TinyURL)

• Shortened URLs can disguise the real destination.
• Rule: If TinyURL → Phishing; otherwise → Legitimate.

URLs containing “@” symbol

• The “@” symbol in a URL causes the browser to ignore everything before it,
often redirecting users.

• Rule: If URL Contains @ Symbol → Phishing; otherwise → Legitimate.

Redirecting using “//”

• If “//” appears outside of the first few characters in the URL, it can indicate a
redirection to a phishing site.

• Rule: Last occurrence of “//” in URL > 7 → Phishing; otherwise → Legitimate.

Adding prefix/suffix with “-” in domain

• Phishing sites may use “-” in domain names to mimic legitimate websites.
• Rule: If Domain Name has “-” Symbol → Phishing; otherwise → Legitimate.

Subdomain and multi-subdomains

• Extra subdomains may indicate phishing.
• Rule: 1 dot → Legitimate; 2 dots → Suspicious; more than 2 dots →

Phishing.

HTTPS (Secure)

• HTTPS indicates a secure connection but does not guarantee legitimacy. A
trusted certificate is required.

• Rule: Trusted HTTPS with age ≥ 1 year → Legitimate; Untrusted HTTPS →
Suspicious; otherwise → Phishing.

Domain registration length

• Phishing domains often have short registration periods.
• Rule: Domain expires ≤ 1 year → Phishing; otherwise → Legitimate.

Favicon

• If the favicon (website icon) loads from a different domain, it may indicate
phishing.

• Rule: Favicon loaded from external domain → Phishing; otherwise →
Legitimate.

AI in Phishing Protection | FITPED AI

153

Using non-standard port

• Phishing sites may use unusual ports.
• Rule: Non-standard port → Phishing; otherwise → Legitimate.

“HTTPS” token in domain

• Phishers may add “HTTPS” in the domain name to appear legitimate.
• Rule: “HTTPS” in domain part → Phishing; otherwise → Legitimate.

2. Abnormal-based features

These features examine the structure of websites and their components to detect
potential phishing. Here is an overview of each feature with classification rules:

Request URL

• This function checks whether embedded content (eg images, videos) is
loaded from an external domain. Legitimate sites often have these resources
on the same domain.

• rule:
• % of Request URL < 22% → Legitimate
• 22% ≤ % of request URL ≤ 61% → Suspicious
• Otherwise → Phishing

Anchor URL

• An anchor (defined by <a> tags) usually links within the same domain on
legitimate pages. Phishing sites often link to other domains or use
placeholders.

• rule:
• % Anchor URL < 31% → Legitimate
• 31% ≤ % of anchor URL ≤ 67% → Suspicious
• Otherwise → Phishing

Links in <Meta>, <Script> and <Link> tags

• Legitimate sites often use these tags to link to resources within the same
domain.

• rule:
• % of links in <Meta>, <Script> and <Link> < 17% → Legitimate
• 17% ≤ % of links ≤ 81% → Suspicious
• Otherwise → Phishing

Server form handler (SFH)

• The SFH should match the site's domain. Phishing sites often use blank or
unrelated domains in their form handlers.

AI in Phishing Protection | FITPED AI

154

• rule:
• SFH is about:blank or empty → Phishing
• SFH refers to another domain → Suspicious
• Otherwise → Legitimate

Sending information to e-mail

• Phishers can use mailto: or server-side scripts (eg mail() in PHP) to send
user information directly to their email.

• rule:
• If you use mailto: or mail() → Phishing
• Otherwise → Legitimate

Unusual URL

• This function uses the WHOIS database to check if the website identity is
part of the URL. Legitimate sites usually have the host name in the URL.

• rule:
• If the hostname is not included in the URL → Phishing
• Otherwise → Legitimate

3. HTML and JavaScript-based features

These features identify phishing by detecting unusual behavior and website
structures. They help identify phishing attempts by detecting hidden redirects, status
bar manipulation, right-click disabling, and pop-up requests for personal data.

Website redirection

• Legitimate websites are usually only redirected once, while phishing sites
often redirect users multiple times.

• rule:
• Redirects ≤ 1 → Legitimate
• Redirects between 2 and 4 → Suspicious
• Redirects ≥ 4 → Phishing

Customize the status bar

• Phishers can use JavaScript to change the URL of the status bar using the
onMouseOver event, hiding the actual link.

• rule:
• If onMouseOver changes the status bar to → Phishing
• Otherwise → Legitimate

AI in Phishing Protection | FITPED AI

155

Disable right click

• Phishers often disable the right-click functionality (usually via JavaScript) to
prevent users from viewing the source code.

• rule:
• Right-click Disabled → Phishing
• Otherwise → Legitimate

Using a pop-up window

• Phishing sites may use pop-ups to collect personal information. Legitimate
sites may also use pop-ups, but they generally don't ask for sensitive data.

• rule:
• The pop-up window contains text fields for information → Phishing
• Otherwise → Legitimate

IFrame redirection

• Iframes embed one web page inside another and are sometimes used by
fraudsters to display hidden content.

• rule:
• Uses <iframe> → Phishing
• Otherwise → Legitimate

4. Domain based features

These features help determine if a website is phishing based on domain age, DNS
records, website traffic, other web metrics, and inclusion in known phishing
databases.

Age of domain

• Legitimate domains generally have a minimum age of 6 months, as phishing
sites are often newly created.

• Rule:
• Domain age ≥ 6 months → Legitimate
• Otherwise → Phishing

DNS record

• Phishing domains may lack DNS records or WHOIS information, as they are
often created quickly and without verification.

• Rule:
• No DNS record → Phishing
• Otherwise → Legitimate

AI in Phishing Protection | FITPED AI

156

Website traffic

• Legitimate websites are typically recognized by Alexa and rank within the top
100,000. Phishing websites, with little traffic, may not appear in Alexa.

• Rule:
• Alexa rank < 100,000 → Legitimate
• Alexa rank > 100,000 → Suspicious
• Otherwise → Phishing

PageRank

• PageRank (from 0 to 1) measures site importance. Phishing sites usually
have a PageRank below 0.2.

• Rule:
• PageRank < 0.2 → Phishing
• Otherwise → Legitimate

Google Index

• Google indexing indicates visibility. Phishing sites are often unindexed due to
their short lifespan.

• Rule:
• Indexed by Google → Legitimate
• Otherwise → Phishing

Number of links pointing to page

• Legitimate sites often have multiple external links pointing to them, while
phishing sites lack these links.

• Rule:
• No links → Phishing
• 1-2 links → Suspicious
• More than 2 links → Legitimate

Statistical-reports based feature

• Services like PhishTank and StopBadware publish lists of common phishing
IPs and domains. If a domain or IP matches these lists, it is likely phishing.

• Rule:
• Domain/IP listed in top phishing reports → Phishing
• Otherwise → Legitimate

AI in Phishing Protection | FITPED AI

157

📝 5.3.4

Project: Phishing identification based on URL (EDA and modelling)

(by https://www.kaggle.com/code/akashkr/phishing-url-eda-and-modelling)

Dataset:

• original: https://www.kaggle.com/datasets/akashkr/phishing-website-
dataset?select=dataset.csv

• local:
https://priscilla.fitped.eu/data/cybersecurity/phishing/phishing_website_dat
aset.csv

To begin our exploratory data analysis (EDA) on the phishing detection dataset, we
will examine features in four key categories: URL-based, Anomalous Data-based,
HTML and JavaScript-based, and Domain-based. Each category contributes unique
indicators that help us detect phishing websites based on a range of structural,
behavioral and domain-specific characteristics.

• URL-based features examines properties of the URL itself, such as its length,
the presence of certain symbols, and potential manipulations such as the
use of shortened URLs. Phishing sites often use confusing URLs to
impersonate legitimate addresses, with the goal of tricking users into
thinking they are on a trusted site.

• Abnormal based features focus on using external elements within a web
page and aligning resources such as images or anchors to the domain. By
evaluating discrepancies in these elements, we can detect suspicious
activity, as legitimate websites usually associate their resources with their
own domain.

• HTML and JavaScript based features examine the use of HTML and
JavaScript elements that are often manipulated by fraudsters, such as
changing the status bar, disabling right-clicking, or using popups. Such
tactics are common on phishing sites to prevent users from verifying the
authenticity of sites or prompting them to enter sensitive information.

• Domain based features analyzes domain-related attributes such as domain
age, DNS records, website traffic, and PageRank. Phishing sites tend to have
new domains, lack significant traffic, and often do not appear in search
engine indexes, making these metrics useful for flagging potential phishing
sites.

Our EDA evaluates the characteristics of each category, identifies patterns, and
assesses their distribution across legitimate and phishing sites. By systematically
analyzing these characteristics, we aim to better understand which features are most
indicative of phishing, thereby guiding the development of effective detection
models.

https://www.kaggle.com/code/akashkr/phishing-url-eda-and-modelling
https://www.kaggle.com/datasets/akashkr/phishing-website-dataset?select=dataset.csv
https://www.kaggle.com/datasets/akashkr/phishing-website-dataset?select=dataset.csv
https://priscilla.fitped.eu/data/cybersecurity/phishing/phishing_website_dataset.csv
https://priscilla.fitped.eu/data/cybersecurity/phishing/phishing_website_dataset.csv

AI in Phishing Protection | FITPED AI

158

import matplotlib.pyplot as plt

import seaborn as sns

import pandas as pd

import numpy as np

%matplotlib inline

Data overview

df =

pd.read_csv('https://priscilla.fitped.eu/data/cybersecurity/ph

ishing/phishing_website_dataset.csv')

print(df.head())

Program output:
 index having_IPhaving_IP_Address URLURL_Length

Shortining_Service \

0 1 -1 1

1

1 2 1 1

1

2 3 1 0

1

3 4 1 0

1

4 5 1 0

-1

 having_At_Symbol double_slash_redirecting Prefix_Suffix

\

0 1 -1 -1

1 1 1 -1

2 1 1 -1

3 1 1 -1

4 1 1 -1

 having_Sub_Domain SSLfinal_State

Domain_registeration_length ... \

0 -1 -1

-1 ...

1 0 1

-1 ...

2 -1 -1

-1 ...

AI in Phishing Protection | FITPED AI

159

3 -1 -1

1 ...

4 1 1

-1 ...

 popUpWidnow Iframe age_of_domain DNSRecord web_traffic

Page_Rank \

0 1 1 -1 -1 -1

-1

1 1 1 -1 -1 0

-1

2 1 1 1 -1 1

-1

3 1 1 -1 -1 1

-1

4 -1 1 -1 -1 0

-1

 Google_Index Links_pointing_to_page Statistical_report

Result

0 1 1 -1

-1

1 1 1 1

-1

2 1 0 -1

-1

3 1 -1 1

-1

4 1 1 1

1

[5 rows x 32 columns]

 index having_IPhaving_IP_Address URLURL_Length

Shortining_Service \

0 1 -1 1

1

1 2 1 1

1

2 3 1 0

1

3 4 1 0

1

4 5 1 0

-1

AI in Phishing Protection | FITPED AI

160

 having_At_Symbol double_slash_redirecting Prefix_Suffix

\

0 1 -1 -1

1 1 1 -1

2 1 1 -1

3 1 1 -1

4 1 1 -1

 having_Sub_Domain SSLfinal_State

Domain_registeration_length ... \

0 -1 -1

-1 ...

1 0 1

-1 ...

2 -1 -1

-1 ...

3 -1 -1

1 ...

4 1 1

-1 ...

 popUpWidnow Iframe age_of_domain DNSRecord web_traffic

Page_Rank \

0 1 1 -1 -1 -1

-1

1 1 1 -1 -1 0

-1

2 1 1 1 -1 1

-1

3 1 1 -1 -1 1

-1

4 -1 1 -1 -1 0

-1

 Google_Index Links_pointing_to_page Statistical_report

Result

0 1 1 -1

-1

1 1 1 1

-1

2 1 0 -1

-1

AI in Phishing Protection | FITPED AI

161

3 1 -1 1

-1

4 1 1 1

1

[5 rows x 32 columns]

print(list(df.columns))

Program output:
['index', 'having_IPhaving_IP_Address', 'URLURL_Length',

'Shortining_Service', 'having_At_Symbol',

'double_slash_redirecting', 'Prefix_Suffix',

'having_Sub_Domain', 'SSLfinal_State',

'Domain_registeration_length', 'Favicon', 'port',

'HTTPS_token', 'Request_URL', 'URL_of_Anchor',

'Links_in_tags', 'SFH', 'Submitting_to_email', 'Abnormal_URL',

'Redirect', 'on_mouseover', 'RightClick', 'popUpWidnow',

'Iframe', 'age_of_domain', 'DNSRecord', 'web_traffic',

'Page_Rank', 'Google_Index', 'Links_pointing_to_page',

'Statistical_report', 'Result']

df.info()

Program output:

RangeIndex: 11055 entries, 0 to 11054

Data columns (total 32 columns):

 # Column Non-Null Count Dtype

--- ------ -------------- -----

 0 index 11055 non-null int64

 1 having_IPhaving_IP_Address 11055 non-null int64

 2 URLURL_Length 11055 non-null int64

 3 Shortining_Service 11055 non-null int64

 4 having_At_Symbol 11055 non-null int64

 5 double_slash_redirecting 11055 non-null int64

 6 Prefix_Suffix 11055 non-null int64

 7 having_Sub_Domain 11055 non-null int64

 8 SSLfinal_State 11055 non-null int64

 9 Domain_registeration_length 11055 non-null int64

 10 Favicon 11055 non-null int64

 11 port 11055 non-null int64

 12 HTTPS_token 11055 non-null int64

AI in Phishing Protection | FITPED AI

162

 13 Request_URL 11055 non-null int64

 14 URL_of_Anchor 11055 non-null int64

 15 Links_in_tags 11055 non-null int64

 16 SFH 11055 non-null int64

 17 Submitting_to_email 11055 non-null int64

 18 Abnormal_URL 11055 non-null int64

 19 Redirect 11055 non-null int64

 20 on_mouseover 11055 non-null int64

 21 RightClick 11055 non-null int64

 22 popUpWidnow 11055 non-null int64

 23 Iframe 11055 non-null int64

 24 age_of_domain 11055 non-null int64

 25 DNSRecord 11055 non-null int64

 26 web_traffic 11055 non-null int64

 27 Page_Rank 11055 non-null int64

 28 Google_Index 11055 non-null int64

 29 Links_pointing_to_page 11055 non-null int64

 30 Statistical_report 11055 non-null int64

 31 Result 11055 non-null int64

dtypes: int64(32)

memory usage: 2.7 MB

There are no missing values in the dataset.

According to the Data description, these are the meaning of the values in the data

• 1 means legitimate
• 0 is suspicious
• -1 is phishing

for col in df.columns:

 unique_value_list = df[col].unique()

 if len(unique_value_list) > 10:

 print(f'{col} has {df[col].nunique()} unique values')

 else:

 print(f'{col} contains:\t\t\t{unique_value_list}')

Program output:
index has 11055 unique values

having_IPhaving_IP_Address contains: [-1 1]

URLURL_Length contains: [1 0 -1]

Shortining_Service contains: [1 -1]

having_At_Symbol contains: [1 -1]

double_slash_redirecting contains: [-1 1]

Prefix_Suffix contains: [-1 1]

AI in Phishing Protection | FITPED AI

163

having_Sub_Domain contains: [-1 0 1]

SSLfinal_State contains: [-1 1 0]

Domain_registeration_length contains: [-1 1]

Favicon contains: [1 -1]

port contains: [1 -1]

HTTPS_token contains: [-1 1]

Request_URL contains: [1 -1]

URL_of_Anchor contains: [-1 0 1]

Links_in_tags contains: [1 -1 0]

SFH contains: [-1 1 0]

Submitting_to_email contains: [-1 1]

Abnormal_URL contains: [-1 1]

Redirect contains: [0 1]

on_mouseover contains: [1 -1]

RightClick contains: [1 -1]

popUpWidnow contains: [1 -1]

Iframe contains: [1 -1]

age_of_domain contains: [-1 1]

DNSRecord contains: [-1 1]

web_traffic contains: [-1 0 1]

Page_Rank contains: [-1 1]

Google_Index contains: [1 -1]

Links_pointing_to_page contains: [1 0 -1]

Statistical_report contains: [-1 1]

Result contains: [-1 1]

EDA

We can drop the index column because that acts as a primary key and has no
significance in EDA and modelling.

import pandas as pd

import seaborn as sns

import matplotlib.pyplot as plt

Count occurrences of each unique value across all columns

value_counts = df.apply(lambda x: x.value_counts()).fillna(0)

Sum counts across all columns for -1, 0, and 1

total_counts = value_counts.sum(axis=1)

Create a bar plot to visualize the counts

plt.figure(figsize=(8, 6))

AI in Phishing Protection | FITPED AI

164

sns.barplot(x=total_counts.index, y=total_counts.values,

palette='viridis')

plt.title('Counts of Values (-1, 0, 1) Across All Columns')

plt.xlabel('Values')

plt.ylabel('Count')

plt.xticks(rotation=0) # Keep x-axis labels horizontal

plt.show()

Program output:

Now let's create a heatmap to visualize the correlation matrix of our data set. Here
are some reasons why we use this technique:

• Understanding Relationships: A heatmap allows us to easily observe and
interpret relationships between different features in our dataset. By
visualizing correlation coefficients, we can quickly identify which features
are positively or negatively correlated, helping to understand underlying
patterns in the data.

• Intuitive visualization: Color coding in the heatmap provides an intuitive way
to evaluate correlations. Darker colors may indicate stronger correlations,
while lighter colors indicate weaker correlations. This visual display makes it
easier to understand complex relationships at a glance, as opposed to
examining numerical values in a tabular format.

• Identifying multicollinearity: In many machine learning models, high
multicollinearity between features can adversely affect performance. A heat

AI in Phishing Protection | FITPED AI

165

map allows us to recognize features that are highly correlated with each
other, which guides us in feature selection and engineering processes. By
identifying pairs of highly correlated features (close to +1 or -1), we can
make informed decisions about which features to keep, combine, or remove.

• Insight into data structure: The overall structure and distribution of
correlations in a data set can be revealing by looking at the data itself. For
example, if we see clusters of highly correlated features, this may indicate
redundancy or the presence of latent factors affecting multiple features.

• Facilitate further analysis: Insights gained from a heat map can lead to
subsequent analyses, such as regression modeling or principal component
analysis (PCA). By understanding the relationships between variables, we
can make more informed decisions about model selection and data
preprocessing steps.

• Aesthetic and informative presentation: Using a heat map increases the
aesthetic appeal of our data visualizations. It not only provides background
information but also engages the audience, making it an effective way to
present findings in reports or presentations.

plt.figure(figsize=(15, 15))

sns.heatmap(df.corr(), linewidths=.5)

AI in Phishing Protection | FITPED AI

166

Program output:

The features PopUpWindow and Favicon show a high correlation. Based on their
definitions in the Data Description, we can infer that when a website loads its favicon
from external links, the pop-up window often contains text fields. This observation
stems from the strong positive correlation between these two features.

Additionally, it's important to note that some features exhibit negative correlations.
The minimum correlation in this context is around -0.6. Negative correlations indicate
instances where one feature flags a website as phishing while another feature does
not, highlighting contrasting evaluations of the website's legitimacy.

Modelling

We will use a simple tree-based classifier without hyperparameter tuning to model
and test our dataset. It is important to note that we replace -1 with 0, where 0
indicates a phishing website

AI in Phishing Protection | FITPED AI

167

from sklearn.model_selection import train_test_split

from sklearn.model_selection import KFold

from xgboost import XGBClassifier

from sklearn.metrics import classification_report

from sklearn.metrics import confusion_matrix

from sklearn.metrics import accuracy_score

import numpy as np

def binary_classification_accuracy(actual, pred):

 """

 This function prints the confusion matrix, accuracy score,

and classification report

 for the predicted values compared to the actual values.

 Parameters:

 - actual: Actual labels from the dataset.

 - pred: Predicted labels from the model.

 """

 print(f'Confusion matrix: \n{confusion_matrix(actual,

pred)}')

 print(f'Accuracy score: \n{accuracy_score(actual, pred)}')

 print(f'Classification report:

\n{classification_report(actual, pred)}')

Replacing -1 with 0 in the target variable

df['Result'] = np.where(df['Result'] == -1, 0, df['Result'])

target = df['Result']

features = df.drop(columns=['Result'])

Initialize K-Fold cross-validation

folds = KFold(n_splits=4, shuffle=True, random_state=42)

Lists to store training and validation indices

train_index_list = list()

validation_index_list = list()

Iterate through each fold for cross-validation

for fold, (train_idx, validation_idx) in

enumerate(folds.split(features, target)):

 # Initialize the XGBoost classifier

 model = XGBClassifier()

 # Train the model using the training data

AI in Phishing Protection | FITPED AI

168

 model.fit(np.array(features)[train_idx, :],

np.array(target)[train_idx])

 # Make predictions on the validation data

 predicted_values =

model.predict(np.array(features)[validation_idx, :])

 print(f'==== FOLD {fold + 1} ====')

 # Evaluate the model's performance

binary_classification_accuracy(np.array(target)[validation_idx

], predicted_values)

Program output:
==== FOLD 1 ====

Confusion matrix:

[[1129 54]

 [32 1549]]

Accuracy score:

0.9688856729377714

Classification report:

 precision recall f1-score support

 0 0.97 0.95 0.96 1183

 1 0.97 0.98 0.97 1581

 accuracy 0.97 2764

 macro avg 0.97 0.97 0.97 2764

weighted avg 0.97 0.97 0.97 2764

==== FOLD 2 ====

Confusion matrix:

[[1171 45]

 [32 1516]]

Accuracy score:

0.9721418234442837

Classification report:

 precision recall f1-score support

 0 0.97 0.96 0.97 1216

 1 0.97 0.98 0.98 1548

 accuracy 0.97 2764

 macro avg 0.97 0.97 0.97 2764

weighted avg 0.97 0.97 0.97 2764

AI in Phishing Protection | FITPED AI

169

==== FOLD 3 ====

Confusion matrix:

[[1218 34]

 [35 1477]]

Accuracy score:

0.9750361794500724

Classification report:

 precision recall f1-score support

 0 0.97 0.97 0.97 1252

 1 0.98 0.98 0.98 1512

 accuracy 0.98 2764

 macro avg 0.97 0.97 0.97 2764

weighted avg 0.98 0.98 0.98 2764

==== FOLD 4 ====

Confusion matrix:

[[1194 53]

 [37 1479]]

Accuracy score:

0.9674267100977199

Classification report:

 precision recall f1-score support

 0 0.97 0.96 0.96 1247

 1 0.97 0.98 0.97 1516

 accuracy 0.97 2763

 macro avg 0.97 0.97 0.97 2763

weighted avg 0.97 0.97 0.97 2763

The results presented here are from a four-fold cross-validation of a binary
classification model, likely using the XGBoost classifier to identify phishing websites.
Each fold's results provide insights into the model's performance in terms of various
metrics, including accuracy, precision, recall, and F1-score. Let’s break down and
interpret the results for each fold.

Fold 1

Confusion Matrix:

• True Negatives (TN): 1129 (correctly predicted legitimate websites)

AI in Phishing Protection | FITPED AI

170

• False Positives (FP): 54 (illegitimate websites incorrectly predicted as
legitimate)

• False Negatives (FN): 32 (legitimate websites incorrectly predicted as
phishing)

• True Positives (TP): 1549 (correctly predicted phishing websites)

Accuracy Score: 0.9689 (or 96.89%)

• This indicates that approximately 96.89% of the predictions made by the
model were correct.

Classification Report:

• Precision for 0 (legitimate): 0.97 (97% of predicted legitimate websites were
indeed legitimate)

• Recall for 0: 0.95 (95% of actual legitimate websites were correctly
identified)

• F1-Score for 0: 0.96 (harmonic mean of precision and recall)
• Precision for 1 (phishing): 0.97 (97% of predicted phishing websites were

indeed phishing)
• Recall for 1: 0.98 (98% of actual phishing websites were correctly identified)
• F1-Score for 1: 0.97

Macro and Weighted Averages: Both average scores for precision, recall, and F1-
score are 0.97, indicating a balanced performance across classes.

Fold 2

• Confusion Matrix: TN: 1171, FP: 45, FN: 32, TP: 1516
• Accuracy Score: 0.9721 (or 97.21%)
• Classification Report: Precision, recall, and F1-score for both classes are

similar to Fold 1, with very slight improvements.

Fold 3

• Confusion Matrix:TN: 1218, FP: 34, FN: 35, TP: 1477
• Accuracy Score: 0.9750 (or 97.50%)
• Classification Report: This fold shows the highest performance, especially

with a precision of 0.98 for phishing websites.

Fold 4

• Confusion Matrix: TN: 1194, FP: 53, FN: 37, TP: 1479
• Accuracy Score: 0.9674 (or 96.74%)
• Classification Report: Performance is slightly lower than in other folds, but

still maintains high precision and recall.

AI in Phishing Protection | FITPED AI

171

Summary of results across all folds

• Overall Accuracy: The accuracy across all folds ranges from about 96.74%
to 97.50%, indicating the model is robust and performs consistently well in
distinguishing between legitimate and phishing websites.

• High Precision and Recall: The precision and recall for both classes are
generally high, suggesting that the model effectively minimizes false
positives and false negatives.

• Generalization: The use of K-Fold cross-validation helps ensure that the
model is not overfitting to any specific subset of the data, as it is evaluated
on different segments of the dataset.

• Balanced Performance: The macro and weighted averages across all metrics
are consistently around 0.97, indicating that the model maintains a balance
in performance across both classes without favoring one over the other.

In conclusion, these results suggest that the tree-based classifier (XGBoost) is
effective for the task of phishing detection, exhibiting high levels of accuracy,
precision, recall, and F1 scores across multiple folds of validation.

📝 5.3.5

Project: Phishing fraud email dataset

(by https://www.kaggle.com/datasets/charlottehall/phishing-email-data-by-
type?select=phishing_data_by_type.csv)

This dataset contains textual data extracted from 160 emails, which includes the
subject, text, and classification of each email as a specific type of phishing or spam.
The dataset includes four categories: fraud, false alarms (legitimate emails),
phishing and commercial spam, with 40 samples assigned to each category. Such
data can be used to develop a more sophisticated spam filter and has potential
applications in cyber security.

Dataset

• Original: https://www.kaggle.com/datasets/charlottehall/phishing-email-
data-by-type?select=phishing_data_by_type.csv

• Local:
https://priscilla.fitped.eu/data/cybersecurity/phishing/phishing_fraud.csv

Analyzing and classifying phishing emails using machine learning

Project Overview

In this project, you will analyze a dataset containing 160 emails, categorized into four
types: fraud, false positives (legitimate emails), phishing, and commercial spam, with
40 examples of each category. The goal is to perform exploratory data analysis (EDA)

https://www.kaggle.com/datasets/charlottehall/phishing-email-data-by-type?select=phishing_data_by_type.csv
https://www.kaggle.com/datasets/charlottehall/phishing-email-data-by-type?select=phishing_data_by_type.csv
https://www.kaggle.com/datasets/charlottehall/phishing-email-data-by-type?select=phishing_data_by_type.csv
https://www.kaggle.com/datasets/charlottehall/phishing-email-data-by-type?select=phishing_data_by_type.csv
https://priscilla.fitped.eu/data/cybersecurity/phishing/phishing_fraud.csv

AI in Phishing Protection | FITPED AI

172

and develop a machine learning model to classify these emails based on their
content and subject lines.

Objectives

1. Exploratory Data Analysis (EDA): Understand the dataset by exploring the
distribution of email types, examining text characteristics, and visualizing
patterns.

2. Data Preprocessing: Clean and prepare the email data for analysis, including
text normalization, tokenization, and feature extraction.

3. Model Development: Build a machine learning classifier to distinguish
between different types of emails using appropriate algorithms.

4. Model Evaluation: Assess the performance of the classification model using
metrics like accuracy, precision, recall, and F1 score.

5. Documentation and Reporting: Compile a report detailing the findings from
EDA, the modeling process, and recommendations for improving email
classification systems.

Data exploration:

• Load the dataset using pandas and display basic statistics.
• Visualize the distribution of email types using bar plots.
• Analyze the text data by examining word counts, unique words, and the

length of emails.

write your code

Data preprocessing:

• Clean the text data by removing punctuation, special characters, and stop
words.

• Normalize the text (lowercasing).
• Tokenize the emails and convert them into a suitable format for machine

learning (e.g., using Bag of Words or TF-IDF vectorization).

write your code

Feature engineering:

• Explore additional features such as the length of the subject line, the
presence of specific keywords, or the frequency of certain terms.

• Create a feature set that combines various characteristics of the emails.

write your code

Model development:

• Split the dataset into training and testing sets.

AI in Phishing Protection | FITPED AI

173

• Choose machine learning algorithms to experiment with (e.g., Logistic
Regression, Decision Trees, Random Forests, or Support Vector Machines).

• Train the models on the training set and evaluate them using the testing set.

write your code

Model evaluation:

• Use classification metrics (accuracy, precision, recall, F1 score) to evaluate
model performance.

• Analyze confusion matrices to understand misclassifications.

write your code

Reporting:

• Document the findings of the EDA, preprocessing steps, model performance,
and conclusions.

• Suggest possible improvements to the classification process, such as using
more advanced techniques (e.g., deep learning or ensemble methods).

write your code and / or report

5.4 Challenges in phishing detection

🕮 5.4.1

Challenges in link detection

In the past, some email protection systems have taken the drastic measure of
removing all hyperlinks from incoming messages or blocking such communications
outright. However, this overly simplistic approach has proven to be too restrictive
and ineffective, especially considering that the inclusion of hyperlinks in digital
communication has become commonplace. As a result, a more elaborate and
sophisticated strategy is necessary to balance security with the legitimate use of
links in emails.

One of the significant challenges in detecting hyperlinks is the various ways
attackers can disguise links in message bodies. For example, links can be hidden in
images, alt text, or even represented as QR codes, complicating detection efforts.
While identifying a URL that is hidden behind an image or alt text is generally easy—
since it can often be found in the message's source code—detecting URLs hidden in
QR codes presents a more serious challenge. In this case, the URL is embedded in
an image and is not represented as text anywhere in the message itself, making
detection by traditional methods much more difficult.

AI in Phishing Protection | FITPED AI

174

The proliferation of QR codes in marketing and digital communications further
complicates the issue as they become increasingly popular for providing quick
access to websites. Attackers are taking advantage of this trend by inserting
malicious URLs into QR codes, leading unsuspecting users to fraudulent websites.
Therefore, the task of detecting images that contain QR codes becomes critical.

By training these algorithms to recognize patterns associated with malicious QR
codes, we can greatly improve our ability to detect and combat phishing attempts.
Machine learning can analyze vast amounts of data to identify common features of
malicious QR codes, including their typical visual patterns and the types of websites
they often link to. As technology advances, improving the detection capabilities of
machine learning systems will be key to defending against evolving phishing tactics.

In addition, a multi-layered approach to hyperlink detection can be developed that
combines traditional methods with advanced machine learning techniques. This
could include integrating heuristics that evaluate the reputation of URLs, analyzing
the context in which links appear, and using image recognition technologies to
identify suspicious QR codes.

📝 5.4.2

What methods do attackers use to hide links in phishing messages?

• Images
• Alternative text
• QR codes
• Text-based links only
• Color changes in text

📝 5.4.3

Why is detecting URLs embedded in QR codes particularly challenging?

• The URL is embedded within an image.
• QR codes are frequently used for legitimate purposes.
• Traditional detection methods are ineffective for images.
• The URL is displayed as text in the message.
• QR codes can be easily generated by anyone.

📝 5.4.4

How can machine learning improve the detection of malicious QR codes?

• By recognizing patterns associated with harmful QR codes.
• By training on vast amounts of data to identify common traits.
• By analyzing user feedback on detected codes.
• By comparing QR codes to a database of known good URLs.
• By blocking all QR codes without analysis.

Malicious Code Detection

Chapter 6

Malicious Code Detection | FITPED AI

176

6.1 Introduction

🕮 6.1.1

Malware, short for malicious software, is a significant threat to IT systems and
networks, evolving continuously since it first appeared in the 1980s. Initially, malware
consisted of basic viruses, but as technology has advanced, so have the types and
sophistication of malware. Today, there are many types of malware, such as viruses,
ransomware, trojans, spyware, and adware. Each type serves different malicious
purposes, ranging from disrupting system operations to stealing sensitive data or
even encrypting files for ransom.

The increasing complexity of malware makes it more challenging to detect and
analyze. Criminals deploy malware for various activities, including data theft, spam
distribution, and critical system attacks. The continuous development of malware
requires constant innovation in security measures to counteract these evolving
threats effectively.

📝 6.1.2

Which of the following is NOT a type of malware?

• Firewall
• Trojan
• Spyware
• Adware

📝 6.1.3

What are some of the primary uses of malware by cybercriminals?

• Encrypting user files for ransom
• Stealing sensitive data
• Increasing system speed
• Sending spam emails

🕮 6.1.4

Signature-based detection is one of the foundational methods used to identify
malware in cybersecurity. This method works by comparing files or packets of data
against a database of known malware signatures. A malware "signature" is a unique
string or identifier associated with a specific type of malware. If a file's signature
matches one in the database, it’s flagged as malicious. Signature-based detection is
effective at identifying known threats, making it widely used in antivirus software for
rapid, reliable detection.

Malicious Code Detection | FITPED AI

177

However, this method is limited because it cannot identify new or unknown malware.
Cybercriminals often change the code of malware slightly to avoid detection, creating
new signatures that don’t match any known database entries. Despite its limitations,
signature-based detection is still essential in cybersecurity as a first layer of defense
against known threats.

📝 6.1.5

Signature-based detection compares files to which of the following?

• Database of known malware signatures
• Network traffic logs
• System performance reports
• User activity history

🕮 6.1.6

Anomaly detection, also known as behavioral analysis, is another powerful technique
for identifying malware. Instead of relying on known malware signatures, this method
monitors the behavior of software and flags any unusual or suspicious actions that
deviate from normal behavior. For instance, if a program begins accessing files it
shouldn’t or consuming abnormal system resources, anomaly detection systems
may classify it as a potential threat.

Anomaly detection is particularly valuable for identifying new or unknown malware
because it doesn’t rely on prior knowledge of specific threats. However, one
drawback of this method is its susceptibility to false positives, where legitimate
software might be flagged as malicious due to unusual but harmless behavior.
Despite this limitation, anomaly detection is a crucial component in modern malware
detection strategies.

📝 6.1.7

Anomaly detection is especially useful for identifying which of the following?

• New and unknown malware
• Only encrypted malware
• Known malware
• Regular system files

📝 6.1.8

Anomaly detection analyzes software _____ to identify _____ that deviate from _____
behavior.

• behavior
• patterns

Malicious Code Detection | FITPED AI

178

• normal

🕮 6.1.9

Malware is constantly evolving to bypass security measures, often using advanced
techniques such as obfuscation, code packing, and anti-analytical tools. Obfuscation
involves hiding the true purpose of the code, while code packing compresses the
malware code to evade detection by signature-based methods. Advanced malware
can even use artificial intelligence (AI) to adapt and target specific individuals or
organizations.

AI is also used on the defense side, enabling the analysis of large data sets to detect
subtle patterns and characteristics of malware. For instance, sandboxes and
dynamic binary instrumentation (DBI) are advanced tools that analyze malware
behavior in a controlled environment, providing deeper insights into its capabilities.
As AI continues to evolve, it enhances the ability of cybersecurity systems to detect
and respond to sophisticated threats.

📝 6.1.10

Which of the following techniques are used by cybercriminals to bypass malware
detection?

• Code obfuscation
• Code packing
• Signature creation
• Anti-analytical tools

📝 6.1.11

AI in cybersecurity can detect _____ in data and analyze _____ behavior in _____
environments.

• patterns
• controlled
• mallware

6.2 Malware detection

🕮 6.2.1

Signature-based detection

Signature-based detection is one of the primary methods used in identifying
malware. This approach involves comparing incoming files or packets with a
database of known malware signatures. A "signature" in this context is a unique
pattern of bytes associated with a specific piece of malicious code. When a signature

Malicious Code Detection | FITPED AI

179

matches, the detection system can quickly identify the threat and take appropriate
action. This method is highly effective at identifying known malware types, such as
viruses and trojans, which have well-documented patterns.

However, signature-based detection has limitations. It struggles with detecting new
and unknown threats, often called "zero-day" malware, because signatures for these
emerging threats do not yet exist in the database. As a result, attackers who modify
malware code slightly can sometimes bypass this detection method. This limitation
makes signature-based detection less effective against sophisticated or novel
threats.

📝 6.2.2

What does signature-based detection primarily rely on to identify malware?

• A unique pattern of bytes
• Machine learning algorithms
• Random sampling
• User reports
• Heuristic rules

📝 6.2.3

Signature-based detection relies on _____ of bytes that identify specific malware.
However, it is less effective for _____ types of malware, which lack _____ in the
database.

• patterns
• signatures
• new

🕮 6.2.4

Anomaly detection

Anomaly detection, also known as behavioral analysis, is an advanced method that
identifies malware based on unusual software behavior. Unlike signature-based
detection, which relies on known patterns, anomaly detection monitors how software
behaves in real-time. It examines actions like system calls, file access patterns, and
network communications, looking for deviations from expected behavior. Machine
learning models can be trained on typical system behaviors, enabling them to
recognize activities that fall outside these norms.

Anomaly detection is particularly effective at identifying new or modified malware
because it doesn't rely on existing signatures. However, one downside is that it can
be more prone to false positives, mistakenly identifying legitimate software as
malicious due to unusual behavior. This approach works well for detecting evolving
threats but may require careful tuning to reduce the occurrence of these false alerts.

Malicious Code Detection | FITPED AI

180

📝 6.2.5

Which of the following behaviors might anomaly detection monitor to identify
malware?

• Network communications
• System calls
• File names
• Desktop settings

📝 6.2.6

Anomaly detection focuses on _____ that deviates from typical behavior. This method
can detect _____ threats but may produce _____ positives.

• behavior
• false
• new

🕮 6.2.7

Sandboxing

Sandboxing is a method that contains potentially malicious code in an isolated
environment, known as a "sandbox." In this secure setting, the software can run
without posing a risk to the main system. Analysts then monitor its behavior to
determine if it performs any harmful actions, such as attempting to access sensitive
files or communicate with external servers. If malicious behavior is detected, the
software is flagged as malware and blocked from entering the main network.

This method is particularly useful for examining unknown files or programs without
endangering system security. For instance, a suspicious email attachment can be
opened in a sandbox to observe its behavior. However, sandboxing can be resource-
intensive, as it requires a dedicated environment to run potentially harmful software.
Despite this, it remains an effective tool for organizations seeking to protect against
new malware.

📝 6.2.8

Sandboxing runs suspicious code in the _____ environment where it can be safely
_____. This method is useful for detecting _____ threats.

• isolated
• unknown
• observed

Malicious Code Detection | FITPED AI

181

🕮 6.2.9

Dynamic Binary Instrumentation (DBI)

Dynamic Binary Instrumentation (DBI) is an advanced technique that allows malware
analysts to monitor and manipulate program execution in real-time. This process
involves inserting additional instructions into the code to analyze its behavior in great
detail. Through DBI, analysts can extract valuable insights about the program’s
structure and operations, making it possible to detect hidden malware routines and
potential security threats.

DBI provides detailed information that helps to reveal malware that may evade
simpler detection methods. Although DBI is highly effective for in-depth analysis, it
requires significant computational resources and expertise. It’s often used in
specialized environments where detailed examination of malware behavior is
necessary.

📝 6.2.10

DBI allows analysts to _____ program execution in detail, making it useful for
uncovering _____ that simpler methods might miss. However, it demands high _____
resources.

• computational
• observe
• routines

🕮 6.2.11

Network traffic analysis

Network traffic analysis is a method of detecting malware by monitoring data
exchanged between devices and remote servers. Malware often communicates with
external servers to download additional malicious components or transmit stolen
information. By analyzing traffic patterns, such as unusual data transfers or
connections to suspicious domains, network analysis tools can identify potentially
harmful activity.

This approach helps to catch malware that operates covertly by spotting abnormal
network behaviors. For instance, if a program on a user’s system is unexpectedly
communicating with unknown servers, this could indicate malware. Network traffic
analysis is particularly effective for detecting malware in organizational settings, as
it provides a broader view of security across all network-connected devices.

Malicious Code Detection | FITPED AI

182

📝 6.2.12

Network traffic analysis monitors _____ patterns to detect _____ activity, especially
useful for identifying _____ threats.

• suspicious
• covert
• data

🕮 6.2.13

Heuristic analysis

Heuristic analysis is a proactive approach that uses a set of rules to identify
potentially harmful code based on suspicious characteristics. Unlike signature-based
detection, heuristic analysis doesn’t require a predefined pattern. Instead, it
evaluates code for unusual structures or operations that might indicate malicious
intent. For example, a heuristic rule might flag any code that attempts to modify
system files or disable security protocols.

This technique is especially useful when dealing with polymorphic malware, which
frequently changes its form to avoid detection. Heuristic analysis is often used in
combination with other methods to improve detection accuracy. However, it can
sometimes lead to false positives, as legitimate software might occasionally exhibit
similar behaviors.

📝 6.2.14

What are characteristics of heuristic analysis in malware detection?

• Detects suspicious code structures
• Effective against polymorphic malware
• Uses predefined signatures
• Relies on user feedback

6.3 Signature based detection

🕮 6.3.1

Signature-based detection is one of the primary methods used to identify malicious
data within computer networks or traffic. It works by comparing data packets or files
against a database of known "signatures," which are unique patterns associated with
previously identified malware or malicious activities. This approach is effective for
detecting known threats, as it can quickly recognize patterns that match existing
records, making it both resource-efficient and accurate. For example, if a new data
packet matches the unique code pattern of a known virus, the system flags it as a
threat.

Malicious Code Detection | FITPED AI

183

A fundamental component of signature-based detection is its database of
signatures, which includes patterns associated with various types of malware. This
database is created by analyzing the characteristics of known malware, viruses, and
other threats. Security experts constantly add new signatures based on updates in
the cybersecurity field, which helps maintain the accuracy and effectiveness of
signature-based detection. For instance, when a new virus is discovered, analysts
study its unique code structure and add this information to the database, so future
occurrences can be swiftly identified.

However, maintaining this database requires frequent updates. Without regular
additions, the detection system may fail to recognize newer threats. In the fast-paced
world of cybersecurity, staying updated is essential, as hackers regularly develop new
versions of malware. The signature-based detection system’s dependency on its
database means that if updates lag, the system may become ineffective against
recently developed threats.

📝 6.3.2

Choose correct features of the signature database in malware detection:

• Requires frequent updates.
• Stores known malware patterns.
• Detects malware without updates.
• Analyzes unknown behavior.

🕮 6.3.3

When a data packet, file, or sequence of data enters a network, a signature-based
detection system analyzes it for matches with the stored signatures in its database.
This process, called traffic analysis, examines various aspects of incoming traffic,
such as the byte patterns, file structure, and other identifying characteristics. If a
match is found, the system flags the data as malicious. For instance, if a signature
for a known ransomware strain is found within an email attachment, the system
alerts administrators of a potential threat.

This method is efficient because it focuses on finding exact matches within incoming
data, providing a reliable way to detect threats that are already known. However, the
effectiveness of signature matching is limited to recognizing familiar threats. For
unknown malware types, this method will not raise any alarms, which is why
additional security measures are often necessary.

📝 6.3.4

In signature-based detection, what is the purpose of traffic analysis?

• To compare incoming data with known signatures.
• To predict new types of malware.
• To identify unknown threats.

Malicious Code Detection | FITPED AI

184

• To modify malware signatures.

🕮 6.3.5

Once the signature-based detection system identifies a match between incoming
data and a signature, it can trigger specific actions to mitigate the threat. Common
actions include blocking suspicious traffic, quarantining or deleting a flagged file, or
alerting system administrators. For example, if a signature match for a trojan is found
in a network file, the system may automatically block further access to that file,
quarantine it for further inspection, or delete it to prevent harm to the network.

These predefined actions help contain threats promptly, reducing the risk of malware
spreading through the system. However, the detection system can only act on threats
that it recognizes from its database, highlighting the importance of regular updates
and the addition of complementary detection methods to safeguard against new or
modified malware.

📝 6.3.6

Choose actions commonly taken by signature-based detection systems.

• Quarantine a detected file.
• Alert administrators.
• Ignore matched signatures.
• Automatically decrypt data.

🕮 6.3.7

Key components of signature-based detection systems

Signature-based detection is an essential approach in cybersecurity that identifies
malicious activities by comparing incoming data against known malware patterns, or
"signatures." This method involves several critical components that together allow it
to recognize threats effectively. Here’s a breakdown of the main parts of signature-
based detection:

1. Creation of a Signature Database: Every signature-based detection system
relies on a database of known signatures or patterns associated with
malicious data. This database is created based on previously identified
malware, viruses, and other threats. As new threats emerge, the database
needs regular updates to stay effective. For instance, signatures may be
generated from malware characteristics, such as unique byte sequences or
specific code structures.

2. Traffic Analysis: When data—whether a packet, file, or other form of
information—enters a network or computer, the detection system inspects it
for any suspicious patterns. This analysis includes checking data against the
signature database, scanning for known malicious traits. For example, a

Malicious Code Detection | FITPED AI

185

suspicious attachment in an email or an unusual data packet from a network
request might be flagged.

3. Signature Matching: The core function of this detection method involves
comparing the characteristics of incoming data with the signatures in the
database. If a match is found, it typically indicates the presence of a known
threat. This is crucial because a high degree of accuracy in signature
matching can prevent known malware from affecting the system.

4. Alert or Response Action: Once a signature match is detected, the system
can perform predefined actions to address the threat. These actions may
include blocking traffic, quarantining or deleting a suspicious file, notifying
administrators, or even launching a comprehensive scan of the affected
system. Such responses help contain the threat immediately, preventing it
from spreading further.

While signature-based detection effectively targets known threats, it has limitations,
such as its inability to identify new or "zero-day" threats and its vulnerability to
obfuscation techniques. Consequently, it is often used alongside other detection
methods to provide a more robust defense.

📝 6.3.8

Signature-based detection systems rely on a database of known _____ to identify
threats. This involves comparing incoming _____ with patterns in the database. When
a match is detected, it signals the presence of a known _____.

• threats
• signatures
• data

🕮 6.3.9

Signature-based detection is a widely used approach in cybersecurity for identifying
common malware and viruses. It operates by comparing data within a system to a
database of known malware signatures, making it highly effective against familiar
threats. This method provides an initial layer of protection for networks and
computer systems, efficiently identifying and responding to well-known malicious
activities.

However, signature-based detection also has significant limitations. Firstly, it cannot
protect against unknown or "zero-day" threats, as new types of malware will lack
existing signatures in the database. This limitation makes it challenging to detect
emerging threats without delay. Additionally, to stay effective, signature-based
systems require regular updates to keep pace with newly discovered malware.
Without continuous updates, the system’s protection level decreases, leaving it
vulnerable to new threats.

Another drawback of this approach is its susceptibility to obfuscation techniques.
Cybercriminals often use tactics to modify the code of malware, altering its signature

Malicious Code Detection | FITPED AI

186

without changing its functionality. Techniques like encryption, polymorphism, or
"stealth" viruses can bypass signature-based detection, reducing its effectiveness.
For these reasons, signature-based detection is typically combined with other
methods, such as behavioral analysis or machine learning, to overcome these
vulnerabilities and provide a more comprehensive security strategy.

📝 6.3.10

Signature-based detection is effective against known threats but requires regular
_____ to maintain its accuracy. It is also vulnerable to _____ techniques used by
attackers to alter the appearance of malicious _____.

• updates
• obfuscation
• viruses

6.4 Anomaly detection

🕮 6.4.1

Anomaly detection, also known as behavioral analysis, is a powerful malware
detection technique that focuses on identifying unusual or suspicious behavior
within a system. Unlike signature-based detection, which relies on known patterns of
malware, anomaly detection is designed to recognize deviations from normal
behavior that could indicate new, unknown threats. This approach is particularly
useful for detecting malware that hasn't been identified by antivirus programs and
for which no existing signature exists. Since anomaly detection focuses on
identifying unusual activities, it is often applied as a secondary measure after
signature-based detection, scanning "clean" data to identify potential new threats.

Anomaly detection can examine various types of data but typically focuses on
activities that deviate significantly from expected behavior. For instance, certain
types of suspicious actions, such as accessing memory that doesn’t belong to a
process or attempting to modify system files, may be flagged. However, defining the
criteria for what constitutes "abnormal" behavior is challenging because it requires a
clear understanding of both expected and malicious actions in a wide range of
scenarios. Consequently, anomaly detection is a more complex task than signature-
based methods, as it has to account for legitimate actions that may vary by context.

Despite these complexities, anomaly detection plays a critical role in identifying
emerging threats. By looking for patterns that deviate from normal operations, it can
detect malware that has yet to be categorized. With its ability to discover unknown
threats, anomaly detection is a vital layer of defense in cybersecurity. However, it is
often most effective when combined with signature-based detection to reduce false
positives and improve overall detection accuracy.

Malicious Code Detection | FITPED AI

187

📝 6.4.2

What is a primary advantage of using anomaly detection in malware detection?

• It detects new types of malware for which no signature exists.
• It relies on known malware signatures.
• It only works with predefined malware types.
•

📝 6.4.3

Anomaly detection identifies malware by finding _____ in behavior that deviate from
_____ norms, often applied as a second layer after _____-based detection.

• signature
• normal
• anomalies

🕮 6.4.4

Machine learning plays a pivotal role in enhancing the accuracy and adaptability of
anomaly detection systems. By training algorithms on large datasets that include
examples of both normal and malicious behavior, machine learning models learn to
recognize subtle indicators of malware. Once trained, these models can analyze new
data and detect anomalies that might signal the presence of malware. Machine
learning’s adaptability is crucial, as it enables anomaly detection to evolve with new
types of threats that were previously undetectable using traditional methods.

Machine learning-based anomaly detection is particularly beneficial because it can
adapt to new obfuscation techniques, in which malware tries to hide its presence by
altering its appearance. The model’s ability to learn from data allows it to spot
suspicious patterns even when malware uses techniques like encryption or
polymorphism to mask itself. This adaptability gives anomaly detection systems a
significant advantage over signature-based systems, which struggle with these
forms of evasion.

Using machine learning algorithms in anomaly detection reduces the likelihood of
false alarms by distinguishing between genuinely malicious behavior and harmless
deviations. By analyzing vast datasets, these systems can fine-tune their detection
criteria and improve accuracy. As a result, machine learning-based anomaly
detection offers a robust approach to identifying malware while minimizing the
interruptions caused by false positives.

Malicious Code Detection | FITPED AI

188

📝 6.4.5

Which of the following are benefits of using machine learning in anomaly detection?

• Allows for adaptability to new threats
• Reduces false alarms
• Requires no training data
• Only detects known malware

🕮 6.4.6

Examples of anomalous behavior

Anomaly detection in malware detection involves identifying behaviors that are
unusual or unexpected. Some examples of anomalous behavior include unauthorized
access to memory, illegal API calls, and attempts to modify sensitive system files.
For instance, accessing memory that does not belong to an existing process can be
an indicator of malicious behavior, as this action is often used by malware to exploit
system vulnerabilities. Similarly, unauthorized attempts to read or modify system
files can signal an attempt to compromise the operating system.

Operating system API calls that fall outside normal parameters are another red flag
for anomaly detection systems. An example is the use of specific API calls in
Windows, such as Dynamic Data Exchange (DDE) in WinAPI, which can be exploited
by malware to perform unauthorized actions. Monitoring these calls allows anomaly
detection systems to spot and isolate potentially harmful activities before they cause
damage.

By identifying such abnormal behaviors, anomaly detection provides a proactive
approach to security. Instead of relying solely on known signatures, it monitors
behavior and flags suspicious actions. These types of behavior-based detections
offer an added layer of protection against emerging threats that may not yet have
identifiable signatures.

📝 6.4.7

Which of the following behaviors might be flagged by an anomaly detection system?

• Unauthorized memory access
• Routine file access
• Scheduled system backups
• Standard network traffic

Malicious Code Detection | FITPED AI

189

📝 6.4.8

Anomaly detection systems flag unusual behaviors such as _____ memory access,
unauthorized _____ calls, and modifications to sensitive _____ files.

• API
• unauthorized
• system

🕮 6.4.9

Types of anomaly detection techniques

Anomaly detection methods can vary, but two primary techniques are widely used in
cybersecurity: statistical and machine learning-based detection. Statistical methods
involve monitoring for deviations from expected statistical characteristics in the
data, such as unusual patterns in network traffic or irregular access times. By
establishing a baseline of normal behavior, these methods can quickly detect outliers
that may indicate malicious activities.

Machine learning-based detection, on the other hand, uses algorithms that learn from
historical data. This method is dynamic, as it allows models to adjust to new threats
by learning from recent instances of malware. Machine learning techniques are
effective for identifying complex patterns that statistical methods might miss,
providing a more robust solution for spotting advanced threats.

The choice between statistical and machine learning-based anomaly detection
depends on the application and the required level of security. Statistical methods
may be sufficient for straightforward systems, but complex environments benefit
from the adaptability of machine learning. Combining both approaches offers a
comprehensive detection strategy, as each method complements the other.

📝 6.4.10

Which of the following are techniques used in anomaly detection?

• Statistical analysis
• Machine learning
• Fixed signature comparison
• Manual inspection

🕮 6.4.11

Combining signature-based and anomaly detection

Anomaly detection is an essential tool, but it is most effective when combined with
signature-based detection. Signature-based detection excels at identifying known

Malicious Code Detection | FITPED AI

190

threats, as it quickly matches data to an extensive database of malware signatures.
However, it falls short against new threats or malware that has been altered to
bypass signature recognition. Anomaly detection addresses this gap by monitoring
for unusual behaviors that could signal new malware.

Combining these two methods enhances cybersecurity by providing a balanced
approach. Signature-based detection serves as the first layer, swiftly identifying
known threats. When no matches are found, anomaly detection takes over to scan
for any suspicious activities that might indicate emerging threats. This dual-layer
system reduces false positives, as only genuinely suspicious behavior triggers alerts
in the absence of known malware signatures.

Incorporating both techniques provides comprehensive protection against a wide
range of threats. While signature-based detection offers speed and accuracy for
known threats, anomaly detection provides adaptability and resilience against
evolving malware. Together, they create a robust defense mechanism for computer
systems, networks, and sensitive data.

📝 6.4.12

Why is anomaly detection often combined with signature-based detection?

• To detect rapidly both known and unknown threats
• To rely only on predefined malware signatures
• To avoid analyzing data behavior
• To replace the need for databases

AI in Malware Detection

Chapter 7

AI in Malware Detection | FITPED AI

192

7.1 Role of AI

🕮 7.1.1

Artificial Intelligence (AI) has become a pivotal force in enhancing malware detection
and overall cybersecurity. By utilizing advanced algorithms and techniques, AI
systems can analyze vast amounts of data, allowing them to identify patterns of
normal behavior within various systems. This capability is crucial for establishing
baselines of what is considered typical operation. Once these baselines are
established, AI can effectively detect anomalies that deviate from them, potentially
indicating the presence of malware. This approach is particularly effective for zero-
day threats—new vulnerabilities that have not yet been documented or categorized.

AI's behavioral analysis is not only reactive but also proactive. By continuously
monitoring for deviations, AI can identify suspicious activities that may signal an
impending attack. This is especially important in today's cybersecurity landscape,
where threats evolve rapidly, and traditional signature-based detection methods may
fall short. As organizations increasingly rely on digital systems, AI's ability to
maintain vigilance against emerging threats becomes invaluable.

Furthermore, the integration of AI into malware detection systems enhances the
effectiveness of cybersecurity measures. As AI continues to learn from both benign
and malicious behavior, it refines its ability to discern between normal and potentially
harmful activities. This ongoing learning process equips organizations to better
protect themselves against malware attacks, which are increasingly sophisticated.

📝 7.1.2

What is a primary benefit of AI in malware detection?

• It reduces the need for human intervention.
• It increases detection speed.
• It works only with known threats.
• It focuses solely on signature matching.

📝 7.1.3

AI's behavioral analysis is effective for detecting _____ threats that do not have known
signatures. This method establishes _____ of normal operation and identifies _____
that deviate from these patterns.

• baselines
• anomalies
• zero-day

AI in Malware Detection | FITPED AI

193

🕮 7.1.4

Machine Learning (ML) algorithms are integral to the functionality of AI in malware
detection. By training on extensive datasets that encompass examples of both
harmless and malicious behavior, these algorithms can learn to recognize subtle
indicators of malware. The training process involves feeding the algorithm large
volumes of data, allowing it to identify complex relationships within the information.
As a result, machine learning systems can adapt to new and evolving threats,
including those that utilize obfuscation techniques to evade detection.

One significant advantage of using machine learning is its ability to improve
detection accuracy over time. As the algorithms are exposed to more data, they refine
their decision-making processes, becoming increasingly proficient at identifying
potential threats. However, it is important to note that machine learning also has its
limitations. For example, the effectiveness of supervised learning depends heavily on
the quality and quantity of labeled data. If the dataset lacks comprehensive coverage
of potential threats, the algorithm may struggle to recognize novel malware.

Additionally, unsupervised learning approaches, which do not rely on labeled data,
can detect unexpected threats. However, they might misidentify benign activities as
malicious, leading to false positives. The choice of machine learning technique
significantly influences the effectiveness of malware detection, highlighting the need
for organizations to consider their specific security requirements and the
characteristics of their data when implementing AI solutions.

📝 7.1.5

Which machine learning technique is primarily used to improve detection accuracy
over time?

• Supervised Learning
• Unsupervised Learning
• Reinforcement Learning

📝 7.1.6

What are the characteristics of machine learning algorithms in malware detection?

• Require large datasets
• Recognize subtle indicators of malware
• Depend solely on labeled data
• Are inflexible and cannot adapt

AI in Malware Detection | FITPED AI

194

🕮 7.1.7

Automated threat intelligence represents a critical advancement in the realm of
cybersecurity, enabling organizations to stay ahead of potential attacks. By
leveraging AI capabilities, automated systems can gather and analyze vast amounts
of information regarding vulnerabilities, attack vectors, and emerging threats in real
time. This capability allows security teams to be proactive rather than reactive,
ensuring that defenses are up-to-date with the latest intelligence.

The automation of threat intelligence significantly streamlines the process of
responding to threats. Instead of relying solely on human analysts to sift through
mountains of data, AI systems can rapidly assess new information, flagging relevant
findings for further investigation. This expedites the identification of potential risks
and enhances an organization's overall security posture. As threats continue to
evolve, automated threat intelligence serves as a necessary tool for keeping security
measures relevant and effective.

Additionally, the integration of automated threat intelligence with existing security
systems can lead to more coordinated and efficient responses. By providing timely
updates on vulnerabilities and threats, AI systems enable organizations to adjust
their defenses promptly, mitigating potential risks before they escalate into serious
incidents. This level of responsiveness is vital in a landscape where cyber threats are
constantly changing.

📝 7.1.8

Which of the following statements are true regarding automated threat intelligence?

• It allows for proactive security measures.
• It helps keep security measures updated with new threats.
• It significantly reduces response times to potential risks.
• It operates independently of existing security systems.

🕮 7.1.9

Reducing false positives with AI

One of the persistent challenges in malware detection is the occurrence of false
positives—alerts that indicate a threat where none exists. These false alarms can
lead to unnecessary investigations and resource allocation, ultimately detracting
from the efficiency of security operations. AI plays a significant role in minimizing
false positives by refining the criteria used to identify malicious activities. By learning
from previous detections, AI systems can better distinguish between benign
anomalies and genuine threats.

The ability of AI to reduce false positives enhances the effectiveness of malware
detection strategies. For instance, when AI is trained on a comprehensive dataset
that includes both normal and malicious behavior, it becomes adept at recognizing

AI in Malware Detection | FITPED AI

195

patterns that signify actual threats. This learning process helps the AI to evolve and
adapt, allowing it to provide more accurate alerts and, in turn, increasing trust in its
detection capabilities.

Moreover, combining AI-driven detection with traditional methods, such as signature-
based detection, can further enhance accuracy. By leveraging the strengths of both
approaches, organizations can achieve a more balanced security strategy that not
only identifies threats more effectively but also significantly reduces the noise
created by false positives.

📝 7.1.10

Which of the following are advantages of reducing false positives?

• Improved resource allocation
• Enhanced trust in detection capabilities
• Increased operational efficiency
• Increased alert fatigue

🕮 7.1.11

Predictive analytics and proactive defense

Predictive analytics is a powerful application of AI in cybersecurity that allows
organizations to anticipate potential threats before they occur. By analyzing
historical data and recognizing trends, predictive analytics can forecast future risks
and vulnerabilities. This proactive approach enables organizations to strengthen
their defenses ahead of time, rather than merely reacting to incidents after they
happen.

Incorporating predictive analytics into a security strategy provides numerous
advantages. For instance, it allows organizations to allocate resources effectively by
focusing on areas identified as high-risk. This foresight is particularly beneficial in an
ever-evolving threat landscape, where new attack vectors emerge regularly. By
staying one step ahead, organizations can implement measures that preemptively
mitigate risks.

Furthermore, predictive analytics can be integrated with machine learning
algorithms, enhancing its effectiveness. As these algorithms continuously learn from
new data, they refine their predictive capabilities, ensuring that organizations are
equipped with the most relevant information for anticipating threats. This
combination of predictive analytics and machine learning creates a robust defense
mechanism that can adapt to the complexities of modern cybersecurity challenges.

AI in Malware Detection | FITPED AI

196

📝 7.1.12

Predictive analytics allows organizations to anticipate potential _____ before they
occur by analyzing _____ data and recognizing _____.

• historical
• trends
• threats

7.2 Projects

📝 7.2.1

Project: Malware detection

(by https://www.kaggle.com/code/maidaly/malware-detection-with-machine-
learning/notebook)

Dataset

• original: https://www.kaggle.com/datasets/amauricio/pe-files-malwares
• local:

https://priscilla.fitped.eu/data/cybersecurity/malware/dataset_malwares.cs
v

Analyze existing features and prepare a machine learning model.

import numpy as np # linear algebra

import pandas as pd # data processing, CSV file I/O (e.g.

pd.read_csv)

import pickle

import seaborn as sns

import matplotlib.pyplot as plt

from sklearn.ensemble import RandomForestClassifier

from sklearn.model_selection import train_test_split

from sklearn.metrics import classification_report,

confusion_matrix

data =

pd.read_csv('https://priscilla.fitped.eu/data/cybersecurity/ma

lware/dataset_malwares.csv')

print(data.head())

Program output:
 Name e_magic

e_cblp e_cp e_crlc \

https://www.kaggle.com/code/maidaly/malware-detection-with-machine-learning/notebook
https://www.kaggle.com/code/maidaly/malware-detection-with-machine-learning/notebook
https://www.kaggle.com/datasets/amauricio/pe-files-malwares
https://priscilla.fitped.eu/data/cybersecurity/malware/dataset_malwares.csv
https://priscilla.fitped.eu/data/cybersecurity/malware/dataset_malwares.csv

AI in Malware Detection | FITPED AI

197

0 VirusShare_a878ba26000edaac5c98eff4432723b3 23117

144 3 0

1 VirusShare_ef9130570fddc174b312b2047f5f4cf0 23117

144 3 0

2 VirusShare_ef84cdeba22be72a69b198213dada81a 23117

144 3 0

3 VirusShare_6bf3608e60ebc16cbcff6ed5467d469e 23117

144 3 0

4 VirusShare_2cc94d952b2efb13c7d6bbe0dd59d3fb 23117

144 3 0

 e_cparhdr e_minalloc e_maxalloc e_ss e_sp ...

SectionMaxChar \

0 4 0 65535 0 184 ...

3758096608

1 4 0 65535 0 184 ...

3791650880

2 4 0 65535 0 184 ...

3221225536

3 4 0 65535 0 184 ...

3224371328

4 4 0 65535 0 184 ...

3227516992

 SectionMainChar DirectoryEntryImport

DirectoryEntryImportSize \

0 0 7

152

1 0 16

311

2 0 6

176

3 0 8

155

4 0 2

43

 DirectoryEntryExport ImageDirectoryEntryExport

ImageDirectoryEntryImport \

0 0 0

54440

1 0 0

262276

AI in Malware Detection | FITPED AI

198

2 0 0

36864

3 0 0

356352

4 0 0

61440

 ImageDirectoryEntryResource ImageDirectoryEntryException

\

0 77824 73728

1 294912 0

2 40960 0

3 1003520 0

4 73728 0

 ImageDirectoryEntrySecurity

0 0

1 346112

2 0

3 14109472

4 90624

[5 rows x 79 columns]

data.info()

Program output:

RangeIndex: 19611 entries, 0 to 19610

Data columns (total 79 columns):

 # Column Non-Null Count Dtype

--- ------ -------------- -----

 0 Name 19611 non-null object

 1 e_magic 19611 non-null int64

 2 e_cblp 19611 non-null int64

 3 e_cp 19611 non-null int64

 4 e_crlc 19611 non-null int64

 5 e_cparhdr 19611 non-null int64

 6 e_minalloc 19611 non-null int64

 7 e_maxalloc 19611 non-null int64

 8 e_ss 19611 non-null int64

 9 e_sp 19611 non-null int64

 10 e_csum 19611 non-null int64

 11 e_ip 19611 non-null int64

AI in Malware Detection | FITPED AI

199

 12 e_cs 19611 non-null int64

 13 e_lfarlc 19611 non-null int64

 14 e_ovno 19611 non-null int64

 15 e_oemid 19611 non-null int64

 16 e_oeminfo 19611 non-null int64

 17 e_lfanew 19611 non-null int64

 18 Machine 19611 non-null int64

 19 NumberOfSections 19611 non-null int64

 20 TimeDateStamp 19611 non-null int64

 21 PointerToSymbolTable 19611 non-null int64

 22 NumberOfSymbols 19611 non-null int64

 23 SizeOfOptionalHeader 19611 non-null int64

 24 Characteristics 19611 non-null int64

 25 Magic 19611 non-null int64

 26 MajorLinkerVersion 19611 non-null int64

 27 MinorLinkerVersion 19611 non-null int64

 28 SizeOfCode 19611 non-null int64

 29 SizeOfInitializedData 19611 non-null int64

 30 SizeOfUninitializedData 19611 non-null int64

 31 AddressOfEntryPoint 19611 non-null int64

 32 BaseOfCode 19611 non-null int64

 33 ImageBase 19611 non-null int64

 34 SectionAlignment 19611 non-null int64

 35 FileAlignment 19611 non-null int64

 36 MajorOperatingSystemVersion 19611 non-null int64

 37 MinorOperatingSystemVersion 19611 non-null int64

 38 MajorImageVersion 19611 non-null int64

 39 MinorImageVersion 19611 non-null int64

 40 MajorSubsystemVersion 19611 non-null int64

 41 MinorSubsystemVersion 19611 non-null int64

 42 SizeOfHeaders 19611 non-null int64

 43 CheckSum 19611 non-null int64

 44 SizeOfImage 19611 non-null int64

 45 Subsystem 19611 non-null int64

 46 DllCharacteristics 19611 non-null int64

 47 SizeOfStackReserve 19611 non-null int64

 48 SizeOfStackCommit 19611 non-null int64

 49 SizeOfHeapReserve 19611 non-null int64

 50 SizeOfHeapCommit 19611 non-null int64

 51 LoaderFlags 19611 non-null int64

 52 NumberOfRvaAndSizes 19611 non-null int64

 53 Malware 19611 non-null int64

 54 SuspiciousImportFunctions 19611 non-null int64

 55 SuspiciousNameSection 19611 non-null int64

AI in Malware Detection | FITPED AI

200

 56 SectionsLength 19611 non-null int64

 57 SectionMinEntropy 19611 non-null float64

 58 SectionMaxEntropy 19611 non-null int64

 59 SectionMinRawsize 19611 non-null int64

 60 SectionMaxRawsize 19611 non-null int64

 61 SectionMinVirtualsize 19611 non-null int64

 62 SectionMaxVirtualsize 19611 non-null int64

 63 SectionMaxPhysical 19611 non-null int64

 64 SectionMinPhysical 19611 non-null int64

 65 SectionMaxVirtual 19611 non-null int64

 66 SectionMinVirtual 19611 non-null int64

 67 SectionMaxPointerData 19611 non-null int64

 68 SectionMinPointerData 19611 non-null int64

 69 SectionMaxChar 19611 non-null int64

 70 SectionMainChar 19611 non-null int64

 71 DirectoryEntryImport 19611 non-null int64

 72 DirectoryEntryImportSize 19611 non-null int64

 73 DirectoryEntryExport 19611 non-null int64

 74 ImageDirectoryEntryExport 19611 non-null int64

 75 ImageDirectoryEntryImport 19611 non-null int64

 76 ImageDirectoryEntryResource 19611 non-null int64

 77 ImageDirectoryEntryException 19611 non-null int64

 78 ImageDirectoryEntrySecurity 19611 non-null int64

dtypes: float64(1), int64(77), object(1)

memory usage: 11.8+ MB

Drop unnecessary columns from the dataset to focus on the

relevant features for analysis.

The columns being removed are: 'Name', 'Machine',

'TimeDateStamp', and 'Malware'.

used_data = data.drop(['Name', 'Machine', 'TimeDateStamp',

'Malware'], axis=1)

Classes distribution

Set up the figure size for the plot to ensure clarity and

proper display of the data.

data['Malware'] = data['Malware'].astype('category')

Set the figure size for better visibility

plt.figure(figsize=(8, 6))

Create a count plot to visualize the distribution of the

'Malware' classes

AI in Malware Detection | FITPED AI

201

sns.countplot(x='Malware', data=data)

Set the title and labels

plt.title('Distribution of Malware Classes', fontsize=16)

plt.xlabel('Malware Class', fontsize=14)

plt.ylabel('Count', fontsize=14)

Display the plot

plt.show()

Program output:

Features visualization

Define the features to plot

features = ['MajorSubsystemVersion', 'MajorLinkerVersion',

'SizeOfCode', 'SizeOfImage',

 'SizeOfHeaders', 'SizeOfInitializedData',

'SizeOfUninitializedData',

 'SizeOfStackReserve', 'SizeOfHeapReserve',

'NumberOfSymbols', 'SectionMaxChar']

i = 1

AI in Malware Detection | FITPED AI

202

Create a figure for the subplots

plt.figure(figsize=(15, 25))

for feature in features:

 # Plot for malware samples

 ax1 = plt.subplot(len(features), 2, i)

 sns.histplot(data[data['Malware'] == 1][feature], ax=ax1,

kde=True, bins=30, color='red', stat='density')

 ax1.set_title(f'Malware - {feature}', fontsize=10)

 # Plot for benign samples

 ax2 = plt.subplot(len(features), 2, i + 1)

 sns.histplot(data[data['Malware'] == 0][feature], ax=ax2,

kde=True, bins=30, color='blue', stat='density')

 ax2.set_title(f'Benign - {feature}', fontsize=10)

 i += 2

Adjust layout to prevent overlap

plt.tight_layout()

Display the plots

plt.show()

AI in Malware Detection | FITPED AI

203

Program output:

AI in Malware Detection | FITPED AI

204

Splitting the data

X_train, X_test, y_train, y_test = train_test_split(used_data,

data['Malware'], test_size=0.2, random_state=0)

print(f'Number of used features is {X_train.shape[1]}')

Program output:
Number of used features is 75

Building the model

Initialize the RandomForestClassifier

rfc = RandomForestClassifier(

 n_estimators=100, # Number of trees in the forest

(100 trees)

 random_state=0, # Seed for random number

generator to ensure reproducibility

 oob_score=True, # Enable out-of-bag scoring to

assess model performance

 max_depth=16 # Maximum depth of each tree

(helps control overfitting)

)

Fit the model on the training data

rfc.fit(X_train, y_train) # Train the Random Forest model

using the training data

Make predictions on the test set

y_pred = rfc.predict(X_test) # Predict the class labels for

the test data

Classification report

print(classification_report(y_test, y_pred,

target_names=['Benign', 'Malware']))

Program output:
 precision recall f1-score support

 Benign 0.99 0.96 0.97 1004

 Malware 0.99 1.00 0.99 2919

 accuracy 0.99 3923

 macro avg 0.99 0.98 0.98 3923

AI in Malware Detection | FITPED AI

205

weighted avg 0.99 0.99 0.99 3923

Confusion matrix

ax=sns.heatmap(confusion_matrix(y_pred, y_test), annot=True,

fmt="d", cmap=plt.cm.Blues, cbar=False)

ax.set_xlabel('Predicted labels')

ax.set_ylabel('True labels')

Program output:

Features importance

Extract feature importances from the trained Random Forest

model

importance = rfc.feature_importances_

Create a dictionary mapping feature names to their

corresponding importance scores

importance_dict = {used_data.columns.values[i]: importance[i]

for i in range(len(importance))}

Sort the dictionary by importance scores in ascending order

sorted_dict = {k: v for k, v in

sorted(importance_dict.items(), key=lambda item: item[1])}

Set up the figure size for the plot

AI in Malware Detection | FITPED AI

206

plt.figure(figsize=(10, 20))

Create a horizontal bar plot to visualize feature importance

sns.barplot(y=list(sorted_dict.keys())[::-1],

x=list(sorted_dict.values())[::-1], palette='mako')

Set the title for the plot

plt.title('Features Importance')

AI in Malware Detection | FITPED AI

207

Program output:

AI in Malware Detection | FITPED AI

208

📝 7.2.2

Project: PCA, RFC, KNN

(by https://www.kaggle.com/code/singh2010nidhi/simple-machine-learning-
antimalware)

Dataset

• original: https://www.kaggle.com/datasets/amauricio/pe-files-malwares
• local:

https://priscilla.fitped.eu/data/cybersecurity/malware/dataset_malwares.cs
v

Build a simple machine learning based anti-malware system using the Benign &
Malicious PE Files dataset.

The dataset contains Portable Executable (PE) files divided into two categories:

• Malicious PE Files: These files contain malware originating from VirusShare.
• Benign PE files: These are clean Windows server operating system files with

no malicious content.

The dataset is created using the Python pefile library, which allows the extraction of
various PE file properties such as headers, sections, and version information. These
features will serve as features for the machine learning model.

#Import the libraries

import numpy as np

import pandas as pd

import seaborn as sns

import pickle as pck

import matplotlib.pyplot as plt

from sklearn.model_selection import train_test_split

from sklearn.decomposition import PCA

from sklearn.preprocessing import StandardScaler

%matplotlib inline

#Loading dataset from training

data =

pd.read_csv('https://priscilla.fitped.eu/data/cybersecurity/ma

lware/dataset_malwares.csv', sep=',')

Initialize a StandardScaler object to normalize the data

scaler = StandardScaler()

https://www.kaggle.com/code/singh2010nidhi/simple-machine-learning-antimalware
https://www.kaggle.com/code/singh2010nidhi/simple-machine-learning-antimalware
https://www.kaggle.com/datasets/amauricio/pe-files-malwares
https://priscilla.fitped.eu/data/cybersecurity/malware/dataset_malwares.csv
https://priscilla.fitped.eu/data/cybersecurity/malware/dataset_malwares.csv

AI in Malware Detection | FITPED AI

209

Fit the scaler to the training data and transform it,

scaling each feature to have a mean of 0 and standard

deviation of 1

X_scaled = scaler.fit_transform(X_train)

Create a new DataFrame for the scaled data, using the same

column names as the original data

X_new = pd.DataFrame(X_scaled, columns=X.columns)

Display the first few rows of the scaled DataFrame to verify

the transformation

print(X_new.head())

Program output:
 e_magic e_cblp e_cp e_crlc e_cparhdr

e_minalloc e_maxalloc \

0 0.0 -0.038591 -0.050297 -0.041557 -0.040212 -

0.042419 0.148298

1 0.0 -0.038591 -0.050297 -0.041557 -0.040212 -

0.042419 0.148298

2 0.0 -0.038591 -0.050297 -0.041557 -0.040212 -

0.042419 0.148298

3 0.0 -0.038591 -0.050297 -0.041557 -0.040212 -

0.042419 0.148298

4 0.0 -0.038591 -0.050297 -0.041557 -0.040212 -

0.042419 0.148298

 e_ss e_sp e_csum ... SectionMaxChar

SectionMainChar \

0 -0.016139 -0.036843 -0.031918 ... 1.076024

0.0

1 -0.016139 -0.036843 -0.031918 ... 0.097299

0.0

2 -0.016139 -0.036843 -0.031918 ... 0.097299

0.0

3 -0.016139 -0.036843 -0.031918 ... 0.097299

0.0

4 -0.016139 -0.036843 -0.031918 ... 0.097299

0.0

 DirectoryEntryImport DirectoryEntryImportSize

DirectoryEntryExport \

0 1.379922 -0.623512

-0.087645

AI in Malware Detection | FITPED AI

210

1 -0.656755 0.249356

-0.087645

2 1.125337 1.886949

-0.063126

3 0.106999 0.434744

-0.087645

4 -0.274878 -0.113695

-0.087645

 ImageDirectoryEntryExport ImageDirectoryEntryImport \

0 0.000436 -0.000677

1 -0.016366 -0.059942

2 -0.011787 -0.056269

3 -0.016366 -0.075943

4 -0.016366 -0.038952

 ImageDirectoryEntryResource ImageDirectoryEntryException

\

0 -0.067061 -0.019125

1 -0.060538 -0.020494

2 -0.059451 -0.020494

3 -0.045862 -0.020494

4 -0.045862 -0.020494

 ImageDirectoryEntrySecurity

0 -0.040622

1 -0.040622

2 -0.040622

3 5.561297

4 -0.006233

[5 rows x 77 columns]

Following code performs dimensionality reduction with PCA, retaining 55 principal
components from the original dataset. The explained_variance_ratio_ shows the
proportion of variance captured by each component, and the cumulative sum
indicates the total variance retained across all 55 components.

Initialize a PCA (Principal Component Analysis) object with

the number of components set to 55.

PCA is used here to reduce the dimensionality of the data

while retaining as much variance as possible.

skpca = PCA(n_components=55)

AI in Malware Detection | FITPED AI

211

Fit the PCA model to the scaled data (X_new) and transform

it, reducing it to the top 55 principal components.

X_pca = skpca.fit_transform(X_new)

Print the cumulative variance explained by the 55 components

to understand how much of the data's variance is retained.

print('Variance sum : ',

skpca.explained_variance_ratio_.cumsum()[-1])

Program output:
Variance sum : 0.9872673777501171

Import the RandomForestClassifier class as RFC from scikit-

learn.

from sklearn.ensemble import RandomForestClassifier as RFC

Import metrics for evaluation: classification_report and

confusion_matrix.

from sklearn.metrics import classification_report,

confusion_matrix

Initialize the Random Forest Classifier with specific

hyperparameters:

- n_estimators=100: The number of trees in the forest.

- random_state=0: A fixed seed for reproducibility.

- oob_score=True: Enables the out-of-bag error estimate.

- max_depth=16: Limits the maximum depth of each tree,

controlling overfitting.

- max_features='sqrt': Restricts the number of features

considered at each split to the square root of total features.

model = RFC(n_estimators=100, random_state=0,

 oob_score = True,

 max_depth = 16,

 max_features = 'sqrt')

Fit the model to the training data (X_pca, y_train), which

has been reduced in dimensions using PCA.

model.fit(X_pca, y_train)

Scale the test data using the same scaler used on the

training set to ensure consistency.

X_test_scaled = scaler.transform(X_test)

Convert scaled test data into a DataFrame for better column

management.

AI in Malware Detection | FITPED AI

212

X_test_new = pd.DataFrame(X_test_scaled, columns=X.columns)

Apply PCA transformation on the scaled test data using the

previously fitted PCA model.

X_test_pca = skpca.transform(X_test_new)

Use the trained Random Forest model to predict on the PCA-

transformed test data.

y_pred = model.predict(X_test_pca)

Print the classification report, which provides precision,

recall, f1-score, and support for each class.

print(classification_report(y_test, y_pred))

Program output:
 precision recall f1-score support

 0 0.97 0.97 0.97 974

 1 0.99 0.99 0.99 2949

 accuracy 0.99 3923

 macro avg 0.98 0.98 0.98 3923

weighted avg 0.99 0.99 0.99 3923

sns.heatmap(confusion_matrix(y_test,y_pred), annot=True,

fmt="d", cmap=plt.cm.Blues, cbar=False)

AI in Malware Detection | FITPED AI

213

Program output:

SVC

Import the Support Vector Classifier (SVC) from scikit-

learn.

from sklearn.svm import SVC

Initialize the Support Vector Classifier with default

hyperparameters.

model = SVC()

Train (fit) the SVC model on the PCA-transformed training

data (X_pca) and corresponding labels (y_train).

model.fit(X_pca, y_train)

predictions = model.predict(X_test_pca)

print(classification_report(y_test,predictions))

Program output:
 precision recall f1-score support

 0 0.95 0.94 0.94 974

 1 0.98 0.98 0.98 2949

 accuracy 0.97 3923

 macro avg 0.96 0.96 0.96 3923

weighted avg 0.97 0.97 0.97 3923

sns.heatmap(confusion_matrix(y_test,predictions), annot=True,

fmt="d", cmap=plt.cm.Blues, cbar=False)

AI in Malware Detection | FITPED AI

214

Program output:

from sklearn.model_selection import GridSearchCV

Define the hyperparameters to search over for optimization

param_grid = {

 'C': [0.1, 1, 10, 100, 1000], # Regularization

parameter

 'gamma': [1, 0.1, 0.01, 0.001, 0.0001] # Kernel

coefficient for 'rbf', 'poly', and 'sigmoid'

}

Initialize GridSearchCV with SVC and the parameter grid

verbose=3 enables more detailed output during the search

process

grid = GridSearchCV(SVC(), param_grid, verbose=3)

Fit the grid search on the training data to find the best

parameter combination

grid.fit(X_pca, y_train)

Program output:
[CV 5/5] ENDC=1000, gamma=0.0001;, score=0.964

total time= 1.6s

print(grid.best_params_)

print(grid.best_estimator_)

AI in Malware Detection | FITPED AI

215

grid_predictions = grid.predict(X_test_pca)

print(classification_report(y_test,grid_predictions))

Program output:
{'C': 100, 'gamma': 0.1}

SVC(C=100, gamma=0.1)

 precision recall f1-score support

 0 0.97 0.96 0.96 974

 1 0.99 0.99 0.99 2949

 accuracy 0.98 3923

 macro avg 0.98 0.97 0.98 3923

weighted avg 0.98 0.98 0.98 3923

sns.heatmap(confusion_matrix(y_test,grid_predictions),

annot=True, fmt="d", cmap=plt.cm.Blues, cbar=False)

Program output:

from sklearn.neighbors import KNeighborsClassifier

Initialize the KNeighborsClassifier with 1 neighbor

knn = KNeighborsClassifier(n_neighbors=1)

Fit the model on the PCA-transformed training data

AI in Malware Detection | FITPED AI

216

knn.fit(X_pca, y_train)

pred = knn.predict(X_test_pca)

sns.heatmap(confusion_matrix(y_test,pred), annot=True,

fmt="d", cmap=plt.cm.Blues, cbar=False)

Program output:

print(classification_report(y_test,pred))

Program output:
 precision recall f1-score support

 0 0.96 0.98 0.97 974

 1 0.99 0.99 0.99 2949

 accuracy 0.98 3923

 macro avg 0.98 0.98 0.98 3923

weighted avg 0.98 0.98 0.98 3923

error_rate = []

for i in range(1,20):

 knn = KNeighborsClassifier(n_neighbors=i)

 knn.fit(X_pca,y_train)

 pred_i = knn.predict(X_test_pca)

 error_rate.append(np.mean(pred_i != y_test))

AI in Malware Detection | FITPED AI

217

plt.figure(figsize=(10,6))

plt.plot(range(1,20),error_rate,color='blue',linestyle="--

",marker="o", markerfacecolor='red',markersize=10)

plt.title("Error Rate Vs K")

plt.xlabel("K")

plt.xticks(np.arange(0, 20, step=1))

plt.ylabel("Error Rate")

Program output:

k=1 is the optimum value of k

7.3 Benefits and advantages

🕮 7.3.1

Integrating machine learning into malware detection systems provides numerous
benefits that enhance security measures and improve operational efficiency. These
advantages arise from the powerful capabilities of machine learning algorithms,
which can analyze large volumes of data, adapt to emerging threats, and automate
the detection process. The following section highlights the key benefits of using
machine learning in malware detection:

• High Accuracy: Machine learning algorithms can effectively identify malware
by learning from a vast dataset of both malicious and benign files. By
training on these labeled examples, these algorithms reduce the occurrence
of false positives - instances where benign files are incorrectly flagged as

AI in Malware Detection | FITPED AI

218

harmful. This means that they not only enhance detection accuracy but also
help ensure that genuine malware is prevented from entering the system.

• Automation: One of the significant advantages of machine learning in
malware detection is its ability to automate the identification process. This
automation saves valuable time and resources for security professionals,
allowing them to focus on more complex tasks. This feature is particularly
beneficial in large systems that experience high traffic volumes and face
multiple potential threats, as it enables continuous monitoring without
overwhelming human analysts.

• Adaptability: Machine learning algorithms are designed to adapt to new
threats and learn from past experiences. By continuously updating and
retraining these models with new data, they can identify novel malware that
may not have been previously encountered. This adaptability is crucial in a
constantly evolving cybersecurity landscape, where new types of malware
emerge regularly

📝 7.3.2

Which of the following statements is true regarding high accuracy in machine
learning algorithms?

• It prevents false positives.
• It only detects known threats.
• It is irrelevant to malware detection.
• It requires no training data.

📝 7.3.3

Which of the following are advantages of automation in malware detection?

• Saves time and resources.
• Allows continuous monitoring of systems.
• Increases the workload of security experts.
• Limits detection to known malware only.

🕮 7.3.4

Machine learning can significantly enhance the speed, accuracy, adaptability, and
scalability of malware identification processes. These improvements are crucial for
preventing malware infections and addressing various security challenges. The
integration of machine learning techniques allows security systems to analyze large
volumes of data efficiently, adapt to emerging threats, and automate detection
mechanisms. This proactive approach not only strengthens cybersecurity but also
ensures organizations can respond swiftly to new vulnerabilities.

Several common machine learning techniques contribute to improved accuracy and
speed in detecting malware. Feature extraction is one such technique, where
algorithms efficiently identify and extract relevant characteristics related to malware,

AI in Malware Detection | FITPED AI

219

including file size, type, and behavior. By thoroughly analyzing these attributes,
machine learning algorithms can recognize patterns and trends associated with
malware, thus enhancing both detection accuracy and speed. Another technique is
pattern recognition, which focuses on identifying trends in malware behavior that
may go unnoticed by human analysts. By scrutinizing extensive datasets, these
algorithms can detect specific file types, unusual network traffic patterns, and
behavioral anomalies, allowing for quicker and more precise identification of
potential threats.

Moreover, machine learning systems excel in learning from experience, continuously
improving their detection capabilities by identifying patterns within vast datasets.
This ongoing learning process enables algorithms to discern subtle trends in
malware behavior that human analysts might miss, thereby increasing the system's
accuracy and responsiveness. Advanced analysis techniques facilitate the rapid
examination of large data sets, allowing algorithms to identify and respond to threats
in real time, which is essential for preventing security incidents. Finally, the
automation capabilities of machine learning algorithms can significantly reduce the
workload on security experts by automating the malware detection process. This
leads to swift analysis and rapid identification of threats, ultimately enhancing an
organization’s overall security posture. Through the use of feature extraction, pattern
recognition, learning from experience, real-time analysis, and automation, machine
learning algorithms can effectively identify threats, preventing malware infections
and other security events.

📝 7.3.5

Which of the following techniques is used to enhance malware detection by
identifying relevant characteristics such as size and behavior?

• Feature extraction
• Pattern recognition
• Random sampling
• Mutual analysis

📝 7.3.6

Which of the following statements are true regarding machine learning techniques in
malware detection?

• Learning from experience allows algorithms to identify patterns human
analysts might miss.

• Advanced analysis enables real-time detection of malware.
• Automation reduces the workload on security experts.
• Pattern recognition only works with labeled data.

Access Attacks Detection

Chapter 8

Access Attacks Detection | FITPED AI

221

8.1 Network traffic analysis

🕮 8.1.1

In our interconnected digital landscape, safeguarding network security is critical for
individuals and organizations alike, as cyber threats continuously evolve in
sophistication. Network traffic analysis plays a key role in this defense, as it involves
monitoring data flows within a network to detect unusual behavior. By closely
examining data packets moving through the network, administrators can identify
potential security breaches, operational issues, or other irregularities that signal
cyber threats.

Traditional network security methods, such as firewalls and signature-based
intrusion detection, rely on established rules to detect suspicious activities. While
these methods have proven useful, they often fall short in identifying complex or
evolving threats. They can also generate false positives or miss subtle indicators of
compromise, resulting in a security gap that could leave networks vulnerable.

As network environments grow more complex with cloud computing, Internet of
Things (IoT) devices, and remote access requirements, the need for advanced traffic
analysis increases. Modern cyber threats can bypass conventional defenses by
exploiting specific vulnerabilities in network protocols or targeting applications and
users directly. Thus, a proactive, adaptive approach to traffic analysis is essential in
today’s cybersecurity landscape.

📝 8.1.2

What is the primary purpose of network traffic analysis in cybersecurity?

• Detecting abnormal network behavior
• Improving website load speed
• Deleting unused files
• Simplifying network infrastructure

📝 8.1.3

Which are benefits of network traffic analysis in modern cybersecurity?

• Detecting suspicious behavior
• Preventing operational issues
• Reducing email spam
• Automatically deleting viruses

🕮 8.1.4

The integration of Artificial Intelligence (AI) in network traffic analysis has
revolutionized cybersecurity by enhancing the ability to detect anomalies and

Access Attacks Detection | FITPED AI

222

potential intrusions. Unlike traditional, rule-based methods, AI-powered systems use
machine learning algorithms to adapt and improve detection over time. By analyzing
patterns in network data, these systems can identify deviations from normal behavior
that might indicate malicious activity. This adaptive nature makes AI tools more
effective in detecting new or evolving cyber threats.

AI-based systems work by training on historical data, learning what "normal" network
behavior looks like, and then recognizing deviations. This approach reduces reliance
on static rules, which can become outdated as new threats emerge. AI systems can
also reduce false positives, focusing alerts on genuine threats and giving network
administrators more accurate information to work with.

The AI-driven approach represents a critical shift in cybersecurity, allowing network
monitoring to be proactive rather than reactive. With the flexibility to analyze large
volumes of data quickly and recognize subtle changes, AI provides a more dynamic
solution to network security, enabling organizations to detect and respond to attacks
more effectively.

📝 8.1.5

How does AI improve network traffic analysis over traditional methods?

• By adapting to changing network conditions
• By creating new network protocols
• By storing user passwords
• By increasing the speed of data transfers

🕮 8.1.6

AI-driven network traffic analysis involves several essential steps to ensure accurate
detection and response. The first step, Data Collection, involves gathering network
traffic data from multiple sources, including routers, firewalls, and intrusion detection
systems. This data, which may include packet headers and flow records, forms the
raw input that AI algorithms will analyze.

Once collected, the data undergoes Preprocessing to ensure it's suitable for analysis.
Preprocessing tasks involve extracting relevant features, normalizing data, and
decoding protocols, which helps highlight important patterns in network activity.
Feature Extraction follows, in which AI algorithms identify meaningful features, such
as packet size, inter-packet arrival times, and communication patterns, that will help
the model differentiate normal from suspicious activity.

Finally, Model Training and Anomaly Detection enable the AI system to learn from
labeled datasets, distinguishing between normal and malicious network behavior.
Once trained, the AI model can detect anomalies in real time, flagging unusual
patterns as potential security threats. When such an anomaly is detected, an Alert is
generated to notify network administrators, allowing for a rapid and informed
response.

Access Attacks Detection | FITPED AI

223

📝 8.1.7

Which of the following are steps involved in AI-driven network traffic analysis?

• Data Collection
• Preprocessing
• Feature Extraction
• Network layout design

8.2 Benefits and chalenges

🕮 8.2.1

The integration of artificial intelligence (AI) into network traffic analysis brings
several notable benefits that enhance cybersecurity measures.

• Improved Accuracy: AI algorithms excel at detecting subtle patterns that
may indicate malicious activities. By learning from vast datasets, these
algorithms can identify previously unseen threats, leading to a reduction in
false positives. This enhanced detection accuracy allows security teams to
focus on genuine threats rather than sifting through numerous alerts.

• Real-Time Monitoring: One of the key advantages of AI-powered systems is
their capability for real-time analysis of network traffic. This allows for the
swift identification of threats as they arise, enabling immediate responses to
mitigate potential damage. The ability to act quickly is crucial in minimizing
the impact of cyberattacks.

• Scalability: AI models are designed to handle large volumes of network
traffic, making them highly suitable for enterprise-scale deployments. This
scalability ensures that organizations can maintain robust security measures
even as their network environments grow and become more complex.

• Adaptability: AI algorithms can continuously learn and adapt to evolving
threats and changing network conditions without the need for manual
updates. This adaptability is vital for maintaining ongoing protection against
new cyber risks that may emerge over time.

• Enhanced Threat Intelligence: By analyzing historical data and identifying
attack patterns, AI-driven network traffic analysis contributes valuable
insights for threat intelligence. These insights can inform proactive defense
strategies, helping organizations to stay ahead of potential threats.

📝 8.2.2

What is the key advantage of AI in network traffic analysis?

• Improved detection accuracy
• Simplified network design
• Reduced user access
• Slower response times

Access Attacks Detection | FITPED AI

224

📝 8.2.3

Which of the following are benefits of AI-driven network traffic analysis?

• Scalability
• Real-time monitoring
• Increased manual intervention
• Higher false positive rates

🕮 8.2.4

While the integration of AI in network traffic analysis holds significant promise for
enhancing cybersecurity, it also presents several challenges and considerations that
must be addressed to ensure its effective implementation.

• Data Privacy: One of the foremost concerns with analyzing network traffic is
the potential infringement on user privacy. When monitoring
communications or sensitive information, organizations must tread carefully
to ensure compliance with data privacy regulations. This involves
implementing strict data handling practices and ensuring that personal data
is protected during analysis. Balancing the need for security with respect for
individual privacy is essential to maintaining user trust.

• False Positives: Although AI algorithms have made strides in reducing false
positives compared to traditional security methods, they are not entirely free
from errors. False alarms can lead to unnecessary alerts, causing security
teams to waste valuable resources investigating benign activities. To
enhance the effectiveness of AI-driven systems, continuous fine-tuning and
validation of the algorithms are necessary. This iterative process helps
minimize false positives and improves overall detection accuracy.

• Adversarial Attacks: Malicious actors are continually developing
sophisticated tactics to evade detection, including crafting attacks
specifically designed to confuse AI models. As a result, it is critical to
implement robust testing and adversarial training techniques that bolster the
resilience of AI-driven security systems. By preparing for potential attacks
that exploit AI vulnerabilities, organizations can enhance their defenses
against evolving threats.

• Interpretability: The interpretability of AI models is crucial for effective threat
response and decision-making. Security analysts must understand how AI
systems arrive at their conclusions to trust their recommendations.
Therefore, employing transparent and interpretable AI techniques is vital for
fostering confidence in the analysis results. Enhancing the explainability of
AI decisions can lead to more informed security practices and better incident
management.

Access Attacks Detection | FITPED AI

225

📝 8.2.5

What is a significant challenge associated with AI-driven network traffic analysis?

• Data privacy concerns
• Faster data processing
• Increased network speeds
• Reduced need for monitoring

📝 8.2.6

Which of the following are challenges faced by AI in network traffic analysis?

• False positives
• Adversarial attacks
• Interpretability of AI models
• Data security improvements

8.3 Projects

📝 8.3.1

Project: ML Classification of network traffic

(by https://github.com/sinanw/ml-classification-malicious-network-
traffic/tree/main/data)

Dataset:

• original: https://github.com/sinanw/ml-classification-malicious-network-
traffic/tree/main/data

• local:
https://priscilla.fitped.eu/data/cybersecurity/network/network2_dataset.csv

This project focuses on analyzing and classifying a real network traffic dataset to
identify and differentiate between malicious and benign traffic records. The goal is
to compare and fine-tune various machine learning algorithms, ensuring the highest
possible accuracy while minimizing false positive and false negative rates. By
achieving these objectives, the project aims to contribute valuable insights into
network security management and intrusion detection systems.

Dataset Overview

The dataset employed in this analysis is the CTU-IoT-Malware-Capture-34-1, which is
part of the Aposemat IoT-23 dataset. This labeled dataset consists of both malicious

https://github.com/sinanw/ml-classification-malicious-network-traffic/tree/main/data
https://github.com/sinanw/ml-classification-malicious-network-traffic/tree/main/data
https://github.com/sinanw/ml-classification-malicious-network-traffic/tree/main/data
https://github.com/sinanw/ml-classification-malicious-network-traffic/tree/main/data
https://priscilla.fitped.eu/data/cybersecurity/network/network2_dataset.csv

Access Attacks Detection | FITPED AI

226

and benign IoT network traffic, making it ideal for supervised learning tasks in the
realm of cybersecurity. The dataset was developed within the Avast AIC laboratory
and is supported by funding from Avast Software, highlighting its relevance and
applicability in real-world scenarios.

Key features of the dataset

The dataset contains comprehensive records of network traffic, which can be utilized
for various machine learning tasks, including:

• Network Intrusion Detection: Identifying unauthorized access attempts or
anomalies within the network.

• Traffic Classification: Differentiating between various types of network
traffic, including benign and malicious activities.

• Anomaly Detection: Recognizing patterns that deviate from expected
behavior, which could indicate security threats.

The dataset includes features such as source and destination IP addresses,
timestamps, protocols, and other metrics that allow for in-depth analysis of network
behavior.

1. Initial data cleaning

Import necessary libraries and modules

import pandas as pd

import numpy as np

Column names are included in the file in a commented line,

so we need to read the corresponding line separately and

remove the first description word.

data_columns =

pd.read_csv('https://priscilla.fitped.eu/data/cybersecurity/ne

twork/network2_dataset.csv', sep='\t', skiprows=6, nrows=1,

header=None).iloc[0][1:]

Read the actual dataset

data_df =

pd.read_csv('https://priscilla.fitped.eu/data/cybersecurity/ne

twork/network2_dataset.csv', sep='\t', comment="#",

header=None)

Set column names

data_df.columns = data_columns

Check dataset shape

print(data_df.shape)

Access Attacks Detection | FITPED AI

227

Check dataset head

print(data_df.head())

Program output:
(23145, 21)

0 ts uid id.orig_h id.orig_p

id.resp_h \

0 1.545404e+09 CrDn63WjJEmrWGjqf 192.168.1.195 41040

185.244.25.235

1 1.545404e+09 CY9lJW3gh1Eje4usP6 192.168.1.195 41040

185.244.25.235

2 1.545404e+09 CcFXLynukEDnUlvgl 192.168.1.195 41040

185.244.25.235

3 1.545404e+09 CDrkrSobGYxHhYfth 192.168.1.195 41040

185.244.25.235

4 1.545404e+09 CTWZQf2oJSvq6zmPAc 192.168.1.195 41042

185.244.25.235

0 id.resp_p proto service duration orig_bytes ...

conn_state local_orig \

0 80 tcp - 3.139211 0 ...

S0 -

1 80 tcp - - - ...

S0 -

2 80 tcp - - - ...

S0 -

3 80 tcp http 1.477656 149 ...

SF -

4 80 tcp - 3.147116 0 ...

S0 -

0 local_resp missed_bytes history orig_pkts

orig_ip_bytes resp_pkts \

0 - 0 S 3

180 0

1 - 0 S 1

60 0

2 - 0 S 1

60 0

3 - 2896 ShADadttcfF 94

5525 96

4 - 0 S 3

180 0

Access Attacks Detection | FITPED AI

228

0 resp_ip_bytes tunnel_parents label detailed-label

0 0 - Benign -

1 0 - Benign -

2 0 - Benign -

3 139044 - Benign -

4 0 - Benign -

[5 rows x 21 columns]

There are a couple of issues that need to be fixed in this phase:

• We notice here that the last column contains several values, this is due to an
unmatched delimiter in the original dataset file.

• We also notice some fields with '-', which means the field is unset according
to the dataset documentation.

Check dataset summary

data_df.info()

Program output:

RangeIndex: 23145 entries, 0 to 23144

Data columns (total 21 columns):

 # Column Non-Null Count

Dtype

--- ------ --------------

 0 ts 23145 non-null

float64

 1 uid 23145 non-null

object

 2 id.orig_h 23145 non-null

object

 3 id.orig_p 23145 non-null

int64

 4 id.resp_h 23145 non-null

object

 5 id.resp_p 23145 non-null

int64

 6 proto 23145 non-null

object

Access Attacks Detection | FITPED AI

229

 7 service 23145 non-null

object

 8 duration 23145 non-null

object

 9 orig_bytes 23145 non-null

object

 10 resp_bytes 23145 non-null

object

 11 conn_state 23145 non-null

object

 12 local_orig 23145 non-null

object

 13 local_resp 23145 non-null

object

 14 missed_bytes 23145 non-null

int64

 15 history 23145 non-null

object

 16 orig_pkts 23145 non-null

int64

 17 orig_ip_bytes 23145 non-null

int64

 18 resp_pkts 23145 non-null

int64

 19 resp_ip_bytes 23145 non-null

int64

 20 tunnel_parents label detailed-label 23145 non-null

object

dtypes: float64(1), int64(7), object(13)

memory usage: 3.7+ MB

• This summary says there are no missing values which is inaccurate (due to
the unset fields with '-' values).

• Some numerical fields are misidentified as "object" (strings) which will also
be fixed later.

2. Data cleaning

• The last column in the dataset contains three separate values and needs to
be unpacked into three corresponding columns. This is due to unmatched
separators in the original data file.

Split the last combined column into three ones

tunnel_parents_column = data_df.iloc[:,-1].apply(lambda x:

x.split()[0])

Access Attacks Detection | FITPED AI

230

label_column = data_df.iloc[:,-1].apply(lambda x:

x.split()[1])

detailed_label_column = data_df.iloc[:,-1].apply(lambda x:

x.split()[2])

Drop the combined column

data_df.drop(["tunnel_parents label detailed-label"],

axis=1, inplace=True)

Add newly created columns to the dataset

data_df["tunnel_parents"] = tunnel_parents_column

data_df["label"] = label_column

data_df["detailed_label"] = detailed_label_column

Check the dataset

print(data_df.head())

Program output:
0 ts uid id.orig_h id.orig_p

id.resp_h \

0 1.545404e+09 CrDn63WjJEmrWGjqf 192.168.1.195 41040

185.244.25.235

1 1.545404e+09 CY9lJW3gh1Eje4usP6 192.168.1.195 41040

185.244.25.235

2 1.545404e+09 CcFXLynukEDnUlvgl 192.168.1.195 41040

185.244.25.235

3 1.545404e+09 CDrkrSobGYxHhYfth 192.168.1.195 41040

185.244.25.235

4 1.545404e+09 CTWZQf2oJSvq6zmPAc 192.168.1.195 41042

185.244.25.235

0 id.resp_p proto service duration orig_bytes ...

local_resp missed_bytes \

0 80 tcp - 3.139211 0 ...

- 0

1 80 tcp - - - ...

- 0

2 80 tcp - - - ...

- 0

3 80 tcp http 1.477656 149 ...

- 2896

4 80 tcp - 3.147116 0 ...

- 0

Access Attacks Detection | FITPED AI

231

0 history orig_pkts orig_ip_bytes resp_pkts

resp_ip_bytes \

0 S 3 180 0

0

1 S 1 60 0

0

2 S 1 60 0

0

3 ShADadttcfF 94 5525 96

139044

4 S 3 180 0

0

0 tunnel_parents label detailed_label

0 - Benign -

1 - Benign -

2 - Benign -

3 - Benign -

4 - Benign -

[5 rows x 23 columns]

• the combined column was replaced with three separate ones:
"tunnel_parents", "label", and "detailed_label".

Drop irrelevant columns

• Drop extra columns that don't contribute to the data analysis and predictions
(ex. ids, columns with only unique values, columns with just one value, ip
addresses, ...).

Check the number of unique values in each column

print(data_df.nunique().sort_values(ascending=False))

Program output:
0

ts 23145

uid 23145

duration 4654

id.orig_p 4383

orig_ip_bytes 108

resp_ip_bytes 62

orig_pkts 53

id.resp_h 49

resp_bytes 44

Access Attacks Detection | FITPED AI

232

orig_bytes 29

resp_pkts 28

history 26

id.resp_p 10

conn_state 6

service 5

detailed_label 4

missed_bytes 3

proto 2

id.orig_h 2

label 2

local_resp 1

local_orig 1

tunnel_parents 1

dtype: int64

Two columns have only unique values and three columns have

only one value, so we should drop them.

data_df.drop(columns=["ts","uid","local_resp","local_orig","tu

nnel_parents"], inplace=True)

IP addresses might introduce bias in the predictions so it's

recommended to drop them

data_df.drop(columns=["id.orig_h","id.resp_h"], inplace=True)

The "detailed_label" column provides more information about

the "label" column itself, so it doesn't contribute to the

data analysis.

data_df.drop(columns="detailed_label", inplace=True)

Check the dataset

print(data_df.head())

Fix unset values and validate the data types

• According to the dataset documentation, empty and unset values are
represented as '-' and "(empty)". This is why info() method didn't show any
missing values. Fixing these values is essential to correct the types of
numeric attributes that were misinterpreted as strings.

Replace all occurrences of empty/unset cells with null

values

data_df.replace({'-':np.nan, "(empty)":np.nan}, inplace=True)

Access Attacks Detection | FITPED AI

233

Fix data types of the misinterpreted columns

dtype_convert_dict = {

 "duration": float,

 "orig_bytes": float,

 "resp_bytes": float

}

data_df = data_df.astype(dtype_convert_dict)

print(data_df.info())

Program output:

RangeIndex: 23145 entries, 0 to 23144

Data columns (total 15 columns):

 # Column Non-Null Count Dtype

--- ------ -------------- -----

 0 id.orig_p 23145 non-null int64

 1 id.resp_p 23145 non-null int64

 2 proto 23145 non-null object

 3 service 1847 non-null object

 4 duration 5321 non-null float64

 5 orig_bytes 5321 non-null float64

 6 resp_bytes 5321 non-null float64

 7 conn_state 23145 non-null object

 8 missed_bytes 23145 non-null int64

 9 history 23145 non-null object

 10 orig_pkts 23145 non-null int64

 11 orig_ip_bytes 23145 non-null int64

 12 resp_pkts 23145 non-null int64

 13 resp_ip_bytes 23145 non-null int64

 14 label 23145 non-null object

dtypes: float64(3), int64(7), object(5)

memory usage: 2.6+ MB

None

3. Data preprocessing

import seaborn as sns

import ipaddress

from sklearn.model_selection import train_test_split

from sklearn.neighbors import KNeighborsClassifier

from sklearn.metrics import accuracy_score,

classification_report

from sklearn.impute import KNNImputer

from sklearn.preprocessing import LabelEncoder, OneHotEncoder

from sklearn.preprocessing import MinMaxScaler

Access Attacks Detection | FITPED AI

234

Check null values in the target attribute

print(data_df["label"].isna().sum())

Program output:
0

Check values distribution

print(data_df["label"].value_counts())

Program output:
Malicious 21222

Benign 1923

Name: label, dtype: int64

Plot target attribute on a count plot

sns.countplot(data=data_df, x="label")

Program output:

• As we can see from these statistics, the target attribute is highly imbalanced.
• We will maintain the original distribution for now until we explore the models'

performance.
• Suitable techniques will be applied to re-balance the labels if we couldn't

achieve an acceptable prediction accuracy.

Initialize encoder with default parameters

Access Attacks Detection | FITPED AI

235

target_le = LabelEncoder()

Fit the encoder to the target attribute

encoded_attribute = target_le.fit_transform(data_df["label"])

Replace target attribute with encoded values

data_df["label"] = encoded_attribute

Check mapped labels

print(dict(zip(target_le.classes_,

target_le.transform(target_le.classes_))))

Program output:
{0: 0, 1: 1}

Handling outliers

Use describe() method to obtain general statistics about the

numerical features

numerical_features = ["duration", "orig_bytes",

 "resp_bytes", "missed_bytes", "orig_pkts",

 "orig_ip_bytes", "resp_pkts", "resp_ip_bytes"]

print(data_df[numerical_features].describe())

Program output:
0 duration orig_bytes resp_bytes missed_bytes

orig_pkts \

count 5321.000000 5.321000e+03 5321.000000 23145.000000

23145.000000

mean 22.806503 1.478868e+04 350.429431 2.127112

6.375157

std 722.522302 1.036441e+06 5378.262771 102.490787

178.548725

min 0.000497 0.000000e+00 0.000000 0.000000

0.000000

25% 2.075814 0.000000e+00 0.000000 0.000000

0.000000

50% 3.110974 0.000000e+00 0.000000 0.000000

0.000000

75% 3.153695 6.200000e+01 243.000000 0.000000

1.000000

max 48976.819063 7.554662e+07 164266.000000 5792.000000

18444.000000

0 orig_ip_bytes resp_pkts resp_ip_bytes

Access Attacks Detection | FITPED AI

236

count 2.314500e+04 23145.000000 23145.000000

mean 3.664312e+03 0.611017 111.218967

std 5.003762e+05 8.305898 2713.082822

min 0.000000e+00 0.000000 0.000000

25% 0.000000e+00 0.000000 0.000000

50% 0.000000e+00 0.000000 0.000000

75% 7.600000e+01 0.000000 0.000000

max 7.606306e+07 1070.000000 168910.000000

Upon a brief review of the statistical summary, we observed several features
exhibiting values that could be classified as outliers. However, confirming these
values and understanding their underlying causes is challenging without expert input
from the relevant domain. For the purposes of this demonstration, we will focus
specifically on the "duration" feature as having genuine outliers, as it is the only
feature that presents a substantial number of unique values.

Plot "duration" feature on a boxplot

sns.boxplot(data=data_df, y="duration")

Program output:

Replace outliers using IQR (Inter-quartile Range)

outliers_columns = ['duration']

for col_name in outliers_columns:

 # Calculate first and third quartiles

 q1, q3 = np.nanpercentile(data_df[col_name],[25,75])

 # Calculate the inter-quartile range

 intr_qr = q3-q1

Access Attacks Detection | FITPED AI

237

 # Calculate lower and higher bounds

 iqr_min_val = q1-(1.5*intr_qr)

 iqr_max_val = q3+(1.5*intr_qr)

 print(f"(min,max) bounds for \"{col_name}\":

({iqr_min_val},{iqr_max_val})")

 # Replace values that are less than min or larger then max

with np.nan

 data_df.loc[data_df[col_name] < iqr_min_val, col_name] =

np.nan

 data_df.loc[data_df[col_name] > iqr_max_val, col_name] =

np.nan

Reevaluate the new distribution of values

print(data_df["duration"].describe())

Program output:
(min,max) bounds for "duration":

(0.4589924999999997,4.7705165)

count 3718.000000

mean 2.848130

std 0.806614

min 0.553685

25% 3.085004

50% 3.110717

75% 3.140398

max 4.723553

Name: duration, dtype: float64

Check the number of null values in each column

print(data_df.isnull().sum().sort_values(ascending=False))

Program output:
0

service 21298

duration 19427

orig_bytes 17824

resp_bytes 17824

id.orig_p 0

id.resp_p 0

proto 0

conn_state 0

missed_bytes 0

history 0

Access Attacks Detection | FITPED AI

238

orig_pkts 0

orig_ip_bytes 0

resp_pkts 0

resp_ip_bytes 0

label 0

dtype: int64

Check null values using heatmap

sns.heatmap(data=data_df.isnull(), yticklabels=False,

cbar=False, cmap="viridis")

Program output:

There are four columns in the dataset that contain a significant number of missing
values: one categorical column ("service") and three numerical columns ("duration,"
"orig_bytes," and "resp_bytes"). A common approach might be to remove these
columns entirely from the dataset; however, we will take a different route. To retain
any potentially valuable information that may be hidden within these features, we will
attempt to impute their missing values

Check the relationship between the "service" and the target

attribute

sns.countplot(data=data_df, x="label", hue="service")

Access Attacks Detection | FITPED AI

239

Program output:

From the visualization, it is evident that nearly all malicious observations are
associated with a particular service type, specifically "irc." In contrast, the other three
service types predominantly represent benign samples. This observation highlights
that, despite the high number of missing values in the "service" feature, it maintains
a strong correlation with the target attribute, which is crucial for our analysis. Given
its significance, we have decided to retain the "service" attribute in the dataset.

To address the missing values in this feature, we will utilize a classifier for
imputation. By leveraging the relationships between the "service" feature and other
available features, we can better estimate the missing values. This approach not only
preserves the valuable information contained in the "service" attribute but also
enhances the dataset's overall predictive power, ultimately contributing to improved
performance in our machine learning models.

Select specific columns to be used for the classification,

here we initially select the numerical attributes with no

missing values.

srv_training_columns =

["id.orig_p","id.resp_p","missed_bytes","orig_pkts","orig_ip_b

ytes","resp_pkts","resp_ip_bytes"]

Split the rows into two datasets containing rows

with/without "service"

data_df_with_service = data_df[data_df["service"].notna()]

data_df_no_service = data_df[data_df["service"].isna()]

Access Attacks Detection | FITPED AI

240

Split the service dataset into dependent and independent

features

srv_X = data_df_with_service[srv_training_columns]

srv_y = data_df_with_service["service"].values

Split into train/test subsets

srv_X_train, srv_X_test, srv_y_train, srv_y_test =

train_test_split(srv_X, srv_y, test_size=0.2, random_state=0)

Create KNN estimator and fit it

srv_knn = KNeighborsClassifier(n_neighbors=3)

srv_knn.fit(srv_X_train, srv_y_train)

Predict missing values

srv_y_pred = srv_knn.predict(srv_X_test)

Check predictions accuracy

srv_accuracy_test = accuracy_score(srv_y_test, srv_y_pred)

print(f"Prediction accuracy for 'service' is:

{srv_accuracy_test}")

print("Classification report:")

print(classification_report(srv_y_test, srv_y_pred))

Program output:
Prediction accuracy for 'service' is: 1.0

Classification report:

 precision recall f1-score support

 dns 1.00 1.00 1.00 41

 http 1.00 1.00 1.00 5

 irc 1.00 1.00 1.00 324

 accuracy 1.00 370

 macro avg 1.00 1.00 1.00 370

weighted avg 1.00 1.00 1.00 370

The classification model achieved an accuracy of 100%, which means all samples in
the test subset were correctly predicted. Now we can use this model to predict
missing "service" fields.

Predict "service" for missing values

srv_predictions =

srv_knn.predict(data_df_no_service[srv_training_columns])

Access Attacks Detection | FITPED AI

241

Update the original data set with predicted "service" values

data_df.loc[data_df["service"].isna(), "service"] =

srv_predictions

To preserve hidden correlations with other features in the

dataset, we will use a KNN imputer to estimate the missing

values based on relationships with other numerical features.

numerical_features = data_df.drop("label",

axis=1).select_dtypes(include="number").columns

knn_imputer = KNNImputer()

data_df_after_imputing =

knn_imputer.fit_transform(data_df[numerical_features])

Update original data set to fill missing values with imputed

ones

data_df[numerical_features] = data_df_after_imputing

Confirm all missing values were successfully imputed

print(data_df.isnull().sum().sort_values(ascending=False))

Program output:
0

id.orig_p 0

id.resp_p 0

proto 0

service 0

duration 0

orig_bytes 0

resp_bytes 0

conn_state 0

missed_bytes 0

history 0

orig_pkts 0

orig_ip_bytes 0

resp_pkts 0

resp_ip_bytes 0

label 0

dtype: int64

ValueError

Must have equal len keys and value when setting with an

iterable

Access Attacks Detection | FITPED AI

242

Scaling numerical attributes

• As we aim to compare several classifiers, and since some of them rely on
distance-based comparisons, we will scale the numerical features to have
them represented in a unified distribution.

• Since most attributes have no normal distribution, it's more suitable to apply
a normalization (between 0 and 1, using MinMaxScaler) instead of
standardization.

Check statistics for numerical features

numerical_features = ["id.orig_p", "id.resp_p", "duration",

"orig_bytes", "resp_bytes", "missed_bytes", "orig_pkts",

"orig_ip_bytes", "resp_pkts", "resp_ip_bytes"]

Initialize and apply MinMaxScaler scaler

min_max_scaler = MinMaxScaler()

data_df[numerical_features] =

min_max_scaler.fit_transform(data_df[numerical_features])

Check statistics for scaled features

print(data_df[numerical_features].describe())

Program output:
0 id.orig_p id.resp_p duration orig_bytes

resp_bytes \

count 23145.000000 23145.000000 23145.000000 2.314500e+04

23145.000000

mean 0.864132 0.036421 0.591380 4.548098e-05

0.000533

std 0.263126 0.084062 0.086854 6.578095e-03

0.015722

min 0.000000 0.000000 0.000000 0.000000e+00

0.000000

25% 0.821428 0.001238 0.609168 6.353692e-07

0.000047

50% 1.000000 0.001238 0.609168 7.227325e-07

0.000047

75% 1.000000 0.104488 0.609168 7.227325e-07

0.000047

max 1.000000 1.000000 1.000000 1.000000e+00

1.000000

0 missed_bytes orig_pkts orig_ip_bytes resp_pkts

resp_ip_bytes

count 23145.000000 23145.000000 2.314500e+04 23145.000000

23145.000000

Access Attacks Detection | FITPED AI

243

mean 0.000367 0.000346 4.817466e-05 0.000571

0.000658

std 0.017695 0.009681 6.578439e-03 0.007763

0.016062

min 0.000000 0.000000 0.000000e+00 0.000000

0.000000

25% 0.000000 0.000000 0.000000e+00 0.000000

0.000000

50% 0.000000 0.000000 0.000000e+00 0.000000

0.000000

75% 0.000000 0.000054 9.991710e-07 0.000000

0.000000

max 1.000000 1.000000 1.000000e+00 1.000000

1.000000

Encoding categorical features

• Since all categorical features don't imply an ordered relationship between
their values, they can be encoded using One-Hot Encoding.

• We need first to check features with rare values and map them to "other", in
order to avoid sparse columns with statistically negligible impact and higher
computational effect.

Check the number of unique values in each feature

categorical_features =

["proto","service","conn_state","history"]

for c in categorical_features:

 print(f"Column ({c}) has ({data_df[c].nunique()}) distinct

values.")

Program output:
Column (proto) has (2) distinct values.

Column (service) has (4) distinct values.

Column (conn_state) has (6) distinct values.

Column (history) has (26) distinct values.

Check values of "history" because it has too many unique

values.

history_val_counts = data_df["history"].value_counts()

print(history_val_counts)

Program output:
C 14252

S 5417

ShAdDaf 1477

Access Attacks Detection | FITPED AI

244

D 978

Dd 836

ShAdDaft 102

ShAdfDr 48

CCCC 6

ShADadtcfF 3

ShADadttcfF 3

ShAdDatfr 2

CCC 2

ShADadf 2

ShDadAf 2

ShAfdtDr 2

ShADacdtfF 2

ShADadtctfF 2

ShAdDatf 1

ShADadttfF 1

ShAdD 1

ShADadtctfFR 1

ShAdDfr 1

ShAD 1

DdAtaFf 1

ShADad 1

ShAdDa 1

Name: history, dtype: int64

Map values to their frequencies

history_freq_map = data_df["history"].map(history_val_counts)

Replace low frequent values in "history" with "Other" using

the corresponding frequency map

data_df["history"] = data_df["history"].mask(history_freq_map

< 10, "Other")

Check "history" values after mapping

print(data_df["history"].value_counts())

Program output:
C 14252

S 5417

ShAdDaf 1477

D 978

Dd 836

ShAdDaft 102

ShAdfDr 48

Access Attacks Detection | FITPED AI

245

Other 35

Name: history, dtype: int64

Encoding categorical features: apply one-hot encoder

Initialize the encoder with its default parameters

ohe = OneHotEncoder()

Fit the encoder to categorical features in the dataset

encoded_features =

ohe.fit_transform(data_df[categorical_features])

Create a dataframe of encoded features

encoded_features_df = pd.DataFrame(encoded_features.toarray(),

columns=ohe.get_feature_names_out())

Merge encoded features with the dataset and drop original

columns

data_df = pd.concat([data_df, encoded_features_df],

axis=1).drop(categorical_features, axis=1)

4. Model training

Import necessary libraries and modules

import pandas as pd

from sklearn.model_selection import StratifiedKFold,

GridSearchCV

from sklearn.naive_bayes import ComplementNB

from sklearn.metrics import precision_score, confusion_matrix,

recall_score, accuracy_score, f1_score

from statistics import mean

from sklearn.tree import DecisionTreeClassifier

from sklearn.svm import SVC

from sklearn.ensemble import RandomForestClassifier

from sklearn.neighbors import KNeighborsClassifier

from sklearn.linear_model import LogisticRegression

import xgboost as xgb

from joblib import dump

Split data into independent and dependent variables

data_X = data_df.drop("label", axis=1)

data_y = data_df["label"]

To compare the performance of several models, we choose a set of the most popular
machine learning algorithms for classification tasks.

Access Attacks Detection | FITPED AI

246

Initialize classification models

classifiers = [

 # Since we have unbalanced labels, we use the Complement

version of Naive Bayes which is particularly suited for

imbalanced data sets.

 ("Naive Bayes", ComplementNB()),

 # We use the Decision Tree with its default parameters,

including the "Gini Impurity" to measure the quality of splits

and ccp_alpha=0 (no pruning is performed).

 ("Decision Tree", DecisionTreeClassifier()),

 # Logistic Regression model to help discovering linearity

separation in the data set.

 ("Logistic Regression", LogisticRegression()),

 # The efficient Random Forest model with a default base

estimators of 100.

 ("Random Forest", RandomForestClassifier()),

 # The classifier version of Support Vector Machine model.

 ("Support Vector Classifier", SVC()),

 # The distance-based KNN classifier with a default

n_neighbors=5.

 ("K-Nearest Neighbors", KNeighborsClassifier()),

 # The most powerful ensemble model of XGBoost with some

initially tuned hyperparameters.

 ("XGBoost", xgb.XGBClassifier(objective =

"binary:logistic", alpha = 10)),

]

To achieve more reliable performance metrics for each model across multiple
iterations, we will implement a cross-validation technique instead of the conventional
train/test split. Cross-validation allows us to evaluate the model's performance on
different subsets of the data, leading to a better understanding of its generalization
capabilities.

Given that we are working with imbalanced class distributions in our dataset, we will
employ Stratified K-Folds cross-validation. This method ensures that each fold
maintains the same proportion of both classes as the entire dataset, thereby
preserving the distribution of labels in each subset.

Access Attacks Detection | FITPED AI

247

Initialize the cross-validator with 5 splits and sample

shuffling activated

skf_cv = StratifiedKFold(n_splits=5, shuffle=True,

random_state=0)

print("Model Training Started!")

Initialize the results summary

classification_results = pd.DataFrame(index=[c[0] for c in

classifiers], columns=["Accuracy", "TN", "FP", "FN", "TP",

"Recall", "Precision", "F1"])

Iterate over the estimators

for est_name, est_object in classifiers:

 print(f"### [{est_name}]: Processing ...")

 # Initialize the results for each classifier

 accuracy_scores = []

 confusion_matrices = []

 recall_scores = []

 precision_scores = []

 f1_scores = []

 # Initialize best model object to be saved

 models_path = "..\\models"

 best_model = None

 best_f1 = -1

 # Iterate over the obtained folds

 for train_index, test_index in skf_cv.split(data_X,

data_y):

 # Get train and test samples from the cross-validation

model

 X_train, X_test = data_X.iloc[train_index],

data_X.iloc[test_index]

 y_train, y_test = data_y.iloc[train_index],

data_y.iloc[test_index]

 # Train the model

 est_object.fit(X_train.values, y_train.values)

 # Predict the test samples

 y_pred = est_object.predict(X_test.values)

Access Attacks Detection | FITPED AI

248

 # Calculate and register accuracy metrics

 accuracy_scores.append(accuracy_score(y_test, y_pred))

 confusion_matrices.append(confusion_matrix(y_test,

y_pred))

 recall_scores.append(recall_score(y_test, y_pred))

 precision_scores.append(precision_score(y_test,

y_pred))

 est_f1_score = f1_score(y_test, y_pred)

 f1_scores.append(est_f1_score)

 # Compare with best performing model

 if best_f1 < est_f1_score:

 best_model = est_object

 best_f1 = est_f1_score

 # Summarize the results for all folds for each classifier

 tn, fp, fn, tp = sum(confusion_matrices).ravel()

 classification_results.loc[est_name] =

[mean(accuracy_scores),tn,fp,fn,tp,mean(recall_scores),mean(pr

ecision_scores),mean(f1_scores)]

 # Save the best performing model

 if best_model:

 model_name = est_name.replace(' ', '_').replace('-',

'_').lower()

 model_file = model_name + ".pkl"

 dump(best_model, models_path + "\\" + model_file)

print("Model Training Finished!")

Program output:
Model Training Started!

[Naive Bayes]: Processing ...

[Decision Tree]: Processing ...

[Logistic Regression]: Processing ...

[Random Forest]: Processing ...

[Support Vector Classifier]: Processing ...

[K-Nearest Neighbors]: Processing ...

[XGBoost]: Processing ...

Model Training Finished!

Check the results

print(classification_results)

Access Attacks Detection | FITPED AI

249

Program output:
 Accuracy TN FP FN TP

Recall Precision \

Naive Bayes 0.994772 1838 85 36 21186

0.998304 0.996004

Decision Tree 0.999914 1923 0 2 21220

0.999906 1.0

Logistic Regression 0.994772 1830 93 28 21194

0.998681 0.995631

Random Forest 0.99987 1923 0 3 21219

0.999859 1.0

Support Vector Classifier 0.995636 1824 99 2 21220

0.999906 0.995356

K-Nearest Neighbors 0.99771 1880 43 10 21212

0.999529 0.997977

XGBoost 0.99987 1923 0 3 21219

0.999859 1.0

 F1

Naive Bayes 0.997152

Decision Tree 0.999953

Logistic Regression 0.997154

Random Forest 0.999929

Support Vector Classifier 0.997626

K-Nearest Neighbors 0.998752

XGBoost 0.999929

5. Result analysis

Overall, all the models are performing very well with very high accuracy, precision,
recall, and F1 scores. The Decision Tree, Random Forest, and XGBoost models are
achieving near-perfect performance.

Models evaluation:

• Naive Bayes achieved relatively good overall accuracy although the labels
are not evenly distributed.

• Decision Tree delivered one of the highest prediction accuracies, benefiting
from its algorithmic resilience to imbalanced labels.

• Logistic Regression also achieved good results, though it yielded a higher
number of incorrect predictions, suggesting some linearity in the dataset.

• Random Forest as anticipated, demonstrated superior performance as one
of the most efficient prediction methods. However, given the strong
performance of the Decision Tree, there was no significant improvement
noticed when using Random Forest.

Access Attacks Detection | FITPED AI

250

• Support Vector Classifier also produced relatively good results with slightly
higher False Positive rates.

• KNN model likewise performed well, with a minimal number of incorrect
predictions, which can be attributed to the dataset's normalization between 0
and 1.

• XGBoost was expectedly among the best estimators since it's arguably the
most powerful machine learning algorithm these days.

Overall observations:

• Remarkably accurate predictions were generated by most models,
considering that the numbers of False Positives/Negatives are cumulative
results from five separate iterations.

• Out of the seven estimators, four achieved relatively lower accuracy, but
these could potentially be improved with further model tuning.

• Regardless of the model used, there were consistently some False Negative
predictions, which might be attributed to anomalies or outliers in the original
dataset.

• Lower accuracy models tend to produce errors primarily in the form of False
Positives, largely because the majority of the population is labeled as
"Malicious".

• Based on their performance, models can be categorized into two distinct
groups with quite similar behavior: one group exhibits significantly high
accuracy, including DT, RF, and XGB, while the second group shows relatively
good performance, comprising NB, KNN, LogR, and SVC.

📝 8.3.2

Project: Analyzing Network Traffic Dataset

(by https://www.kaggle.com/datasets/ravikumargattu/network-traffic-dataset)

Dataset:

• original: https://www.kaggle.com/datasets/ravikumargattu/network-traffic-
dataset

• local:
https://priscilla.fitped.eu/data/cybersecurity/network/network1_dataset.csv

This project involves inspecting and analyzing a network traffic dataset obtained
from a Kali Machine at the University of Cincinnati. By utilizing machine learning
techniques, students will explore various applications, including network intrusion
detection, traffic classification, and anomaly detection.

https://www.kaggle.com/datasets/ravikumargattu/network-traffic-dataset
https://www.kaggle.com/datasets/ravikumargattu/network-traffic-dataset
https://www.kaggle.com/datasets/ravikumargattu/network-traffic-dataset
https://priscilla.fitped.eu/data/cybersecurity/network/network1_dataset.csv

Access Attacks Detection | FITPED AI

251

Dataset overview

The dataset comprises 394,137 instances captured over one hour on the evening of
October 9th, 2023, using Wireshark. It is stored in a CSV (Comma Separated Values)
format and includes seven features that provide detailed information about network
traffic. The primary features are:

1. No: Instance number.
2. Timestamp: The time at which the network traffic instance was recorded.
3. Source IP: The IP address of the device sending the data.
4. Destination IP: The IP address of the device receiving the data.
5. Protocol: The protocol used for the network communication (e.g., TCP, UDP).
6. Length: The size of the network packet.
7. Info: Additional information related to the traffic instance.

Each instance captures essential aspects of network activity, enabling students to
conduct thorough analyses related to network performance and security.

Data Exploration:

• Load the dataset into your preferred programming environment (e.g., Python
with Pandas).

• Examine the first few rows of the dataset to understand its structure.
• Generate summary statistics and visualizations (e.g., histograms, bar charts)

to explore the distribution of numerical features like packet length.

write your code

Preprocessing:

• Clean the dataset by handling missing values or erroneous data entries.
• Convert the timestamp into a suitable format for analysis.
• Encode categorical features if necessary (e.g., protocols).

write your code

Machine Learning Applications:

• Network Intrusion Detection: Implement a classification model to identify
potentially malicious traffic. Use techniques like logistic regression, decision
trees, or support vector machines.

• Traffic Classification: Explore clustering methods (e.g., K-means) to
categorize different types of network traffic based on features such as
source IP, destination IP, and protocol.

• Anomaly Detection: Use techniques such as isolation forests or
autoencoders to detect unusual patterns in network traffic.

write your code

Access Attacks Detection | FITPED AI

252

Reporting:

• Document your findings and methodologies in a report.
• Include visualizations to support your analysis and highlight key insights.
• Discuss the implications of your results for network security management

and performance monitoring.

write your code and / or report

Appendix

Chapter 9

Appendix | FITPED AI

254

9.1 Packet filtering firewalls

📝 9.1.1

Despite their simplicity, such packet filtering firewalls have been successful for a
long period, and they remain being a key component in contemporary Next-
Generation firewalls.

As an example, unix-based packet filtering firewall was chosen. Traditionally, iptables
was used as a main firewall for most unix distributions. Here it is described.

Iptables is a powerful and quite flexible firewall tool using packet-filtering approach.
It is employed to configure the Linux kernel's built-in packet filtering system, Netfilter.
The primary purpose of iptables is to filter and manipulate network packets before
they reach their destination.

Iptables employs several components, namely Tables (3 predefined), Chains (whose
number is not limited), and Rules. The tables are the following:

• filter: This is the default table and is used for packet filtering. It is
responsible for deciding whether to allow or deny a packet.

• nat: This table is used for network address translation. It is crucial for
configuring source or destination address manipulation, which is often used
in scenarios like setting up a NAT gateway.

• mangle: The mangle table is used for specialized packet modifications, e.g.
changing the Time-to-Live (TTL) field or Quality of Service (QoS) settings.

Chains are predefined sets of rules that are applied to packets. The main chains are:

• INPUT: Packets destined for the local system.
• OUTPUT: Packets generated by the local system.
• FORWARD: Packets routed through the system.

Other chains may be created.

Rules define what should be done with packets that match specific criteria. They
consist of matching criteria and the target action (ACCEPT, DROP, REJECT, etc.).

Basic iptables actions and corresponding commands include:

iptables -A -p --dport -j

It appends a rule to the end of a chain.

Deleting Rules:

Appendix | FITPED AI

255

iptables -D

It deletes a rule from a chain by its rule number.

Displaying Rules:

iptables -L

Lists all rules.

Deleting Rules:

iptables -F ## Deletes (flushes) all rules.

iptables -F ## Flushes rules for a specific chain.

Default Policy Configuration:

iptables -P

Sets the default policy for a chain.

🕮 9.1.2

Saving/Restoring Rules:

IP tables are not persistent by default, so they have to be saved. Moreover, they can
be deleted during restart so the corresponding commands (for defining them) should
be added e.g. to a .profile file so that they are renewed after a reboot. Commands
iptables-save and iptables-restore are used to save and restore a ruleset,
respectively. More detailed information can be found in manual pages or the specific
operating system administration guide.

Nowadays, however, iptables are not used so frequently because of some limitations.
Among the iptables limitations, the fact that the iptables syntax that seems to be a
bit complex for large rulesets, is often mentioned. In addition, the iptables limitations
became more and more apparent as more and more networks apply dual-stack
approach where both IP version 4 and version 6 network protocols are active, and
both must be controlled by a firewall. Namely in IPv6 rule definition, there is a main
limitation of iptables. Therefore, iptables have been gradually replaced by nftables.

Nftables consolidates the packet filtering rule syntax for controlling IPv4 and IPv6
packets (previously the task of iptables and ipv6tables) as well as Ethernet frames
(that was previously done by arptables and ebtables).

Key features and concepts of nftables are listed as follows:

Appendix | FITPED AI

256

• Tables: Like iptables, nftables uses the concept of tables to organize rules.
Tables can be specific to an address family (e.g., IPv4, IPv6) or generic,
covering multiple address families.

• Chains: Chains define sequences of rules within a table. They can be applied
to various packet types and serve specific purposes, such as INPUT,
OUTPUT, FORWARD, or user-defined chains.

• Rules: Rules in nftables consist of matching criteria and an associated action
(target). The syntax for rules is more straightforward and expressive
compared to its predecessors.

• Expressions: nftables introduces the concept of expressions that allow even
more fine-grained packet manipulation. Expressions provide a modular way
to perform various actions on packets, such as modifying packet headers.

Additional nftables features include set and map data structures, allowing more
complex matching conditions. Sets can be used to define groups of IP addresses,
ports, or other elements, while maps allow for more advanced lookups and
transformations. In addition, nftables allows to do more in regard to stateful packet
filtering. This is achieved through the seamless integration with the kernel's
connection tracking framework, providing stateful packet filtering. This makes it
easier to write rules that take into account the state of established connections in
filtering.

Atomic Rule Replacement is another new feature of nftables. This ensures that a set
of rules is replaced in its entirety, reducing the risk of inconsistent or partial rule
application. Thanks to nftables modular architecture, its filtering performance is also
better comparing to iptables.

📝 9.1.3

Basic nftables command examples

Creating a Table:

nft add table inet filter

Adding a Chain (into already existing filter table):

nft add chain inet filter input { type filter hook input

priority 0 ; }

Inserting a Rule:

nft add rule inet filter input tcp dport 22 accept

Listing Rules:

nft list ruleset

Appendix | FITPED AI

257

Example Rule for Set:

nft add rule ip filter input ip saddr { 192.168.1.2,

192.168.1.3 } drop

Nevertheless, because in packet filtering firewalls, most rules are fixed, opportunities
for application of artificial intelligence is limited and it is not used for such tasks at
present.

9.2 Bibliography and sources

🕮 9.2.1

Bibliography and sources:

1. D. Glăvan, C. Răcuciu, R. Moinescu and N. F. Antonie, Scientific Bulletin of
Naval Academy, Vol. XXII 2019, pg. 134-143.

2. DJENNA, Amir, et al. Artificial intelligence-based malware detection, analysis,
and mitigation. Symmetry, 2023, 15.3: 677.

3. FARUK, Md Jobair Hossain, et al. Malware detection and prevention using
artificial intelligence techniques. In: 2021 IEEE international conference on
big data (big data). IEEE, 2021. p. 5369-5377.

4. FRITSCH, Lothar; JABER, Aws; YAZIDI, Anis. An overview of artificial
intelligence used in malware. In: Symposium of the Norwegian AI Society.
Cham: Springer International Publishing, 2022. p. 41-51.

5. https://blog.logrocket.com/email-spam-detector-python-machine-learning/
6. https://blogs.blackberry.com/en/2021/05/the-role-of-artificial-intelligence-

and-machine-learning-in-threat-detection
7. https://brightsec.com/blog/security-testing/
8. https://colab.research.google.com/github/ElizaLo/ML-using-Jupiter-

Notebook-and-Google-
Colab/blob/master/Spam%20Detection/Spam_Detection.ipynb

9. https://colab.research.google.com/github/love4684/Detection-of-Phishing-
Websites-using-an-Efficient-Machine-Learning-
Framework/blob/main/4_Finding_Best_Model/Finding_Best_Model.ipynb

10. https://cyberspecs.medium.com/security-implementations-at-different-
layers-of-the-osi-model-426df664a766

11. https://dev.to/oluwadamisisamuel1/how-to-build-a-logistic-regression-
model-a-spam-filter-tutorial-261b

12. https://dotsecurity.com/insights/blog-types-of-network-security-measures
13. https://github.com/Apaulgithub/oibsip_taskno4
14. https://github.com/cheese-hub/ddos-classification/blob/master/ddos-

classification.ipynb
15. https://github.com/Kiinitix/Malware-Detection-using-Machine-learning
16. https://github.com/MakrandBhandari/Spam-Detection-using-Multinomial-

Naive-Bayes-

https://blog.logrocket.com/email-spam-detector-python-machine-learning/
https://blogs.blackberry.com/en/2021/05/the-role-of-artificial-intelligence-and-machine-learning-in-threat-detection
https://blogs.blackberry.com/en/2021/05/the-role-of-artificial-intelligence-and-machine-learning-in-threat-detection
https://brightsec.com/blog/security-testing/
https://colab.research.google.com/github/ElizaLo/ML-using-Jupiter-Notebook-and-Google-Colab/blob/master/Spam%20Detection/Spam_Detection.ipynb
https://colab.research.google.com/github/ElizaLo/ML-using-Jupiter-Notebook-and-Google-Colab/blob/master/Spam%20Detection/Spam_Detection.ipynb
https://colab.research.google.com/github/ElizaLo/ML-using-Jupiter-Notebook-and-Google-Colab/blob/master/Spam%20Detection/Spam_Detection.ipynb
https://colab.research.google.com/github/love4684/Detection-of-Phishing-Websites-using-an-Efficient-Machine-Learning-Framework/blob/main/4_Finding_Best_Model/Finding_Best_Model.ipynb
https://colab.research.google.com/github/love4684/Detection-of-Phishing-Websites-using-an-Efficient-Machine-Learning-Framework/blob/main/4_Finding_Best_Model/Finding_Best_Model.ipynb
https://colab.research.google.com/github/love4684/Detection-of-Phishing-Websites-using-an-Efficient-Machine-Learning-Framework/blob/main/4_Finding_Best_Model/Finding_Best_Model.ipynb
https://cyberspecs.medium.com/security-implementations-at-different-layers-of-the-osi-model-426df664a766
https://cyberspecs.medium.com/security-implementations-at-different-layers-of-the-osi-model-426df664a766
https://dev.to/oluwadamisisamuel1/how-to-build-a-logistic-regression-model-a-spam-filter-tutorial-261b
https://dev.to/oluwadamisisamuel1/how-to-build-a-logistic-regression-model-a-spam-filter-tutorial-261b
https://dotsecurity.com/insights/blog-types-of-network-security-measures
https://github.com/Apaulgithub/oibsip_taskno4
https://github.com/cheese-hub/ddos-classification/blob/master/ddos-classification.ipynb
https://github.com/cheese-hub/ddos-classification/blob/master/ddos-classification.ipynb
https://github.com/Kiinitix/Malware-Detection-using-Machine-learning
https://github.com/MakrandBhandari/Spam-Detection-using-Multinomial-Naive-Bayes-Classifier/blob/main/Multinomial%20Naive%20Bayes%20Classifier%20-%20Spam%20Detection.ipynb
https://github.com/MakrandBhandari/Spam-Detection-using-Multinomial-Naive-Bayes-Classifier/blob/main/Multinomial%20Naive%20Bayes%20Classifier%20-%20Spam%20Detection.ipynb

Appendix | FITPED AI

258

Classifier/blob/main/Multinomial%20Naive%20Bayes%20Classifier%20-
%20Spam%20Detection.ipynb

17. https://github.com/milindsoorya/Spam-Classifier-in-python
18. https://github.com/shreyagopal/Phishing-Website-Detection-by-Machine-

Learning-Techniques
19. https://github.com/sinanw/ml-classification-malicious-network-

traffic/tree/main/data
20. https://hpbn.co/transport-layer-security-tls/
21. https://hussnain-akbar.medium.com/understanding-and-implementing-

na%C3%AFve-bayes-algorithm-for-email-spam-detection-85a14b330fc6
22. https://cheapsslsecurity.com/blog/what-is-transport-layer-security-in-cyber-

security/
23. https://cheq.ai/blog/osi-model-threats-layers-pt-2/
24. https://infosecwriteups.com/using-python-for-malware-analysis-a-beginners-

guide-8432377df2c4
25. https://mailchimp.com/resources/most-common-spam-filter-triggers/
26. https://mailtrap.io/blog/spam-filters/
27. https://mawgoud.medium.com/machine-learning-in-malware-detection-

concept-techniques-and-use-cases-1067d99208ac
28. https://medium.com/@azimkhan8018/email-spam-detection-with-machine-

learning-a-comprehensive-guide-b65c6936678b
29. https://medium.com/@Coursesteach/spam-detection-using-machine-

learning-methods-dd5dbc799b6b
30. https://medium.com/@varun.tyagi83/introducing-the-spam-detection-

model-with-pre-trained-llm-3eb1f8186ba1
31. https://megasisnetwork.medium.com/ai-driven-network-traffic-analysis-

uncovering-anomalies-and-intrusions-e0e11056d7d1
32. https://mind-core.com/blogs/cybersecurity/5-types-of-cyber-security/
33. https://nvlpubs.nist.gov/nistpubs/CSWP/NIST.CSWP.04162018.pdf
34. https://securitygate.io/blog/osi-model-session-layer/
35. https://securitygate.io/blog/osi-model-transport-layer/
36. https://securityintelligence.com/articles/osi-model-stopping-threats-

session-layer/
37. https://shaikhshahid.com/blog/email-spam-detection-model-python/118/
38. https://stevenzych.medium.com/patterns-are-power-a-beginners-guide-to-

spam-detection-6bc0e9f4d68
39. https://towardsdatascience.com/an-approach-to-detect-ddos-attack-with-a-i-

15a768998cf7
40. https://towardsdatascience.com/email-spam-detection-1-2-b0e06a5c0472
41. https://towardsdatascience.com/phishing-classification-with-an-ensemble-

model-d4b15919c2d7
42. https://www.acronis.com/en-eu/blog/posts/ai-email-security/
43. https://www.broadcom.com/topics/application-security
44. https://www.coursera.org/articles/ai-in-cybersecurity
45. https://www.dashlane.com/blog/benefits-ai-cybersecurity
46. https://www.f5.com/glossary/application-layer-security
47. https://www.geeksforgeeks.org/detecting-spam-emails-using-tensorflow-in-

python/

https://github.com/MakrandBhandari/Spam-Detection-using-Multinomial-Naive-Bayes-Classifier/blob/main/Multinomial%20Naive%20Bayes%20Classifier%20-%20Spam%20Detection.ipynb
https://github.com/MakrandBhandari/Spam-Detection-using-Multinomial-Naive-Bayes-Classifier/blob/main/Multinomial%20Naive%20Bayes%20Classifier%20-%20Spam%20Detection.ipynb
https://github.com/milindsoorya/Spam-Classifier-in-python
https://github.com/shreyagopal/Phishing-Website-Detection-by-Machine-Learning-Techniques
https://github.com/shreyagopal/Phishing-Website-Detection-by-Machine-Learning-Techniques
https://github.com/sinanw/ml-classification-malicious-network-traffic/tree/main/data
https://github.com/sinanw/ml-classification-malicious-network-traffic/tree/main/data
https://hpbn.co/transport-layer-security-tls/
https://hussnain-akbar.medium.com/understanding-and-implementing-na%C3%AFve-bayes-algorithm-for-email-spam-detection-85a14b330fc6
https://hussnain-akbar.medium.com/understanding-and-implementing-na%C3%AFve-bayes-algorithm-for-email-spam-detection-85a14b330fc6
https://cheapsslsecurity.com/blog/what-is-transport-layer-security-in-cyber-security/
https://cheapsslsecurity.com/blog/what-is-transport-layer-security-in-cyber-security/
https://cheq.ai/blog/osi-model-threats-layers-pt-2/
https://infosecwriteups.com/using-python-for-malware-analysis-a-beginners-guide-8432377df2c4
https://infosecwriteups.com/using-python-for-malware-analysis-a-beginners-guide-8432377df2c4
https://mailchimp.com/resources/most-common-spam-filter-triggers/
https://mailtrap.io/blog/spam-filters/
https://mawgoud.medium.com/machine-learning-in-malware-detection-concept-techniques-and-use-cases-1067d99208ac
https://mawgoud.medium.com/machine-learning-in-malware-detection-concept-techniques-and-use-cases-1067d99208ac
https://medium.com/@azimkhan8018/email-spam-detection-with-machine-learning-a-comprehensive-guide-b65c6936678b
https://medium.com/@azimkhan8018/email-spam-detection-with-machine-learning-a-comprehensive-guide-b65c6936678b
https://medium.com/@Coursesteach/spam-detection-using-machine-learning-methods-dd5dbc799b6b
https://medium.com/@Coursesteach/spam-detection-using-machine-learning-methods-dd5dbc799b6b
https://medium.com/@varun.tyagi83/introducing-the-spam-detection-model-with-pre-trained-llm-3eb1f8186ba1
https://medium.com/@varun.tyagi83/introducing-the-spam-detection-model-with-pre-trained-llm-3eb1f8186ba1
https://megasisnetwork.medium.com/ai-driven-network-traffic-analysis-uncovering-anomalies-and-intrusions-e0e11056d7d1
https://megasisnetwork.medium.com/ai-driven-network-traffic-analysis-uncovering-anomalies-and-intrusions-e0e11056d7d1
https://mind-core.com/blogs/cybersecurity/5-types-of-cyber-security/
https://nvlpubs.nist.gov/nistpubs/CSWP/NIST.CSWP.04162018.pdf
https://securitygate.io/blog/osi-model-session-layer/
https://securitygate.io/blog/osi-model-transport-layer/
https://securityintelligence.com/articles/osi-model-stopping-threats-session-layer/
https://securityintelligence.com/articles/osi-model-stopping-threats-session-layer/
https://shaikhshahid.com/blog/email-spam-detection-model-python/118/
https://stevenzych.medium.com/patterns-are-power-a-beginners-guide-to-spam-detection-6bc0e9f4d68
https://stevenzych.medium.com/patterns-are-power-a-beginners-guide-to-spam-detection-6bc0e9f4d68
https://towardsdatascience.com/an-approach-to-detect-ddos-attack-with-a-i-15a768998cf7
https://towardsdatascience.com/an-approach-to-detect-ddos-attack-with-a-i-15a768998cf7
https://towardsdatascience.com/email-spam-detection-1-2-b0e06a5c0472
https://towardsdatascience.com/phishing-classification-with-an-ensemble-model-d4b15919c2d7
https://towardsdatascience.com/phishing-classification-with-an-ensemble-model-d4b15919c2d7
https://www.acronis.com/en-eu/blog/posts/ai-email-security/
https://www.broadcom.com/topics/application-security
https://www.coursera.org/articles/ai-in-cybersecurity
https://www.dashlane.com/blog/benefits-ai-cybersecurity
https://www.f5.com/glossary/application-layer-security
https://www.geeksforgeeks.org/detecting-spam-emails-using-tensorflow-in-python/
https://www.geeksforgeeks.org/detecting-spam-emails-using-tensorflow-in-python/

Appendix | FITPED AI

259

48. https://www.geeksforgeeks.org/session-layer-in-osi-model/
49. https://www.indeed.com/career-advice/career-development/presentation-

layer
50. https://www.iso.org/standard/20269.html
51. https://www.kaggle.com/code/agustnluengo/logistic-reg-in-phising-

cybersec
52. https://www.kaggle.com/code/akashkr/phishing-url-eda-and-modelling
53. https://www.kaggle.com/code/karthikapadmanaban/malware-detection-

using-random-forest
54. https://www.kaggle.com/code/kirollosashraf/phishing-email-detection-

using-deep-learning/notebook
55. https://www.kaggle.com/code/maidaly/malware-detection-with-machine-

learning/notebook
56. https://www.kaggle.com/code/msvasan/jsm-jamd-phishing-site-

classification-pred
57. https://www.kaggle.com/code/pmeasa/phishing-ml
58. https://www.kaggle.com/code/singh2010nidhi/simple-machine-learning-

antimalware
59. https://www.kaggle.com/code/yasserh/email-spam-detection-comparing-

best-ml-models
60. https://www.kaggle.com/datasets/charlottehall/phishing-email-data-by-

type?select=phishing_data_by_type.csv
61. https://www.kaggle.com/datasets/merahulk/phishing-dataset
62. https://www.kaggle.com/datasets/shashwatwork/phishing-dataset-for-

machine-learning
63. https://www.kaggle.com/datasets/subhajournal/phishingemails
64. https://www.milindsoorya.co.uk/blog/build-a-spam-classifier-in-python
65. https://www.stickmancyber.com/cybersecurity-blog/iso-27001-controls-

resolve-organisational-challenges
66. https://www.trimbox.io/blog/ai-based-spam-detection
67. https://www.tutorialspoint.com/network_security/network_security_applicati

on_layer.htm
68. Jihyeon Song, Sunoh Choi, Jungtae Kim, Kyungmin Park, Cheolhee Park,

Jonghyun Kim, Ikkyun Kim, A study of the relationship of malware detection
mechanisms using Artificial Intelligence, ICT Express, Volume 10, Issue 3,
2024, Pages 632-649, ISSN 2405-595,
https://doi.org/10.1016/j.icte.2024.03.005

69. Matthew G. Gaber, Mohiuddin Ahmed, and Helge Janicke. 2024. Malware
Detection with Artificial Intelligence: A Systematic Literature Review. ACM
Comput. Surv. 56, 6, Article 148 (June 2024), 33 pages.
https://doi.org/10.1145/3638552

70. Onih, Valentine. (2024). Phishing Detection Using Machine Learning: A Model
Development and Integration. International Journal of Scientific and
Management Research. 07. https://doi.org/10.37502/IJSMR.2024.7403

71. Patel, Ripalkumar & Mavani, Chirag & Mistry, Hirenkumar & Goswami, Amit.
(2024). APPLICATION LAYER SECURITY FOR CLOUD. 30. 1193–1198.

72. PFEFFER, Avi, et al. Artificial intelligence based malware analysis. arXiv
preprint arXiv:1704.08716, 2017.

https://www.geeksforgeeks.org/session-layer-in-osi-model/
https://www.indeed.com/career-advice/career-development/presentation-layer
https://www.indeed.com/career-advice/career-development/presentation-layer
https://www.iso.org/standard/20269.html
https://www.kaggle.com/code/agustnluengo/logistic-reg-in-phising-cybersec
https://www.kaggle.com/code/agustnluengo/logistic-reg-in-phising-cybersec
https://www.kaggle.com/code/akashkr/phishing-url-eda-and-modelling
https://www.kaggle.com/code/karthikapadmanaban/malware-detection-using-random-forest
https://www.kaggle.com/code/karthikapadmanaban/malware-detection-using-random-forest
https://www.kaggle.com/code/kirollosashraf/phishing-email-detection-using-deep-learning/notebook
https://www.kaggle.com/code/kirollosashraf/phishing-email-detection-using-deep-learning/notebook
https://www.kaggle.com/code/maidaly/malware-detection-with-machine-learning/notebook
https://www.kaggle.com/code/maidaly/malware-detection-with-machine-learning/notebook
https://www.kaggle.com/code/msvasan/jsm-jamd-phishing-site-classification-pred
https://www.kaggle.com/code/msvasan/jsm-jamd-phishing-site-classification-pred
https://www.kaggle.com/code/pmeasa/phishing-ml
https://www.kaggle.com/code/singh2010nidhi/simple-machine-learning-antimalware
https://www.kaggle.com/code/singh2010nidhi/simple-machine-learning-antimalware
https://www.kaggle.com/code/yasserh/email-spam-detection-comparing-best-ml-models
https://www.kaggle.com/code/yasserh/email-spam-detection-comparing-best-ml-models
https://www.kaggle.com/datasets/charlottehall/phishing-email-data-by-type?select=phishing_data_by_type.csv
https://www.kaggle.com/datasets/charlottehall/phishing-email-data-by-type?select=phishing_data_by_type.csv
https://www.kaggle.com/datasets/merahulk/phishing-dataset
https://www.kaggle.com/datasets/shashwatwork/phishing-dataset-for-machine-learning
https://www.kaggle.com/datasets/shashwatwork/phishing-dataset-for-machine-learning
https://www.kaggle.com/datasets/subhajournal/phishingemails
https://www.milindsoorya.co.uk/blog/build-a-spam-classifier-in-python
https://www.stickmancyber.com/cybersecurity-blog/iso-27001-controls-resolve-organisational-challenges
https://www.stickmancyber.com/cybersecurity-blog/iso-27001-controls-resolve-organisational-challenges
https://www.trimbox.io/blog/ai-based-spam-detection
https://www.tutorialspoint.com/network_security/network_security_application_layer.htm
https://www.tutorialspoint.com/network_security/network_security_application_layer.htm
https://doi.org/10.1016/j.icte.2024.03.005
https://doi.org/10.1145/3638552
https://doi.org/10.37502/IJSMR.2024.7403

Appendix | FITPED AI

260

73. Raza, M.S.; Sheikh, M.N.A.; Hwang, I.-S.; Ab-Rahman, M.S. Feature-Selection-
Based DDoS Attack Detection Using AI Algorithms. Telecom 2024, 5, 333-
346. https://doi.org/10.3390/telecom5020017

🕮 9.2.2

Statement regarding the use of Artificial Intelligence in content creation

This content has been developed with the assistance of artificial intelligence tools,
specifically ChatGPT, Gemini, and Notebook LM. These AI technologies were utilized
to enhance the text by providing suggestions for rephrasing, improving clarity, and
ensuring coherence throughout the material. The integration of these AI tools has
enabled a more efficient content creation process while maintaining high standards
of quality and accuracy.

The use of AI in this context adheres to all relevant guidelines and ethical
considerations associated with the deployment of such technologies. We
acknowledge the importance of transparency in the content creation process and
aim to provide a clear understanding of how artificial intelligence has contributed to
the final product.

https://doi.org/10.3390/telecom5020017

Appendix | FITPED AI

261

