

Erasmus+ FITPED-AI
Future IT Professionals Education in Artificial Intelligence
(Project 2021-1-SK01-KA220-HED-000032095)

Translation Model Practice

Ľubomír Benko
Kornel Chromiński

www.fitped.eu 2024

Translation Model Practice

Published on

November 2024

Authors

Ľubomír Benko | Constantine the Philosopher University in Nitra, Slovakia

Kornel Chromiński | University of Silesia in Katowice, Poland

Reviewers

Piet Kommers | Helix5, Netherland

Vaida Masiulionytė-Dagienė | Vilnius University, Lithuania

Małgorzata Przybyła-Kasperek | University of Silesia in Katowice, Poland

Ivo Písařovic | Mendel University in Brno, Czech Republic

Erasmus+ FITPED-AI

Future IT Professionals Education in Artificial Intelligence

Project 2021-1-SK01-KA220-HED-000032095

Funded by the European Union. Views and opinions expressed are however those of
the author(s) only and do not necessarily reflect those of the European Union or Slovak
Academic Association for International Cooperation. Neither the European Union nor
the granting authority can be held responsible for them.

Licence (licence type: Attribution-Non-commercial-No Derivative Works) and may be
used by third parties as long as licensing conditions are observed. Any materials
published under the terms of a CC Licence are clearly identified as such.

All trademarks and brand names mentioned in this publication and all trademarks and
brand names mentioned that may be the intellectual property of third parties are
unconditionally subject to the provisions contained within the relevant law governing
trademarks and other related signs. The mere mention of a trademark or brand name
does not imply that such a trademark or brand name is not protected by the rights of
third parties.

© 2024 Constantine the Philosopher University in Nitra

ISBN 978-80-558-2231-0

TABLE OF CONTENTS
1 Basic Information .. 5

1.1 Theoretical basics .. 6

1.2 Simple examples... 11

1.3 Abbreviated notation .. 15

1.4 Functions ... 18

2 Examples .. 23

2.1 Programs ... 24

2.2 Advanced Programs ... 26

3 Natural Language Processing .. 30

3.1 Introduction ... 31

3.2 Vectorisation ... 34

4 Preparation of Texts .. 39

4.1 Basic tokenization .. 40

4.2 Tokenization .. 43

4.3 Stemming .. 49

4.4 Lematization ... 53

4.5 Additional features ... 61

5 Sequence-to-Sequence Model .. 69

5.1 Introduction ... 70

5.2 Machine translation - text preparation .. 74

5.3 Machine translation - model creation ... 85

5.4 Machine translation - model deployment ... 100

6 Machine Translation Evaluation ... 104

6.1 Basics of evaluation ... 105

6.2 Automatic evaluation metrics ... 111

Basic Information

Chapter 1

Basic Information | FITPED AI

6

1.1 Theoretical basics

📝 1.1.1

A regular expression (regex or regexp) is a string that defines a pattern for
searching text using special characters. In general, regular expressions come from
the field of theoretical computer science and the theory of formal languages.
Regular expressions are most commonly used in text manipulation in the following
cases:

• determining whether a text matches a regular expression (input validation),
• text search - finding out where in the text the substring being searched for is

located,
• replacing a substring in a string (find and replace),
• extracting all occurrences of a substring.

Regular expressions in Python are written in the so-called raw string, which ensures
that special sequences of characters do not have their special meaning activated
(e.g. \n creates a new line):

r""

A raw string is an ordinary string but with a different form of notation. We can also
write regular expressions as plain text strings, but then we have to watch out for
special character sequences, which we have to treat with a double slash. This
reduces the clarity of regular expressions.

print("hello\nworld")

print(r"hello\nworld")

📝 1.1.2

Why are raw strings (denoted as r"") commonly used for regular expressions in
Python?

• They ensure that special character sequences do not activate their usual
meanings.

• They automatically create new lines in regular expressions.
• They convert special sequences into plain text.
• They make regular expressions case-insensitive.

Basic Information | FITPED AI

7

📝 1.1.3

Some characters have special meanings in the case of regular expressions. This
means that if we want to use them, we have to prefix them with a backslash
character, which ensures that the program does not take the special meaning into
account. For example, \n indicates a new line. However, if we write it as a raw
string, its special meaning will not be used.

print("hello\nworld")

print(r"hello\nworld")

📝 1.1.4

Thus, a regular expression defines a so-called search pattern for strings. In
programming languages, there are functions to check whether a given string
satisfies the regular expression condition. In Python, we will use the re library,
which contains the match() function. This function verifies that the string matches
the regular expression and if it finds a match, it returns a special object of type
Match. If it does not find a match it returns an empty value of the form None. The
Match object contains a number of useful pieces of information that we can work
with later, such as information about where in the string the matched regular
expression is located.

There are a number of symbols and characters that have a specific function in the
case of regular expressions:

• . (dot) - this is a wildcard that represents an arbitrary character,
• ^ - identifies the beginning of a string or line,
• $ - identifies the end of a string or line.

import re

print(re.match(r'^I','Informatics')) # does the word start

with a capital i?

print(re.match(r'$a','Informatics')) # end the word with a

small a?

📝 1.1.5

What does the match() function from Python's re library return if a string does not
satisfy the regular expression condition?

• The value None.
• A Match object with no data.

Basic Information | FITPED AI

8

• An empty string.
• The index of the mismatch.

📝 1.1.6

Regular expressions provide powerful symbols for defining search patterns in text.
Among these are . and $, which help us match specific characteristics in strings.
The . symbol acts as a wildcard for any character, while the $ symbol ensures the
pattern matches at the end of a string. Understanding these symbols is crucial for
tasks like searching and validating text.

Using . (Dot) as a wildcard

The dot (.) matches any single character, except for a newline. This makes it
versatile for general patterns:

• The pattern A. matches "Al" in "Alan" or "Ab" in "Albert" because . matches
any character following "A."

• However, it will not match "A" on its own, as there must be one character
after "A" to satisfy the pattern.

import re

pattern = r"A."

text = "Alan"

result = re.match(pattern, text)

if result:

 print("Match found:", result.group()) # Outputs 'Al'

else:

 print("No match.")

📝 1.1.7

Which regular expression matches any string starting with "A" followed by any
single character?

• r"A."
• r".A"
• r"A$"
• r"A*"

Basic Information | FITPED AI

9

📝 1.1.8

Using $ to match the end of a string

The dollar sign ($) asserts that the pattern must occur at the end of the string. For
instance:

• The pattern t$ matches any string ending in "t," like "Alphabet" or "cat."
• It will not match "train" or "Alphabetical" because these strings do not end

with "t."

import re

pattern = r"t$"

text = "Alphabet"

result = re.match(pattern, text)

if result:

 print("Match found:", result.group()) # Outputs

'Alphabet'

else:

 print("No match.")

Combining . and $

We can combine these symbols for more complex patterns. For example, ..$
matches any string ending with exactly two characters. In "test," it will match "st."

📝 1.1.9

Which regular expression checks if a string ends with the word "End"?

• r"End$"
• r".End"
• r"^End$"
• r"End."

Basic Information | FITPED AI

10

📝 1.1.10

Which regular expression matches a string ending with any single character?

• r".$"
• r"^.$"
• r"$.+"
• r".*.$"

📝 1.1.11

Regular expressions allow us to define patterns for matching text, including
checking if a string starts with a specific character. This is particularly useful in
programming tasks like validating input or searching text efficiently. To accomplish
this in Python, we use special symbols like ^, which asserts that the pattern must
match at the beginning of a string.

How the ^ symbol works

The ^ symbol is used in regular expressions to assert that the match must occur at
the start of the string. For instance:

• The pattern ^A matches any string that starts with the letter "A."
• It will match "Apple" and "Alphabet" but not "Banana" or "apple."

This symbol does not check for any other conditions beyond the beginning of the
string, so combining it with specific characters or words makes it very precise.

Using ^ in Python with re.match()

In Python, you can use the re.match() function from the re library to check if a
string matches a regular expression at the beginning of the text. Here’s how you
can check if the word "Alphabet" starts with a capital "A":

import re

pattern = r"^A" # Regular expression

text = "Alphabet"

Check if the text starts with 'A'

result = re.match(pattern, text)

if result:

 print("Match found!")

Basic Information | FITPED AI

11

else:

 print("No match.")

In this case, the ^A pattern asserts that the string must start with "A." If the text
satisfies this condition, re.match() returns a Match object. Otherwise, it returns
None.

• Always use raw strings (r"") for regular expressions in Python to avoid
unintended interpretations of escape sequences.

• The ^ symbol is case-sensitive, so ^A will not match "alphabet" since it starts
with a lowercase "a."

📝 1.1.12

Which regular expression checks if the word "Alphabet" starts with a capital "A"?

• r"^A"
• r"A$"
• r".A"
• r"^a"

1.2 Simple examples

📝 1.2.1

Which regular expression checks if the word "Alphabet" starts with a capital "A"?

you can solve / check it by code

import re

📝 1.2.2

Which regular expression checks if the string ends with the word "com"?

you can solve / check it by code

import re

Basic Information | FITPED AI

12

📝 1.2.3

Quantifiers are used in regular expressions to specify how many times a character
or a group of characters can appear in a string. These are important for defining
flexible patterns. Here are the most commonly used quantifiers:

• ? - means no or just 1 occurrence. The ? quantifier specifies that the
preceding character or group can appear zero or one time. It makes the
preceding character optional. Example: r"colou?r" matches both "color" and
"colour".

• * - means no or more occurrences, specifies that the preceding character or
group can appear zero or more times. Example: r"ab*c" matches "ac", "abc",
"abbc", "abbbc", etc.

• + - means just 1 or more occurrences, specifies that the preceding character
or group must appear one or more times. Example: r"ab+c" matches "abc",
"abbc", "abbbc", but not "ac".

• {number} - means the exact number of occurrences defined in brackets,
specifies that the preceding character or group must appear exactly the
given number of times. Example: r"ab{2}" matches "abb", but not "ab" or
"abbb".

• {min, max} - means the number of occurrences between the defined
boundaries, including the boundaries, specifies that the preceding character
or group should appear between the minimum and maximum number of
times. Example: r"ab{2, 4}" matches "abb", "abbb", and "abbbb", but not "ab"
or "abbbbb".

import re

print(re.match(r'.*','hello world'))

print(re.match(r'hel{2}o','hello'))

print(re.match(r'ab*a','abbbbba'))

📝 1.2.4

What does the quantifier ? mean in regular expressions?

• No or one occurrence
• Exactly one occurrence
• One or more occurrences
• Any number of occurrences

Basic Information | FITPED AI

13

📝 1.2.5

What does the quantifier * mean in regular expressions?

• No or more occurrences
• Exactly one occurrence
• One or more occurrences
• A specific number of occurrences

📝 1.2.6

What does the quantifier + mean in regular expressions?

• One or more occurrences
• No or one occurrence
• No or more occurrences
• A specific number of occurrences

📝 1.2.7

What does {2} mean in a regular expression?

• Exactly 2 occurrences
• At least 2 occurrences
• 2 or more occurrences
• No or 2 occurrences

📝 1.2.8

What does {2,4} mean in a regular expression?

• Between 2 and 4 occurrences
• Exactly 2 occurrences
• 2 or more occurrences
• No or 4 occurrences

Basic Information | FITPED AI

14

📝 1.2.9

Which regular expression correctly verifies and evaluates the word "pool"?

you can solve / check it by code

import re

📝 1.2.10

Which regular expression correctly verifies and evaluates all the words "abbc",
"abbbc", and "abbbbc"?

you can solve / check it by code

import re

Basic Information | FITPED AI

15

1.3 Abbreviated notation

📝 1.3.1

To avoid having to manually print all the characters of a given word or to cover a
range of characters, such as when checking the quality of a password, we can use
character groups in regular expressions. Character groups allow us to specify a set
of characters that can match a single position in the string.

Here are ways to define character groups:

• By listing individual characters - example, [cde] will match any one of the
characters 'c', 'd', or 'e'.

• By using a character range - example, [a-z] will match any lowercase letter
from 'a' to 'z'.

• By combining different characters and ranges - example, [cdex-z1-3] will
match either 'c', 'd', 'e', any letter from 'x' to 'z', or any digit from 1 to 3.

📝 1.3.2

Which of the following regular expressions matches any one of the characters 'c',
'd', or 'e'?

• [cde]
• [aeiou]
• [a-z]
• [1-9]

📝 1.3.3

What does the regular expression [a-z] match?

• All lowercase letters from 'a' to 'z'
• Any digit between 1 and 9
• All characters between 'a' and 'z', including all digits
• Any uppercase letter from 'A' to 'Z'

Basic Information | FITPED AI

16

📝 1.3.4

Which regular expression matches 'c', 'd', 'e', any letter from 'x' to 'z', or any digit
between 1 and 3?

• [cdex-z1-3]
• [cde1-3]
• [x-zcd1-3]
• [cd1-3]

📝 1.3.5

In regular expressions, we can also use sequences of wildcard characters that
simplify the expression of certain patterns:

• \d - matches any digit, equivalent to the range [0-9].
• \D - matches anything except digits.
• \s - matches any white space character, such as spaces, tabs, etc.
• \S - matches anything except white space characters.
• \w - matches all alphanumeric characters and underscores, similar to the

range [a-zA-Z0-9_].
• \W - matches all characters except those matched by \w.
• | (vertical bar) - is often used in combination with groups of characters. It

separates different parts of a regular expression, allowing us to match any
one of them. For example, the regular expression aaa|bbb matches either the
string 'aaa' or 'bbb'.

More complex examples, like ([ab]{2}|z)k, match either the two characters 'a' or 'b'
followed by 'k', or the letter 'z' followed by 'k'. Using this notation, we can match
words such as "aak", "abk", "bak", "bbk", and "zk".

📝 1.3.6

What does the regular expression \d match?

• Any digit
• Any whitespace character
• Any letter
• Any alphanumeric character

Basic Information | FITPED AI

17

📝 1.3.7

What does \D denote in a regular expression?

• All characters except digits
• All digits
• Any whitespace character
• All letters

📝 1.3.8

What does the regular expression \s match?

• Any whitespace character
• Any letter
• Any digit
• Any punctuation mark

📝 1.3.9

What does the regular expression \w match?

• All alphanumeric characters and underscores
• Only uppercase letters
• Only digits
• Only lowercase letters

📝 1.3.10

Which regular expression would match either the string 'aaa' or 'bbb'?

• aaa|bbb
• a{3}|b{3}
• a|b
• (aaa|bbb)

Basic Information | FITPED AI

18

📝 1.3.11

Which regular expression matches words such as 'aak', 'abk', 'bak', 'bbk', and 'zk'?

• ([ab]{2}|z)k
• [ab]{2}k
• a|b{k}
• a{2}|z{k}

1.4 Functions

📝 1.4.1

With regular expressions, we have several functions that allow us to search for
patterns in a string:

• search() - looks for the first part of a string that matches the regular
expression. It returns only the first occurrence found.

• findall() - returns all matching substrings in the string. It finds all
occurrences that match the pattern without overlapping.

• finditer() is similar to findall(), this function returns an iterator that yields
match objects for each match. It can be used to obtain detailed information
about each match, such as its position in the string.

It’s important to note that when using findall() and finditer(), the functions traverse
the string from left to right and do not recheck characters already evaluated as part
of a previous match. This means overlapping matches are not included in the
results. On the other hand, search() is only concerned with finding the first match
and does not consider overlaps.

import re

print(re.search(r'.n', 'Good evening!'))

print(re.findall(r'.n', 'Good evening!'))

print(list(re.finditer(r'.n', 'Good evening!')))

📝 1.4.2

Which function returns only the first occurrence of a match in a string?

• search()
• match()
• finditer()
• findall()

Basic Information | FITPED AI

19

📝 1.4.3

What does the findall() function return?

• All matching substrings
• The first match
• An iterator of match objects
• Only the last match

📝 1.4.4

What does the finditer() function return?

• An iterator of match objects
• A list of strings
• Only the first match
• A dictionary of matches

📝 1.4.5

Which function does not allow for overlapping matches in the string?

• findall()
• search()
• finditer()

📝 1.4.6

What happens when you use findall() or finditer() in terms of overlapping matches?

• They ignore previously evaluated characters
• They allow overlapping matches
• They return the same match multiple times
• They only return the last match

Basic Information | FITPED AI

20

📝 1.4.7

Another possibility of applying regular expressions is substitution. The sub()
function in Python is used to replace parts of a string that match a regular
expression. It works very similarly to the string method replace(), with the key
difference being that the replaced part must match the condition of the regular
expression.

The count parameter in sub() specifies how many substrings to replace:

• If count is set to 1, only the first occurrence is replaced.
• If count is set to a higher number, that many occurrences will be replaced.
• If count is not provided, all occurrences of the pattern will be replaced.

import re

print(re.sub(r'\s+and\s+', ' & ', 'Black and white and red

and green and blue'))

print(re.sub(r'\s+and\s+', ' & ', 'Black and white and red

and green and blue', count=1))

📝 1.4.8

How can you replace only the first occurrence of a pattern using sub()?

• By setting the count parameter to 1
• By setting the count parameter to 0
• By not using the count parameter
• By using the replace() function

📝 1.4.9

What is the function sub() used for in Python?

• To replace parts of a string that match a regular expression
• To search for patterns in a string
• To split a string into substrings
• To find the first match in a string

Basic Information | FITPED AI

21

📝 1.4.10

Write a regular expression that verifies that the given number is a three-digit
number. Remember that a three-digit number must not start with zero.

import re

📝 1.4.11

Write a regular expression that verifies that the given string is the beginning of a
phone area code. A phone area code always starts with a + sign.

import re

📝 1.4.12

Let's take a closer look at the findall() function, which can capture a group of
characters/words that satisfy a regular expression. The findall() function captures
all substrings in a given text that match a regular expression.

It returns a list of all the matches found in the input string.

For example, if we want to identify all the words that start with a capital letter, we
can use a regular expression pattern that matches such words. For r'\b[A-Z][a-
z]*\b':

• [A-Z] matches any uppercase letter at the beginning of a word.
• [a-z]* matches any lowercase letters following the uppercase letter.
• \b - word boundary, ensuring that we match whole words.

import re

text = 'Sarah has lived at the house already 4 years. Peter

came to visit Sarah and John during summer.'

res = re.findall(r'[A-Z][a-z]+',text)

print(res)

Program output:
['Sarah', 'Peter', 'Sarah', 'John']

Basic Information | FITPED AI

22

📝 1.4.13

What does the findall() function return?

• A list of all matching substrings
• A dictionary of matches
• The first matching substring

📝 1.4.14

Which regular expression pattern can be used to match words starting with a
capital letter?

• r'\b[A-Z][a-z]*\b'
• r'[A-Z][A-Z]*'
• r'[a-z][A-Z]*'
• r'\b[A-Z]\b'

Examples

Chapter 2

Examples | FITPED AI

24

2.1 Programs

📝 2.1.1

Create a regular expression that successfully recognizes tagged users on social
networks. The user's name is usually prefixed with @.

⌨ 2.1.2 Tagging

Create a program that successfully recognizes tagged users on social networks.
The user's name is usually prefixed with @.

Input : Correct me if I’m wrong, but I think that after

today’s release of #willow Chapter 7, Julian Glover is now the

first actor to hit all three @Lucasfilm franchises

Output: ['@Lucasfilm']

📝 2.1.3

Create a regular expression that successfully recognizes decimal numbers in the
text. Decimal numbers will be written with a decimal point.

⌨ 2.1.4 Decimal numbers

Create a program that successfully recognizes decimal numbers in the text.
Decimal numbers will be written with a decimal point.

Input : How do you guys read this as decimal value 0.015? I

read it as 15/100 (fifteen hundredth) and my co-worker read it

as 15/1000 (fifteen thousandth).

Output: ['0.015']

📝 2.1.5

Create a regular expression that successfully recognizes fractions in text. Assume
that the fraction will consist of positive integers. E.g. ¾

Examples | FITPED AI

25

⌨ 2.1.6 Fractions

Create a program that successfully recognizes fractions in text. Assume that the
fraction will consist of positive integers. E.g. 3/4

Input : How do you guys read this as decimal value 0.015? I

read it as 15/100 (fifteen hundredth) and my co-worker read it

as 15/1000 (fifteen thousandth).

Output: ['15/100','15/1000']

📝 2.1.7

Create a regular expression that successfully recognizes an email address in the
text. Assume that the email address will be in the standard format. For example,
john.smith@gmail.com

⌨ 2.1.8 Email

Create a program that successfully recognizes an email address in the text.
Assume that the email address will be in a standard format. For example,
john.smith@gmail.com.

Input : john.smith@gmail.com

Output: ['john.smith@gmail.com']

📝 2.1.9

Create a regular expression that successfully evaluates the password strength. The
password could contain only upper and lower case letters and numbers. Password
length should be at least 8 characters.

⌨ 2.1.10 Password

Create a program that successfully evaluates the strength of a password. The
password could contain only upper and lower case letters and numbers. Password
length should be at least 8 characters.

Input : ab18aaPL

Output: ['ab18aaPL']

Examples | FITPED AI

26

📝 2.1.11

Create a regular expression that successfully evaluates the suitability of the
username. The username can consist of alphanumeric characters as well as _ and -
characters. The username must contain only lowercase letters. The length of the
username should be at least 3 characters and no more than 16 characters.

⌨ 2.1.12 Username

Create a program that successfully evaluates the suitability of a username. The
username can consist of alphanumeric characters as well as _ and - characters.
The username must contain only lowercase letters. The length of the username
should be at least 3 characters and no more than 16 characters.

Input : beever10

Output: ['beever10']

2.2 Advanced Programs

⌨ 2.2.1 URL

Create a program that successfully detects the URL in the text and informs whether
it is written correctly or not. Assume that https is mandatory.

Input : https://www.ukf.sk

Output: True

⌨ 2.2.2 IP address

Create a program that successfully detects the IP address in the text and informs
whether it is entered correctly or not.

Input : 192.168.1.255

Output: True

⌨ 2.2.3 Date I.

Create a program that successfully detects the date in text in the format YYYY-MM-
dd and informs whether it is written correctly or not.

Examples | FITPED AI

27

Input : 2022-02-02

Output: True

⌨ 2.2.4 Date II.

Create a program that successfully detects the date in text in the format
dd/MM/YYYYY and informs whether it is entered correctly or not.

Input : 31/01/2022

Output: True

⌨ 2.2.5 Date III.

Create a program that successfully detects the date in the text in the format
dd.mmm.YYYY and informs whether it is entered correctly or not. Write the months
in English (Jan, Feb, Mar, Apr, May, Jun, Jul, Aug, Sep, Oct, Nov, Dec). Ensure that
the months have the correct number of days.

Input : 31.Jan.2022

Output: True

⌨ 2.2.6 Time I.

Create a program that successfully recognizes the time in text in the 12-hour
format HH:MM and informs whether it is written correctly or not.

Input : 09:59

Output: True

⌨ 2.2.7 Time II.

Create a program that successfully recognizes the time in text in the 12-hour
format HH:MM am/pm and reports whether it is written correctly or not. Be sure to
check if the time contains am/pm information, which can also be written in upper
case.

Input : 09:59 PM

Output: True

Examples | FITPED AI

28

⌨ 2.2.8 Time III.

Create a program that successfully recognizes the time in text in 24-hour HH:MM
format and informs whether it is written correctly or not. For hours and minutes 0-9,
it is necessary to write a 0 in front of them.

Input : 23:59

Output: True

⌨ 2.2.9 Time IV.

Create a program that successfully recognizes the time in text in 24-hour HH:MM
format and informs whether it is written correctly or not. For hours and minutes 0-9,
it is not necessary to write a 0 in front of them.

Input : 5:59

Output: True

⌨ 2.2.10 Time V.

Create a program that successfully recognizes the time in text in the 24-hour
format HH:MM:SS and informs whether it is written correctly or not. For hours and
minutes 0-9, it is necessary to write a 0 in front of them.

Input : 05:59:42

Output: True

⌨ 2.2.11 URL slug

Create a program that successfully recognizes the URL slug in the text. This is the
last part of the URL that serves as a unique identifier for the page. These are
alphanumeric characters that can be separated by a hyphen. E.g.
https://www.abc.com/this-is-a-slug/

Input : this-is-a-slug

Output: True

⌨ 2.2.12 Phone number

Create a program that successfully recognizes an international phone number in
the text. Make sure the area code begins with a + or 00. Also, ensure that it
recognizes a number with spaces, but also without spaces.

Examples | FITPED AI

29

Input : 00421 123 459 21

Output: True

⌨ 2.2.13 File name

Create a program that successfully recognizes a file name in text. Make sure that
the file extension contains exactly 3 characters. The file name can contain
alphanumeric characters.

Input : filename.txt

Output: True

⌨ 2.2.14 Duplicity

Create a program that successfully detects if there are duplicate words in the text
(can also be a number).

Input : hello world hello

Output: True

Natural Language
Processing

Chapter 3

Natural Language Processing | FITPED AI

31

3.1 Introduction

🕮 3.1.1

Natural Language Processing (NLP) is an interdisciplinary field combining
computer science, linguistics, and artificial intelligence to enable machines to
process and understand human language. With advancements in AI, NLP has
become integral to many modern applications. From virtual assistants like Alexa
and Siri to sophisticated chatbots and sentiment analysis tools, NLP technologies
are reshaping how we interact with machines.

The key goal of NLP is to bridge the gap between human communication and
computational understanding. This involves tasks like parsing language syntax,
identifying the meaning of words in context, and even understanding emotions and
intents conveyed in text. NLP can process structured and unstructured data,
making it a powerful tool in areas ranging from social media analysis to healthcare.

Throughout this course, students will explore foundational concepts of NLP, learn
about preprocessing techniques to prepare textual data, and gain insights into
machine translation technologies. The focus will be on understanding the
mechanics of NLP and applying it effectively in real-world scenarios.

📝 3.1.2

What is the primary goal of Natural Language Processing

• To enable machines to process and understand human languages.
• To create hardware for faster computations.
• To convert text into binary code for storage.
• To analyze numerical datasets.

🕮 3.1.3

NLP has found its way into numerous practical applications that touch everyday
life. Chatbots, for instance, are widely used by businesses to handle customer
inquiries efficiently. These AI-based systems simulate human conversations,
providing users with instant responses to common questions. Beyond customer
support, NLP powers virtual assistants like Google Assistant, which helps users
manage their schedules, search for information, and even control smart home
devices.

Another critical application is sentiment analysis, which identifies the emotional
tone behind text. For example, businesses use sentiment analysis to gauge public

Natural Language Processing | FITPED AI

32

opinions on social media or track customer satisfaction. This application highlights
the ability of NLP to derive actionable insights from large volumes of unstructured
data.

Machine translation, one of the oldest NLP applications, has evolved significantly
with advancements in neural networks. Tools like Google Translate now provide
more accurate translations by learning contextual relationships between words and
phrases. These applications showcase the versatility and importance of NLP in
today’s digital landscape.

📝 3.1.4

Which of the following are common NLP applications?

• Virtual assistants like Alexa
• Sentiment analysis
• Financial forecasting tools
• Computer-aided design software

🕮 3.1.5

Text preprocessing is a crucial step in NLP workflows. It involves cleaning and
preparing textual data to ensure compatibility with machine learning models. Raw
text often contains noise, such as punctuation, special characters, and
inconsistencies in case formatting. Removing this noise helps improve the
performance and accuracy of NLP applications.

Common preprocessing techniques include tokenization, which splits text into
smaller units like words or phrases, and lemmatization, which reduces words to
their root forms. Another essential step is removing stop words, such as "and,"
"the," and "is," which do not add significant meaning to the analysis. Text
preprocessing lays the foundation for effective NLP models by converting human
language into a format that machines can process.

By mastering preprocessing techniques, students can ensure their NLP models
focus on meaningful patterns in the data rather than irrelevant noise.

📝 3.1.6

What is the purpose of text preprocessing in NLP?

• To improve the model's performance by cleaning and preparing text data.

Natural Language Processing | FITPED AI

33

• To generate training datasets automatically.
• To store text data in compressed formats.
• To calculate numerical features from images.

🕮 3.1.7

Machine translation is one of the most transformative NLP applications. The
objective is to enable automatic translation of text from one language to another,
bridging linguistic barriers and facilitating global communication. Early machine
translation systems relied on rule-based methods, requiring extensive linguistic
knowledge to create translation rules.

Modern approaches use neural networks and machine learning to achieve higher
accuracy. Neural machine translation (NMT) models, such as Google's
Transformer-based architecture, have revolutionized this field. These models learn
patterns from vast multilingual datasets, capturing context and meaning more
effectively than traditional methods.

Machine translation plays a critical role in various industries, including education,
business, and healthcare. As students delve into this topic, they will understand the
evolution of translation models and their underlying principles.

📝 3.1.8

What are the primary goal of machine translation in NLP?

• To enable automatic translation between languages.
• To summarize large volumes of text.
• To create new languages for digital communication.
• To convert audio speech into text.

Natural Language Processing | FITPED AI

34

3.2 Vectorisation

🕮 3.2.1

Vectorization in NLP is the process of converting textual data into numerical
representations that machines can understand and process. Human language, with
its nuances and complexities, is difficult for computers to interpret directly.
Vectorization bridges this gap by transforming text into mathematical constructs
like vectors or matrices.

Imagine you want to teach a virtual assistant to understand human speech. Instead
of manually teaching it grammar, sentence structure, and meaning, you could
transform text into vectors that represent words or sentences in an n-dimensional
space. Each dimension corresponds to a word, and the value in each dimension
reflects the presence or frequency of that word. This numerical representation
allows computers to analyze, compare, and manipulate language data
mathematically.

Vectorization simplifies complex NLP tasks, making it foundational for applications
like chatbots, sentiment analysis, and machine translation. By converting language
into numbers, it enables the use of mathematical models to extract patterns, derive
insights, and make predictions.

📝 3.2.2

What is the main purpose of vectorization in NLP?

• To convert text into numerical representations for machine understanding.
• To store text data in binary format.
• To compress text data for storage efficiency.
• To create new languages for machines.

🕮 3.2.3

In NLP, raw text data is unstructured and cannot be directly used by machine
learning models. Vectorization addresses this challenge by structuring the text into
a format that models can process. Without vectorization, computers would struggle
to interpret the semantic and syntactic aspects of human language.

For instance, a virtual assistant trained without vectorization would require manual
input of every possible sentence structure, word, and rule, which is impractical.
Instead, vectorization automates this process by creating a mathematical space
where sentences are represented as vectors. These vectors encapsulate the

Natural Language Processing | FITPED AI

35

relationships between words, enabling models to understand patterns such as word
co-occurrence, context, and even sentiment.

Moreover, vectorization helps standardize text data, ensuring consistency in how
machines interpret language. This step is essential for building reliable NLP models
that can generalize across different datasets and applications.

📝 3.2.4

Why is vectorization crucial in NLP?

• It enables models to interpret and process raw text data.
• It ensures the text data is uncompressed for analysis.
• It eliminates the need for training datasets.
• It simplifies manual grammar annotation.

🕮 3.2.5

The vectorization process converts text into numerical representations using
techniques like bag-of-words, term frequency-inverse document frequency (TF-IDF),
or word embeddings. Each method has its unique approach to capturing
information from text.

The bag-of-words (BoW) model focuses on word frequency, creating a matrix
where each row represents a document and each column corresponds to a word.
Values in the matrix indicate the word count in each document. However, BoW
ignores word order and context, which limits its ability to capture deeper meanings.

To address this, TF-IDF builds on BoW by weighting words based on their
importance. Words that are frequent in a document but rare in the corpus receive
higher scores, improving the model’s ability to focus on relevant terms. For
advanced applications, word embeddings like Word2Vec or GloVe map words to
dense vectors in a continuous vector space, capturing semantic relationships
between words.

📝 3.2.6

Which vectorization technique considers the importance of words in a document
relative to the entire corpus?

• TF-IDF
• Bag-of-Words

Natural Language Processing | FITPED AI

36

• Word Embeddings
• Sentence Parsing

🕮 3.2.7

Vectorization in NLP can be done manually by representing text data numerically
without relying on libraries or pre-built functions. The goal remains the same:
converting words or sentences into numbers to enable machines to understand and
process human language.

Imagine we have a simple vocabulary consisting of the words ["cat," "dog,"
"mouse"]. These words form the dimensions of a mathematical space. To manually
vectorize a sentence like "cat and dog", we count the occurrences of each word in
our vocabulary:

• "cat" appears once.
• "dog" appears once.
• "mouse" does not appear.

The resulting vector for this sentence would be [1, 1, 0]. This is known as a bag-of-
words (BoW) representation, where each value corresponds to the frequency of a
word in the sentence.

This process can be expanded to larger vocabularies and longer texts, allowing us
to create a structured numerical representation that computers can analyze
mathematically.

📝 3.2.8

What does the vector [1, 1, 0] represent in a bag-of-words model based on previous
example?

• The presence of "cat" and "dog" and the absence of "mouse."
• The frequency of characters in a sentence.
• The semantic meaning of the sentence.
• A numerical representation of grammar rules.

🕮 3.2.9

To vectorize any text, the first step is to create a vocabulary, a list of all unique
words across the dataset. For instance, consider three sentences:

Natural Language Processing | FITPED AI

37

1. "The cat sat on the mat."
2. "The dog barked at the cat."
3. "The mouse ran away."

From these sentences, we identify all unique words:

["the," "cat," "sat," "on," "mat," "dog," "barked," "at," "mouse," "ran," "away"].

Each word in the vocabulary is assigned a unique position in the vector. When
vectorizing a sentence, we count how many times each word from the vocabulary
appears in that sentence and place the counts in the corresponding positions.

For the sentence "The cat sat on the mat," the vector becomes [2, 1, 1, 1, 1, 0, 0, 0,
0, 0, 0], where "the" appears twice, and other words like "dog" or "barked" do not
appear.

📝 3.2.10

What is the first step in vectorization?

• Building a vocabulary of unique words.
• Counting the frequency of words in each sentence.
• Creating a matrix of all word counts.
• Assigning random numbers to words.

📝 3.2.11

For example, if we wanted to create a virtual assistant we would have to train it in a
human way, we would have to load a language dictionary (the easy part) into its
memory, find a way to teach it grammar (speech, clause, sentence structure, etc.)
and logical interpretation. This is a time-consuming task. However, what if we could
transform the sentence into mathematical objects so that the computer could use
mathematical or logical operations to make some sense of it? This mathematical
construct could be a vector, a matrix, and so on. Suppose we had an n-dimensional
space where each axis corresponded to a word of our language. This allows us to
represent a given sentence as a vector in this space with its coordinate along each
axis as the number of words representing that axis.

However, to avoid having to do the vectorization process manually, we can use the
Python programming language and the scikit-learn library. Using the
CountVectorizer() function, we can vectorize a sentence and get a matrix of vectors
representing that sentence.

Natural Language Processing | FITPED AI

38

from sklearn.feature_extraction.text import CountVectorizer

document = ["I like computer science","There are many computer

softwares","I have an computer with various softwares"]

vectorizer = CountVectorizer()

vectorizer.fit(document)

print("Vocabulary: ", vectorizer.vocabulary_)

vector = vectorizer.transform(document)

print("Vectorized document:")

print(vector.toarray())

Program output:
Vocabulary: {'like': 4, 'computer': 2, 'science': 6, 'there':

8, 'are': 1, 'many': 5, 'softwares': 7, 'have': 3, 'an': 0,

'with': 10, 'various': 9}

Vectorized document:

[[0 0 1 0 1 0 1 0 0 0 0]

 [0 1 1 0 0 1 0 1 1 0 0]

 [1 0 1 1 0 0 0 1 0 1 1]]

Preparation of Texts

Chapter 4

Preparation of Texts | FITPED AI

40

4.1 Basic tokenization

🕮 4.1.1

The dictionary is an important part of several tasks in NLP. A lexicon can be
defined as the vocabulary of a person, language, or discipline. Roughly speaking, a
lexicon can be thought of as a dictionary of terms called lexemes. For example, the
terms used by doctors can be thought of as the lexicon of their profession. As an
example, in an attempt to create an algorithm to convert a physical prescription
provided by doctors into an electronic form, lexicons would consist primarily of
medical terms. Lexicons are used for a variety of NLP tasks where they are
provided as a word list or dictionary.

Before discussing procedures on how to create a lexicon we need to understand
phonemes, graphemes and morphemes:

• Phonemes can be thought of as the sound units that can distinguish one
word from another in a given language.

• Graphemes are groups of letters of length one or more that can represent
these individual sounds or phonemes.

• A morpheme is the smallest unit of meaning in a language.

📝 4.1.2

Which of the following statements about lexicons and language components is
true?

• A lexicon is the vocabulary specific to a person, language, or profession.
• Morphemes represent the smallest unit of meaning in a language.
• Graphemes are the smallest units of meaning in a language.
• Phonemes are the written symbols that represent sound units.

📝 4.1.3

When creating a dictionary you must first divide documents or sentences into parts
called tokens. Each token carries a semantic meaning associated with it.
Tokenization is one of the basic stages to be performed in any text processing
activity. Tokenization can be thought of as a segmentation technique in which we
try to divide larger portions of text into smaller meaningful parts. Tokens generally
contain words and numbers but can also be extended to include punctuation marks,
symbols, and sometimes comprehensible emoticons.

Preparation of Texts | FITPED AI

41

The simplest approach to tokenization is certainly a simple division based on
spaces. We can use the split() function to do this, which splits a text variable based
on a specified separator. By default, the function splits based on space. However,
this is a trivial function that may not work properly.

sent = "I like computer science"

print(sent.split())

Program output:
['I', 'like', 'computer', 'science']

📝 4.1.4

Which statements about tokenization are correct?

• Tokenization involves dividing larger portions of text into smaller meaningful
parts.

• Tokenization is a segmentation technique used in text processing.
• Tokens are limited to words and numbers and cannot include symbols or

punctuation marks.
• Tokens always represent complete sentences in a document.

📝 4.1.5

The split() function is a basic string operation that divides a sentence into words
based on a specified delimiter, such as spaces. However, it may not always
produce accurate results in all cases. For example:

• Punctuation handling - in a sentence like "Hello, world!", the split() function
will separate "Hello," as a single token, leaving the comma attached to the
word. This requires additional steps for proper tokenization, such as
removing or handling punctuation separately.

• Compound words - words like "e-mail" or "mother-in-law" might not be treated
as single tokens because the hyphen would cause the split function to
separate them into parts.

• Whitespace sensitivity - multiple spaces or tabs in a sentence may cause
unexpected behavior when splitting into tokens, leading to empty tokens in
the result.

• Special characters - symbols, emojis, or non-standard characters may be
incorrectly treated, either as part of a token or split into separate elements.

Preparation of Texts | FITPED AI

42

While split() provides a quick and simple method for dividing text, more robust
approaches, such as regular expressions or NLP tokenization libraries, handle these
challenges more effectively.

sentence = "Slovakia's capital is Bratislava"

print(sentence.split())

Program output:
["Slovakia's", 'capital', 'is', 'Bratislava']

We can observe that the function does not address the apostrophe and simply
takes it as part of the word. This can be a problem, especially in the case of English
phrases like I'm or we'll where it is a contraction of the following word.

sentence = "I'm happy to visit Bratislava"

print(sentence.split())

Program output:
["I'm", 'happy', 'to', 'visit', 'Bratislava']

Thus, there are a number of issues that can arise if we only use basic functions.
The dots indicating abbreviations or different characters can be a problem.
Therefore, in the next section, we will show the different tools that can be used in
tokenization.

📝 4.1.6

What is a potential limitation of using the split() function for tokenization?

• It may incorrectly handle punctuation.
• It cannot split words at all.
• It requires a predefined list of tokens.
• It only works for numerical data.

Preparation of Texts | FITPED AI

43

📝 4.1.7

Why might the split() function fail to accurately tokenize a sentence?

• It does not handle punctuation correctly.
• It may produce empty tokens if extra spaces exist.
• It automatically converts all words to lowercase.
• It can only process one sentence at a time.

📝 4.1.8

Given the sentence "It's raining cats and dogs!", what will the split() function output
if used without any preprocessing?

• ["It's", "raining", "cats", "and", "dogs!"]
• ["It's", "raining", "cats", "and", "dogs"]
• ["It", "is", "raining", "cats", "and", "dogs"]
• ["It", "is", "raining", "cats", "dogs"]

4.2 Tokenization

📝 4.2.1

Among the popular techniques for tokenization, the use of regular expressions
stands out as a simple yet powerful method. Regular expressions, often referred to
as regex, are sequences of characters that define a search pattern, enabling the
identification of specific structures within text. They are versatile and can be used
for tasks like splitting sentences into words, extracting specific elements, or
filtering data.

For example, if you are searching for email addresses within a block of text, you can
leverage regular expressions to define the common pattern of email addresses: a
sequence of alphanumeric characters followed by an "@" symbol and a domain
name. Instead of relying on advanced machine learning techniques, regular
expressions offer a straightforward and rule-based approach to solving such
problems.

1. Splitting sentences into words

We can use a regular expression to split a sentence into words while ignoring
punctuation marks. This is useful for cleaning up text data before further
processing.

Preparation of Texts | FITPED AI

44

Tokenize the sentence: "The quick brown fox, jumps over the lazy dog!"

import re

sentence = "The quick brown fox, jumps over the lazy dog!"

tokens = re.findall(r'\b\w+\b', sentence)

print(tokens)

Program output:
['The', 'quick', 'brown', 'fox', 'jumps', 'over', 'the',

'lazy', 'dog']

• \b\w+\b identifies word boundaries and extracts words.

2. Extracting email addresses

Consider extracting email addresses from a block of text. Email addresses have a
standard pattern that can be matched using a regular expression.

Extract email addresses from: "Contact us at support@example.com or
sales@business.org for assistance."

text = "Contact us at support@example.com or

sales@business.org for assistance."

emails = re.findall(r'[a-zA-Z0-9._%+-]+@[a-zA-Z0-9.-]+\.[a-zA-

Z]{2,}', text)

print(emails)

Program output:
['support@example.com', 'sales@business.org']

• This regex identifies the general structure of an email address.

Extracting dates in specific formats

We often encounter dates in different formats, such as dd/mm/yyyy or mm-dd-yyyy.
Regular expressions can help us extract these dates accurately.

Extract dates from: "Important events are scheduled on 12/05/2023 and 07-11-
2022."

Preparation of Texts | FITPED AI

45

text = "Important events are scheduled on 12/05/2023 and 07-

11-2022."

dates = re.findall(r'\b\d{2}[/-]\d{2}[/-]\d{4}\b', text)

print(dates)

Program output:
['12/05/2023', '07-11-2022']

📝 4.2.2

Which of the following regular expressions would correctly extract all words from
the sentence "Regular expressions are powerful tools!"?

• \b\w+\b
• \d+
• .*
• \s+

📝 4.2.3

Select the regular expressions that can correctly match a 3-digit number:

• \d{3}
• \b\d{3}\b
• [0-9]+
• [A-Za-z]{3}

📝 4.2.4

Which regular expression is best suited to match email addresses in a given text?

• [a-zA-Z0-9._%+-]+@[a-zA-Z0-9.-]+\.[a-zA-Z]{2,}
• [a-zA-Z]+@[a-z]+\.[a-z]+
• \w+\s@\s\w+\.\w+
• [0-9]{4}

Preparation of Texts | FITPED AI

46

📝 4.2.5

The Python library nltk provides a regular expression-based tokenization function
(RegexpTokenizer). We can use it to tokenize or split a sentence based on a given
regular expression. Consider the following sentence:

The average price of computers in the US is between $300 -

$500.

We will need expressions denoting money and alphabetic sequences. For this
purpose, we can define a regular expression and give the expression to the
corresponding tokenizer object.

from nltk.tokenize import RegexpTokenizer

s = "The average price of computers in the US is between $300

- $500."

tokenizer = RegexpTokenizer('\w+|\$[\d]+|\S+')

print(tokenizer.tokenize(s))

📝 4.2.6

Use the given regular expression to tokenize the given sentences into tokens. As a
result, print the output from the tokenize() function.

Given sentences:

The wooden spoon couldn’t cut but left emotional scars. She

finally understood that grief was her love with no place for

it to go.

Weather is not trivial - it's especially important when you're

standing in it.

For tokenization, use the following regular expression:

\w+(?:'\w+)?|[^\w\s]

from nltk.tokenize import RegexpTokenizer

s = "The wooden spoon couldn’t cut but left emotional scars.

She finally understood that grief was her love with no place

for it to go. Weather is not trivial - it\'s especially

important when you\'re standing in it."

tokenizer = RegexpTokenizer(r"\w+(?:'\w+)?|[^\w\s]")

print(tokenizer.tokenize(s))

Preparation of Texts | FITPED AI

47

📝 4.2.7

Use the given regular expression to tokenize the given sentences into tokens. As a
result, print the output from the tokenize() function.

Given sentences:

The wooden spoon couldn’t cut but left emotional scars. She

finally understood that grief was her love with no place for

it to go.

Weather is not trivial - it's especially important when you're

standing in it.

For tokenization, use the following regular expression:

(\w+|#\d|\?|!)

from nltk.tokenize import RegexpTokenizer

s = "The wooden spoon couldn’t cut but left emotional scars.

She finally understood that grief was her love with no place

for it to go. Weather is not trivial - it\'s especially

important when you\'re standing in it."

tokenizer = RegexpTokenizer(r"(\w+|#\d|\?|!)")

print(tokenizer.tokenize(s))

📝 4.2.8

Another option is to use the Treebank tokenizer, which also uses regular
expressions to tokenize text according to the Penn Treebank database
(https://catalog.ldc.upenn.edu/docs/LDC95T7/cl93.html). Words are mostly split
based on punctuation. The Treebank tokenizer does an excellent job of splitting
abbreviations such as doesn't into does and n't. Further, it identifies periods at the
ends of lines and removes them. Punctuation marks, such as commas, are split if
they are followed by spaces. Let's look at the previous sentence and tokenise it
using the Treebank tokeniser.

from nltk.tokenize import TreebankWordTokenizer

s = "The average price of computers in the US is between $300

- $500."

tokenizer = TreebankWordTokenizer()

print(tokenizer.tokenize(s))

https://catalog.ldc.upenn.edu/docs/LDC95T7/cl93.html

Preparation of Texts | FITPED AI

48

Program output:
['The', 'average', 'price', 'of', 'computers', 'in', 'the',

'US', 'is', 'between', '$', '300', '-', '$', '500', '.']

📝 4.2.9

The development of social media has led to the emergence of an informal language
in which people tag each other using their social media accounts and use a variety
of emoticons, hashtags and shortened texts to express themselves. Hence, there is
a need for tokenization tools that can parse such text and make it more
comprehensible. TweetTokenizer strongly suits this use case. So let's try to
analyze the following tweet:

@PassedToMessi Whatever happens on Sunday. Whatever God

decides. Whoever wins. Thank you for everything Leo Messi. You

are truly the greatest ever. With or without a Worldcup. The

Worldcup may just be a reward for your hardwork. <3

from nltk.tokenize import TweetTokenizer

s = "@PassedToMessi Whatever happens on Sunday. Whatever God

decides. Whoever wins. Thank you for everything Leo Messi. You

are truly the greatest ever. With or without a Worldcup. The

Worldcup may just be a reward for your hardwork. <3"

tokenizer = TweetTokenizer()

print(tokenizer.tokenize(s))

Program output:
['@PassedToMessi', 'Whatever', 'happens', 'on', 'Sunday', '.',

'Whatever', 'God', 'decides', '.', 'Whoever', 'wins', '.',

'Thank', 'you', 'for', 'everything', 'Leo', 'Messi', '.',

'You', 'are', 'truly', 'the', 'greatest', 'ever', '.', 'With',

'or', 'without', 'a', 'Worldcup', '.', 'The', 'Worldcup',

'may', 'just', 'be', 'a', 'reward', 'for', 'your', 'hardwork',

'.', '<3']

Preparation of Texts | FITPED AI

49

4.3 Stemming

📝 4.3.1

Stemming is a technique used in NLP to reduce words to their base or root form.
This process attempts to strip affixes (prefixes or suffixes) from words to derive a
simplified, common root. For example, when we take the words "computer,"
"computerization," and "computerize," the stemming process reduces them to the
base word "comput." Stemming is used in many NLP tasks, especially when we
want to treat different forms of a word as a single unit. It is a crude and
straightforward approach where the goal is not to retain the actual meaning of the
word, but rather to standardize different forms of a word into a common base.

However, it is important to note that the stem resulting from this process may not
always be a valid word in itself. For example, stemming the word "running" could
give us the stem "run," which is a valid word, but stemming the word "happiness"
might yield the non-existent stem "happi." This can sometimes cause issues,
especially when the context or meaning of the word is essential.

Original words: "going", "goes", "went"

• After stemming: "go", "go", "go"
• In this case, stemming reduces all the different forms of the verb "go" to its

root "go." While this is useful for certain NLP tasks, such as document
clustering or search engines, the context of each word (e.g., tense or aspect)
is lost.

Original words: "played", "plays", "playing"

• After stemming: "play", "play", "play"
• The stemming algorithm has correctly reduced all the verb forms to "play,"

again ignoring tense or other grammatical distinctions.

📝 4.3.2

What is the main purpose of stemming in NLP?

• To reduce different forms of a word to a common base form.
• To convert a word to its most meaningful form.
• To keep all word forms separate.
• To identify synonyms of a word.

Preparation of Texts | FITPED AI

50

📝 4.3.3

Which of the following words would likely be reduced to the same stem during
stemming?

• "happiness" and "happy"
• "play" and "played"
• "quickly" and "quicker"
• "running" and "ran"

📝 4.3.4

The two most common algorithms used for stemming are the Porter stemmer and
the Snowball stemmer. The Porter stemmer supports English, while the Snowball
stemmer which is an enhancement of the Porter stemmer, supports multiple
languages. Porter stemmer works only with strings while Snowball works with
strings and also with Unicode data. Snowball stemmer allows you to use a built-in
function to ignore stop words.

plurals = ['caresses', 'flies', 'dies', 'mules', 'died',

'agreed', 'owned', 'humbled', 'sized', 'meeting', 'stating',

'generously']

from nltk.stem.porter import PorterStemmer

stemmer = PorterStemmer()

singles = [stemmer.stem(plural) for plural in plurals]

print(' '.join(singles))

Program output:
caress fli die mule die agre own humbl size meet state gener

📝 4.3.5

Use the Porter stemmer tool to create a word stem for the input sentence.
Remember that sentences must first be tokenized into tokens and thus sent for
stemming. As a result, output word stems are separated by spaces.

Given sentences:

The wooden spoon couldn’t cut but left emotional scars. She

finally understood that grief was her love with no place for

it to go.

Weather is not trivial - it's especially important when you're

standing in it.

Preparation of Texts | FITPED AI

51

from nltk.stem.porter import PorterStemmer

from nltk.tokenize import RegexpTokenizer

stemmer = PorterStemmer()

sent = "The wooden spoon couldn’t cut but left emotional

scars. She finally understood that grief was her love with no

place for it to go. Weather is not trivial - it\'s especially

important when you\'re standing in it."

tokenizer = RegexpTokenizer(r"(\w+|#\d|\?|!)")

tokens = tokenizer.tokenize(sent)

output = [stemmer.stem(s) for s in tokens]

print(' '.join(output))

📝 4.3.6

Snowball stemmer, unlike the previous one, requires language as a parameter. In
most cases, its output is similar to that of the Porter stemmer, except for the word
generously, where the Porter stemmer outputs gener and the Snowball stemmer
outputs generous. The example shows how Snowball stemmer makes minor
changes to Porter's algorithm, achieving improvements in some cases.

plurals = ['caresses', 'flies', 'dies', 'mules', 'died',

'agreed', 'owned', 'humbled', 'sized', 'meeting', 'stating',

'generously']

from nltk.stem.snowball import SnowballStemmer

stemmer = SnowballStemmer(language='english')

singles = [stemmer.stem(plural) for plural in plurals]

print(' '.join(singles))

Program output:
caress fli die mule die agre own humbl size meet state

generous

📝 4.3.7

Use the Snowball stemmer tool to create a word stem for the input sentence.
Remember that sentences must first be tokenized into tokens and thus sent for
stemming. As a result, output word stems are separated by spaces.

Preparation of Texts | FITPED AI

52

Given sentences:

The wooden spoon couldn’t cut but left emotional scars. She

finally understood that grief was her love with no place for

it to go.

Weather is not trivial - it's especially important when you're

standing in it.

from nltk.stem.snowball import SnowballStemmer

from nltk.tokenize import RegexpTokenizer

stemmer = SnowballStemmer(language='english')

sent = "The wooden spoon couldn’t cut but left emotional

scars. She finally understood that grief was her love with no

place for it to go. Weather is not trivial - it\'s especially

important when you\'re standing in it."

tokenizer = RegexpTokenizer(r"(\w+|#\d|\?|!)")

tokens = tokenizer.tokenize(sent)

output = [stemmer.stem(s) for s in tokens]

print(' '.join(output))

🕮 4.3.8

While the Porter Stemmer and Snowball Stemmer are two of the most commonly
used stemming algorithms, they are not the only ones available. Both stemmers
aim to remove affixes from words, but they do so in slightly different ways.

Why do we need more stemmers? The answer lies in the fact that different
languages, texts, and NLP tasks require different approaches to stemming. The
Porter Stemmer, one of the earliest and most widely used algorithms, applies a set
of rules for stemming English words. It’s simple and efficient, but it can sometimes
produce stems that are not linguistically valid, especially for words with complex
affixes.

The Snowball Stemmer is a more recent improvement upon the Porter Stemmer. It
is designed to be more accurate and flexible. Snowball supports stemming for
multiple languages, including English, German, French, and others. It generally
produces better results in terms of stemming accuracy because it uses a larger set
of rules and more sophisticated algorithms.

However, both stemmers still have limitations. They can be too aggressive,
removing parts of words that may still hold meaning (e.g., removing the "s" from
"cares" would lead to "care," which might lose the plural nuance). This is where
other stemmers like Lancaster Stemmer or Lovins Stemmer come into play. These
stemmers have different approaches that might suit specific tasks better,
depending on the language and text.

Preparation of Texts | FITPED AI

53

For example, the Lancaster Stemmer is more aggressive than the Porter Stemmer,
while the Lovins Stemmer is based on a larger dictionary and tries to maintain more
meaning in the words it stems. Each of these stemmers is designed to handle
specific types of words and language structures more effectively.

Therefore, the need for multiple stemming algorithms arises from the fact that no
single stemmer can handle all linguistic intricacies perfectly. Different tasks, like
search engine optimization, document classification, or sentiment analysis, may
benefit from one stemmer over another based on their specific requirements.

📝 4.3.9

Why do we need different stemming algorithms in NLP?

• Because different languages and NLP tasks require different approaches.
• To make stemming faster.
• To reduce the size of the dataset without losing meaning.
• To apply the same rules to every word in a text.

4.4 Lematization

🕮 4.4.1

Lemmatization is a process in NLP that converts words into their meaningful base
forms, known as lemmas. Unlike stemming, where words are truncated to a root
form, lemmatization ensures that the result is a valid word. This process helps
group words with similar meanings into a single item, making it easier for machines
to understand. For example, the words "running" and "ran" would both be reduced to
their base form "run" in lemmatization.

The key difference between stemming and lemmatization lies in how the words are
treated. While stemming uses heuristic rules to remove affixes and often produces
non-words, lemmatization takes into account the word's context, meaning, and
grammatical role in the sentence. This is why lemmatization is generally preferred
over stemming when it comes to maintaining the integrity and meaning of the text.

Lemmatization algorithms, such as the WordNet Lemmatizer, are designed to
identify the correct lemma form by considering the word's surrounding context.
This involves using part-of-speech (POS) tags to determine whether a word is a
noun, verb, adjective, or adverb, which helps in selecting the appropriate lemma. For
instance, "better" might be reduced to "good" when it functions as an adjective, but
it would remain "better" if used as a comparative adjective. Other libraries, like

Preparation of Texts | FITPED AI

54

Spacy, TextBlob, and Gensim, also integrate lemmatization features into their
toolsets.

📝 4.4.2

Which of the following are true about lemmatization?

• Lemmatization uses context, part-of-speech (POS) tags, and meaning to find
the base form of a word.

• Lemmatization can lead to different lemmas for the same word depending
on the context.

• Lemmatization removes affixes from words to produce non-words.
• Lemmatization always produces a non-dictionary word.

📝 4.4.3

WordNet is an English lexical database that is freely and publicly available.
WordNet includes nouns, verbs, adjectives and adverbs grouped into sets of
cognitive synonyms (synsets), each expressing different concepts. These synsets
are linked to each other by lexical and conceptual semantic relations. It can be
easily downloaded and the nltk library offers an interface to it that allows to
perform lemmatization.

import nltk

nltk.download('wordnet')

from nltk.stem import WordNetLemmatizer

lemmatizer = WordNetLemmatizer()

s = "She was putting efforts to heal her emotionally scarred

soul"

token_list = s.split()

print("The tokens are: ", token_list)

lemmatized_output = ' '.join([lemmatizer.lemmatize(token) for

token in token_list])

print("The lemmatized output is: ", lemmatized_output)

Program output:
The tokens are: ['She', 'was', 'putting', 'efforts', 'to',

'heal', 'her', 'emotionally', 'scarred', 'soul']

The lemmatized output is: She wa putting effort to heal her

emotionally scarred soul

[nltk_data] Downloading package wordnet to

/home/johny/nltk_data...

Preparation of Texts | FITPED AI

55

[nltk_data] Package wordnet is already up-to-date!

We can observe that the lemmatization was not very successful and most of the
words were not converted to lemma.

📝 4.4.4

The reason why the lemmatizer didn't generate the correct lemmas in the previous
lesson was that WordNet works better when it also has POS tags for the words in
the input. The nltk library provides a method to generate POS tags for a list of
words. We generate POS tags for a sentence in tuple form using the pos_tag()
function.

import nltk

nltk.download('averaged_perceptron_tagger')

s = "She was putting efforts to heal her emotionally scarred

soul"

token_list = s.split()

pos_tags = nltk.pos_tag(token_list)

print(pos_tags)

Program output:
[nltk_data] Downloading package averaged_perceptron_tagger to

[nltk_data] /home/johny/nltk_data...

[nltk_data] Unzipping

taggers/averaged_perceptron_tagger.zip.

[('She', 'PRP'), ('was', 'VBD'), ('putting', 'VBG'),

('efforts', 'NNS'), ('to', 'TO'), ('heal', 'VB'), ('her',

'PRP$'), ('emotionally', 'RB'), ('scarred', 'JJ'), ('soul',

'NN')]

📝 4.4.5

However, in order for WordNet to work with the input we need to convert it to a
different type of word type notation. Therefore, we can use the frequently used
get_part_of_speech_tags() function to convert the tags into the form we need. We
can then send the output of the function as a parameter to the lemmatizer.

Preparation of Texts | FITPED AI

56

import nltk

nltk.download('averaged_perceptron_tagger')

s = "She was putting efforts to heal her emotionally scarred

soul"

token_list = s.split()

pos_tags = nltk.pos_tag(token_list)

print(pos_tags)

Program output:
[('She', 'PRP'), ('was', 'VBD'), ('putting', 'VBG'),

('efforts', 'NNS'), ('to', 'TO'), ('heal', 'VB'), ('her',

'PRP$'), ('emotionally', 'RB'), ('scarred', 'JJ'), ('soul',

'NN')]

[nltk_data] Downloading package averaged_perceptron_tagger to

[nltk_data] /home/johny/nltk_data...

[nltk_data] Package averaged_perceptron_tagger is already

up-to-

[nltk_data] date!

from nltk.corpus import wordnet

def get_part_of_speech_tags(token):

 tag_dict = {"J": wordnet.ADJ,

 "N": wordnet.NOUN,

 "V": wordnet.VERB,

 "R": wordnet.ADV}

 tag = nltk.pos_tag([token])[0][1][0].upper()

 return tag_dict.get(tag, wordnet.NOUN)

from nltk.stem import WordNetLemmatizer

lemmatizer = WordNetLemmatizer()

output = [lemmatizer.lemmatize(token,

get_part_of_speech_tags(token)) for token in token_list]

print(' '.join(output))

Program output:
She be put effort to heal her emotionally scar soul

We can see that the output is much better than in the case of not using POS tags.

Preparation of Texts | FITPED AI

57

📝 4.4.6

Generate the lemmatized text for the specified text. Remember that the text needs
to be tokenized first, followed by POS tags, and then lemmatized. There is a
function to convert the tags for WordNet needs.

You are given the following text:

Analogous terms were later introduced for use of computers in

various fields, such as business informatics, forest

informatics, legal informatics etc. However, these fields have

more to do with digital literacy than with real informatics.

Their name is probably the result of a lack of knowledge of

the true meaning of informatics. Later in the United States,

next absurd term such as computational informatics were

developed, while all informatics is computational by its

nature.

import nltk

nltk.download('averaged_perceptron_tagger')

create pos_tags

sentence = "Analogous terms were later introduced for use of

computers in various fields, such as business informatics,

forest informatics, legal informatics etc. However, these

fields have more to do with digital literacy than with real

informatics. Their name is probably the result of a lack of

knowledge of the true meaning of informatics. Later in the

United States, next absurd term such as computational

informatics were developed, while all informatics is

computational by its nature."

token_list = sentence.split()

pos_tags = nltk.pos_tag(token_list)

print(pos_tags)

just run this method for tagset transformation

from nltk.corpus import wordnet

def get_part_of_speech_tags(token):

 tag_dict = {"J": wordnet.ADJ,

 "N": wordnet.NOUN,

 "V": wordnet.VERB,

 "R": wordnet.ADV}

 tag = nltk.pos_tag([token])[0][1][0].upper()

 return tag_dict.get(tag, wordnet.NOUN)

Preparation of Texts | FITPED AI

58

create the output of lemmatization

from nltk.stem import WordNetLemmatizer

lemmatizer = WordNetLemmatizer()

output = [lemmatizer.lemmatize(token,

get_part_of_speech_tags(token)) for token in token_list]

print(' '.join(output))

📝 4.4.7

Generate the lemmatized text for the specified text. Remember that the text needs
to be tokenized first, followed by POS tags, and then lemmatized. There is a
function to convert the tags for WordNet needs.

You are given the following text:

Resources include individual files or an item's data, computer

programs, computer devices and functionality provided by

computer applications. Examples of consumers are computer

users, computer Software and other Hardware on the computer.

import nltk

nltk.download('averaged_perceptron_tagger')

create pos_tags

sentence = "Resources include individual files or an item's

data, computer programs, computer devices and functionality

provided by computer applications. Examples of consumers are

computer users, computer Software and other Hardware on the

computer."

token_list = sentence.split()

pos_tags = nltk.pos_tag(token_list)

print(pos_tags)

just run this method for tagset transformation

from nltk.corpus import wordnet

def get_part_of_speech_tags(token):

 tag_dict = {"J": wordnet.ADJ,

 "N": wordnet.NOUN,

 "V": wordnet.VERB,

 "R": wordnet.ADV}

 tag = nltk.pos_tag([token])[0][1][0].upper()

 return tag_dict.get(tag, wordnet.NOUN)

Preparation of Texts | FITPED AI

59

create the output of lemmatization

from nltk.stem import WordNetLemmatizer

lemmatizer = WordNetLemmatizer()

output = [lemmatizer.lemmatize(token,

get_part_of_speech_tags(token)) for token in token_list]

print(' '.join(output))

📝 4.4.8

Generate the lemmatized text for the specified text. Remember that the text needs
to be tokenized first, followed by POS tags, and then lemmatized. There is a
function to convert the tags for WordNet needs.

You are given the following text:

An automated online assistant providing customer service on a

web page, an example of an application where natural language

processing is a major component. Natural language processing

(NLP) is a subfield of linguistics, computer science, and

artificial intelligence concerned with the interactions

between computers and human language, in particular how to

program computers to process and analyze large amounts of

natural language data. Challenges in natural language

processing frequently involve speech recognition, natural

language understanding, and natural-language generation.

import nltk

nltk.download('averaged_perceptron_tagger')

create pos_tags

sentence = "An automated online assistant providing customer

service on a web page, an example of an application where

natural language processing is a major component. Natural

language processing (NLP) is a subfield of linguistics,

computer science, and artificial intelligence concerned with

the interactions between computers and human language, in

particular how to program computers to process and analyze

large amounts of natural language data. Challenges in natural

language processing frequently involve speech recognition,

natural language understanding, and natural-language

generation."

token_list = sentence.split()

pos_tags = nltk.pos_tag(token_list)

print(pos_tags)

Preparation of Texts | FITPED AI

60

just run this method for tagset transformation

from nltk.corpus import wordnet

def get_part_of_speech_tags(token):

 tag_dict = {"J": wordnet.ADJ,

 "N": wordnet.NOUN,

 "V": wordnet.VERB,

 "R": wordnet.ADV}

 tag = nltk.pos_tag([token])[0][1][0].upper()

 return tag_dict.get(tag, wordnet.NOUN)

create the output of lemmatization

from nltk.stem import WordNetLemmatizer

lemmatizer = WordNetLemmatizer()

output = [lemmatizer.lemmatize(token,

get_part_of_speech_tags(token)) for token in token_list]

print(' '.join(output))

Preparation of Texts | FITPED AI

61

4.5 Additional features

📝 4.5.1

Stop words in English are words like a, an, the, in, at, and so on, which occur
frequently in text corpora and don't carry much information in most contexts. These
words are generally needed to complete sentences and make them grammatically
correct. They are often the most common words in the language and can be filtered
out in most NLP tasks, consequently, helping in reducing the vocabulary or search
space. There is no single list of stop words available universally and they vary
mostly based on use cases. However, a certain list of words is maintained for
languages that can be considered language-specific stop words but should be
modified based on the problem being solved.

For the use of stop words, there is a stopwords module in the nltk library that
provides a list of English stop words that can be filtered out of the text under study.

import nltk

nltk.download('stopwords')

from nltk.corpus import stopwords

stop = set(stopwords.words('english'))

s = "She was putting efforts to heal her emotionally scarred

soul"

token_list = s.split()

output = [token for token in token_list if token not in stop]

print(" ".join(output))

Program output:
She putting efforts heal emotionally scarred soul

[nltk_data] Downloading package stopwords to

/home/johny/nltk_data...

[nltk_data] Unzipping corpora/stopwords.zip.

📝 4.5.2

For the specified text, remove stop words from it. Then print the text without stop
words.

Given text:

An automated online assistant providing customer service on a

web page, an example of an application where natural language

processing is a major component. Natural language processing

(NLP) is a subfield of linguistics, computer science, and

Preparation of Texts | FITPED AI

62

artificial intelligence concerned with the interactions

between computers and human language, in particular how to

program computers to process and analyze large amounts of

natural language data. Challenges in natural language

processing frequently involve speech recognition, natural

language understanding, and natural-language generation.

import nltk

nltk.download('stopwords')

from nltk.corpus import stopwords

stop = set(stopwords.words('english'))

s = "An automated online assistant providing customer service

on a web page, an example of an application where natural

language processing is a major component. Natural language

processing (NLP) is a subfield of linguistics, computer

science, and artificial intelligence concerned with the

interactions between computers and human language, in

particular how to program computers to process and analyze

large amounts of natural language data. Challenges in natural

language processing frequently involve speech recognition,

natural language understanding, and natural-language

generation."

token_list = s.split()

output = [token for token in token_list if token not in stop]

print(" ".join(output))

📝 4.5.3

For the specified text, remove stop words from it. Then print the text without stop
words.

Given text:

Members of the public have certain rights of access. These

include the right to access documents about the operation of

government departments and documents that are in the

possession of government Ministers or agencies (Freedom of

Information Act 1982). Certain documents are exempt from this,

including (but not limited to) documents detailing Cabinet

deliberations or decisions; Cabinet documents. documents

disclosing trade secrets; Documents disclosing trade secrets

or commercially valuable information.

import nltk

nltk.download('stopwords')

Preparation of Texts | FITPED AI

63

from nltk.corpus import stopwords

stop = set(stopwords.words('english'))

s = "Members of the public have certain rights of access.

These include the right to access documents about the

operation of government departments and documents that are in

the possession of government Ministers or agencies (Freedom of

Information Act 1982). Certain documents are exempt from this,

including (but not limited to) documents detailing Cabinet

deliberations or decisions; Cabinet documents. documents

disclosing trade secrets; Documents disclosing trade secrets

or commercially valuable information."

token_list = s.split()

output = [token for token in token_list if token not in stop]

print(" ".join(output))

📝 4.5.4

Another strategy that helps in normalizing the text is called Case folding. It is the
unification of uppercase and lowercase with all the letters in the text corpus made
lowercase. In several cases, the size of the letters plays a role and hence it is better
to have all the words of the same size. This technique helps systems that deal with
information retrieval, such as web search engines.

However, in situations where proper nouns are derived from common nouns, the
unification of uppercase and lowercase letters becomes a hindrance because case
distinction becomes an important feature here. Another problem is when
abbreviations are converted to lowercase. There is a high probability that they will
map to generic nouns.

A potential solution to this problem is to create machine learning models that can
use features from the sentence to determine which words or tokens in the sentence
should be lowercase and which should not. However, this approach is not always
helpful when users mostly write in lowercase. As a result, writing everything in
lowercase becomes the appropriate solution. Therefore, the strings-to-lowercase
conversion function lower() can be used.

s = "She was putting efforts to heal her emotionally scarred

soul"

print(s.lower())

Program output:
she was putting efforts to heal her emotionally scarred soul

Preparation of Texts | FITPED AI

64

📝 4.5.5

For the text you have entered, change the case of the letters to lowercase. Then
print the text.

Given text:

Members of the public have certain rights of access. These

include the right to access documents about the operation of

government departments and documents that are in the

possession of government Ministers or agencies (Freedom of

Information Act 1982). Certain documents are exempt from this,

including (but not limited to) documents detailing Cabinet

deliberations or decisions; Cabinet documents. documents

disclosing trade secrets; Documents disclosing trade secrets

or commercially valuable information.

s = "Members of the public have certain rights of access.

These include the right to access documents about the

operation of government departments and documents that are in

the possession of government Ministers or agencies (Freedom of

Information Act 1982). Certain documents are exempt from this,

including (but not limited to) documents detailing Cabinet

deliberations or decisions; Cabinet documents. documents

disclosing trade secrets; Documents disclosing trade secrets

or commercially valuable information."

print(s.lower())

📝 4.5.6

Sentences usually contain names of people and places and other open compound
expressions, such as living room or coffee mug. These expressions convey a
specific meaning when two or more words are used together. When used alone
they carry a completely different meaning and the meaning of compound
expressions is somehow lost. Using multiple tokens to represent such meaning can
be very beneficial for NLP tasks performed. Although such occurrences are rare
they still yield a lot of information. For this reason, we use techniques to preserve
the meaning of compound expressions.

In general, these techniques fall under the term n-grams. If n is equal to 1, they are
referred to as unigrams. Bigrams or 2-grams refer to pairs of words, such as living
room. Phrases such as United Arab Emirates, which consist of three words are
referred to as trigrams or 3-grams. This naming system can be extended to larger
n-grams but in most NLP tasks only trigrams or lower are used.

Preparation of Texts | FITPED AI

65

📝 4.5.7

Let's try working with n-grams in practice. Let's have a sentence to describe what
natural language processing is:

Natural language processing is an interdisciplinary subfield

of linguistics, computer science, and artificial intelligence

concerned with the interactions between computers and human

language, in particular how to program computers to process

and analyze large amounts of natural language data.

Since we know that natural language processing is a domain and processing these
three words individually could cause a loss of meaning, we may prefer to use
trigrams and preserve the meaning of the words. We can use the nltk library
module called ngrams to create n-grams. The parameters for the function are the
tokens of the sentence and the number of n-grams we want to generate.

from nltk.util import ngrams

sent = "Natural language processing is an interdisciplinary

subfield of linguistics, computer science, and artificial

intelligence concerned with the interactions between computers

and human language, in particular how to program computers to

process and analyze large amounts of natural language data."

tokens = sent.split()

trigrams = list(ngrams(tokens, 3))

print([" ".join(token) for token in trigrams])

Program output:
['Natural language processing', 'language processing is',

'processing is an', 'is an interdisciplinary', 'an

interdisciplinary subfield', 'interdisciplinary subfield of',

'subfield of linguistics,', 'of linguistics, computer',

'linguistics, computer science,', 'computer science, and',

'science, and artificial', 'and artificial intelligence',

'artificial intelligence concerned', 'intelligence concerned

with', 'concerned with the', 'with the interactions', 'the

interactions between', 'interactions between computers',

'between computers and', 'computers and human', 'and human

language,', 'human language, in', 'language, in particular',

'in particular how', 'particular how to', 'how to program',

'to program computers', 'program computers to', 'computers to

process', 'to process and', 'process and analyze', 'and

analyze large', 'analyze large amounts', 'large amounts of',

Preparation of Texts | FITPED AI

66

'amounts of natural', 'of natural language', 'natural language

data.']

📝 4.5.8

For the given text, generate its unigrams. Print the unigrams.

Given text:

Members of the public have certain rights of access. These

include the right to access documents about the operation of

government departments and documents that are in the

possession of government Ministers or agencies (Freedom of

Information Act 1982). Certain documents are exempt from this,

including (but not limited to) documents detailing Cabinet

deliberations or decisions; Cabinet documents. documents

disclosing trade secrets; Documents disclosing trade secrets

or commercially valuable information.

from nltk.util import ngrams

sent = "Members of the public have certain rights of access.

These include the right to access documents about the

operation of government departments and documents that are in

the possession of government Ministers or agencies (Freedom of

Information Act 1982). Certain documents are exempt from this,

including (but not limited to) documents detailing Cabinet

deliberations or decisions; Cabinet documents. documents

disclosing trade secrets; Documents disclosing trade secrets

or commercially valuable information."

tokens = sent.split()

unigrams = list(ngrams(tokens, 1))

print([" ".join(token) for token in unigrams])

📝 4.5.9

For the given text, generate its bigrams. Print the bigrams.

Given text:

Documents are also distinguished from "realia", which are

three-dimensional objects that would otherwise satisfy the

definition of "document" because they memorialize or represent

thought; documents are considered more as 2-dimensional

representations. While documents can have large varieties of

Preparation of Texts | FITPED AI

67

customization, all documents can be shared freely and have the

right to do so, creativity can be represented by documents,

also. History, events, examples, opinions, etc. all can be

expressed in documents.

from nltk.util import ngrams

sent = 'Documents are also distinguished from "realia", which

are three-dimensional objects that would otherwise satisfy the

definition of "document" because they memorialize or represent

thought; documents are considered more as 2-dimensional

representations. While documents can have large varieties of

customization, all documents can be shared freely and have the

right to do so, creativity can be represented by documents,

also. History, events, examples, opinions, etc. all can be

expressed in documents.'

tokens = sent.split()

bigrams = list(ngrams(tokens, 2))

print([" ".join(token) for token in bigrams])

📝 4.5.10

For the given text, generate its trigrams. Print the trigrams.

Given text:

The Philip R. Lee Institute for Health Policy Studies is a

partner in this consortium. UCSF is home to the Industry

Documents Library (IDL), a digital library of previously

secret internal industry documents, including over 14 million

documents in the internationally known Truth Tobacco Industry

Documents, the Food Industry Documents Archive, Chemical

Industry Documents Archive and the Drug Industry Documents

Archive. The IDL contains millions of documents created by

major companies related to their advertising, manufacturing,

marketing, sales, and scientific research activities.

from nltk.util import ngrams

sent = 'The Philip R. Lee Institute for Health Policy Studies

is a partner in this consortium. UCSF is home to the Industry

Documents Library (IDL), a digital library of previously

secret internal industry documents, including over 14 million

documents in the internationally known Truth Tobacco Industry

Documents, the Food Industry Documents Archive, Chemical

Preparation of Texts | FITPED AI

68

Industry Documents Archive and the Drug Industry Documents

Archive. The IDL contains millions of documents created by

major companies related to their advertising, manufacturing,

marketing, sales, and scientific research activities.'

tokens = sent.split()

trigrams = list(ngrams(tokens, 3))

print([" ".join(token) for token in trigrams])

Sequence-to-Sequence
Model

Chapter 5

Sequence-to-Sequence Model | FITPED AI

70

5.1 Introduction

📝 5.1.1

In this lesson, we will introduce the Sequence-to-Sequence (Seq2Seq) model,
which is crucial in tasks such as machine translation, where we need to map one
sequence of words to another sequence. The Seq2Seq model uses two primary
components: an encoder and a decoder. The encoder processes the input
sequence and transforms it into a fixed-size context vector, which contains the
essential information from the input. The decoder then takes this context vector
and generates the output sequence.

One key challenge in machine translation is that the input and output sequences
often have different lengths. For example, the English sentence "How are you
doing?" can be translated into Slovak as "Ako sa máš?" Even though both sentences
convey the same meaning, the number of words differs. Similarly, the sentence
"Can we do this?" in English translates to "Môžeme ísť na to?" in Slovak, where the
English and Slovak sentences contain the same number of words, but the structure
and length of the translation differ.

To address this, the encoder reads the input sentence word by word and
compresses it into a single context vector, which encapsulates the semantic
meaning of the entire input sequence. The decoder then uses this context vector to
generate the output sequence, one word at a time. By combining the encoder and
decoder, Seq2Seq models can successfully handle input and output sequences of
varying lengths, making them a powerful tool for tasks like machine translation.

📝 5.1.2

What is the primary purpose of an encoder in a Sequence-to-Sequence (Seq2Seq)
model?

• To convert an input sequence into a fixed-size context vector.
• To generate the output sequence from a context vector.
• To handle variations in the length of the input sequence.
• To learn word embeddings from the input sequence.

📝 5.1.3

In the Seq2Seq model, the encoder is the first crucial component in the
architecture. Its role is to process the input data and create a context vector - a
low-dimensional representation that captures the meaning of the input sequence.
This context vector, sometimes referred to as the embedding of the input, is

Sequence-to-Sequence Model | FITPED AI

71

designed to encapsulate all the essential information needed for generating an
output sequence.

The encoder is commonly implemented using different types of neural networks,
with Recurrent Neural Networks (RNNs) being a popular choice. RNNs are well-
suited for processing sequences because they maintain a hidden state that stores
information about the input seen at each time step. As the RNN processes each
word in the input sequence, its hidden state is updated. The last hidden state of the
RNN, after processing the final word of the sentence, is considered the context
vector. This last hidden state is crucial because it has "seen" all the words in the
input and preserved their context. The context vector therefore contains a
compressed version of the entire sentence’s meaning.

The context vector produced by the encoder has two key components:

1. The hidden state from the last time step of the encoder, which represents
the processed information from the entire input sequence.

2. The neural network memory state that contains additional details about the
input sentence.

📝 5.1.4

Which of the following are components of the context vector generated by the
encoder?

• The last hidden state of the encoder.
• The neural network memory state of the input sentence.
• The initial hidden state of the decoder.
• The output sequence generated by the decoder.
• The input data itself.

📝 5.1.5

After obtaining the context vector from the encoder, the next step in a Seq2Seq
model is to feed this vector into the decoder, which generates the output
sequence—often a translation of the input sentence. In recurrent neural networks
(RNNs), the decoder’s job is to predict the words of the output sentence, step by
step, based on the context provided by the encoder.

The decoder's behavior differs slightly during the training and inference phases.
For both, the context vector generated by the encoder is used as the initial hidden
state of the decoder. Unlike standard RNNs, where the hidden state is initialized
randomly, the decoder's initial hidden state is specifically the context vector. This

Sequence-to-Sequence Model | FITPED AI

72

vector contains all the necessary information that the decoder needs to start
generating the output sequence.

At the first time step of the decoding process, the input to the decoder is a special
token, often referred to as <start>. This token signals the beginning of the output
sentence. The decoder then uses the context vector and this <start> token to
predict the first word of the target sentence. Once the first word is predicted, it is
fed back into the decoder as the input for the next time step, and the process
continues until the entire output sentence is generated.

📝 5.1.6

Which of the following statements about the decoder in a Seq2Seq model are true?

• The decoder receives the context vector as its initial hidden state.
• The input to the decoder at the first time step is the <|start> token.
• The decoder’s task is to generate the input sequence.
• The context vector is generated by the decoder itself.
• The decoder outputs are used to generate the input sequence for the

encoder.

📝 5.1.7

The training and inference phase involve different behaviors for the decoder, even
though both rely on the same general structure of using a context vector and an
initial token.

During the training phase, the decoder is given both the context vector (from the
encoder) and the actual target sequence (the correct output) at each time step. The
input at the first time step is the <start> token, and the decoder learns to predict the
first token of the target sequence. At each subsequent time step, the decoder is
provided with the true token from the target sequence (the correct word), not its
previous prediction. This allows the model to learn the correct sequence of tokens
directly. The decoder's task during training is to learn the mapping from the context
vector and the <start> token to the entire output sequence.

On the other hand, during the inference phase, the true target sequence is
unavailable. The model's task is to predict the sequence from scratch. At time step
0, the decoder is given the context vector and the <start> token, just like in training.
However, instead of being provided with the true tokens for subsequent time steps,
the decoder is fed its own previous predictions. The output of each time step
becomes the input to the next, which can lead to cumulative errors if the decoder
makes an incorrect prediction early in the process. Despite this, the goal of the

Sequence-to-Sequence Model | FITPED AI

73

decoder during inference is to generate the correct sequence, one token at a time,
using the context vector and its previous predictions.

In summary, during training, the decoder has access to the true target sequence to
learn the mappings accurately, while during inference, it must generate the output
sequence based on its own predictions.

📝 5.1.8

Which of the following statements about the decoder during the training and
inference phases are correct?

• During training, the decoder is given the true previous word from the target
sequence.

• During inference, the decoder uses the output from the previous time step as
input for generating the next token.

• During inference, the decoder is given the true word from the previous time
step.

• During training, the decoder learns to predict the correct output sequence by
being given both the context vector and the true target sequence.

📝 5.1.9

In Seq2Seq models, once the decoder starts generating tokens, we need a clear
stopping condition to prevent it from continuing indefinitely. There are two common
stopping criteria used to determine when the decoder should halt its sequence
generation:

1. <end> token is a special token marks the end of a sentence or sequence.
Whenever the decoder generates this token as part of the predicted
sequence, it signals that the sequence is complete, and no further tokens
need to be predicted. This is crucial for generating sequences that vary in
length, as the model can produce shorter outputs without requiring a fixed
sequence length.

2. Maximum length - in some cases, we impose a limit on the number of tokens
the decoder can generate, even if the <end> token hasn't appeared. This
predefined maximum length ensures that the model doesn't generate
excessively long sequences that might not be useful, especially in
applications like machine translation where sentences usually have a logical
endpoint.

Sequence-to-Sequence Model | FITPED AI

74

These stopping conditions ensure that the decoder produces meaningful and
appropriately sized output sequences, whether it's translating a sentence,
generating a chatbot response, or transcribing speech. The use of the <end> token
and a maximum output length is an essential part of controlling the sequence
generation process.

📝 5.1.10

Which of the following stopping conditions are commonly used in Seq2Seq
models?

• The decoder stops if the model reaches a maximum predefined output
length.

• The decoder stops when the <|end> token is generated, marking the end of
the sequence.

• The decoder will stop once it generates a token indicating the start of the
sequence.

• The decoder will always generate a fixed-length output regardless of the
content.

5.2 Machine translation - text preparation

📝 5.2.1

In the following sections, we will describe how to create a machine translation
using Seq2Seq modelling. We will focus on translation from the Slovak language to
the English language. We will use a dataset from http://www.manythings.org/anki/,
which contains about 11 000 sentences and their translations into English. In
addition to the nltk library, we will also need the tensorflow and keras libraries to
help us train our model. Next, we will need the pandas and re libraries to help us
prepare the dataset. In the following microlessons, we'll go through the step-by-step
process of how to build the model using mainly custom functions.

Importing necessary libraries for data processing and

modeling

pandas is used for data manipulation and analysis,

especially for working with structured data like DataFrames

import pandas as pd

string provides common string operations such as constants

for punctuation and string manipulation

import string

http://www.manythings.org/anki/

Sequence-to-Sequence Model | FITPED AI

75

re provides regular expression matching operations, useful

for pattern matching in strings (e.g., cleaning text)

import re

urlopen is used to fetch content from a URL, helpful for

reading data from online resources

from urllib.request import urlopen

numpy is a package for numerical computing, providing

support for large, multi-dimensional arrays and matrices

import numpy as np

unicodedata is used to work with Unicode characters,

particularly for normalization (e.g., removing accents)

from unicodedata import normalize

keras is a high-level neural networks API built on top of

TensorFlow, used for building deep learning models

import keras, tensorflow

Model class from Keras is used to define and manage the

architecture of neural networks

from keras.models import Model

LSTM (Long Short-Term Memory) layer from Keras is a type of

Recurrent Neural Network (RNN) useful for sequence prediction

tasks

from keras.layers import Input, LSTM, Dense

📝 5.2.2

The first step will be to load an input file to help us train our model. We load the
input file line by line into a DataFrame structure using the pandas library that acts
like a table and will help us to access the individual data in the file. Once the file is
loaded, we can examine the created DataFrame to have a better idea of what it
contains.

Import the pandas library, typically used for data

manipulation and analysis.

import pandas as pd

Import the urlopen function from urllib.request to open and

retrieve data from a URL.

from urllib.request import urlopen

Import the entire urllib module, which provides a set of

functions for working with URLs.

import urllib

Sequence-to-Sequence Model | FITPED AI

76

Define a function to read and process a file from a URL

def input_file(file_name):

 # Initialize an empty list to store the file data

 data = []

 # Open the file from the URL using urllib's urlopen

function

 file = urllib.request.urlopen(file_name)

 # Iterate through each line in the file

 for row in file:

 # Decode each row from bytes to string using UTF-8

encoding

 row = row.decode("utf-8")

 # Remove any leading or trailing whitespace characters

(like newline)

 row = row.strip()

 # Append the cleaned row (line) to the data list

 data.append(row)

 # Return the list of processed data (all lines in the

file)

 return data

Call the function input_file with the URL of the file and

store the result in 'data'

data =

input_file('https://priscilla.fitped.eu/data/nlp/slk.txt')

Print a small slice (lines 1500 to 1510) of the data for

inspection

print(data[1500:1510])

Print the total number of lines in the data

print(len(data))

Limit the data to the first 10,000 lines for further

processing (if needed)

data = data[:10000]

Program output:
["I've heard that.\tPočul som to.\tCC-BY 2.0 (France)

Attribution: tatoeba.org #2248400 (CK) & #9846917

(Dominika7)", "I've heard that.\tPočula som to.\tCC-BY 2.0

(France) Attribution: tatoeba.org #2248400 (CK) & #9846918

(Dominika7)", 'Is he breathing?\tDýcha?\tCC-BY 2.0 (France)

Attribution: tatoeba.org #239892 (CK) & #8957974 (Dominika7)',

'Is it poisonous?\tJe to jedovaté?\tCC-BY 2.0 (France)

Attribution: tatoeba.org #2248466 (CK) & #10033911

(Dominika7)', 'Is it poisonous?\tJe jedovatý?\tCC-BY 2.0

(France) Attribution: tatoeba.org #2248466 (CK) & #10033914

Sequence-to-Sequence Model | FITPED AI

77

(Dominika7)', 'Is it poisonous?\tJe jedovatá?\tCC-BY 2.0

(France) Attribution: tatoeba.org #2248466 (CK) & #10033916

(Dominika7)', 'Is she a doctor?\tJe lekárka?\tCC-BY 2.0

(France) Attribution: tatoeba.org #312527 (CK) & #9734240

(Dominika7)', 'Is this a river?\tJe toto rieka?\tCC-BY 2.0

(France) Attribution: tatoeba.org #56259 (CK) & #4642167

(Sim)', 'Is this my wine?\tTo je moje víno?\tCC-BY 2.0

(France) Attribution: tatoeba.org #1764491 (CK) & #10086221

(Dominika7)', 'Is today Monday?\tDnes je pondelok?\tCC-BY 2.0

(France) Attribution: tatoeba.org #2248648 (CK) & #9948296

(Dominika7)']

11550

We can see that the dataset contained more than 11 thousand sentences. So let's
take the first 10 000 sentences from the dataset, which will be used for training,
and keep the rest as a test set on which we will then test our model.

📝 5.2.3

With the input file, we saw that the sentences are separated by a tab (\t), so we can
very easily use the split() function to split the sentences into Slovak and English.

def create_english_slovak_sentences(data):

 # Initialize empty lists to store English and Slovak

sentences

 EN_sentences = []

 SK_sentences = []

 # Iterate over each data point in the 'data' list

 for data_point in data:

 # Split each data point by tab ('\t'), where the first

part is English and the second part is Slovak

 EN_sentences.append(data_point.split("\t")[0]) # Add the

English sentence to list

 SK_sentences.append(data_point.split("\t")[1]) # Add the

Slovak sentence to list

 # Return both lists containing English and Slovak sentences

 return EN_sentences, SK_sentences

Calling the function with 'data' and storing the result in

the variables EN_sentences and SK_sentences

Sequence-to-Sequence Model | FITPED AI

78

EN_sentences, SK_sentences =

create_english_slovak_sentences(data)

📝 5.2.4

Once we have the sentences divided, we can proceed to the essential part namely
the preprocessing of the texts. The goal of this feature is to remove unnecessary
characters from sentences, such as punctuation or special characters. The next
step is to unify the case of the letters with all words starting with a lowercase letter.
The result will be a preprocessed sentence cleaned of unnecessary characters.

def preprocess_sentences(sentence):

 # Create a regular expression to match non-printable

characters

 re_print = re.compile('[^%s]' % re.escape(string.printable))

 # Create a translation table to remove punctuation

 table = str.maketrans('', '', string.punctuation)

 # Normalize the sentence to remove accents (NFD

normalization) and ignore characters that cannot be

represented in ASCII

 cleaned_sent = normalize('NFD', sentence).encode('ascii',

'ignore')

 # Decode the cleaned sentence back into UTF-8

 cleaned_sent = cleaned_sent.decode('UTF-8')

 # Split the sentence into words (tokens)

 cleaned_sent = cleaned_sent.split()

 # Convert all words to lowercase

 cleaned_sent = [word.lower() for word in cleaned_sent]

 # Remove punctuation from each word using the translation

table

 cleaned_sent = [word.translate(table) for word in

cleaned_sent]

 # Remove non-printable characters from the words using the

regular expression

 cleaned_sent = [re_print.sub('', w) for w in cleaned_sent]

 # Keep only alphabetic words (words containing only letters)

 cleaned_sent = [word for word in cleaned_sent if

word.isalpha()]

 # Join the words back into a single sentence

 return ' '.join(cleaned_sent)

Sequence-to-Sequence Model | FITPED AI

79

📝 5.2.5

Once we have prepared the sentence preprocessing function, we can apply it to our
English and Slovak sentences.

def preprocess_EN_SK_sentences(EN_sentences, SK_sentences):

 # Initialize empty lists to store the cleaned sentences

 SK_sentences_cleaned = []

 EN_sentences_cleaned = []

 # Iterate through each Slovak sentence in SK_sentences

 for sent in SK_sentences:

 # Preprocess each Slovak sentence and append to the

cleaned list

 SK_sentences_cleaned.append(preprocess_sentences(sent))

 # Iterate through each English sentence in EN_sentences

 for sent in EN_sentences:

 # Preprocess each English sentence and append to the

cleaned list

 EN_sentences_cleaned.append(preprocess_sentences(sent))

 # Return the cleaned English and Slovak sentences

 return EN_sentences_cleaned, SK_sentences_cleaned

Calling the function to preprocess both the English and

Slovak sentences

EN_sentences_cleaned, SK_sentences_cleaned =

preprocess_EN_SK_sentences(EN_sentences, SK_sentences)

📝 5.2.6

The next phase is important because it's where we'll be creating our own dictionary.
The goal will also be to obtain tokens that mark the beginning and end of the
sequence, as required by the decoder. When we covered dictionary creation in
previous lessons we dealt with it at the word level. In this case, we'll go one level
lower and work at the character level. We'll place a tab at the beginning of our
sequence and a newline label at the end. We'll also prepare a list of unique input
and output characters. Our model will then attempt to predict at the character level.

def build_data(EN_sentences_cleaned, SK_sentences_cleaned):

 # Initialize empty lists for storing the input and target

datasets

 input_dataset = []

 target_dataset = []

Sequence-to-Sequence Model | FITPED AI

80

 # Initialize sets to store unique characters from the input

(Slovak) and target (English) sentences

 input_characters = set()

 target_characters = set()

 # Iterate over the cleaned Slovak sentences to create the

input dataset

 for SK_sentence in SK_sentences_cleaned:

 input_datapoint = SK_sentence

 input_dataset.append(input_datapoint) # Add the Slovak

sentence to the input dataset

 for char in input_datapoint:

 input_characters.add(char) # Add each character of the

Slovak sentence to the set of input characters

 # Iterate over the cleaned English sentences to create the

target dataset

 for EN_sentence in EN_sentences_cleaned:

 target_datapoint = "\t" + EN_sentence + "\n" # Add start-

of-sequence and end-of-sequence tokens

 target_dataset.append(target_datapoint) # Add the English

sentence to the target dataset

 for char in target_datapoint:

 target_characters.add(char) # Add each character of the

English sentence to the set of target characters

 # Return the input and target datasets, and sorted lists of

unique characters from both datasets

 return input_dataset, target_dataset,

sorted(list(input_characters)),

sorted(list(target_characters))

Calling the function to generate the datasets and characters

input_dataset, target_dataset, input_characters,

target_characters = build_data(EN_sentences_cleaned,

SK_sentences_cleaned)

Sequence-to-Sequence Model | FITPED AI

81

📝 5.2.7

The following code will serve as a revision of the functions already created. So let's
take a look at what the dictionary we generated looks like. Run the individual code
blocks in order. Your task is to print what the input character list looks like.

import pandas as pd

import string

import re

from urllib.request import urlopen

import numpy as np

from unicodedata import normalize

import urllib

def input_file(file_name):

 data = []

 file = urllib.request.urlopen(file_name)

 for row in file:

 row = row.decode("utf-8")

 row = row.strip()

 data.append(row)

 return data

data =

input_file('https://priscilla.fitped.eu/data/nlp/slk.txt')

print(data[1500])

print(len(data))

data = data[:10000]

def create_english_slovak_sentences(data):

 EN_sentences = []

 SK_sentences = []

 for data_point in data:

 EN_sentences.append(data_point.split("\t")[0])

 SK_sentences.append(data_point.split("\t")[1])

 return EN_sentences, SK_sentences

EN_sentences, SK_sentences =

create_english_slovak_sentences(data)

def preprocess_sentences(sentence):

 re_print = re.compile('[^%s]' % re.escape(string.printable))

 table = str.maketrans('', '', string.punctuation)

Sequence-to-Sequence Model | FITPED AI

82

 cleaned_sent = normalize('NFD', sentence).encode('ascii',

'ignore')

 cleaned_sent = cleaned_sent.decode('UTF-8')

 cleaned_sent = cleaned_sent.split()

 cleaned_sent = [word.lower() for word in cleaned_sent]

 cleaned_sent = [word.translate(table) for word in

cleaned_sent]

 cleaned_sent = [re_print.sub('', w) for w in cleaned_sent]

 cleaned_sent = [word for word in cleaned_sent if

word.isalpha()]

 return ' '.join(cleaned_sent)

def preprocess_EN_SK_sentences(EN_sentences, SK_sentences):

 SK_sentences_cleaned = []

 EN_sentences_cleaned = []

 for sent in SK_sentences:

 SK_sentences_cleaned.append(preprocess_sentences(sent))

 for sent in EN_sentences:

 EN_sentences_cleaned.append(preprocess_sentences(sent))

 return EN_sentences_cleaned, SK_sentences_cleaned

EN_sentences_cleaned, SK_sentences_cleaned =

preprocess_EN_SK_sentences(EN_sentences, SK_sentences)

def build_data(EN_sentences_cleaned, SK_sentences_cleaned):

 input_dataset = []

 target_dataset = []

 input_characters = set()

 target_characters = set()

 for SK_sentence in SK_sentences_cleaned:

 input_datapoint = SK_sentence

 input_dataset.append(input_datapoint)

 for char in input_datapoint:

 input_characters.add(char)

 for EN_sentence in EN_sentences_cleaned:

 target_datapoint = "\t" + EN_sentence + "\n"

 target_dataset.append(target_datapoint)

 for char in target_datapoint:

 target_characters.add(char)

 return input_dataset, target_dataset,

sorted(list(input_characters)),

sorted(list(target_characters))

Sequence-to-Sequence Model | FITPED AI

83

input_dataset, target_dataset, input_characters,

target_characters = build_data(EN_sentences_cleaned,

SK_sentences_cleaned)

write your code here

print(input_characters)

📝 5.2.8

The following code will serve as a revision of the functions already created. So let's
take a look at what the dictionary we generated looks like. Run the individual code
blocks in order. Your task is to write out what the list of output characters looks
like.

import pandas as pd

import string

import re

from urllib.request import urlopen

import numpy as np

from unicodedata import normalize

import urllib

def input_file(file_name):

 data = []

 file = urllib.request.urlopen(file_name)

 for row in file:

 row = row.decode("utf-8")

 row = row.strip()

 data.append(row)

 return data

data =

input_file('https://priscilla.fitped.eu/data/nlp/slk.txt')

print(data[1500])

print(len(data))

data = data[:10000]

def create_english_slovak_sentences(data):

 EN_sentences = []

 SK_sentences = []

 for data_point in data:

 EN_sentences.append(data_point.split("\t")[0])

Sequence-to-Sequence Model | FITPED AI

84

 SK_sentences.append(data_point.split("\t")[1])

 return EN_sentences, SK_sentences

EN_sentences, SK_sentences =

create_english_slovak_sentences(data)

def preprocess_sentences(sentence):

 re_print = re.compile('[^%s]' % re.escape(string.printable))

 table = str.maketrans('', '', string.punctuation)

 cleaned_sent = normalize('NFD', sentence).encode('ascii',

'ignore')

 cleaned_sent = cleaned_sent.decode('UTF-8')

 cleaned_sent = cleaned_sent.split()

 cleaned_sent = [word.lower() for word in cleaned_sent]

 cleaned_sent = [word.translate(table) for word in

cleaned_sent]

 cleaned_sent = [re_print.sub('', w) for w in cleaned_sent]

 cleaned_sent = [word for word in cleaned_sent if

word.isalpha()]

 return ' '.join(cleaned_sent)

def preprocess_EN_SK_sentences(EN_sentences, SK_sentences):

 SK_sentences_cleaned = []

 EN_sentences_cleaned = []

 for sent in SK_sentences:

 SK_sentences_cleaned.append(preprocess_sentences(sent))

 for sent in EN_sentences:

 EN_sentences_cleaned.append(preprocess_sentences(sent))

 return EN_sentences_cleaned, SK_sentences_cleaned

EN_sentences_cleaned, SK_sentences_cleaned =

preprocess_EN_SK_sentences(EN_sentences, SK_sentences)

def build_data(EN_sentences_cleaned, SK_sentences_cleaned):

 input_dataset = []

 target_dataset = []

 input_characters = set()

 target_characters = set()

 for SK_sentence in SK_sentences_cleaned:

 input_datapoint = SK_sentence

 input_dataset.append(input_datapoint)

 for char in input_datapoint:

 input_characters.add(char)

Sequence-to-Sequence Model | FITPED AI

85

 for EN_sentence in EN_sentences_cleaned:

 target_datapoint = "\t" + EN_sentence + "\n"

 target_dataset.append(target_datapoint)

 for char in target_datapoint:

 target_characters.add(char)

 return input_dataset, target_dataset,

sorted(list(input_characters)),

sorted(list(target_characters))

input_dataset, target_dataset, input_characters,

target_characters = build_data(EN_sentences_cleaned,

SK_sentences_cleaned)

write your code here

print(target_characters)

5.3 Machine translation - model creation

📝 5.3.1

The results of the previous assignments show us the difference in that we have
added escape sequences to the output characters indicating the beginning and end
of our sequence, so the \t and \n tokens are also there. These are used for the
decoder to better understand the beginning and end of the sequence. Our input and
output dictionaries need not be the same for tasks such as natural language
translation. In fact, sometimes even our character set may not be the same. For
example, we may be trying to translate between English and Arabic, which have
completely different character sets. In addition to the differences in vocabulary, we
should also be aware that our input sequence and the target sequence may not be
the same size. Not only the number of words in two parallel sentences may be
different but also the number of characters in each word. Therefore, we need to get
information about the metadata of our sentences:

• the size of the input and output vocabulary,
• the maximum length of the input and output character set.

def get_metadata(input_dataset, target_dataset,

input_characters, target_characters):

 num_Encoder_tokens = len(input_characters)

 num_Decoder_tokens = len(target_characters)

 max_Encoder_seq_length = max([len(data_point) for data_point

in input_dataset])

Sequence-to-Sequence Model | FITPED AI

86

 max_Decoder_seq_length = max([len(data_point) for data_point

in target_dataset])

 print('Number of data points:', len(input_dataset))

 print('Number of unique input tokens:', num_Encoder_tokens)

 print('Number of unique output tokens:', num_Decoder_tokens)

 print('Maximum sequence length for inputs:',

max_Encoder_seq_length)

 print('Maximum sequence length for outputs:',

max_Decoder_seq_length)

 return num_Encoder_tokens, num_Decoder_tokens,

max_Encoder_seq_length, max_Decoder_seq_length

num_Encoder_tokens, num_Decoder_tokens,

max_Encoder_seq_length, max_Decoder_seq_length =

get_metadata(input_dataset, target_dataset, input_characters,

target_characters)

Number of data points: 10000

Number of unique input tokens: 26

Number of unique output tokens: 29

Maximum sequence length for inputs: 50

Maximum sequence length for outputs: 38

📝 5.3.2

Number of data points: 10000

Number of unique input tokens: 26

Number of unique output tokens: 29

Maximum sequence length for inputs: 50

Maximum sequence length for outputs: 38

In the previous microlesson, we got information about our metadata. We
discovered the following:

• there are 10 000 unique English-Slovak sentence pairs in our dataset,
• the number of unique input tokens (characters) is 26,

Sequence-to-Sequence Model | FITPED AI

87

• the number of unique output tokens (characters) that we try to extract and
predict is 29,

• our longest input sequence is 50 characters long,
• our longest output sequence is 38 characters long.

📝 5.3.3

A very important step is to create a mapping from characters to indexes and vice
versa. This will help us in the following activities:

• represent our input characters using the appropriate indices,
• convert our predicted indices to their corresponding characters when

predicting.

def create_indices(input_characters, target_characters):

 # Initialize dictionaries to store mappings between

characters and indices

 input_char_to_idx = {} # Maps characters from the input

language (Slovak) to indices

 input_idx_to_char = {} # Maps indices to characters for the

input language

 target_char_to_idx = {} # Maps characters from the target

language (English) to indices

 target_idx_to_char = {} # Maps indices to characters for

the target language

 # Create the mappings for the input characters (Slovak)

 for i, char in enumerate(input_characters):

 input_char_to_idx[char] = i # Assign an index to each

character

 input_idx_to_char[i] = char # Create a reverse mapping

from index to character

 # Create the mappings for the target characters (English)

 for i, char in enumerate(target_characters):

 target_char_to_idx[char] = i # Assign an index to each

character

 target_idx_to_char[i] = char # Create a reverse mapping

from index to character

 # Return all four dictionaries

 return input_char_to_idx, input_idx_to_char,

target_char_to_idx, target_idx_to_char

Sequence-to-Sequence Model | FITPED AI

88

Create the indices for the input and target languages

input_char_to_idx, input_idx_to_char, target_char_to_idx,

target_idx_to_char = create_indices(input_characters,

target_characters)

📝 5.3.4

We can then build our data structure based on the extracted metadata from the
previous microlessons.

def build_data_structures(length_input_dataset,

max_Encoder_seq_length, max_Decoder_seq_length,

num_Encoder_tokens, num_Decoder_tokens):

 Encoder_input_data = np.zeros((length_input_dataset,

max_Encoder_seq_length, num_Encoder_tokens), dtype='float32')

 Decoder_input_data = np.zeros((length_input_dataset,

max_Decoder_seq_length, num_Decoder_tokens), dtype='float32')

 Decoder_target_data = np.zeros((length_input_dataset,

max_Decoder_seq_length, num_Decoder_tokens), dtype='float32')

 print("Dimensionality of Encoder input data is : ",

Encoder_input_data.shape)

 print("Dimensionality of Decoder input data is : ",

Decoder_input_data.shape)

 print("Dimensionality of Decoder target data is : ",

Decoder_target_data.shape)

 return Encoder_input_data, Decoder_input_data,

Decoder_target_data

Encoder_input_data, Decoder_input_data, Decoder_target_data =

build_data_structures(len(input_dataset),

max_Encoder_seq_length, max_Decoder_seq_length,

num_Encoder_tokens, num_Decoder_tokens)

Dimensionality of Encoder input data is : (10000, 50, 26)

Dimensionality of Decoder input data is : (10000, 38, 29)

Dimensionality of Decoder target data is : (10000, 38, 29)

Sequence-to-Sequence Model | FITPED AI

89

📝 5.3.5

Dimensionality of Encoder input data is : (10000, 50, 26)

Dimensionality of Decoder input data is : (10000, 38, 29)

Dimensionality of Decoder target data is : (10000, 38, 29)

Let's look at the properties of the data structure we have created:

• the dimension of the input data is (10000, 50, 26),
• the first dimension represents the number of data points: 10 000,
• the second dimension represents the maximum length of our input

sequence: 50,
• the third dimension represents the size of our input character set: 26,
• the dimension of the decoder input and output data is (10000, 38, 29),
• the first dimension represents the number of data points: 10 000,
• the second dimension represents the maximum length of our output

sequence: 38,
• the third dimension represents the size of our output character set: 29,

Once we have created the data structure we add data to it.

def add_data_to_data_structures(input_dataset, target_dataset,

Encoder_input_data, Decoder_input_data, Decoder_target_data):

 # Loop over the input and target datasets

 for i, (input_data_point, target_data_point) in

enumerate(zip(input_dataset, target_dataset)):

 # Fill in the Encoder input data

 for t, char in enumerate(input_data_point):

 # Set the appropriate index in the Encoder input data to

1. This represents the one-hot encoding for the input

character.

 Encoder_input_data[i, t, input_char_to_idx[char]] = 1.

 # Fill in the Decoder input and target data

 for t, char in enumerate(target_data_point):

 # Set the appropriate index in the Decoder input data to

1. This represents the one-hot encoding for the target

character.

 Decoder_input_data[i, t, target_char_to_idx[char]] = 1.

Sequence-to-Sequence Model | FITPED AI

90

 # For the Decoder target data, set the appropriate index

for the previous character (to align with the teacher forcing

method).

 if t > 0:

 Decoder_target_data[i, t - 1,

target_char_to_idx[char]] = 1.

 return Encoder_input_data, Decoder_input_data,

Decoder_target_data

Calling the function to fill the data structures

Encoder_input_data, Decoder_input_data, Decoder_target_data =

add_data_to_data_structures(input_dataset, target_dataset,

Encoder_input_data, Decoder_input_data, Decoder_target_data)

📝 5.3.6

We used a character-to-index mapping and converted some of the entries in our
data structure to 1, indicating the presence of a particular character at a particular
position in each of the sentences. As a result of the mapping, the last dimension
(26 in the encoder input data structure and 29 in the decoder input or target data
structure) is a vector of 1's indicating which item is present at a given position in
our data. We do not insert anything for the <start> token when building the decoder
target data and it is also prefixed by a one-time step for the same reasons we
mentioned in the section on decoders. Our decoder target data is the same as the
decoder input data, it's just shifted by one-time step. We are now ready to set the
hyperparameters of our model.

batch_size = 256

epochs = 100

latent_dim = 256

📝 5.3.7

The next step is to create our coder. We set the return_state property to True so that
the decoder will return the last hidden state and memory that will create the context
vector. The states state_h and state_c represent our last hidden state and memory
information. The role of the encoder is to provide a context vector that captures the
context of the input sentence. However, we have no explicit target context vector
defined against which we can compare the performance of the encoder. The
encoder learns from the performance of the decoder, which we will describe later.
The decoder error is fed back and this is how backpropagation works in the
encoder and the encoder learns based on this.

Sequence-to-Sequence Model | FITPED AI

91

Step 1: Define the input layer for the encoder.

The shape of the input is (None, num_Encoder_tokens).

'None' indicates that the sequence length can vary, and

'num_Encoder_tokens'

is the number of unique tokens in the input dataset.

Encoder_inputs = Input(shape=(None, num_Encoder_tokens))

Step 2: Define the LSTM layer for the encoder.

'latent_dim' is the number of units in the LSTM, which

defines the dimensionality of the hidden state.

'return_state=True' means we want the LSTM to return the

hidden and cell states in addition to its outputs.

Encoder = LSTM(latent_dim, return_state=True)

Step 3: Pass the encoder inputs through the LSTM layer.

This will return the encoder outputs and the final hidden

and cell states.

'Encoder_outputs' will contain the hidden states for each

time step (not used directly for Seq2Seq).

'state_h' and 'state_c' are the final hidden and cell

states, which we'll use as the context vector for the decoder.

Encoder_outputs, state_h, state_c = Encoder(Encoder_inputs)

Step 4: Collect the hidden and cell states into a list

called 'Encoder_states'.

These states will be passed to the decoder to initialize the

decoder's hidden state and cell state.

Encoder_states = [state_h, state_c]

📝 5.3.8

Let's focus on the second part, the decoder. During training, both input and output
data are provided to the decoder and the decoder is asked to predict the input data
with an offset of 1. This helps the decoder understand what it should predict if it
receives a context vector from the encoder. This learning method is referred to as
teacher forcing. The initial state of the decoder is in the Encoder_states variable,
which is our context vector obtained from the encoder. The neural network layer is
part of the decoder, where the number of neurons is equal to the number of tokens
(in our case, characters) present in the output character set of the decoder. This
layer is associated with the output of the softmax function, which helps us obtain
normalized probabilities for each output character. Also, this function predicts the
target character with the highest probability.

Sequence-to-Sequence Model | FITPED AI

92

The return_sequences parameter in the neural network decoder helps us to get the
entire output sequence from the decoder. We want the output from the decoder at
each time step and hence we set this parameter to True. Since we have used a layer
along with the output of the softmax function, we get the probability distribution
over our output features for each time step, selecting the feature with the highest
probability. We judge the performance of our decoder by comparing its output
produced at each time step.

Step 1: Define the input layer for the decoder.

Similar to the encoder, the shape of the input is (None,

num_Decoder_tokens),

where 'None' indicates that the sequence length can vary,

and 'num_Decoder_tokens'

is the number of unique tokens in the target dataset (i.e.,

the output vocabulary).

Decoder_inputs = Input(shape=(None, num_Decoder_tokens))

Step 2: Define the LSTM layer for the decoder.

'latent_dim' is the number of units in the LSTM, which

defines the dimensionality of the hidden state.

'return_sequences=True' ensures that the LSTM returns the

hidden state for every time step (not just the final time

step).

'return_state=True' is used to get the hidden and cell

states from the decoder, but we don't use them here directly.

Decoder_lstm = LSTM(latent_dim, return_sequences=True,

return_state=True)

Step 3: Pass the decoder inputs through the LSTM layer.

'Encoder_states' are passed as the initial hidden and cell

states for the decoder,

ensuring that the decoder begins generating the output

sequence based on the encoder's context.

Decoder_outputs, _, _ = Decoder_lstm(Decoder_inputs,

initial_state=Encoder_states)

Step 4: Define the Dense layer for the decoder's output.

The Dense layer projects the LSTM outputs into the output

vocabulary space (num_Decoder_tokens).

'softmax' activation function ensures that the output is a

probability distribution over the target tokens.

Decoder_dense = Dense(num_Decoder_tokens,

activation='softmax')

Sequence-to-Sequence Model | FITPED AI

93

Step 5: Apply the Dense layer to the decoder outputs to

generate predictions for each time step.

Decoder_outputs = Decoder_dense(Decoder_outputs)

📝 5.3.9

We have defined our encoder and decoder and now we will combine them into a
model. We'll use the Keras Model API to define the different inputs and outputs that
we'll use at different stages. The Model API provides Encoder_input_data;
Decoder_input_data is the input to our model that will be used as the encoder and
decoder inputs; Decoder_target_data is used as the decoder output. The model will
try to convert Encoder_input_data and Decoder_input_data to Decoder_target_data.

Step 1: Create the Seq2Seq model using the Keras Model API.

The model takes two inputs: Encoder_inputs and

Decoder_inputs.

Encoder_inputs are the input sequences, and Decoder_inputs

are the shifted target sequences.

The model's output is the Decoder_outputs, which are the

predicted target sequences.

model = Model(inputs=[Encoder_inputs, Decoder_inputs],

outputs=Decoder_outputs)

Step 2: Compile the model.

We use the 'rmsprop' optimizer, which is effective for

training sequence models.

The loss function used is 'categorical_crossentropy', which

is appropriate for multi-class classification tasks

(where each token in the output sequence is a class).

This loss function measures the difference between the

predicted probability distribution and the true distribution.

model.compile(optimizer='rmsprop',

loss='categorical_crossentropy')

Step 3: Display the model summary.

The model summary will print out the architecture of the

model, including the layers, number of parameters,

and shapes of the input/output tensors for each layer.

model.summary()

Sequence-to-Sequence Model | FITPED AI

94

📝 5.3.10

The following code will serve as a reiteration of the already created functions and
deployment of the encoder and decoder. So let's take a look at what the summary
of our model looks like. Run the individual code blocks in order. Your task is to list
what is the number of parameters in the LSTM.

import pandas as pd

import string

import re

from urllib.request import urlopen

import numpy as np

from unicodedata import normalize

import urllib

def input_file(file_name):

 data = []

 file = urllib.request.urlopen(file_name)

 for row in file:

 row = row.decode("utf-8")

 row = row.strip()

 data.append(row)

 return data

data =

input_file('https://priscilla.fitped.eu/data/nlp/slk.txt')

print(data[1500])

print(len(data))

data = data[:10000]

def create_english_slovak_sentences(data):

 EN_sentences = []

 SK_sentences = []

 for data_point in data:

 EN_sentences.append(data_point.split("\t")[0])

 SK_sentences.append(data_point.split("\t")[1])

 return EN_sentences, SK_sentences

EN_sentences, SK_sentences =

create_english_slovak_sentences(data)

def preprocess_sentences(sentence):

 re_print = re.compile('[^%s]' % re.escape(string.printable))

 table = str.maketrans('', '', string.punctuation)

Sequence-to-Sequence Model | FITPED AI

95

 cleaned_sent = normalize('NFD', sentence).encode('ascii',

'ignore')

 cleaned_sent = cleaned_sent.decode('UTF-8')

 cleaned_sent = cleaned_sent.split()

 cleaned_sent = [word.lower() for word in cleaned_sent]

 cleaned_sent = [word.translate(table) for word in

cleaned_sent]

 cleaned_sent = [re_print.sub('', w) for w in cleaned_sent]

 cleaned_sent = [word for word in cleaned_sent if

word.isalpha()]

 return ' '.join(cleaned_sent)

def preprocess_EN_SK_sentences(EN_sentences, SK_sentences):

 SK_sentences_cleaned = []

 EN_sentences_cleaned = []

 for sent in SK_sentences:

 SK_sentences_cleaned.append(preprocess_sentences(sent))

 for sent in EN_sentences:

 EN_sentences_cleaned.append(preprocess_sentences(sent))

 return EN_sentences_cleaned, SK_sentences_cleaned

EN_sentences_cleaned, SK_sentences_cleaned =

preprocess_EN_SK_sentences(EN_sentences, SK_sentences)

def build_data(EN_sentences_cleaned, SK_sentences_cleaned):

 input_dataset = []

 target_dataset = []

 input_characters = set()

 target_characters = set()

 for SK_sentence in SK_sentences_cleaned:

 input_datapoint = SK_sentence

 input_dataset.append(input_datapoint)

 for char in input_datapoint:

 input_characters.add(char)

 for EN_sentence in EN_sentences_cleaned:

 target_datapoint = "\t" + EN_sentence + "\n"

 target_dataset.append(target_datapoint)

 for char in target_datapoint:

 target_characters.add(char)

Sequence-to-Sequence Model | FITPED AI

96

 return input_dataset, target_dataset,

sorted(list(input_characters)),

sorted(list(target_characters))

input_dataset, target_dataset, input_characters,

target_characters = build_data(EN_sentences_cleaned,

SK_sentences_cleaned)

def get_metadata(input_dataset, target_dataset,

input_characters, target_characters):

 num_Encoder_tokens = len(input_characters)

 num_Decoder_tokens = len(target_characters)

 max_Encoder_seq_length = max([len(data_point) for data_point

in input_dataset])

 max_Decoder_seq_length = max([len(data_point) for data_point

in target_dataset])

 print('Number of data points:', len(input_dataset))

 print('Number of unique input tokens:', num_Encoder_tokens)

 print('Number of unique output tokens:', num_Decoder_tokens)

 print('Maximum sequence length for inputs:',

max_Encoder_seq_length)

 print('Maximum sequence length for outputs:',

max_Decoder_seq_length)

 return num_Encoder_tokens, num_Decoder_tokens,

max_Encoder_seq_length, max_Decoder_seq_length

num_Encoder_tokens, num_Decoder_tokens,

max_Encoder_seq_length, max_Decoder_seq_length =

get_metadata(input_dataset, target_dataset, input_characters,

target_characters)

def create_indices(input_characters, target_characters):

 input_char_to_idx = {}

 input_idx_to_char = {}

 target_char_to_idx = {}

 target_idx_to_char = {}

 for i, char in enumerate(input_characters):

 input_char_to_idx[char] = i

 input_idx_to_char[i] = char

 for i, char in enumerate(target_characters):

 target_char_to_idx[char] = i

 target_idx_to_char[i] = char

 return input_char_to_idx, input_idx_to_char,

target_char_to_idx, target_idx_to_char

Sequence-to-Sequence Model | FITPED AI

97

input_char_to_idx, input_idx_to_char, target_char_to_idx,

target_idx_to_char = create_indices(input_characters,

target_characters)

def build_data_structures(length_input_dataset,

max_Encoder_seq_length, max_Decoder_seq_length,

num_Encoder_tokens, num_Decoder_tokens):

 Encoder_input_data = np.zeros((length_input_dataset,

max_Encoder_seq_length, num_Encoder_tokens), dtype='float32')

 Decoder_input_data = np.zeros((length_input_dataset,

max_Decoder_seq_length, num_Decoder_tokens), dtype='float32')

 Decoder_target_data = np.zeros((length_input_dataset,

max_Decoder_seq_length, num_Decoder_tokens), dtype='float32')

 print("Dimensionality of Encoder input data is : ",

Encoder_input_data.shape)

 print("Dimensionality of Decoder input data is : ",

Decoder_input_data.shape)

 print("Dimensionality of Decoder target data is : ",

Decoder_target_data.shape)

 return Encoder_input_data, Decoder_input_data,

Decoder_target_data

Encoder_input_data, Decoder_input_data, Decoder_target_data =

build_data_structures(len(input_dataset),

max_Encoder_seq_length, max_Decoder_seq_length,

num_Encoder_tokens, num_Decoder_tokens)

def add_data_to_data_structures(input_dataset, target_dataset,

Encoder_input_data, Decoder_input_data, Decoder_target_data):

 for i, (input_data_point, target_data_point) in

enumerate(zip(input_dataset, target_dataset)):

 for t, char in enumerate(input_data_point):

 Encoder_input_data[i, t, input_char_to_idx[char]] = 1.

 for t, char in enumerate(target_data_point):

 Decoder_input_data[i, t, target_char_to_idx[char]] = 1.

 if t > 0:

 Decoder_target_data[i, t - 1,

target_char_to_idx[char]] = 1.

 return Encoder_input_data, Decoder_input_data,

Decoder_target_data

Encoder_input_data, Decoder_input_data, Decoder_target_data =

add_data_to_data_structures(input_dataset, target_dataset,

Encoder_input_data, Decoder_input_data, Decoder_target_data)

Sequence-to-Sequence Model | FITPED AI

98

import tensorflow

from tensorflow import keras

#from keras.models import Model

#from keras.layers import Input, LSTM, Dense

print('done')

batch_size = 256

epochs = 100

latent_dim = 256

Encoder_inputs = keras.layers.Input(shape=(None,

num_Encoder_tokens))

Encoder = keras.layers.LSTM(latent_dim, return_state=True)

Encoder_outputs, state_h, state_c = Encoder(Encoder_inputs)

Encoder_states = [state_h, state_c]

Decoder_inputs = keras.layers.Input(shape=(None,

num_Decoder_tokens))

Decoder_lstm = keras.layers.LSTM(latent_dim,

return_sequences=True, return_state=True)

Decoder_outputs, _, _ = Decoder_lstm(Decoder_inputs,

initial_state=Encoder_states)

Decoder_dense = keras.layers.Dense(num_Decoder_tokens,

activation='softmax')

Decoder_outputs = Decoder_dense(Decoder_outputs)

model = keras.Model(inputs=[Encoder_inputs, Decoder_inputs],

outputs=Decoder_outputs)

model.compile(optimizer='rmsprop',

loss='categorical_crossentropy')

print(model.summary())

Sequence-to-Sequence Model | FITPED AI

99

📝 5.3.11

The last step in this phase is to train the model. We will train on 80% of the data and
the remaining 20% will be used to evaluate the model. We can then save the created
model using the save() function.

Step 1: Train the Seq2Seq model.

We use the fit() method to train the model on the provided

data.

The model will learn to translate the Slovak sentences

(Encoder_input_data) to the English sentences

(Decoder_target_data).

model.fit([Encoder_input_data, Decoder_input_data],

Decoder_target_data,

 batch_size=batch_size, # The batch size defines

the number of samples processed before the model updates its

parameters.

 epochs=epochs, # The number of times the

entire dataset will be passed through the model.

 validation_split=0.2) # This splits 20% of the

data for validation during training to monitor overfitting and

evaluate performance.

Step 2: Save the trained model to a file.

This saves the entire model, including the architecture,

optimizer, and learned weights,

so you can reload it later for inference or further

training.

model.save('translation_slovak_to_english.h5')

Sequence-to-Sequence Model | FITPED AI

100

5.4 Machine translation - model deployment

📝 5.4.1

Once we have created our model we need to test and deploy it. To do this we need
to create a few more functions to ensure that we can send the input sequence to
the encoder and retrieve the initial state of the decoder. We then send the start
token and initial state to the decoder to get the next output character. Then we add
the predicted output character to the sequence and repeat this process until we
receive the end token or reach the maximum number of predicted characters.

Step 1: Define the Encoder model for inference

The Encoder model is used to get the hidden states from the

trained encoder.

This is necessary for passing the context information to the

decoder during inference.

Encoder_model = Model(Encoder_inputs, Encoder_states)

Step 2: Define the Decoder model for inference

The Decoder model is used during inference to generate the

predicted output sequence, one token at a time.

It takes the context vector from the Encoder model and the

previously generated token as input to predict the next token.

Decoder's input for state (initial hidden and cell states

from the encoder)

Decoder_state_input_c = Input(shape=(latent_dim,)) # Cell

state input for the decoder LSTM

Decoder_state_input_h = Input(shape=(latent_dim,)) # Hidden

state input for the decoder LSTM

Decoder_states_inputs = [Decoder_state_input_h,

Decoder_state_input_c]

Decoder LSTM layer receives the Decoder inputs (shifted

target sentences) and the initial states from the encoder.

Decoder_outputs, state_h, state_c =

Decoder_lstm(Decoder_inputs,

initial_state=Decoder_states_inputs)

The decoder outputs are the predicted tokens, and we update

the states for the next prediction.

Decoder_states = [state_h, state_c]

Sequence-to-Sequence Model | FITPED AI

101

Decoder dense layer generates the output token predictions

for the current time step.

Decoder_outputs = Decoder_dense(Decoder_outputs)

Step 3: Define the Decoder model

This model takes the decoder inputs and the previous states

as inputs,

and returns the output token predictions and updated states

for the next time step.

Decoder_model = Model([Decoder_inputs] +

Decoder_states_inputs, [Decoder_outputs] + Decoder_states)

📝 5.4.2

In the next step let's create a decode_sequence() function that will use the encoder-
decoder model we created.

def decode_sequence(input_seq):

 # Step 1: Predict the encoder's output states for the

input sequence

 # The Encoder model processes the input sequence and

returns the encoder's final hidden states (context vector).

 states_value = Encoder_model.predict(input_seq)

 # Step 2: Initialize the target sequence with the token

(represented as 1 in the one-hot encoding)

 # The target sequence for the decoder is initialized with

the token to begin generating the translated sentence.

 target_seq = np.zeros((1, 1, num_Decoder_tokens))

 target_seq[0, 0, target_char_to_idx['\t']] = 1. # '\t' is

the token in the target sentence

 # Step 3: Initialize the stop condition flag and the

decoded sentence

 stop_condition = False

 decoded_sentence = ''

 # Step 4: Start generating the translated sentence one

token at a time

 while not stop_condition:

 # Step 4a: Predict the next token (word) and its

updated states using the decoder

Sequence-to-Sequence Model | FITPED AI

102

 # The Decoder model takes the current target sequence

and the encoder's states to predict the next token.

 output_tokens, h, c =

Decoder_model.predict([target_seq] + states_value)

 # Step 4b: Find the token with the highest probability

(argmax)

 # The output tokens contain probabilities for each

possible next token. We take the one with the highest

probability.

 sampled_token_index = np.argmax(output_tokens[0, -1,

:])

 # Step 4c: Get the character corresponding to the

predicted token index

 # We look up the predicted token index to get the

corresponding character.

 sampled_char = target_idx_to_char[sampled_token_index]

 # Step 4d: Add the predicted character to the decoded

sentence

 decoded_sentence += sampled_char

 # Step 4e: Check if we have reached the token or

exceeded the max length

 # We stop generating tokens if we encounter the token

or if the sentence length exceeds the limit.

 if (sampled_char == '\n' or len(decoded_sentence) >

max_Decoder_seq_length):

 stop_condition = True

 # Step 4f: Update the target sequence for the next

prediction step

 # The next input for the decoder is the previously

predicted token.

 target_seq = np.zeros((1, 1, num_Decoder_tokens))

 target_seq[0, 0, sampled_token_index] = 1.

 # Step 4g: Update the decoder states for the next time

step

 states_value = [h, c]

 # Step 5: Return the fully decoded sentence

 return decoded_sentence

Sequence-to-Sequence Model | FITPED AI

103

📝 5.4.3

Finally, we can create a decode() function whose parameter is the index of a
sentence from the data file.

def decode(seq_index):

 input_seq = Encoder_input_data[seq_index: seq_index + 1]

 decoded_sentence = decode_sequence(input_seq)

 print('-')

 print('Input sentence:', input_dataset[seq_index])

 print('Decoded sentence:', decoded_sentence)

Machine Translation
Evaluation

Chapter 6

Machine Translation Evaluation | FITPED AI

105

6.1 Basics of evaluation

📝 6.1.1

Language is the bridge that connects people across cultures, and translation is the
key process that enables this connection. A good translation is not merely a word-
for-word replacement of terms but an effort to express ideas, emotions, and
nuances as closely as possible in the target language. The goal is to convey the
meaning of the source text in such a way that it resonates with the target audience,
without sounding artificial or forced. Translation is about capturing the essence of
the source content while making it accessible and understandable to those who
speak the target language.

To understand translation better, we need to familiarize ourselves with some key
concepts:

• source text is the original text that needs to be translated
• target text is the translated version in the desired language
• hypothesis refers to the machine-generated translation of the source text
• reference is a human-generated translation, typically used for comparison
• machine translation (MT) involves using computer software to automatically

translate text from one language to another

While machine translation has made significant advances, it is still a challenge to
achieve translations that perfectly reflect the subtleties of human language.
Machine translation is commonly used in various applications, such as translating
websites, documents, and even conversations in real-time. However, there are still
limitations. Although MT can quickly process large amounts of text, it often
struggles with idiomatic expressions, cultural context, and other nuances that
human translators naturally understand. Human translators, on the other hand,
bring contextual knowledge, cultural understanding, and emotional intelligence to
their work, making their translations more accurate and meaningful.

Despite these challenges, MT has revolutionized how we communicate across
languages, making it easier to access information and connect with people
globally. However, to achieve high-quality translations, we must understand the
strengths and limitations of both machine-generated translations and human
translations.

Machine Translation Evaluation | FITPED AI

106

📝 6.1.2

Which of the following best describes a "target text"?

• The text translated into the desired language
• The original text that needs to be translated
• A machine-generated translation
• A human-generated translation

📝 6.1.3

Why do machine translations often struggle with idiomatic expressions and cultural
context?

• They lack emotional intelligence and cultural knowledge
• They can process large amounts of text quickly
• They are created by human translators
• They are always more accurate than human translations

📝 6.1.4

When evaluating a translation, whether human or machine-generated, it's important
to consider the purpose of the evaluation. For instance, in some cases, the focus
might be on the comprehension of the text, ensuring that the translated message
makes sense to the reader. This could be done without delving into any errors or
mistakes. On the other hand, an in-depth error analysis can be valuable to identify
both weaknesses and strengths in machine translation systems or human
translators. Such detailed analysis helps pinpoint specific areas that need
improvement, such as translating idiomatic expressions, technical terms, or cultural
context.

The quality of a translation is influenced by several factors. A translator’s subjective
view and their experience with the language pair can significantly affect the final
output. Additionally, the context in which the source text is written is also a key
determinant. For example, a text in the scientific field might require specialized
knowledge and a more technical vocabulary than a general conversation.
Translators, or machine translation systems, must be able to handle such
complexities, ensuring that nuances are preserved while accurately conveying the
meaning.

In machine translation, the relationship between the source text and the target text
is especially crucial. The translation process involves converting one language’s
textual form into another while maintaining meaning, tone, and style. Any loss of
these elements can reduce the quality of the translation. The closer the machine-

Machine Translation Evaluation | FITPED AI

107

generated target text mirrors these factors in the source, the better the translation
will be, although machines still struggle with capturing context and tone compared
to human translators.

📝 6.1.5

What is the main goal of an in-depth error analysis in translation?

• To identify the weaknesses and strengths of the translation
• To make the target text sound better
• To improve the source text
• To reduce the length of the translation

📝 6.1.6

Which of the following factors can affect the quality of a translation?

• The experience of the translator
• The context of the source text
• The length of the source text
• The format of the text

📝 6.1.7

Evaluating the quality of a translation is a complex task, as the concept of "quality"
varies widely depending on the context. There are different ideas about what makes
a translation "neat" or "acceptable," and these opinions can differ significantly
between cultures, languages, and even individual preferences. The diversity of
translation methods and approaches adds another layer of ambiguity when trying
to define clear and universally accepted criteria for evaluation. This complexity
makes it difficult to develop a one-size-fits-all approach to translation assessment.

To address these challenges, translation models and evaluation methods often rely
on human assessors. These assessors are tasked with identifying errors in the
translation and determining whether it aligns with specific linguistic or functional
standards. This process usually involves comparing the translated text with the
original to evaluate its clarity and fidelity. Fidelity refers to how accurately the
meaning of the original text has been conveyed, while clarity focuses on the overall
readability and natural flow of the target text. Both attributes are essential not only
for human translations but also for evaluating machine translations, which, despite
advancements, still face challenges in producing text that mirrors these qualities.

Machine Translation Evaluation | FITPED AI

108

In the case of machine translation, it is crucial to ensure that the output not only
maintains the meaning of the original text but also conveys it clearly and naturally
in the target language. Machine translation systems, while increasingly
sophisticated, often struggle with capturing nuances, idiomatic expressions, and
cultural contexts that human translators can more easily navigate. Therefore, the
evaluation of machine translation is particularly focused on how well these systems
replicate the fidelity and clarity that would be expected from human translations.

📝 6.1.8

Why is evaluating translation quality difficult?

• There are different conceptions of quality and translation approaches
• There is a lack of human assessors
• Machines cannot evaluate translations
• All translations are identical

📝 6.1.9

What is the main focus when evaluating machine translations?

• Fidelity and clarity of the translation
• The length of the translation
• The time it took to complete the translation
• The choice of vocabulary used

📝 6.1.10

The quality of machine translation can be assessed using two primary methods:
manual evaluation and automatic evaluation. Manual evaluation involves human
assessors, typically professional translators, who judge the translation based on its
accuracy and precision. Accuracy refers to how well the translated text reflects the
meaning of the source text, while precision evaluates the exactness of the language
used. Manual evaluation typically uses a scale to rate these factors, often from 1 to
5 points, allowing the evaluator to assess how well the translation preserves the
context and intent of the original text.

While manual evaluation provides in-depth and human-centered feedback, it has its
limitations. The process is time-consuming and can be influenced by the
subjectivity of the evaluator, as different people may interpret the translation’s
quality differently. Moreover, relying on experts to assess translations can be
resource-intensive, making it less feasible for large-scale evaluations. These

Machine Translation Evaluation | FITPED AI

109

challenges have led to the rise of automatic evaluation metrics, which can quickly
and consistently assess the quality of a translation. Automatic methods do not
require human assessors and are often based on algorithms that compare the
machine translation output to a reference translation, measuring various factors
like fluency and adequacy.

Automatic evaluation is increasingly used in the industry due to its efficiency and
scalability. Common automatic evaluation metrics include BLEU (Bilingual
Evaluation Understudy), which measures the overlap between n-grams in the
machine translation output and reference translations, and METEOR, which
considers synonymy and word order in its evaluation. Although automatic
evaluation has made substantial progress, it is still not perfect and often lacks the
nuanced understanding that human evaluators provide. However, it remains a
valuable tool for quickly assessing large amounts of data and providing a baseline
for further refinement of machine translation systems.

📝 6.1.11

What is the main limitation of manual evaluation of machine translations?

• It is time-consuming and subject to evaluator subjectivity
• It is more accurate than automatic evaluation
• It cannot evaluate precision
• It does not use a scale for ratings

📝 6.1.12

What is the advantage of automatic evaluation over manual evaluation?

• It is faster and does not rely on experts
• It provides more nuanced feedback
• It requires fewer human resources and is more scalable
• It is always more accurate

📝 6.1.13

Machine translation automatic evaluation metrics are highly valued for their
objectivity and efficiency. Unlike manual evaluation, they eliminate the subjectivity
of human assessors and can process large datasets quickly. However, these
metrics are not without limitations. One of the key challenges is their reliance on
reference translations, which are used to compare the machine-generated
translation and determine its quality. The accuracy of the evaluation is directly

Machine Translation Evaluation | FITPED AI

110

influenced by the number of reference translations available. More reference
translations generally lead to a more accurate evaluation, as they provide a broader
basis for comparison. However, in practice, it is common to only have one
reference translation, which may limit the reliability of the evaluation.

Despite this limitation, the use of automatic evaluation metrics has grown
significantly due to their speed and scalability. These metrics are based on various
linguistic and statistical approaches, each with its own strengths and weaknesses.
For example, some metrics focus on the overlap of n-grams (sequences of n words)
between the machine translation output and the reference translation, while others
consider factors such as word order or synonymy. These metrics are particularly
useful for quickly assessing the quality of translations in large-scale machine
translation systems, especially when human evaluation is not feasible. As machine
translation continues to evolve, more advanced evaluation metrics are being
developed to address the challenges of reference scarcity and to provide more
accurate assessments.

Despite their widespread use, automatic evaluation metrics are not perfect. They
may struggle to capture nuances in language such as idiomatic expressions,
cultural context, or subtle differences in meaning that a human evaluator would
easily detect. Additionally, different metrics may yield different results depending
on their underlying methodology. As a result, while automatic metrics are valuable
tools for initial evaluations and large-scale assessments, human evaluation
remains essential for a deeper understanding of translation quality.

📝 6.1.14

What is the main disadvantage of using automatic evaluation metrics in machine
translation?

• They rely on reference translations, which are not always available
• They are subjective
• They are slower than manual evaluation
• They cannot evaluate accuracy

Machine Translation Evaluation | FITPED AI

111

6.2 Automatic evaluation metrics

📝 6.2.1

Automatic evaluation of machine translation is crucial for assessing the
performance of machine translation systems. The evaluation process often relies
on several key metrics such as:

• precision,
• recall,
• F-measure,

They are fundamental to understanding how well a machine translation system is
performing. These metrics are particularly important for evaluating the accuracy
and relevance of the translation produced by the system in comparison to a
reference translation.

Precision measures the proportion of relevant words or phrases in the output that
are also present in the reference, while recall assesses the proportion of relevant
words or phrases in the reference that appear in the machine-generated translation.
F-measure is a combined metric that balances precision and recall into a single
value, providing a more comprehensive measure of translation quality.

In the context of machine translation, these metrics are applied to the results of
binary classification, where each word or phrase in the translation is classified as
either a match (1) or a mismatch (0) compared to the reference translation. The
focus is on determining how many of the words or phrases in the machine-
generated translation are accurate and how well the overall translation reflects the
original meaning. This binary approach allows for a straightforward comparison
between machine-generated translations and human-generated reference
translations.

While precision, recall, and F-measure provide important insights into the accuracy
of a translation, they are not the only metrics used in machine translation
evaluation. Many other automatic evaluation metrics have been developed, building
upon these basic metrics, to address various aspects of translation quality.
However, the reliance on reference translations remains a central feature of
automatic evaluation, and the availability of multiple reference translations
generally leads to more accurate assessments.

Machine Translation Evaluation | FITPED AI

112

📝 6.2.2

Which of the following are basic metrics used in automatic evaluation of machine
translation?

• Precision
• Recall
• F-measure
• Perplexity

📝 6.2.3

Precision

Precision is a crucial metric in evaluating machine translation systems as it
determines the accuracy of the positive predictions made by the system. In
machine translation, the positive predictions refer to the words or phrases that the
system translates correctly. Precision is calculated by comparing the number of
true positives (TP), which are the correctly translated words, to the sum of true
positives and false positives (FP), which are the words incorrectly identified as
correct. Mathematically, precision is defined as:

Where:

• TP (True Positives) are the correct translations, i.e., the words that the
machine translation system has translated correctly.

• FP (False Positives) are the incorrect translations, i.e., the words that the
system has wrongly translated or falsely predicted as a correct translation.

In machine translation, the goal is to maximize precision, meaning the system
should produce as many correct translations as possible without introducing false
translations. However, precision alone is not sufficient to fully evaluate a
translation system, which is why it is often combined with recall and the F-measure
to provide a more comprehensive assessment of translation quality.

Machine Translation Evaluation | FITPED AI

113

def my_precision(ref, hyp):

 correct = 0

 lengthO = len(hyp)

 my_ref = ref.copy()

 for i in range(0,len(hyp)):

 for j in range(0,len(my_ref)):

 if hyp[i]==my_ref[j]:

 correct += 1

 my_ref.remove(my_ref[j])

 break

 return float(correct/lengthO)

try to compare two translations

Example usage

reference = ['the', 'cat', 'sat', 'on', 'the', 'mat']

hypothesis = ['the', 'cat', 'is', 'on', 'the', 'mat']

Calling the function to calculate precision

precision_value = my_precision(reference, hypothesis)

print(f"Precision: {precision_value}")

Program output:
Precision: 0.8333333333333334

Example usage with more complicated sentences

reference = ['the', 'quick', 'brown', 'fox', 'jumps', 'over',

'the', 'lazy', 'dog', 'in', 'the', 'morning']

hypothesis = ['the', 'fast', 'brown', 'fox', 'leaps', 'over',

'the', 'lazy', 'dog', 'at', 'dawn']

Calling the function to calculate precision

precision_value = my_precision(reference, hypothesis)

print(f"Precision: {precision_value}")

Program output:
Precision: 0.6363636363636364

Machine Translation Evaluation | FITPED AI

114

📝 6.2.4

Which of the following does precision measure in machine translation?

• Correct translations versus incorrect translations
• Correct translations versus false predictions
• Correct translations versus missing translations
• False predictions versus missing translations

📝 6.2.5

Recall

Recall is another important metric used to evaluate the performance of machine
translation systems. While precision focuses on the accuracy of the positive
predictions, recall is concerned with the system's ability to correctly identify all
relevant cases in the dataset. In machine translation, recall measures how many of
the true translations (true positives) the system was able to capture from the total
number of relevant translations. It is calculated by comparing the number of true
positives (TP) to the sum of true positives and false negatives (FN), which are the
cases where the system failed to identify the correct translation.

Mathematically, recall is defined as:We calculate the recall metric as:

Where:

• TP (True Positives) are the translations that the system correctly identified.
• FN (False Negatives) are the translations that the system failed to identify as

correct, or missed.

Recall is crucial when the goal is to minimize missing important translations, even
at the cost of introducing some false positives. Recall and precision are often
inversely related; improving one typically leads to a decrease in the other. Thus,
striking a balance between these two metrics is important for optimizing machine
translation performance. This balance is often assessed using the F-measure,
which combines both precision and recall into a single metric.

Machine Translation Evaluation | FITPED AI

115

def my_recall(ref, hyp):

 correct = 0

 lengthR = len(ref)

 my_ref = ref.copy()

 for i in range(0,len(hyp)):

 for j in range(0,len(my_ref)):

 if hyp[i]==my_ref[j]:

 correct += 1

 my_ref.remove(my_ref[j])

 break

 return float(correct/lengthR)

Example usage

reference = ['the', 'quick', 'brown', 'fox', 'jumps', 'over',

'the', 'lazy', 'dog', 'in', 'the', 'morning']

hypothesis = ['the', 'fast', 'brown', 'fox', 'leaps', 'over',

'the', 'lazy', 'dog', 'at', 'dawn']

Calling the function to calculate

recall_value = my_recall(reference, hypothesis)

print(f"Recall: {recall_value}")

Program output:
Recall: 0.5833333333333334

📝 6.2.6

Which of the following is measured by recall in machine translation?

• The proportion of true translations correctly identified
• The proportion of missed correct translations
• The proportion of incorrect translations
• The proportion of false positives

📝 6.2.7

F-measure

The F-measure (also known as the F-score) is a metric that combines both
precision and recall into a single number, offering a balanced assessment of a
model’s performance. It is especially useful when there is an uneven class
distribution, or when both precision and recall are important to evaluate together.

Machine Translation Evaluation | FITPED AI

116

The formula for the F-measure is calculated as the harmonic mean of precision and
recall:

Where:

• Precision - the proportion of true positive predictions out of all positive
predictions made.

• Recall - the proportion of true positive predictions out of all actual positive
cases.

• β (beta) - a weighting factor that determines the relative importance of
precision and recall. When β=1, the F-measure is the harmonic mean of
precision and recall, balancing them equally.

Unlike the simple arithmetic mean, the harmonic mean used in the F-measure
penalizes extreme values (outliers). This means that if either precision or recall is
very low, the F-measure will also be low, even if the other metric is high. Therefore,
the F-measure ensures that both precision and recall contribute equally to the
evaluation, and it is particularly useful when it is necessary to balance these two
metrics, especially in situations where both false positives and false negatives are
important to minimize.

For instance, if a machine translation system has a precision of 0.9 (90%) and a
recall of 0.7 (70%), the F-measure would be:

F1 = 2 * (0.9 * 0.7) / (0.9 + 0.7) = 1.26 / 1.6 ≈ 0.7875

This means that the machine translation system, taking both precision and recall
into account, has an F-measure of approximately 0.79.

Machine Translation Evaluation | FITPED AI

117

def my_f_measure(ref, hyp):

 prec = float(my_precision(ref, hyp))

 rec = float(my_recall(ref, hyp))

 try:

 res = (prec*rec)/((prec+rec)/2)

 except:

 res = NaN

 return res

def my_recall(ref, hyp):

 correct = 0

 lengthR = len(ref)

 my_ref = ref.copy()

 for i in range(0,len(hyp)):

 for j in range(0,len(my_ref)):

 if hyp[i]==my_ref[j]:

 correct += 1

 my_ref.remove(my_ref[j])

 break

 return float(correct/lengthR)

def my_precision(ref, hyp):

 correct = 0

 lengthO = len(hyp)

 my_ref = ref.copy()

 for i in range(0,len(hyp)):

 for j in range(0,len(my_ref)):

 if hyp[i]==my_ref[j]:

 correct += 1

 my_ref.remove(my_ref[j])

 break

 return float(correct/lengthO)

Example usage

reference = ['the', 'quick', 'brown', 'fox', 'jumps', 'over',

'the', 'lazy', 'dog', 'in', 'the', 'morning']

hypothesis = ['the', 'fast', 'brown', 'fox', 'leaps', 'over',

'the', 'lazy', 'dog', 'at', 'dawn']

Calling the function to calculate

f_score_value = my_f_measure(reference, hypothesis)

print(f"F-score: {f_score_value}")

Program output:
F-score: 0.6086956521739131

Machine Translation Evaluation | FITPED AI

118

📝 6.2.8

Which of the following statements about the F-measure is true?

• The harmonic mean used in the F-measure penalizes outliers more than the
arithmetic mean.

• The F-measure is calculated by averaging precision and recall without any
weighting.

• The F-measure gives more weight to precision than recall.
• The F-measure only considers recall and ignores precision.

📝 6.2.9

BLEU

The most well-known metric for automatic machine translation evaluation is the
BLEU (Bilingual Evaluation Understudy) metric, which measures precision, i.e., how
many words (and/or n-grams) in the machine-generated translations appeared in
the human reference translations. In other words, it claims that the closer a
machine translation is to a professional human translation the better it is.

The issue can be that every translator has a different vocabulary and a different
way of composing a sentence, so it is almost impossible to get identical
translations. One way of comparing translations is at the level of so-called n-grams.
This is a sequence of 1, 2, ..., n words, i.e. unigrams, bigrams,..., n-grams. The
correspondence of these n-grams in translations is characterized by the so-called
n-gram precision, which can be calculated for individual n-grams or even for the
whole text.

Ideally, the length of the candidate translation would be equal to the length of the
reference translation. Otherwise:

• if a candidate translation is created that is too long, we penalize it using the
modified n-gram precision,

• if too short a translation is produced, a brevity penalty (BP) is applied.

We can use the most popular natural language processing library, nltk, to compute
the BLEU metric score. However, before we can compute the BLEU score we need
to tokenize the reference text and the hypothesis. This means breaking the
sentence into tokens, i.e. word units. We will also use a function from the nltk
library to do this, namely word_tokenize(). We can then call the sentence_bleu()
function, which will return the score for the BLEU metric. By setting the weights
parameters, we can tell the function for which n-gram we want to calculate the

Machine Translation Evaluation | FITPED AI

119

BLEU. The closer the BLEU score is to 1, the better, and more correct the
translation. Conversely, a value closer to 0 indicates a poor translation.

from nltk.translate.bleu_score import sentence_bleu

from nltk import word_tokenize

ref = "Computer science spans theoretical disciplines (such as

algorithms, theory of computation, information theory, and

automation) to practical disciplines (including the design and

implementation of hardware and software)."

hyp = "Computer science includes theoretical disciplines (such

as algorithms, theory of computing, theoretical computer

science and automation) and practical disciplines (including

hardware and software design and implementation)."

ref = word_tokenize(ref)

hyp = word_tokenize(hyp)

print('BLEU-1:',sentence_bleu([ref], hyp, weights=(1,0,0,0)))

print('BLEU-2:',sentence_bleu([ref], hyp,

weights=(0.5,0.5,0,0)))

print('BLEU-3:',sentence_bleu([ref], hyp,

weights=(0.33,0.33,0.33,0)))

print('BLEU-4:',sentence_bleu([ref], hyp,

weights=(0.25,0.25,0.25,0.25)))

Program output:
BLEU-1: 0.7700677691930449

BLEU-2: 0.656003030651081

BLEU-3: 0.5422370790508815

BLEU-4: 0.43076614970957955

Machine Translation Evaluation | FITPED AI

120

