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1.1 Natural language processing 

🕮 1.1.1 

Natural language processing (NLP) is a rapidly growing field of artificial intelligence 
that has transformed the way we communicate with machines. It powers 
applications such as text generators that produce essays, chatbots capable of 
human-like conversation, and text-to-image programs that create realistic visuals 
from descriptions. In addition to these fascinating applications, NLP has expanded 
to include the analysis of complex systems such as programming languages and 
biological sequences such as DNA and proteins that exhibit linguistic patterns.  

At its core, NLP focuses on enabling computers to process and understand human 
language, both written and spoken. This ability is essential for creating tools that 
simplify communication between humans and machines. NLP’s revolutionary 
advances are driven by sophisticated AI models that can decipher the complexity of 
input text and produce coherent and meaningful outputs. These models are 
designed to learn from large data sets, allowing them to understand nuance and 
generate contextually relevant responses. 

The impact of NLP is not limited to improving user experiences; it extends to 
solving real-world problems. Whether through the creation of interactive digital 
assistants or the analysis of scientific data, NLP is reshaping industries and 
expanding the potential of AI. 

📝 1.1.2 

Which of the following is an example of NLP in action? 

• Generating text-based essays 
• Recognizing faces in images 
• Calculating mathematical formulas 
• Predicting weather patterns 

🕮 1.1.3 

NLP is a specialized field of computer science focused on enabling machines to 
understand and manipulate human language. Unlike general computational 
linguistics, which aims to study the theoretical principles of language, NLP is an 
applied discipline that develops tools and technologies for practical tasks. These 
tasks include language translation, document summarization, and even writing 
original content based on user input. NLP goes beyond simple text processing by 
capturing linguistic structures and meanings. 

NLP includes two primary subfields: natural language understanding (NLU) and 
natural language generation (NLG). NLU is concerned with interpreting and 
analyzing the meaning of text, identifying sentiment, and extracting valuable 
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insights. NLG, on the other hand, focuses on generating coherent text output from 
given data, simulating human-like writing abilities.  

It is important to note that NLP is different from – but complementary to – speech 
recognition. While NLP processes text and its own meaning, speech recognition 
converts spoken words into text, making the data available for further NLP-based 
processing. This combination supports technologies such as voice-activated 
assistants, automated transcription tools and other. 

📝 1.1.4 

Select features of Natural language processing: 

• Translates languages 
• Summarizes text content 
• Recognizes spoken words directly 
• Edits video sequences 

🕮 1.1.5 

NLP has become an integral part of our daily lives and underpins many of the 
technologies we rely on. Virtual assistants like Alexa and Siri rely on NLP to process 
user queries and provide accurate answers. Similarly, advanced AI models like GPT-
x excel at creating content on a variety of topics and powerful chatbots that engage 
users in meaningful conversations. Retailers and healthcare providers are using 
NLP to improve customer experiences, whether through chatbots or by analyzing 
medical records to extract useful information. 

NLP plays a critical role in improving search engines. For example, Google uses 
NLP to analyze search queries and efficiently deliver relevant results. Social media 
platforms like Facebook also use NLP to detect and filter harmful content such as 
hate speech, promoting a safer online environment. The increasing sophistication 
of NLP is enabling its application in areas such as education, finance, and scientific 
research, solving unique challenges, and increasing productivity. 

Despite these successes, NLP systems are far from perfect. Challenges such as 
bias, inconsistency, and unpredictable behavior persist. However, these limitations 
also open the door to innovation.  

📝 1.1.6 

Natural language processing is used in _____ to provide relevant search results, in 
_____ to enhance customer experiences, and in _____ to analyze harmful content. 

• search engines 
• chatbots 
• moderation systems 
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🕮 1.1.7 

While NLP has made remarkable progress, it also faces significant challenges that 
highlight its limitations. One major issue is bias in language models, which can lead 
to unethical or misleading outputs. This bias often stems from unbalanced training 
data that reflects societal prejudices. Another issue is the occasional incoherence 
in the generated text, where models fail to maintain logical flow or relevance in their 
responses. 

However, these challenges serve as opportunities for innovation. Researchers are 
actively working to create more balanced datasets and improve model 
architectures to reduce bias. Techniques such as learning and fine-tuning are used 
to improve model performance, ensuring greater accuracy and context awareness. 
Addressing these limitations is crucial to achieve wider acceptance and ethical 
application across sectors. 

The potential for NLP remains enormous. From supporting accessibility for 
differently-abled individuals to automating complex tasks in scientific research, 
NLP continues to redefine what is possible with AI. As the technology evolves, the 
focus shifts towards creating more inclusive, equitable, and robust NLP systems 
that meet the needs of a global audience. 

📝 1.1.8 

What is one major challenge faced by NLP systems? 

• Incoherent text generation 
• Lack of computing power 
• Limited storage capacity 
• Poor programming interfaces 

1.2 Applications of NLP 

🕮 1.2.1 

Natural language processing is at the heart of a variety of modern technologies. Its 
applications range from answering questions to enabling fluid conversations with 
users. NLP achieves these feats by analyzing and generating human language or 
even translating one language into another. By using computational techniques, 
NLP transforms raw text into meaningful insights or actionable results in many 
fields. 

Sentiment analysis 

An important area is sentiment analysis, where the emotional tone of text is 
classified as positive, negative, or neutral. For example, online retailers use 
sentiment analysis to understand customer reviews, while mental health 
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researchers analyze social media comments to detect signs of psychological 
distress. This task involves using various methods, such as word patterns or 
advanced deep learning models, to evaluate emotional contexts. 

Another key task is toxicity classification, which goes beyond general sentiment 
analysis and identifies harmful or offensive content. These models detect specific 
categories such as threats, obscenities, and hate speech. By using toxicity 
classification, platforms ensure a safer online environment by filtering out hostile 
language. 

📝 1.2.2 

What is the primary goal of sentiment analysis in NLP? 

• To classify the emotional tone of a text 
• To translate text from one language to another 
• To extract named entities from text 
• To generate summaries of documents 

🕮 1.2.3 

Machine translation 

Machine translation (MT) is a fundamental application of NLP that automates the 
process of translating text from one language to another. This technology bridges 
language barriers and enables communication between speakers of different 
languages. Popular tools like Google Translate have revolutionized global 
communication and enabled multilingual interactions for users around the world. 
Machine translation works by taking input text in a source language, processing it 
with advanced algorithms, and generating output text in the target language. 

MT systems use methods ranging from rule-based approaches to modern deep 
learning models. Early systems relied on predefined grammatical and linguistic 
rules. However, with the advent of neural networks, statistical and neural machine 
translation (NMT) has become the standard. NMT uses sequential models to learn 
patterns and contexts from vast amounts of bilingual text data. This allows modern 
MT tools to handle nuances such as idioms, slang, and cultural expressions. 
Despite these advances, challenges such as preserving context and tone remain 
significant. 

The impact of MT goes beyond everyday conversations. Social media platforms 
use MT to translate posts and comments for global audiences. Companies deploy 
it for business communications, enabling seamless collaboration across countries. 
It also plays a key role in education by providing access to learning materials in 
multiple languages. As MT continues to evolve, its integration into more aspects of 
everyday life demonstrates its potential to promote inclusivity and understanding. 
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📝 1.2.4 

Which of the following is a key advantage of modern Neural machine translation 
over traditional rule-based systems? 

• Can understand and translate context better 
• Requires no data for training 
• Ignores idiomatic expressions 
• Translates only technical texts 

🕮 1.2.5 

Spam detection 

Spam detection is a critical NLP application designed to improve user experience 
by filtering out unwanted emails. This binary classification task evaluates whether 
an email is legitimate or spam by analyzing its content, subject, and sender 
information. Platforms like Gmail rely on spam detection to ensure that inbox stays 
clean and safe. 

Spam detectors are trained on large email datasets, allowing them to recognize 
patterns associated with spam messages. Advanced systems use deep learning 
models to improve accuracy, reduce false positives, and reduce false negatives. In 
addition to email, spam detection is used in messaging apps and social media 
platforms to block spam ads and phishing attempts. 

📝 1.2.6 

Which of the following are common categories for email classification in spam 
detection systems? 

• Spam  
• Non-spam 
• Unread  
• Trash  

🕮 1.2.7 

Grammar error correction 

Grammar error correction (GEC) improves the clarity and accuracy of written 
communication by identifying and correcting grammatical errors. It is a sequential 
NLP task where ungrammatical input is transformed into grammatically accurate 
output. Tools like Grammarly and Microsoft Word integrate GEC models to help 
users improve their writing. 
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In addition to personal use, GEC is invaluable in academic and professional 
settings. For example, students can improve the quality of their essays using GEC 
feedback, while businesses use it to improve their official communications. Modern 
systems use advanced machine learning techniques to detect subtle errors such as 
incorrect subject-verb agreement or misplaced modifiers. 

📝 1.2.8 

What is the main goal of grammatical error correction? 

• To enhance the grammatical quality of text 
• To detect hate speech 
• To improve essay grading automation 
• To classify emails as spam or non-spam 

🕮 1.2.9 

Information retrieval 

Information retrieval (IR) is a fundamental NLP task that identifies documents 
relevant to a user’s query. Search engines like Google use IR to process billions of 
web pages and retrieve results that match the intent of the query. IR focuses on 
finding relevant documents or information from a large dataset based on a user’s 
query. It is the backbone of search engines and recommendation systems. 

IR involves two key processes: 

• Indexing - storing data in a structured way to facilitate quick access. 
• Matching - identifying documents relevant to the query using similarity 

scores or vector space models. 

Modern IR systems even integrate multimodal models to analyze text, images, and 
videos, making searches more comprehensive. 

Summarization is another powerful application of NLP that reduces the length of 
text while preserving its essential meaning. Summarization can be either extractive, 
which extracts key phrases directly from the original text, or abstract, which 
transcribes information in a condensed form. Summarization is widely used in 
journalism to produce article summaries, in education for condensing academic 
papers, and in AI systems like chatbots that provide quick overviews. 

Many summarizer tools generate concise summaries while ensuring factual 
accuracy. Summarization makes it easier to consume large amounts of text, from 
research papers to long reports. 
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📝 1.2.10 

Which of the following describe summarization techniques? 

• Extractive summarization selects key sentences from the original text 
• Abstractive summarization rewrites the content in a condensed form 
• Information retrieval indexes and matches documents 
• Summarization classifies emotional tone in text 

🕮 1.2.11 

Question answering 

Question answering (QA) is a field within natural language processing that focuses 
on creating systems capable of understanding and responding to human questions 
in natural language. These systems aim to provide accurate and relevant answers 
from a wide range of sources, such as text documents, structured databases, or 
knowledge graphs. QA systems have applications in virtual assistants, search 
engines, customer support, and education. 

QA systems can be classified into different types based on their approach. Open-
domain QA systems answer questions from unstructured text sources, such as 
articles or web pages, while closed-domain QA systems specialize in a specific 
domain or data set, such as medical research or legal documents.  

QA can also be categorized as extractive, where the answer is taken directly from 
the text, or generative, where the system creates the answer based on the input. 

Modern QA systems generally include the following components: 

• Question processing identifies the type of question and relevant keywords. 
For example, a “what” question may indicate that the system should retrieve 
factual information, while a “why” question may contain explanations.  

• Document retrieval selects documents or text passages that are likely to 
contain the answer. 

• Answer extraction or generation finds or formulates the most appropriate 
answer from the selected text or data set. 

Many QA systems use machine learning and deep learning techniques. Models 
such as BERT, RoBERTa, and GPT are widely used to understand context and 
extract information. In more advanced systems, transformers and attention 
mechanisms allow them to better handle long-range dependencies in text, 
improving accuracy and relevance. 

Despite progress, QA systems face challenges such as handling ambiguous 
questions, contextualizing multiple references, and generating answers in creative 
or non-standard formats. 
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📝 1.2.12 

Which of the following are key components of a Question Answering system? 

• Question Processing 
• Answer Generation or Extraction 
• Text Translation 
• Grammar Correction 

1.3 Short history 

🕮 1.3.1 

Before 1960 

NLP has a rich history, beginning in the 17th century with foundational ideas by 
Gottfried Wilhelm Leibniz and René Descartes. Their work explored relationships 
between words and languages, forming the groundwork for machine translation 
technologies. 

Early Foundations (1933-1950): 

• Georges Artsrouni filed the first patent related to machine translation in 
1933. 

• In 1950, Sir Alan Turing published Computing Machinery and Intelligence and 
introduced the Turing Test, marking a significant leap in evaluating machine 
intelligence. 

Initial Machine Translation Efforts (1952-1956): 

• The first and second International Conferences on Machine Translation used 
rule-based and stochastic techniques. 

• The 1954 Georgetown-IBM experiment successfully translated over 60 
Russian sentences into English automatically, sparking optimism for rapid 
advancements in the field. 

Linguistic Breakthrough and Setbacks (1957-1966): 

• In 1957, Noam Chomsky proposed universal grammar, revolutionizing 
linguistics and influencing NLP. 

However, the ALPAC report in 1966 highlighted slow progress in AI and machine 
translation, initiating the first AI winter. 
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📝 1.3.2 

What was the significance of the Georgetown-IBM experiment in the history of 
NLP? 

• It marked the first successful automatic translation of Russian sentences 
into English. 

• It inspired optimism about rapid advances in machine translation. 
• It demonstrated that the machine translation problem could be solved within 

a few years. 
• It was led by Noam Chomsky. 

🕮 1.3.3 

Early AI on NLP (1960-1970) 

The 1960s and 1970s marked significant progress in Natural Language Processing 
(NLP) as researchers explored its potential in knowledge representation and 
question-answering systems. This era laid the foundation for linking human-
computer interaction with AI techniques, though challenges remained. 

• BASEBALL System (1961) was designed as a domain-specific Q&A system 
to answer baseball-related questions using basic natural language 
processing techniques.It was focused on human-computer interaction but 
was limited by restrictive inputs and basic language processing. 

• AI-based Question-Answering Systems (1968) was an advanced system 
created by Marvin Minsky that used an inference engine to provide 
knowledge-based interpretations of questions and answers. It utilized an AI-
driven inference engine for knowledge-based interpretation of queries. 

• Augmented Transition Network (ATN) (1970) was proposed by William A. 
Woods, this system represented natural language inputs with structured 
networks to improve understanding and processing of linguistic information. 
Represented natural language inputs more effectively, advancing linguistic 
structures in AI. 

Despite these advancements, early expert systems struggled to meet practical 
expectations. Their limitations contributed to the second AI winter, a period of 
reduced funding and interest in AI research. 

📝 1.3.4 

Which advancements in NLP were made during the 1960s and 1970s? 

• The BASEBALL system was an early domain-specific Q&A system. 
• Marvin Minsky introduced an AI-based question-answering system in 1968.  
• William A. Woods developed a universal translation engine for AI.  
• Expert systems during this period completely met user expectations.  
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🕮 1.3.5 

Grammatical logic phase (1970-1981) 

In the development of NLP, the grammatical logic phase marked a significant shift 
towards understanding and processing human language using advanced 
techniques. During this period, researchers focused on knowledge representation, 
programming logic, and reasoning in AI. These efforts aimed to make computer 
systems capable of comprehending and generating natural language more 
effectively. 

One of the major advancements was the introduction of SRI’s Core language 
engine, a powerful sentence processing tool. This system could parse complex 
sentences, breaking them down into meaningful components for analysis. It laid the 
groundwork for modern parsers, which are essential for tasks like grammar 
checking and natural language understanding. 

Another breakthrough was the development of Discourse representation theory 
(DRT). This theory introduced a pragmatic way to represent and interpret discourse 
- how sentences connect to each other in a logical way. DRT became instrumental 
in designing chatbots and Q&A systems that could hold coherent conversations by 
understanding the context of questions and answers. 

However, progress in the 1980s faced significant challenges due to the limitations 
of computational power. Despite these hurdles, researchers focused on expanding 
lexicons, or structured collections of words and their meanings. These lexicons 
were essential for enabling NLP systems to understand a broader vocabulary and 
perform more sophisticated language tasks. 

Most important facts for this period are: 

• Researchers prioritized knowledge representation and logical reasoning 
during this phase. 

• Tools like SRI's Core language engine and Discourse representation theory 
revolutionized sentence and discourse processing. 

• Efforts were hindered by limited computational resources, but the expansion 
of lexicons enabled steady progress in NLP development. 

📝 1.3.6 

Which of the following advancements emerged during the grammatical logic phase 
of NLP? 

• SRI’s Core Language Engine 
• Discourse Representation Theory 
• Expanded lexicons to increase vocabulary coverage 
• Neural Network-based translation tools 
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🕮 1.3.7 

NLP advances through machine learning (1981-2000) 

The late 20th century marked a transformative period in NLP, driven by 
breakthroughs in machine learning and improved computing capabilities. During 
this era, researchers moved beyond rule-based and stochastic methods to embrace 
machine learning as a more efficient approach to language processing. 

A key innovation was the Hopfield network, introduced by Professor John Hopfield. 
This neural network model demonstrated how machine learning could identify 
patterns in data, revolutionizing NLP and paving the way for neural approaches to 
language processing. 

Advances in computing power and memory in the 1980s allowed researchers to 
combine Chomsky’s linguistic theories with machine learning, improving 
understanding of grammar and syntax. This laid the foundation for more 
sophisticated language models and tools. 

Lexical and corpus methods emerged during the same period. These techniques 
focused on creating grammars tied to specific words and using them in real-world 
contexts, thereby increasing the naturalness of NLP systems. 

📝 1.3.8 

Which of the following are milestones in NLP during the late 1980s and early 
2000s? 

• Introduction of Hopfield Networks for machine learning 
• Integration of linguistic theories with machine learning 
• Focus on rule-based systems for language processing 

🕮 1.3.9 

NLP inovations (2000-2010) 

The decade from 2000 to 2010 marked a significant leap forward, as machine 
learning and computing power advanced rapidly. The focus shifted to the use of 
statistical models and large datasets, leading to robust NLP applications across a 
variety of industries. 

NLP research during this period was dominated by machine learning models. 
Algorithms such as support vector machines (SVMs) and decision trees were 
widely adopted for tasks such as text classification, sentiment analysis, and spam 
detection. The availability of labeled datasets allowed these methods to achieve 
significant accuracy in predicting and categorizing text data. 
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Statistical Language Models and Applications 

Statistical language models have become the foundation of NLP tasks such as 
machine translation, speech recognition, and information retrieval. A notable 
development was Google Translate, introduced in 2006, which applied statistical 
translation techniques to break down language barriers. Similarly, latent Dirichlet 
allocation (LDA) emerged as a popular topic modelling algorithm that enables 
automated understanding of document topics. 

The emergence of advanced applications 

The decade saw the development of chatbots and question-and-answer systems 
that could interact more naturally with users. This era saw the early successes of 
Siri, Apple’s virtual assistant (introduced in 2010), which used machine learning and 
NLP to process and answer users’ questions. 

IBM DeepQA and Watson 

The IBM DeepQA project, launched in 2006, was a groundbreaking innovation of its 
time. Its goal was to develop a question-answering system capable of accurately 
understanding and answering complex questions. This project culminated in 
Watson, a system that later gained worldwide recognition for its success on the 
Jeopardy! game show. 

Despite these advances, researchers faced challenges such as limited computing 
power, lack of context awareness, and difficulty understanding semantics.  

📝 1.3.10 

Which advancements in NLP occurred between 2000 and 2010? 

• Introduction of Google Translate using statistical methods 
• Development of Siri as a virtual assistant 
• Deep learning driving most NLP models 
• IBM’s DeepQA project leading to Watson 

🕮 1.3.11 

Big data, and deep learning (2010-present) 

The period from the 2010s to the present has been transformative due to the rise of 
AI, big data, and deep learning. These advancements have propelled NLP research 
and applications to new heights, enabling systems to understand, generate, and 
interact with human language with unprecedented accuracy. 

The integration of cloud computing revolutionized data accessibility and 
processing power. Mobile computing further expanded the reach of NLP, enabling 
its application in devices such as smartphones, virtual assistants, and IoT devices. 
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Big data allowed models to train on vast amounts of textual data, enhancing their 
ability to understand and predict human language. 

The development of deep learning techniques, particularly recurrent neural 
networks (RNNs) and long short-term memory networks (LSTMs), significantly 
improved the ability of NLP systems to process sequential data. These networks 
allowed machines to understand the context of words in sentences, capturing 
relationships between past and future words in text. This breakthrough enabled 
complex applications such as language translation, summarization, and sentiment 
analysis. 

Contributions by Tech Giants 

Companies like Google, Amazon, and Facebook spearheaded NLP innovations. For 
instance: 

• Google Translate evolved into a highly effective translation service powered 
by neural networks. 

• Amazon Alexa and Google Assistant brought virtual assistants into everyday 
life, leveraging NLP for voice-based interaction. 

• Facebook improved content moderation and personalized recommendations 
using advanced NLP models. 

Deep neural networks facilitated the creation of Q&A chatbots, autonomous 
vehicles, and natural language generation (NLG) systems. These innovations 
demonstrated NLP's potential to solve real-world problems, such as improving 
accessibility, enabling smarter customer support, and powering search engines. 

The combination of NLP with big data and AI continues to push boundaries. Recent 
trends include: 

• The development of transformers like GPT and BERT, which have 
revolutionized NLP by providing state-of-the-art performance in tasks like 
summarization, translation, and question answering. 

• Efforts to create ethically responsible AI systems to reduce bias in NLP 
models. 

📝 1.3.12 

Which developments significantly advanced NLP during the 2010s and beyond? 

• Cloud computing and big data 
• RNNs and LSTMs for sequential data 
• Emergence of GPT and BERT models 
• Rule-based systems as the primary approach 
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2.1 NLP components 

🕮 2.1.1 

In the realm of NLP, there are three major components that work together to allow 
machines to process and generate human-like language. These components are: 

• Natural language understanding (NLU) - breaks down language into syntax, 
semantics, and pragmatics to understand meaning. 

• Knowledge acquisition and inferencing (KAI) - systems generate responses 
based on recognized language, overcoming the limitations of traditional rule-
based systems. 

• Natural language generation (NLG) - takes the machine's understanding and 
converts it into a coherent, natural language response, often in the form of 
speech or text. 

Each plays a crucial role in ensuring that machines can interpret, process, and 
respond to human language in a way that is both meaningful and contextually 
appropriate. 

📝 2.1.2 

Which of the following components is responsible for converting the machine's 
understanding of language into human-readable text or speech? 

• Natural Language Generation (NLG) 
• Natural Language Understanding (NLU) 
• Knowledge Acquisition and Inferencing (KAI) 
• Natural Language Processing (NLP) 

🕮 2.1.3 

Natural language understanding (NLU) 

NLU is a core component in NLP that enables machines to comprehend human 
languages. It serves as the foundation for machines to process text or speech data 
and extract meaningful insights. NLU involves three primary layers of analysis: 

• Syntax analysis focuses on the grammatical structure of a sentence. It 
identifies how words are related and ordered within a sentence, helping 
machines understand the structure of the sentence and its components, 
such as subjects, verbs, and objects. The goal is to parse the sentence into 
its syntactic elements and recognize the relationships between them. For 
example, in the sentence "The cat sat on the mat", syntax analysis would help 
identify "The cat" as the subject and "sat" as the verb. 

• Semantic analysis delves into the meaning of words and phrases within a 
sentence. It aims to determine how individual words contribute to the overall 
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meaning of the sentence. This process involves understanding word 
meanings, word senses, and their relationships to one another in context. For 
example, the word "bank" can have different meanings depending on context 
(e.g., a financial institution or the side of a river). Semantic analysis helps the 
machine resolve such ambiguities by using context. 

• Pragmatic analysis looks at the broader context in which language is used. It 
focuses on understanding the intent behind a sentence and how it fits into a 
conversation or discourse. This involves considering factors like tone, prior 
conversation history, and cultural nuances, which are important for correctly 
interpreting meaning in communication. For example, the sentence "Can you 
pass the salt?" is a request, not a literal question about the ability to pass the 
salt. Pragmatics helps the machine recognize this intention. 

By combining these layers, NLU enables machines to understand not just the 
individual components of language, but also the deeper meaning and intent behind 
what is being said. This approach allows machines to accurately interpret human 
language and prepare it for further processing, such as response generation or 
decision-making. 

📝 2.1.4 

Which of the following layers of NLU is responsible for determining the meaning of 
words and phrases in a sentence? 

• Semantic Analysis 
• Syntax Analysis 
• Pragmatic Analysis 
• Text Classification 

🕮 2.1.5 

Knowledge acquisition and inferencing (KAI) 

KAI systems are designed to generate accurate and context-appropriate responses 
after a machine has successfully understood human language through Natural 
language understanding. KAI involves two key processes:  

• Knowledge acquisition - in this phase, the system gathers relevant 
information that will help it form a response. This could involve pulling 
information from databases, knowledge bases, or learning from previous 
interactions. The goal is to collect all the data that is pertinent to the current 
task or conversation. For example, in a customer service chatbot, knowledge 
acquisition might involve accessing product details or customer support 
documentation to provide a helpful answer. 

• Inferencing - once the relevant information is gathered, inferencing takes 
place. This process involves drawing logical conclusions from the acquired 
knowledge. It requires the system to apply reasoning to make decisions or 
offer responses based on the information it has. This can be particularly 
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challenging in complex conversations, as the system must handle ambiguity, 
context, and multiple possible interpretations. For example, if a customer 
asks about the return policy for a product, the system must infer whether 
they are asking about general returns or a specific item. 

The main challenge for KAI systems is that human conversation is often complex 
and full of nuance. Unlike traditional rule-based systems, which rely on simple "if-
then-else" logic for queries and responses, KAI systems must navigate the 
subtleties of real-world conversations. Simple rule-based approaches are often 
insufficient because they cannot handle unexpected situations or understand the 
deeper meaning behind certain words or phrases. 

To overcome these challenges, KAI systems are typically designed to work within 
specific knowledge domains. For example, in a medical context, a KAI system can 
be designed to understand medical terminology and respond appropriately to 
questions about symptoms or treatments. Similarly, a customer service chatbot in 
the insurance field may be trained on the specifics of policies and claims. In 
addition, agent ontology has been developed to help KAI systems handle more 
complex tasks, allowing them to navigate complex information and provide more 
accurate, context-aware responses. 

📝 2.1.6 

Which of the following is the main challenge in Knowledge acquisition and 
inferencing systems that makes them more complex than rule-based systems? 

• Navigating complexities and nuances of human conversation 
• Ability to generate responses without context 
• Limited to "if-then-else" queries 
• Lack of access to domain-specific information 

🕮 2.1.7 

Natural language generation (NLG) 

NLG is a component responsible in making machines capable of interacting with 
humans through natural, human-readable text or speech. Once a machine 
understands a conversation through techniques like NLU and KAI, NLG is 
responsible for converting that understanding into responses that can be easily 
interpreted by humans. 

• Answer and response generation - systems are designed to generate 
answers, responses, and feedback during human-machine dialogues. For 
example, a chatbot answering customer queries will use NLG to craft an 
appropriate response based on the question or statement posed by the user. 
The goal is to ensure that the generated responses sound natural and align 
with the context of the conversation. 
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• Text-to-Speech synthesis - NLG is often combined with text-to-speech 
synthesis to enable machines to "speak" their responses. This process 
converts the generated text into audible speech. For example, a virtual 
assistant like Siri or Alexa uses both NLG and text-to-speech to provide users 
with verbal responses to their questions or commands. 

• Machine Translation vs. NLG - although NLG can be considered a form of 
machine translation, it differs from traditional translation methods in that it 
does not translate between different languages. Instead, NLG focuses on 
producing responses in the same language as the input. It’s akin to 
translating the machine’s understanding of a conversation into human-like 
text or speech in a seamless manner. 

The goal of NLG is to produce output that feels natural and conversational, making 
the interaction between humans and machines more engaging and efficient. 

📝 2.1.8 

Which of the following best describes the primary function of NLG? 

• Converts machine understanding into human-readable text or speech 
• Translates between different languages 
• Analyzes the meaning of words and phrases 
• Acquires knowledge from human conversations 

📝 2.1.9 

Which of the following activities are covered by Natural language understanding? 

• Identifying sentence structure and relationships between words 
• Understanding the context and intent behind the language 
• Converting human-readable text into machine code 
• Generating human-like responses based on text inputs 

📝 2.1.10 

Which activities are covered by Knowledge acquisition and inferencing systems? 

• Acquiring relevant information to generate responses 
• Drawing logical conclusions based on information 
• Generating answers to human queries 
• Converting machine-generated responses into speech 

📝 2.1.11 

Which tasks are part of Natural language generation? 

• Converting machine understanding into human-readable text 
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• Generating human-like responses in natural language 
• Converting generated text into speech 
• Understanding the meaning of sentences and words 

2.2 NLTK library 

📝 2.2.1 

The Natural Language Toolkit (NLTK) is one of the most widely used Python 
libraries for natural language processing (NLP). It provides a comprehensive suite 
of tools for working with human language data, making it an essential resource for 
researchers, developers, and students interested in NLP tasks. NLTK was designed 
to simplify text analysis and language processing, enabling users to quickly get 
started with various NLP techniques. 

NLTK is built on a modular architecture, offering tools that can handle everything 
from basic text preprocessing to advanced linguistic analysis. The library is well-
suited for a wide variety of NLP applications, including tokenization, stemming, 
part-of-speech tagging, named entity recognition, and more. NLTK also includes a 
vast collection of corpora and lexical resources, which can be used for training and 
experimenting with NLP models. 

📝 2.2.2 

For natural language processing using Python, we will often use the NLTK (Natural 
Language Toolkit) library. Similarly, like many libraries, NLKT is also developed as 
open source. Originally, the library was designed for teaching, but later it was 
adapted to other areas due to its usefulness and robustness. The advantage of 
NLTK is that it supports most of natural language processing tasks and also 
provides access to many text corpora. 

Several current environments have already the nltk library implemented inside. If we 
have an environment that does not have this library, the library can be installed 
directly in the Notebook without any problems using the pip command. 

!pip install nltk 

Similarly, using the pip command, the installation is also possible through the 
Anaconda Prompt (if we are using the Anaconda environment). 
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🕮 2.2.3 

Key features of NLTK 

1. Text processing - provides simple tools for breaking down and processing 
text, such as tokenizing (splitting text into words or sentences), stemming 
(reducing words to their root forms), and lemmatization (mapping words to 
their dictionary forms). 

2. Tagging and parsing - offers methods for tagging words with their parts of 
speech (POS) and analyzing the syntactic structure of sentences using 
grammars or parsers. 

3. Named Entity Recognition (NER) - allows users to identify and classify 
named entities (e.g., people, organizations, locations) within text. 

4. Corpora and lexicons - includes a large set of corpora (collections of texts) 
and lexical resources (such as WordNet, a lexical database of the English 
language). 

5. Text classification - provides tools for creating and evaluating text 
classification models using machine learning algorithms. 

6. Linguistic analysis - supports deep linguistic analysis, such as parsing 
syntactic structures, performing semantic analysis, and analyzing sentence 
structure in various ways. 



 

 

Natural Language 
Understanding 

Chapter 3 
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3.1 Speech recognition 

🕮 3.1.1 

Natural language understanding  

NLU refers to the machine's ability to interpret and understand human language in a 
meaningful way. NLU is a critical component of various applications, such as 
chatbots, virtual assistants, and language translation systems. The process of 
understanding spoken language can be broken down into four stages: 

• Speech recognition - where the system converts spoken language into text. 
The system listens to human speech, processes the audio signals, and 
recognizes the words. 

• Syntactic (syntax) analysis is used after speech is converted into text. It 
analyzes the structure of the sentence. Syntax analysis focuses on how the 
words in a sentence are ordered and how they relate to each other. It ensures 
that the machine understands sentence structure and grammar. 

• Semantic analysis - at this stage, the machine understands the meaning of 
individual words and how they contribute to the overall meaning of the 
sentence. This involves identifying entities, actions, and relationships 
between elements in the sentence. 

• Pragmatic analysis considers the context in which language is used, 
focusing on the intended meaning behind the words. It helps the system 
interpret things like tone, sarcasm, and implied meaning, ensuring the 
machine understands the real intent behind a sentence. 

The typical applications of NLU are: 

• Customer service chatbots where NLU helps chatbots understand user 
queries, process responses, and provide appropriate answers based on the 
user’s intent. 

• Voice assistants (e.g., Siri, Alexa) rely on NLU to interpret spoken commands 
and perform tasks like setting reminders, playing music, or controlling smart 
devices. 

• Language translation systems where NLU plays a key role in translating 
human language accurately by understanding both syntax and meaning. 

• Text classification where NLU is used in sentiment analysis and spam 
detection to classify and filter text based on context and meaning. 

📝 3.1.2 

What are the stages involved in NLU? 

• Speech recognition 
• Semantic analysis 
• Pragmatic analysis 
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• Data encryption 
• Image processing 

🕮 3.1.3 

Speech recognition 

Speech recognition is the first stage in NLU. It involves analyzing spoken language 
and converting it into text that can be processed by computers. The primary goal of 
this stage is to break down spoken words, or utterances, into distinct tokens that 
represent meaningful elements like words, sentences, and paragraphs. 

Key components of speech recognition from linguistic point of view are: 

• Phonetic processing - the process begins with phonetic analysis, where 
spoken language is broken down into individual sounds (phonemes). Helps 
in recognizing and distinguishing between different sounds, especially in 
languages with complex phonetic systems.This helps recognize words by 
identifying the smallest units of sound. Example: The word "uncanny" is 
analyzed into its phonetic components: "un" and "canny." 

• Phonological processing deals with the sound patterns of language, 
including rules for combining sounds into syllables and words. It involves 
analyzing the sound structure of words to recognize patterns and understand 
how different sounds can affect word meaning. Example: Different accents 
or pronunciations of the same word can be understood by the system 
through phonological analysis. 

• Morphological processing - morphology refers to the structure of words. It 
helps in recognizing word boundaries and identifying the meanings of words 
based on their components. The system breaks down words into their roots 
or stems and processes affixes (prefixes, suffixes, etc.) to determine 
meaning. Example: The word "uncanny" can be split into the root "canny" with 
the prefix "un-". 

• Spectrogram analysis - spectrograms are visual representations of the 
frequency spectrum of sounds. Speech recognition models use spectrogram 
analysis to extract and identify the frequencies corresponding to words. It is 
used to analyze the acoustic properties of speech signals and extract 
relevant features for recognition. Example: The spectrogram for the word 
"uncanny" can identify distinct frequencies for "un" and "canny," helping the 
system distinguish between them. 

• Language-specific differences - different languages have distinct phonetic 
and phonological rules, which affect how speech is recognized. It recognizes 
unique phonetic, phonological, and morphological characteristics that 
different languages have. Example: The same word spoken in English and 
Spanish may have different spectrograms due to the differences in 
pronunciation and accent. 
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Example: consider the word "uncanny". During the speech recognition process: 

• The word is broken down into phonetic components: "un" and "canny". 
• The system recognizes these components through spectrogram analysis, 

identifying the distinct frequencies that correspond to each part of the word. 
• Morphological analysis identifies "un-" as a prefix and "canny" as the root 

word. 

📝 3.1.4 

Which of the following is NOT a part of the speech recognition process in NLU? 

• Data encryption 
• Phonetic analysis 
• Spectrogram analysis 
• Morphological analysis 

📝 3.1.5 

What does spectrogram analysis help identify in speech recognition? 

• Distinct frequencies in speech 
• Phonetic components of speech 
• Word meanings 
• Sentence structure 

📝 3.1.6 

Project: Speech recognition 

Identify words that are found in the following custom recordings using standard 
publicly available libraries. 

Dataset 

• original: open_speech, Audio-Samples-AMR-WB, sample-audio-files-for-
speech-recognition  

• local: 
1. harvard  
2. conference 
3. OSR_us 

NLTK (Natural Language Toolkit) as previously introduced library does not include 
tools or modules specifically designed for speech recognition. Its primary purpose 
is the processing and analysis of text-based language after transcription, focusing 
on tasks such as tokenization, parsing, tagging, and sentiment analysis. For speech 

https://www.voiptroubleshooter.com/open_speech/
https://voiceage.com/Audio-Samples-AMR-WB.html
https://www.kaggle.com/datasets/pavanelisetty/sample-audio-files-for-speech-recognition?select=harvard.wav
https://www.kaggle.com/datasets/pavanelisetty/sample-audio-files-for-speech-recognition?select=harvard.wav
https://priscilla.fitped.eu/data/nlp/speech/harvard.wav
https://priscilla.fitped.eu/data/nlp/speech/conference.wav
https://priscilla.fitped.eu/data/nlp/speech/OSR_us_000_0010_8k.wav
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recognition, we need to use a specialized library and then integrate it with NLTK for 
further processing. 

SpeechRecognition provides easy access to Google Web Speech API, CMU Sphinx, 
and others. The functions convert spoken language into text. Example usage: 

1. Import libraries 

import speech_recognition as sr 

import requests 

2. Download the WAV file 

url = 

"https://priscilla.fitped.eu/data/nlp/speech/harvard.wav" 

filename = "downloaded_harvard.wav" 

 

# Download the file using requests library 

response = requests.get(url) 

 

# Check if download was successful 

if response.status_code == 200: 

  # Write the downloaded content to a file 

  with open(filename, 'wb') as f: 

    f.write(response.content) 

else: 

  print(f"Error downloading file. Status code: 

{response.status_code}") 

3. Analyze the downloaded file 

recognizer = sr.Recognizer() 

with sr.AudioFile(filename) as source: 

  audio = recognizer.record(source) 

 

  try: 

    text = recognizer.recognize_google(audio)   

 

    print("Text:", text) 

  except sr.UnknownValueError: 

    print("Sorry, could not understand audio") 

  except sr.RequestError as e: 

    print("Could not request results from Google Speech 

Recognition service; {0}".format(e))   
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Program output: 
Text: the stale smell of old beer lingers it takes heat to 

bring out the odor a cold dip restores health and zest a salt 

pickle taste fine with ham tacos al pastor are my favorite a 

zestful food is the hot cross bun 

📝 3.1.7 

Task: Speech recognition I. 

Identify and copy the words identified by the recognizer 

• File: https://priscilla.fitped.eu/data/nlp/speech/jackhammer.wav 

# write your code 

📝 3.1.8 

Task: Speech recognition II. 

Identify and copy the words identified by the recognizer 

• File: https://priscilla.fitped.eu/data/nlp/speech/OSR_us_000_0060_8k.wav 

# write your code 

3.2 Syntax analysis 

🕮 3.2.1 

Syntax analysis 

Syntax analysis is the second stage of NLU after speech recognition. It is 
responsible for analyzing the structure of a sentence to understand its grammatical 
components. The primary goal of syntax analysis is to evaluate the grammatical 
structure of sentences, ensuring they conform to the rules of the language. The 
purposes are: 

• Syntactic correctness - refers to the grammatical rules that govern the 
formation of sentences in a given language. The purpose of syntactic 
analysis in this context is to determine whether a sentence follows these 
rules. In order for a machine to correctly understand and process language, it 
must verify that the sentence is structured in a grammatically valid way. 
Grammatical errors or inconsistencies can cause confusion or ambiguity for 
both humans and machines. Syntactic analysis checks for common 
grammatical errors, such as subject-verb mismatches, misplaced modifiers, 

https://priscilla.fitped.eu/data/nlp/speech/jackhammer.wav
https://priscilla.fitped.eu/data/nlp/speech/OSR_us_000_0060_8k.wav
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incorrect punctuation, and sentence fragments. If a sentence contains a 
grammatical error, the parser flags or rejects it. Example. We have sentence: 
"She don't like pizza." The syntax parser will identify that the verb "don't" 
does not agree with the subject "she" (it should be "doesn't"). The sentence is 
syntactically incorrect and will be flagged. 

• Syntactic structure refers to the arrangement of words in a sentence, where 
each word plays a specific role (such as subject, verb, object, etc.). Syntactic 
analysis breaks a sentence down into these components to understand how 
the words are related to each other. Understanding syntactic structure allows 
machines to interpret the meaning of a sentence by identifying how each 
word is related to the others. By analyzing the components of a sentence, 
machines can determine the relationships between the parts of the sentence 
(e.g., subject-verb-object). In syntactic analysis, a sentence is analyzed into 
its individual parts (often using a syntactic tree structure). The machine 
identifies the role of each word in the sentence, such as whether it is a 
subject, verb, object, or modifier. It also looks at how these parts interact in 
the sentence to convey meaning. 

Example 1 

Let's consider the sentence: "Oranges to the boys" 

This sentence will be rejected by a syntax parser because it has a syntactic error. 
The sentence lacks a verb that ties the subject ("oranges") to the object ("boys"). 
Syntax analysis ensures that the structure of the sentence is valid according to the 
rules of the language. Correct: "Oranges are to the boys." 

Here, the verb "are" makes the sentence grammatically correct, and syntax analysis 
can break it down into a subject ("oranges"), verb ("are"), and object ("the boys"). 

Example 2 

Sentence: "The cat chased the mouse." - syntactic analysis would break this 
sentence down as follows: 

• Subject: "The cat" 
• Verb: "chased" 
• Object: "the mouse" 

By understanding this structure, the machine knows that the subject is performing 
an action (verb) on the object, which is critical for interpreting the meaning of the 
sentence. 

Example 3 

Sentence: "John gave Mary the book." - syntactic analysis breaks it down as: 

• Subject: "John" 
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• Verb: "gave" 
• Object: "the book" 
• Indirect object: "Mary" 

This structure helps the machine understand that John is the giver, Mary is the 
receiver, and the book is the item being given. 

Example 4 

Consider a more complex sentence: "While walking in the park, the dog saw a 
squirrel near the tree." - syntax analysis would break this sentence down into its 
core components: 

• Subject: "the dog" 
• Verb: "saw" 
• Object: "a squirrel" 
• Prepositional Phrase: "near the tree" 
• Adverbial Clause: "While walking in the park" 

The parser would also check the relationships between the parts of the sentence 
(e.g., the action "saw" is done by "the dog", and "a squirrel" is the object of the 
action). 

📝 3.2.2 

Which of the following sentences will be rejected by a syntax parser due to a 
grammatical error? 

• They was going to the store. 
• She enjoys reading books. 
• The cat chased the mouse. 
• John gave Mary the book. 

📝 3.2.3 

What does syntax analysis do in the process of NLU? 

• Breaks down sentences into subject, verb, and object 
• Checks if the sentence is grammatically correct 
• Analyzes the meaning of individual words 
• Generates human-like responses in dialogue systems 

🕮 3.2.4 

Applications of syntax analysis: 

• Grammatical validation ensures that text or spoken language follows the 
grammatical rules of the language, reducing errors in further processing. 
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• Language parsing helps break down complex sentences into manageable 
components for easier interpretation and further analysis, especially in tasks 
like machine translation or information extraction. 

• Question answering systems use syntax analysis as essential for 
interpreting the relationships between query terms and finding the correct 
answer in large datasets. 

• Speech-to-text systems syntax analysis helps confirm whether the 
transcribed text is grammatically accurate. 

📝 3.2.5 

Which part of the sentence "The boy quickly ran to the store" is the verb? 

• Ran 
• The boy 
• Quickly 
• To the store 

3.3 Semantic analysis 

🕮 3.3.1 

Semantic analysis 

Semantic analysis is the process of understanding the meaning of words, phrases, 
or sentences. It helps a machine move from simply knowing the structure of a 
sentence (syntax) to grasping its meaning (semantics). This analysis ensures that 
words and their combinations provide meaningful content, enabling effective 
communication. 

While syntactic analysis focuses on the structure of a sentence, semantic analysis 
focuses on meaning. For a machine to truly understand human language, it must be 
able to interpret the intended message even when the words are correctly 
structured but do not make sense together. 

For example, consider the phrase “hot snowflakes.” Although it has the correct 
syntactic structure (adjective + noun), it does not make logical sense because 
snowflakes cannot be hot. A semantic analyzer would reject this phrase as 
nonsense, despite its correct syntax. 

📝 3.3.2 

Which of the following phrases will be rejected by a semantic analyzer as illogical 
or nonsensical? 

• The cold snowflakes fell from the sky. 
• The quick brown fox jumped over the lazy dog. 
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• The fish swam in the forest. 
• He went to the bank to withdraw money. 

🕮 3.3.3 

How semantic analysis works 

• Meaning of words - each word in a sentence has a specific meaning in the 
dictionary. The semantic analyzer examines the meaning of each word and 
how it contributes to the overall meaning of the sentence. Example: In the 
sentence "The cat chased the mouse," the words "cat," "chased," and "mouse" 
have clear meanings. Semantic analysis confirms that the sentence 
describes a logical event (the cat chases the mouse). 

• Contextual and word relationships - some words have multiple meanings 
depending on the context. For example, the word "bank" can refer to a 
financial institution or a riverbank. Example 1: "He went to the bank to cash a 
check." (In this case, "bank" refers to a financial institution.) Example 2: "The 
boat docked at the riverbank." ("bank" here means the edge of the river.) The 
semantic analyzer uses the context of the sentence to determine which 
meaning of the word is being used. 

• Checking for logical consistency - the semantic analyzer also checks for 
logical consistency. If the words of a sentence, when combined, do not form 
a coherent idea or scenario, the analysis fails. Example: "Hot snowflakes 
were falling from the sky." The sentence is syntactically correct but 
semantically incorrect because snowflakes cannot be hot. A semantic 
analyzer would reject this as illogical or nonsensical. 

• Resolving ambiguities - many words have multiple meanings (polysemy), or 
sentences can be interpreted in more than one way (semantic ambiguity). 
Semantic analysis aims to resolve these ambiguities by considering the 
context. Example: "She couldn't bear the weight of the box." "Bear" can mean 
to tolerate or carry something. The context (the weight of the box) helps the 
machine understand that in this case "bear" means to carry. 

📝 3.3.4 

Which word in the sentence "She went to the bank to fish" can have multiple 
meanings? 

• Bank 
• Went 
• Fish 
• To 
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🕮 3.3.5 

Applications of semantic analysis 

• Machine translation – semantic analysis helps ensure that sentences are 
translated accurately by considering word meanings and context, rather than 
directly translating based on syntax. 

• Question answering systems - in order for a machine to provide accurate 
answers, it must understand the intent of the question. For example, the 
sentence “Can you tell me the time?” is not just asking for the time – it is 
also a request for information, and the system must recognize this. 

• Information extraction - in extracting meaningful data from large amounts of 
text, semantic analysis helps identify real-world entities contained in a 
document, such as names, dates, and places. It also helps understand the 
relationships between these entities. 

📝 3.3.6 

Which of the following applications relies on semantic analysis to ensure accurate 
interpretation of meaning in text? 

• Machine Translation 
• Information Extraction 
• Syntax Checking 
• Speech Recognition 

🕮 3.3.7 

Examples of semantic analysis 

1. Sentence: "The quick brown fox will jump over the lazy dog." - is syntactically 
and semantically correct because the words and phrases make sense and 
convey a clear image of the fox jumping over the dog. 

2. Sentence: "Hot snowflakes were falling from the sky." - while the syntax is 
correct, the sentence is semantically incorrect because snowflakes cannot 
be hot. A semantic analyzer would call this a logical inconsistency. 

3. Sentence: "He went to the bank to fish." - this sentence has semantic 
ambiguity. Does "bank" mean a financial institution or a riverbank? A 
semantic analyzer would use the context to understand that "bank" here 
probably refers to a riverbank. 

📝 3.3.8 

Which of the following sentences contains a semantic issue that would require 
further interpretation? 

• She bought a bat at the store. 
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• I left my keys on the bank of the river. 
• The company is looking for a new manager. 
• He flew over the bank with his friends. 

🕮 3.3.9 

Challenges in semantic analysis 

• Ambiguity - many words have multiple meanings based on context. The 
challenge lies in correctly interpreting these meanings based on surrounding 
words and context. 

• Sarcasm and figurative language - understanding sarcasm, metaphors, 
idioms, or cultural references is still a significant challenge for semantic 
analysis. For example, “break a leg” is an idiom that means “good luck,” but a 
machine may initially interpret it literally. 

• Contextual knowledge - machines often need world knowledge to 
understand the meaning of certain words. For example, understanding the 
meaning of “snowflakes” requires knowledge of weather conditions, and 
understanding “bank” requires knowledge of different types of banks 
(financial or geographic). 

📝 3.3.10 

What does semantic analysis focus on in Natural language understanding? 

• Determining if words have logical meanings and fit together sensibly 
• Checking if a sentence follows grammar rules 
• Identifying how words are syntactically structured 
• Converting text into speech 

3.4 Pragmatic analysis 

🕮 3.4.1 

Pragmatic analysis is the fourth and most complex stage of Natural language 
understanding. It involves interpreting sentences or utterances based on real-world 
knowledge and context, beyond the literal meaning. While semantic analysis 
focuses on the dictionary meanings of words, pragmatic analysis requires 
understanding the underlying intent and context, which often involves common 
sense reasoning or expertise. 

Pragmatic analysis goes beyond the individual meanings of words and considers 
how a sentence fits into a larger context. For example, the sentence "Will you crack 
open the door? I’m getting hot." uses the word "crack" in a figurative sense, 
meaning "to open," even though its literal meaning is "to break." A machine needs 
context to interpret this correctly. 
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Pragmatics often involves reasoning about the world and situations that require 
background knowledge. For example, if someone says, "Can you pass the salt?" in a 
dining context, pragmatic analysis understands that the speaker is likely requesting 
the salt to be passed, not asking about the physical ability to pass it. 

Pragmatics also helps resolve ambiguities that can arise from multiple 
interpretations. For example, "I saw the man with the telescope" could mean that 
the speaker saw a man who had a telescope or that the speaker used a telescope 
to see the man. Pragmatic analysis helps choose the right interpretation based on 
context. 

📝 3.4.2 

Which of the following sentences requires pragmatic analysis to understand the 
intended meaning? 

• Will you crack open the door? I’m getting hot. 
• Can you open the window? 
• Please hand me the book. 
• She smiled at the gift. 

🕮 3.4.3 

Pragmatic analysis helps machines (or humans) interpret statements that go 
beyond the literal meanings of words. Context, real-world knowledge, and social 
norms play a major role in making sense of a sentence. Below are several examples 
of sentences that require pragmatic analysis to accurately interpret the intended 
meaning, beyond just the literal meanings of the words: 

"Can you open the window?" 

• Literal meaning: The speaker is asking if the listener has the ability to open 
the window. 

• Pragmatic interpretation: The speaker is actually requesting that the listener 
open the window, not asking about the listener's ability to do so. Pragmatics 
interprets the sentence as a polite request, using "can" in a more functional, 
contextual way rather than literally. 

"I’m going to the bank." 

• Literal meaning: The speaker is going to a financial institution. 
• Pragmatic interpretation: The word "bank" could also refer to the side of a 

river or an airfield. Pragmatic analysis would look at the context - such as the 
speaker’s location or the conversation topic (e.g., money or outdoor 
activities)- to decide whether the speaker means a financial institution or a 
natural bank. 
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"It’s getting cold in here." 

• Literal meaning: The temperature in the room is dropping. 
• Pragmatic interpretation: In context, this statement is likely a hint that the 

speaker wants someone to close the window or adjust the temperature. 
Pragmatics tells us that the sentence is a subtle way to request action, not 
just an observation. 

"Can you pass me the salt?" 

• Literal meaning: The speaker is asking whether the listener has the ability to 
pass the salt. 

• Pragmatic interpretation: Here, "Can you" is used as a polite request, not a 
literal inquiry into the listener’s ability to pass the salt. Pragmatics helps 
interpret this as a request for action, given the context of the conversation 
(likely during a meal). 

"I don’t have any cash, but I’ll pay you later." 

• Literal meaning: The speaker does not currently have money, but intends to 
pay at a later time. 

• Pragmatic interpretation: This sentence assumes an understanding that "pay 
you later" is a promise to fulfill the debt, despite the lack of cash at the 
moment. Pragmatic analysis considers the social context (trust, payment 
history) and interprets the sentence as a statement of intent. 

"Could you lend me a hand?" 

• Literal meaning: The speaker is asking if the listener has a hand they can 
give them. 

• Pragmatic interpretation: "Lend me a hand" is an idiomatic expression that 
means "Could you help me?" Pragmatic analysis recognizes this idiomatic 
phrase and understands that the speaker is requesting assistance, not 
literally asking for a hand. 

"She’s a real gem." 

• Literal meaning: The speaker is comparing the person to a precious stone, 
implying that she is physically a gem. 

• Pragmatic interpretation: The sentence is likely a compliment, implying that 
the person is valuable, kind, or exceptional. Pragmatics helps us understand 
that this is an expression of praise, not a literal statement. 

"I love you." 

• Literal meaning: The speaker is expressing strong affection or love for the 
listener. 
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• Pragmatic interpretation: Depending on the context, the meaning of "I love 
you" can vary. It could express romantic love, familial love, or even deep 
appreciation in a friendship. Pragmatics helps us determine the intended 
meaning based on factors such as the tone of voice, the relationship 
between the speaker and listener, and the context in which the statement is 
made. 

"This task is a piece of cake." 

• Literal meaning: The task is a dessert or cake that is easy to eat. 
• Pragmatic interpretation: The phrase "a piece of cake" is an idiom meaning 

that the task is easy to accomplish. Pragmatics recognizes that the speaker 
is referring to the difficulty level of the task, not its literal nature. 

"I’ll call you when I get home." 

• Literal meaning: The speaker is promising to make a phone call when they 
arrive home. 

• Pragmatic interpretation: This sentence likely expresses a promise or 
intention rather than an immediate instruction. Pragmatics helps interpret 
this as a social agreement, understanding the common practice of keeping in 
touch once arriving home. 

📝 3.4.4 

Which of the following statements requires pragmatic analysis to understand the 
speaker's intent? 

• Can you open the window? 
• I’ll call you when I get home. 
• I’m going to the bank. 
• She’s a real gem. 

📝 3.4.5 

In the sentence "I’m getting cold," what does the speaker likely intend based on 
pragmatic analysis? 

• The speaker is suggesting that someone close the window or turn up the 
heat. 

• The speaker is merely stating that their body temperature is low. 
• The speaker is asking someone for a blanket. 
• The speaker is describing the cold weather outside. 

📝 3.4.6 

Which of the following statements would need pragmatic analysis to determine 
whether the speaker is making a literal request or a polite suggestion? 
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• Could you lend me a hand? 
• This task is a piece of cake. 
• I love you. 
• I’m going to the bank. 

🕮 3.4.7 

While syntax and semantics deal with the structure and meaning of words, 
pragmatic analysis helps a machine understand the speaker's intent, the context of 
the conversation, and how the sentence fits into real-world situations. 

Understanding context and intent  

• Pragmatics focuses on the practical use of language in context. It requires 
knowledge of the world, common social practices, and the speaker’s 
intentions. For example, the sentence "Could you open the window?" might 
sound like a question, but pragmatically, it’s a polite request. A machine 
needs to understand that the speaker is asking for a favor, not just inquiring 
about someone’s ability to open the window. 

• Similarly, consider the sentence "I’m getting hot." On the surface, it may 
seem like a simple statement about temperature. However, pragmatically, it 
could imply that the speaker wants the temperature adjusted (e.g., by turning 
on the air conditioning or opening a window). A machine needs to recognize 
this social cue to interpret the speaker’s intent correctly. 

Resolving ambiguities 

• Languages often have ambiguities that are resolved through pragmatic 
context. For instance, the phrase "Can you pass me the salt?" can be 
interpreted in two ways. In both cases, the sentence structure remains the 
same, but the intended meaning changes based on the context: 

• As a literal question asking if the person is physically able to pass the salt. 
• As a polite request asking the person to pass the salt. 

Discourse understanding 

• Pragmatics also helps machines follow the flow of a conversation. When 
people converse, they often rely on shared knowledge and references to 
earlier parts of the conversation. For example, in a conversation like: 

1. Person A: "I’m starving." 
2. Person B: "Do you want to go to a restaurant?" 

• Without pragmatic analysis, a machine might interpret "I’m starving" as a 
mere statement about hunger, missing the underlying request to eat. 
Pragmatics helps understand the social cues and intent of the speaker. 
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Social context and politeness 

• Understanding politeness forms another important application of pragmatic 
analysis. In many languages, speakers adjust their tone, word choice, and 
sentence structure based on social hierarchies and the level of formality. For 
example, saying "Could you please..." instead of a direct command ("Give me 
that") signals politeness. Pragmatic analysis interprets these signals, which 
is essential in applications like chatbots or customer service AI, where the 
system needs to respond appropriately based on the social context. 

Speech acts theory 

• One well-known theory in pragmatics is Speech act theory, which categorizes 
statements based on their function: 

1. Assertives: Statements of fact, like "The sky is blue." 
2. Directives: Requests or commands, like "Please close the door." 
3. Commissives: Statements that commit to future actions, like "I will call you 

later." 
4. Expressives: Statements of emotion, like "I’m sorry." 

• Pragmatic analysis classifies sentences according to these speech acts to 
better understand what the speaker is trying to achieve, be it informing, 
requesting, or apologizing. This understanding is key for dialogue systems 
and virtual assistants, which must respond to different types of speech acts 
appropriately. 

📝 3.4.8 

In the sentence, "It’s getting cold in here," what is the likely pragmatic 
interpretation? 

• The speaker is suggesting that someone close the window. 
• The speaker is stating the temperature. 
• The speaker is describing the outside weather. 

📝 3.4.9 

Which of the following sentences requires pragmatic analysis to interpret its 
meaning? 

• Can you help me with this? 
• She is walking in the park. 
• The sky is blue. 
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🕮 3.4.10 

Example applications in real-world systems 

• Chatbots and virtual assistants like Siri, Alexa, or Google Assistant rely on 
pragmatic analysis to interpret ambiguous statements. For example, if a user 
says, "I’m thirsty," the system must interpret this as a request for a drink 
rather than simply noting the user’s physical state. Similarly, if someone 
says, "Could you turn on the lights?", the system needs to understand the 
indirect request and respond appropriately. 

• Customer service AI - in customer service applications, pragmatic analysis 
ensures that AI understands both the factual content of customer queries 
and the subtler, context-dependent meanings. If a customer says, "I’d like a 
refund for this faulty item," the AI needs to interpret the request in the 
context of the transaction and recognize it as a formal request rather than a 
casual complaint. 

• Machine translation uses pragmatic analysis is vital part of machine 
translation systems. While syntax and semantics can handle the structure 
and meaning of words, pragmatic analysis ensures that idiomatic 
expressions or culturally specific phrases are translated appropriately. For 
instance, the English phrase "break a leg," meaning "good luck," would need 
to be understood in a contextual way when translating it into another 
language to avoid confusion. 

📝 3.4.11 

Why is pragmatic analysis important for customer service AI 

• It helps the AI respond politely to customers. 
• It helps the AI interpret ambiguous statements correctly. 
• It allows the AI to translate different languages. 



 

 

Knowledge Acquisition 

Chapter 4 
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4.1 Knowledge acquisition 

🕮 4.1.1 

NLP is a branch of AI that focuses on enabling machines to understand, interpret, 
and respond to human language. However, natural language is inherently complex 
because it relies on vast amounts of contextual, cultural, and semantic knowledge. 
For example, understanding a simple sentence like "It's raining cats and dogs" 
requires not just knowledge of vocabulary but also idiomatic expressions. To 
process language effectively, AI systems must access and utilize massive 
databases of knowledge. This requirement makes knowledge acquisition a critical 
foundation for the development of more advanced NLP systems. 

Given the immense scale of knowledge needed, manually collecting and inputting 
this information is neither practical nor efficient. Automating the knowledge 
acquisition process is essential for advancing NLP capabilities. Techniques such as 
machine learning enable systems to extract knowledge from text, images, and 
structured data automatically. For instance, NLP models like ChatGPT or BERT use 
massive corpora of text to learn relationships, grammar, and semantics, allowing 
them to simulate human-like understanding and responses. Automation 
accelerates progress in NLP, bridging gaps in the system's ability to interpret and 
generate natural language. 

While machine learning has achieved significant strides in improving performance, 
knowledge acquisition remains one of the biggest bottlenecks in building truly 
intelligent systems. Unlike incremental performance improvements - such as faster 
processing or slightly higher accuracy - knowledge acquisition addresses the 
fundamental challenge of equipping AI systems with the breadth and depth of 
information they need. Without sufficient knowledge, even the most advanced 
algorithms struggle to perform consistently across diverse tasks. By focusing 
research on improving automated knowledge acquisition, we can unlock the full 
potential of NLP and, by extension, intelligent systems as a whole. 

📝 4.1.2 

Which of the following best describes the relationship between knowledge 
acquisition and NLP? 

• Knowledge acquisition is essential for NLP due to the complexity of natural 
language. 

• NLP does not require knowledge acquisition to process language. 
• Manual knowledge acquisition is sufficient for all NLP tasks. 
• Machine learning has eliminated the need for knowledge acquisition. 
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📝 4.1.3 

Which of the following statements about knowledge acquisition and NLP are 
correct? 

• Automating knowledge acquisition is necessary for advanced NLP. 
• Knowledge acquisition is a bottleneck in developing intelligent systems. 
• Manual knowledge collection is the primary method used in NLP. 
• Incremental performance improvements are more important than knowledge 

acquisition in NLP. 

🕮 4.1.4 

Knowledge acquisition (KA) is a critical process in AI that involves obtaining and 
organizing information so that a computer system can use it to perform specific 
tasks. This process transforms raw data into structured information, often referred 
to as "knowledge" in AI. For instance, a system designed to diagnose medical 
conditions needs structured knowledge about symptoms, diseases, and treatments 
to make informed decisions. Knowledge acquisition ensures that the system has 
access to the right information in a usable format. 

One key area of knowledge acquisition focuses on extracting structured 
information from natural language (NL). Natural language encompasses everyday 
communication, both spoken and written, such as conversations, textbooks, or 
emails. For example, an AI reading a science textbook might extract relationships 
like "photosynthesis produces oxygen." By processing these examples, the system 
converts unstructured text into a format it can use, such as a knowledge graph or 
database. This method is especially valuable because it enables AI to learn directly 
from human-created materials without manual intervention. 

There are different approaches to acquiring knowledge for AI. Some involve 
interviewing human experts to gather insights, which are then translated into 
structured knowledge. Another method is asking experts to explicitly write rules, 
such as “if symptom X and symptom Y, then diagnose condition Z.” Alternatively, 
machine learning techniques allow systems to learn from examples of expert 
behavior, such as observing how a chess master plays the game. These 
approaches complement each other, and the choice often depends on the type of 
task and available data. 

Unlike natural language methods, where the system extracts knowledge from 
unstructured sources like speech or text, direct knowledge expression involves 
formalizing information upfront. For example, an expert might manually encode 
knowledge into a rule-based system or train an AI with labeled datasets. While this 
can be precise, it requires significant effort and domain expertise. Natural language 
processing, on the other hand, reduces this burden by automating the extraction 
process, though it can be more challenging to ensure accuracy. 
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📝 4.1.5 

What is the main goal of knowledge acquisition in AI? 

• To organize information so a computer system can perform tasks. 
• To translate human knowledge into raw data. 
• To write rules for all possible scenarios. 
• To replace human experts completely. 

📝 4.1.6 

Which of the following are methods of knowledge acquisition in AI? 

• Interviewing human experts 
• Writing formal rules 
• Extracting information from textbooks 
• Upgrading computer hardware 

🕮 4.1.7 

Entities 

In knowledge extraction, entities are the essential building blocks. They represent 
real-world objects, concepts, or individuals, such as people, places, organizations, 
events, or equipment. For example, in a chemical accident database, entities might 
include specific chemicals, accident types, or the locations of incidents. 
Recognizing and categorizing entities is the first step toward creating structured 
knowledge that AI systems can utilize effectively. 

Relationships 

After identifying entities, the next step is to explore how they interact with one 
another. Relationships define these connections, capturing interactions like 
"located in," "caused by," or "part of." For instance, in academic research, 
relationships may link the background, objectives, and findings of a study. 
Extracting relationships helps AI systems make sense of how different pieces of 
information are interconnected, improving their ability to infer and analyze. 

Semantic descriptions 

Semantic descriptions enrich the extracted information by adding context and 
meaning. These can include attributes, properties, or definitions of entities. For 
example, in a chemical accident database, descriptions like "flammable" or 
"corrosive" provide essential details about substances. Similarly, academic papers 
can be enhanced by extracting semantic details such as the objectives and 
outcomes of the research. Semantic enrichment ensures a deeper understanding of 
the data. 



Knowledge Acquisition | FITPED AI 

49 

📝 4.1.8 

What are entities in knowledge extraction? 

• Real-world objects, concepts, or individuals 
• Rules for analyzing texts 
• Connections between databases 
• Steps in the timeline of events 

📝 4.1.9 

Which of the following are examples of relationships in knowledge extraction? 

• Located in 
• Part of 
• Caused by 
• Corrosive 

🕮 4.1.10 

Temporal information 

Temporal information refers to details about time, such as dates, durations, and the 
sequence of events. This type of information is crucial for constructing timelines 
and understanding when events occurred in relation to one another. For example, in 
news analysis, temporal data helps establish whether one event happened "before," 
"after," or "during" another, creating a clearer picture of historical or ongoing events. 

Sentiments 

Sentiment analysis examines the emotional tone expressed in a text. This could 
involve identifying whether the sentiment is positive, negative, or neutral, as well as 
detecting specific emotions like happiness or anger. For instance, analyzing online 
articles to understand public opinions can reveal valuable insights into societal 
attitudes or community discussions. 

Hidden themes 

Latent topic structures focus on uncovering hidden themes or topics within a 
collection of texts. Topic modeling helps identify major subjects, detect trends, and 
group similar documents together. For example, in online communities of practice, 
topic modeling can reveal the recurring themes discussed by members, providing 
insights into shared concerns or interests. 

📝 4.1.11 

What is the purpose of temporal information extraction in text analysis? 
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• To understand the timeline and order of events 
• To detect emotions in text 
• To summarize the main topics of a document 
• To define the attributes of an entity 

📝 4.1.12 

Given the sentence: 

"The Statue of Liberty, located in New York, was gifted by France in 1886."  

Identify the entities as ordered in the sentence: _____, _____, _____ 

and their relationships as ordered in the sentence: _____, _____ 

• located in 
• by 
• Statue of Liberty 
• New York 
• The 
• France 
• was 
• in 1886 
• gifted by 

4.2 Data sources 

🕮 4.2.1 

Data collection is a foundational step in building databases and enabling data-
driven applications. It involves gathering information from various sources and 
organizing it for use in systems such as AI models, analytics tools, or decision-
support applications. Effective data collection ensures the availability of accurate, 
relevant, and timely information, which is essential for making informed decisions. 

The quality of data collected directly impacts the performance of systems relying 
on it. For instance, an AI model trained on incomplete or biased data may produce 
inaccurate predictions. On the other hand, a well-structured and comprehensive 
dataset can lead to insights that drive innovations, improve operational efficiency, 
and enhance decision-making processes. 

Several approaches to collecting data exist, each suited to different scenarios. 
Some rely on manual input, while others harness automated tools like web scraping 
or APIs. Advanced techniques, such as subscribing to data feeds, allow 
organizations to access real-time information. Choosing the right method depends 
on factors like the scale of data required, the domain's complexity, and ethical 
considerations. 
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🕮 4.2.2 

Manual data entry 

Manual data entry involves human operators directly inputting data into a database. 
This traditional approach is commonly used for smaller datasets or specialized 
domains where automated methods are impractical. For instance, researchers 
documenting rare historical artifacts may rely on manual entry to ensure detailed 
and accurate descriptions. 

One advantage of manual data entry is its flexibility, as it allows customization and 
nuanced handling of unique information. However, it is time-consuming and prone 
to human errors, such as typos or inconsistencies. For large-scale datasets, these 
challenges can lead to inefficiencies and inaccuracies. 

Despite its limitations, manual data entry remains valuable in scenarios requiring 
expert judgment or precise handling of highly specialized data. For example, 
cataloging medical case studies or archiving legal documents often necessitates 
the careful attention only a human can provide. 

📝 4.2.3 

What is a key limitation of manual data entry? 

• Prone to human errors 
• Requires extensive automation 
• Inability to handle specialized data 
• Lacks customization options 

🕮 4.2.4 

Web scraping 

Web scraping automates the extraction of data from websites. Using tools or 
scripts, web scraping software retrieves relevant information from online pages and 
converts it into structured formats suitable for databases. For example, an e-
commerce platform might scrape competitor prices to adjust its own pricing 
strategies. 

Web scraping is highly efficient for collecting large amounts of publicly available 
data, such as news articles or market trends. However, it requires careful attention 
to legal and ethical considerations, including copyright laws and terms of service. 
Improper use can lead to legal consequences or reputational harm. 

This approach is widely used in industries like marketing, finance, and research. 
Applications include aggregating reviews, tracking stock prices, or analyzing 
consumer sentiment. Its automation and scalability make it ideal for handling 
dynamic and extensive datasets. 
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📝 4.2.5 

What is an ethical consideration when using web scraping? 

• Copyright and terms of service compliance 
• Automating data entry 
• Ensuring manual accuracy 
• Reducing scalability 

🕮 4.2.6 

APIs for data collection 

Application Programming Interfaces (APIs) are interfaces provided by online 
services to enable programmatic access to data. Developers use APIs to retrieve 
information from specific sources in a structured and standardized manner. For 
instance, a weather app uses APIs to fetch real-time weather updates from a 
weather data provider. 

APIs offer an efficient, reliable, and consistent way to collect data. They simplify 
integration between systems, reduce manual workload, and ensure up-to-date 
information. Additionally, APIs often come with documentation, making them easier 
for developers to implement and customize. 

Common applications include financial platforms retrieving stock market data, 
social media apps accessing user metrics, or academic research tools gathering 
publication data. APIs streamline workflows, making them an indispensable tool in 
modern data collection. 

📝 4.2.7 

What is a key advantage of using APIs for data collection? 

• Real-time data retrieval 
• Manual customization 
• Legal ambiguity 
• Lack of reliability 

🕮 4.2.8 

Data feeds 

Data feeds provide a continuous stream of structured data from specific sources. 
Formats like RSS or Atom allow organizations to subscribe to relevant feeds and 
automatically update their databases with the latest information. This ensures 
access to timely and dynamic content without manual effort. 
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Data feeds are particularly valuable for domains requiring up-to-date information, 
such as news, sports, or financial markets. They allow seamless integration into 
databases, enabling organizations to focus on analyzing rather than collecting data. 

Examples of data feed usage include aggregating news headlines, tracking sports 
scores, or monitoring changes in stock prices. Their automated nature ensures 
consistency and reduces the risk of human errors in data collection. 

📝 4.2.9 

What is a primary benefit of using data feeds? 

• Provides continuous, real-time data 
• Requires manual updates 
• Operates without standard formats 
• Focuses on static content 

📝 4.2.10 

Extracting information from Wikipedia 

We can extract information programmatically from Wikipedia using the wikipedia 
Python library. This library provides a simple interface to query Wikipedia's 
MediaWiki API and retrieve information. 

We will write a Python script to perform the following tasks: 

1. Install and configure the wikipedia package. 
2. Search for information about topic. 
3. Retrieve and display key details, including their summary, full content, and 

categories. 
4. Handle errors gracefully, such as missing pages or disambiguation. 

By leveraging the wikipedia library, you can automate tasks like data extraction, 
research, and content generation, making your Python projects more efficient and 
informative. 

• The wikipedia library can raise exceptions if the search fails or the page is 
not found. Use try-except blocks to handle these errors. 

• Be mindful of Wikipedia's rate limits to avoid being blocked. 
• While Wikipedia is a reliable source of information, it's important to verify 

the accuracy of the retrieved data, especially for critical applications. 

Install the required library (in our system is installed) 

!pip install wikipedia 
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Basic usage: 

import wikipedia 

 

try: 

   # Search for a page 

   search_query = "Python (programming language)" 

   page = wikipedia.page(search_query) 

 

   # Access page information 

   print(page.title)  # Output: Python (programming language) 

   print(page.summary)  # Output: A concise summary of Python 

   print(page.url)  # Output: The Wikipedia URL for the page 

   print('-' * 10) 

   print(page.links[:10],'...')  # Output: A list of links 

from the page 

except wikipedia.DisambiguationError as e: 

    print("Disambiguation error:", e.options) 

except wikipedia.PageError: 

    print("Page not found!") 

 
Program output: 
Python (programming language) 

Python is a high-level, general-purpose programming language. 

Its design philosophy emphasizes code readability with the use 

of significant indentation. 

Python is dynamically typed and garbage-collected. It supports 

multiple programming paradigms, including structured 

(particularly procedural), object-oriented and functional 

programming. It is often described as a "batteries included" 

language due to its comprehensive standard library. 

Guido van Rossum began working on Python in the late 1980s as 

a successor to the ABC programming language and first released 

it in 1991 as Python 0.9.0. Python 2.0 was released in 2000. 

Python 3.0, released in 2008, was a major revision not 

completely backward-compatible with earlier versions. Python 

2.7.18, released in 2020, was the last release of Python 2. 

Python consistently ranks as one of the most popular 

programming languages, and has gained widespread use in the 

machine learning community. 

 

 

https://en.wikipedia.org/wiki/Python_(programming_language) 

---------- 
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['"Hello, World!" program', '3ds Max', '?:', 'ABC (programming 

language)', 'ADMB', 'ALGOL', 'ALGOL 68', 'API', 'APL 

(programming language)', 'ATmega'] ... 

More advanced usage: 

# Find pages related to a topic 

pages = wikipedia.search("Artificial Intelligence") 

print(pages) 

 

# Get a random article 

random_page = wikipedia.random() 

print(random_page) 

 

# Set language 

wikipedia.set_lang("fr")  # Set language to French 

# shows 2 sentences summary 

summary = wikipedia.summary("Python (langage de 

programmation)", sentences=2) 

print(summary) 

 
Program output: 
['Artificial intelligence', 'Artificial general intelligence', 

'A.I. Artificial Intelligence', 'Ethics of artificial 

intelligence', 'Applications of artificial intelligence', 

'Generative artificial intelligence', 'History of artificial 

intelligence', 'Artificial Intelligence Act', 'Artificial 

intelligence in healthcare', 'Hallucination (artificial 

intelligence)'] 

Mstislav Mstislavich 

Python (prononcé /pi.tɔ/̃) est un langage de programmation 

interprété, multiparadigme et multiplateformes. Il favorise la 

programmation impérative structurée, fonctionnelle et orientée 

objet. 

📝 4.2.11 

Project: Extracting information from Wikipedia about people 

The goal is to retrieve and analyze information about three notable individuals (e.g., 
Barack Obama, Albert Einstein, and Marie Curie). Show only 3 sentences about 
every person. 

You will write a Python script to perform the following tasks: 
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1. Install and configure the wikipedia package. 
2. Search for information about three people. 
3. Retrieve and display key details, including their summary, full content, and 

categories. 
4. Handle errors gracefully, such as missing pages or disambiguation. 

1. Install the required library (in our system is installed) 

!pip install wikipedia 

 
import  

# Search for information about all persons eg Barack Obama 

 
Program output: 
Barack Hussein Obama II (born August 4, 1961) is an American 

lawyer and politician who served as the 44th president of the 

United States from 2009 to 2017. A member of the Democratic 

Party, he was the first African-American president in U.S. 

history. 

4.3 Data extraction 

🕮 4.3.1 

Named-entity recognition  

Named-entity recognition (NER) is an NLP technique that identifies and classifies 
entities within a text, such as names of people, organizations, locations, and dates. 
It serves as a foundational step in extracting meaningful information from 
unstructured data. By tagging these entities, NER helps bridge the gap between raw 
text and structured databases. 

Initially, NER systems relied on handcrafted features and rule-based algorithms. 
However, modern advancements have introduced sequence-to-sequence neural 
architectures, which leverage machine learning to improve accuracy. These 
systems are now capable of processing large text corpora with high precision, 
thanks to pre-trained models and contextual embeddings. 

NER is widely used in fields like customer support, where it extracts names and 
issues from client communications, or in journalism to automatically identify key 
figures and locations in news articles. For example, a NER model might analyze a 
news report to identify "John Doe" as a person, "Google" as an organization, and 
"California" as a location. 

Analyzing the sentence, "Elon Musk announced new Tesla factories in Texas," an 
NER system would tag "Elon Musk" as a person, "Tesla" as an organization, and 
"Texas" as a location. 
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📝 4.3.2 

Which of the following are tasks performed by Named-entity recognition? 

• Identifying names of people 
• Extracting dates from text 
• Tagging sentence sentiment 
• Classifying locations 

🕮 4.3.3 

Relationship extraction 

Relationship extraction focuses on identifying and structuring connections between 
entities within text. By mapping relationships, it enriches raw data with contextual 
links, enabling the creation of knowledge graphs that represent how entities 
interact with each other. 

Early methods used rule-based systems, but modern approaches leverage deep 
learning models for better representation. Distant supervision techniques, which 
generate training data using existing knowledge bases, are often employed to train 
these systems. For instance, relationships like "is located in" or "is employed by" are 
detected and categorized using neural network-based representation learning. 

Relationship extraction plays a key role in building search engines, chatbots, and 
recommendation systems. For example, in analyzing a sentence like "Tesla, 
founded by Elon Musk, is headquartered in Texas," this technique identifies 
relationships such as "founded by" between "Tesla" and "Elon Musk," and 
"headquartered in" between "Tesla" and "Texas." 

Given "Apple acquired Beats in 2014," a relationship extraction system would 
identify "acquired" as the relationship linking "Apple" and "Beats." 

📝 4.3.4 

Which of the following are examples of relationships extracted from text? 

• Located in 
• Headquartered in 
• Founded by 
• Sentiment is positive 

🕮 4.3.5 

Text Classification 

Text classification is the process of assigning predefined categories to text. It 
enables systems to group similar text snippets based on their semantic meaning, 
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enhancing information organization and retrieval. Sentences, paragraphs, or entire 
documents can be classified into themes, topics, or roles. 

Advanced language models such as Word2Vec, ELMo, and BERT revolutionize text 
classification by quantifying semantic similarity. These models compare the 
meanings of sentences and accurately assign categories, such as mapping a 
sentence about renewable energy to a "Sustainability" theme. 

Text classification is used in spam detection, content moderation, and sentiment 
analysis. For instance, analyzing user reviews can classify comments as "positive," 
"negative," or "neutral." A research paper abstract can also be classified into 
ontology elements like "objective" or "methodology." 

For example, in the sentence, "The study evaluates the impact of AI on education," a 
text classification model could classify it under "Research Objective." 

📝 4.3.6 

Which are common uses of text classification? 

• Spam detection 
• Sentiment analysis 
• Categorizing research abstracts 
• Identifying relationships between entities 

🕮 4.3.7 

Ontologies in information extraction 

Ontologies provide structured frameworks that define the concepts and 
relationships within a domain. Ontology-based information extraction uses these 
frameworks to map text content to predefined categories, ensuring semantic 
consistency and accuracy. 

By using a semantically rich framework, this method reduces ambiguity in text 
interpretation. For example, mapping "AI" to "Artificial Intelligence" ensures 
consistency across different sources mentioning the same concept. 

Ontology-based extraction is widely used in medical research to map symptoms 
and treatments to diagnostic categories. It is also applied in education, where 
course materials are mapped to learning outcomes or academic standards. 

A system analyzing the text "Diabetes is managed by insulin therapy" could map 
"Diabetes" to a disease ontology and "insulin therapy" to a treatment ontology. 

📝 4.3.8 

Which of the following describe ontology-based information extraction? 
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• Mapping text to predefined concepts 
• Using structured frameworks 
• Ensuring semantic consistency 
• Identifying sentiments in reviews 

🕮 4.3.9 

Direct memory access parsing 

Direct memory access parsing (DMAP) is a model for understanding text by 
referencing stored knowledge patterns. It incrementally matches textual references 
to concepts in a knowledge base, enabling structured interpretation of text content. 

DMAP matches phrases or words in the text to stored patterns, generating higher-
order conceptual references. For example, it can interpret "Paris is the capital of 
France" by linking "Paris" and "France" through the concept of "capital." 

DMAP is used in AI systems like the Learning Reader to extract formal 
representations of text meaning. It is particularly effective in creating structured 
knowledge bases for tasks such as automated question answering or 
summarization. 

For example: Analyzing "The Mona Lisa was painted by Leonardo da Vinci," DMAP 
links "Mona Lisa" to "artwork" and "Leonardo da Vinci" to "artist," generating the 
relationship "painted by." 

📝 4.3.10 

Which of the following are aspects of DMAP? 

• Incremental matching of references 
• Generating higher-order concepts 
• Linking text to stored patterns 
• Identifying emotional tone 

📝 4.3.11 

Project: Named entity and relation extraction 

Write a Python script to extract named entities and their relationships from a user-
provided sentence. 

1. Import libraries 

• we will use spacy 

import spacy 

from spacy import displacy 
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2. Load pre-trained model 

A pre-trained model, like en_core_web_sm, is essential for accurate and efficient 
natural language processing tasks. It covers needs of: 

• Part-of-speech tagging for identifying the grammatical role of each word 
(e.g., noun, verb, adjective). 

• Dependency parsing for analyzing the grammatical structure of sentences to 
understand relationships between words. 

• Named entity recognition for identifying and classifying named entities 
within the text. 

# Load a pre-trained English NLP model 

nlp = spacy.load("en_core_web_sm")  # Provides tools for 

tokenization, parsing, entity recognition, etc. 

3. Function to extract named entities and relationships 

• Iterates over the doc.ents to extract named entities and their labels. 
• Stores the entities as tuples of (text, label) in the entities list. 
• Checks if the token's dependency relation is either "nsubj" (nominal subject) 

or "dobj" (direct object). 
• If so, extracts the subject (head token), object (token itself), and relationship 

(dependency label). 
• Appends the extracted relationship as a tuple to the relationships list. 

# Define a function to extract named entities and 

relationships 

def extract_entities_and_relationships(text): 

    # Process the input text with the NLP model 

    doc = nlp(text) 

 

    # Extract named entities 

    entities = [(ent.text, ent.label_) for ent in doc.ents]  # 

List of entity text and their labels (e.g., PERSON, DATE) 

 

    # Extract relationships using dependency parsing 

    relationships = [] 

    for token in doc:  # Iterate over tokens in the parsed 

text 

        # Focus on tokens marked as subject (nsubj) or object 

(dobj) dependencies 

        if token.dep_ == "nsubj" or token.dep_ == "dobj": 

            subject = token.head.text  # Head word of the 

token (e.g., a verb) 
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            object = token.text       # Text of the token 

itself 

            relationship = token.dep_ # Dependency label 

("nsubj" for subject, "dobj" for object) 

            relationships.append((subject, object, 

relationship))  # Store the relationship tuple 

 

    return entities, relationships 

 

4. Use 

• experiment with structure of input sentence 

 
# Example text input for processing 

text = "Barack Obama served as the 44th President of the 

United States from 2009 to 2017 in the US." 

 

# Extract named entities and relationships 

entities, relationships = 

extract_entities_and_relationships(text) 

 

# Display extracted named entities 

print("Named Entities:") 

for entity in entities: 

    print(f"- {entity[0]} ({entity[1]})")  # Output entity 

text and its label 

 

# Display extracted relationships 

print("\nRelationships:") 

for relationship in relationships: 

    print(f"- {relationship[0]} {relationship[2]} 

{relationship[1]}")  # Output relationship structure 

 
Program output: 
Named Entities: 

- Barack Obama (PERSON) 

- 44th (ORDINAL) 

- the United States (GPE) 

- 2009 (DATE) 

- US (GPE) 

 

Relationships: 

- served nsubj Obama 
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📝 4.3.12 

Project: Named entity and relation extraction by NLTK 

Alternatively we can also use nltk library to write a Python script to extract named 
entities and their relationships from a user-provided sentence. 

• Tokenize the sentence into words and parts of speech. 
• Use nltk's named entity recognition (NER) to identify entities. 
• Extract relationships using simple pattern matching or regular expressions. 

1. Import libraries 

• we will use nltk 

import nltk 

from nltk import word_tokenize, pos_tag, ne_chunk 

2. Load necessary files 

Following downloads are typically required for preprocessing and analyzing text in 
NLP tasks, particularly for: 

• Tokenization (punkt) - is used for breaking text into sentences and words 
(tokenization). This resource is essential for any task where you need to split 
text into smaller units, like words or sentences. 

• POS tagging (averaged_perceptron_tagger) - tags each word in a sentence 
with its part of speech (e.g., noun, verb, adjective). Is used in tasks requiring 
grammatical analysis or understanding sentence structure, such as 
dependency parsing or sentiment analysis. 

• Named entity recognition (maxent_ne_chunker) - identifies named entities 
(like people, locations, and organizations) in a sentence. Extracts structured 
information from unstructured text by identifying significant entities. 

• Word validation (words) - provides a database of recognized words to assist 
with various NLP tasks, such as validating word existence or enhancing 
named-entity recognition. Supports tasks like spell-checking, entity 
recognition, or token validation. 

# Download necessary NLTK data files 

nltk.download('punkt') 

nltk.download('averaged_perceptron_tagger') 

nltk.download('maxent_ne_chunker') 

nltk.download('words') 

 
Program output: 
[nltk_data] Downloading package punkt to 

/home/johny/nltk_data... 
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[nltk_data]   Package punkt is already up-to-date! 

[nltk_data] Downloading package averaged_perceptron_tagger to 

[nltk_data]     /home/johny/nltk_data... 

[nltk_data]   Package averaged_perceptron_tagger is already 

up-to- 

[nltk_data]       date! 

[nltk_data] Downloading package maxent_ne_chunker to 

[nltk_data]     /home/johny/nltk_data... 

[nltk_data]   Unzipping chunkers/maxent_ne_chunker.zip. 

[nltk_data] Downloading package words to 

/home/johny/nltk_data... 

[nltk_data]   Unzipping corpora/words.zip. 

4. Use 

• experiment with structure of input sentence 

# Example text input for processing 

sentence = "Barack Obama served as the 44th President of the 

United States from 2009 to 2017 in the US." 

 

# Tokenize and tag parts of speech 

tokens = word_tokenize(sentence) 

tags = pos_tag(tokens) 

 

# Extract named entities 

entities = ne_chunk(tags) 

print("Named Entities:") 

print(entities) 

 
Program output: 
Named Entities: 

(S 

  (PERSON Barack/NNP) 

  (PERSON Obama/NNP) 

  served/VBD 

  as/IN 

  the/DT 

  44th/CD 

  President/NNP 

  of/IN 

  the/DT 

  (GPE United/NNP States/NNPS) 

  from/IN 

  2009/CD 
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  to/TO 

  2017/CD 

  in/IN 

  the/DT 

  (GSP US/NNP) 

  ./.) 

4.4 Data (knowledge) structure 

🕮 4.4.1 

While data structures like arrays, linked lists, and graphs are excellent for storing 
information, they might not be the most suitable for storing knowledge, which often 
involves complex relationships, context, and understanding. 

Knowledge graphs 

Knowledge graphs are a graph-based structure designed to store knowledge by 
representing entities as nodes and their relationships as edges. These relationships 
often include contextual or semantic meaning, making knowledge graphs highly 
suitable for complex knowledge representation. They are particularly useful in 
applications like semantic search, recommendation systems, and question-
answering systems, where understanding the connections between different 
entities is key. 

For instance, a knowledge graph about a book might include nodes for the book's 
title, characters, themes, and plot points. Relationships like "Character A interacts 
with Character B" or "Theme X is central to Plot Point Y" would connect these 
nodes, providing a rich, interconnected understanding of the book. 

A notable example is Google’s Knowledge Graph, which powers its search engine 
by linking information about people, places, and things. If you search for "Albert 
Einstein," the system retrieves data about him, his discoveries, and related topics, 
all stored as a web of interlinked nodes and edges. 

Knowledge graphs are also essential for handling vast amounts of structured and 
semi-structured data.  

📝 4.4.2 

Which of the following are applications of knowledge graphs? 

• Semantic search 
• Recommendation systems 
• Question answering 
• Spreadsheet management 
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🕮 4.4.3 

Ontologies 

Ontologies provide a formal framework for representing knowledge as a set of 
concepts and their relationships. Unlike knowledge graphs, ontologies emphasize 
defining and categorizing concepts with a high level of precision, often using a 
hierarchical structure. They are widely used in semantic web technologies, 
knowledge management systems, and artificial intelligence. 

For example, an ontology in the medical field might define entities like "disease," 
"symptom," and "treatment." Relationships such as "symptom is associated with 
disease" or "treatment alleviates disease" are explicitly mapped. This structured 
representation facilitates interoperability between different systems, such as 
electronic health records and diagnostic tools. 

A popular example is the Gene Ontology, which organizes knowledge about gene 
functions across different biological systems. Ontologies ensure that the 
information is both machine-readable and human-interpretable, making them 
valuable in fields requiring high accuracy and integration. 

The development of an ontology involves defining the domain, listing concepts, and 
specifying relationships. Tools like Protégé allow users to create and manipulate 
ontologies for various applications, from healthcare to manufacturing. 

📝 4.4.4 

What is the primary goal of ontologies in knowledge representation? 

• To define and categorize concepts 
• To emphasize the accuracy and interoperability of concepts 
• To connect entities with physical data storage 
• To perform statistical analysis 

🕮 4.4.5 

Semantic networks 

Semantic networks are graphical structures that store knowledge by representing 
concepts as nodes and their semantic relationships as edges. They focus on 
capturing meaning and associations, making them an effective tool for natural 
language processing, information retrieval, and expert systems. 

For example, a semantic network for a restaurant might include nodes for "food," 
"drink," "cuisine," and "price." Relationships like "is a type of," "is served with," or 
"has a price of" link these nodes. This network can help answer complex queries 
such as, "What cuisines include vegetarian options under $20?" 
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Semantic networks are also valuable in education and knowledge exploration, 
allowing users to visualize how concepts relate. For instance, in biology, a network 
might map relationships between animals, their habitats, and their diets, creating an 
intuitive learning tool. 

These networks have applications in building expert systems that simulate human 
reasoning. By explicitly storing semantic relationships, they enable machines to 
draw inferences and provide contextualized responses. 

📝 4.4.6 

Which relationships can be represented in a semantic network? 

• Is a type of 
• Is associated with 
• Has a price of 
• Stores binary data 

🕮 4.4.7 

Knowledge bases 

Knowledge bases store large amounts of structured and unstructured information 
in a single repository. They are designed to support diverse applications like virtual 
assistants, customer service chatbots, and question-answering systems by 
providing quick and accurate access to information. 

A typical knowledge base might store product information, customer queries, 
troubleshooting guides, and FAQs. For example, a customer service chatbot uses a 
knowledge base to retrieve solutions for common issues like "How to reset a 
password?" or "Where to find the user manual?" 

Knowledge bases integrate data from various sources, such as documents, 
databases, and APIs. They use indexing and tagging to ensure efficient retrieval, 
often powered by AI algorithms for enhanced performance. 

Modern knowledge bases like IBM Watson Assistant go beyond simple storage by 
incorporating natural language processing and machine learning to interpret 
queries and provide intelligent responses. 

📝 4.4.8 

Which of the following applications utilize knowledge bases? 

• Virtual assistants 
• Customer service chatbots 
• Knowledge graphs 
• Question-answering systems 
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🕮 4.4.9 

Machine learning models 

Machine learning models are a dynamic way to store and utilize knowledge by 
learning patterns from data. Unlike static storage methods, ML models adapt to 
new data and make predictions or decisions based on learned information. 

For instance, a machine learning model trained on customer feedback can identify 
sentiment, predict user preferences, and suggest personalized recommendations. 
Applications include recommendation systems, natural language processing, and 
computer vision. 

A concrete example is a spam email filter, which uses an ML model trained on 
labeled datasets of spam and non-spam emails. The model learns features like 
word frequency, sender details, and formatting patterns to classify incoming 
messages. 

While ML models are powerful, they require large datasets, careful training, and 
validation. Choosing the right model architecture and parameters is critical for 
achieving accuracy and reliability. 

📝 4.4.10 

Which tasks are commonly performed using machine learning models? 

• Learning patterns from data 
• Making predictions 
• Adapting to new data 
• Static storage of unstructured data 

🕮 4.4.11 

Large language models 

Large language models (LLMs), such as OpenAI's GPT or Google's BERT, represent 
a revolutionary way of storing and utilizing knowledge. These models are trained on 
vast amounts of text data, learning patterns, context, and semantic relationships 
within the language. Unlike traditional databases or structured systems, LLMs store 
knowledge implicitly in their parameters, enabling them to understand and generate 
human-like responses. 

An LLM stores knowledge in the form of weights and biases within its neural 
network. During training, the model processes billions of sentences, learning 
associations between words, phrases, and concepts. For example, it might learn 
that "Barack Obama" is associated with "44th President of the United States" 
without explicitly being programmed with this information. The knowledge is 
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distributed across the network, making it flexible and robust for various 
applications. 

LLMs are particularly suited for dynamic and complex tasks, such as answering 
questions, summarizing documents, and generating creative content. For instance, 
if you ask an LLM, "Who discovered penicillin?" it can provide the answer "Alexander 
Fleming" based on the patterns it learned during training. This eliminates the need 
for a traditional, structured knowledge base. 

However, LLMs have limitations. Their knowledge is static after training, meaning 
they may lack awareness of new events unless retrained. Additionally, they require 
massive computational resources for training and inference. Despite these 
challenges, their ability to store and retrieve knowledge in a nuanced and 
contextualized manner makes them invaluable for modern AI applications. 

📝 4.4.12 

What makes LLMs a unique way of storing knowledge? 

• Knowledge is stored in neural network parameters 
• They can understand and generate language contextually 
• They require explicit programming of facts 
• They are always up-to-date without retraining 

🕮 4.4.13 

Choosing the right approach 

Selecting the best approach to store knowledge depends on the complexity of the 
data, the relationships involved, and the intended use. Often, multiple methods are 
combined to achieve an optimal balance between efficiency and functionality. 

For example, a digital library might use a knowledge graph to map relationships 
between books, authors, and genres while employing a knowledge base to store 
detailed information about each book. Machine learning models could provide 
recommendations based on user preferences, and semantic networks might be 
used to visualize connections between literary themes. 

Real-world applications often require flexibility. In an e-commerce platform, a 
semantic network could represent product categories, while an ontology ensures 
precise definitions, and a machine learning model personalizes the user experience. 
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📝 4.4.14 

What factors influence the choice of a knowledge storage approach? 

• Data complexity 
• Relationships involved 
• Intended use 
• Memory hardware type 



 

 

Knowledge Inferencing 

Chapter 5 
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5.1 Inference 

🕮 5.1.1 

Inference as knowledge expansion 

Inference is a key process in knowledge systems, enabling the derivation of new 
information from existing data. It acts as a bridge between what is known and what 
can be discovered, expanding the utility of knowledge representation systems. For 
example, inference can deduce that if "A is larger than B" and "B is larger than C," 
then "A is larger than C," even if this information wasn’t explicitly provided. 

This process is particularly important in domains like artificial intelligence, where 
large-scale knowledge bases like knowledge graphs are used. Knowledge graph 
reasoning, for instance, allows systems to infer new facts, such as identifying 
potential connections between entities based on their attributes and relationships. 
Commonsense knowledge, a cornerstone of intelligent reasoning, is often inferred 
automatically from pre-existing knowledge bases, highlighting the ability of 
inference to enhance understanding without additional manual input. 

Applications of inference span a wide range of fields. In healthcare, for instance, 
inference systems can analyze structured medical data to suggest potential 
diagnoses. Similarly, in NLP, inferencing aids in semantic search, enabling systems 
to understand user intent and provide accurate responses. These examples 
demonstrate inference’s pivotal role in extending the boundaries of knowledge 
representation. 

📝 5.1.2 

What is a primary function of inference in knowledge systems? 

• To derive new facts from existing knowledge 
• To explicitly store new data 
• To limit the scope of knowledge representation 
• To replace manual reasoning processes 

🕮 5.1.3 

Inference on Structured knowledge representations 

For inference to operate effectively, it relies on structured representations of 
knowledge. These structured forms often include entities, relationships, and logical 
propositions extracted from raw data sources like text.NLU plays a crucial role here, 
transforming unstructured text into structured formats that are easier to analyze 
and reason about. 



Knowledge Inferencing | FITPED AI 

72 

Semantically enriched databases are prime examples of this. By employing 
ontologies and NLP techniques, they structure information to allow efficient 
inferencing. For instance, in a database of industrial accidents, cause-and-effect 
relationships can be inferred by analyzing structured records, helping identify 
patterns that might improve safety protocols. 

Such structured formats also make information retrieval faster and more effective. 
Structured representations ensure that inference mechanisms have a clear 
framework to work with, enhancing the reliability and accuracy of the reasoning 
process. This structured approach is vital for applications ranging from 
recommendation systems to automated reasoning engines. 

📝 5.1.4 

Why are structured knowledge representations crucial for inference? 

• They provide a framework for efficient reasoning 
• They simplify raw data storage 
• They replace inferencing mechanisms 
• They ensure data remains unprocessed 

🕮 5.1.5 

Rule-based reasoning 

Rule-based reasoning is one of the oldest and most widely used inferencing 
techniques. It relies on pre-defined or dynamically generated rules to derive new 
knowledge. For example, a rule might state, "If a vehicle is electric, it does not 
produce direct emissions." Given data about a vehicle, this rule allows the system 
to infer its environmental impact without explicit data. 

This approach excels in domains where relationships and patterns are well 
understood. In legal systems, rule-based reasoning can automate decision-making 
processes by applying legal rules to specific cases. Similarly, in medical diagnosis, 
systems can use predefined symptom-to-disease rules to suggest possible 
ailments. 

However, rule-based systems are not without limitations. They can become brittle 
when dealing with incomplete or ambiguous data and often struggle to scale to 
complex scenarios with overlapping rules. Despite this, rule-based reasoning 
remains a powerful tool when applied to well-structured problems with clear logic. 

📝 5.1.6 

What is a major strength of rule-based reasoning? 

• It captures logical relationships effectively 
• It can scale easily to complex problems 
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• It eliminates the need for structured knowledge 
• It learns patterns without rules 

🕮 5.1.7 

Distributed representation-based reasoning 

Distributed representation-based reasoning uses mathematical embeddings to 
represent entities and relationships in vector spaces. These embeddings allow 
systems to perform operations, like determining similarity or deducing 
relationships, by analyzing patterns in the data. 

For instance, in a knowledge graph, entities like "Paris" and "France" might be 
embedded into a space where the relationship "capital of" can be inferred based on 
vector proximity. These representations leverage statistical patterns in large-scale 
data, making them particularly useful for applications involving complex and 
dynamic relationships. 

This approach has been widely adopted in NLP tasks like semantic search, where 
embeddings help match queries with relevant content. For example, a search query 
like "largest city in Japan" can be matched to "Tokyo" using distributed reasoning. 
Despite its strengths, this technique often requires substantial computational 
resources and can lack interpretability compared to rule-based methods. 

📝 5.1.8 

What does distributed representation-based reasoning rely on? 

• Statistical patterns in vector spaces 
• Predefined logical rules 
• Manual feature engineering 
• Explicit data relationships 

🕮 5.1.9 

Neural network-based reasoning 

Neural network-based reasoning applies deep learning models to infer complex 
patterns and relationships within structured knowledge. These systems are trained 
on large datasets to learn how different entities and attributes interact, enabling 
them to perform reasoning tasks like prediction and classification. 

For example, a neural network might analyze a dataset of customer reviews to infer 
sentiment trends, identifying relationships between product features and customer 
satisfaction. In knowledge graphs, neural networks are used to complete missing 
links, such as inferring an unknown relationship between two entities. 
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This approach is particularly powerful for large-scale, unstructured data. However, it 
has challenges, including high computational requirements and a lack of 
interpretability. Despite these challenges, neural network-based reasoning has 
become a cornerstone of modern AI, driving innovations in areas like image 
recognition, recommendation systems, and autonomous systems. 

📝 5.1.10 

Which is a common application of neural network-based reasoning? 

• Filling missing links in knowledge graphs 
• Rule-based decision systems 
• Manual data extraction 
• Eliminating inference challenges 

🕮 5.1.11 

Analogical reasoning 

Analogical reasoning involves drawing inferences based on similarities between 
entities or concepts. This human-inspired technique enables systems to identify 
new properties or relationships by comparing them to existing, similar cases. For 
example, if two diseases share similar symptoms, analogical reasoning might 
suggest they also share similar treatments. 

This type of reasoning is widely used in education, research, and creative problem-
solving. In AI, analogical reasoning is applied in recommendation systems, where 
products are suggested based on similar user preferences or item attributes. 

However, analogical reasoning requires robust similarity metrics to ensure accurate 
inferences. These metrics often rely on structured representations of knowledge, 
making them an essential complement to other reasoning methods like neural 
network-based approaches. 

📝 5.1.12 

What does analogical reasoning primarily rely on? 

• Similarities between entities or concepts 
• Predefined logical rules 
• Neural embeddings 
• Statistical probabilities 
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📝 5.1.13 

Project: Inference engine 

Develop a basic inference engine that identifies relationships between entities in a 
given text using rule-based reasoning and NLP techniques. 

Objectives and procedure: 

• Extract named entities from text (e.g., people, places). 
• Identify relationships using dependency analysis and predefined rules for 

inferring relationships between entities. 
• Deduce additional information or conclusions based on the extracted 

relationships. 

1. import necessary parts 

import spacy 

 

# Load a pre-trained English model 

nlp = spacy.load("en_core_web_sm") 

2. Entity extraction 

We use spaCy to identify entities (such as people, organizations, and locations) in 
the text. The function extract_entities_and_relationships processes the text using 
SpaCy to extract named entities (e.g., "Alice," "TechCorp") and relationships (e.g., 
"works for," "located in"). Relationships are identified using token dependencies 
such as "prep" (prepositions) and relationships between subject and object. 

# Extracts named entities and relationships from text using 

SpaCy. 

def extract_entities_and_relationships(text): 

 

    doc = nlp(text) 

    # Extract named entities 

    entities = [(ent.text, ent.label_) for ent in doc.ents] 

 

    # Extract relationships, including inferred ones 

    relationships = [] 

    for token in doc: 

        if token.dep_ == "nsubj" or token.dep_ == "dobj": 

            # Extract relationship for subjects and direct 

objects 

            subject = token.head.text 

            object_ = token.text 
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            relationship = token.dep_ 

            relationships.append((subject, object_, 

relationship)) 

        if token.dep_ == "prep": 

            # Extract relationships for prepositions (e.g., 

"works for", "located in") 

            subject = token.head.text 

            object_ = ' '.join([child.text for child in 

token.children]) 

            relationship = f"related_to ({token.text})" 

            relationships.append((subject, object_, 

relationship)) 

 

    return entities, relationships 

4. Inference 

• In the infer_relationships function, rules are applied to infer new 
relationships from existing ones. For example, "works for" and "located in" 
are both valid prepositions that represent relationships. 

1. If a relationship contains "works for," we infer that the object employs the 
subject. 

2. If a relationship contains "located in," we infer that the object contains the 
subject. 

# Infers additional relationships based on simple rules.  """ 

def infer_relationships(relationships): 

     

    inferred_facts = [] 

    for subject, object_, relationship in relationships: 

        # Check and apply inference rules based on the 

relationship type 

        if "works for" in relationship: 

            inferred_facts.append(f"{object_} employs 

{subject}") 

        elif "located in" in relationship: 

            inferred_facts.append(f"{object_} contains 

{subject}") 

        elif "part of" in relationship: 

            inferred_facts.append(f"{object_} contains 

{subject}") 

        elif "owns" in relationship: 

            inferred_facts.append(f"{subject} is owned by 

{object_}") 
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        elif "related_to" in relationship: 

            inferred_facts.append(f"{subject} is connected to 

{object_}") 

 

    return inferred_facts 

• ... and main code: 

# Input text 

text = "Alice works for TechCorp. Bob is located in New York." 

# "Barack Obama, the 44th President of the United States, was 

born in Honolulu, Hawaii." 

 

# Extract entities and relationships 

entities, relationships = 

extract_entities_and_relationships(text) 

 

# Perform inferencing 

inferred_facts = infer_relationships(relationships) 

 

# Print results 

print("Named Entities:") 

for entity in entities: 

    print(f"- {entity[0]} ({entity[1]})") 

 

print("\nRelationships:") 

for subject, object_, relationship in relationships: 

    print(f"- {subject} {relationship} {object_}") 

 

print("\nInferred Facts:") 

if inferred_facts: 

    for fact in inferred_facts: 

        print(f"- {fact}") 

else: 

    print("No inferred facts.") 

 
Program output: 
Named Entities: 

- Alice (PERSON) 

- TechCorp (ORG) 

- Bob (PERSON) 

- New York (GPE) 

 

Relationships: 

- works nsubj Alice 
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- works related_to (for) TechCorp 

- located related_to (in) York 

 

Inferred Facts: 

- works is connected to TechCorp 

- located is connected to York 

5.2 Applications of inference 

🕮 5.2.1 

Knowledge graph 

Inference plays a pivotal role in enhancing the functionality and completeness of 
knowledge graphs. A knowledge graph is a type of database that represents 
knowledge as a set of entities and their interrelations, making it highly useful in 
various fields like search engines, AI, and natural language processing. Inference, in 
this context, is the process of deriving new relationships or facts from existing data 
that may not be explicitly stated but can be logically concluded. 

One of the key applications of inference is in knowledge graph completion. Often, 
knowledge graphs contain incomplete information due to limitations in data 
collection or human input. Inference mechanisms can predict the missing links 
between entities by identifying patterns and logical relationships from the existing 
nodes. For example, in a knowledge graph about movies, if the graph knows that 
"Leonardo DiCaprio" acted in the movie "Inception," inference could help link 
"Leonardo DiCaprio" to the movie "Titanic" based on their shared relationships with 
other actors or directors, even if that connection was missing initially. 

Inference techniques used for knowledge graph completion include rule-based 
reasoning and machine learning. Rule-based reasoning applies predefined rules to 
fill in missing information, such as "If X acted in a movie with Y, and Y acted in a 
movie with Z, then X and Z may have worked together." Machine learning models, 
such as neural networks, can also learn patterns from vast amounts of data and 
predict missing relationships with a high degree of accuracy. These inferred 
connections make the knowledge graph more complete and useful, providing a 
richer source of information for applications like search engines and virtual 
assistants. 

Example: Consider a knowledge graph that represents geographical relationships. If 
we know that "Mount Everest" is located in "Nepal," inference mechanisms could 
potentially infer that "Nepal" is part of "Asia" based on pre-existing relationships 
about continents. These inferences help enhance the graph's value in applications 
that require comprehensive, structured data. 
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📝 5.2.2 

Which of the following is an example of an inference applied to knowledge graphs? 

• Predicting missing relationships between entities based on existing data. 
• Storing raw data in a structured format 
• Providing a direct query result 
• Extracting entities from text 

🕮 5.2.3 

Question answering systems 

Inference is essential in building intelligent question answering (QA) systems, 
particularly those that rely on knowledge bases. A knowledge base is a structured 
repository of facts, often organized as a knowledge graph, where entities and their 
relationships are defined. Inference allows QA systems to answer complex 
questions by reasoning over the available information, even when the exact answer 
is not explicitly stored in the knowledge base. 

When a user asks a question, a well-designed question answering system doesn't 
just search for a direct match in the database. Instead, it employs inference 
techniques to deduce the answer by considering related facts. For instance, if a 
user asks, "Who is the CEO of Microsoft?" and the system has the fact "Satya 
Nadella is the CEO of Microsoft" explicitly in the knowledge graph, it can directly 
return the answer. But in cases where the relationship isn't directly stated, inference 
mechanisms like semantic reasoning or pattern recognition help derive an answer 
from existing knowledge. 

Inference in QA systems typically involves logical reasoning over the relationships 
stored in the knowledge base. For example, the system may employ forward 
chaining (deriving new facts from existing ones) or backward chaining (starting 
from the query and working backward to find the supporting facts). If a user asks a 
question about a topic that involves multiple entities (like "Who won the Nobel Prize 
in Literature in 1995?"), the system can use inference to deduce the relationships 
between the "winner" and "Nobel Prize" and provide the correct answer. 

Example: In a healthcare application, if a user asks, "What are the symptoms of 
COVID-19?" and the system has stored facts like "COVID-19 is caused by a virus" 
and "fever and cough are symptoms of viral infections," it could infer the connection 
between the virus and the symptoms and answer the query appropriately, even 
though "COVID-19" might not have been explicitly linked to "fever" and "cough" in 
the data. 
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📝 5.2.4 

How does inference improve the performance of question answering systems? 

• It helps the system infer answers even when exact matches do not exist. 
• It allows the system to generate answers from predefined statements. 
• It limits the system to answering only simple factual queries. 
• It extracts raw data without considering relationships. 

🕮 5.2.5 

Recommender systems 

Recommender systems have become a cornerstone of modern digital experiences, 
helping users discover products, services, or content tailored to their preferences. 
Inference plays a critical role in these systems, enabling them to go beyond basic 
matching and make intelligent predictions about what users might like. 

For instance, traditional recommendation methods might suggest items based 
solely on direct similarities, such as recommending books in the same genre. 
However, inference allows recommender systems to utilize relationships in a 
knowledge graph. If a user frequently purchases books on leadership, the system 
can infer interest in related topics, like productivity or biographies of leaders. This 
reasoning is made possible by understanding not just the items themselves but the 
connections between them. 

One practical example is in movie recommendation platforms. A system might infer 
that a user who enjoys movies directed by Christopher Nolan and featuring intricate 
plotlines would also appreciate films by other directors known for similar 
storytelling styles. This capability is powered by algorithms that analyze 
relationships in the knowledge graph, such as "directed by," "genre," or "similar 
audience appeal," making recommendations more personalized and dynamic. 

Inference also enables systems to adapt to sparse data. If a new user with minimal 
browsing history joins a platform, the system can infer preferences based on broad 
relationships, like "users from this region often prefer these types of content," 
ensuring a seamless experience. 

📝 5.2.6 

Which of the following demonstrates the use of inference in recommender 
systems? 

• Recommending products based on relationships in a knowledge graph. 
• Suggesting movies similar to those previously liked by the user. 
• Displaying items in a random order with no consideration of user 

preferences. 
• Recommending only the most popular items on the platform. 
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🕮 5.2.7 

Commonsense reasoning and everyday scenarios 

Commonsense reasoning allows machines to mimic human intuition, drawing 
logical conclusions in everyday scenarios. Unlike explicit knowledge, commonsense 
knowledge encompasses unstated facts that humans take for granted. For 
example, if it is raining, one might infer that carrying an umbrella is sensible. 
Machines achieve this through inference mechanisms designed to work with 
knowledge graphs or commonsense databases. 

A key application of commonsense reasoning is in virtual assistants. For instance, 
if a user says, "I'm running late to the airport," the assistant can infer that the user 
might need help with tasks such as finding flight details, traffic updates, or 
directions. This reasoning relies on understanding relationships like "running late" 
implies "urgency" and "airport" implies "flight travel." 

Another example is autonomous systems, such as self-driving cars. A car might 
infer that a pedestrian near a crosswalk is likely to cross the street, even if they 
haven’t stepped onto the road yet. Such inferences are vital for safety and decision-
making in real-time. 

By enabling machines to "fill in the gaps" of knowledge, common sense reasoning 
opens the door to intelligent systems capable of making nuanced decisions. It 
bridges the gap between rigid rule-based systems and human-like understanding, 
enhancing user interactions and functionality in diverse applications. 

📝 5.2.8 

What is an example of commonsense reasoning in AI? 

• Inferring urgency from a statement about running late. 
• Predicting that a pedestrian near a crosswalk might cross the street. 
• Stating the exact current temperature when asked about the weather. 
• Providing directions to a destination without considering road closures. 

🕮 5.2.9 

While inference is a powerful tool for expanding and applying knowledge, it faces 
several significant challenges that researchers are actively addressing. These 
challenges highlight the complexities of making inference methods more effective, 
efficient, and applicable across diverse domains. 

One critical issue is interpretability. Many advanced inference techniques, such as 
those based on distributed representations or neural networks, are often seen as 
"black boxes." While they can produce highly accurate results, the reasoning behind 
these results is difficult to understand or explain. This lack of transparency can 
hinder trust and adoption, especially in sensitive applications like healthcare or 
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legal systems. Researchers are therefore exploring ways to make these methods 
more interpretable, such as by designing models that provide human-readable 
explanations for their inferences. 

Another challenge is scalability, particularly when working with large-scale 
knowledge graphs. Performing inference on vast datasets with complex 
relationships requires significant computational resources. For instance, 
recommending personalized content for millions of users or reasoning over 
dynamic data streams demands efficient algorithms and optimized data structures. 
Addressing this requires innovations in algorithm design to balance accuracy and 
computational efficiency. 

The incorporation of multi-source information is another pressing need. Current 
inference methods often rely on a single type of data, such as text. However, real-
world scenarios often involve diverse sources, including images, sensor data, and 
unstructured text. For example, an autonomous vehicle must integrate information 
from cameras, radar, and maps to make safe driving decisions. Developing 
inference mechanisms capable of seamlessly combining these diverse inputs is a 
key area of research. 

Lastly, the field is moving toward dynamic knowledge reasoning. In many 
applications, knowledge is not static but evolves over time. Social networks, for 
instance, constantly generate new relationships and interactions. To remain 
accurate and relevant, inference systems must be able to update and adapt as new 
information becomes available, rather than relying on static data snapshots. 

By addressing these challenges, the future of inference research promises systems 
that are not only more powerful and efficient but also more transparent, adaptable, 
and capable of integrating knowledge from diverse, ever-changing sources. 

📝 5.2.10 

Which of the following is a challenge faced by inference research? 

• Making inference methods more interpretable and transparent. 
• Limiting inference to text-based data only. 
• Scaling inference for large, complex knowledge graphs. 
• Avoiding the use of dynamic knowledge in reasoning. 



 

 

Natural Language 
Generation 

Chapter 6 
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6.1 NGL applications I. 

🕮 6.1.1 

Natural Language Generation (NLG) is a field of artificial intelligence focused on 
enabling machines to produce human-like text from structured or unstructured 
data. It transforms raw information into coherent, meaningful language, making it 
easier for people to understand and interact with data. Applications of NLG range 
from creating summaries, stories, or translations to powering dialogue systems and 
personalized communication tools. By bridging the gap between complex data and 
human language, NLG plays a pivotal role in enhancing accessibility and user 
experience across various domains. 

Data-to-text generation 

Data-to-text generation is a transformative application of natural language 
generation that converts raw data into meaningful textual summaries. This 
technology is widely used to make data more accessible and actionable, 
particularly in fields where large datasets need to be communicated effectively. For 
example, financial analysts rely on NLG systems to generate quarterly performance 
reports that summarize revenue, expenses, and growth trends from numerical data. 
Similarly, meteorological agencies use this technology to produce weather 
forecasts, converting temperature readings, humidity levels, and wind speeds into 
clear, human-readable reports. 

The process involves analyzing structured data and identifying patterns or key 
points to highlight. Advanced NLG systems often incorporate statistical models and 
templates to ensure that the output is accurate and contextually appropriate. For 
instance, a financial NLG tool might be programmed to detect unusual spikes in 
revenue and highlight them in the generated text as potential areas of interest for 
stakeholders. 

One of the most significant advantages of data-to-text generation is its ability to 
handle repetitive or labor-intensive tasks. Instead of requiring human effort to 
manually draft reports, NLG systems can produce summaries in seconds, freeing 
professionals to focus on higher-level analysis. Furthermore, these systems can 
tailor content for specific audiences, generating detailed technical summaries for 
experts or simplified overviews for general readers. 

📝 6.1.2 

Which is an example of data-to-text generation? 

• Generating a weather forecast summary from meteorological data. 
• Translating a novel from English to French. 
• Enabling a chatbot to answer customer service queries. 
• Writing a fictional story from a creative prompt. 
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🕮 6.1.3 

Machine translation 

Machine translation is an NLG application that focuses on converting text from one 
language to another. This technology has revolutionized global communication, 
breaking down language barriers and enabling people from diverse linguistic 
backgrounds to interact seamlessly. Tools like Google Translate and DeepL utilize 
machine translation to provide quick and often accurate translations for millions of 
users daily. For instance, a tourist in Japan can input a restaurant menu into a 
translation app to understand their meal options in their native language. 

The underlying process involves complex algorithms, including neural machine 
translation models that analyze the grammatical structure, syntax, and semantics 
of sentences in the source language. These models then generate equivalent 
sentences in the target language while maintaining contextual meaning. Advances 
in machine learning have significantly improved the accuracy of translations, 
particularly for less commonly spoken languages. 

Despite its advancements, machine translation faces challenges, such as 
accurately translating idiomatic expressions or phrases that have cultural nuances. 
For example, the French phrase "c'est la vie" is more than its literal translation 
("that's life"); it conveys a philosophical acceptance of circumstances, which a 
machine might miss without proper context. Future developments aim to enhance 
cultural sensitivity and contextual understanding to address these limitations. 

📝 6.1.4 

What is a primary use of machine translation? 

• Translating a speech or text from Spanish to English. 
• Generating conversational responses for chatbots. 
• Writing an original story from structured data. 
• Summarizing financial performance reports. 

🕮 6.1.5 

Dialogue systems 

Dialogue systems enable computers to engage in human-like conversations, 
forming the backbone of virtual assistants like Siri, Alexa, and customer support 
chatbots. These systems combine natural language understanding (NLU) to 
interpret user input and NLG to generate meaningful and contextually relevant 
responses. For example, when a user asks, "What's the weather today?" a dialogue 
system retrieves weather data and generates an appropriate answer, such as, "It's 
sunny with a high of 75°F." 
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Developing effective dialogue systems requires training them to handle varied user 
intents and conversational flows. A well-designed system can manage complex 
queries, provide follow-up questions, and even exhibit personality traits to enhance 
user engagement. For instance, an AI-powered travel assistant might suggest, 
"Based on your preferences, would you like to explore budget-friendly hotels or 
premium accommodations?" 

One challenge in dialogue systems is ensuring coherence and context awareness. 
The system must remember prior exchanges to avoid repetitive or irrelevant 
responses. Advanced models like ChatGPT leverage contextual embeddings to 
maintain conversational history, improving the flow of multi-turn conversations. 

📝 6.1.6 

Which is an example of a dialogue system application? 

• Engaging in customer support conversations via a chatbot. 
• Translating a scientific paper from German to English. 
• Generating detailed weather summaries from meteorological data. 
• Writing a creative story from a user-provided prompt. 

🕮 6.1.7 

Story generation 

Story generation is an exciting application of NLG that uses structured data or 
prompts to create engaging narratives. These systems are used in gaming, 
education, and creative industries to craft immersive stories tailored to user 
preferences. For instance, in a role-playing game, a story generator might develop 
unique side quests based on the player's decisions, enriching their experience. 

The process involves a mix of creative algorithms and user inputs. Modern story 
generators leverage large language models trained on diverse datasets, enabling 
them to mimic different genres, tones, and styles. For example, a user could provide 
a prompt like "A knight ventures into a haunted forest," and the system could 
produce a suspenseful story with vivid descriptions and a coherent plotline. 

A key challenge in story generation is maintaining narrative consistency and logical 
progression. Systems must ensure that characters act in alignment with their traits 
and that events follow a plausible sequence. As technology advances, story 
generators are becoming increasingly capable of creating compelling, human-like 
narratives, sparking new possibilities in entertainment and education. 

📝 6.1.8 

What is a primary use of story generation in NLG? 

• Crafting unique quests for a video game based on user actions. 
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• Translating a user manual from English to Japanese. 
• Generating a weather report based on real-time data. 
• Engaging in customer support dialogues for retail services. 

6.2 NLG applications II. 

🕮 6.2.1 

Summarization 

Summarization in NLG involves creating a concise and meaningful summary of a 
larger text. This is achieved by identifying and extracting the most important points 
while maintaining the original context. Summarization can be broadly categorized 
into extractive summarization, where sentences or phrases are directly taken from 
the original text, and abstractive summarization, which involves generating new 
phrases to convey the main idea in a natural, human-like manner. 

Summarization is essential in various fields. For example, in journalism, it helps 
condense lengthy articles into headlines or short briefs. In research, it creates 
abstracts for scientific papers, enabling faster comprehension of core findings. 
Summarization also finds utility in customer service, where summarizing call logs 
can help agents quickly understand customer issues. 

Imagine a legal professional working on a case. Instead of reading hundreds of 
pages of a deposition, a summarization tool could generate a concise summary, 
highlighting key facts and arguments, saving time and improving efficiency. 
Similarly, news platforms like Google News often provide summaries of trending 
articles, allowing readers to grasp the essence of stories at a glance. 

📝 6.2.2 

Which of the following are examples of summarization applications? 

• Generating abstracts for scientific research papers. 
• Producing concise versions of lengthy legal documents. 
• Translating a document from English to Spanish. 
• Generating automated programming code from natural language. 

🕮 6.2.3 

Code generation 

Code generation refers to using NLG techniques to translate natural language 
descriptions into programming code. This process leverages trained models like 
OpenAI Codex, enabling developers to focus on higher-level problem-solving while 
the tool automates repetitive or boilerplate coding tasks. 
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Code generation tools are widely used in software development. They assist in 
creating unit tests, database queries, API integration scripts, or even entire 
applications. For instance, a developer might describe a functionality in plain 
English, and the model generates Python or JavaScript code to implement it. This 
technology is valuable in both learning and professional environments, providing 
hands-on assistance and reducing errors. 

Suppose a user needs to create a function in Python that calculates the factorial of 
a number. By typing "write a Python function to calculate the factorial of a number," 
a code generation tool could instantly provide a working implementation, complete 
with proper syntax and comments. Similarly, a data analyst could ask for SQL 
queries to extract insights from databases without writing them manually. 

📝 6.2.4 

Which statements about code generation are true? 

• It automates the creation of software by generating code from natural 
language. 

• It is useful for learning to program by providing examples and suggestions.  
• It generates summaries of programming-related documents. 
• It directly generates scientific research abstracts. 

🕮 6.2.5 

Personalized and adaptive communication 

Personalized and adaptive communication uses NLG to tailor messages to an 
individual's preferences, behavior, or context. This can involve adjusting tone, 
content, or delivery based on factors like user demographics, previous interactions, 
or preferences. Such communication is vital in marketing, customer support, and 
user engagement. 

One of the most common applications of this technology is in chatbots and virtual 
assistants. Bots like those used in e-commerce can provide product 
recommendations based on a customer's browsing history or answer specific 
questions about orders. Adaptive communication also enhances user experience in 
education, where chatbots adjust responses based on a student’s progress or 
understanding of a topic. 

Consider a healthcare chatbot designed to assist patients with medication 
reminders. It could personalize interactions by using the patient’s name, reminding 
them of specific dosages, and adapting to their queries about side effects or 
alternative medications. Similarly, email marketing tools can create highly tailored 
promotional messages, dynamically adjusting content for different customer 
segments to improve engagement rates. 
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📝 6.2.6 

Which statements about personalized and adaptive communication are true? 

• It involves tailoring messages to individual preferences or behavior. 
• It is widely used in chatbots for customer service and e-commerce. 
• It limits communication to fixed, pre-written responses. 
• It has no relevance in educational applications. 

6.3 NLG phases 

🕮 6.3.1 

Natural Language Generation (NLG) involves transforming raw data or structured 
information into human-readable text. While the end result may appear seamless, 
the process behind it is complex, requiring a series of well-defined phases to 
ensure the output is coherent, relevant, and grammatically correct. These phases, 
each addressing a critical aspect of language generation, work together to produce 
text that accurately reflects the intended meaning. By breaking down these stages, 
we can better understand how machines achieve such an intricate task. Below, we 
explore each phase in detail, complete with examples to illustrate their complexity 
and functionality. 

🕮 6.3.2 

Content determination 

Content determination is the foundational phase of NLG, where the system decides 
what information to include in the generated text. This step is crucial for relevance, 
as including unnecessary or incomplete data could confuse the user or dilute the 
message. The system typically prioritizes data based on its importance and the 
user’s needs, ensuring that only the most pertinent information is selected.  

For instance, in a weather-reporting system, the system must decide whether to 
include data on temperature, humidity, wind speed, or severe weather alerts based 
on the context. If a storm is approaching, the system may prioritize details about its 
expected arrival and impact, omitting less critical information like daily humidity 
levels. 

Content determination often relies on rules, machine learning models, or user 
preferences. For example, financial report generators might focus on key 
performance indicators like revenue and profit, ignoring granular details unless 
explicitly requested. This phase ensures the generated text serves its intended 
purpose effectively. 
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📝 6.3.3 

Which of the following are true about the content determination phase in NLG? 

• Decides what information to include in the text. 
• Prioritizes data based on importance and user needs. 
• Ensures grammatical correctness of sentences. 
• Focuses solely on choosing words and phrases. 
• Organizes the text into a coherent structure. 

🕮 6.3.4 

Text planning 

Once the content is determined, text planning organizes the information into a 
logical and coherent structure. This phase focuses on creating a blueprint for how 
the data will be presented, taking into account factors like discourse flow, 
emphasis, and rhetorical goals. A well-structured text ensures the reader can easily 
follow the narrative or argument. 

For example, in a news article generator, text planning may involve placing the most 
critical news upfront (a headline or lead), followed by supporting details, and 
concluding with background context. This mirrors the "inverted pyramid" style 
common in journalism, where the most important information is delivered first. 

Text planning also addresses the relationships between data points. For instance, 
in a medical report, the system might first present symptoms, followed by potential 
causes, and finally recommend treatments. This logical sequence enhances clarity 
and aligns with the reader's expectations. 

📝 6.3.5 

Which of the following are true about the text planning phase in NLG? 

• Organizes information into a coherent structure. 
• Considers rhetorical and discourse goals. 
• Focuses on grammatical accuracy of sentences. 
• Prioritizes which data points to include. 
• Generates the final text output. 

🕮 6.3.6 

Sentence planning 

Sentence planning involves determining the specific words, phrases, and 
grammatical structures to use when expressing the information. This phase 
transforms abstract ideas into precise linguistic expressions, ensuring clarity and 
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appropriateness for the target audience. The choice of vocabulary and sentence 
style depends on factors like the text's purpose and the user's preferences. 

For example, a customer service chatbot might generate the phrase, "Your order will 
arrive tomorrow," rather than a more formal alternative like, "The delivery of your 
order is scheduled for the subsequent day." Sentence planning ensures that the 
tone aligns with the context and user expectations. 

This phase also includes referring expression generation, which decides how to 
refer to entities within the text. For instance, after introducing "Barack Obama" in a 
paragraph, subsequent references might use "Obama," "he," or "the former 
president," depending on the level of formality and clarity required. 

📝 6.3.7 

Which of the following are true about the sentence planning phase in NLG? 

• Chooses words and phrases to express information. 
• Adjusts tone and style to suit the context. 
• Decides what data to include in the text. 
• Focuses on organizing data logically. 
• Ensures the final text is grammatically correct. 

🕮 6.3.8 

Surface realisation 

Surface realisation is the final phase of NLG, where the planned sentences are 
converted into fully formed text. This phase ensures grammatical accuracy, fluency, 
and naturalness in the generated text. It focuses on turning abstract 
representations into polished, human-readable sentences. 

For example, after sentence planning determines the content and phrasing, surface 
realisation ensures proper syntax, punctuation, and formatting. The system might 
generate the text: "The weather tomorrow will be sunny with a high of 75°F," 
ensuring it adheres to grammatical rules and reads fluently. 

Surface realisation often uses language models or templates to generate text that 
mimics natural language. For instance, chatbots rely on this phase to produce 
conversational and grammatically sound responses, such as, "I’m here to help. 
What do you need assistance with?" 

📝 6.3.9 

Which of the following are true about the surface realisation phase in NLG? 

• Ensures the text is grammatically correct. 
• Converts planned sentences into polished text. 
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• Selects which information to include in the text. 
• Focuses on organizing information logically. 
• Prioritizes data points for inclusion in the text. 

6.4 NLG projects 

📝 6.4.1 

Project: Automated report generator for business data 

Develop a system that generates detailed business reports from structured data 
(e.g., sales performance, customer feedback, financial metrics). The system should 
produce clear, concise, and grammatically correct text summarizing key insights, 
trends, and recommendations. 

• Dataset: https://priscilla.fitped.eu/data/nlp/sales_data.csv 

1. Libraries preparation 

Use libraries like pandas to load and preprocess data from sources such as CSV 
files or databases. 

import pandas as pd 

import numpy as np 

2. Data processing and analysis 

Let's load the data and analyze the sales performance and customer satisfaction. 

# Load the data 

data = 

pd.read_csv('https://priscilla.fitped.eu/data/nlp/sales_data.c

sv') 

 

# Summarize sales performance 

total_sales = data['Sales'].sum() 

average_sales = data['Sales'].mean() 

sales_trend = data.groupby('Product')['Sales'].sum() 

 

# Summarize customer satisfaction 

avg_satisfaction = data['Customer_Satisfaction'].mean() 

 

# Detecting trends or anomalies (example: sales spikes or 

drops) 

sales_anomaly = data['Sales'].diff().max()  # Max difference 

between consecutive sales 

https://priscilla.fitped.eu/data/nlp/sales_data.csv
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3. Text planning and sentence generation 

Now, we'll use a simple sentence generation method to describe these insights. For 
the sake of simplicity, we will manually generate sentences. You can later integrate 
NLG libraries like SimpleNLG or GPT models for more dynamic sentence 
generation. 

# Function to generate the report text 

def generate_report(total_sales, avg_sales, sales_trend, 

avg_satisfaction, sales_anomaly): 

    report = [] 

 

    # General summary 

    report.append(f"Total sales for the period: 

${total_sales:.2f}") 

    report.append(f"Average sales per day: ${avg_sales:.2f}") 

 

    # Sales performance by product 

    for product, sales in sales_trend.items(): 

        report.append(f"Total sales for {product}: 

${sales:.2f}") 

 

    # Customer satisfaction 

    report.append(f"Average customer satisfaction: 

{avg_satisfaction:.2f} out of 5") 

 

    # Anomalies or trends 

    if sales_anomaly > 1000:  # Arbitrary threshold for 

detecting large anomalies 

        report.append(f"A significant sales change was 

detected: ${sales_anomaly:.2f} increase in one day.") 

 

    return '\n'.join(report) 

4. Report generation 

# Generate the report text 

report_text = generate_report(total_sales, average_sales, 

sales_trend, avg_satisfaction, sales_anomaly) 

 

# Output the report as plain text 

print(report_text) 

 

# Optional: Save the report to a text file 

with open("business_report.txt", "w") as file: 
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    file.write(report_text) 

 
Program output: 
Total sales for the period: $900262.00 

Average sales per day: $833.58 

Total sales for Product A: $493752.00 

Total sales for Product B: $406510.00 

Average customer satisfaction: 3.51 out of 5 

A significant sales change was detected: $1325.00 increase in 

one day. 

📝 6.4.2 

Project: Text generator 

Another way to approach text generation, especially in Python, is to use 
transformer-based models from popular deep learning frameworks such as 
Hugging Face's Transformers. These models, like GPT-3, BERT, and T5, are highly 
effective at generating coherent and contextually appropriate text based on the 
input prompt. 

Steps to implement Text generation with Hugging Face 

1. Install required libraries 

First, install the Transformers library along with PyTorch (or TensorFlow, depending 
on your preference). In our system is currently installed. 

!pip install transformers torch 

2. Choose a pre-trained model 

• You can use any pre-trained model from Hugging Face's Model Hub, such as 
GPT-2, T5, or GPT-3 (via the OpenAI API). For this example, let's use GPT-2, 
where you do not need API key. 

from transformers import GPT2LMHeadModel, GPT2Tokenizer 

 

# Load pre-trained model and tokenizer 

model_name = "gpt2" 

model = GPT2LMHeadModel.from_pretrained(model_name) 

tokenizer = GPT2Tokenizer.from_pretrained(model_name) 

3. Write python code 

• Here’s an example of using GPT-2 for text generation in Python, the 
description is directly in code. 
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# Set pad_token_id to eos_token_id to avoid the warning. 

# This ensures the tokenizer uses the <|endoftext|> token 

(eos_token) for padding, 

# which is compatible with GPT-2 as it does not have a native 

pad token. 

tokenizer.pad_token = tokenizer.eos_token 

 

# Encode the input prompt into token IDs. 

# `input_text` is converted into a sequence of integers (token 

IDs) that the model understands. 

# `return_tensors="pt"` ensures the output is a PyTorch 

tensor, required by the model. 

input_text = "Say me how are you?" 

input_ids = tokenizer.encode(input_text, return_tensors="pt") 

 

# Generate text based on the input tokens. 

# `input_ids`: The encoded input prompt used as a seed for 

generation. 

# `max_length=150`: The maximum length of the generated text 

(including input tokens). 

# `num_return_sequences=1`: Specifies generating only one 

sequence. 

# `no_repeat_ngram_size=2`: Prevents repeating n-grams (word 

sequences of size 2). 

# `temperature=0.7`: Controls the randomness of generation 

(lower = more deterministic). 

# `pad_token_id=tokenizer.pad_token_id`: Specifies the padding 

token explicitly to avoid warnings. 

output = model.generate( 

    input_ids,  

    max_length=150,  

    num_return_sequences=1,  

    no_repeat_ngram_size=2,  

    temperature=0.7, 

    pad_token_id=tokenizer.pad_token_id  # Set pad_token_id 

explicitly 

) 

 

# Decode the generated token IDs into human-readable text. 

# `tok` represents one generated sequence in `output`. 

# `skip_special_tokens=True`: Removes tokens like 

<|endoftext|> from the output. 

for tok in output: 
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    generated_text = tokenizer.decode(tok, 

skip_special_tokens=True) 

     

    # Print the generated text to see the result. 

    print(generated_text) 

 
Program output: 
Say me how are you? I'm not a doctor, I don't know what you're 

talking about. I just want to know how you feel. You're not 

going to tell me what to do. 

 

"I'm sorry, but I can't do anything about it. It's not my 

fault. If you want me to, you can. But I want you to be happy. 

And I know you don' want that. So I'll just leave it at that." 

... 

 

For the given input "Say me how are you?", here’s what happens at each step:  

• Set padding token - the model uses <|endoftext|> for padding. 
• Encode input "Say me how are you?" → [6473, 502, 783, 389, 345] (example 

token IDs). 
• Generate output produces a sequence of token IDs based on the input 

prompt. 
• Decode output converts the generated token IDs into readable text (e.g., "Say 

me how are you? I am doing well. How about you?"). 

📝 6.4.3 

Project: Financial data analysis and reporting using GPT-2 

Use GPT-2 for generating a financial summary based on historical financial data. 
The goal is to understand how to integrate GPT-2 into a workflow to produce 
human-like financial text and to develop proficiency in working with transformers 
and preprocessing data. 

1. Dataset Preparation 

• Download data provide a CSV file containing sample data (e.g., quarterly 
revenue, profit, expenses, and growth rate, or linked file). 

• Understand the structure you should explore the dataset using Python and 
libraries like pandas to understand its features. 

• Dataset: https://priscilla.fitped.eu/data/nlp/sales_data.csv 

# write your code 

 

https://priscilla.fitped.eu/data/nlp/sales_data.csv
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2. Generate structured summaries programmatically 

• Clean and prepare the dataset for textual input. 
• Extract meaningful patterns or insights (e.g., calculate percentage growth or 

compare revenues across quarters). 

Example Task: 

• Write a Python function to generate sentences like: "In Q3, the company 
reported a revenue of $500M, a 10% increase compared to Q2 2022." 

# write your code 

3. Integrate GPT-2 for enhancing the summaries. 

• If fine-tuning is feasible, provide a set of financial summaries to fine-tune 
GPT-2 for generating domain-specific text. 

• Otherwise, directly use GPT-2 for generation. 

# write your code 

4. Model integration 

• Input Prompt Design: Craft prompts to guide GPT-2. Example: "Summarize 
the following financial data: Revenue: $500M, Growth: 10%, Profit: $50M." 

• Generate Text: Use the GPT-2 model to generate summaries. 

# write your code 

5. Output evaluation 

• Compare GPT-2's generated summary with a manually written summary. 
• Evaluate based on clarity, accuracy, and fluency. 

# write your code 



 

 

Data Sources 

Chapter 7 
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7.1 Structured and unstructured data 

🕮 7.1.1 

Understanding the type of data we work with is crucial in NLP. Data can be broadly 
classified into structured and unstructured forms. Structured data is neatly 
organized and fits into rows and columns, such as spreadsheets or databases. For 
example, a table listing students' names, grades, and attendance is structured data 
because it follows a clear, predefined format. Unstructured data, on the other hand, 
doesn’t have a clear format. Examples include paragraphs of text, social media 
posts, images, and audio recordings. 

Unstructured data is far more common in real-world scenarios. For instance, news 
articles, customer reviews, and chatbot conversations are all unstructured. While 
structured data can be directly analyzed using standard tools, unstructured data 
requires specialized techniques to make sense of it. NLP focuses on this challenge 
- turning raw, unstructured text into useful insights. 

Why does unstructured data require special attention? Imagine receiving hundreds 
of emails daily. Without NLP tools, analyzing trends in the messages would be 
overwhelming. Techniques like tokenization, text cleaning, and linguistic parsing 
help convert unstructured data into a format that computers can process. This 
transformation is what makes advanced applications like chatbots and sentiment 
analysis possible. 

📝 7.1.2 

Which of the following is an example of structured data? 

• A table of student grades in a database. 
• A collection of tweets from social media. 
• A list of photos on your phone. 
• A conversation between two friends. 

📝 7.1.3 

Why is unstructured data challenging for NLP? 

• It lacks a predefined format. 
• It is stored in rows and columns. 
• It is too small for NLP models. 
• It can only be analyzed by humans. 

🕮 7.1.4 

Before NLP techniques can be applied, we first need to collect and store data 
effectively. Sources of NLP data include web scraping, where information is 
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extracted from websites, and APIs, which allow programs to retrieve data from 
services like Twitter or Google. For example, a chatbot analyzing customer 
sentiment might rely on product reviews collected from e-commerce websites. 

Once collected, the data needs to be stored in a way that allows efficient 
processing. Databases, cloud storage, and file systems are commonly used for 
structured data. For unstructured data, storage formats such as plain text files (.txt) 
or JSON files are more appropriate. For example, a dataset containing social media 
comments might be stored as a JSON file, with each comment as a separate entry. 

It’s essential to ensure the data is organized and labeled clearly. Consider a dataset 
for training an NLP model to classify news articles. If the articles are labeled as 
"sports," "technology," or "politics," the system can learn to recognize these 
categories. Without proper organization, the training process becomes chaotic and 
less effective. 

📝 7.1.5 

Which source is commonly used to collect data for NLP? 

• Web scraping 
• APIs 
• Collecting physical notebooks 
• Random guesses files from the system 

📝 7.1.6 

Why is it important to label data during storage? 

• To ensure the model learns specific patterns. 
• To make training more effective. 
• To reduce the storage size. 
• To randomly classify the data. 

7.2 XPath 

📝 7.2.1 

The Internet is currently the primary source of textual information, making it 
essential to preprocess text for any analysis. Text preprocessing involves loading 
the text from a source and applying simple modifications to prepare it for further 
processing.  

One commonly used tool for this purpose is the Requests library for Python, widely 
praised for its simplicity and ease of use. The developers describe it as “HTTP for 
Humans™,” emphasizing its user-friendly design. 
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The Requests library simplifies the process of sending HTTP requests to servers. It 
offers various functions that allow users to retrieve and interact with web content 
effectively. For example, it enables you to fetch a webpage's content and handle the 
server's responses. This functionality is particularly useful when working with data 
from the web. 

In this case, the get() function from the Requests library is especially important. 
This function allows you to send an HTTP request to a webpage, effectively 
“downloading” its content and storing it in a variable. Once the data is retrieved, you 
can use the .content attribute to view the raw HTML code of the webpage. This is 
the first step in many text analysis workflows, as it allows us to access and process 
online textual data efficiently. 

For example, you could use get() to fetch the HTML content of a news article, save 
it as a variable, and then preprocess it to remove unnecessary tags or extract the 
main text for analysis. 

import requests 

 

link = "https://www.google.sk" 

page = requests.get(link) 

 
print(page.content[:500]) 

 
Program output: 
b' 

📝 7.2.2 

When working with web pages, even simple ones (like the Google homepage), the 
raw HTML code retrieved is often quite large and difficult to navigate. To make 
sense of this complexity, the Requests library is typically paired with other tools 
designed to process and extract information from HTML. One such tool is the 
LXML library, a Python library built specifically for processing HTML and XML 
documents. 

With LXML, we can execute XPath queries to locate and extract specific elements 
or data points within the HTML code. XPath is a W3C standard technology 
designed to navigate and manipulate the structure of XML or HTML documents. If 
you’re familiar with XML processing, you might already know XPath, but here’s a 
quick refresher. 

What is XPath? 

XPath provides a way to define a "path" to elements or attributes in XML or HTML 
documents. It’s the foundational technology behind tools like XSLT and XQuery and 
is widely used for data selection and navigation. Think of XPath as similar to 
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navigating a file system: it uses forward slashes (/) to specify paths, just as you 
would move through folders in a directory structure. For example: 

• /html/body/h1 selects the <h1> element inside the <body> tag. 
• //div[@class='example'] selects all <div> elements with a class attribute of 

"example." 

This ability to specify precise paths makes XPath invaluable for extracting data 
from complex HTML documents. For instance, you can extract the main content of 
an article, specific table rows, or metadata like titles and descriptions. 

By combining the Requests library to fetch HTML and the LXML library to process 
it with XPath queries, you can effectively extract structured data from unstructured 
web pages. For more details on XPath, you can refer to online tutorials like “XPath 
Tutorial.” 

📝 7.2.3 

We will demonstrate the use of the Request and LXML libraries on a simple 
example, where we load the content of the element <title> from the www.ukf.sk 
page. 

#import necessary libraries 

import requests 

from lxml import html 

 

#load the homepage of UKF 

link = "https://www.ukf.sk" 

page = requests.get(link) 

 

#load the page content as a DOM 

tree = html.fromstring(page.content) 

 

#create and execute an XPath expression 

#XPath expression //title ensures that all  

📝 7.2.4 

Task:  

Using the Request and LXML libraries, load and display all menu items from the 
https://www.ukf.sk/en home page, if you know that each menu item is located in a 
<span> element, this element is part of the <a> element, which is located in 
the element <li>. 

#import necessary libraries 

import requests 

https://www.ukf.sk/en
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from lxml import html 

 

#load the homepage of UKF 

link = "https://www.ukf.sk/en" 

page = requests.get(link) 

 

#load the page content as a DOM 

tree = html.fromstring(page.content) 

 

#create and execute an XPath expression 

result = tree.xpath("//li/a/span/text()") 

print(result[:10]) 

 
Program output: 
['University', 'History', 'Academic Insignia and Symbols', 

'Former Leading Representatives ', 'Honorary Doctors', 

'University Bodies', 'Academic Senate', 'Rector', 'Scientific 

Council', 'Administrative Board'] 

 

The combination of the Request and LXML libraries offers us a powerful tool for 
browsing the web, searching for information and their subsequent loading it in 
Python. Using these two tools, it is practically possible to load data from any page 
and further to use this data for own needs in the Jupyter Notebook environment. 
However, we must not forget that a properly defined XPath expression is a 
condition for the proper functioning of such scripts. We can create it by examining 
the HTML source code of the page being loaded. 

📝 7.2.5 

Project: World Cup of Hockey 

On the page https://www.hockeyslovakia.sk/sk/stats/competitors/697/ms-2019-
slovensko, you will find complete team statistics from the 2019 World Cup of 
Hockey. Use the Request and LXML libraries to load and display the number of 
shots on goal, display the basic statistics (minimum, maximum, average).  

If we visit the page https://www.hockeyslovakia.sk/sk/stats/competitors/697/ms-
2019-slovensko, after viewing the source code, we will find that the data concerning 
the number of shots on goal is part of the HMTL code: <td class="column-
ShotsOnGoal">222</td> 

https://www.hockeyslovakia.sk/sk/stats/competitors/697/ms-2019-slovensko
https://www.hockeyslovakia.sk/sk/stats/competitors/697/ms-2019-slovensko
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We create an XPath query to load the value of this element: "//td[@class='column-
ShotsOnGoal']/text()", which finds all <td> elements with the class attribute 
(attribute name is preceded by the @ sign in the XPath) set to the value 'column-
ShotsOnGoal'. Using the text() function, we load the content from this element.  

 
#import necessary libraries 

import requests 

from lxml import html 

 

#load the homepage of UKF 

link = 

"https://www.hockeyslovakia.sk/sk/stats/competitors/697/ms-

2019-slovensko" 

page = requests.get(link) 

 

#load the page content as a DOM 

tree = html.fromstring(page.content) 

 

#create and execute an XPath expression 

result = tree.xpath("//td[@class='column-

ShotsOnGoal']/text()") 

print(result) 
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Program output: 
['339', '374', '386', '337', '197', '289', '304', '277', 

'243', '222', '185', '205', '163', '177', '120', '133'] 

The result variable currently contains a list of the number of shots on goal by 
individual teams. We can continue to work with this variable (list). For example, to 
find the required minimum, maximum, and average value. Currently, the result 
variable contains text values. Therefore, the first step will consist of their quick 
conversion to an integer. 

shoots = [int(i) for i in result] 

print(shoots) 

 
Program output: 
[339, 374, 386, 337, 197, 289, 304, 277, 243, 222, 185, 205, 

163, 177, 120, 133] 

Subsequently, we can load the list using the Pandas library, which has implemented 
basic functions for calculating the minimum, maximum, and average. 

import pandas 

df = pandas.DataFrame(shoots,columns = ['shots_on_the_goal']) 

print(df.head()) 

 
Program output: 
   shots_on_the_goal 

0                339 

1                374 

2                386 

3                337 

4                197 

 

print(df['shots_on_the_goal'].mean()) 

 
Program output: 
246.9375 

 

print(df['shots_on_the_goal'].max()) 

 
Program output: 
386 

 

print(df['shots_on_the_goal'].min()) 
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Program output: 
120 

It is obvious that we can work with data from any page in a similar way. We know 
e.g. find out the minimum, maximum average price of a new phone or scooter (or 
any product) in the selected e-shop, provided that the correct XPath expression is 
formulated. 



 

 

Preprocessing 

Chapter 8 
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8.1 Preprocessing methods 

🕮 8.1.1 

NLP is a branch of AI that focuses on enabling computers to understand, interpret, 
and respond to human language. NLP powers applications such as chatbots, virtual 
assistants, search engines, and sentiment analysis systems. To perform these 
tasks, NLP models analyze relationships within the text, such as between words, 
sentences, and paragraphs. However, raw text data is often messy and 
inconsistent, making it challenging for these models to process directly. 

This is where text preprocessing becomes essential. Preprocessing transforms 
unstructured, noisy text into a clean and structured format that NLP models can 
interpret effectively. For instance, text on a webpage may include irrelevant content, 
such as HTML tags or excessive punctuation, which can confuse the model. 
Preprocessing ensures that only the meaningful components of the text are 
retained, improving model performance. 

Some common preprocessing tasks include: 

1. Removing stop words like "the," "is," and "and" are frequent but carry little 
meaning on their own. Removing them reduces noise. 

2. Tokenization is splitting the text into smaller units, such as words or 
sentences, allows models to analyze language at granular levels. 

3. Stemming and lemmatization reduce words to their base or root forms. For 
example, "running," "runs," and "ran" are reduced to "run," enabling the model 
to treat them as the same concept. 

Preprocessing not only improves the efficiency of NLP systems but also 
standardizes text input, making it easier for models to draw meaningful insights. 
Without these steps, the models would struggle with inconsistencies, leading to 
lower accuracy. 

📝 8.1.2 

Which of the following are common tasks in text preprocessing? 

• Removing stop words like "the" and "and."  
• Tokenizing text into smaller units like words or sentences.  
• Ignoring text formatting and punctuation entirely. 
• Avoiding any modifications to the raw text data. 

🕮 8.1.3 

Raw text data often contains inconsistencies, irrelevant details, and variations that 
can hinder the performance of NLP models. Preprocessing transforms this raw text 
into a clean and structured format that is easier for algorithms to analyze. The key 
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objectives of preprocessing include removing noise, standardizing the text, and 
preparing it for tokenization and feature extraction. 

Steps in preprocessing typically include: 

• text cleaning - remove unwanted characters, numbers, or punctuation that 
do not contribute to understanding the text. 

• lowercasing - convert all text to lowercase to ensure uniformity. 

By cleaning and standardizing the text, we can eliminate unnecessary variations 
and make the data consistent for analysis. 

📝 8.1.4 

Why is text preprocessing important in NLP? 

• Ensures text is consistent 
• Reduces text size to save memory 
• Improves the performance of models  
• Removes all irrelevant words 

🕮 8.1.5 

Tokenization 

Tokenization is the process of breaking text into smaller units, known as tokens. 
Tokens can be words, characters, or subwords, depending on the application's 
requirements. Tokenization helps convert unstructured text into a structured format 
that NLP models can process. 

For example, the sentence "NLP is fun!" can be tokenized into individual words: 

• ["NLP", "is", "fun"] 

Advanced NLP models, like BERT, often use subword tokenization to handle 
unknown words. For instance, the word "playing" might be tokenized into ["play", 
"##ing"]. 

📝 8.1.6 

What is the main purpose of tokenization in NLP? 

• To split text into structured units 
• To break text into sentences 
• To divide text into tokens like words or subwords  
• To identify grammatical errors 
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🕮 8.1.7 

Stopword removal 

Stopwords are common words that do not carry significant meaning in the context 
of text analysis. Examples of stopwords include "the," "is," "and," and "in." Removing 
stopwords can reduce noise in the data and improve the focus on more meaningful 
words. 

However, the decision to remove stopwords depends on the task. In sentiment 
analysis, for example, stopwords may carry important context. 

Python libraries like NLTK or spaCy provide built-in lists of stopwords that can be 
filtered out during preprocessing. 

📝 8.1.8 

Why might removing stopwords improve NLP model performance? 

• It reduces irrelevant data 
• It removes all meaningful context 
• It eliminates common words that carry little information 
• It shortens text for tokenization 

🕮 8.1.9 

Lemmatization and stemming 

Lemmatization and stemming are methods used to reduce words to their base or 
root forms: 

• Stemming cuts off prefixes or suffixes, often resulting in shortened, 
sometimes incomplete forms (e.g., "running" → "run"). 

• Lemmatization converts words to their dictionary base form, considering 
their context and part of speech (e.g., "running" → "run," "better" → "good"). 

Lemmatization is generally more accurate but computationally intensive, while 
stemming is faster but less precise. 

📝 8.1.10 

What is the difference between lemmatization and stemming? 

• Stemming is less accurate but faster 
• Lemmatization considers context and part of speech 
• Stemming always produces dictionary forms 
• Lemmatization is faster than stemming 
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8.2 Manual examples 

📝 8.2.1 

Identify which words are part of the tokenized result. 

"Artificial Intelligence is transforming industries around the world." 

• Artificial 
• Intelligence 
• transforming 
• AI 
• transform 
• the 
• world 
• industry 

📝 8.2.2 

Tokenize following text into words ordered by alphabet. 

"Artificial Intelligence is transforming industries around the world." 

_____ _____ _____ _____ _____ _____ _____ _____ 

• industry 
• AI 
• Artificial 
• transforming 
• around 
• is 
• transforms 
• industries 
• change 
• world 
• the 
• Intelligence 

📝 8.2.3 

Identify which words remain after stopword removal (use original sentence order). 

"The quick brown fox jumps over the lazy dog." 

_____, _____, _____, _____, _____, _____ 

• the 
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• brown 
• fox 
• lazy 
• The 
• dog 
• jumps 
• quick 
• over 

📝 8.2.4 

Identify stopwords used by a standard English stopword list. 

• The 
• over 
• the 
• quick 
• brown 
• fox 
• jumps 

📝 8.2.5 

Apply lemmatization to reduce each word to its base form.  

"Cats are running quickly to chase the mice." 

Result: 

"_____", "_____", "_____", "_____", "_____", "_____" 

• running 
• chase 
• mouse 
• be 
• quickly 
• is 
• to 
• cats 
• run 
• the 
• cat 
• are 
• quick 
• mice 
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📝 8.2.6 

Identify which words are part of the stemmed result: 

"Working on stemming processes helps in text preprocessing." 

• work 
• on 
• stem 
• process 
• help 
• in 
• text 
• preprocess 
• working 
• helps 
• the 
• stemmed 

8.3 Basic operations 

📝 8.3.1 

Tokenization is the process of breaking down a stream of text into smaller units 
called tokens, such as words, phrases, or sentences. These tokens serve as the 
building blocks for many NLP tasks. Tokenization helps transform raw text into a 
structured format that is easier for models to analyze and process. For instance, a 
sentence like "I love NLP!" might be tokenized into ["I", "love", "NLP", "!"]. This step is 
crucial for enabling text analysis, such as sentiment detection, text classification, 
and translation. 

One of the initial steps in data preparation is tokenization at the sentence level. The 
sent_tokenize() function from the Natural Language Toolkit (nltk) library in Python 
is used to split a given text into individual sentences. It is a part of the nltk.tokenize 
module and relies on pre-trained models to identify sentence boundaries 
effectively. 

The function can handle language-specific nuances in sentence boundary 
detection, such as abbreviations (e.g., "Dr.", "etc.") or unusual punctuation. It uses 
periods, exclamation marks, and question marks to identify sentence boundaries, 
ensuring accurate splits. 

• The input is a block of text containing one or more sentences. 
• The function applies a pre-trained tokenizer model that identifies sentence 

boundaries based on punctuation, spacing, and linguistic rules. 
• Output is a list of sentences, each as a string. 
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from nltk.tokenize import sent_tokenize 

 

# Example text 

text = "Natural Language Processing is exciting! It involves 

various tasks, like tokenization. Isn't that amazing?" 

 

# Tokenizing into sentences 

sentences = sent_tokenize(text) 

 

# Output the result 

print(sentences) 

 
Program output: 
['Natural Language Processing is exciting!', 'It involves 

various tasks, like tokenization.', "Isn't that amazing?"] 

Why use sent_tokenize()? 

• Many NLP models require input at the sentence level. Breaking down 
paragraphs into sentences is a common first step. 

• Summarization and sentiment analysis often operate on sentences to 
identify key points or sentiments. 

• Sentences are easier to analyze than large, unstructured blocks of text. 

Limitations of send_tokenize() are: 

• Dependency on language models - the accuracy of sent_tokenize() depends 
on the pre-trained model's quality and the specific language or dialect. 

• Ambiguities in punctuation might struggle with complex cases, such as 
quotes or nested punctuation. 

📝 8.3.2 

Project: Tokenization in different languages 

• This example will focus on the use of the sent_tokenize() function, which 
creates tokens in the form of sentences from coherent text. 

from nltk.tokenize import sent_tokenize 

 

# assigning the text of the poem to the variable poem in one 

string 

poem = "He who carries a pure heart does not need much to be 

happy. He easily takes off from the morning dew on lame wings 

to heaven. Little children of God. Wandering stars. Lilies 
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follow them. And God knows it. And He will not forget. Neither 

will we." 

 

# tokenization into sentences 

sentences = sent_tokenize(poem) 

print(sentences) 

 
Program output: 
['He who carries a pure heart does not need much to be 

happy.', 'He easily takes off from the morning dew on lame 

wings to heaven.', 'Little children of God.', 'Wandering 

stars.', 'Lilies follow them.', 'And God knows it.', 'And He 

will not forget.', 'Neither will we.'] 

 

# the output of the function can also be assigned to a 

variable 

verse = sent_tokenize(poem) 

 

# then it is possible to access individual sentences as 

elements of a list 

print(verse[0]) 

 
Program output: 
He who carries a pure heart does not need much to be happy. 

The sent_tokenize() function is an instance of PunktSentenceTokenizer. This 
instance is trained and works very well for most major world languages. We can 
improve its operation by setting the language in which we will do the tokenization. 
The next example shows how to improve tokenization by setting the language 
(English, Spanish) which is trained on. 

import nltk.data 

nltk.download('punkt') 

 

# setting the tokenizer trained on English 

en_tokenizer = 

nltk.data.load('tokenizers/punkt/PY3/english.pickle') 

 

en_bible_text = "In the beginning was the Word, and the Word 

was with God, and the Word was God." 

 

# tokenization of English text 

en_bible = en_tokenizer.tokenize(en_bible_text) 

 

print(en_bible) 
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Program output: 
['In the beginning was the Word, and the Word was with God, 

and the Word was God.'] 

[nltk_data] Downloading package punkt to 

/home/johny/nltk_data... 

[nltk_data]   Package punkt is already up-to-date! 

 

# setting the tokenizer trained on Spanish 

sp_tokenizer = 

nltk.data.load('tokenizers/punkt/PY3/spanish.pickle') 

 

sp_bible_text = "En el principio era el Verbo, y el Verbo con 

Dios, y el Verbo era Dios. Este era en el principio con Dios. 

Todas las cosas por él fueron hechas, y sin él nada de lo que 

ha sido hecho, fue hecho. En él estaba la vida, y la vida era 

la luz de los hombres. La luz en las tinieblas resplandece, y 

las tinieblas no prevalecieron contra ella." 

 

# tokenization of Spanish text 

sp_bible = sp_tokenizer.tokenize(sp_bible_text) 

 

print(sp_bible) 

 
Program output: 
['En el principio era el Verbo, y el Verbo con Dios, y el 

Verbo era Dios.', 'Este era en el principio con Dios.', 'Todas 

las cosas por él fueron hechas, y sin él nada de lo que ha 

sido hecho, fue hecho.', 'En él estaba la vida, y la vida era 

la luz de los hombres.', 'La luz en las tinieblas resplandece, 

y las tinieblas no prevalecieron contra ella.'] 

📝 8.3.3 

Sentence tokenization 

The second and, in our opinion, more frequently used tokenization is the sentence 
tokenization into individual words, and/or tokens. From the point of view of text 
processing, individual sentences consist of tokens and spaces. Therefore, a token 
is any string of characters that usually must be between two spaces (whitespace). 
Sentence tokenization itself is not a simple process. During this process, it is also 
necessary to deal with the following issues: 

• A decimal point (e.g. number 2.06). For the tokenizer, the point or comma 
character represents the point at which the token can be separated. 
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However, by numbers, it must decide whether it will be suitable to divide the 
number. 

• The second issue with numbers is their (for better readability) "traditional" 
presentation with spaces (e.g. 3 113 416 123). In this case, the tokenizer 
must not treat spaces as token separators. 

• Mastering various special characters, upper and lower case letters, subscript 
and superscript, colon, full stop, question mark, exclamation mark, quotation 
marks, asterisks, mathematical symbols and others. 

• The issue of the so-called linking words (e.g.: within, on black, and so on, 
Nitriansky region, Nitriansky self-governing region, etc.), where it is more 
appropriate to understand the linking words as a whole and not to divide it 
into several tokens. 

For sentence tokenization, it is suitable to use the word_tokenize() function, which, 
as we can see in the following example, also takes into account punctuation marks, 
which it also works with as tokens. 

from nltk.tokenize import word_tokenize 

 

first_sentence = "In the beginning was the Word, and the Word 

was with God, and the Word was God." 

 

print(word_tokenize(first_sentence)) 

 
Program output: 
['In', 'the', 'beginning', 'was', 'the', 'Word', ',', 'and', 

'the', 'Word', 'was', 'with', 'God', ',', 'and', 'the', 

'Word', 'was', 'God', '.'] 

In the following text, we will not discuss all tokenization options. The functions for 
tokenization with the option to define own regular expressions, or to train own 
tokenizer which takes into account the special characteristics of the analysed text, 
are particularly interesting. More detailed information about these procedures can 
be found in the publication (Perkins, 2014). 

📝 8.3.4 

Stopwords 

Words in the analysed text that do not have much meaning from the point of view 
of semantics (especially prepositions, conjunctions and function words) are 
denoted as stopwords. Removing them will improve indexing, text analysis and 
reduce data size. Stopwords represent 20 to 30% of all words in a document. In the 
following text, we present a list of stopwords for the Slovak and English language: 

• Slovak: a, aj, aby, ale, ako, áno, alebo, ani, asi, byť, bez, by, či, cez, do, čo, ešte, 
dnes, iba, ďalší, je, ho, i, jej, ja, jeho, každý, k, kam, ktorý, kde, mať, kto, môj, ku, 
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na, môcť, my, niet, nad, nie, nový, než, nič, po, o, od, on, prečo, pod, pred, 
podľa, práve, potom, preto, prvý, pri, s, so, sa, si, svoj, späť, tak, ten, takže, 
tuto, teda, tento, to, už, toto, z, tu, tvoj, ty, u, v, že váš, viac, však, všetko, vy, za, 
že ...  

• English: [and, also, to, but, as, yes, or, even, probably, be, without, by, whether, 
through, to, what, still, today, only, next, is, him, her, me, his, every, to, where, 
which, where, have, who, my, to, on, can, we, no, above, no, new, than, nothing, 
after, about, from, he, why, under, before, according to, just, then, therefore, 
first, at, with, with, with, you, your, back, so, that, so, this, thus, this, that, 
already, this, from, here, your, you, u, in, that your, more, however, all, you, for, 
that ...] 

It is possible to use stopwords for many languages within the NLTK library. After 
importing stopwords, it is possible to display languages for which stopwords exist 
in NLTK.  

from nltk.corpus import stopwords 

 

# first, let's check the languages for which we have stop 

words in the library 

print(stopwords.fileids()) 

 
Program output: 
['arabic', 'azerbaijani', 'basque', 'bengali', 'catalan', 

'chinese', 'danish', 'dutch', 'english', 'finnish', 'french', 

'german', 'greek', 'hebrew', 'hinglish', 'hungarian', 

'indonesian', 'italian', 'kazakh', 'nepali', 'norwegian', 

'portuguese', 'romanian', 'russian', 'slovene', 'spanish', 

'swedish', 'tajik', 'turkish'] 

In the case of stopwords, it is actually only a text list. For Slovak, we have prepared 
a list consisting of Slovak stopwords at 
https://priscilla.fitped.eu/data/nlp/stop_words_slovak.txt 

import pandas as pd 

 

# URL of the file 

url = 

"https://priscilla.fitped.eu/data/nlp/stop_words_slovak.txt" 

 

# Read the file as a text file using pandas 

data = pd.read_csv(url, header=None)  # Read as a raw text 

file with no headers 

 

# Convert each row into a list of lines 

lines = data[0].tolist() 

https://priscilla.fitped.eu/data/nlp/stop_words_slovak.txt
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# Print the list of lines 

print(lines) 

 
Program output: 
['a', 'aby', 'aj', 'ak', 'ako', 'ale', 'alebo', 'and', 'ani', 

'áno', 'asi', 'až', 'bez', 'bude', 'budem', 'budeš', 'budeme', 

'budete', 'budú', 'by', 'bol', 'bola', 'boli', 'bolo', 'byť', 

'cez', 'čo', 'či', 'ďalší', 'ďalšia', 'ďalšie', 'dnes', 'do', 

'ho', 'ešte', 'for', 'i', 'ja', 'je', 'jeho', 'jej', 'ich', 

'iba', 'iné', 'iný', 'som', 'si', 'sme', 'sú', 'k', 'kam', 

'každý', 'každá', 'každé', 'každí', 'kde', 'keď', 'kto', 

'ktorá', 'ktoré', 'ktorou', 'ktorý', 'ktorí', 'ku', 'lebo', 

'len', 'ma', 'mať', 'má', 'máte', 'medzi', 'mi', 'mna', 'mne', 

'mnou', 'musieť', 'môcť', 'môj', 'môže', 'my', 'na', 'nad', 

'nám', 'náš', 'naši', 'nie', 'nech', 'než', 'nič', 'niektorý', 

'nové', 'nový', 'nová', 'nové', 'noví', 'o', 'od', 'odo', 

'of', 'on', 'ona', 'ono', 'oni', 'ony', 'po', 'pod', 'podľa', 

'pokiaľ', 'potom', 'práve', 'pre', 'prečo', 'preto', 

'pretože', 'prvý', 'prvá', 'prvé', 'prví', 'pred', 'predo', 

'pri', 'pýta', 's', 'sa', 'so', 'si', 'svoje', 'svoj', 

'svojich', 'svojím', 'svojími', 'ta', 'tak', 'takže', 'táto', 

'teda', 'te', 'ten', 'tento', 'the', 'tieto', 'tým', 'týmto', 

'tiež', 'to', 'toto', 'toho', 'tohoto', 'tom', 'tomto', 

'tomuto', 'toto', 'tu', 'tú', 'túto', 'tvoj', 'ty', 'tvojími', 

'už', 'v', 'vám', 'váš', 'vaše', 'vo', 'viac', 'však', 

'všetok', 'vy', 'z', 'za', 'zo', 'že'] 

📝 8.3.5 

Frequency 

The basic operations of discovering knowledge from a text include isolating words 
and finding the frequency of individual words. In the NLTK library we can find a 
useful function that can work with created tokens and determine their individual 
quantities (numbers). It is the FreqDist() function. The input to the function is a list 
(mostly words/tokens). This function is used to find the words frequency in a text. 
As a return value, it returns the data in the so-called dictionary. To read the return 
values, we need to know the associative indexes. 

We will show the use of the function on the example of recording actions 
(interventions/actions) of action heroes. 

hero_actions_in_order = ['Superman', 'Iron_man', 

'Cpt_America', 'Superman', 'Iron_man', 'Superman'] 
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from nltk.probability import FreqDist 

frequency = FreqDist(hero_actions_in_order) 

 

print(frequency) 

 
Program output: 
 

The output can also be read using the so-called associative indexes.  

print(frequency['Iron_man']) 

print(frequency['Superman']) 

 
Program output: 
2 

3 

It is also possible to display the first n most frequently occurring words in the list.  

print(frequency.most_common(2)) 

 
Program output: 
[('Superman', 3), ('Iron_man', 2)] 

Applying the FreqDist() function will be the content of the next practical task. 
Through a practical example, we will show how this function works and also the 
use of previous knowledge about the Requests library and creation of XPath 
expressions. In our next example, we will attempt to analyse Greek fables. We 
believe that the reader is familiar with some of them. 

8.4 Feature extraction 

🕮 8.4.1 

For text analysis, we need a lot of textual content (volume), and probably no need to 
remind that a text like "Lorem ipsum dolor sit amet..." would probably not be 
suitable. Just for the sake of interest, the mentioned text "Lorem ipsum..." has been 
used since the 16th century. The text resembles ordinary Latin, but in reality it is a 
meaningless mutilation. 

The problem with selecting text for analysis is that a meaningful amount of text 
needs to be selected. For educational purposes, it is advisable for students to know 
this text at least in part (for easy verification of results and the meaningfulness of 
the examples). From a legal point of view, it is advisable to choose a text for which 
the author has permission to publish or is not subject to copyright. 
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From the point of view of these criteria, texts from the Bible are probably the most 
frequently analysed texts in books and publications about text mining. From a book 
whose at least (approximate) content is probably known to most readers, even in 
the Arab world, authors of publications can analyse the Old Testament. This book is 
not subject to copyright, and all the authors of this book would certainly not object 
to the dissemination of these texts even without their consent. 

In our next example, we will try to analyse texts that also meet the above criteria, 
Greek fables. 

📝 8.4.2 

Project: Aesop's fables analyse 

• In terms of the basic characteristics of the text, analyse Aesop's fables: “The 
Lion and the Mouse”, “The Wolf and the Lamb” and “The Kingdom of the 
Lion”. 

May be a good resource for Aesop's Fables is https://www.sacred-
texts.com/cla/aesop/index.htm. We can copy the texts from this page. 

Among the basic characteristics of the text that can be obtained will be: 

• number of words in fables, 
• number of sentences, 
• number of unique words, 
• average number of words in sentences, 
• finding the longest sentence and others. 

We will analyse the English texts of Aesop's fables. After the initial import of the 
necessary libraries, we create three variables with the copied text. 

import nltk 

nltk.download('punkt') 

from nltk.tokenize import sent_tokenize 

from nltk.tokenize import word_tokenize 

 

lion_and_mouse = "A lion was awakened from sleep by a Mouse 

running over his face. Rising up angrily, he caught him and 

was about to kill him, when the Mouse piteously entreated, 

saying: 'If you would only spare my life, I would be sure to 

repay your kindness.' The Lion laughed and let him go. It 

happened shortly after this that the Lion was caught by some 

hunters, who bound him by strong ropes to the ground. The 

Mouse, recognizing his roar, came, gnawed the rope with his 

teeth, and set him free, exclaiming, 'You ridiculed the idea 

of my ever being able to help you, expecting to receive from 

https://www.sacred-texts.com/cla/aesop/index.htm
https://www.sacred-texts.com/cla/aesop/index.htm
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me any repayment of your favor; now you know that it is 

possible for even a Mouse to confer benefits on a Lion.'" 

wolf_and_lamb = "A Wolf, meeting with a Lamb astray from the 

fold, resolved not to lay violent hands on him, but to find 

some plea to justify to the Lamb the Wolf's right to eat him. 

He thus addressed him: 'Sirrah, last year you grossly insulted 

me.' 'Indeed,' bleated the Lamb in a mournful tone of voice, 

'I was not then born.' Then said the Wolf, 'You feed in my 

pasture.' 'No, good sir,' replied the Lamb, 'I have not yet 

tasted grass.' Again said the Wolf, 'You drink of my well.' 

'No,' exclaimed the Lamb, 'I never yet drank water, for as yet 

my mother's milk is both food and drink to me.' Upon which the 

Wolf seized him and ate him up, saying, 'Well! I won't remain 

supperless, even though you refute every one of my 

imputations. The tyrant will always find a pretext for his 

tyranny.'" 

lion_kingdom = "The beasts of the field and forest had a Lion 

as their king. He was neither wrathful, cruel, nor tyrannical, 

but just and gentle as a king could be. During his reign he 

made a royal proclamation for a general assembly of all the 

birds and beasts, and drew up conditions for a universal 

league, in which the Wolf and the Lamb, the Panther and the 

Kid, the Tiger and the Stag, the Dog and the Hare, should live 

together in perfect peace and amity. The Hare said, 'Oh, how I 

have longed to see this day, in which the weak shall take 

their place with impunity by the side of the strong.' And 

after the Hare said this, he ran for his life." 

print(lion_kingdom) 

Subsequently, according to already known commands, we will tokenize sentences 
and words in sentences.  

sentences_fable1 = sent_tokenize(lion_and_mouse) 

sentences_fable2 = sent_tokenize(wolf_and_lamb) 

sentences_fable3 = sent_tokenize(lion_kingdom) 

 

print(sentences_fable3) 

 
Program output: 
['The beasts of the field and forest had a Lion as their 

king.', 'He was neither wrathful, cruel, nor tyrannical, but 

just and gentle as a king could be.', 'During his reign he 

made a royal proclamation for a general assembly of all the 

birds and beasts, and drew up conditions for a universal 

league, in which the Wolf and the Lamb, the Panther and the 
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Kid, the Tiger and the Stag, the Dog and the Hare, should live 

together in perfect peace and amity.', "The Hare said, 'Oh, 

how I have longed to see this day, in which the weak shall 

take their place with impunity by the side of the strong.'", 

'And after the Hare said this, he ran for his life.'] 

Functions sent_tokenize() and word_tokenize() give the result list. Whether it is a 
list of sentences or a list of words, it is always a list data type. This data type 
represents a collection (set of values) that is ordered and changeable. At the same 
time, the list allows duplication of its items (members). This means that a list can 
contain multiple identical items/members (equal values). In Python, lists are written 
in square brackets. Therefore, we create our own list simply by inserting the list 
elements (separated by commas) in square brackets. 

📝 8.4.3 

List and Set 

In our example, we will use two basic functions for working with the list: 

• Function len() - the function counts the number of list items.  

list_of_heroes = ['Hulk', 'Parker', 'Iron_man', 'Cpt_America', 

'Superman'] 

print(len(list_of_heroes)) 

 

fibonacci_numbers = [1, 1, 2, 3, 5, 8, 13, 21, 34, 55] 

print(len(fibonacci_numbers)) 

 
Program output: 
5 

10 

The function is interesting for its universality. The function calculates the number 
of elements in any object. For example if we insert a string into the function, i.e. 
object is a string, the len() function returns the number of characters (in string). 

print(len('Hulk')) 

 
Program output: 
4 

• Function set() - the function creates a set of objects. It is used to find the 
elements of a list without repetition. In the created set, the elements are no 
longer repeated, each one is represented exactly once. 
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hero_actions_in_order = ['Superman', 'Iron_man', 

'Cpt_America', 'Superman', 'Iron_man'] 

heroes_in_actions = set(hero_actions_in_order) 

print(heroes_in_actions) 

 
Program output: 
{'Superman', 'Cpt_America', 'Iron_man'} 

📝 8.4.4 

We can conveniently use the mentioned functions to calculate the basic 
characteristics of the three Greek fables. The first option is to find how many 
sentences are in the fables. 

print('The fable "The Lion and the Mouse" contains ' + 

str(len(sentences_fable1)) + ' sentences.') 

print('The fable "The Wolf and the Lamb" contains ' + 

str(len(sentences_fable2)) + ' sentences.') 

print('The fable "The Lion Kingdom" contains ' + 

str(len(sentences_fable3)) + ' sentences.') 

We directly wrote the result of the calculation into a text string with the print() 
function. For this reason, it was necessary to convert the result from a number 
(integer data type) to a text string (string data type). We performed the conversion 
with the str() function. 

📝 8.4.5 

Project: Understanding content structure 

Find out how many words (tokens) each fable contains and what is the average 
number of words per sentence. 

To solve the problem, it is necessary to tokenize sentences in fables first. We 
perform tokenization with the well-known word_tokenize() function. We will use its 
result and the len() function to determine the number of words in fables. Please 
note that we perform tokenization directly for the whole fables´ text, not partially for 
individual sentences. 

The result of word_tokenize() is a list of words/tokens in fables. For illustration, 
here is a list of the first few tokens for the fable The Lion and the Mouse. 

import nltk 

# nltk.download('punkt') 

from nltk.tokenize import sent_tokenize 

from nltk.tokenize import word_tokenize 
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lion_and_mouse = "A lion was awakened from sleep by a Mouse 

running over his face. Rising up angrily, he caught him and 

was about to kill him, when the Mouse piteously entreated, 

saying: 'If you would only spare my life, I would be sure to 

repay your kindness.' The Lion laughed and let him go. It 

happened shortly after this that the Lion was caught by some 

hunters, who bound him by strong ropes to the ground. The 

Mouse, recognizing his roar, came, gnawed the rope with his 

teeth, and set him free, exclaiming, 'You ridiculed the idea 

of my ever being able to help you, expecting to receive from 

me any repayment of your favor; now you know that it is 

possible for even a Mouse to confer benefits on a Lion.'" 

wolf_and_lamb = "A Wolf, meeting with a Lamb astray from the 

fold, resolved not to lay violent hands on him, but to find 

some plea to justify to the Lamb the Wolf's right to eat him. 

He thus addressed him: 'Sirrah, last year you grossly insulted 

me.' 'Indeed,' bleated the Lamb in a mournful tone of voice, 

'I was not then born.' Then said the Wolf, 'You feed in my 

pasture.' 'No, good sir,' replied the Lamb, 'I have not yet 

tasted grass.' Again said the Wolf, 'You drink of my well.' 

'No,' exclaimed the Lamb, 'I never yet drank water, for as yet 

my mother's milk is both food and drink to me.' Upon which the 

Wolf seized him and ate him up, saying, 'Well! I won't remain 

supperless, even though you refute every one of my 

imputations. The tyrant will always find a pretext for his 

tyranny.'" 

lion_kingdom = "The beasts of the field and forest had a Lion 

as their king. He was neither wrathful, cruel, nor tyrannical, 

but just and gentle as a king could be. During his reign he 

made a royal proclamation for a general assembly of all the 

birds and beasts, and drew up conditions for a universal 

league, in which the Wolf and the Lamb, the Panther and the 

Kid, the Tiger and the Stag, the Dog and the Hare, should live 

together in perfect peace and amity. The Hare said, 'Oh, how I 

have longed to see this day, in which the weak shall take 

their place with impunity by the side of the strong.' And 

after the Hare said this, he ran for his life." 

 

words_fable1 = word_tokenize(lion_and_mouse) 

words_fable2 = word_tokenize(wolf_and_lamb) 

words_fable3 = word_tokenize(lion_kingdom) 

 

print('The fable "The Lion and the Mouse" contains ' + 

str(len(words_fable1)) + ' words.') 
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print('The fable "The Wolf and the Lamb" contains ' + 

str(len(words_fable2)) + ' words.') 

print('The fable "The Lion Kingdom" contains ' + 

str(len(words_fable3)) + ' words.') 

 

# print(words_fable1) 

 
Program output: 
The fable "The Lion and the Mouse" contains 152 words. 

The fable "The Wolf and the Lamb" contains 191 words. 

The fable "The Lion Kingdom" contains 143 words. 

The solution to the second part of the task is to calculate the proportion of the 
number of words for each fable to the number of sentences. In this way, we will find 
out the average number of words per sentence for each fable. 

sentences_fable1 = sent_tokenize(lion_and_mouse) 

sentences_fable2 = sent_tokenize(wolf_and_lamb) 

sentences_fable3 = sent_tokenize(lion_kingdom) 

 

print('The average number of words (tokens) per sentence for 

the fable "The Lion and the Mouse":') 

print(len(words_fable1) / len(sentences_fable1)) 

 

print('The average number of words (tokens) per sentence for 

the fable "The Wolf and the Lamb":') 

print(len(words_fable2) / len(sentences_fable2)) 

 

print('The average number of words (tokens) per sentence for 

the fable "The Lion Kingdom":') 

print(len(words_fable3) / len(sentences_fable3)) 

 
Program output: 
The average number of words (tokens) per sentence for the 

fable "The Lion and the Mouse": 

30.4 

The average number of words (tokens) per sentence for the 

fable "The Wolf and the Lamb": 

19.1 

The average number of words (tokens) per sentence for the 

fable "The Lion Kingdom": 

28.6 
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📝 8.4.6 

For the sake of completeness, we present the second method of calculation (only 
for “the Wolf and the Lamb” fable). We find the number of words/tokens for each 
sentence and calculate their averages. Naturally, the result is the same as in the 
first case. 

import nltk 

from nltk.tokenize import sent_tokenize 

from nltk.tokenize import word_tokenize 

 

wolf_and_lamb = "A Wolf, meeting with a Lamb astray from the 

fold, resolved not to lay violent hands on him, but to find 

some plea to justify to the Lamb the Wolf's right to eat him. 

He thus addressed him: 'Sirrah, last year you grossly insulted 

me.' 'Indeed,' bleated the Lamb in a mournful tone of voice, 

'I was not then born.' Then said the Wolf, 'You feed in my 

pasture.' 'No, good sir,' replied the Lamb, 'I have not yet 

tasted grass.' Again said the Wolf, 'You drink of my well.' 

'No,' exclaimed the Lamb, 'I never yet drank water, for as yet 

my mother's milk is both food and drink to me.' Upon which the 

Wolf seized him and ate him up, saying, 'Well! I won't remain 

supperless, even though you refute every one of my 

imputations. The tyrant will always find a pretext for his 

tyranny.'" 

sentences_fable2 = sent_tokenize(wolf_and_lamb) 

 

# prepare a list to store the number of tokens in individual 

sentences 

token_counts = [] 

 

# for each sentence from the list of sentences in the fable 

for sentence in sentences_fable2: 

    # extract tokens from the sentence 

    tokens = word_tokenize(sentence) 

    # count the number of tokens 

    token_count_in_sentence = len(tokens) 

    # append the number of tokens (as a number) in the 

sentence to the list token_counts 

    token_counts.append(token_count_in_sentence) 

 

# after counting the number of tokens for each sentence 

# calculate the average 

average = sum(token_counts) / len(token_counts) 

print(average) 
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Program output: 
19.1 

 

📝 8.4.7 

Task: Find out the longest word used in a fable “The Lion and the Mouse”.  

We will solve the task only using the well-known function len() which we can also 
use to find out the number of characters in a word.  

import nltk 

# nltk.download('punkt') 

from nltk.tokenize import sent_tokenize 

from nltk.tokenize import word_tokenize 

 

lion_and_mouse = "A lion was awakened from sleep by a Mouse 

running over his face. Rising up angrily, he caught him and 

was about to kill him, when the Mouse piteously entreated, 

saying: 'If you would only spare my life, I would be sure to 

repay your kindness.' The Lion laughed and let him go. It 

happened shortly after this that the Lion was caught by some 

hunters, who bound him by strong ropes to the ground. The 

Mouse, recognizing his roar, came, gnawed the rope with his 

teeth, and set him free, exclaiming, 'You ridiculed the idea 

of my ever being able to help you, expecting to receive from 

me any repayment of your favor; now you know that it is 

possible for even a Mouse to confer benefits on a Lion.'" 

 

# Tokenization of the words in the fable "The Lion and the 

Mouse" 

words_fable1 = word_tokenize(lion_and_mouse) 

 

# Initial variable settings 

max_char_count = 0 

# assuming there could be more words with the maximum length 

# we create a list of words 

max_words = [] 

 

# For all words 

for word in words_fable1: 

    # determine the length of the word 

    length = len(word) 

    # if it equals the maximum length 
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    if length == max_char_count: 

        # add the word to the list 

        max_words.append(word) 

    # if it's greater than the maximum length 

    if length > max_char_count: 

        max_char_count = length 

        # reset the list and start over 

        max_words = [] 

        # add the word to the list 

        max_words.append(word) 

# Final output 

print('The maximum number of characters in a word is ' + 

str(max_char_count)) 

print('List of words with the maximum number of characters:') 

print(max_words) 

 
Program output: 
The maximum number of characters in a word is 11 

List of words with the maximum number of characters: 

['recognizing'] 

8.5 Project 

📝 8.5.1 

Project: Basic overview of Greek fables using methods of text analysis 

Traveler Marek Polový, after several successful vacations on Senec and Duchonka 
Lakes, has decided to explore the Cyprus beaches this summer. In order to impress 
the locals with his knowledge of Greek culture, he decided to familiarize himself 
with Greek fables. However, he found that Greek fables (although they are mostly 
very short) are quite a lot. Therefore, we will attempt to make a basic overview of 
Greek fables using methods of text analysis. 

For the analysis of Greek fables, we chose Aesop's fables. These are available, e.g. 
at https://www.sacred-texts.com/cla/aesop/index.htm. We will perform the 
analysis itself using the NLTK library and for the sake of simplicity (inflection and 
diacritics) we will analyse Aesop's fables in English. 

In order to simplify the pre-processing of the input file, we will analyse the titles of 
Aesop's fables in the following text. We will be interested in which animal appears 
most often in Aesop's fables. Most of Aesop's fables have very apt titles, i.e. the 
title of the fable always includes its "main representatives", e.g. fable "Donkey, Fox, 
and Lion" or "Rabbit and Tortoise" etc. 

https://www.sacred-texts.com/cla/aesop/index.htm
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To analyze all the titles of Aesop's Fables, in addition to the NLTK library, we will 
also need a library with functions for loading web content - Request. After loading 
the page content, i.e. the titles of Aesop's Fables, we tokenize the entire text, find 
the frequency of individual words, and display the first 20 most frequent tokens 
from the page. We start with the initial tokenization of the fable titles. 

import requests 

link = "https://www.sacred-texts.com/cla/aesop/index.htm" 

f = requests.get(link) 

fables = f.text 

 

print(fables) 

Based on the illustration, it is clear that we "downloaded" the entire text of the page 
using the request library. In this way, we can also analyse the text, but the results 
can be distorted by the HTML tags occurred in the text.  

# Import necessary libraries 

from nltk.tokenize import word_tokenize 

from nltk.probability import FreqDist 

 

# Tokenize the text into words 

tokens_fables = word_tokenize(fables)  # Break down the text 

into individual words 

 

# Create a frequency distribution of words 

frequency_fables = FreqDist(tokens_fables)  # Count the 

occurrences of each word 

 

# Print the 20 most common words and their frequencies 

print(frequency_fables.most_common(20))  # Display the top 20 

frequent words 

 
Program output: 
[('<', 983), ('>', 983), ("''", 646), ('A', 317), ('HREF=', 

317), ('/A', 317), ('BR', 315), ('The', 307), ('and', 254), 

('the', 244), (',', 58), ('Lion', 32), ('Fox', 31), ('Ass', 

23), ('Wolf', 22), ('His', 21), ('Dog', 13), ('Man', 12), 

('Two', 12), ('Eagle', 11)] 

The result shows that in Aesop's fables lion, fox, donkey, wolf, and dog appear 
most often in the given order. It is also possible to determine the number of 
occurrences of individual animals. For example, seagull occurs only once in the title 
of Aesop's fables. 

print(frequency_fables['Seagull']) 
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Program output: 
1 

If we take a closer look at the results, the most frequent tokens are '>' and '<'. Their 
frequency of occurrence is 978. Since we analysed a web page that is entirely in 
HTML code, the stated tokens are actually the beginning and end tags of the HTML 
elements of the page. Similarly, in the case of 'A', 'BR' or 'HREF=' tokens, which are 
actually names or attributes of HTML elements. 

📝 8.5.2 

To perform the correct analysis, without the stated tokens (parts of the HTML 
code), we have several options. One of them is to supplement the so-called list of 
stopwords by the following tokens and then remove the tokens from the list of 
stopwords. 

If we analyse a website, we can use technologies that operate on the website and 
are designated for content extraction. We can access to individual elements of 
HTML pages using the DOM - Document Object Model. The XPath query language 
is designated for DOM requests. 

The XPath query language is intended for DOM requests, work with it was 
presented in the third chapter. 

The most commonly used library for running XPath queries on web pages is the 
LXML library in Python. It is necessary to remember that the XPath language was 
first developed for queries on XML documents and it is of the greatest importance 
when processing XML. However, we can also apply its usefulness in the HTML 
language. 

import requests 

link = "https://www.sacred-texts.com/cla/aesop/index.htm" 

f = requests.get(link) 

fables = f.text 

We already have all fables "stored" in the fables variable that we created in the 
previous section. 

from lxml import html 

tree = html.fromstring(fables) 

All that remains is to call a query over the content of the page, loaded in the XPath 
fable variable. We will create this by examining the HTML code of the page 
"http://www.sacred-texts.com/cla/aesop/index.htm". 
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It should be noted that the source code of the page is not completely correctly 
formatted and the only thing we can use is that all fable titles are the content of the 
a element, thus a link. The XPath query will therefore have the form '//a/text()', 
which can be understood as loading the content of all elements a on the page. 

After constructing the XPath query, we run it and we can display the first 10 results 
of the XPath query for checking. 

 
# Extract all text content from anchor tags ('a') within the 

entire XML tree 

all_titles = tree.xpath('//a/text()') 

 

print(all_titles[:10]) 

 
Program output: 
['Sacred Texts', 'Classics', 'Preface', 'Life Of Aesop', 'The 

Wolf and the Lamb', 'The Bat and the Weasels', 'The Ass and 

the Grasshopper', 'The Lion and the Mouse', 'The Charcoal-

Burner and the Fuller', 'The Father and His Sons'] 

The first three results are not actually the titles of fables, but only the text of the 
other three links listed on the investigated page. It is a consequence of not exactly 
the most suitable page structure. However, there is no other way in this case (also 
due to the simplicity of the python code). It is clear, that the mentioned three 
"incorrect titles of the fables" will not affect our analysis of the most frequent words 
within the titles. 

📝 8.5.3 

If we already have all the titles of Aesop's fables in the all_titles variable, we can 
repeat the tokenization and analysis of the most frequent words. Note that the 
word_tokenize function needs an input variable of string type. The all_titles variable 
is a list of strings. For this reason, we first merge the list of fable titles into one 
string variable. We name the variable all_titles_together. Merging can be done with 
several functions, e.g. join() and so on. However, to run them, we need to import the 
STR library. Therefore, for the sake of simplicity, we will do the unification of the 
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strings´ list into a single string using a cycle. In addition to merging the lists, we 
also convert all titles to lowercase using the lower() function. We can also call the 
control report of the newly created variable. 

import requests 

link = "https://www.sacred-texts.com/cla/aesop/index.htm" 

f = requests.get(link) 

fables = f.text 

from lxml import html 

tree = html.fromstring(fables) 

all_titles = tree.xpath('//a/text()') 

 

all_titles_combined = '' 

for title in all_titles: 

    all_titles_combined += ' ' + title.lower() 

 

print(all_titles_combined) 

We only have to repeat the tokenization and analysis of the most frequent words for 
the all_titles_together variable. Please note that we are still considering all 
words/tokens in fable titles. For this reason, the most frequent tokens are 'the' and 
'and'. 

import nltk 

from nltk.tokenize import word_tokenize 

from nltk.probability import FreqDist 

 

tokens_fables = word_tokenize(all_titles_combined) 

frequency_fables = FreqDist(tokens_fables) 

print(frequency_fables.most_common(20)) 

 
Program output: 
[('the', 550), ('and', 254), (',', 52), ('lion', 32), ('fox', 

31), ('ass', 23), ('wolf', 22), ('his', 21), ('dog', 13), 

('man', 12), ('two', 12), ('eagle', 11), ('crow', 8), ('in', 

8), ('sheep', 8), ('shepherd', 8), ('bull', 7), ('goat', 7), 

('horse', 7), ('frogs', 7)] 

 
To complete the task, we can use the list of stopwords and remove them from the 
tokens.  
from nltk.corpus import stopwords 

 

# Load the list of English stop words 

sw = set(stopwords.words('english')) 

 

# Add the token "," (comma) to the list of stop words 
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sw.update(',') 

 

# Create new tokens that do not contain stop words 

new_tokens = [] 

for word in tokens_fables: 

    if word not in sw: 

        new_tokens.append(word) 

We will then use the new list of tokens as input to determine the frequency of 
words. 

frequency_fables = FreqDist(new_tokens) 

print(frequency_fables.most_common(10)) 

 
Program output: 
[('lion', 32), ('fox', 31), ('ass', 23), ('wolf', 22), ('dog', 

13), ('man', 12), ('two', 12), ('eagle', 11), ('crow', 8), 

('sheep', 8)] 

The result shows that lion, fox, ass, wolf, and dog appear most often in Aesop's 
fables. It is also possible to find out the number of their occurrences. 

To conclude our practical example, we will use a function that graphically displays 
the most common words found in the titles of Aesop's fables. 

# Command to display the graphic output directly in Jupyter 

Notebook 

%matplotlib inline 

 

# Plotting the frequency graph for the first 15 words 

frequency_fables.plot(15, cumulative=False) 

 
Program output: 
/home/johny/.local/lib/python3.9/site-

packages/matplotlib/projections/__init__.py:63: UserWarning: 

Unable to import Axes3D. This may be due to multiple versions 

of Matplotlib being installed (e.g. as a system package and as 

a pip package). As a result, the 3D projection is not 

available. 

  warnings.warn("Unable to import Axes3D. This may be due to 

multiple versions of " 
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WordNet 

Chapter 9 
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9.1 WordNet 

🕮 9.1.1 

WordNet is a large lexical database of the English language developed at Princeton 
University. It organizes English words into groups called synsets, which represent a 
set of synonyms that share the same meaning. Each synset includes definitions, 
examples of usage, and relationships to other words. This organization makes 
WordNet a powerful resource for understanding the structure and meaning of 
language. 

One of WordNet's primary purposes is to serve as a bridge between language and 
computational systems. For example, it allows NLP tools to identify semantic 
relationships between words, enabling computers to process text more intelligently. 
It’s used in tasks like synonym replacement, word sense disambiguation, and 
semantic similarity calculations. 

WordNet also provides hierarchical relationships between words. For instance, 
words like "vehicle" and "car" are connected in a hypernym (broader term) and 
hyponym (specific term) relationship. These features make it easier to analyze how 
words relate to each other in various contexts. 

Lastly, WordNet integrates words' multiple meanings. For example, the word "bank" 
can refer to a financial institution or a riverbank. Each sense is associated with a 
different synset, helping distinguish meanings based on context. 

📝 9.1.2 

What is a synset in WordNet? 

• A group of synonyms sharing the same meaning. 
• A single word used in a sentence. 
• A grammatical rule for sentence structure. 

🕮 9.1.3 

Synonyms and antonyms 

One of WordNet’s most useful features is its ability to identify synonyms and 
antonyms. Synonyms are words with similar meanings, and WordNet groups them 
into synsets. For example, the synset for "happy" includes words like "joyful," 
"content," and "cheerful." This allows systems to find alternative words while 
retaining the same meaning. 

Antonyms, on the other hand, are words with opposite meanings. WordNet provides 
antonyms for many words, like "happy" and "sad" or "big" and "small." Identifying 
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antonyms is essential in tasks such as sentiment analysis, where opposite 
sentiments must be distinguished. 

In computational linguistics, synonym and antonym identification is a common 
preprocessing step. For instance, when analyzing a document's tone, synonyms can 
help group similar expressions, while antonyms can highlight contrasting 
sentiments. 

Applications like chatbots, search engines, and machine translation systems use 
these relationships to make text processing more effective and contextually 
accurate. For example, a chatbot might suggest alternative phrasing based on a 
user’s input, improving the conversational experience. 

📝 9.1.4 

What can WordNet provide in terms of word relationships? 

• Synonyms grouped into synsets. 
• Antonyms for words. 
• Hierarchical relationships like hypernyms and hyponyms. 
• Sentence grammar rules. 

🕮 9.1.5 

Hypernyms and hyponyms 

WordNet organizes words into a hierarchical structure using hypernyms (broader 
terms) and hyponyms (narrower terms). For example, "vehicle" is a hypernym of 
"car," and "car" is a hyponym of "vehicle." This hierarchy enables NLP systems to 
understand how concepts are related and classify text effectively. 

These hierarchical relationships are useful in taxonomy creation and classification 
tasks. For instance, in e-commerce, understanding that "laptop" is a hyponym of 
"computer" helps group similar products together for recommendations. 

Another application is in semantic search. A search engine can use hypernym 
relationships to expand queries. If a user searches for "sports cars," the system 
could include results for related hyponyms like "convertibles" or "coupe." 

The hierarchy also supports generalization and specialization tasks. For example, 
summarization systems might generalize details (e.g., replacing "Dalmatian" with 
"dog") for brevity, while classification tasks benefit from recognizing specific terms. 

📝 9.1.6 

What is the relationship between "dog" and "animal" in WordNet? 

• "Dog" is a hyponym of "animal." 
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• "Dog" is a hypernym of "animal." 
• "Dog" and "animal" are synonyms. 

🕮 9.1.7 

Word sense disambiguation 

Words often have multiple meanings, and identifying the correct one in context is 
called Word Sense Disambiguation (WSD). WordNet is a valuable tool for this task 
because it organizes words into synsets for each meaning. For example, "bank" 
could refer to a financial institution or the side of a river, and WordNet provides 
separate synsets for these senses. 

To perform WSD, an NLP system analyzes the context of the word. For example, in 
the sentence "I deposited money at the bank," the financial institution meaning is 
chosen based on surrounding words like "deposited" and "money." WordNet 
provides the definitions and example sentences needed to differentiate senses. 

WSD has many practical applications. In machine translation, selecting the correct 
meaning ensures accurate translation. Similarly, in search engines, understanding 
the intended sense of a query word improves the relevance of results. 

Using WordNet for WSD involves comparing the context of the target word with the 
definitions and examples in its synsets. Algorithms like Lesk and similarity-based 
approaches often rely on WordNet data to compute the correct sense. 

📝 9.1.8 

How does WordNet assist in word sense disambiguation? 

• By organizing word meanings into synsets. 
• By providing definitions and example sentences for each sense. 
• By grouping words into sentences. 
• By analyzing grammatical rules. 

🕮 9.1.9 

Semantic similarity 

Semantic similarity is a measure of how closely related two words or concepts are 
in meaning. WordNet provides a framework to calculate semantic similarity by 
leveraging its hierarchical structure and rich lexical relationships. This is 
particularly useful in applications like clustering, recommendation systems, and 
information retrieval, where understanding the context and relevance of terms is 
essential. 

WordNet organizes words into synsets and links them hierarchically using 
hypernym (broader terms) and hyponym (specific terms) relationships. The 
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similarity between two words is determined by the proximity of their synsets in the 
hierarchy. For example, "car" and "truck" have a higher semantic similarity 
compared to "car" and "tree" because their synsets share a common parent 
("vehicle") within a closer range. 

In NLP tasks, semantic similarity is widely used: 

• Search engines to rank search results based on conceptual relevance, not 
just keyword matches. For example, a query for "automobile" should also 
fetch results about "cars." 

• Recommendation systems to identify similar items or concepts for 
personalized recommendations. For instance, recommending books about 
"poetry" when someone searches for "literature." 

• Text summarization for replacing verbose terms with simpler synonyms 
without altering the meaning. 

Imagine an educational chatbot helping students. If a student asks about "climate," 
the system can understand that "weather patterns" is semantically similar and 
provide relevant content. WordNet’s similarity measures make this contextual 
matching possible. 

📝 9.1.10 

Which of the following are examples of semantic similarity applications? 

• Recommending books based on a user’s reading history. 
• Detecting semantic similarity between two words. 
• Generating synonyms for words in essays. 
• Predicting spelling errors in user input. 

🕮 9.1.11 

Cross-linguistic extensions 

WordNet’s utility goes beyond the English language, with cross-linguistic extensions 
enabling multilingual natural language processing. These extensions make 
WordNet an invaluable tool for machine translation, cross-lingual sentiment 
analysis, and global search applications. 

Cross-linguistic extensions are adaptations of the WordNet database for other 
languages, such as French, Spanish, and Hindi. These versions maintain similar 
structures of synsets and relationships, allowing the same functionality as English 
WordNet. The extensions can be linked to the English version, providing a unified 
framework for multilingual analysis. 
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Applications of cross-linguistic WordNet 

1. Machine translation uses mapping words and phrases in one language to 
their accurate counterparts in another. For instance, translating "apple" in 
English to "manzana" in Spanish, while maintaining contextual integrity. 

2. Multilingual sentiment analysis identifies sentiment in text across 
languages by understanding synonyms and antonyms. For example, 
determining that "feliz" (Spanish) and "happy" (English) carry the same 
positive connotation. 

3. Cross-lingual information retrieval enhances search engines to return 
relevant results for queries in multiple languages by linking related synsets. 

A global e-commerce platform uses WordNet to improve search functionality. If a 
user searches for "ropa" (Spanish for clothing), the system identifies synonyms and 
retrieves results for "clothes," "apparel," and "outfits," regardless of language. 

📝 9.1.12 

Which of the following describes a Cross-Linguistic WordNet feature? 

• Linking synsets across multiple languages. 
• Translating entire documents automatically. 
• Extracting XML data from webpages. 

🕮 9.1.13 

Applications of WordNet 

WordNet is widely used in various NLP applications to enhance semantic 
understanding. One common use case is text summarization, where WordNet helps 
generalize terms or find synonyms to condense information. 

Another major application is in sentiment analysis, where WordNet’s antonyms are 
used to identify contrasting sentiments. For instance, it can distinguish between 
positive words like "happy" and negative words like "sad." 

Chatbots and virtual assistants also benefit from WordNet. By leveraging 
synonyms and hierarchical relationships, these systems can interpret a user’s input 
in multiple ways and respond more effectively. For example, if a user says "I feel 
joyful," the chatbot can understand it as synonymous with "happy" and provide a 
relevant response. 

Lastly, semantic similarity measures between words or sentences often use 
WordNet. For instance, applications like plagiarism detection or document 
clustering compute the similarity of terms based on their synsets, making WordNet 
an invaluable resource in advanced NLP tasks. 
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📝 9.1.14 

What are some NLP applications where WordNet is useful? 

• Sentiment analysis 
• Text summarization 
• Syntax tree generation 
• Audio signal processing 

9.2 Practical use 

📝 9.2.1 

Synonyms 

In any text analysis, there is often a consideration, e.g. about synonyms or related 
words. The issue of "dependence" of words can be partially solved using the so-
called WordNet. According to definition, it is a dictionary of words arranged 
according to semantic relationships. 

The nltk library offers us an interesting tool for discovering these relationships. The 
wordnet dictionary must be downloaded using the download() method before 
applying. 

import nltk 

 

nltk.download('wordnet') 

 

from nltk.corpus import wordnet 

Using the WordNet dictionary, it is possible to find the meaning of words, synonyms 
and antonyms of words. When working with the dictionary, we will use the so-called 
synset. It is a simple option used in nltk to read relations. Synset instances are 
groups of synonymous words that express the same concept. Some words have 
only one synset and some have several. Let's attempt to find the word "joy" in 
wordnet. 

from nltk.corpus import wordnet 

 

syns = wordnet.synsets("joy") 

 

print(syns) 

 
Program output: 
[Synset('joy.n.01'), Synset('joy.n.02'), 

Synset('rejoice.v.01'), Synset('gladden.v.01')] 
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According to the search result, the word "joy" is found in four synsets. Each synset 
has a name that ends with the synset number. In our result, there is also an "n" or 
"v" character between the word and the number. The character "n" indicates a noun 
and "v" is a verb. 

If we want to see words that have a semantic relation to the word "joy", we can 
report them using the lemmas() method. 

for syn in syns[0].lemmas(): 

    print(syn.name()) 

 
Program output: 
joy 

joyousness 

joyfulness 

 

for syn in syns[1].lemmas(): 

    print(syn.name()) 

 
Program output: 
joy 

delight 

pleasure 

Note that the first synset contains three words, the second has the same amount, 
but some words are different. It often happens that a synset contains only one 
word. We can report the words of all synsets where the word "joy" is found as 
follows. 

for syn in syns: 

    for lemma in syn.lemmas(): 

        print(lemma.name()) 

 
Program output: 
joy 

joyousness 

joyfulness 

joy 

delight 

pleasure 

rejoice 

joy 

gladden 

joy 
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Additional information is also stored in synsets. For example, most synsets also 
contain a definition of the examined word. 

print(syns[0].definition()) 

print(syns[1].definition()) 

 
Program output: 
the emotion of great happiness 

something or someone that provides a source of happiness 

Interestingly, the word "joy" has a different definition in the first synset and a 
different one in the second. It is common because, e.g. the word "table" can be in a 
synset with words denoting furniture, but also in a synset of words denoting a data 
structure - a table. 

Another option is to display examples of the word usage in the synset. This 
example, like the definition, may not be part of every synset. 

print(syns[0].examples()) 

print(syns[1].examples()) 

 
Program output: 
[] 

['a joy to behold', 'the pleasure of his company', 'the new 

car is a delight'] 

📝 9.2.2 

Antonyms 

Besides similar words, it is possible to find in the synset the so-called antonyms. 
These indicate contrasting concepts (opposites) to the given word, i.e. words with 
opposite meanings. It is interesting that if we can sometimes find a whole list of 
synonyms for the word under investigation, antonyms are found only in pairs, i.e. 
word and its antonym. In the following example, we report all synonyms for the 
word "joy" together with the antonym of these synonyms (if exist). 

import nltk 

# nltk.download('wordnet') 

from nltk.corpus import wordnet 

 

word = "joy" 

synonyms = [] 

antonyms = [] 

 

for syn in wordnet.synsets(word): 

    for lemma in syn.lemmas(): 
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        synonyms.append(lemma.name()) 

        if lemma.antonyms(): 

            antonyms.append(lemma.antonyms()[0].name()) 

 

print('Synonyms:') 

print(set(synonyms)) 

print('Antonyms:') 

print(set(antonyms)) 

 
Program output: 
Synonyms: 

{'joyousness', 'joyfulness', 'joy', 'gladden', 'delight', 

'rejoice', 'pleasure'} 

Antonyms: 

{'sadden', 'sorrow'} 

📝 9.2.3 

Semantic similarity 

In the example, we present the calculation of the semantic similarity of the words 
"joy" and "joyousness" (it is not exactly the similarity of the words, but rather the 
similarity of the synsets in which the words are found). Considering that these are 
synonyms, their similarity is equal to 1. The word "sorrow" also has a fairly close 
meaning. It is actually an antonym of the word "joy". To make sure, in the last 
example we present the similarity of the words "joy" and "mouse", which are not at 
all close in meaning. The value of their semantic proximity is very small. 

import nltk 

# nltk.download('wordnet') 

from nltk.corpus import wordnet 

 

w1 = wordnet.synset('joy.n.01') 

w2 = wordnet.synset('joyousness.n.01') 

print(w1.wup_similarity(w2)) 

 
Program output: 
1.0 

 

w1 = wordnet.synset('joy.n.01') 

w2 = wordnet.synset('sorrow.n.01') 

print(w1.wup_similarity(w2)) 

 
Program output: 
0.7142857142857143 
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w1 = wordnet.synset('joy.n.01') 

w2 = wordnet.synset('mouse.n.01') 

print(w1.wup_similarity(w2)) 

 
Program output: 
0.1 

In conclusion, we present "proof" that "soccer brings more joy to a person than 
chess" :o) 

w1 = wordnet.synset('joy.n.01') 

w2 = wordnet.synset('football.n.01') 

print(w1.wup_similarity(w2)) 

 

w1 = wordnet.synset('joy.n.01') 

w2 = wordnet.synset('chess.n.01') 

print(w1.wup_similarity(w2)) 

 
Program output: 
0.23529411764705882 

0.1 

📝 9.2.4 

Project: Synonym recommendation system 

Build a system that recommends synonyms for a given word based on semantic 
similarity. 

You should use the WordNet database to identify synonyms for words. The goal is 
to develop a system that, given an input word, returns a list of synonyms sorted by 
their semantic similarity.  

**You can implement different methods of measuring similarity, such as path 
similarity, Wu-Palmer similarity, or Leacock-Chodorow similarity. 

1. Load the WordNet database using the NLTK library. 

# write your code 

2. Define a function to fetch synonyms for a given word. 

# write your code 

3. Implement different similarity metrics to rank the synonyms.  

# write your code 
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4. Evaluate the performance of the system with example inputs.  

# write your code 

📝 9.2.5 

Project: Semantic text similarity for document matching 

Use WordNet to calculate semantic similarity between two texts (documents) to 
match similarity. 

Apply WordNet to measure the semantic similarity between two documents. The 
project will involve tokenizing the documents, extracting key words, and calculating 
the overall semantic similarity based on the WordNet synonyms and word 
meanings. This approach can be applied in real-world scenarios like document 
retrieval, plagiarism detection, or recommendation systems. 

1. Load the WordNet database using the NLTK library. 

# write your code 

2. Tokenize the text documents into words and remove stop words.  

# write your code 

3. For each word in the document, retrieve its synonyms and meanings using 
WordNet. 

# write your code 

4. Calculate pairwise semantic similarity between the words using WordNet’s 
similarity functions. 

# write your code 

5. Combine individual word similarities to compute the overall document similarity 
score. 

# write your code 

6. Apply the system to a set of documents/texts and use it for document matching 
or ranking. 

# write your code 



 

 

Document Models 

Chapter 10 
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10.1 Introduction 

🕮 10.1.1 

Document models are a foundational concept in text analysis and mining, enabling 
efficient representation and processing of textual data. When working with textual 
information, the choice of data representation directly impacts the success of the 
analysis. There are two primary approaches to representing text documents: data 
with dependencies and data without dependencies. 

The first approach, data with dependencies, considers the sequence and positional 
relationships of words within a sentence. This approach is vital for applications 
where grammatical structure or stylistic elements are analyzed, such as in natural 
language generation or linguistic studies. For example, understanding the 
difference between "The cat chased the dog" and "The dog chased the cat" requires 
this type of representation. However, this method can be computationally 
expensive due to the need to maintain word-order information. 

The second approach, data without dependencies, focuses solely on the presence 
of words, disregarding their order in a sentence. This representation is widely used 
in applications such as text classification and topic modeling, where the position of 
words is less important than their occurrence. For instance, in document 
classification, knowing that a document contains the words "finance," "budget," and 
"investment" might be sufficient to classify it as financial content. 

This distinction between dependency-aware and dependency-agnostic models 
helps in choosing the most appropriate method for specific problems. 

📝 10.1.2 

Which of the following are features of data without dependencies? 

• Words are represented based on their occurrence without considering their 
position. 

• Suitable for text classification and topic modeling. 
• Requires high computational resources to maintain word order. 
• Focuses on grammatical structure and style analysis. 

🕮 10.1.3 

When analyzing textual data, especially in large datasets, the use of document 
models simplifies processing. A document model transforms the text into a 
structured format, enabling faster and more accurate analysis. 

The Bag of Words (BoW) model is one of the simplest representations. In BoW, 
documents are represented as a collection of unique words (vocabulary), where 
each word's frequency in the document is recorded. For example, the sentence "The 
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cat chases the mouse" becomes a vector: {"the": 2, "cat": 1, "chases": 1, "mouse": 1}. 
This model disregards word order, focusing solely on occurrence and frequency. 

Another common model is the TF-IDF (Term Frequency-Inverse Document 
Frequency). This approach builds on BoW but also considers the importance of 
words. Words frequently appearing in a document but rarely in the dataset are given 
higher weights, reflecting their uniqueness. For instance, in a collection of news 
articles, the word "economy" might have a high weight in a financial news piece but 
low weight across the entire corpus. 

Both BoW and TF-IDF are computationally efficient, making them ideal for tasks 
such as document search, classification, and clustering. 

📝 10.1.4 

What is the key feature of the Bag of Words model? 

• Represents documents as a collection of unique words and their 
frequencies.  

• Considers the order of words in a sentence. 
• Applies weights based on the rarity of words in the corpus. 

🕮 10.1.5 

Beyond BoW and TF-IDF, vector models offer a more advanced representation of 
textual data. These models convert words or documents into numerical vectors, 
enabling mathematical operations for similarity and classification tasks. 

One such model is the Word2Vec, which uses neural networks to map words into 
continuous vector spaces. Unlike BoW, Word2Vec captures semantic relationships 
between words. For example, in a trained Word2Vec model, the vector for "king" 
minus "man" plus "woman" often results in a vector close to "queen." This semantic 
understanding is crucial for applications like recommendation systems and 
sentiment analysis. 

Another approach is doc2vec, which extends Word2Vec to represent entire 
documents instead of individual words. Doc2Vec captures the context of a 
document, making it suitable for paragraph or document-level tasks. 

These models are widely used in applications requiring an understanding of word 
semantics and contextual relationships. 

📝 10.1.6 

Which of the following are characteristics of Word2Vec? 

• Represents words as continuous vectors. 
• Captures semantic relationships between words. 
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• Focuses on word frequency alone. 
• Represents entire documents without context. 

🕮 10.1.7 

The choice of document models often depends on the specific task and the 
available computational resources. 

Bag of Words and TF-IDF are simple yet effective models for tasks that do not 
require semantic understanding. They are computationally efficient but fail to 
capture relationships between words. For example, these models cannot 
distinguish between synonyms like "car" and "automobile." 

In contrast, vector-based models like Word2Vec and doc2vec require more 
computational power but offer richer representations. These models are better 
suited for tasks requiring semantic understanding, such as summarization or 
translation. However, their training can be time-consuming, and they often require 
large datasets. 

The challenge lies in balancing simplicity and effectiveness, considering factors 
such as the size of the dataset, the complexity of the task, and available resources. 

📝 10.1.8 

Which factor influences the choice of a document model? 

• Availability of computational resources. 
• Predefined relationships in a knowledge graph. 
• Lack of text data for analysis. 

🕮 10.1.9 

Document models are at the heart of many NLP applications. In document retrieval, 
models like TF-IDF are used to rank documents based on their relevance to a 
search query. For example, search engines use document models to retrieve and 
rank web pages. 

In topic modeling, models like LDA (Latent Dirichlet Allocation) analyze large text 
corpora to identify common themes or topics. For instance, LDA might identify 
topics such as "sports," "politics," or "entertainment" in a collection of news articles. 

Sentiment analysis also leverages document models to determine the sentiment of 
text, such as whether a product review is positive, negative, or neutral. Using BoW 
or vector-based models, sentiment analysis systems can accurately classify the 
sentiment by analyzing the words used in the text. 
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📝 10.1.10 

Which of the following are applications of document models? 

• Document retrieval in search engines.  
• Topic modeling in large text corpora.  
• Speech recognition systems. 
• Image classification tasks. 

10.2 Boolean document model 

🕮 10.2.1 

The Boolean document model is one of the simplest approaches to representing 
text documents in information retrieval systems. It provides a straightforward 
method for determining the presence or absence of specific words in a document. 
This binary representation records whether a word exists in the document (1) or not 
(0). 

For example, if we analyze the sentence "The cat chases the mouse," the Boolean 
representation could look like this for a vocabulary of {"the," "cat," "dog"}: 

• "the": 1 
• "cat": 1 
• "dog": 0 

This simplicity makes the Boolean model highly efficient for basic search tasks, 
such as finding documents containing specific keywords. It operates on logical 
queries involving AND, OR, and NOT operations. For instance, a search query "cat 
AND mouse" will retrieve only those documents containing both words. 

The Boolean document model's advantage lies in its simplicity and ease of 
implementation. However, it does not consider word frequency or the context of the 
words, which limits its effectiveness in more nuanced applications. 

📝 10.2.2 

What does the Boolean document model record about words in a document? 

• Whether a word is present in the document or not.  
• The exact position of words in a document. 
• The frequency of words in the document. 

🕮 10.2.3 

The Boolean document model relies on logical operations to retrieve relevant 
documents based on user queries. These operations include: 
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1. AND - retrieves documents containing all specified keywords. For example, 
"cat AND mouse" will return documents where both "cat" and "mouse" are 
present. 

2. OR - retrieves documents containing at least one of the specified keywords. 
For example, "cat OR mouse" will return documents with either "cat," 
"mouse," or both. 

3. NOT - Excludes documents containing the specified keyword. For example, 
"cat NOT mouse" will return documents with "cat" but not "mouse." 

Consider a simple database of three documents: 

• Document 1: "The cat is sleeping." 
• Document 2: "The dog is barking." 
• Document 3: "The cat and the dog are playing." 

For the query "cat AND dog," only Document 3 is returned since it contains both 
words. For "cat OR dog," Documents 1, 2, and 3 are returned. For "cat NOT dog," 
only Document 1 is returned. 

These operations make the Boolean model efficient for straightforward searches, 
especially in systems where users are expected to know the exact keywords they 
are looking for. 

📝 10.2.4 

Which of the following are Boolean operations used in the document model? 

• AND 
• OR 
• NOT 
• XOR 

🕮 10.2.5 

The Boolean document model offers significant advantages due to its simplicity 
and clarity. It is computationally efficient, as it involves only binary operations, 
making it suitable for systems with limited resources. The model is particularly 
effective for exact-match queries, such as legal or medical document retrieval, 
where precision is crucial. 

However, the Boolean model has notable limitations. It does not consider word 
frequency or context, which are often important for understanding document 
relevance. For example, in a document about cats, the Boolean model treats the 
word "cat" the same whether it appears once or a hundred times. Additionally, the 
model does not rank documents by relevance, meaning all retrieved documents are 
considered equally suitable for the query. 
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To address these shortcomings, more advanced models like the vector space 
model or TF-IDF are often used in conjunction with or as alternatives to the Boolean 
model. 

📝 10.2.6 

What is a limitation of the Boolean document model? 

• It does not rank documents by relevance. 
• It is computationally inefficient. 
• It cannot handle exact-match queries. 

📝 10.2.7 

Task: Princess Fiona is looking for a groom. She would like to choose one who is 
beautiful, good and does not envy. As a good computer scientist, she recorded the 
basic characteristics of the suitors in a clear table. 

 

It is clear from the table that Prince Charming is beautiful, envious and lacks 
goodness. Shrek is good and, according to Fiona, beautiful. Similarly, the 
characteristics of the other two suitors can be read from the table. In this way, 
Fiona actually created a Boolean model of the properties of her suitors.  

From it, we can easily make vectors of the suitor's properties (columns of the 
table). For example, the vector for Prince Charming is (0,1,1,1), Shrek is (1,1,0,0), 
etc. We assume that the order of the examined properties will not change, and also 
that no new properties will be added. Similarly, (if the order of suitors is fixed) the 
vector for goodness (1,0,1,0,1), beauty (1,1,1,0,0), and envy (0,1,0,1, 0). 

If we work with Boolean vectors, we can relatively easily multiply them, count them, 
etc. Princess Fiona is looking for a groom who is good and not jealous. To find him, 
we just need to multiply the good vector with the negation of the envy vector. 

Goodness AND NOT(Envy) 

(1,0,1,0,1) AND NOT(0,1,0,1,0) = 10101 * 10101 = 10101 
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The resulting vector tells us that the first fairy creature in the table - Princess Fiona, 
the third - Shrek and the last (fifth) fairy-tale creature - Papa Smurf meet the search 
result. They are beings who are good and not jealous. So with this approach, Fiona 
would choose Papa Smurf or Shrek as her groom. 

What if Fiona wants someone, who is "handsome and not jealous?". 

Beauty AND NOT(Envy) 

(1,1,1,0,0) AND NOT(0,1,0,1,0) = 11100 * 10101 = 10100 

Besides Fiona, a third fairy creature fulfils the query result - Shrek. It is obvious that 
with several fairy creatures and a whole range of their examined properties, the 
calculation would be equally simple and, above all, fast. 

📝 10.2.8 

Task: Princess Fiona wants to find which suitor is most like her.  

The second advantage of the Boolean model is its use in searching for similarities. 
From the previous text, we know that individual suitors are expressed using a 
vector. For each suitor, we need to determine a number that expresses the degree 
of similarity to Fiona. In simplicity, this number will represent the number of 
common properties. The easiest choice is to count how many properties they have 
in common. 

Fiona ∙Charming = (1,1,0,1) ∙ (0,1,1,1) = 1.0 + 1.1 + 0.1 + 

1.1 = 2 

Fiona ∙Shrek = (1,1,0,1) ∙ (1,1,0,0) = 1.1 + 1.1 + 0.0 + 1.0 = 

2 

Fiona ∙Scrooge McDuck = (1,1,0,1) ∙ (0,0,1,1) = 1.0 + 1.0 + 

0.1 + 1.1 = 1 

Fiona ∙Papa Smurf = (1,1,0,1) ∙ (1,0,0,0) = 1.1 + 1.0 + 0.0 + 

1.0 = 1 

The results show that Princess Fiona is the most similar to Prince Charming and 
Shrek. 

For the similarity of the vectors of fairy creatures, we actually used vector dot 
product. The dot product is an operation over two n-dimensional vectors. The result 
of this operation is a number (a scalar, not a vector). 
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10.3 Vector model of the document 

🕮 10.3.1 

The Boolean document model provides a simple binary representation of text data 
but has significant limitations in capturing the complexity of language. For example, 
it cannot account for the frequency or importance of words in a document, which 
are often critical in real-world text analysis. To address these issues, the vector 
document model was developed. 

In the vector model, documents and words are represented numerically in a high-
dimensional space. Unlike the Boolean model, which uses binary values (0 or 1) to 
indicate the presence or absence of a word, the vector model allows for more 
detailed representation by including features like word frequency and importance. 
Each document is represented as a vector of numbers, with each dimension 
corresponding to a unique term in the vocabulary. 

For instance, consider three sentences: 

1. "The cat sleeps." 
2. "The dog sleeps." 
3. "The cat chases the dog." 

A vector representation would encode the occurrence of each unique word (e.g., 
"cat," "dog," "sleeps") across all documents. This richer representation enables 
more advanced text analysis, such as determining document similarity or 
identifying the most important terms in a corpus. 

📝 10.3.2 

Which of the following are features of the vector document model? 

• It accounts for word frequency.  
• It represents documents in a numerical vector space. 
• It uses binary values for words. 
• It ignores the importance of words. 

🕮 10.3.3 

The vector document model introduces significant improvements over the Boolean 
model. One key advantage is its ability to incorporate word frequency into the 
representation. Words that appear more frequently in a document contribute more 
to its vector, reflecting their importance within that specific context. This is useful 
in applications such as document classification and clustering. 

Additionally, the vector model supports the use of weighting schemes, such as TF-
IDF (Term Frequency-Inverse Document Frequency), to emphasize terms that are 
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highly relevant to a particular document but less common across the entire corpus. 
For example, in a news article about space exploration, the word "space" would 
receive a higher weight compared to common words like "the" or "and." 

The flexibility of the vector model also enables advanced similarity measures, such 
as cosine similarity, to compare documents. This makes it well-suited for search 
engines and recommendation systems, where ranking documents by relevance is 
essential. 

📝 10.3.4 

What is a benefit of the vector document model over the Boolean model? 

• It incorporates word frequency and importance.  
• It uses binary values for all features. 
• It cannot compare document similarity. 

🕮 10.3.5 

In the vector model, documents are often represented using a word frequency 
table. Each document is treated as a vector, where each dimension corresponds to 
a term in the vocabulary, and the values indicate the term’s frequency in that 
document. 

For example, using Python’s CountVectorizer from the scikit-learn library, we can 
construct a word frequency vector for the sentences: 

1. "The cat sleeps." 
2. "The dog sleeps." 
3. "The cat chases the dog." 

After applying CountVectorizer, we might get the following matrix: 

cat | dog | sleeps | chases  

 1  |  0  |    1   |   0     # Document 1 

 0  |  1  |    1   |   0     # Document 2 

 1  |  1  |    0   |   1     # Document 3 

Each row represents a document, and each column represents a word in the 
vocabulary. This table makes it possible to compare documents quantitatively, 
such as calculating their similarity or clustering them into related groups. 

📝 10.3.6 

What does a word frequency table represent in the vector model? 

• The count of each word in a document. 
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• The numerical representation of documents in vector space. 
• The relative position of words in a sentence. 
• The binary presence or absence of words. 

📝 10.3.7 

Task: Princess Fiona discovers that the suitors are not equally rich. Although 
Charming and Scrooge McDuck, in the position of the vector element expressing 
wealth, have the value 1, but the amount of their wealth differs significantly. How 
do we express "size", and/or the importance of the examined properties? 

The Boolean model presented in the previous subsection is very simple for 
document representation, but mainly for the document search itself. However, it 
cannot capture the quantity or quality of stored features/words in a document. For 
this reason, it is practically only used for studying an introduction to the field of 
document search. 

The vector model of the document is more applicable (the Boolean model also used 
vectors, the so-called Boolean vectors, whose elements take the value 0 or 1). In the 
vector model, we also assume an invariant order of documents (in our example - 
fairy creatures) and also of words/terms (in our example – suitors properties).  

In contrast to the Boolean model, we can take into account the frequency of words 
occurrence, the importance of words, etc. in the vector model. 

In the following sample, we can see a typical result of the word frequency table in a 
sentence. CountVectorizer() method is used to create a word frequency vector 
directly from the texts. The input to the method is a list of texts. The method is part 
of the scikit-learn library. 

shrek = "heroism heroism heroism heroism heroism heroism 

heroism heroism heroism heroism envy envy" 

charming = "heroism envy envy envy envy envy" 

After loading the simplified texts, we import the libraries. We will use the pandas 
library for an informative model report. 

import pandas 

from sklearn.feature_extraction.text import CountVectorizer 

 

vectorizer = CountVectorizer() 

We will create the document vectors themselves with the fit_transform() function. 
For checking, we convert the output corpus into a data frame and print out. 

corpus = vectorizer.fit_transform([shrek, charming]) 

 



Document Models | FITPED AI 

159 

print(pandas.DataFrame(corpus.A, 

columns=vectorizer.get_feature_names_out(), index=["shrek", 

"charming"])) 

Program output: 
          envy  heroism 

shrek        2       10 

charming     5        1 

It is clear that we have created two frequency vectors  

• shrek (2,10)  
• charming (1,5). 

📝 10.3.8 

In the chapter about the Boolean model of documents, we investigated how many 
properties the fairy creatures have in common. So we determined for the fiona 
vector its proximity to the shrek and charming vector. This was done by a simple 
vector dot product. We can choose the same procedure in the case of the vector 
model. Let's imagine that the fairy creatures from the Kingdom beyond the seven 
mountains make their badges on an Internet dating site. For the sake of simplicity, 
we will focus only on two traits: "heroism" and "envy". Badges could look like this: 

 

The trait "heroism" will belong to the first number of the vector, and the trait "envy" 
to the second number. If we consider word frequency vectors, they will look like 
this. 

 

Similar to the Boolean document model, a vector dot product can also be used in 
this case. 
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From the result, it can be seen that Fiona has more features in common with Shrek, 
even taking into account the frequency of their occurrence. We are in a fairy 
tale????. 

🕮 10.3.9 

However, the vector model has its weak point. If fairy creatures wrote their own 
badges, Shrek probably would not say much about himself. On the other hand, 
Charming would definitely "expand" and boast about himself. Charming's badge 
would probably be longer, i.e. with more text than Shrek's budge. For the simplicity 
of the example, let's assume that Charming only copies the text of his budge three 
times in order to achieve the largest budge. The word "heroism" will appear 3 times 
and envy 15 times in such badge. The vector representing Charming's badge is 
three times his previous one, i.e. 

Then the feature similarity calculation would look like this: 
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🕮 10.3.10 

Despite the fact that Shrek's resemblance to Fiona is the highest, let's note that in 
the long Charming's badge, his resemblance is almost similar. It is obvious that if 
Charming had copied his text, e.g. 10 times, he would be the best candidate (the 
candidate with the highest similarity value) for all the dating “hungry” women on the 
dating site. 

From the example, it is clear that the vector model with frequencies of words/terms 
greatly disqualifies short texts and disproportionately helps documents with long 
texts. 

A simple solution is not to create a vector of (so-called absolute) word frequencies, 
but to work with relative frequencies. The terms absolute and relative frequencies 
in statistics do not mean anything other than the actual number and the number 
converted to the proportional (percentage) representation of words in the 
document. In the example with badges, it is necessary to divide the number of 
words by the number of all words on the badge of the fairy creature. By relative 
frequencies, the creature vector would look as follows: 

 

It can be seen from the example that the vector is the same for the relative 
frequencies even for Charming's original badge and also for copying its properties 
three times. For completeness, we present the final calculation of similarities using 
the vector dot product. 
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10.4 Bag of words 

🕮 10.4.1 

The Bag of Words (BoW) model is a fundamental method for representing text data 
in machine learning and NLP. It is called "Bag of Words" because it treats each 
document as a collection (or bag) of words, disregarding the order of the words and 
focusing solely on their presence or frequency. 

In this model, a vocabulary of unique words across all documents in a corpus is 
created. Each document is then represented as a vector, where each element 
corresponds to a word in the vocabulary. The value of each element is typically the 
count of the word's occurrence in the document. 

For example, in a corpus with two sentences: 

1. "The cat sat on the mat." 
2. "The dog sat on the mat." 

The vocabulary is: ["The," "cat," "sat," "on," "the," "mat," "dog"]. Each document can be 
represented as a vector of word frequencies: 

• Sentence 1: [1, 1, 1, 1, 0, 1, 0] 
• Sentence 2: [1, 0, 1, 1, 0, 1, 1] 

The BoW vector can be either boolean or numerical, depending on how it represents 
the presence or frequency of words: 

• Boolean vector - where each element of the vector is either 0 or 1 (0 
indicates the word is not present in the document, 1 indicates the word is 
present in the document). 

• Numerical vector where each element of the vector is a number that 
represents the frequency of the word in the document.  

In practice, numerical vectors are more frequently used, as they provide richer 
information about the document by considering word frequency, which is important 
for many machine learning applications. 

📝 10.4.2 

What are the characteristics of the Bag of Words model? 

• It creates a vector of word counts.  
• It builds a vocabulary of unique words. 
• It focuses on word order. 
• It uses grammatical relationships between words. 
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🕮 10.4.3 

The BoW model involves the following steps: 

1. Tokenization split the text into individual words or tokens. 
2. Vocabulary creation create a list of all unique words in the corpus. 
3. Vectorization represent each document as a vector based on the frequency 

of words in the vocabulary. 

For example, consider the corpus: 

• Document 1: "I love programming." 
• Document 2: "Programming is fun." 

The vocabulary is: ["I," "love," "programming," "is," "fun"]. 

The vectors are: 

• Document 1: [1, 1, 1, 0, 0] 
• Document 2: [0, 0, 1, 1, 1] 

This process converts text into numerical data that can be used for machine 
learning models, but it does not consider the order or context of the words. 

📝 10.4.4 

What is the first step in creating a Bag of Words representation? 

• Splitting the text into individual tokens. 
• Counting the frequency of words in the document. 
• Sorting the vocabulary alphabetically. 

🕮 10.4.5 

Advantages and limitations 

The Bag of Words model is simple, interpretable, and easy to implement. It is 
especially effective for tasks like document classification and spam detection.  

However, it has several limitations: 

• Lack of context - the model disregards the order of words, making it unable 
to understand context or meaning. 

• High dimensionality - for large corpora, the vocabulary can become very 
large, leading to sparse and high-dimensional vectors. 

• Inability to handle synonyms - words like "happy" and "joyful" are treated as 
completely unrelated. 
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Despite these limitations, BoW remains a useful foundational model for text 
analysis, and its simplicity makes it a good starting point for NLP tasks. 

📝 10.4.6 

Which of the following are limitations of the Bag of Words model? 

• It creates high-dimensional vectors for large vocabularies. 
• It cannot handle synonyms effectively. 
• It captures word order in sentences. 
• It is difficult to implement. 

🕮 10.4.7 

Bag of Words applications 

The Bag of Words model is widely used in various text analysis tasks: 

• Spam detection - represent emails as vectors of word counts to identify 
spam words like "free," "offer," or "win." 

• Document classification - classify news articles into categories like sports, 
politics, or entertainment based on their word usage. 

• Sentiment analysis - determine whether a review is positive or negative by 
analyzing the frequency of words like "great" or "terrible." 

• Information retrieval - search engines use BoW to match user queries with 
relevant documents. 

These applications demonstrate the practical utility of BoW despite its simplicity. 
However, for more nuanced tasks requiring context, other models may be more 
effective. 

📝 10.4.8 

Which of the following is an application of the Bag of Words model? 

• Classifying emails as spam or not spam. 
• Predicting the next word in a sentence. 
• Translating text from one language to another. 

🕮 10.4.9 

Enhancements to Bag of Words 

To address the limitations of the Bag of Words model, various enhancements have 
been developed: 
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• TF-IDF (Term Frequency-Inverse Document Frequency) adjusts the word 
frequency by its importance in the corpus, giving less weight to common 
words. 

• N-grams - instead of individual words, N-grams consider sequences of N 
words, capturing some context and word order. 

• Dimensionality reduction - techniques like Principal Component Analysis 
(PCA) can reduce the high dimensionality of BoW vectors. 

For instance, applying TF-IDF to a Bag of Words model for spam detection would 
downweight common words like "the" and emphasize more distinctive terms like 
"win" or "offer." 

📝 10.4.10 

Project: Bag of word implementation 

(by https://builtin.com/machine-learning/bag-of-words) 

Implement the bag-of-words model. 

 

1. Method implementation 

# Assumes that 'doc' is a list of strings and 'vocab' is some 

iterable of vocab 

# words (e.g., a list or set) 

def get_bag_of_words(doc, vocab): 

   # Create initial dictionary which maps each vocabulary word 

to a count of 0 

   word_count_dict = dict.fromkeys(vocab, 0) 

   # For each word in the doc, increment its count 

   for word in doc: 

       word_count_dict[word] += 1 

   # Now, initialize the vector to a list of zeros 

   bag = [0] * len(vocab) 

   # For every vocab word, set its index equal to its count 

   for i, word in enumerate(vocab): 

       bag[i] = word_count_dict[word] 

   return bag 

2. Method use 

• This code assumes that we have already managed to represent our 
document as a list of separated strings. 

import re 

https://builtin.com/machine-learning/bag-of-words
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# Define the vocabulary 

vocab = ['a', 'am', 'and', 'anywhere', 'are', 'be', 'boat', 

'box', 'car',\ 

        'could', 'dark', 'do', 'eat', 'eggs', 'fox', 'goat', 

'good', 'green',\ 

        'ham', 'here', 'house', 'i', 'if', 'in', 'let', 

'like', 'may', 'me',\ 

        'mouse', 'not', 'on', 'or', 'rain', 'sam', 'say', 

'see', 'so', 'thank',\ 

        'that', 'the', 'them', 'there', 'they', 'train', 

'tree', 'try', 'will',\ 

        'with', 'would', 'you'] 

# Define the document 

doc = ("I would not like them here or there.\n" 

      "I would not like them anywhere.\n" 

      "I do not like green eggs and ham.\n" 

      "I do not like them") 

# Convert to lowercase 

doc = doc.lower() 

# Split on all non-alphanumeric characters (i.e., whitespace 

and punctuation) 

doc = re.split("\W", doc) 

# Drop empty strings that arise from splitting 

doc = [s for s in doc if len(s) > 0] 

bag_of_words = get_bag_of_words(doc, vocab) 

print(bag_of_words) 

 
Program output: 
[0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 2, 0, 1, 0, 0, 0, 1, 1, 1, 

0, 4, 0, 0, 0, 4, 0, 0, 0, 4, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 3, 

1, 0, 0, 0, 0, 0, 0, 2, 0] 

We used a regular expression library to split the document into words only; the 
pattern "\W" represents any non-word character. 

📝 10.4.11 

Project: Visualisation of Bag of Words representation for a document 

Create a Python project that converts a single document into its Bag of Words 
(BoW) representation and visualizes the word frequencies using various visual 
methods, such as bar charts, word clouds, and heatmaps. 
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1. Import libraries 

import matplotlib.pyplot as plt 

from wordcloud import WordCloud 

from sklearn.feature_extraction.text import CountVectorizer 

import pandas as pd 

 
Program output: 
/home/johny/.local/lib/python3.9/site-

packages/matplotlib/projections/__init__.py:63: UserWarning: 

Unable to import Axes3D. This may be due to multiple versions 

of Matplotlib being installed (e.g. as a system package and as 

a pip package). As a result, the 3D projection is not 

available. 

  warnings.warn("Unable to import Axes3D. This may be due to 

multiple versions of " 

2. Input Document: 

• Accept a document as input (either as plain text or from a file). 

# Step 1: Load Document 

document = "He who carries a pure heart does not need much to 

be happy. He easily takes off from the morning dew on lame 

wings to heaven. Little children of God. Wandering stars. 

Lilies follow them. And God knows it. And He will not forget. 

Neither will we." 

3. Preprocessing: 

• Tokenize the document. 
• Convert text to lowercase. 
• Remove stop words, punctuation, and special characters. 
• Optional: Perform stemming or lemmatization. 

# Step 2: Preprocess Text 

def preprocess(text): 

    import re 

    from nltk.corpus import stopwords 

    stop_words = set(stopwords.words('english')) 

    text = re.sub(r'[^\w\s]', '', text.lower()) 

    tokens = text.split() 

    tokens = [word for word in tokens if word not in 

stop_words] 

    return ' '.join(tokens) 
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processed_text = preprocess(document) 

4. Bag of Words representation: 

• Create a BoW model using a library like CountVectorizer from scikit-learn. 
• Alternatively, manually count word frequencies. 

# Step 3: Create BoW Representation 

vectorizer = CountVectorizer() 

bow_matrix = vectorizer.fit_transform([processed_text]) 

bow_df = pd.DataFrame(bow_matrix.toarray(), 

columns=vectorizer.get_feature_names_out()) 

5. Data preparation for visualization: 

• Extract unique words and their frequencies from the BoW model. 
• Sort words by frequency for better visualization. 

word_counts = bow_df.sum().sort_values(ascending=False) 

6a. Visualization: 

• Bar chart displays the top N most frequent words and their counts. 
• Word cloud shows word frequencies in a cloud, where the size of each word 

is proportional to its frequency. 

# Step 4: Visualization 

# Bar Chart 

plt.figure(figsize=(10, 5)) 

word_counts.head(10).plot(kind='bar', color='skyblue') 

plt.title("Top 10 Word Frequencies") 

plt.xlabel("Words") 

plt.ylabel("Frequency") 

plt.show() 

 

# Word Cloud 

wordcloud = WordCloud(width=800, height=400, 

background_color='white').generate_from_frequencies(word_count

s) 

plt.figure(figsize=(10, 5)) 

plt.imshow(wordcloud, interpolation='bilinear') 

plt.axis('off') 

plt.title("Word Cloud") 

plt.show() 
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Program output: 

 

 

5b. Visualization: 

• Heatmap creates a heatmap of word counts for sentences or sections of the 
document. 

# finish code 
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10.5 TF-IDF model 

🕮 10.5.1 

In text analysis and NLP, not all words are equally important. While some words, 
like "the" or "and," appear frequently across most documents, they often carry little 
significance for distinguishing between documents. To address this, the concept of 
Inverse Document Frequency (IDF) is introduced. 

IDF is a statistical measure that evaluates how important a word is to a document 
relative to a collection of documents (also called a corpus). The key idea is that 
words occurring in fewer documents are more informative and receive a higher IDF 
value, while words that appear in many documents have lower IDF values. 

For instance, consider a corpus of three documents: 

1. "The cat sleeps on the mat." 
2. "The dog sleeps in the house." 
3. "The bird sleeps in the tree." 

Here, the word "sleeps" appears in all three documents, making it less unique. On 
the other hand, words like "cat," "dog," and "bird" appear in only one document each, 
giving them higher IDF values. 

📝 10.5.2 

What is the purpose of IDF in text analysis? 

• To determine how important a word is relative to a corpus. 
• To emphasize rare words across documents. 
• To measure the frequency of a word in a single document. 
• To increase the weight of commonly occurring words. 

🕮 10.5.3 

The IDF value for a term is calculated using the following formula: 

 

Where: 

• t is the term (word) being evaluated. 
• N is the total number of documents in the corpus. 
• nt is the number of documents containing the term t. 
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This formula ensures that terms appearing in fewer documents get higher IDF 
values, while terms present in many documents get lower values. For example, if a 
corpus has 100 documents, and the term "cat" appears in 5 of them, the IDF for 
"cat" would be: 

 

In contrast, if the term "the" appears in all 100 documents, its IDF would be: 

 

📝 10.5.4 

What does nt represent in the IDF formula? 

• The number of documents containing the term. 
• The frequency of the term in a single document. 
• The total number of terms in the corpus. 

🕮 10.5.5 

IDF is a cornerstone of text analysis because it allows algorithms to focus on 
meaningful words while ignoring less informative ones. When combined with Term 
Frequency (TF), IDF becomes part of the TF-IDF weighting scheme, which is widely 
used in search engines, document classification, and recommendation systems. 

Consider a search engine indexing millions of webpages. If a user searches for 
"machine learning," the term "machine" might appear in many unrelated documents, 
but "learning" might be more unique to relevant content. By applying IDF, the search 
engine can prioritize documents where "learning" is significant, improving the 
relevance of the search results. 

For example, in a dataset of articles: 

• "AI revolutionizes machine learning." 
• "Learning new recipes is fun." 
• The term "learning" would have a higher IDF if it appears in fewer unrelated 

contexts. 

IDF also plays a role in filtering out stop words. Words like "and," "the," and "is" have 
near-zero IDF values, ensuring they don't dominate the analysis, allowing for a 
cleaner focus on more distinctive terms. 
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📝 10.5.6 

How does IDF improve text analysis? 

• It increases the weight of distinctive terms. 
• It helps filter out stop words.  
• It prioritizes common words across documents. 
• It measures the total frequency of terms in a document. 

📝 10.5.7 

Relative frequencies are the basis of the TF-IDF model. In the model, the frequency 
of the term TF (Term frequency) is defined, it represents the mentioned relative 
frequencies. Thus, TF is the number of occurrences of a term/word in a document 
normalized by dividing it by the total number of terms/words in the document. It is 
calculated as the ratio of term frequency in the document to the total number of 
terms. 

Let t be a term/word, d be a document, and w be any term in the document, then we 
can calculate the frequency of the term/word t in document d as 

 

where f(t,d) is the number of terms/words in the document d and f(w,d) is the 
number of all terms in the document. 

When calculating the TF-IDF, the number of all documents in which the term/word 
occurs is also taken into account. We denote this number by df(t,D) - document 
frequency and express it as  

 

where D is a corpus of all documents we work with.  

Based on the document frequency, it is possible to calculate the Inverse Document 
Frequency, which expresses how common a term/word is in the corpus of 
documents. The more common the term, the lower its value. We calculate it as 
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where N is a number of document in corpus and df(t,D) is the already mentioned 
document frequency. The value of +1 in the formula is due to the division by zero 
treatment, since the document frequency can also be 0. 

The mentioned formulas represent partial calculations for the calculation of TF-IDF 
(Term frequency – inverse document frequency), which determines how important 
the selected word is for a given document in the corpus of documents. We 
calculate the TD-IDF as 

 

that is, exactly according to its name as the term/word frequency multiplied by the 
inverse document frequency. 

📝 10.5.8 

TF-IDF vectors are calculated using the TfidfVectorizer method of the scikit-learn 
library. Unlike the example for CountVectorizer() from the previous chapter, we 
need to consider the complete corpus of documents, i.e. all badges. For this 
reason, we also added the text of Princess Fiona's visiting. Most of the source code 
is practically the same as in the previous chapter, only the method for calculating 
the TF-IDF is replaced. 

fiona = "heroism heroism heroism heroism envy envy" 

shrek = "heroism heroism heroism heroism heroism heroism 

heroism heroism heroism heroism envy envy" 

charming = "heroism envy envy envy envy envy" 

 

import pandas 

from sklearn.feature_extraction.text import TfidfVectorizer 

 

vectorizer = TfidfVectorizer() 

 

corpus = vectorizer.fit_transform([fiona, shrek, charming]) 

 

print(pandas.DataFrame(corpus.A, 

columns=vectorizer.get_feature_names_out(), index=["fiona", 

"shrek", "charming"])) 

 
Program output: 
              envy   heroism 

fiona     0.447214  0.894427 

shrek     0.196116  0.980581 

charming  0.980581  0.196116 
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From the results, it is possible to easily find the TF-IDF vector, e.g. for Princess 
Fiona 

 

as well as other beings. Finally, please note that the TF-IDF calculation has several 
modifications and enhancements. In this chapter we presented the basic approach 
for TF-IDF calculation, while the TfidfVectorizer method contains an already 
enhanced approach. If we were to calculate the TF-IDF "manually" according to the 
given formulas, the results would be slightly different. In our example, e.g. the 
occurrence of two terms in all three documents (practically impossible in a reality) 
leads to a negative result of the logarithm. However, by TF-IDF enhancing, we would 
complicate the text comprehensibility and clarity. Our main goal was to present a 
simple and comprehendible approach to TF-IDF. 

📝 10.5.9 

Project: Count TF-IDF 

(by https://medium.com/nlplanet/two-minutes-nlp-learn-tf-idf-with-easy-examples-
7c15957b4cb3) 

TF-IDF was first designed to search for documents and retrieve information by 
running a query to find the most relevant documents. Suppose the query is the text 
"the error". The system would assign each document a higher score proportional to 
the frequency of the query words found in the document, weighing rarer words like 
"error" against more common words like "the". 

Suppose we are searching for documents using the query Q and our database 
consists of documents D1, D2, and D3. 

• Q: The cat. 
• D1: The cat is on the mat. 
• D2: My dog and cat are the best. 
• D3: The locals are playing. 

There are several ways to calculate TF, the simplest being the raw number of times 
a word appears in a document. We calculate the TF score using the ratio of the 
number of instances to the length of the document. 

TF(word, document) = "number of occurrences of the word in the 

document" / "number of words in the document" 

    TF("the", D1) = 2/6 = 0.33 

    TF("the", D2) = 1/7 = 0.14 

    TF("the", D3) = 1/4 = 0.25 

    TF("cat", D1) = 1/6 = 0.17 

https://medium.com/nlplanet/two-minutes-nlp-learn-tf-idf-with-easy-examples-7c15957b4cb3
https://medium.com/nlplanet/two-minutes-nlp-learn-tf-idf-with-easy-examples-7c15957b4cb3
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    TF("cat", D2) = 1/7 = 0.14 

    TF("cat", D3) = 0/4 = 0 

The IDF can be calculated by taking the total number of documents, dividing it by 
the number of documents that contain the word, and taking the logarithm. If the 
word is very common and occurs in many documents, this number will be close to 
0. Otherwise, it will be close to 1. 

IDF(word) = log("number of documents" / "number of documents 

that contain the word") 

    IDF("the") = log(3/3) = log(1) = 0 

    IDF("cat") = log(3/2) = 0.18 

Multiplying TF and IDF gives you the TF-IDF score of a word in a document. The 
higher the score, the more relevant the word is in that document. 

TF-IDF(word, document) = TF(word, document) * IDF(word) 

    TF-IDF("the", D1) = 0.33 * 0 = 0 

    TF-IDF("the", D2) = 0.14 * 0 = 0 

    TF-IDF("the", D3) = 0.25 * 0 = 0 

    TF-IDF("cat", D1) = 0.17 * 0.18 = 0.0306 

    TF-IDF("cat", D2) = 0.14 * 0.18 = 0.0252 

    TF-IDF("cat", D3) = 0 * 0 = 0 

The next step is to use the ranking function to rank the documents according to the 
TF-IDF scores of their words. We can use the average TF-IDF scores of the words in 
each document to obtain the rankings D1, D2, and D3 with respect to the query Q. 

    Average TF-IDF of D1 = (0 + 0.0306) / 2 = 0.0153 

    Average TF-IDF of D2 = (0 + 0.0252) / 2 = 0.0126 

    Average TF-IDF of D3 = (0 + 0) / 2 = 0 

Finally, when executing the query "The cat" over the document collection D1, D2, 
and D3, the results will be sorted: 

1. D1: The cat is on the mat. 
2. D2: My dog and cat are the best. 
3. D3: The locals are playing. 

The word "the" does not contribute to the TF-IDF score of each document. This is 
because "the" occurs in all documents and is therefore not considered a relevant 
word. 



 

 

Document Similarity 

Chapter 11 
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11.1 Introduction 

🕮 11.1.1 

Document similarity refers to the measure of how alike two pieces of text are. It is 
widely used in various applications, such as detecting plagiarism, clustering similar 
documents, and recommending content. Document similarity is not only about 
matching exact words but also capturing semantic or contextual similarity. 

For example, the sentences “The cat is on the mat” and “A feline sits on a rug” have 
different words but similar meanings. Measuring similarity between such sentences 
requires advanced techniques that go beyond simple word matching. 

Common approaches to measuring document similarity include: 

• Lexical similarity - measures the overlap of words between documents. 
• Semantic similarity - considers the meaning of words using techniques like 

WordNet or embeddings. 

Imagine searching for research papers about machine learning. A system that uses 
document similarity can recommend articles that discuss neural networks, even if 
the term “machine learning” is not explicitly mentioned in them. 

📝 11.1.2 

Which of the following statements about document similarity are correct? 

• It measures how alike two pieces of text are. 
• It can involve both lexical and semantic approaches. 
• It is only useful for matching exact words. 
• It is irrelevant for document clustering. 

🕮 11.1.3 

Lexical similarity 

Lexical similarity compares documents based on the overlap of their words. This 
method is straightforward and works well for applications where exact word 
matching is sufficient. For example, comparing two product descriptions to check if 
they mention the same features. 

Key techniques: 

1. Jaccard similarity - measures the ratio of the intersection of words to the 
union of words. 
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• Example: For sets A = {apple, orange} and B = {apple, banana}, Jaccard 
similarity is:  

J(A,B)=Intersection / Union = 1 / 3  

• Cosine similarity calculates the cosine of the angle between two vectors 
(e.g., Bag of Words). Will be explained later. 

For two sentences: 

• "I like apples and bananas." 
• "I enjoy apples." 

Lexical similarity methods will focus only on matching the exact words like apples. 

📝 11.1.4 

Which techniques are examples of lexical similarity? 

• Cosine similarity 
• Jaccard similarity 
• Neural embeddings 
• WordNet-based similarity 

🕮 11.1.5 

Semantic similarity 

Semantic similarity goes beyond word matching and considers the meaning of 
words and their context. It is essential for cases where two texts share similar 
ideas but use different words. 

Key methods 

• WordNet-based similarity uses a lexical database to compute the closeness 
of word meanings. Example: The words car and automobile are semantically 
similar in WordNet. 

• Word embeddings represent words as vectors in a high-dimensional space, 
capturing their meanings. Example: In word embeddings, the words king and 
queen are close in the vector space. 

The sentences “The dog chased the cat” and “A canine pursued a feline” are 
semantically similar, even though they do not share exact words. 

📝 11.1.6 

Which of the following are examples of semantic similarity methods? 
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• Cosine similarity of word embeddings 
• WordNet-based similarity  
• Jaccard similarity 
• Bag of Words 

🕮 11.1.7 

Cosine similarity 

Cosine similarity is a commonly used method to measure the similarity between 
two documents. It calculates the cosine of the angle between two vectors 
representing the documents. 

 

Where A and B are term frequency vectors of the two documents. 

Example: Consider two documents with Bag of Words vectors: 

• Document 1: [2, 0, 1, 1] 
• Document 2: [1, 1, 0, 1] 

The cosine similarity is: 

 

Applications of similarity: 

• Recommending similar products. 
• Grouping similar articles in search engines. 

📝 11.1.8 

Which of the following statements about cosine similarity are correct? 

• It is used to measure the similarity of document vectors.  
• It is based on the angle between vectors. 
• It calculates the intersection of words between documents. 
• It cannot be used with Bag of Words. 

🕮 11.1.9 

Applications of document similarity 

Document similarity has numerous applications across industries and fields. Some 
common applications include: 
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• Plagiarism detection systems identify cases of copied content by comparing 
text similarity. Example: A university system that checks students’ essays for 
similarity with existing papers. 

• Recommendation systems suggest content (articles, products) based on 
textual similarity. Example: Recommending movies by analyzing their 
descriptions. 

• Text clustering groups similar documents together for topic analysis. 
Example: Clustering news articles by topic (e.g., sports, politics). 

• Information retrieval ranks search results by similarity to the query. 

📝 11.1.10 

Which of the following are applications of document similarity? 

• Plagiarism detection 
• Clustering similar articles  
• Tokenization 
• Removing stop words 

11.2 Application 

📝 11.2.1 

Project: Find similar suitor 

If the princess finds which of her suitors is similar to her, she can narrow down the 
selection of suitors (if she believes that "opposites" attract mutually, she can also 
narrow down the selection, only she will focus on the least similar suitors, from the 
point of view of the calculation, it is the same a task with a different result ranking 
according to similarity). Apart from the world of fairy tales, finding similarities 
between documents is, if not "every second", then certainly a daily task of many 
systems. A typical example is Internet search engines, which constantly search for 
documents most similar to the user's search query. However, this area is not the 
only one. Systems, e.g. check students´ works for plagiarism, naturally based on the 
similarity of the documents. Email servers verify and check spam based on the 
similarity between a message and messages labelled as spam in the past, hotel 
reservation services are constantly searching for offers similar to customer 
requests, and constantly “pushing” ads in the browser based on the similarity of the 
ad to your previous website visits is also a daily occurrence. 

The basis for determining similarity is to design an appropriate object 
representation. Not only for documents, the most suitable representation is the 
form of vectors, which we described in the previous text. 

Task: Princess Fiona wants to choose a suitor who is similar to her. She narrowed 
her choice to Shrek and Prince Charming. For the sake of simplicity, she only 
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wants to track the traits "envy" and "heroism". So she is looking for a suitor who 
has the same (similar) amount of envy and is a similar hero as she is.  

The simplified measures of envy and heroism are shown in the following table, 
compiled by Princess Fiona. It was necessary for her to evaluate herself as well 
(she will be looking for someone most similar to her). She self-critically admitted 
that she is also "a little" envious 

 

We can insert the fairy creatures into the table using the Pandas library. 

 
import pandas as pd 

import numpy as np 

 

beings = pd.DataFrame([ 

    {'being': 'Fiona', 'heroism': 4, 'envy': 2}, 

    {'being': 'Shrek', 'heroism': 10, 'envy': 2}, 

    {'being': 'Charming', 'heroism': 1, 'envy': 5}, 

]) 

 

print(beings) 

 
Program output: 
      being  heroism  envy 

0     Fiona        4     2 

1     Shrek       10     2 

2  Charming        1     5 

We will use the NumPy library to work and determine the vector similarity. NumPy is 
a basic library for computing. It is ideal for working with matrices and vectors. For 
this reason, we will do the following basic calculation of the similarity of fairy 
creatures, which will be represented by a vector. From the data we currently have 
loaded using Pandas, we can create three vectors representing fairy creatures. 

fiona = np.array(beings.iloc[0, [1, 2]]) 

shrek = np.array(beings.iloc[1, [1, 2]]) 

charming = np.array(beings.iloc[2, [1, 2]]) 
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print(fiona) 

print(charming) 

 
Program output: 
[4 2] 

[1 5] 

We assume that most real-world examples will have data in Pandas. If we do not 
use Pandas, we can also directly load the vectors of the three fairy creatures in 
NumPy. 

fiona = np.array([4, 2]) 

shrek = np.array([10, 2]) 

charming = np.array([1, 5]) 

Whether we do the given operation directly by typing it into NumPy or by loading 
NumPy from Pandas, at the end of both procedures we will have three variables 
fiona, shrek, and charming, in which a vector representing the properties of fairy 
creatures will be stored. In our case, these are two-dimensional vectors, for better 
visualization we can plot them on a graph using the PyPlot library. 

import warnings 

warnings.filterwarnings("ignore") 

import matplotlib.pyplot as plt 

 

# Set axis labels for X and Y 

plt.xlabel('heroism') 

plt.ylabel('envy') 

 

# Plotting the points on the graph 

plt.plot(fiona[0], fiona[1], 'ro', color='r') 

plt.plot(shrek[0], shrek[1], 'ro', color='g') 

plt.plot(charming[0], charming[1], 'ro', color='b') 

 

# Setting annotations for the points 

plt.annotate('fiona', (fiona[0]-0.4, fiona[1]+0.2)) 

plt.annotate('shrek', (shrek[0]-0.4, shrek[1]+0.2)) 

plt.annotate('charming', (charming[0]-0.4, charming[1]+0.2)) 

 

# Setting the range of the displayed axes X and Y 

plt.axis([0, 11, 0, 6]) 

 

# Display the graph 

plt.show() 
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Program output: 

 
 

Even at the first look at the graph, you can see that Princess Fiona is closer to 
Charming than to Shrek. In our task, according to the assignment, we choose a 
suitor for Fiona who is most similar to her. "Similarity" is practically the basic 
building block for various data mining methods, such as recommendation system, 
object clustering, anomaly classification and detection, etc. The similarity measure 
is a metric indicating how similar or how far two objects are (distance). If the 
distance is small, it will be a high degree of similarity. A large distance means a low 
degree of similarity. Similarity is subjective and depends on the domain area of the 
issue being addressed. 

The aim of our endeavour will be to find a number representing the relationship 
between two fairy creatures. We represented beings using vectors: 

Fiona = (4,2) 

Shrek = (10,2)   

Charming = (1,5)   

The proven procedure of mathematicians, how to express the "vector relationship" 
with a number, is to calculate the vector dot product. In this way, we have already 
calculated the similarity for the Boolean and vector models, the calculation was 
carried out according to the formula. The vector dot product is defined as the 
product of the absolute values of the magnitudes of two vectors and the cosine of 
the angle between them. The result is always a scalar.  
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It is similarly simple in Python, where we use the dot() function from the NumPy 
library to calculate the vector dot product. 

fiona = np.array([4, 2]) 

shrek = np.array([10, 2]) 

charming = np.array([1, 5]) 

 

print("Similarity of fairy tale characters: \n", 

      "Fiona and Shrek:", np.dot(fiona, shrek), "\n", 

      "Fiona and Charming:", np.dot(fiona, charming)) 

 
Program output: 
Similarity of fairy tale characters:  

 Fiona and Shrek: 44  

 Fiona and Charming: 14 

📝 11.2.2 

Euclidean distance 

The basic metric for determining similarity is the Euclidean distance. Euclidean 
distance is also known as simple distance. The Euclidean distance between two 
points is the length of the path connecting them.  

 

In our example, we can easily make a function to calculate the Euclidean distance. 

def euclidean_distance(x, y): 

    return np.sqrt(np.sum((x - y) ** 2)) 

For the definition of the function, we used the NumPy library with the following 
functions: 
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By calling the designed function euclidean_distance(), we can find the similarity 
(distance) between the fairy creatures. We remind that these beings are 
represented by a vector. 

import numpy as np 

fiona = np.array([4, 2]) 

shrek = np.array([10, 2]) 

charming = np.array([1, 5]) 

 

print("Euclidean distance: \n", 

      "Fiona and Shrek:", euclidean_distance(fiona, shrek), 

"\n", 

      "Fiona and Charming:", euclidean_distance(fiona, 

charming)) 

 
Program output: 
Euclidean distance:  

 Fiona and Shrek: 6.0  

 Fiona and Charming: 4.242640687119285 

From the results, it can be seen that Fiona is more similar to Charming, as the 
distance between the vector representing Charming and Fiona is smaller than 
between Fiona and Shrek. 

Although we "romantic souls" do not like this fact very much, it should be noted that 
any similarity measure will correctly determine the distance/similarity of objects. 
However, there are similarity measures that are more suitable for the studied 
domain. For the area of similarity of text documents (as well as vectors of fairy-tale 
creatures), there are more suitable similarity measures than the aforementioned 
Euclidean similarity. 
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📝 11.2.3 

Cosine similarity 

A commonly used vector text representation approach is based on the number of 
words in documents. However, this approach has one flaw. As the document size 
increases, the number of common words increases. 

If we consider two documents D1 and D2. We would create a D1copy document by 
only duplicating the content of the document (i.e. the D1 document would be 
included twice). Similarly, we would also create a D2copy document. In the vector 
representation of documents, the individual elements of the vector would be 
doubled in the D1copy and D2copy documents. With metrics like Euclidean distance, 
we would then find that D1 and D2 are closer to each other (more similar) than 
D1copy and D2copy. But that is not true. 

 

Cosine similarity together with the TF-IDF model helps to overcome this 
fundamental error in the "word count" approach or Euclidean distance. Cosine 
similarity is a metric used to measure the similarity of documents regardless of 
their size. It is actually an expression of the size of the angle formed by two vectors 
representing two documents. 

The cosine of 0° is 1, and is less than 1 for any other angle. So it is a view on the 
orientation and not the size of the vectors. Two vectors with the same orientation 
have a cosine similarity of 1, two vectors at 90° have a similarity of 0, and two 
diametrically opposite vectors have a similarity of -1, regardless of their sizes. 
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Then, in Python, we can calculate the cosine similarity as follows. 

def cosine_similarity(x, y): 

    return np.dot(x, y) / (np.sqrt(np.dot(x, x)) * 

np.sqrt(np.dot(y, y))) 

Finally, all that remains is to state the happy ending of the fairy tale of Shrek and 
Fiona. 

import numpy as np 

fiona = np.array([4, 2]) 

shrek = np.array([10, 2]) 

charming = np.array([1, 5]) 

 

print("Cosine similarity: \n", 

      "Fiona and Shrek:", cosine_similarity(fiona, shrek), 

"\n", 

      "Fiona and Charming:", cosine_similarity(fiona, 

charming)) 



Document Similarity | FITPED AI 

188 

Program output: 
Cosine similarity:  

 Fiona and Shrek: 0.9647638212377322  

 Fiona and Charming: 0.6139406135149205 

According to the cosine similarity, these two are certainly the closest to each other 
(a value of 1 represents a complete match), which is also illustrated in the following 
graph. 

 

At the end of the chapter, it should be noted that the most common approach is the 
use of the TF-IDF document model in combination with cosine similarity. In 
practice, however, the calculation of the TF-IDF document model instead of the 
frequency vector model is only a matter of changing the method in a few lines of 
source code. For this reason, in the chapter we worked with a vector model of the 
word frequency in a document. We present the combination of TF-IDF and cosine 
similarity in the Application Example at the end of this publication.  



 

 

Sentiment Analysis 

Chapter 12 
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12.1 Introduction 

🕮 12.1.1 

The internet has evolved significantly in the past 15 years, transforming users from 
mere consumers to active creators of content. This transformation, often termed 
"Web 2.0," marked a new era of web development where static content was 
replaced by dynamic platforms for sharing and collaboration. From 2004 onward, 
discussion forums, reviews, and user-generated content have become integral to 
online experiences, offering a wealth of information about users' opinions, 
attitudes, and feelings. 

For instance, before planning a vacation, many people rely on reviews of hotels and 
destinations shared on popular travel websites. Negative feedback in these reviews 
can influence decisions, causing users to reconsider their choices. Similarly, 
reviews and ratings play a crucial role in purchasing decisions for goods and 
services. This growing repository of online opinions has become a rich source of 
insights into public sentiment. 

Political parties, too, analyze these forums to gauge public reactions. By studying 
discussions, they can understand the public's reception of proposed policies or 
assess reactions to recent controversies. Such analysis provides invaluable 
feedback, but as the volume of user-generated content grows, manually analyzing 
this data becomes impractical. 

📝 12.1.2 

Which of the following are examples of the evolution of Web 2.0? 

• Dynamic sharing and collaboration platforms. 
• Online spaces for user-generated content. 
• Static websites with fixed content. 
• Single-purpose, read-only web pages. 

🕮 12.1.3 

Sentiment analysis is a subfield of NLP that focuses on extracting subjective 
information from text. It aims to determine the sentiment, opinion, or emotion 
expressed in the text, often classifying it as positive, negative, or neutral. Sentiment 
analysis is widely applied in areas like product reviews, social media analysis, and 
customer feedback. 

The method allows businesses to understand public perception of their products 
and services. For instance, analyzing customer reviews can help companies identify 
what customers like or dislike about their offerings. Similarly, social media 
sentiment analysis can provide insights into public reactions to current events or 
brand campaigns. 
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Sentiment analysis can be broadly categorized into two approaches: lexicon-based 
methods and machine learning-based methods. Lexicon-based methods rely on 
predefined lists of positive and negative words, while machine learning methods 
involve training models on labeled datasets to learn patterns in sentiment. 

This field has gained prominence due to the rise of Web 2.0, where users actively 
create content on platforms like discussion forums, blogs, and social media. 
Analyzing this data enables better decision-making in marketing, politics, and other 
areas. 

📝 12.1.4 

Which of the following are common applications of sentiment analysis? 

• Analyzing customer reviews for opinions about products. 
• Tracking public reaction to social media campaigns.  
• Predicting numerical ratings of a product. 
• Measuring the frequency of words in a text. 

🕮 12.1.5 

Lexicon-based sentiment analysis 

Lexicon-based sentiment analysis is one of the simplest methods used to 
determine sentiment in text. This method involves using predefined lists of positive 
and negative words, often referred to as sentiment lexicons. For example, words 
like great, excellent, and amazing are positive, while words like poor, horrible, and 
terrible are negative. 

A sentiment score is calculated by matching the words in a text with the lexicon 
and summing the positive and negative scores. For instance, the review "The movie 
was great, but the ending was horrible" would yield a mixed sentiment score based 
on the number of positive and negative matches. 

This method is computationally efficient and easy to implement. However, it has 
limitations. For instance, lexicon-based methods may struggle with sarcasm or 
context. Consider the sentence: "Well, that was just fantastic, wasn't it?" The word 
fantastic is positive, but the tone conveys a negative sentiment. 

Despite its simplicity, this approach is a great starting point for sentiment analysis 
tasks, particularly when datasets are small or when quick insights are needed. 

📝 12.1.6 

What are the characteristics of lexicon-based sentiment analysis? 

• It uses predefined lists of positive and negative words.  
• It struggles with sarcasm and context. 
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• It requires a large labeled dataset for training. 
• It is computationally intensive. 

🕮 12.1.7 

Machine learning-based sentiment analysis 

Machine learning-based sentiment analysis uses algorithms to learn patterns in text 
data. These methods rely on labeled datasets, where each text sample is annotated 
with its sentiment class (e.g., positive, negative, neutral). Models such as logistic 
regression, support vector machines, or neural networks are commonly used. 

The first step is feature extraction. Text is converted into numerical formats, such 
as bag-of-words, TF-IDF, or word embeddings, to serve as input for machine 
learning models. Once trained, these models can generalize to predict sentiment in 
unseen text. 

Machine learning approaches outperform lexicon-based methods in many 
scenarios, particularly when dealing with nuanced sentiment, such as mixed 
opinions or sarcasm. For example, models trained on movie reviews can accurately 
classify sentences like "The plot was predictable, but the characters were likable." 

One challenge is the need for large, labeled datasets to train the models. However, 
pre-trained language models like BERT and GPT-3 have made it easier to achieve 
high accuracy without extensive labeled data. 

📝 12.1.8 

What are key steps in machine learning-based sentiment analysis? 

• Extracting features from text data.  
• Training models on labeled datasets.  
• Annotating the dataset with numerical scores. 
• Relying solely on predefined word lists. 

🕮 12.1.9 

Challenges 

While sentiment analysis has proven useful, it comes with challenges. One 
significant issue is understanding context. Words that are positive in one scenario 
can be neutral or even negative in another. For example, the word cheap is positive 
when describing prices but negative when describing quality. 

Another challenge is dealing with sarcasm. Humans can easily detect sarcasm 
through tone and context, but models often misinterpret sentences like "Oh great, 
another traffic jam." Similarly, sentiment analysis may struggle with ambiguous 
language, where the author's intent isn't clear. 
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Domain-specific language also poses difficulties. Words and phrases that have 
specific meanings in certain industries, like bullish in finance, need specialized 
models or lexicons to be accurately analyzed. 

Despite these challenges, advancements in deep learning and the use of pre-trained 
models are helping address these issues, improving accuracy in complex 
scenarios. 

📝 12.1.10 

What are common challenges in sentiment analysis? 

• Interpreting sarcasm in text. 
• Handling ambiguous language. 
• Converting text to numerical formats. 
• Processing structured data formats. 

🕮 12.1.11 

Applications of sentiment analysis 

Sentiment analysis has numerous real-world applications. In customer feedback 
analysis, businesses use sentiment analysis to understand customer satisfaction 
and improve products or services. Similarly, it helps monitor brand reputation by 
analyzing social media sentiment. 

In politics, sentiment analysis is used to gauge public opinion about policies, 
speeches, or election campaigns. For instance, analyzing tweets during a political 
debate can provide insights into voters' reactions in real-time. 

In healthcare, patient reviews of medications or hospitals are analyzed to assess 
quality and satisfaction. Additionally, sentiment analysis is applied in financial 
markets, where public sentiment about a company can influence stock prices. 

These applications demonstrate how sentiment analysis is a powerful tool for 
decision-making across various domains, turning subjective data into actionable 
insights. 

📝 12.1.12 

Which fields use sentiment analysis extensively? 

• Customer feedback analysis. 
• Brand reputation monitoring. 
• Real-time stock price prediction. 
• Diagnosing diseases directly from patient reviews. 
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12.2 Types of sentiment analysis 

🕮 12.2.1 

Emotion detection 

Emotion detection is a type of sentiment analysis focused on identifying the 
emotions behind text data. It aims to classify text into categories like frustration, 
happiness, or sadness. 

This type of analysis uses predefined emotion lexicons—lists of words associated 
with specific emotions. For example, the word angry may indicate frustration, while 
joyful indicates happiness. Advanced methods may also use machine learning 
models to detect emotions based on patterns in the text. 

Emotion detection is particularly useful in areas such as: 

• Customer support - identifying frustrated customers for prompt assistance. 
• Social media monitoring - understanding public sentiment on key topics. 
• Mental health - analyzing discussions to identify signs of emotional distress. 

Despite its usefulness, emotion detection can be challenging due to ambiguous 
language and sarcasm, where the true emotion may be masked. 

📝 12.2.2 

What is the primary focus of emotion detection in sentiment analysis? 

• Identifying emotions like frustration or happiness. 
• Classifying text into numerical scores. 
• Detecting sarcasm directly. 

🕮 12.2.3 

Intent detection 

Intent detection focuses on uncovering the purpose or message behind a text. 
Every piece of communication has an underlying intent, and this type of sentiment 
analysis extracts that intent. 

For example: 

• A customer says, "I need help with your product." This indicates a request for 
technical support. 

• Another says, "I’m canceling my subscription." This signals the intent to stop 
using the service. 
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Businesses often use intent detection to improve customer interactions. By 
recognizing customer intent in emails, chats, or social media messages, companies 
can tailor their responses accordingly. 

Advanced techniques for intent detection involve NLU and machine learning models 
trained on datasets labeled with different intents. 

📝 12.2.4 

What is a common use of intent detection in sentiment analysis? 

• Identifying customer complaints or requests. 
• Measuring the frequency of keywords in text. 
• Converting text into numerical representations. 

🕮 12.2.5 

Fine-grained sentiment analysis 

Fine-grained sentiment analysis goes beyond simple positive, negative, or neutral 
classification. It categorizes text on a detailed scale, often from 1 (extremely 
negative) to 5 (extremely positive). 

This method provides a nuanced understanding of text sentiment. For instance: 

• "The product is terrible" might score 1. 
• "The product is good, but shipping was slow" might score 3. 

Fine-grained sentiment analysis is widely used in: 

• Product reviews - providing detailed feedback for improvement. 
• Social media - gauging public reaction to events or campaigns. 

This level of detail helps businesses identify not just sentiment but also its 
intensity, enabling targeted responses. 

📝 12.2.6 

What is the main advantage of fine-grained sentiment analysis? 

• It provides detailed sentiment ratings like extremely negative or very positive. 
• It focuses only on specific aspects of a text. 
• It simplifies text into binary categories. 
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🕮 12.2.7 

Multi-lingual sentiment analysis 

Multi-lingual sentiment analysis is designed to analyze text data written in multiple 
languages. It extracts emotional tones across different dialects, which is 
particularly useful for global brands or platforms with diverse users. 

Challenges in multi-lingual analysis include: 

• Preprocessing - tokenization and stop word removal often need to be 
adapted for each language. 

• Linguistic diversity - grammar and syntax vary widely between languages, 
making it difficult to apply uniform techniques. 

Despite these challenges, advanced NLP models like multilingual BERT (mBERT) 
and XLM-Roberta enable effective multi-lingual sentiment analysis. 

📝 12.2.8 

What is a challenge unique to multi-lingual sentiment analysis? 

• Adapting preprocessing techniques to different languages. 
• Converting text to numerical formats. 
• Detecting sarcasm across languages. 

🕮 12.2.9 

Aspect-based sentiment analysis 

Aspect-based sentiment analysis identifies and analyzes sentiments tied to specific 
aspects of text rather than treating it as a whole. 

For instance, in the review "The food was delicious, but the service was slow,": 

• The sentiment for food is positive. 
• The sentiment for service is negative. 

Applications of aspect-based sentiment analysis include: 

• Customer reviews - understanding opinions about individual product 
features. 

• Social media analysis - monitoring public sentiment on specific aspects of 
an event. 

This method provides more actionable insights, as it allows businesses to pinpoint 
what customers like or dislike about specific aspects of their offerings. 
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📝 12.2.10 

What is the focus of aspect-based sentiment analysis? 

• Analyzing sentiments about specific aspects in text.  
• Categorizing sentiments on a detailed numerical scale. 
• Detecting emotions like frustration or happiness. 

12.3 Sentiment analysis approaches 

🕮 12.3.1 

Lexical-based sentiment analysis 

Lexical-based sentiment analysis identifies text sentiment by categorizing each 
word into positive, neutral, or negative groups based on its polarity. The overall 
impression of the text is determined by the group with the highest number of 
words. For example, text with multiple negative words is labeled as negative. 

Key features of the lexical-based approach: 

• Tokenization converts words into tokens (sentiment lexicons) predefined 
with polarity. 

• No training data required - it is an unsupervised method suitable for feature 
or sentence analysis. 

• Challenges are in domain-dependence - words can have different polarities in 
different domains. For example, low weight is positive for laptop but negative 
for winter jacket. 

The approach includes two methods: 

• Corpus-based methods use domain-specific lexicons. 
• Statistical methods rely on statistical analysis of text data. 

📝 12.3.2 

Which of the following is a key characteristic of the lexicon-based approach to 
sentiment analysis? 

• It categorizes words based on predefined polarity lists. 
• It requires labeled training data for analysis. 
• It uses machine learning algorithms to analyze text. 
• It processes data without any predefined rules. 
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📝 12.3.3 

What is a key challenge of the lexicon-based approach? 

• Polarity of words may vary by domain.  
• It requires labeled training data. 
• It cannot analyze at the sentence level. 

📝 12.3.4 

How does the lexicon-based approach determine the sentiment of a text? 

• By counting the number of positive and negative words in the text. 
• By analyzing the grammatical structure of the text. 
• By using machine learning to classify the sentiment. 
• By translating the text into a sentiment-specific language. 

🕮 12.3.5 

Machine learning approach 

The machine learning approach is one of the most effective and widely used 
methods for sentiment analysis. It employs supervised or unsupervised learning to 
train models that can predict the polarity of text (positive, negative, or neutral) 
based on patterns learned from the training data. This approach leverages 
algorithms to analyze linguistic features and patterns, enabling the model to 
determine sentiment with high accuracy. 

Supervised learning requires labeled datasets where each text sample is annotated 
with its corresponding sentiment. During training, the model learns to associate 
specific patterns, words, or combinations of words with their respective sentiment 
labels. For example, words like "amazing" or "excellent" might be associated with 
positive sentiment, while words like "terrible" or "poor" would correspond to 
negative sentiment. In contrast, unsupervised learning does not rely on labeled data 
but uses clustering or other techniques to infer sentiment patterns. 

Several machine learning algorithms are commonly employed in sentiment 
analysis: 

• Support vector machine is highly effective for text classification tasks. It 
works by finding the optimal boundary that separates different sentiment 
classes. 

• K-nearest neighbors classifies text based on the similarity to nearby 
examples in the dataset, making predictions based on the sentiment of its 
closest neighbors. 

• Logistic regression predicts the probability of a text belonging to a specific 
sentiment class, often used due to its simplicity and interpretability. 
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• Decision tree splits the data into branches based on features, creating a tree-
like structure to classify sentiment. 

• Naive Bayes as a probabilistic classifier that assumes independence 
between features, Naive Bayes is lightweight and effective for many 
sentiment analysis tasks. 

The machine learning approach has several advantages. It is capable of handling 
large datasets efficiently and can learn complex patterns and relationships in the 
data. This makes it a versatile tool for analyzing large-scale sentiment data, such as 
social media posts or customer reviews. Additionally, machine learning models can 
adapt to new patterns when retrained with updated data, improving their 
performance over time. 

However, there are some limitations to this approach. In supervised learning, the 
model's success depends heavily on the availability and quality of labeled data. 
Creating such datasets can be time-consuming and expensive. Additionally, 
machine learning models may struggle with domain-specific language or nuanced 
expressions unless they are trained on sufficient examples from that specific 
domain. 

In summary, the machine learning approach is a powerful technique for sentiment 
analysis, offering flexibility and accuracy across diverse datasets. By selecting the 
right algorithm and ensuring high-quality training data, organizations can harness 
the full potential of this approach for various applications. 

📝 12.3.6 

What is a benefit of the machine learning approach for sentiment analysis? 

• It can handle large datasets and learn patterns.  
• It eliminates the need for labeled training data. 
• It automatically generates lexicons. 

🕮 12.3.7 

Neural network approach 

The neural network approach leverages artificial neural networks, which are 
computational models inspired by the human brain, to process and classify text 
data. This method excels in tasks requiring complex pattern recognition, such as 
sentiment analysis. Neural networks can understand the sequential nature of text 
and capture dependencies between words, making them highly effective for 
analyzing sentiment nuances. 

Popular algorithms in this category include Recurrent Neural Networks (RNNs), 
which are adept at handling sequential data, and Convolutional Neural Networks 
(CNNs), which are often used for feature extraction in text. These algorithms 
process text by encoding it into numerical representations, which are then analyzed 
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for patterns indicating sentiment. For instance, an RNN might analyze the phrase 
"not great but not terrible" by considering the sequence and context of words, 
something simpler models may overlook. 

Neural networks require extensive labeled datasets and significant computational 
power for training. However, once trained, they can handle diverse data sources and 
even identify subtle shifts in sentiment, such as sarcasm or irony. This makes them 
particularly valuable in analyzing social media data, customer reviews, or any 
content with rich emotional subtext. 

The neural network approach represents a significant advancement in sentiment 
analysis, combining high accuracy with the flexibility to adapt to various 
applications. However, its complexity and computational demands make it less 
accessible than simpler methods like lexicon-based analysis. 

📝 12.3.8 

What are characteristics of the neural network approach to sentiment analysis? 

• It uses artificial neural networks to process and analyze text data. 
• Models like RNNs and CNNs are commonly employed for this approach. 
• It relies primarily on predefined sentiment lexicons for analysis. 
• It avoids using machine learning techniques altogether. 

12.4 Practical examples 

📝 12.4.1 

Project: Positive and negative words 

A probably simpler method of sentiment analysis is based on the assumption that 
in the case of a positive review we also use the so-called positive words. If we like 
the selected product or service, we will probably write words like "good", "excellent", 
"perfect" etc. in our review. With a negative attitude, we will probably use words like 
"bad", "terrible", "horrible" and so on. Therefore, a basic sentiment analysis is based 
on the assumption of the existence of lists of such positive and negative words. For 
the English language, it is not difficult to find lists of positive and negative words on 
the Internet. 

Task: Princess Fiona wants to find how she, as a person and ruler, is perceived by 
her subjects. Due to the potential threat to the kingdom's sovereignty, Facebook, 
Instagram, Twitter, VKontakte, and TikTok are banned and blocked in the 
kingdom. The only way how subjects can write a review or a contribution to the 
discussion is through the discussion forum on the official website of the Kingdom 
beyond the Seven Mountains, which is monitored and censored. 
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From all the ratings and reviews of her subjects, posted on the official website of 
the Kingdom beyond the Seven Mountains, Fiona wants to evaluate and analyse the 
sentiment. We all already suspect that it will be positive. 

The first step of the task will be to prepare and pre-process all reviews/posts 
posted on the Kingdom beyond Seven Mountains site. If these will be in the form of 
texts, it is necessary to select only posts evaluating Princess Fiona. This step will 
also be easy, enough if the word "Fiona" occurs in the post. When analysing 
sentiment, we need to evaluate the sentiment of respective posts. The resulting 
sentiment will represent their average, i.e. average of sentiments of individual 
discussion/review posts. 

Determining the sentiment of a post or a sentence represents a classification task. 
Therefore, it is necessary to note whether the sentence is positive, neutral or 
negative. We suppose the existence of positive and negative words lists. Our lists 
of these words might look as follows: 

 

In the analysis itself, it is enough to count the number of negative and positive 
words occurred in the post. As an example, we will classify sentiment for the 
sentence: "Fiona has nice and styled hair, super makeup. However, she wears 
terrible outfits." 

 

However, simple classification of sentences into these groups is rarely used. 
Rather, the classifier is expected to determine the magnitude of positivity or 
negativity. Then we talk about determining the so-called sentence orientation or 
polarity. 



Sentiment Analysis | FITPED AI 

202 

In the classifier we are creating for Princess Fiona, for the sake of simplicity, we will 
create our own simple list of positive and negative words. Along with importing the 
nltk library it might look as follows: 

from nltk.tokenize import word_tokenize 

 

positive = ['good', 'nice', 'super', 'excellent'] 

negative = ['bad', 'terrible', 'horrible'] 

We tokenize the sentence and insert the created tokens, in our case words, into the 
list. 

sentence = 'Fiona has nice and styled hair, super makeup. 

However, she wears terrible outfits.' 

sentence_token = word_tokenize(sentence) 

print(sentence_token) 

 
Program output: 
['Fiona', 'has', 'nice', 'and', 'styled', 'hair', ',', 

'super', 'makeup', '.', 'However', ',', 'she', 'wears', 

'terrible', 'outfits', '.'] 

We ensure the number of positive and negative words from our lists by a simple 
cycle in which we check whether the word is in these lists. 

pos = 0 

neg = 0 

for word in sentence_token: 

    if word in positive: 

        pos = pos + 1 

    if word in negative: 

        neg = neg + 1 

print('Number of positive words: ', pos) 

print('Number of negative words: ', neg) 

 
Program output: 
Number of positive words:  2 

Number of negative words:  1 

It is clear from the result that the sentence is positive. We can even express a 
degree of positivity. For the sake of completeness, we also present this relatively 
simple source code. 

difference = pos - neg 

if(difference > 0): 

    print('The sentence is positive') 
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    positivity_rate = pos / (pos + neg) 

    print('Positivity rate: ', positivity_rate) 

if(difference < 0): 

    print('The sentence is negative') 

    negativity_rate = neg / (pos + neg) 

    print('Negativity rate: ', negativity_rate) 

if(difference == 0): 

    print('Neutral sentence') 

 
Program output: 
The sentence is positive 

Positivity rate:  0.6666666666666666 

The given classification of sentiment is quite simple. It has several issues: 

• There must be a list of positive and negative words. If no existence, a more 
sophisticated solution than just "simple thinking and reasoning which words 
should be included in" has to be designed. 

• Words have varying degrees of sentiment. It would certainly be good to rate 
more, e.g. "she has the best outfits in the kingdom" than "she has good 
outfits". Similarly, in the case of negative sentiment, there is a difference in 
the degree of sentiment in the sentences "Her outfits are terrible" and "Her 
outfits are not good". Then, how to assign the weight of sentiment to 
respective words? 

• Sometimes only words are not enough. For example, the word "good" can be 
used in a positive sentence such as "She has good outfits.", but also in the 
sentence "Her outfits are not good." The second sentence is obviously no 
longer positive, despite the fact that it contains one positive word. 

• Arguably the biggest issue with sentiment analysis (not just our simple 
classifier) is irony. The traditional sentence of teenagers "well... it's really 
good" probably will not be positive despite the positive word used.  

📝 12.4.2 

Project: Sentiment analysis on Amazon reviews 

(by https://www.kaggle.com/code/anantpandey29/sentiment-analysis-on-amazon-
reviews) 

Show how sentiment analysis can be performed using python. 

Dataset: 

• original: https://www.kaggle.com/code/anantpandey29/sentiment-analysis-
on-amazon-reviews?select=amazon.xlsx 

• reduced: https://priscilla.fitped.eu/data/nlp/sentiment/amazon_reviews.csv 

https://www.kaggle.com/code/anantpandey29/sentiment-analysis-on-amazon-reviews
https://www.kaggle.com/code/anantpandey29/sentiment-analysis-on-amazon-reviews
https://www.kaggle.com/code/anantpandey29/sentiment-analysis-on-amazon-reviews?select=amazon.xlsx
https://www.kaggle.com/code/anantpandey29/sentiment-analysis-on-amazon-reviews?select=amazon.xlsx
https://priscilla.fitped.eu/data/nlp/sentiment/amazon_reviews.csv
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!pip install textblob 

TextBlob is a popular NLP library in Python, designed for simplicity and ease of use. 
It provides tools to work with text, such as processing, analysis, and sentiment 
analysis. Components does: 

TextBlob 

The TextBlob class is used to represent text and provides a wide range of 
functionality for text processing. We can create a TextBlob object to work with text 
data and perform tasks like: 

• Tokenization (splitting text into words or sentences) 
• Sentiment analysis (analyzing text for positive, negative, or neutral 

sentiment) 
• Part-of-speech tagging (identifying nouns, verbs, etc.) 
• Text translation and spelling correction 

Word 

The Word class represents individual words and provides word-specific 
functionalities, such as: 

• Lemmatization (getting the base form of a word) 
• Spell checking and correction 
• Pluralization and singularization 

1. Import libraries and data 

import numpy as np 

import pandas as pd 

 

from sklearn.preprocessing import LabelEncoder 

from sklearn.model_selection import cross_val_score, 

GridSearchCV, cross_validate 

from sklearn.linear_model import LogisticRegression 

from sklearn.ensemble import RandomForestClassifier 

from sklearn.svm import SVC 

from sklearn.tree import DecisionTreeClassifier 

from sklearn.naive_bayes import MultinomialNB 

 

import nltk 

from nltk.corpus import stopwords 

from nltk.sentiment import SentimentIntensityAnalyzer 

from textblob import Word, TextBlob 

from sklearn.feature_extraction.text import TfidfVectorizer 

from sklearn.feature_extraction.text import CountVectorizer 
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import matplotlib.pyplot as plt 

import plotly.graph_objs as go 

import plotly.io as pio 

from wordcloud import WordCloud 

 

df = 

pd.read_csv("https://priscilla.fitped.eu/data/nlp/sentiment/am

azon_reviews.csv") 

print(df.head()) 

 
Program output: 
/home/johny/.local/lib/python3.9/site-

packages/matplotlib/projections/__init__.py:63: UserWarning: 

Unable to import Axes3D. This may be due to multiple versions 

of Matplotlib being installed (e.g. as a system package and as 

a pip package). As a result, the 3D projection is not 

available. 

  warnings.warn("Unable to import Axes3D. This may be due to 

multiple versions of " 

   Star  HelpFul                                          

Title  \ 

0     5        0                                    looks 

great    

1     5        0  Pattern did not align between the two 

panels.    

2     5        0               Imagery is stretched. Still 

fun.    

3     5        0                 Que se ven elegantes muy 

finas    

4     5        0                             Wow great 

purchase    

 

                                              Review   

0                                      Happy with it   

1  Good quality material however the panels are m...   

2  Product was fun for bedroom windows. 

 

Imag...   

3   Lo unico que me gustaria es que sean un poco ...   

4  Great bang for the buck I can't believe the qu...   

2. Data preprocessing 

• Checking for nulls in the dataset 
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print(df.isnull().sum()) 

 
Program output: 
Star        0 

HelpFul     0 

Title      52 

Review     18 

dtype: int64 

• Since 18 reviews are null, we will drop them from the dataset. The other 
columns will remain unchanged, as our primary focus in this notebook is on 
Sentiment Analysis. 

df.dropna(subset=['Review'], inplace=True) 

print(df.isnull().sum()) 

 
Program output: 
Star        0 

HelpFul     0 

Title      43 

Review      0 

dtype: int64 

• Applying stop words from NLTK 

# nltk.download('stopwords') 

sw = stopwords.words('english') 

print(sw) 

 
Program output: 
['i', 'me', 'my', 'myself', 'we', 'our', 'ours', 'ourselves', 

'you', "you're", "you've", "you'll", "you'd", 'your', 'yours', 

'yourself', 'yourselves', 'he', 'him', 'his', 'himself', 

'she', "she's", 'her', 'hers', 'herself', 'it', "it's", 'its', 

'itself', 'they', 'them', 'their', 'theirs', 'themselves', 

'what', 'which', 'who', 'whom', 'this', 'that', "that'll", 

'these', 'those', 'am', 'is', 'are', 'was', 'were', 'be', 

'been', 'being', 'have', 'has', 'had', 'having', 'do', 'does', 

'did', 'doing', 'a', 'an', 'the', 'and', 'but', 'if', 'or', 

'because', 'as', 'until', 'while', 'of', 'at', 'by', 'for', 

'with', 'about', 'against', 'between', 'into', 'through', 

'during', 'before', 'after', 'above', 'below', 'to', 'from', 

'up', 'down', 'in', 'out', 'on', 'off', 'over', 'under', 

'again', 'further', 'then', 'once', 'here', 'there', 'when', 

'where', 'why', 'how', 'all', 'any', 'both', 'each', 'few', 

'more', 'most', 'other', 'some', 'such', 'no', 'nor', 'not', 
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'only', 'own', 'same', 'so', 'than', 'too', 'very', 's', 't', 

'can', 'will', 'just', 'don', "don't", 'should', "should've", 

'now', 'd', 'll', 'm', 'o', 're', 've', 'y', 'ain', 'aren', 

"aren't", 'couldn', "couldn't", 'didn', "didn't", 'doesn', 

"doesn't", 'hadn', "hadn't", 'hasn', "hasn't", 'haven', 

"haven't", 'isn', "isn't", 'ma', 'mightn', "mightn't", 

'mustn', "mustn't", 'needn', "needn't", 'shan', "shan't", 

'shouldn', "shouldn't", 'wasn', "wasn't", 'weren', "weren't", 

'won', "won't", 'wouldn', "wouldn't"] 

The following preprocessing has been applied to the "Review" column. 

• Lowercasing 
• Non-word character removal 
• Digits removal 
• Stop word removal 

df['Review'] = df['Review'].str.lower() 

df['Review'] = df['Review'].str.replace('[^\w\s]', '') 

df['Review'] = df['Review'].str.replace('\d', '') 

df['Review'] = df['Review'].apply(lambda x: " ".join(x for x 

in str(x).split() if x not in sw)) 

We will find rare words in your dataset and store them separately in a temporary 
DataFrame, 

• The goal of the following code is to remove rare words (those that occur only 
once or very infrequently) from the 'Review' column in the df DataFrame. 

• By doing this, we reduce noise in the text data, which can be particularly 
useful for our task, where rare words might not contribute meaningfully to 
the analysis and could even distort the model's understanding of the text. 

temp_df = pd.Series(' 

'.join(df['Review']).split()).value_counts() 

print(temp_df) 

 
Program output: 
love                1271 

curtains            1251 

like                1017 

look                 818 

great                721 

                    ...  

inserts                1 

months. 
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stood       1 

bleak                  1 

requested              1 

studio/living          1 

Name: count, Length: 10606, dtype: int64 

 

drops = temp_df[temp_df <= 1] 

df['Review'] = df['Review'].apply(lambda x: " ".join(x for x 

in x.split() if x not in drops)) 

Lemmatization 

• This code performs lemmatization on the text in the 'Review' column of the 
DataFrame df. It first downloads the necessary NLTK resources for 
lemmatization (wordnet and omw-1.4). Then, for each review, it splits the 
text into words, applies lemmatization (reducing words to their base form 
using Word(word).lemmatize()), and joins the words back into a string, 
ensuring that missing or NaN values are replaced with an empty string. 

nltk.download('wordnet') 

nltk.download('omw-1.4') 

df['Review'] = df['Review'].apply(lambda x: " 

".join([Word(word).lemmatize() for word in str(x).split()]) if 

pd.notna(x) else '') 

print(df.head()) 

 
Program output: 
[nltk_data] Downloading package wordnet to 

/home/johny/nltk_data... 

[nltk_data]   Package wordnet is already up-to-date! 

[nltk_data] Downloading package omw-1.4 to 

/home/johny/nltk_data... 

[nltk_data]   Package omw-1.4 is already up-to-date! 

   Star  HelpFul                                          

Title  \ 

0     5        0                                    looks 

great    

1     5        0  Pattern did not align between the two 

panels.    

2     5        0               Imagery is stretched. Still 

fun.    

3     5        0                 Que se ven elegantes muy 

finas    

4     5        0                             Wow great 

purchase    
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                                              Review   

0                                              happy   

1                good quality material however panel   

2  product fun bedroom windows. 

 

<="" pre=""> 

3. Exploratory data analysis  

Exploratory Data Analysis (EDA) in NLP involves analyzing text 

data to discover patterns, trends, and anomalies. It helps 

data scientists and NLP practitioners understand the dataset 

better before moving on to more complex tasks like text 

classification, sentiment analysis, or machine translation. 

Through both visual and statistical methods, EDA provides 

valuable insights into the text data. 

Extracting term fFrequencies 

Term frequency (TF) is a measure used in NLP to count how 

often a word or phrase appears in a document or a collection 

of documents. It's a basic but important concept in text 

mining and information retrieval. TF is usually calculated by 

dividing the number of times a word appears by the total 

number of words in the document. 

TF(t,d) = Number of times term t appears in document d / 

Total number of terms in document d 

 

tf = df["Review"].apply(lambda x: pd.Series(x.split(" 

")).value_counts()).sum(axis=0).reset_index() 

print(tf.head()) 

 

Program output: 
      index      0 

0     happy  171.0 

1      good  453.0 

2   quality  609.0 

3  material  398.0 

4   however   36.0 

 

sort data by frequences 

 

tf.columns = ["words", "tf"] 

tf.sort_values("tf", ascending=False) 

Drawing term frequencies 

 

tf[tf["tf"] > 500].plot.barh(x="words", y="tf") 

plt.show() 
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Program output: 

 
 
Prepare data to wordcloud visualising: 

 

text = " ".join(i for i in df.Review) 

 

wordcloud = WordCloud(background_color="white").generate(text) 

 

# Display the word cloud 

plt.imshow(wordcloud, interpolation="bilinear") 

plt.axis("off") 

plt.show() 

 

Program output: 
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4. Sentiment analysis 

 

print(df["Review"].head()) 

 
Program output: 
0                                                happy 

1                  good quality material however panel 

2    product fun bedroom windows. 

 

<="" pre=""> 

Initializing VADER SIA 

VADER (Valence Aware Dictionary and sEntiment Reasoner) is a 

lexicon and rule-based sentiment analysis tool specifically 

designed for analyzing the sentiment of text in the context of 

social media and informal online text. It was developed by 

researchers at the Georgia Institute of Technology. 

The output will include scores for positivity, neutrality, and 

negativity, as well as a compound score that summarizes the 

overall sentiment of the text. 

nltk.download('vader_lexicon') 

 

Program output: 
[nltk_data] Downloading package vader_lexicon to 

[nltk_data]     /home/johny/nltk_data... 

[nltk_data]   Package vader_lexicon is already up-to-date! 

and to try 

sia = SentimentIntensityAnalyzer() 

print(sia.polarity_scores("The film was awesome")) 

 

Program output: 
{'neg': 0.0, 'neu': 0.423, 'pos': 0.577, 'compound': 0.6249} 

 

print(sia.polarity_scores("I liked this music but it is not 

good as the other one")) 

 

Program output: 
{'neg': 0.207, 'neu': 0.666, 'pos': 0.127, 'compound': -0.298} 

 

print(df["Review"][0:10].apply(lambda x: 

sia.polarity_scores(x))) 

 

Program output: 
0    {'neg': 0.0, 'neu': 0.0, 'pos': 1.0, 'compound... 

1    {'neg': 0.0, 'neu': 0.58, 'pos': 0.42, 'compou... 

2    {'neg': 0.0, 'neu': 0.571, 'pos': 0.429, 'comp... 
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3    {'neg': 0.0, 'neu': 1.0, 'pos': 0.0, 'compound... 

4    {'neg': 0.0, 'neu': 0.495, 'pos': 0.505, 'comp... 

5    {'neg': 0.0, 'neu': 1.0, 'pos': 0.0, 'compound... 

6    {'neg': 0.0, 'neu': 0.631, 'pos': 0.369, 'comp... 

7    {'neg': 0.0, 'neu': 0.541, 'pos': 0.459, 'comp... 

8    {'neg': 0.0, 'neu': 1.0, 'pos': 0.0, 'compound... 

9    {'neg': 0.0, 'neu': 0.753, 'pos': 0.247, 'comp... 

Name: Review, dtype: object 

 

df["polarity_score"] = df["Review"].apply(lambda x: 

sia.polarity_scores(x)["compound"]) 

 

5. Feature engineering 

Adding Sentiments from the generated scores. 

df["Review"][0:10].apply(lambda x: "pos" if 

sia.polarity_scores(x)["compound"] > 0 else "neg") 

 

df["sentiment_label"] = df["Review"].apply(lambda x: "pos" if 

sia.polarity_scores(x)["compound"] > 0 else "neg") 

print(df["sentiment_label"].value_counts()) 

 

Program output: 
sentiment_label 

pos    4787 

neg     806 

Name: count, dtype: int64 

 

print(df.head()) 

 

Program output: 
   Star  HelpFul                                    Title  \ 

0  5     0                                     ooks great    

1  5     0  Pattern did not align between the two panels.    

2  5     0               Imagery is stretched. Still fun.    

3  5     0                 Que se ven elegantes muy finas    

4  5     0                             Wow great purchase    

 

                                   Review  polarity_score  \ 

0                                   happy          0.5719    

1     good quality material however panel          0.4404    

2  product fun bedroom windows. 

 

<="" pre=""> 

df = df.sample(frac = 1) 

print(df.head()) 
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Program output: 
      Star  HelpFul                     Title  \ 

4034     5        0               Very pretty    

3315     3        0            Cute but runny    

1078     5        0  Brings the beach to you.    

1538     5        0         Great decoration!    

5511     5        0                      best    

 

                                     Review  polarity_score  \ 

4034                love color came two window          0.6369    

3315  cute got wet color window left open storm cat ... 0.4588    

1078                 beautiful, remind islands.         0.5994    

1538  hanging nail room salon ambiance. hung using h... 0.6588    

5511               excellent product . advise everyone. 0.5719    

 

     sentiment_label   

4034             pos   

3315             pos   

1078             pos   

1538             pos   

5511             pos   

Label encoding: 

LabelEncoder().fit_transform(df["sentiment_label"]) is used to 

convert the textual sentiment labels ("pos" and "neg") into 

numeric labels (e.g., 1 for positive and 0 for negative). This 

transformation is necessary because machine learning models 

typically require numerical data as input. 

Updating the DataFrame: 

The encoded labels are then assigned back to the 

"sentiment_label" column replacing the original text-based 

labels with numeric values. 

Feature and target separation: 

y = df["sentiment_label"] assigns the numeric sentiment labels 

(the target variable) to the variable y. 

X = df["Review"] assigns the text data (the feature variable) 

to the variable X. These two variables, X (features) and y 

(target labels), will be used in training a machine learning 

model for sentiment classification. 

df["sentiment_label"] = 

LabelEncoder().fit_transform(df["sentiment_label"]) 

print(df.head()) 

 

y = df["sentiment_label"] 

X = df["Review"] 
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Program output: 
      Star  HelpFul                     Title  \ 

4034     5        0               Very pretty    

3315     3        0            Cute but runny    

1078     5        0  Brings the beach to you.    

1538     5        0         Great decoration!    

5511     5        0                      best    

 

                                                 Review  

polarity_score  \ 

4034                         love color came two window          

0.6369    

3315  cute got wet color window left open storm cat ...          

0.4588    

1078                         beautiful, remind islands.          

0.5994    

1538  hanging nail room salon ambiance. hung using h...          

0.6588    

5511               excellent product . advise everyone.          

0.5719    

 

      sentiment_label   

4034                1   

3315                1   

1078                1   

1538                1   

5511                1   

Application of CountVectorizer() 

This object cover a text vectorization method. 

It converts a collection of text documents (in this case, the 

X variable, which contains the text reviews) into a matrix of 

token counts. 

The goal is to represent text as numerical data, which is 

required for machine learning models to process it. 

vectorizer = CountVectorizer() 

X_count = vectorizer.fit_transform(X) 

Application of TF-IDF and N-Gram 

One of the most common ways to do this is through 

vectorization techniques like TF-IDF (Term Frequency-Inverse 

Document Frequency) and N-grams. These techniques help capture 

the importance of words in a text document, which is essential 

for tasks like sentiment analysis or text classification. 

The TF-IDF method represents text data by evaluating the 

importance of words in a document relative to the entire 
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corpus. It assigns a weight to each word based on how 

frequently it appears in a document (term frequency, TF) and 

how common or rare it is across all documents (inverse 

document frequency, IDF). This helps highlight words that are 

important for distinguishing between documents.  

N-grams can be used to extract and analyze phrases or idioms 

that are indicative of sentiment in text data. 

tf_idf_word_vectorizer = TfidfVectorizer() 

X_tf_idf_word = tf_idf_word_vectorizer.fit_transform(X) 

 

tf_idf_ngram_vectorizer = TfidfVectorizer(ngram_range=(2, 3)) 

X_tf_idf_ngram = tf_idf_ngram_vectorizer.fit_transform(X) 

In sentiment analysis, the goal is to classify text data 

(e.g., reviews) into different sentiment categories, typically 

positive or negative. One effective way to achieve this is to 

use a Multinomial Naive Bayes classifier, which is 

specifically suited for text classification tasks where 

features are represented by word count or frequency. The 

process typically involves the following steps: 

The first step is to initialize the Multinomial Naive Bayes 

model, which is a probabilistic model based on Bayes’ theorem. 

In this context, it assumes that the presence of a particular 

word in a document is independent of other words, given the 

class (positive or negative sentiment). This model is trained 

to estimate the probability that a document belongs to a 

certain class, based on the frequency of words (or features) 

in the document. 

After initializing the model, the next step is to fit the 

model to the training data. This involves training a Naive 

Bayes classifier using features extracted from the text that 

have been transformed using techniques such as TF-IDF or N-

gram vectorization. These vectorization methods convert text 

data into numerical representations that the model can work 

with. During the fitting process, the model learns the 

conditional probability of each word (or sequence of words) 

given the sentiment class (positive or negative). 

After the model has been fitted, cross-validation is used to 

assess the performance of the model. Cross-validation splits 

the data into multiple subsets (in this case, 5 folds) and 

trains the model on different combinations of training and 

validation data. This process helps evaluate how well the 

model performs on different subsets of the data and ensures 

that the model is not over-fitted to a particular part of the 
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data. Cross-validation provides a more reliable estimate of 

the model’s performance. 

Once a model is trained and validated, the model’s 

generalization is tested. This refers to the model’s ability 

to perform well on new, unseen data. The goal is for the model 

to generalize from the patterns learned during training and 

use them to predict sentiment on new data, not just the 

training set. Generalization ensures that the model has 

learned the underlying structure and is not simply memorizing 

specific examples (overfitting). In practice, this is tested 

by evaluating the model on a separate test set that it has not 

seen before. 

nb_model = MultinomialNB().fit(X_tf_idf_word, y) 

nb_score = cross_val_score(nb_model, 

                X_tf_idf_word, 

                y, 

                scoring="accuracy", 

                cv=5).mean() 

print(nb_score) 

 

Program output: 
0.8693009507274734 

Testing generalizability 

# introducing a positive review 

new_review = pd.Series("this product is amazing") 

 

# vectorize the our review 

new_review = TfidfVectorizer().fit(X).transform(new_review) 

 

# predict the sentiment of our review 

print(nb_model.predict(new_review)) 

 
Program output: 
[1] 

# introducing a negative review 

new_review = pd.Series("my experience was horrible") 

 

# vectorize the our review 

new_review = TfidfVectorizer().fit(X).transform(new_review) 

 

# predict the sentiment of our review 

print(nb_model.predict(new_review)) 

 
Program output: 
[0] 
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📝 12.4.3 

Project: Custom classifier for Slovak language 

The issues with the existence of a list of positive and negative words that are also 
assigned a sentiment weight (i.e. the problems mentioned in points a. and b.) can 
be solved by creating custom list of words together with determining the weight of 
the word. The existence of such a list of words will also mean for us the possibility 
of creating custom classifier. 

To create a custom word list (as all successful classifiers do) training the classifier 
is required. It means that we will bring a sufficient amount of data (ratings, reviews) 
to the classifier, which will already have the correct weight assigned to sentiment. 
Based on these evaluations, the classifier will learn/train to correctly evaluate 
positive and negative reviews. Although we can imagine a very complicated 
process under the word "learn/train", the whole "learning" will consist in our case of 
creating a list of positive and negative words with the correct weight of sentiment. 

On the official website of the Kingdom beyond the Seven Mountains, only a text 
review can be added. It is not possible to add a "like", "thumbs up" or other graphic 
rating. 

However, the dissidents who emigrated from the Kingdom behind the Seven 
Mountains created the so-called "dark web" own rating system. It is free, cannot be 
canceled by censorship, and besides a rating, it allows to add a "thumbs up" or 
"thumbs down" to a post. This system can be used to train a classifier. 

Assessments are used to create the classifier, which also includes a graphic 
representation of the assessment, such as "like", "thumbs up", or rating expressed 
by stars. The picture shows an example of two approaches to evaluation (thumbs 
up/down and stars). If there is any additional sentiment information, we can create 
an input file for custom classifier from such an evaluation. 

The sample intentionally uses two different types of graphic sentiment information 
(thumbs up/down and stars). Both are easy to change in the input dataset to 
sentiment values of the message: positive/negative. For information about 
sentiment using stars, it can be done, for example, by a simple rule: if the number of 
stars is 3 or more, then the rating is positive, otherwise negative. 

Assessments are used to create the classifier, which also includes a graphic 
representation of the assessment, such as "like", "thumbs up", or rating expressed 
by stars. The picture shows an example of two approaches to evaluation (thumbs 
up/down and stars). If there is any additional sentiment information, we can create 
an input file for custom classifier from such an evaluation. 

The sample intentionally uses two different types of graphic sentiment information 
(thumbs up/down and stars). Both are easy to change in the input dataset to 
sentiment values of the message: positive/negative. For information about 
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sentiment using stars, it can be done, for example, by a simple rule: if the number of 
stars is 3 or more, then the rating is positive, otherwise negative. 

 

 

In our example, we will use a dataset of ratings with assigned sentiment 
information to train the classifier. We will use it to classify the text, i.e. other 
ratings. This may seem unusual at first glance. However, it is necessary to realize 
that sentiment analysis is often used for the analysis of discussion forums, or 
customer reactions, and the opinion of voters. There, graphic information in the 
form of thumbs up/down or stars is not used. Therefore, a classifier is often 
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trained, e.g. on the rating of products by customers from other portals, where there 
is also graphic sentiment information, which latter will be used for discussion 
forums. 

To start creating custom classifier, we load the necessary libraries. The created 
dataset compiled from the ratings in the image, which will be in the file 
"sentiment_fiona.csv", will be loaded using the Pandas library. 

!pip install stanza 

 
import pandas 

import stanza 

stanza.download('sk') 

 

nlp = stanza.Pipeline(lang='sk') 

 
reviews = 

pandas.read_csv('https://priscilla.fitped.eu/data/nlp/sentimen

t/sentiment_fiona.csv', sep=';', index_col=None) 

print(reviews.head()) 

 
Program output: 
                                                Text  

Sentiment 

0  Fiona má pekné a upravené vlasy, super makeup....  

pozitivna 

1  Fiona je super princezná. Je vždy dobrá a milá...  

pozitivna 

2          Naša dobrá princezná je zároveň aj pekná.  

pozitivna 

3                                          Je super.  

pozitivna 

4                                Je dobrá, môže byť.  

pozitivna 

Especially in the case of inflected types of language, such as Slovak, it is necessary 
to perform text lemmatization. With this operation, we ensure the unification of 
words in terms of their "flexibility", i.e. from the point of view of word forms (e.g. the 
words "of students", "to students", "students" are rewritten to the uniform form 
"student"). 

We have loaded the dataset using Dataframe Pandas. Therefore, lemmatization will 
consist of loading a row in Pandas, applying the function for lemmatization, and 
inserting the resulting lemmas into a separate column. For this purpose, we will 
create the get_lemmas() function. The function rewrites individual words in the 
input text to their lemmas, i.e. the output are also sentences, but with words in 
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lemmatized form. Within Pandas, for each row/message, we need to display the 
message text, convert the words in the text to lemmas, and write it into a new 
column for the corresponding row. 

There are several options for going through all rows in Pandas. We chose a simple 
loop through all the rows using the iterrows() method. Although this method is the 
slowest (you need to have a lot of patience with large datasets), we chose it for its 
simplicity and ease of understanding. 

def get_lemmas(input_text): 

    output = '' 

    # on the input text, we apply NLP (using the Stanza 

library) for morphological analysis 

    document = nlp(input_text) 

     

    # for all sentences in the result 

    for sentence in document.sentences: 

        # for all words 

        for word in sentence.words: 

            # we add the lemma of the given word to the output 

            output = output + word.lemma + ' ' 

    return output 

 
# In the loop, we assume that there is an existing column 

"Lemma". 

# For this reason, we create it first and assign it a 

temporary empty value. 

reviews['Lemma'] = '' 

# for each row in the Pandas DataFrame 

for index, row in reviews.iterrows(): 

    # Get lemmatized form of words from the 'Text' column 

    lemmas = get_lemmas(row['Text']) 

    # Update the 'Lemma' column with the lemmatized words 

    reviews.at[index, 'Lemma'] = lemmas 

We simply check the correctness in the DataFrame. 

print(reviews.head()) 

 
Program output: 
                                                Text  

Sentiment  \ 

0  Fiona má pekné a upravené vlasy, super makeup....  

pozitivna    

1  Fiona je super princezná. Je vždy dobrá a milá...  

pozitivna    
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2          Naša dobrá princezná je zároveň aj pekná.  

pozitivna    

3                                          Je super.  

pozitivna    

4                                Je dobrá, môže byť.  

pozitivna    

 

                                               Lemma   

0  fiona mať pekný a upravený vlas , super makeup...   

1  fiona byť super princezná . byť vždy dobrý a m...   

2        náš dobrý princezná byť zároveň aj pekný .    

3                                       byť super .    

4                            byť dobrý , môcť byť .    

In the dataset prepared in this way, we have several options for further proceeding. 
The first and typical option is to use lemmatized sentences as input to custom 
classifier. In our task, we want to find individual positive and negative words. 

We will use the CountVectorizer() method, which can create a vector of words for a 
document by specifying the number of individual words. The CountVectorizer() 
method takes continuous text as input. For this reason, we merge all positive rows 
and all negative rows into one text. 

positive_messages = reviews[reviews['Sentiment'] == 

'pozitivna']['Lemma'] 

negative_messages = reviews[reviews['Sentiment'] == 

'negativna']['Lemma'] 

 

print(positive_messages) 

print(negative_messages) 

positive_text = '' 

for sentence in positive_messages: 

    positive_text += sentence 

    print(sentence) 

 

negative_text = '' 

for sentence in negative_messages: 

    negative_text += sentence 

In our case, there are only 5 ratings. Positive and negative variable values can be 
displayed. 

print(positive_text) 

print(negative_text) 
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Program output: 
fiona mať pekný a upravený vlas , super makeup . nosiť však 

otrasný outfita . fiona byť super princezná . byť vždy dobrý a 

milý . fiona vždy rád pomôcť . náš dobrý princezná byť zároveň 

aj pekný . byť super . byť dobrý , môcť byť .  

fiona byť náladový . to super princ si saslúžiť . outfita čo 

nosiť byť otrasný . škoda reč , aj tak tento príspevok cenzúra 

vymacť . to čo mať za muž . takýto hrozný ozruta doniesť do 

kráľovstvo . naposledy mať otrasný účes . tá farba vlas byť 

tiež hrozný .  

The variables prepared in this way will represent the input to the fit_transform() 
method for CountVectorizer(), which will create a vector from the frequencies of 
individual words/lemmas in the ratings. 

from sklearn.feature_extraction.text import CountVectorizer 

sent_vectorizer = CountVectorizer() 

 

corpus = sent_vectorizer.fit_transform([positive_text, 

negative_text]) 

The created corpus variable represents a 2x49 matrix. It means that all lemmas in 
positive and negative messages were 49. The first row of the matrix represents the 
frequency of lemmas in positive and the second row in negative ratings. 

For the sake of interest, we also present the possibility how the values of the 
corpus variable can be displayed using Pandas. 

# Creating a DataFrame named "evaluated_words" from the matrix 

(korpus.A) 

# The columns are assigned feature names from the vectorizer 

(word features) 

evaluated_words = pandas.DataFrame(corpus.A, 

columns=sent_vectorizer.get_feature_names()) 

 

# Displaying the DataFrame 

print(evaluated_words) 

 
Program output: 
   aj  byť  cenzúra  do  dobrý  doniesť  farba  fiona  hrozný  

kráľovstvo  \ 

0   1    6        0   0      3        0      0      3       0           

0    

1   1    3        1   1      0        1      1      1       2           

1    
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   ...  upravený  vlas  vymacť  však  vždy  za  zároveň  účes  

čo  škoda   

0  ...         1     1       0     1     2   0        1     0   

0      0   

1  ...         0     1       1     0     0   1        0     1   

2      1   

 

[2 rows x 48 columns] 

/home/johny/.local/lib/python3.9/site-

packages/sklearn/utils/deprecation.py:87: FutureWarning: 

Function get_feature_names is deprecated; get_feature_names is 

deprecated in 1.0 and will be removed in 1.2. Please use 

get_feature_names_out instead. 

  warnings.warn(msg, category=FutureWarning) 

It is obvious that the first row represents the frequency of positive and the second 
row represents the frequency of negative words. At the beginning of this chapter, 
we wanted to solve the problem with the missing list of positive and negative 
words. At the same time, we wanted to create a list with an assigned weight to the 
sentiment of individual words. If we multiply the number of negative words by -1 in 
the DataFrame evaluated_words and then we average the values, we can create 
such a list.  

# Multiplying the second row by -1 

evaluated_words.iloc[1] = (evaluated_words.iloc[1] * (-1)) 

 

# Adding the last row - the average of the values 

evaluated_words.loc['average'] = (evaluated_words.iloc[0] + 

evaluated_words.iloc[1]) / 2 

 

# Displaying the DataFrame 

print(evaluated_words) 

 
Program output: 
          aj  byť  cenzúra   do  dobrý  doniesť  farba  fiona  

hrozný  \ 

0        1.0  6.0      0.0  0.0    3.0      0.0    0.0    3.0     

0.0    

1       -1.0 -3.0     -1.0 -1.0    0.0     -1.0   -1.0   -1.0    

-2.0    

average  0.0  1.5     -0.5 -0.5    1.5     -0.5   -0.5    1.0    

-1.0    
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         kráľovstvo  ...  upravený  vlas  vymacť  však  vždy   

za  zároveň  \ 

0               0.0  ...       1.0   1.0     0.0   1.0   2.0  

0.0      1.0    

1              -1.0  ...       0.0  -1.0    -1.0   0.0   0.0 -

1.0      0.0    

average        -0.5  ...       0.5   0.0    -0.5   0.5   1.0 -

0.5      0.5    

 

         účes   čo  škoda   

0         0.0  0.0    0.0   

1        -1.0 -2.0   -1.0   

average  -0.5 -1.0   -0.5   

 

[3 rows x 48 columns] 

The list is currently created in a DataFrame. For a simple check, we can find the 
values of the words "good", "terrible", "horrible". 

print(evaluated_words['dobrý']['average']) 

print(evaluated_words['hrozný']['average']) 

print(evaluated_words['škoda']['average']) 

 
Program output: 
1.5 

-1.0 

-0.5 

In the preparation of text ratings, we have not used the removal of the so-called 
stopwords. Over a closer examination, it can be seen that words like "also", "but", 
"do", etc. have sentiment values from -0.5 to 0.5. It means that they occur equally in 
positive and negative texts. It is obvious that for a larger number of texts, their 
sentiment weight (average of positive and negative occurrences*-1) will be close to 
0. 

For completeness, here is an example of how such a list can be used to evaluate 
the sentiment of a new sentence. We will evaluate the sentence: "I think Fiona is 
great, but the censorship is terrible in the kingdom!" We will use the get_lemmas() 
function, which we defined earlier in the text of this chapter. The function returns 
the result in the form of text separated by spaces. The result of the function, i.e. all 
lemmas, which are identified in the evaluated sentence, we put them in the list. 

# Original sentence 

sentence = "Fionu pokladám za super, ale cenzúru v kráľovstve 

máme hroznú!" 
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# Tokenizing the sentence into lemmas and splitting it by 

spaces 

sentence_tokens = get_lemmas(sentence).split(' ') 

 

# Displaying the tokens 

print(sentence_tokens) 

 
Program output: 
['fion', 'pokladať', 'za', 'super', ',', 'ale', 'cenzúra', 

'v', 'kráľovstvo', 'mať', 'hrozný', '!', ''] 

From our list of rated words, we assign all the words that are rated to the word_list 
variable. To check, we will excerpt the beginning (first 9 words) of this variable. 

word_list = sent_vectorizer.get_feature_names() 

print(word_list[:9]) 

 
Program output: 
['aj', 'byť', 'cenzúra', 'do', 'dobrý', 'doniesť', 'farba', 

'fiona', 'hrozný'] 

/home/johny/.local/lib/python3.9/site-

packages/sklearn/utils/deprecation.py:87: FutureWarning: 

Function get_feature_names is deprecated; get_feature_names is 

deprecated in 1.0 and will be removed in 1.2. Please use 

get_feature_names_out instead. 

  warnings.warn(msg, category=FutureWarning) 

Finally, we calculate the average of the sentiment values of the words from the 
analysed sentence and write the result. It is obvious that a negative number in the 
result means a negative sentiment, a positive one means a positive one. 

 

# Initializing counters 

sentiment_score = 0 

word_count = 0 

 

# For each tokenized word in the sentence 

for word in sentence_tokens: 

 

    # If the word is in the list of evaluated words 

    if word in evaluated_words: 

 

        # Retrieve the sentiment weight from the pandas 

DataFrame 

        sentiment_score += evaluated_words[word]['average'] 

        word_count += 1 
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# Calculate the final sentiment 

final_sentiment = sentiment_score / word_count 

print('Sentence sentiment:', str(final_sentiment)) 

 
Program output: 
Sentence sentiment: -0.3333333333333333 

📝 12.4.4 

Project: Sentiment classifier from the existing free available reviews 

Creating custom classifier with the sentiment weight of individual words is a good 
example for understanding sentiment analysis. However, in practice there are more 
sophisticated solutions. Their principle is very similar. A classifier is created, and/or 
trained, on a sample of existing rated texts (i.e. texts to which information about 
their sentiment is assigned). For training the classifier a number of classification 
algorithms is offered, we do not have to limit to calculating the sentiment weight of 
words. 

Task: Create a sentiment classifier from the existing free avaible reviews of The 
Kingdom beyond the Seven Mountains. 

We will create a sentiment classifier using the so-called Bayesian classifier. It 
belongs to the simplest classification algorithms. It is based on Bayesian 
probability calculations. Due to its simplicity, it is referred to as the Naive Bayes 
classifier. 

We will work with the review dataset created in the previous subsection. From the 
previous chapter the get_lemmas() function will also be used. 

reviews 

 
def get_lemmas(input_text): 

    output = '' 

    # Apply morphological analysis to the input text 

    # using the nlp function from the stanza library 

    document = nlp(input_text) 

 

    # For all sentences in the result 

    for sentence in document.sentences: 

        # For all words 

        for word in sentence.words: 

            # Append the lemma of the word to the output 

            output = output + word.lemma + ' ' 

    return output 
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To prepare the text, we will use the TfidfVectorizer, which transforms the review 
reports into a TF-IDF document model. The basis of classification methods is 
training. It consists of feeding known examples to the input of the classifier. In our 
case, the TF-IDF vector of each review will be given to the input of the classifier, 
together with the information whether the review was positive or negative. Using 
classification methods, the classifier "learns" to distinguish between positive and 
negative reviews. 

Traditionally, all known examples (reviews) are not all included in the input of the 
classifier. The whole set of examples is divided into so-called training and test set. 
The test set (which is not used in training) serves to verify the success of training 
the classifier. It is also often used to estimate the corret ratio between model 
success and robustness. 

from sklearn.model_selection import train_test_split 

from sklearn.feature_extraction.text import TfidfVectorizer 

 

X_train, X_test, y_train, y_test = 

train_test_split(reviews['Lemma'], reviews['Sentiment'], 

random_state = 0, test_size=0.2) 

For completeness, we present the entire notation for dividing the dataset into 
training and test sets: 

X_train, X_test, y_train, y_test = train_test_split(reviews['Lema'], 
reviews['Sentiment'], random_state = 0, test_size=0.2) 

The train_test_split() function outputs four subsets. X_train is data for training (in 
our case, reviews), X_test is assigned information, whether a particular row is a 
positive or negative review. It should be noted that the order is important for both 
variables. The same applies to the variables y_train and y_test. These subsets will 
only be used to verify the accuracy of the classifier. 

X_train, y_train, X_test, y_test 

In the train_test_split() function, the first parameter is the column with reviews in 
Pandas (in our case – the processing of Slovak – these are identified lemmas), the 
second is the sentiment assigned to the reviews. The last parameter test_size 
determines what part of the examples from the dataset is kept as a test set. In our 
case, we set it to 0.2, which represents 20% of all data from the dataset. 80% of all 
data, i.e. in our case, 8 reviews will be used for training and 20%, i.e. two cases for 
testing. The 80:20 ratio is quite common. For a distribution of the dataset, the ratio 
is not exactly given. Besides the one set by us, a ratio of 70:30 or 90:10 is also 
used. 

In the next step, we convert the reviews from the training set into TF-IDF vectors. 
Note that in the case of calling the variable X_train_tfidf, which is a "list of vectors", 
i.e. a matrix, Python will only show us the size of this resulting matrix. In our case it 
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is 8x44. It means there are 8 review vectors because we divided 10 reviews in ratio 
80:20. The second dimension of 44 means that 44 unique lemmas (words) were 
identified across all reviews. 

tfidf_vect = TfidfVectorizer() 

X_train_tfidf = tfidf_vect.fit_transform(X_train) 

 

X_train_tfidf 

If we would like to list the variable X_train_tfidf (but it is not necessary), we can use 
the call to convert it to Pandas. 

pandas.DataFrame(X_train_tfidf.A, columns = 

tfidf_vect.get_feature_names()).head(10) 

The most important part of our example consists in creating the Naive Bayes 
classifier. To creation, we will use the MultinomialNB method, which implements a 
naive Bayesian algorithm for multinomial data. It is one of the two classic naive 
Bayes variants used in text classification (where the data are usually represented 
as vectors of word counts or TF-IDF vectors). 

from sklearn.naive_bayes import MultinomialNB 

clf = MultinomialNB().fit(X_train_tfidf, y_train) 

We will create the classifier within the clf variable using the typical fit() function for 
training any classifier. The input to the function will be the TF-IDF vectors of the 
reviews along with the associated sentiment. 

Part of the classifier training is the evaluation of its success. To evaluate the 
classifier created by us, we will use the test sets from the variable X_test. Note that 
we also have to convert this set into TF-IDF vectors first. We will find the 
successfulness using the accuracy_score() method. We present this method only 
because of the completeness of solving the example. It is obvious that we could 
calculate the successfulness of the classification even without it. 

y_pred = clf.predict(tfidf_vect.transform(X_test)) 

from sklearn import metrics  

print("Accuracy:",metrics.accuracy_score(y_test, y_pred)) 

Our classifier achieved a success rate of 50%. A classifier that outperforms a 
random generator is usually considered successful. We classified into two classes, 
the expected success rate of random generation is also 50%. So our classifier tied 
with the random generator ????. It is necessary to realize that the success of the 
classifier is influenced by the number of examples from the training set. In our 
example, we worked with 10 reviews, which we split 80:20 into training and test 
sets. So the training was done with only 8 examples, which is of course very few. 
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The remaining two examples were used for testing. Thus, an accuracy of 50% 
means that one was classified correctly and the other incorrectly. 

After training the classifier, our last step is to demonstrate its use. The predict() 
function is used to classify the sentence. The output of this function is the name of 
the class to which the input sentence was assigned after classification. We have to 
convert the sentence that we want to classify into lemmas and from them to create 
a TF-IDF vector. In the following samples, we present one positively and one 
negatively classified sentence. 

sentence = "V kráľovstve sa máme všetci dobre, super si tam 

žijeme" 

sentence_lemmas = get_lemmas(sentence) 

print(clf.predict(tfidf_vect.transform([sentence_lemmas]))) 

 
sentence = "Ten muž je zelená ozruta." 

sentence_lemmas = get_lemmas(sentence) 

print(clf.predict(tfidf_vect.transform([sentence_lemmas]))) 

12.5 Available libraries 

📝 12.5.1 

Sentiment is often just a kind of additional information alongside other textual 
analyses. In such a case, training custom classifier would take a lot of time. Also, 
we do not always have a suitable dataset for training. Fortunately, there are several 
libraries that are trained to determine sentiment. 

Sentiment analysis using the Polyglot library 

The library is presented by its authors as a solution that supports multilingual 
natural language processing. According to the project site 
https://polyglot.readthedocs.io, the library supports sentiment analysis for 136 
languages. 

We will present the work with the library on a simple sample. Due to the "sensitivity" 
of the library to the version of Python, the relatively large scope of the library itself 
as well as the necessary supporting libraries and corpora, we demonstrated the 
sample in the Google Colab environment (https://colab.research.google.com). 

The library for its functionality needs additional libraries such as pyicu, pycld2, and 
morfessor. These along with the library need to be installed. 

!pip install polyglot 

!pip install pyicu 

!pip install pycld2 

!pip install morfessor 
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After importing the library, you still need to download the sentiment analysis 
package in Slovak. 

from polyglot.text import Text 

 

!polyglot download sentiment2.sk 

 
Program output: 
[polyglot_data] Downloading package sentiment2.sk to 

[polyglot_data]     /home/johny/polyglot_data... 

We will examine the sentiment of the sentence from the reviews of the Kingdom 
beyond the Seven Mountains from the previous chapter.  

text = Text("Fionu pokladám za super, ale cenzúru v kráľovstve 

máme hroznú!") 

Polyglot includes functionality of automatic language detection. For checking, we 
can write the identified language of the analysed sentence. 

print("Language Detected: Code={}, 

Name={}\n".format(text.language.code, text.language.name)) 

 
Program output: 
Language Detected: Code=sk, Name=Slovak 

 

We can find the sentiment of the sentence with a simple call.  

print(text.polarity) 

 
Program output: 
1.0 

Despite the fact that we identified the sentence as positive, in our opinion, the 
sentiment for Slovak in the Polyglot library still has great reserves. It will probably 
be disappointing a finding how it calculated this value, i.e. how Polyglot evaluated 
the individual words of the analysed sentence. 

for w in text.words: 

    print("{:<16}{:>2}".format(w, w.polarity)) 

Program output: 
Fionu            0 

pokladám         0 

za               0 

super            1 

,                0 
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ale              0 

cenzúru          0 

v                0 

kráľovstve       0 

máme             0 

hroznú           0 

!                0 

It is clear from the sample that it found the value 1 only by identifying only one 

positive word "super" to which it assigned the value 1☹. 

Despite the fact that, in the case of Slovak, the library developers (or corpus 
designers) still have a lot of work, for English the library is relatively successful. If 
the reviews of Kingdom Beyond the Seven Mountains were written in English, their 
sentiment analysis would look as follows. 

!polyglot download sentiment2.en 

 

text = Text("I consider Fiona super, but we have terrible 

censorship in the kingdom!") 

 

print("Language Detected: Code={}, 

Name={}\n".format(text.language.code, text.language.name)) 

 
Program output: 
[polyglot_data] Downloading package sentiment2.en to 

[polyglot_data]     /home/johny/polyglot_data... 

Language Detected: Code=en, Name=English 

 

print(text.polarity) 

 
Program output: 
0.0 

 

for w in text.words: 

    print("{:<16}{:>2}".format(w, w.polarity)) 

 
Program output: 
I                0 

consider         0 

Fiona            0 

super            1 

,                0 

but              0 

we               0 
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have             0 

terrible        -1 

censorship       0 

in               0 

the              0 

kingdom          0 

!                0 

In our opinion, the polarity was determined correctly as neutral. Also, two words 
were correctly identified; one positive and one negative. 

📝 12.5.2 

Sentiment analysis using the NLTK library 

In the well-known NLTK library, there is an integrated tool Vader Sentiment 
Analyzer, which uses a dictionary of positive and negative words to evaluate the 
sentiment of the text. VADER (Valence Aware Dictionary and sEntiment Reasoner) 
is a dictionary tool based on sentiment analysis rules that is specially trained on 
moods (sentiments) expressed in social media. 

Before we determine the sentiment of the sentence, it is necessary to import the 
Vader tool and download the corresponding corpus. 

import nltk 

nltk.download('vader_lexicon') 

from nltk.sentiment.vader import SentimentIntensityAnalyzer 

 
Program output: 
[nltk_data] Downloading package vader_lexicon to 

[nltk_data]     /home/johny/nltk_data... 

[nltk_data]   Package vader_lexicon is already up-to-date! 

We can find the sentiment by simply calling the polarity_scores() method. 

sentence = 'I consider Fiona super, but we have terrible 

censorship in the kingdom!' 

senti_analyzer = SentimentIntensityAnalyzer() 

sentiment_result = senti_analyzer.polarity_scores(sentence) 

As a result, we can determine the value of the positivity and negativity of the 
sentence. Besides these data, we can also find the calculated neutrality of the 
sentence and, above all, the overall polarity in the compound property. 

print(sentiment_result) 

 
 



Sentiment Analysis | FITPED AI 

233 

Program output: 
{'neg': 0.28, 'neu': 0.566, 'pos': 0.154, 'compound': -0.4574} 

If we take into account a small deviation in the case of neutral results, the final 
result of the sentiment can be written. 

if sentiment_result['compound'] >= 0.05: 

    print("Positive") 

elif sentiment_result['compound'] <= -0.05: 

    print("Negative") 

else: 

    print("Neutral") 

 
Program output: 
Negative 

It is obvious that the Vader tool is currently not trained to determine the sentiment 
of sentences in the Slovak language.



 

 

Spam Identification 

Chapter 13 
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13.1 Spam 

🕮 13.1.1 

Spam refers to unsolicited or irrelevant messages often sent in bulk, typically for 
advertising, phishing, or malicious purposes. Spam is commonly associated with 
emails but can also appear in text messages, social media, or other communication 
platforms. Identifying and mitigating spam is crucial to protect users from scams, 
malware, and other security risks. 

In the context of NLP, spam detection involves analyzing textual data to determine 
whether a given message is spam (irrelevant or harmful) or ham (legitimate). This 
process uses linguistic features, patterns, and statistical techniques to differentiate 
between the two. 

Spam has unique characteristics such as repetitive keywords (e.g., "free," "win"), 
suspicious links, or requests for personal information. However, spammers 
continuously adapt, making spam detection a challenging and evolving field. 

Key points to note include the need for automated spam detection systems that 
analyze large volumes of data efficiently and the ethical considerations in ensuring 
that legitimate messages are not misclassified. 

📝 13.1.2 

What is the primary purpose of spam detection in NLP? 

• To differentiate spam from legitimate messages. 
• To analyze user emotions. 
• To enhance message encryption. 
• To generate automatic responses. 

🕮 13.1.3 

Spam messages often share a set of defining features that make them detectable 
through NLP techniques. These features include: 

• Use of specific keywords - common spam words like "free," "urgent," and 
"click here" are used to attract attention. 

• Suspicious URLs - spammers frequently include links that redirect users to 
malicious websites. 

• Irregular formatting - spam messages may use unusual capitalization or 
excessive punctuation to evade detection. 

• Phishing content - spam often seeks sensitive information by impersonating 
legitimate entities. 
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Understanding the structure of spam messages is essential for developing 
effective detection algorithms. While these characteristics are helpful in 
identification, spammers continually evolve their techniques, creating the need for 
robust and adaptable detection systems. 

📝 13.1.4 

Which of the following is a common feature of spam messages? 

• Suspicious URLs 
• Detailed user feedback 
• Encrypted attachments 
• Formal writing style 

🕮 13.1.5 

Spam identification involves analyzing messages using various computational 
methods. There are three main approaches: 

• Keyword-based detection - involves scanning messages for predefined spam 
keywords. Although simple, it may lead to high false positives. 

• Pattern recognition uses algorithms to identify suspicious patterns in 
message structure, such as repeated phrases or unusual links. 

• Machine learning models - modern spam detection heavily relies on machine 
learning, where algorithms are trained on labeled datasets to classify 
messages accurately. 

These methods work together to improve the accuracy of spam detection, with 
machine learning providing adaptability to evolving spam tactics. 

📝 13.1.6 

Which methods are commonly used for spam detection? 

• Pattern recognition 
• Keyword-based detection 
• Formal grammar analysis 
• Biometric identification 

🕮 13.1.7 

Machine learning has revolutionized spam detection by introducing models capable 
of learning from data. Supervised learning, the most common approach, involves 
training models on labeled datasets where messages are marked as spam or ham. 
Algorithms like Naive Bayes, Support Vector Machines (SVM), and Logistic 
Regression are widely used. 
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These models extract features from text data, such as word frequencies, n-grams, 
and sentiment scores, to make predictions. For example, if a model identifies 
frequent use of suspicious keywords and links in a message, it is likely to classify it 
as spam. 

The adaptability of machine learning models is a significant advantage, allowing 
them to detect emerging spam patterns effectively. However, the quality and size of 
the training dataset significantly impact model performance. 

📝 13.1.8 

What is a key advantage of using machine learning for spam detection? 

• Can adapt to new spam patterns. 
• Requires no labeled data. 
• Eliminates the need for feature extraction. 
• Works only on predefined rules. 

🕮 13.1.9 

Challenges in spam detection 

Despite advancements, spam detection faces several challenges: 

• Evolving spam techniques - spammers constantly update their strategies to 
evade detection, such as using obfuscated text or images. 

• Imbalanced datasets - spam datasets often have fewer spam messages 
compared to legitimate ones, which can affect model training. 

• False positives and negatives - misclassification of legitimate messages as 
spam (false positives) and spam as legitimate (false negatives) can lead to 
user dissatisfaction. 

• Multilingual spam - detecting spam in multiple languages requires 
sophisticated NLP models capable of handling diverse linguistic structures. 

These challenges underscore the need for ongoing research and innovation to 
enhance spam detection systems. 

📝 13.1.10 

Which challenges are commonly associated with spam detection? 

• Multilingual spam 
• Evolving spam techniques 
• Perfect classification accuracy 
• Consistent datasets 
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13.2 Spam project 

📝 13.2.1 

Project: Spam Classifier with TF-IDF and Naive Bayes 

(by https://hussnain-akbar.medium.com/understanding-and-implementing-
na%C3%AFve-bayes-algorithm-for-email-spam-detection-85a14b330fc6). Project is 
a copy of project in course Artificial intelligence in cyber security. We include it here 
for the purpose of smooth navigation through the content. 

Create a spam classifier using a Naive Bayes algorithm in combination with TF-IDF 
(Term Frequency-Inverse Document Frequency) for feature extraction. 

The Naïve Bayes classifier is a supervised machine learning model that predicts the 
probability of an event by analyzing related features. Here, "Naïve" means that the 
model assumes that all features are independent, meaning that each feature 
contributes to the prediction independently. In simpler terms, the model considers 
each feature separately, without assuming any relationships between them. 

For now, we will start with a simple version of the model to make it easier to 
understand. To do this, we will create a small, sample dataset. 

#Essential libraries required for this model 

import pandas as pd 

import numpy as np 

from sklearn.feature_extraction.text import TfidfVectorizer 

from sklearn.model_selection import train_test_split 

from sklearn.naive_bayes import MultinomialNB 

from sklearn.metrics import accuracy_score, 

classification_report 

This code will create a data frame with random emails and their corresponding 
labels (spam or not spam). Each email will consist of a random selection of words 
from the word_list. However, the above code will have the following output. 

# Create a random dataset 

np.random.seed(42)  # For reproducibility 

 

# Generate random words for features (words in emails) 

word_list = ['discount', 'offer', 'sale', 'free', 'click', 

'buy', 'win', 'money', 'gift', 'limited'] 

 

# Generate random emails 

num_emails = 1000 

emails = [] 

https://hussnain-akbar.medium.com/understanding-and-implementing-na%C3%AFve-bayes-algorithm-for-email-spam-detection-85a14b330fc6
https://hussnain-akbar.medium.com/understanding-and-implementing-na%C3%AFve-bayes-algorithm-for-email-spam-detection-85a14b330fc6
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labels = [] 

for _ in range(num_emails): 

    email = ' '.join(np.random.choice(word_list, 

size=np.random.randint(5, 15))) 

    emails.append(email) 

    # Assign labels (spam or not spam) 

    labels.append(np.random.choice(['spam', 'not spam'], 

p=[0.3, 0.7])) 

 

# Create a DataFrame 

data = pd.DataFrame({'email': emails, 'label': labels}) 

 

# Display the first few rows of the dataset 

print(data.head()) 

 
Program output: 
                                               email     label 

0  free money click win limited sale win money cl...  not spam 

1  click offer money buy offer click discount lim...      spam 

2  sale win free gift sale click sale win click g...  not spam 

3              limited gift limited click offer free      spam 

4  money sale discount free offer money free offe...  not spam 

Let's walk through the steps to build and train a Naïve Bayes classifier using the 
dataset we created. Here is a breakdown of the four main steps: 

1. Data preprocessing 

In this step, we will convert the text data to numeric characters. We will use the TF-
IDF (Term Frequency-Inverse Document Frequency) technique, which transforms 
the text into a format understood by the Naïve Bayes classifier. The TF-IDF 
approach helps highlight important words in a dataset while reducing the impact of 
common words that may not provide significant meaning. 

Steps: 

• Tokenization: Splitting text into individual words or tokens. 
• Lowercase: Convert all text to lowercase for consistency. 
• Eliminating Stop Words: Eliminate common words (such as "the", "is", "and") 

that do not add much to the meaning. 
• TF-IDF Calculation: Calculate the TF-IDF score for each word in each 

document. 

In following code we apply only conversion of text data into numerical features 
using techniques like TF-IDF. 

from sklearn.feature_extraction.text import TfidfVectorizer 
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from sklearn.model_selection import train_test_split 

from sklearn.naive_bayes import MultinomialNB 

from sklearn.metrics import accuracy_score, 

classification_report 

 

# Preprocessing: Convert text data to numerical features 

tfidf_vectorizer = TfidfVectorizer(max_features=1000)  # Limit 

features to 1000 for simplicity 

X = tfidf_vectorizer.fit_transform(data['email']) 

y = data['label'] 

2. Splitting the data 

Next, we need to split the dataset into two parts: one for training the model and 
another for testing its performance. A typical split might allocate 70-80% of the 
data for training and the remaining 20-30% for testing. 

We will use a library sklearn to split the dataset into training and testing sets, 
ensuring that both sets contain a representative distribution of classes (e.g., spam 
and not spam). 

# Split the data into training and testing sets 

X_train, X_test, y_train, y_test = train_test_split(X, y, 

test_size=0.2, random_state=42) 

3. Training the Naïve Bayes Model 

Now we can train the Naïve Bayes classifier using the training data. The model will 
learn from the features extracted in the preprocessing step. 

Steps: 

• Create an instance of the Naïve Bayes classifier. 
• Fit the model on the training data, allowing it to learn the relationship 

between the features and the labels (spam or not spam). 

# Initialize and train the Naive Bayes classifier 

naive_bayes = MultinomialNB() 

naive_bayes.fit(X_train, y_train) 

4. Evaluating the Model 

After training the model, we’ll evaluate its performance on the testing data to see 
how well it predicts new, unseen data. 

Steps: 
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• Use the trained model to make predictions on the testing set. 
• Compare the predicted labels to the actual labels to calculate performance 

metrics such as: 
• Accuracy: The proportion of correctly classified instances. 
• Precision: The proportion of true positive predictions to the total positive 

predictions. 
• Recall (Sensitivity): The proportion of true positive predictions to the total 

actual positives. 
• F1 Score: The harmonic mean of precision and recall, providing a balance 

between the two. 

y_pred = naive_bayes.predict(X_test) 

accuracy = accuracy_score(y_test, y_pred) 

report = classification_report(y_test, y_pred, 

zero_division=0) 

 

print(f'Accuracy: {accuracy}') 

print('Classification Report:\n', report) 

 
Program output: 
Accuracy: 0.66 

Classification Report: 

               precision    recall  f1-score   support 

 

    not spam       0.66      1.00      0.80       132 

        spam       0.00      0.00      0.00        68 

 

    accuracy                           0.66       200 

   macro avg       0.33      0.50      0.40       200 

weighted avg       0.44      0.66      0.52       200 

The accuracy of our Naive Bayes classifier on the test data is 66%. This means that 
the model correctly identified about two-thirds of the emails in our test set. 
However, when we look closer at the classification report, we notice that the 
precision, recall, and F1 score for the “spam” class are quite low. 

Low precision means that when the model predicts an email is spam, it often turns 
out to be wrong. Low recall indicates that the model is missing many actual spam 
emails, failing to identify them correctly. Essentially, this suggests that our model 
struggles to accurately recognize spam emails, which is a significant concern for 
applications that rely on effective spam detection. 

The final step is to use our trained Naive Bayes model to predict whether new 
emails are spam or not. To do this, we run the following code, which takes the new 
email data and applies the model we’ve trained. After running the prediction, we can 
analyze the output to see how well the model identifies spam in this new data. 
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# Example of a new email to be predicted 

new_email = "Limited time offer! Click here to win a free 

gift." 

 

# Preprocess the new email using the TF-IDF vectorizer from 

the training 

new_email_features = tfidf_vectorizer.transform([new_email]) 

 

# Make prediction using the trained Naive Bayes classifier 

predicted_label = naive_bayes.predict(new_email_features) 

 

# Print the predicted label 

print(f"Predicted Label: {predicted_label[0]}") 

 
Program output: 
Predicted Label: not spam 

📝 13.2.2 

Project: SMS spam classifier 

(by https://www.milindsoorya.co.uk/blog/build-a-spam-classifier-in-python). 
Project is a copy of project in course Artificial intelligence in cyber security. We 
include it here for the purpose of smooth navigation through the content. 

In today's instant messaging world, SMS a IM spam is becoming a growing 
problem. As unwanted advertising messages, scams and phishing attempts are on 
the rise, it is essential to have effective tools to identify and filter these spam 
messages. In this project, we will develop a machine learning model to classify 
SMS/IM messages as spam or ham. 

Our goal is to create a model that can analyze the content of an message and 
accurately predict whether it is spam. Machine learning models can learn patterns 
in the text itself, making them more adaptive and robust. 

Used Spam Collection is a set of SMS tagged messages that have been collected 
for SMS Spam research. It contains one set of SMS messages in English of 5,574 
messages, tagged according to being ham (legitimate) or spam. The data was 
obtained from UCI’s Machine Learning Repository, 

The local version is available at 
https://priscilla.fitped.eu/data/cybersecurity/spam/sms_spam_894.txt 

The steps in the project will be focused on 

Data processing 

https://www.milindsoorya.co.uk/blog/build-a-spam-classifier-in-python
https://archive.ics.uci.edu/ml/datasets/SMS+Spam+Collection
https://priscilla.fitped.eu/data/cybersecurity/spam/sms_spam_894.txt
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• Import packages 
• Loading data 
• Data set preprocessing and exploration 
• Creating a word cloud to see which message is spam and which is not. 
• Removing stop words and punctuation 
• Convert text data to vectors 

 

Creating a spam classification model for SMS 

• Splitting data into train and test files 
• Use built-in Sklearn classifiers to build models 
• Training data on the model 
• Making predictions based on new data 

Import the required packages 

import matplotlib.pyplot as plt 

import csv 

import sklearn 

import pickle 

from wordcloud import WordCloud 

import pandas as pd 

import numpy as np 

import nltk 

from nltk.corpus import stopwords 

from sklearn.feature_extraction.text import CountVectorizer, 

TfidfTransformer 

from sklearn.tree import DecisionTreeClassifier 

from sklearn.model_selection import 

GridSearchCV,train_test_split,StratifiedKFold,cross_val_score,

learning_curve 

Loading the Dataset 

data = 

pd.read_csv('https://priscilla.fitped.eu/data/cybersecurity/sp

am/sms_spam_894.txt', encoding='latin-1', delimiter='\t', 

header=None) 

print(data.head()) 

 
Program output: 
      0                                                  1 

0   ham  Go until jurong point, crazy.. Available only ... 

1   ham                      Ok lar... Joking wif u oni... 
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2  spam  Free entry in 2 a wkly comp to win FA Cup fina... 

3   ham  U dun say so early hor... U c already then say... 

4   ham  Nah I don't think he goes to usf, he lives aro... 

Name the columns for better processing. 

data.rename(columns={0: 'label', 1: 'text'}, inplace=True) 

print(data.head()) 

 
Program output: 
  label                                               text 

0   ham  Go until jurong point, crazy.. Available only ... 

1   ham                      Ok lar... Joking wif u oni... 

2  spam  Free entry in 2 a wkly comp to win FA Cup fina... 

3   ham  U dun say so early hor... U c already then say... 

4   ham  Nah I don't think he goes to usf, he lives aro... 

print(data['label'].value_counts()) 

 
Program output: 
label 

ham     4825 

spam     747 

Name: count, dtype: int64 

Preprocessing and Exploring the Dataset 

Build word cloud to see which message is spam and which is not 

ham_words = '' 

spam_words = '' 

# Creating a corpus of spam messages 

for val in data[data['label'] == 'spam'].text: 

    text = val.lower() 

    tokens = nltk.word_tokenize(text) 

    for words in tokens: 

        spam_words = spam_words + words + ' ' 

 

# Creating a corpus of ham messages 

for val in data[data['label'] == 'ham'].text: 

    text = text.lower() 

    tokens = nltk.word_tokenize(text) 

    for words in tokens: 

        ham_words = ham_words + words + ' ' 

# Create Spam word cloud and ham word cloud.         
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spam_wordcloud = WordCloud(width=500, 

height=300).generate(spam_words) 

ham_wordcloud = WordCloud(width=500, 

height=300).generate(ham_words) 

 

#Spam Word cloud 

plt.figure( figsize=(10,8), facecolor='w') 

plt.imshow(spam_wordcloud) 

plt.axis("off") 

plt.tight_layout(pad=0) 

plt.show() 

 
Program output: 

 
 
#Creating Ham wordcloud 

plt.figure( figsize=(10,8), facecolor='g') 

plt.imshow(ham_wordcloud) 

plt.axis("off") 

plt.tight_layout(pad=0) 

plt.show() 
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Program output: 

 

from the spam word cloud, we can see that "free" is most often used in spam. 

Now, we can convert the spam and ham into 0 and 1 respectively so that the 
machine can understand. 

data = data.replace(['ham','spam'],[0, 1]) 

print(data.head(10)) 

 
Program output: 
   label                                               text 

0      0  Go until jurong point, crazy.. Available only ... 

1      0                      Ok lar... Joking wif u oni... 

2      1  Free entry in 2 a wkly comp to win FA Cup fina... 

3      0  U dun say so early hor... U c already then say... 

4      0  Nah I don't think he goes to usf, he lives aro... 

5      1  FreeMsg Hey there darling it's been 3 week's n... 

6      0  Even my brother is not like to speak with me. ... 

7      0  As per your request 'Melle Melle (Oru Minnamin... 

8      1  WINNER!! As a valued network customer you have... 

9      1  Had your mobile 11 months or more? U R entitle... 

:1: FutureWarning: Downcasting behavior in `replace` is 

deprecated and will be removed in a future version. To retain 

the old behavior, explicitly call 

`result.infer_objects(copy=False)`. To opt-in to the future 
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behavior, set `pd.set_option('future.no_silent_downcasting', 

True)` 

  data = data.replace(['ham','spam'],[0, 1]) 

Removing punctuation and stopwords from the messages 

• Punctuation and stop words do not contribute anything to our model, so we 
have to remove them. Using NLTK library we can easily do it. 

#remove the punctuations and stopwords 

import string 

def text_process(text): 

 

    text = text.translate(str.maketrans('', '', 

string.punctuation)) 

    text = [word for word in text.split() if word.lower() not 

in stopwords.words('english')] 

 

    return " ".join(text) 

 

data['text'] = data['text'].apply(text_process) 

print(data.head(10)) 

 
Program output: 
   label                                               text 

0      0  Go jurong point crazy Available bugis n great ... 

1      0                            Ok lar Joking wif u oni 

2      1  Free entry 2 wkly comp win FA Cup final tkts 2... 

3      0                U dun say early hor U c already say 

4      0        Nah dont think goes usf lives around though 

5      1  FreeMsg Hey darling 3 weeks word back Id like ... 

6      0     Even brother like speak treat like aids patent 

7      0  per request Melle Melle Oru Minnaminunginte Nu... 

8      1  WINNER valued network customer selected receiv... 

9      1  mobile 11 months U R entitled Update latest co... 

Now, create a data frame from the processed data before moving to the next step. 

text = pd.DataFrame(data['text']) 

label = pd.DataFrame(data['label']) 

Converting words to vectors 

We can convert words to vectors using either Count Vectorizer or by using TF-IDF 
Vectorizer. 
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TF-IDF is better than Count Vectorizers because it not only focuses on the 
frequency of words present in the corpus but also provides the importance of the 
words. We can then remove the words that are less important for analysis, hence 
making the model building less complex by reducing the input dimensions. 

I have included both methods for your reference. 

Converting words to vectors using Count Vectorizer 

## Counting how many times a word appears in the dataset 

from collections import Counter 

 

total_counts = Counter() 

for i in range(len(text)): 

    for word in text.values[i][0].split(" "): 

        total_counts[word] += 1 

 

print("Total words in data set: ", len(total_counts)) 

 
Program output: 
Total words in data set:  11426 

 

# Sorting in decreasing order (Word with highest frequency 

appears first) 

vocab = sorted(total_counts, key=total_counts.get, 

reverse=True) 

print(vocab[:60]) 

 
Program output: 
['u', '2', 'call', 'U', 'get', 'Im', 'ur', '4', 'ltgt', 

'know', 'go', 'like', 'dont', 'come', 'got', 'time', 'day', 

'want', 'Ill', 'lor', 'Call', 'home', 'send', 'one', 'going', 

'need', 'Ok', 'good', 'love', 'back', 'n', 'still', 'text', 

'im', 'later', 'see', 'da', 'ok', 'think', 'Ã¼', 'free', 

'FREE', 'r', 'today', 'Sorry', 'week', 'phone', 'mobile', 

'cant', 'tell', 'take', 'much', 'night', 'way', 'Hey', 

'reply', 'work', 'give', 'make', 'new'] 

 

# Mapping from words to index 

vocab_size = len(vocab) 

word2idx = {} 

#print vocab_size 

for i, word in enumerate(vocab): 

    word2idx[word] = 1 
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# Text to Vector 

def text_to_vector(text): 

    word_vector = np.zeros(vocab_size) 

    for word in text.split(" "): 

        if word2idx.get(word) is None: 

            continue 

        else: 

            word_vector[word2idx.get(word)] += 1 

    return np.array(word_vector) 

 

# Convert all titles to vectors 

word_vectors = np.zeros((len(text), len(vocab)), 

dtype=np.int_) 

for i, (_, text_) in enumerate(text.iterrows()): 

    word_vectors[i] = text_to_vector(text_[0]) 

 

print(word_vectors.shape) 

 
Program output: 
:21: FutureWarning: Series.__getitem__ treating keys as 

positions is deprecated. In a future version, integer keys 

will always be treated as labels (consistent with DataFrame 

behavior). To access a value by position, use `ser.iloc[pos]` 

  word_vectors[i] = text_to_vector(text_[0]) 

(5572, 11426) 

Converting words to vectors using TF-IDF Vectorizer 

#convert the text data into vectors 

from sklearn.feature_extraction.text import TfidfVectorizer 

 

vectorizer = TfidfVectorizer() 

vectors = vectorizer.fit_transform(data['text']) 

print(vectors.shape) 

 
Program output: 
(5572, 9459) 

 

# You can choose type of converted data 

#features = word_vectors 

features = vectors 
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Splitting into training and test set 

#split the dataset into train and test set 

X_train, X_test, y_train, y_test = train_test_split(features, 

data['label'], test_size=0.15, random_state=111) 

Classifying using sklearn's pre-built classifiers 

• In this step we will use some of the most popular classifiers out there and 
compare their results. 

#import sklearn packages for building classifiers 

from sklearn.linear_model import LogisticRegression 

from sklearn.svm import SVC 

from sklearn.naive_bayes import MultinomialNB 

from sklearn.tree import DecisionTreeClassifier 

from sklearn.neighbors import KNeighborsClassifier 

from sklearn.ensemble import RandomForestClassifier 

from sklearn.metrics import accuracy_score 

 

#initialize multiple classification models 

svc = SVC(kernel='sigmoid', gamma=1.0) 

knc = KNeighborsClassifier(n_neighbors=49) 

mnb = MultinomialNB(alpha=0.2) 

dtc = DecisionTreeClassifier(min_samples_split=7, 

random_state=111) 

lrc = LogisticRegression(solver='liblinear', penalty='l1') 

rfc = RandomForestClassifier(n_estimators=31, 

random_state=111) 

 

#create a dictionary of variables and models 

clfs = {'SVC' : svc,'KN' : knc, 'NB': mnb, 'DT': dtc, 'LR': 

lrc, 'RF': rfc} 

 

#fit the data onto the models 

def train(clf, features, targets): 

    clf.fit(features, targets) 

 

def predict(clf, features): 

    return (clf.predict(features)) 

 

pred_scores_word_vectors = [] 

for k,v in clfs.items(): 

    train(v, X_train, y_train) 

    pred = predict(v, X_test) 
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    pred_scores_word_vectors.append((k, [accuracy_score(y_test 

, pred)])) 

Predictions using TFIDF Vectorizer algorithm 

print(pred_scores_word_vectors) 

Model predictions 

#write functions to detect if the message is spam or not 

def find(x): 

    if x == 1: 

        print ("Message is SPAM") 

    else: 

        print ("Message is NOT Spam") 

 

newtext = ["Free entry"] 

integers = vectorizer.transform(newtext) 

 

x = mnb.predict(integers) 

find(x) 

xx = knc.predict(integers) 

find(xx) 

 
Program output: 
Message is SPAM 

Message is SPAM 



 

 

Large Language Models 

Chapter 14 
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14.1 Large language models 

🕮 14.1.1 

Large Language Models (LLMs) are a breakthrough in artificial intelligence, 
designed to process and generate human-like text. These models, such as GPT-3, 
are built using deep learning techniques and are trained on massive datasets, often 
comprising billions of words. LLMs are capable of performing a wide range of NLP 
tasks, from answering questions and translating text to summarizing content and 
generating creative writing. 

The foundation of LLMs lies in their ability to predict the next word or phrase in a 
sequence, based on patterns learned during training. This predictive power makes 
LLMs incredibly versatile, capable of handling everything from basic tasks like text 
classification to more complex functions like conversational agents and creative 
text generation. LLMs work by capturing context and syntactic rules from vast 
amounts of data, allowing them to generate responses that are contextually 
appropriate and grammatically accurate. 

The significance of LLMs in the AI landscape is immense, as they can be applied to 
multiple industries, including healthcare, finance, marketing, and customer service. 
For instance, in customer service, LLMs can be integrated into chatbots to provide 
real-time support, while in healthcare, they can assist in generating medical reports 
or providing health information. 

📝 14.1.2 

What is a major benefit of using LLMs in industries such as customer service and 
healthcare? 

• They provide accurate and personalized responses at scale. 
• They eliminate the need for human employees entirely. 
• They reduce all costs associated with service delivery. 
• They completely remove bias from decision-making processes. 

🕮 14.1.3 

The Transformer model, introduced in 2017 by Vaswani et al., is the core 
architecture that powers modern LLMs. Unlike earlier models like Recurrent Neural 
Networks (RNNs), the Transformer relies on a mechanism called "self-attention" to 
process all words in a sentence simultaneously, rather than sequentially. This 
allows the model to capture long-range dependencies in text more effectively, 
leading to a better understanding of context and meaning across longer sequences. 

Self-attention works by assigning different weights to the words in a sentence, 
indicating their relevance to each other. This enables the model to focus on 
important parts of the sentence while processing the entire input in parallel. This 
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parallelization makes Transformers much faster and more efficient than previous 
architectures, especially when dealing with large datasets. This is why 
Transformers are the backbone of popular models like GPT-3, BERT, and T5, which 
are used in a variety of NLP applications. 

In addition to self-attention, the Transformer model uses a position encoding 
mechanism, which helps the model understand the order of words in a sentence. 
The combination of self-attention and position encoding allows Transformers to 
understand both the content and structure of text more effectively, making them a 
game-changer in the field of natural language processing. 

📝 14.1.4 

What is the primary advantage of the Transformer model compared to earlier 
models like RNNs? 

• It processes sequences in parallel, improving efficiency. 
• It uses fewer parameters, making it faster to train. 
• It relies solely on convolutional layers for computation. 
• It requires labeled data for training. 

🕮 14.1.5 

Training large language models (LLMs) is a complex and resource-intensive 
process that requires massive computational power. The training process typically 
involves two stages: pretraining and fine-tuning. During pretraining, the model is 
exposed to a large and diverse corpus of text, learning patterns in language, 
grammar, and contextual relationships. This stage is crucial because it enables the 
model to learn a broad understanding of language. 

Fine-tuning is the second phase, where the model is adapted to specific tasks or 
domains. In this stage, the model is trained on a smaller, more specialized dataset 
that is tailored to a particular application, such as medical text or legal documents. 
Fine-tuning helps the model become more accurate and effective at performing 
specific tasks, such as answering legal questions or generating medical reports. 

The sheer size of the datasets and the number of parameters (often in the billions) 
makes training LLMs extremely expensive and time-consuming. In addition, the 
process requires advanced hardware, such as Graphics Processing Units (GPUs) or 
Tensor Processing Units (TPUs), to speed up the computations. Despite these 
challenges, the results are highly rewarding, as LLMs can perform a wide array of 
tasks with impressive accuracy. 

📝 14.1.6 

Why is fine-tuning important when training large language models? 

• It adapts the model to specific tasks or domains. 
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• It reduces the size of the model for faster processing. 
• It eliminates the need for pre-training on large datasets. 
• It ensures the model uses only supervised learning methods. 

🕮 14.1.7 

Large language models have a wide range of practical applications that extend 
across multiple industries. One of the most common uses is in text generation, 
where LLMs can create coherent and contextually relevant content from a given 
prompt. This has revolutionized fields such as content creation, marketing, and 
even creative writing, enabling automated generation of articles, advertisements, 
and social media posts. 

Another significant application is text summarization, where LLMs can condense 
long documents or articles into shorter, more digestible summaries. This is useful 
for professionals who need to quickly grasp the main points of lengthy reports or 
research papers. Similarly, LLMs are used for language translation, where they can 
accurately translate text between different languages, improving global 
communication. 

LLMs are also making their mark in question answering systems. These systems, 
powered by LLMs, can answer queries posed in natural language, providing users 
with detailed and contextually relevant responses. This has led to the development 
of AI-powered assistants and chatbots that can provide real-time, accurate 
information on a wide range of topics. 

📝 14.1.8 

What is one of the most common applications of large language models in 
industries like content creation and marketing? 

• Generating creative and persuasive written content. 
• Predicting stock market trends. 
• Detecting fraudulent transactions. 
• Simulating scientific experiments. 

🕮 14.1.9 

Ethical considerations and challenges 

While LLMs are powerful tools, they also come with ethical considerations and 
challenges: 

• Bias - LLMs can inherit biases present in the data they are trained on. This 
can lead to biased or discriminatory outputs, which can be harmful in 
sensitive applications. 

• Misinformation - LLMs can inadvertently generate false or misleading 
information, as they may not have a true understanding of the content. 
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• Privacy concerns - if trained on private or sensitive data, LLMs could 
inadvertently reveal personal information in their outputs. 

• Energy consumption - training large models requires significant 
computational resources, which can contribute to environmental concerns. 

 

📝 14.1.10 

What is one ethical challenge associated with large language models that can 
result in biased outputs? 

• Learning biases present in training data. 
• Lack of computational efficiency. 
• Insufficient training data. 
• Limited availability of pre-trained models. 

14.2 LLM in practice 

🕮 14.2.1 

Fine-tuning is a critical step in adapting large language models (LLMs) for specific 
applications. After a model like GPT-3 is pretrained on massive amounts of general 
language data, it can be fine-tuned on smaller, task-specific datasets. This process 
allows the model to focus on particular domains, such as legal, medical, or 
technical language, improving its relevance and accuracy for those areas. For 
example, a fine-tuned model trained on medical data can provide accurate 
summaries of patient reports or answer complex medical queries. 

The fine-tuning process leverages the foundational knowledge gained during 
pretraining while incorporating domain-specific nuances. By training on a smaller 
dataset tailored to the target task, the model avoids the need to start from scratch, 
saving time and computational resources. This also ensures that the model retains 
its general language capabilities while excelling in its specialized area. 

Fine-tuning can address the unique requirements of various industries by adapting 
the model to understand specialized terminology, sentence structures, or 
contextual nuances. For instance, in the legal domain, fine-tuning on court 
judgments or contracts enables the model to perform tasks like contract review or 
legal research efficiently. 

📝 14.2.2 

Which statements are true about fine-tuning large language models? 

• It uses domain-specific datasets to adapt the model. 
• Fine-tuned models retain general language knowledge. 
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• It requires starting from scratch for every task. 
• It eliminates the need for pretraining. 

🕮 14.2.3 

LLMs showcase remarkable capabilities, but they are not without limitations. One 
fundamental issue is their lack of genuine understanding. While LLMs generate text 
based on patterns learned during training, they do not grasp the meaning of the 
words. This can result in plausible-sounding outputs that lack factual accuracy or 
logical consistency. For example, an LLM might confidently provide a detailed but 
incorrect explanation about a topic. 

Another limitation is the dependence on training data quality. If the training data 
contains biases, inaccuracies, or outdated information, the model's outputs will 
likely reflect these shortcomings. This makes careful data selection and 
preprocessing critical for minimizing errors and bias in the model's responses. 

LLMs also face constraints in handling long texts. Although they are designed to 
process lengthy sequences, there is a limit to how much context they can consider 
at once. This limitation can affect their coherence when generating or summarizing 
extensive texts, particularly when the input exceeds their context window. 

📝 14.2.4 

What are limitations of large language models? 

• They lack true understanding of the text. 
• Their performance depends on training data quality. 
• They always produce factually accurate outputs. 
• They have unlimited context processing capabilities. 

🕮 14.2.5 

LLMs are continuously evolving, with researchers exploring ways to improve their 
capabilities and address existing challenges. One key focus is on enhancing their 
efficiency. New architectures, such as sparse models, aim to reduce computational 
demands without compromising performance. This innovation is crucial as LLMs 
become larger and require more resources to train and deploy. 

Ethical considerations are another priority. Researchers are working to minimize 
biases in LLMs by diversifying training data and refining algorithms to promote 
fairness and inclusivity. These efforts are essential to ensure that the models 
generate outputs that are less biased and more representative of diverse 
perspectives. 

The future also includes broader integration of LLMs across industries. From 
healthcare to finance, LLMs are expected to play significant roles, such as assisting 
in patient data analysis or providing market predictions. As they become more 
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sophisticated, their potential applications will expand, transforming how people 
interact with technology. 

📝 14.2.6 

What are advancements being pursued for LLMs? 

• Developing sparse models for efficiency. 
• Reducing biases for ethical outputs. 
• Eliminating all resource requirements. 
• Expanding applications across industries. 

🕮 14.2.7 

Transfer learning is a foundational technique that contributes significantly to the 
efficiency and versatility of large language models (LLMs). Rather than training 
models from scratch for every specific task, transfer learning allows knowledge 
gained during general training to be applied to new, task-specific scenarios. This is 
particularly useful when dealing with specialized domains, such as healthcare or 
legal services, where data availability may be limited. 

For example, an LLM pretrained on general language data can be fine-tuned using a 
smaller dataset for tasks like sentiment analysis or medical diagnosis. This reuse 
of foundational knowledge significantly reduces computational costs and 
accelerates the training process. Additionally, transfer learning enables models to 
maintain the broader language understanding gained during pretraining while 
adapting to specific contexts. 

The adaptability offered by transfer learning makes LLMs highly versatile for 
various industries. Whether predicting customer preferences in e-commerce or 
analyzing market trends in finance, transfer learning ensures that models can 
perform these tasks effectively without requiring extensive retraining. 

📝 14.2.8 

What are the benefits of transfer learning in large language models? 

• Reduces computational cost for task-specific training. 
• Applies knowledge from pretraining to new tasks. 
• Requires training models from scratch for every task. 
• Eliminates the need for general language pretraining. 
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🕮 14.2.9 

Practical implementation 

Implementing large language models (LLMs) in real-world applications requires 
careful planning and a structured approach. The first step is model selection, where 
the choice of an LLM depends on the specific task. For instance, GPT models are 
commonly used for text generation, while BERT excels in tasks like question 
answering and sentiment analysis. Selecting the right model ensures optimal 
performance for the intended application. 

Data preprocessing is the next critical step. Raw data needs to be cleaned, 
tokenized, and formatted to align with the model's input requirements. This step 
minimizes noise in the data and improves the model's ability to generate accurate 
predictions or responses. For instance, in sentiment analysis, preprocessing might 
involve removing stop words, lemmatization, or handling missing values in the 
dataset. 

After preprocessing, fine-tuning comes into play. This involves training the model 
on domain-specific data to tailor it to the desired task. Fine-tuning improves the 
model’s accuracy and relevance for tasks like generating chatbot responses or 
summarizing technical documents. Finally, the deployment phase integrates the 
model into the application, such as a customer service chatbot or a 
recommendation engine, using frameworks like TensorFlow or PyTorch for 
seamless implementation. 

📝 14.2.10 

What are important steps in implementing LLMs in real-world applications? 

• Selecting an appropriate model for the task. 
• Preprocessing data to align with model requirements. 
• Training the model from scratch for every task. 
• Using tools like TensorFlow for deployment. 
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🕮 15.1.2 

Statement regarding the use of Artificial Intelligence in content creation 

This content has been developed with the assistance of artificial intelligence tools, 
specifically ChatGPT, Gemini, and Notebook LM. These AI technologies were 
utilized to enhance the text by providing suggestions for rephrasing, improving 
clarity, and ensuring coherence throughout the material. The integration of these AI 
tools has enabled a more efficient content creation process while maintaining high 
standards of quality and accuracy. 

The use of AI in this context adheres to all relevant guidelines and ethical 
considerations associated with the deployment of such technologies. We 
acknowledge the importance of transparency in the content creation process and 
aim to provide a clear understanding of how artificial intelligence has contributed to 
the final product
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