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1.1 Introduction 

🕮 1.1.1 

A neural network is a system in computers that tries to work like the human brain. 
Just like our brain has neurons that help us think, a neural network has "artificial 
neurons" that help it process information. These artificial neurons are connected in 
layers, and each layer has a specific task. The first layer gets the input (like an image 
or a piece of text), and then the network processes this input through the different 
layers to make decisions or predictions. 

In simple terms, neural networks are designed to learn from examples. For example, 
if you show a neural network many pictures of cats, it can learn to recognize what a 
cat looks like. Then, when you show it a new picture, it can tell whether it's a cat or 
not, even if it hasn't seen that exact picture before. 

Neural networks are useful because they can handle complex tasks like recognizing 
images, understanding speech, and even driving cars! They are able to do things that 
regular computer programs cannot because they "learn" from data and improve over 
time. 

 

📝 1.1.2 

What is the main role of artificial neurons in a neural network? 

• To process information 
• To learn from data 
• To make physical decisions 
• To perform arithmetic calculations 

 

🕮 1.1.3 

Neural networks are needed because some problems are too complex for traditional 
computers. For example, understanding a photo, recognizing someone's voice, or 
predicting what you'll like to buy next can be really difficult for a regular computer 
program. Traditional programs need very clear instructions, but these tasks require 
understanding patterns in data, which is something neural networks are good at. 

They are important in fields like medicine, where they can help doctors detect 
diseases from X-rays or other medical images. Neural networks can also be used in 
everyday technology, like your smartphone’s face recognition feature or the 
recommendation system on websites like YouTube or Netflix. 
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Another reason we need neural networks is that they can handle huge amounts of 
data. With the growth of the internet, there’s so much data available, and neural 
networks can process all this information to find patterns that humans might miss. 

 

📝 1.1.4 

In what ways can neural networks be used in everyday life? 

• Recognizing faces on smartphones 
• Recommending videos on YouTube 
• Predicting the weather 
• Writing essays for students 

 

🕮 1.1.5 

Neural networks can help in many areas by solving problems that require pattern 
recognition. For instance, in healthcare, they can help doctors by analyzing medical 
images and detecting early signs of diseases like cancer. In the business world, they 
help companies predict customer behavior, which can lead to better products or 
services. 

In self-driving cars, neural networks help the car understand its surroundings. The 
car uses cameras and sensors to gather data, and the neural network processes this 
information to make decisions like when to turn, stop, or speed up. 

Neural networks can also help in translating languages. For example, Google 
Translate uses neural networks to improve translations, making them more accurate 
and natural over time. 

 

📝 1.1.6 

What is one way neural networks help in self-driving cars? 

• They help the car understand its surroundings 
• They predict the car's fuel efficiency 
• They control the car's engine speed 
• They translate languages spoken by passengers 
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🕮 1.1.7 

The principle behind neural networks 

At the core of a neural network is the idea of learning from examples. When a neural 
network is trained, it gets a lot of data to look at. Initially, it doesn't know much and 
might make mistakes. However, it slowly improves by adjusting itself to make better 
decisions. This process is similar to how you learn to play a game or a sport by 
practicing over and over again. 

Neural networks are made up of layers. The first layer receives input data, such as 
an image, and the final layer gives the output, such as whether the image contains a 
cat. The layers in between are where the neural network learns the important features 
that help make the decision. The more layers the network has, the better it can handle 
complicated tasks. 

Training a neural network requires a lot of examples, and the network uses these to 
adjust its internal settings until it becomes better at solving the task. 

 

📝 1.1.8 

How does a neural network "learn"? 

• By making predictions and adjusting based on feedback 
• By memorizing all the data without analyzing it 
• By reading books and articles 
• By copying the results from another network 

 

🕮 1.1.9 

Overfitting and underfitting 

When training a neural network, it's important not to overtrain or undertrain the 
network. Overfitting happens when a network learns the training data too well, so well 
that it starts to focus on the tiny details or mistakes in the data. This can make the 
network very good at predicting the data it’s seen, but it might struggle with new data.  

Underfitting is the opposite problem. This happens when the network doesn’t learn 
the data enough, meaning it doesn't make good predictions, even for the training 
data. A well-trained network finds the balance between these two problems and 
performs well on both seen and unseen data. 

Finding this balance is essential to building a neural network that can generalize well 
and solve real-world problems. 
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📝 1.1.10 

What does "overfitting" mean in a neural network? 

• The network learns the data too well, focusing on unnecessary details 
• The network works perfectly with original data 
• The network doesn't learn the data enough 
• The network trains on too little data 

 

🕮 1.1.11 

As technology improves, so do neural networks. They are becoming better at tasks 
that were once thought to be impossible for machines. For example, AI can now 
generate realistic artwork, write essays, or even create music. These advancements 
are made possible because neural networks can process and learn from vast 
amounts of information. 

In the future, neural networks could help with even more areas of our lives. They 
might help solve big global problems like climate change by predicting environmental 
changes or improving renewable energy use. As the networks continue to grow, their 
potential is almost limitless. 

However, there are still challenges, such as making sure neural networks make fair 
and unbiased decisions. It's important to keep improving these systems and make 
them transparent and ethical. 

 

📝 1.1.12 

What is a challenge that needs to be addressed in the future development of neural 
networks? 

• Making sure they can handle more data 
• Ensuring they make fair and unbiased decisions 
• Limiting their use to only a few tasks 
• Reducing their processing speed 
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1.2 Neural networks principle 

🕮 1.2.1 

Machine learning algorithms are essential because they help solve problems that 
traditional programming approaches can't handle. In "classic" programming, humans 
write code that follows clear instructions. But some problems are too complex for 
this type of programming. For example, imagine trying to create a program that can 
recognize a 3D object from different angles, lighting conditions, or in a cluttered 
scene. It's almost impossible because we don’t even fully understand how our brains 
do it. Even if we did, writing such a program would be incredibly complicated. 

That’s where machine learning comes in. Instead of writing every detail of the 
program by hand, machine learning algorithms learn from examples. They process 
many examples that show the right answer for each situation. This is much faster 
and more efficient than trying to code everything manually. 

 

📝 1.2.2 

What is a problem that traditional programming cannot solve easily? 

• Recognizing objects from multiple angles and lighting 
• Sorting numbers 
• Calculating the cost of an item 
• Solving simple math equations 

 

🕮 1.2.3 

Neural networks are one of the best machine learning algorithms available today. 
They are designed to work by mimicking the human brain's structure. Just like our 
brains have neurons that work together to process information, neural networks have 
artificial neurons that work in layers to understand data. These networks can be used 
to solve complex problems that we can't easily code, like recognizing faces, 
identifying objects in images, or predicting behaviors. 

Neural networks are particularly helpful because they can be trained using examples. 
For instance, if you show a neural network thousands of pictures of dogs, it can learn 
what a dog looks like. After this, the neural network can identify a dog in new pictures 
it has never seen before. The more examples you give it, the better it gets at solving 
the problem. 
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📝 1.2.4 

What do neural networks try to mimic? 

• The human brain 
• The internet 
• A computer's processing speed 
• A traditional computer program 

 

🕮 1.2.5 

Machine learning and neural networks are perfect for situations where it's difficult to 
write specific instructions. For example, detecting fraud in credit card transactions 
is a complex task. It’s not easy to create a program with simple rules that can 
accurately decide whether a transaction is fraudulent. Scammers are constantly 
changing their methods, so the program must change too. Instead of trying to write 
out every rule manually, machine learning algorithms look at many examples of 
transactions, including both legitimate and fraudulent ones. They learn patterns that 
help them recognize fraud, even when the scammer changes tactics. 

This flexibility is one of the reasons machine learning is so valuable. Unlike traditional 
programs that need to be constantly updated by humans, machine learning systems 
can "learn" and adapt by themselves when new data is available. 

 

📝 1.2.6 

Why is machine learning better for detecting fraud than traditional programming? 

• It can adapt to new fraud tactics 
• It can recognize patterns from past data 
• It doesn’t need examples to learn 
• It relies on static, predefined rules 

 

🕮 1.2.7 

The process of training a machine learning algorithm involves feeding it many 
examples. These examples show the algorithm what the correct output should be for 
a given input. For example, when training a neural network to recognize a cat, you 
would show it many images of cats. Over time, the neural network learns patterns in 
the images that help it identify a cat. 
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The goal is to create a "model" that can generalize, meaning it will work not just on 
the data it was trained on, but also on new, unseen data. If done correctly, the 
machine learning model can adapt to new situations and perform well even when the 
conditions change. 

The more examples you give the system, the more accurate its predictions or 
decisions will be. So, the key to successful machine learning is having a large and 
diverse dataset to train the algorithm. 

 

📝 1.2.8 

What is the goal of training a machine learning algorithm? 

• To make the system generalize and work well on new data 
• To make the system memorize the training data exactly 
• To build a static program that can’t be updated 
• To prevent any mistakes in the output 

 

🕮 1.2.9 

One of the key benefits of machine learning and neural networks is their ability to 
adapt to new data. This is particularly important when dealing with situations that 
change over time. For example, in the case of fraudulent credit card transactions, 
new fraud patterns emerge regularly. A traditional program would need to be 
manually updated every time a new scam is discovered, which takes time and effort. 

However, a machine learning model can be trained on new data whenever it becomes 
available. This means the system can quickly learn to detect new types of fraud 
without the need for constant manual intervention. This ability to adapt makes 
machine learning more efficient and cost-effective compared to traditional 
programming. 

 

📝 1.2.10 

How does machine learning adapt to new data? 

• By adjusting its model with new examples 
• By staying the same and not learning new patterns 
• By memorizing old data only 
• By automatically updating its rules 
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🕮 1.2.11 

Neural networks are often more efficient than writing traditional programs for 
complex tasks. The reason is simple: they can learn patterns from data without 
needing to define every step in a complicated program. For example, instead of 
writing specific rules for every possible situation a self-driving car might encounter, 
a neural network can be trained with lots of examples of driving scenarios. Over time, 
it learns to navigate different road conditions, traffic situations, and even 
unpredictable events, all by processing the examples. 

This is not only faster but also cheaper, because the cost of collecting data and 
training the model is often much lower than hiring a team of programmers to write 
all the rules by hand. 

 

📝 1.2.12 

Why are neural networks more efficient than traditional programs for complex tasks? 

• They learn patterns from data 
• They require less data to function 
• They can perform tasks faster than humans 
• They don’t require examples to work 

 

1.3 Neural networks theory 

🕮 1.3.1 

Machine learning and neural networks are particularly useful for tasks that are too 
complex or dynamic to be solved using traditional programming. In these cases, 
instead of manually writing a program for each task, we rely on collecting numerous 
examples of input-output pairs. 

A machine learning algorithm processes data and creates a program, often referred 
to as a "model," that can carry out the task. This model doesn't resemble a traditional 
program with explicit rules but instead relies on patterns and relationships derived 
from the data. If designed and trained properly, this program not only handles the 
data it was trained on but also performs well on new, unseen cases. 

One of the key advantages of using machine learning is its adaptability. When 
circumstances or data patterns change, we don't need to rewrite the entire program. 
Instead, we can retrain the algorithm using updated data, allowing the system to 
evolve with new information. Additionally, although training machine learning models 
can require significant computational resources, it is often more cost-effective than 
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hiring teams of programmers to write and maintain traditional software for complex 
and evolving tasks. 

 

📝 1.3.2 

Why is machine learning considered more adaptable than traditional programming? 

• It can be retrained with new data to adapt to changes 
• It automatically writes explicit rules for every task 
• It relies on manually updated rules for changing data 
• It does not require any data to function effectively 

 

🕮 1.3.3 

The reasons for studying neural networks are as follows: 

1. Understanding the real functioning of the brain 
2. Understand the style of parallel computing inspired by neurons and their 

adaptive connections. This calculation is a very different style from the 
sequential calculation. Such an approach should be good for tasks where the 
brain excels (such as vision). It should be unsuitable for tasks where the 
brain lags behind (for example, calculate 23 * 71). This new approach to 
information processing is represented by the theory of artificial neural 
networks. It is not only an effective IT tool for the creation and design of new 
parallel approaches to solving artificial intelligence problems, but it is also an 
integral part of modern neuroscience, which is used to access computer 
simulations of processes taking place in the brain. 

3. Solve practical problems using new brain-inspired machine learning 
algorithms. Such algorithms are very useful, even if they are not a real (real) 
demonstration of how the brain works. 

 

📝 1.3.4 

Which of the listed tasks is more suitable for solving using neural networks? 

• Recognition of persons 
• Calculating 1014 * 1024 
• Finding persons with salary bigger than defined amount 
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🕮 1.3.5 

The NN theory is based on neurophysiological knowledge about the human brain. It 
tries to explain behavior based on the principle of information processing in nerve 
cells. The size of a human neuron is 20 µm. The human brain contains 20-100 billion 
neurons, with each neuron interconnected with 1,000-10,000 other neurons. The 
speed of propagation of impulses in the brain is approximately 400 km/h. 

Thus, a neuron can receive signals from the surroundings from other neurons 
(dendrites), the neuron processes (integrates) the received signals, the neuron (axon) 
sends the processed input signals to other neurons from its surroundings. 

We can even simulate one neuron (with complex processes). It is even much faster 
than the real thing. However, the power of the human brain is that: 

• uses a large number of slow neurons 
• they are grouped into a very complex network, the size, typology and 

geometry of which is inimitable 
• they are very small and very "low-power" 

 

Neurons are connected to each other in a complex network structure (called a neural 
network), while individual connections have either an excitatory (increase in activity) 
or an inhibitory (decrease in activity) character. 

The system of connections and their excitation or the inhibitory character forms the  
architecture of the neural network, which alone determines the properties of the 
neural network. 

 

📝 1.3.6 

Which of the following is NOT a characteristic of the human brain's neurons? 

• Neurons are large and consume a lot of power. 
• Neurons are grouped into a complex network with unique geometry. 
• Each neuron can connect to 1,000–10,000 other neurons. 
• Neural connections can have excitatory or inhibitory effects. 

 

🕮 1.3.7 

Neuron models are largely an abstraction of the mechanism of how neuron cells 
process information. It is impossible to create an exact analogy of the 
"computational" capabilities of a real neuron. 
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The simplest types of neural networks were proposed by McCulloch and Pitts in 
1943. Their neuron model is an important landmark in the development of the theory 
of neural networks. The elementary unit of the McCulloch and Pitts neural network is 
the logical neuron (computational unit), and the state of the neuron is binary (ie, i t 
has two possible states, 1 and 0). 

The logic neuron system contains both excitatory inputs (described by binary 
variables x1, x2, ..., xn, which amplify the response) and inhibitory inputs (described by 
binary variables xn+1, xn+2, ..., xm, which weaken response). 

Logical neurons and neural networks were first studied in the publication of Warren 
McCulloch and Walter Pitts "A logical calculus of the ideas immanent to nervous 
activity" from 1943, which is a landmark in the development of the metaphor of 
connectionism in artificial intelligence and cognitive science. It has been shown that 
neural networks are an effective computational tool in the domain of Boolean 
functions. 

It is interesting that the work of McCulloch and Pitts is very difficult to read, the 
mathematical-logical part of the work was probably written by Walter Pitts, who was 
self-taught both in logic and mathematics. Only thanks to American scientists, the 
logician S.C. Kleene and the computer scientist N. Minsky, this important work was 
"translated" in the second half of the 1950s into the standard language of 
contemporary logic and mathematics, thus making the ideas contained in it generally 
accessible and accepted. 

 

📝 1.3.8 

Which statements about the McCulloch and Pitts neuron model are true? 

• The state of the logical neuron is binary, represented as 1 and 0. 
• Inhibitory inputs in the model weaken the response. 
• It models neurons with continuous, non-binary states. 
• The neuron model was first introduced in the 1950s. 

 

🕮 1.3.9 

A logical neuron is an elementary unit of NN. 
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The logic neuron system contains excitatory inputs (binary variables x 1, x2, ..., xn, 
which amplify the response) and inhibitory inputs (binary variables xn+1, xn+2, ..., xm, 
which weaken the response). 

The state of a neuron is binary (ie it has two possible output states, 1 and 0). 

The rule applies: 

• the activity is one if the internal potential of the neuron defined as the 
difference between the sum of the excitatory input activities and the 
inhibitory input activities is greater than or equal to the threshold b, 

• otherwise it is zero. 

 

 

📝 1.3.10 

What determines whether the state of a logical neuron is 1 or 0? 

• The difference between excitatory and inhibitory inputs compared to the 
threshold. 

• The total number of inputs, regardless of type. 
• Whether the excitatory input activities alone exceed the threshold. 
• The presence of more inhibitory inputs than excitatory inputs. 

 

🕮 1.3.11 

Let's take a closer look at the previous rule. 
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Transferring b to the other side of the inequality, we get 

 

We can also rewrite the function y in the following form 

 

when 

 

The function represents the well-known signum function in mathematics (the 
so-called "step function" or sign function). 

The graph of this function is as follows: 

 

In neural networks, the signum function is often used as an activation function, 
particularly in early models like the McCulloch-Pitts neuron. It helps determine 
whether a neuron "fires" (outputs 1) or remains inactive (outputs 0 or -1) based on its 
input. 

The function is applied to the net input of the neuron, which is typically the weighted 
sum of inputs minus a threshold value (b). The signum function thus enables binary 
output decisions based on whether the neuron’s inputs collectively meet or exceed 
the threshold. 

 

📝 1.3.12 

What is the purpose of the signum function in a neural network? 

• To determine whether the neuron “fires” based on the net input. 
• To calculate the exact value of the neuron’s output. 
• To adjust the weights of the inputs dynamically. 
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• To prevent inhibitory inputs from affecting the output. 

 

🕮 1.3.13 

We already know that the output of an artificial neuron is defined as a signed (step) 
function. 

 

while v represents the sum of inputs and bias b. 

 

Furthermore, we can implement simple modifications where each input xi is 
multiplied by +1 or -1 depending on whether it is an inhibitory or an excitatory input. 
Subsequently, we generally replace +1 or -1 with a weight wi 

 

whereas: 

 

We can write the resulting activity of the neuron as 

 

 

🕮 1.3.14 

An artificial neuron model is defined as follows: 



Introduction to Neural Networks | FITPED AI 

20 

 

while y_in represents the so-called internal potential of the neuron. The internal 
potential of a neuron, often denoted as yiny_{\text{in}}yin, represents the cumulative 
input to the neuron before applying the activation function. 

For example, for four inputs, we can imagine the neuron as follows 

 

The neuron processes information through a set of synapses, which are connections 
characterized by their weights (thickness or strength). These weights determine the 
influence of each input on the neuron’s output. 

A neuron can also be expressed as 

 

while the internal potential is defined as follows: 

 



Introduction to Neural Networks | FITPED AI 

21 

In practice, bias is often not singled out separately (mainly due to simpler computer 
calculation). Bias is an external parameter of the artificial neuron and can be included 
directly in the summation. 

 

 

📝 1.3.15 

Which statements about the internal potential (y in) of a neuron are true? 

• It represents the weighted sum of inputs, including the bias. 
• Weights determine the influence of inputs on the neuron’s output. 
• The bias is always treated as a separate external parameter. 
• The internal potential directly determines the weights of the inputs. 

 

1.4 Implementation of Boolean binary functions 

🕮 1.4.1 

At the beginning of the era of neural networks, it was assumed that they would be 
able to simulate Boolean binary functions. Although of course it is not a priority of 
NN to simulate them, we can show several interesting properties of a logic neuron 
on this problem. 

Let us therefore assume one logic neuron with two inputs, two weights and a bias. 
The activation function is a simple staircase function. 

In our neuron, the weights are set as follows w1 = 1; w2 = 1 and bias w0 = -1.5. 
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If we input the numbers x1 = 0 and x2 = 1, then we calculate the result of the neuron 
as follows: 

 

After inputting 0 and 1, we get the result 0. The artificial neuron probably implements 
the AND logical function. 

 

The value tables of the logical AND function are known 

 

For correctly set weights of a neuron implementing the AND function, it is therefore 
necessary that: 

 

This inequality expresses the first row of the logic function table. The left side of the 
inequality must be less than zero, because only in this case the activation step 
function will give us a result equal to 0. 

In this way, we create inequalities for each row of this table. To set the correct 
weights, it is necessary to solve a system of inequalities (inequalities for all 4 rows 
of the table) 
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The solution to this system of inequalities is, for example, the values: 

 w1 = 1, w2 = 1 and w0 = -1,5. 

 

 

In this way, we found the weights of the artificial neuron. ( w1 = 1, w2 = 1 a w0 = -1,5), 
for which it will implement a logical function AND. 

 

📝 1.4.2 

What is required for an artificial neuron to implement the logical AND function? 

• A system of inequalities must be solved to determine appropriate weights 
and bias. 

• The neuron must have at least three inputs and no bias. 
• The activation function must always be linear. 
• The weights must be negative to simulate logical functions. 

 

🕮 1.4.3 

Similarly, it is possible to find the weights of the neuron for the implementation of 
other Boolean functions. For example for the OR function it can be scales: w1 = 1, w2 
= 1 and w0 = -0,5), 
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📝 1.4.4 

What weights and bias allow an artificial neuron to implement the logical OR 
function? 

• w1=1,w2=1,w0=−0.5 
• w1=2,w2=1,w0=−1 
• w1=0,w2=0,w0=−0.5 
• w1=1,w2=0,w0=−1.5 

 

🕮 1.4.5 

However, there are also Boolean functions that cannot be simulated by a logic 
neuron. An example of such a function is, for example, a function XOR. 
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In the case of this function, it is necessary to solve the following inequalities: 

 

if we mark 

 

we get: 

 

However, this system of equations has no solution. Since h is a positive number, w2 
and w1 are greater than h. Therefore, their sum cannot be less than h. 

 

It means that the Logical XOR function can NOT be implemented by a single neuron. 



Introduction to Neural Networks | FITPED AI 

26 

📝 1.4.6 

Why can't the logical XOR function be implemented by a single neuron? 

• A single neuron cannot separate the XOR function’s inputs using a linear 
decision boundary. 

• XOR requires negative weights, which a single neuron cannot handle. 
• XOR is not a Boolean function, so it cannot be represented by a neuron. 
• The XOR function requires more than two inputs, which a single neuron 

cannot process. 

 

🕮 1.4.7 

The logical function XOR belongs to the so-called linear non-separable functions. 

Definition: 

The Boolean function f(x1, x2,..., xn) is linearly separable if there is such a plane w1x1 + 
w2x2 + ...+ wnxn - J = 0, that separates the space of input activities such that there are 
vertices in one part of the space rated 0, while in the other part of the space the 
vertices are rated 1. 

Theorem: A logic neuron is able to simulate only those Boolean functions that are 
linearly separable. 

 

🕮 1.4.8 

The question remains how to solve the XOR problem. In the case of Boolean 
functions, Boolean algebra tells us that a Boolean function can be rewritten in 
conjunctive clauses. Conjunctive clauses can be expressed by one logical neuron. 
We combine the outputs from these neurons into a disjunction using a neuron. 
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We can attribute the XOR function as follows: 

 

Only AND, OR and NOT functions are used in its transcription. All can be expressed 
by a single neuron. We can thus create the following network: 

 

This is how any Boolean function can be accessed. The sentence applies: 

Any Boolean function f is simulated using a 3-layer neural network. 

3-layer neural networks containing logic neurons are universal computing devices for 
the domain of Boolean functions. 

 

📝 1.4.9 

How can the XOR problem be solved using neural networks? 

• By adding more layers to the neural network to create non-linear decision 
boundaries. 

• By using multi-layer neural networks with non-linear activation functions. 
• By using a single-layer perceptron with a linear activation function. 
• By using a single neuron with the correct weights and bias. 

 



 

 

 

 

Perceptron and Supervised 
Learning 

Chapter 2 
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2.1 Perceptron 

🕮 2.1.1 

The main objection to an artificial neuron (as defined by McCulloch and Pitts) is that 
it is not capable of learning, its parameters (weights and threshold coefficients) are 
fixed so that the neuron performs the required Boolean function (logical conjunction 
or conjunctive clause). Neural networks constructed from these neurons are 
designed to also perform a Boolean function of general form. 

However, the neuron can also be taught. During active dynamics, the neuron 
performs the transformation of the input vectors to the output value. The parameters 
of the neuron are constant at this moment. On the other hand, adaptive dynamics is 
a process whose task is to set these parameters of the neuron so that the neuron 
performs the required transformation. The parameters that are adapted during the 
neuron's learning are usually only the weights of the input synapses of the neuron, 
including the synapse representing the threshold. 

Frank Rosemblatt (1928 - 1969) included learning in the construction of the 
McCulloch and Pitts-type neuron. Weight coefficients and threshold coefficients 
were considered variable parameters of the "model", which are set by the learning 
process. 

 

📝 2.1.2 

What is the main limitation of the McCulloch and Pitts artificial neuron? 

• Its parameters (weights and thresholds) are fixed and cannot be changed. 
• It can only perform logical conjunctions and cannot handle other Boolean 

functions. 
• It is incapable of performing Boolean functions. 
• It cannot perform transformations without learning. 

 

🕮 2.1.3 

Frank Rosemblatt's neuron was named Perceptron. It was inspired by the human eye. 
He modeled perception - perception, sensation, ability to perceive. 

Its task was to recognize individual recorded characters using optical sensors 
arranged in a 20x20 array of elements. The basic goal of the adaptation process of 
the perceptron is to set the weighting coefficients of the connections so that the 
activities of neurons from the third layer (response area) correctly classify the image 
falling on the retina. Regardless of the original meaning, the term perceptron is used 
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for all feedforward neural networks, i.e. networks with a layered arrangement of 
neurons and one-way signal propagation from input to output. 

Rosemblatt's Perceptron 

 

Weight coefficients and threshold coefficient are real variable parameters 

 

📝 2.1.4 

What is true about Frank Rosenblatt's perceptron? 

• It was inspired by the human eye and modeled perception. 
• The perceptron is now used to refer to all feedforward neural networks. 
• The perceptron’s primary task was to classify images falling on the retina. 
• It uses a multi-layered arrangement of neurons and bidirectional signal 

propagation. 

 

🕮 2.1.5 

The "scales" or "weights" of a neuron represent its memory. Learning happens when 
an adaptation algorithm adjusts these weights. This process typically occurs in 
steps, where the algorithm uses a set of input-output pairs (examples) to learn from. 
The algorithm tries to find the best way to transform inputs into outputs by analyzing 
known examples. 

In a way, the adaptation algorithm works similarly to how humans solve problems by 
drawing on past experiences. It seeks the best transformation that maps input 
vectors to output vectors, hoping that this solution will work for new, unseen 
examples in the future. 

Neural networks are powerful because they can find solutions to problems that are 
difficult or even impossible to solve analytically, as long as they have enough 
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examples. However, the main challenge is that the learned transformation is 
embedded within the network structure and cannot always be easily explained 

 

📝 2.1.6 

What is the role of the weights in a neuron? 

• They represent the memory of the neuron and store learned information. 
• They represent the input values to the neuron. 
• They are used to create the output values directly. 
• They represent the input-output transformation of the entire network. 

 

🕮 2.1.7 

Adaptation algorithms in neural networks can be broadly classified into two 
categories: supervised learning and unsupervised learning. These two approaches 
handle learning in different ways: 

Supervised learning 

In supervised learning, we are given a finite, countable set of input-output pairs. 
These pairs consist of an input vector x and its corresponding correct output yd. This 
means we already know the desired behavior of the system for each input. A 
countable finite set M of pairs x and yd is available, which represent the inputs and 
the corresponding correct outputs of the solved task. 

 

The goal is to teach the neural network how to transform input vectors into the 
correct output vectors by providing it with many examples of correct 
transformations. The set of all available values thus represents a known part of the 
system's behavior. This set is then used by the adaptive algorithm to train the 
network and also to verify its function. The set M of all available data is divided into 
two parts: 

• training set is used to train the neural network by adjusting the weights 
based on the input-output pairs 

• test set is used to evaluate the performance of the network after training to 
ensure it can correctly generalize to new, unseen examples 

• The ratio between the size of the training and test sets can vary depending 
on the specific task or dataset. 
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Unsupervised learning 

In unsupervised learning, the neural network is provided with only input data without 
any known correct outputs. The goal here is to allow the network to find patterns, 
groupings, or structures within the data on its own, without direct guidance from a 
labeled dataset. 

 

📝 2.1.8 

Which statements are true about supervised learning in neural networks? 

• Supervised learning requires both input data and corresponding correct 
outputs. 

• The available data is divided into a training set and a test set. 
• In supervised learning, the network tries to find patterns in data without 

labeled examples. 
• The ratio of the training set to test set is fixed in supervised learning. 

 

🕮 2.1.9 

Training a neuron (or a feedforward neural network) generally happens in steps, 
which are repeated iteratively. Here’s how it works: 

• Iterative training process - the algorithm begins by presenting individual 
examples (input patterns) from the training set to the neuron. For each input, 
the neuron computes an output. Based on this output, the algorithm adjusts 
(or corrects) the weights of the neuron to make the output closer to the 
desired value. This process is repeated multiple times over all the patterns in 
the training set. 

• One complete pass through all the examples in the training set is called a 
learning epoch. After each epoch, the weights have been adjusted based on 
the entire dataset, and the neuron has learned from all the training examples 
once. 

• Stopping criteria - the training process doesn’t go on forever. Stopping 
adaptation is most often achieved: achieving the desired small error of the 
transformation, by stopping the transformation error from falling, by reaching 
the maximum number of epochs. 

• Test set for evaluation - to ensure that the neuron or network has 
generalized well (i.e., it can perform accurately on new, unseen data), we use 
a test set. This is a separate dataset that was not used during training. 
During the training process, the performance of the network is periodically 
tested on this set. If the network's performance on the test set starts to 
worsen as training continues, it may be a sign that the network is overfitting 
(becoming too specialized to the training set) and should stop training. 
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📝 2.1.10 

What is the main purpose of a test set during the training of a neural network? 

• To evaluate the performance of the network during training and ensure 
generalization. 

• To train the network by providing additional examples. 
• To calculate the error after each epoch. 
• To adjust the weights of the neurons during training. 

 

🕮 2.1.11 

Iterative learning of a neuron with a teacher follows these typical steps: 

1. Preprocessing of input data - the input data is prepared and transformed 
into a suitable form for the neural network. 

2. Defining the training and testing sets - a set of examples (input-output pairs) 
is split into a training set (for learning) and a test set (for evaluation). 

3. Defining the network structure/neuron parameters - the architecture of the 
network and the initial parameters (such as the number of neurons, layers, 
and other configurations) are decided. 

4. Initializing neuron weights - the weights of the neuron are typically set to 
random values initially. 

5. Set learning epoch counter - the counter for the number of learning epochs, 
n=0n = 0n=0, is initialized. 

 

The learning epoch 

Each learning epoch involves several steps: 

• Set epoch number - increment the learning epoch counter n=n+1n = n + 
1n=n+1 and check if the number of epochs has reached a maximum limit. 

• Select input vector - a single input vector is selected from the training set. 
This can be done either deterministically or randomly. 

• Obtain neuron response - the neuron produces an output based on the input. 
• Evaluate classification error - the actual output is compared with the 

expected output to calculate the classification error. 
• Adjust weights - based on the error, the weights of the neuron are adjusted 

to improve its response. 
• Repeat for all inputs - if all inputs from the training set haven’t been tested 

yet, the process repeats by selecting the next input vector. 
• End of epoch evaluation - at the end of the epoch, the total error across the 

training set is evaluated. If the error is below the desired threshold, the 
learning stops. 
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• If the error is insufficient or the performance is not satisfactory, the 
algorithm may return to earlier steps (like adjusting the network parameters 
or reinitializing weights) and continue learning. 

 

📝 2.1.12 

Which steps are involved in a learning epoch of a neuron? 

• Select one input vector from the training set. 
• Obtain the response of the neuron and adjust weights. 
• Evaluate the test set error. 
• Preprocess the input data. 

 

2.2 Hebbian learning 

🕮 2.2.1 

Hebbian learning is one of the most basic and intuitive learning rules for artificial 
neurons with binary inputs and outputs. It was proposed in 1949 by Canadian 
psychologist Donald Hebb while studying conditioned reflexes in the brain. Hebb's 
hypothesis was centered around how neural connections strengthen or weaken 
based on the timing of their activation, leading to the development of a fundamental 
learning principle used in artificial neural networks today. 

Hebb's theory posits that: 

• Conditioned reflexes - in the brain, conditioned reflexes form when the 
connections between individual neurons either strengthen or weaken based 
on their activation patterns. 

• Simultaneous activation - when two neighboring neurons are active at the 
same time (i.e., both neurons are excited), the connection between them 
becomes stronger. This is the principle of "cells that fire together, wire 
together." 

• Discordant activation - if the neurons are activated at different times (i.e., not 
in sync), the connection between them weakens. 

For an artificial neuron following Hebb's rule: 

• If an input neuron is excited and the output neuron also responds 
appropriately (firing), the weight of the input is increased (strengthened). 

• If the output neuron does not fire in response to the input neuron, the 
connection between them is weakened. 
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This means that the network adapts its weights based on correlations between the 
input and output activities. If an input consistently leads to the correct output, its 
associated weight increases, reinforcing the connection. Conversely, incorrect or 
unrelated activations weaken the connection. 

 

📝 2.2.2 

Which of the following is a key idea of Hebbian learning? 

• Neurons become stronger if they activate at the same time. 
• Neurons that activate together strengthen their connection. 
• Neural connections weaken when two neurons activate simultaneously. 
• Learning is based on explicit feedback from the output. 

 

🕮 2.2.3 

If two neurons are active at the same time, they should have a greater degree of 
mutual interaction than neurons whose activity does not show correlation. In such a 
case, their interaction should be either zero or very small. 

This means in practice that the synapses (weights) between neurons are 
strengthened if the activity of the input neuron leads to the activity of the neuron on 
the output side of the synapses. 

For a neuron with binary input x, weights w, output y and predicted output yd,the Hebb 
rule can be written as: 

• If the neuron is activated correctly (y = 1; yd = 1), then in the next step n + 1 
the wi connections that caused this activation will be strengthened by the 
value ∆ 

 

• If the neuron is not activated correctly (y = 1; yd = 0), the connections that 
caused this activation are weakened by the value ∆ 

 

• If the neuron is not activated (y = 0), the weights s do not change (nothing 
happens) 
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📝 2.2.4 

According to Hebbian learning, what happens when a neuron is correctly activated? 

• The synaptic weights between the neurons are strengthened. 
• The synaptic weights between the neurons are weakened. 
• The synaptic weights between the neurons remain unchanged. 
• The output of the neuron can be ignored. 

 

🕮 2.2.5 

Another originally heuristic rule that is also applicable to general real inputs and 
outputs of a neuron is the Delta rule. The Delta rule is an important learning rule for 
adjusting the weights of neurons in a neural network. It is specifically used for linear 
neurons and is based on minimizing the difference between the actual output and 
the predicted output (the error). 

The general form of the Delta rule is: 

Δwi = μ ⋅ (yd − y) ⋅ xi 

Where: 

• Δwi is the change in the weight, 
• μ is the learning rate constant, which controls the speed of adaptation (its 

value lies between 0 and 1), 
• yd is the desired output, 
• y is the actual output of the neuron, 
• xi is the input to the neuron. 

In the Delta rule, the weight is updated based on the error (yd−y). If the output is close 
to the desired output, the weight changes very little, and if the output is far from the 
desired value, the weight change is larger. This helps the neuron "learn" from its 
mistakes and gradually improve its performance. 

The delta rule applies exactly to linear neurons, i.e. neurons with a linear activation 
transfer function, but after modification it is also applicable to neurons with a 
nonlinear activation transfer function. 

The Delta rule can be slightly simplified by formula: 

wi
n+1 = win + μ ⋅ (yd−y) 

Where: 
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• wi
n+1 is the updated weight after the learning step. 

• wi
n is the current weight before the learning step. 

• μ is the learning rate, a constant that controls how much the weights are 
adjusted, it is a suitably chosen constant from the interval (0,1) affecting the 
adaptation speed. 

• yd is the desired output (target output). 
• y is the actual output produced by the neuron. 

 

Explanation: 

• The current weight w i
n+1 is adjusted by an amount proportional to the error 

(yd−y). This error represents the difference between the desired output yd and 
the actual output y produced by the neuron. 

• The weight change is scaled by the learning rate μ, which controls how large 
the weight update will be. 

• This update rule makes the weights move in the direction that reduces the 
error between the actual and desired outputs. 

• If the neuron is incorrectly activated, the weight is adjusted to reduce the 
error in future predictions. 

• If the neuron is correctly activated, the weight doesn't change significantly 
(but still adjusts by a small amount, if necessary). 

 

📝 2.2.6 

In the Delta rule, what does μ control? 

• The speed of weight adjustment. 
• The number of training epochs. 
• The output of the neuron. 
• The size of the training set. 

 

🕮 2.2.7 

We will use Hebbian learning in perceptron training. It is intended for dichotomous 
classification, i.e. splitting into two classes, where the classes are assumed to be 
linearly separable in the example space. There is a possibility to separate objects in 
the example space using a hyperplane, for example: a straight line in 2-dimensional 
or a plane in 3-dimensional space. 
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A neural network is a dynamic system, that is, a time-dependent system. We will talk 
about the state of the neuron in time t or in time t+1. 

 

The separating hyperplane is given by the equation: 
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🕮 2.2.8 

 

The learning process is a search for appropriate synaptic weights. From a practical 
point of view, let's note: 

w(t) = (w0(t), w1(t), w2(t), ...,wn(t)) 

x(t) = (x0(t), x1(t), x2(t), ...,xn(t) ) 

where n is the number of neurons of the associative layer. 

In the case of zero input, it holds that w0(t) = b and x0(t) = 1 

Assume a training sample of vectors: 

(x(1),y(1)), (x(2),y(2)), ... (x(m),y(m)), 

where  

y(t) = 1 if x(t) is from class 1 (CL1) 

y(t) = -1 if x(t) is from class2 (CL2) 

 

📝 2.2.9 

In the context of a neural network, what does the bias weight w0(t) typically 
represent? 

• A fixed value that adjusts the output of the neuron. 
• The synaptic weight for the first input neuron. 
• The output of the neuron. 
• The number of neurons in the layer. 
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🕮 2.2.10 

Perceptron learning algorithm 

• Initialization of weights - set initial weights w(t) = (w0, w1, w2 ,..., wn), typically 
to small random values, and set the bias w0 to a small random value or zero. 

• If the input vector x(t) is correctly classified by w(t), then the weights do not 
change - this means if the output of the perceptron is equal to the expected 
output (i.e., y(t)=yd(t), no weight adjustment is needed. 

 

• If the input vector x(t) is misclassified update the weights based on the error 
between the predicted output y(t) and the desired output yd(t). Weight update 
rule: w(t+1) = w(t) + η(yd(t)−y(t)) x(t) where η is the learning rate, yd(t) is the 
desired output, y(t) is the predicted output, and x(t) is the input vector. 

 

• Repeat the process for all training examples - after each input vector 
x(t)x(t)x(t) is processed, the weights are updated if necessary. After 
processing all the training examples (an epoch), check for convergence: If 
the perceptron correctly classifies all examples, stop training. 

• Terminate when convergence is achieved - if the weights have been updated 
and the perceptron correctly classifies all training examples after an epoch, 
stop the learning process.If convergence is not reached, repeat steps 2–4 
until all examples are correctly classified. 

 

📝 2.2.11 

What happens when an input vector x(t) is correctly classified by the perceptron 
during the learning process? 

• The weights do not change. 
• The weights are updated. 
• The training is stopped. 
• The bias is set to zero. 
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🕮 2.2.12 

Perceptron convergence theorem 

The Perceptron convergence theorem states that, for a given training set of vectors 
XXX that can be divided into two distinct classes, CL1 and CL2, which are linearly 
separable, the perceptron algorithm will always converge after a finite number of 
mistakes. 

Key principles: 

• Linearly separable data - there exists a hyperplane (a straight line in 2D, or a 
plane in 3D) that can separate the two classes (CL1 and CL2) perfectly. 

• Mistakes during training - the perceptron learns by adjusting its weights 
every time it makes a mistake. The number of mistakes corresponds to the 
number of times the perceptron misclassifies an example. 

• Convergence - after making a finite number of mistakes, the perceptron will 
reach a point where no further mistakes are made, and its weights will no 
longer change. This means the perceptron will have learned to reliably 
classify the vectors into their correct classes. 

 

How the theorem works: 

1. Training process - the perceptron receives input vectors from the training set 
and classifies them. If the classification is correct, the weights stay the 
same. If the classification is incorrect, the weights are adjusted according to 
the error. 

2. Convergence condition - the perceptron will continue to adjust the weights 
until it no longer makes mistakes on the training set. This happens because 
the training data is linearly separable, and the perceptron is capable of 
finding a hyperplane that separates the classes without any further mistakes. 

 

Practical implication 

• When the perceptron converges, it means that the weights have adjusted in 
such a way that the perceptron can now reliably classify all examples in the 
training set correctly. 

• The convergence is guaranteed only if the data is linearly separable. If the 
data cannot be separated by a straight line (or hyperplane), the perceptron 
will not converge. 
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📝 2.2.13 

What does the Perceptron convergence theorem guarantee? 

• The perceptron will converge to a state where it no longer makes mistakes 
on a linearly separable dataset. 

• The perceptron will always reach a state of zero error on any dataset. 
• The perceptron will converge faster if the data is not linearly separable. 
• The perceptron will eventually classify all data points as the same class. 

 

2.3 Practical example 

🕮 2.3.1 

In a practical example, we will create a perceptron for fruit classification into two 
classes C1 and C2. We will adjust the weights of the perceptron using Hebb learning 
based on examples from the training set.  

This contains two examples (121; 16.8), (114; 15.2) from the first class C1 and two 
examples (210; 9.4), (195; 8.1) from the second class C2. The first value in each 
training example represents the weight of the fruit (in grams), the second its length 
(in cm). 

 

We can visualize the training set. 
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If we knew the correct setting of the weights, then it is obvious that I will also be able 
to correctly classify any fruit. Assume that we know the correct setting of the scales. 

 

For this setting of weights, we can even determine a separating hyperplane that 
separates examples of one class from another. 
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With the correct setting of the scales, it is then easy to classify new unknown fruits. 
For example, I classify fruit with a weight of 140g and a length of 17.9 cm. By simply 
transferring the vector (140; 17.9) to the input of the perceptron, we can perform the 
calculation. 

 

The perceptron result classified our input example (unknown fruit) into class C1. 
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🕮 2.3.2 

The question remains how to correctly set the weights and bias value for the 
perceptron. In the step element, we set the weight values as follows w1 = -30; w2 = 
300 and bias w0 = -1230 

Subsequently, I will go through all examples of the training set and implement 
Hebbian learning. 

 

Let's take the first example of the training set (121; 16.8), find out the response 
(result) of the neuron and compare the result with the value +1 to find out if it is 
necessary to adjust the weights. Comparing the result with the value +1 is important 
because the first example is to be classified in class C1, i.e. the result must be +1. 

 

The result of the perceptron is +1, the example belongs to C1, i.e. the actual result 
should have been +1 as well. For this reason, there is no need to adjust the weight. 

In the case of the second example, however, we find that it is necessary to adjust the 
weights. 
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We adjust the weights by applying the following formulas. 

 

 

🕮 2.3.3 

During perceptron learning, we used four examples of the training set to adjust the 
weights by successively feeding them to the input of the perceptron, and in case of 
a wrong result, we adjusted the weights using Hebbian learning. If we fed all the 
examples to the input of the perceptron and adjusted the weights if necessary, we 
realized one epoch of learning. 
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For the following four training examples 

 

In the second epoch, we can implement the following steps: 

1. 
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2. 

 

3. 
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4. 

 

 

Note that we have not changed any weights in this epoch. It is obvious that if we were 
to implement other epochs, nothing would change. So we found the right balance 
setting. 

 

We can define a separating hyperplane for this weight setting 
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📝 2.3.4 

For the previous example, we will create a simple source code. The only library we 
will need is numpy. 

 
from numpy import array 

We will work with known training data. 

 

We will copy these into the array training_data 

 
from numpy import array 

training_data = [ 

    (array([121,16.8]), 1), 

    (array([114,15.2]), 1), 

    (array([210,9.4]), -1), 

    (array([195,8.1]), -1), 

] 

print(training_data) 

 
Program output: 
[(array([121. ,  16.8]), 1), (array([114. ,  15.2]), 1), 

(array([210. ,   9.4]), -1), (array([195. ,   8.1]), -1)] 

 

We define a signed (step) function. 

 
def activation_fn(x): 

    if x>=0: 

        return 1 

    else: 

        return -1 

In the general solution, we set the initial values of weights and bias randomly. In our 
example, we will set these values directly, according to the previous settings. 
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# we set weights 

w = array([-30,300]) 

b = -1230 

eta = 0.01 

In our example, for the sake of clarity, we will create only one epoch, i.e. we 
recalculate the training set only once. 

 
print('current weights: ' , w) 

print('bias: ', b) 

 

for i in range(0, 4): 

    print('---') 

    x, y = training_data[i] 

    print('training data: ' , x , ', result: ', y) 

    internal_energy = ((x * w).sum()) + b 

    print('internal energy: ',internal_energy) 

    prediction = activation_fn(internal_energy) 

    print('prediction: ',prediction) 

    error = y - prediction 

    if (error != 0): 

        print('needed to change weights') 

        w = w + (eta * error * x) 

        b = b + (eta * error * 1) 

    print('current weights: ' , w) 

    print('bias: ', b) 

 
Program output: 
current weights:  [-30 300] 

bias:  -1230 

--- 

training data:  [121.   16.8] , result:  1 

internal energy:  180.0 

prediction:  1 

current weights:  [-30 300] 

bias:  -1230 

--- 

training data:  [114.   15.2] , result:  1 

internal energy:  -90.0 

prediction:  -1 

needed to change weights 

current weights:  [-27.72  300.304] 

bias:  -1229.98 

--- 
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training data:  [210.    9.4] , result:  -1 

internal energy:  -4228.3224 

prediction:  -1 

current weights:  [-27.72  300.304] 

bias:  -1229.98 

--- 

training data:  [195.    8.1] , result:  -1 

internal energy:  -4202.9176 

prediction:  -1 

current weights:  [-27.72  300.304] 

bias:  -1229.98 

 

For completeness, we also calculate a straight line as a separating hyperplane given 
by the correct setting of weights and bias 

 
def line(x): 

    y = (w[0]*x + b)/(w[1]*(-1)) 

    return y 

We draw the separating hyperplane graphically. 

 
%matplotlib inline 

import matplotlib.pyplot as plt 

from matplotlib.colors import ListedColormap 

cm = plt.cm.RdBu 

cm_bright = ListedColormap(['#FF0000', '#0000FF']) 

ax = plt.subplot()   

ax.set_title("Result") 

# Plot the training points 

#ax.scatter(x[:, 0], x[:, 1], c=q, cmap=cm_bright) 

 

 

for x, expected in training_data: 

    if expected==1: 

        pattern='r' 

    else: 

 

        pattern='b' 

    print(x[0]) 

    ax.scatter(x[0], x[1], color=pattern) 

 

plt.plot([110,220],[line(110),line(220)]) 
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#plt.plot([25,200],[50,200]) 

 

plt.show() 

print(line(110)) 

print(line(220)) 

 
Program output: 
/home/johny/.local/lib/python3.9/site-

packages/matplotlib/projections/__init__.py:63: UserWarning: 

Unable to import Axes3D. This may be due to multiple versions 

of Matplotlib being installed (e.g. as a system package and as 

a pip package). As a result, the 3D projection is not 

available. 

  warnings.warn("Unable to import Axes3D. This may be due to 

multiple versions of " 

121.0 

114.0 

210.0 

195.0 

14.249493846235817 
24.40320475251745 

 

The last step will be to use the trained values to predict the unknown fruit 

 
def estimate(vector): 

    internal_energy = ((vector * w).sum()) + b 
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    prediction = activation_fn(internal_energy) 

    return prediction 

In the case of a fruit that is 180 g and 10 cm, we can find out that it belongs to the 
second class C2 

 
vector = array([180,10]) 

print(estimate(vector)) 

 
Program output: 
-1 

 

In the case of a fruit that is 140 g and 20 cm, we can find that it belongs to the first 
class C1 

 
vector = array([140,20]) 

print(estimate(vector)) 

 
Program output: 
1 

 
 



 

 

 

Feedforward Neural 
Network 

Chapter 3 
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3.1 Single layer perceptron 

🕮 3.1.1 

The activation function of a neuron determines how the neuron processes input 
signals to produce an output. It is a mathematical function applied to the input sum 
(ini(t)) received by the neuron. 

The state of a neuron i is defined by the variable yi, expressed as: 

yi = f(ini) 

where, f() represents the activation function. 

The common activation functions is signed (step) function defined as: 

yi = f (ini) = 1 if ini >= 0 or 0 if ini < 0 

Function produces binary outputs (e.g., -1 or 1, or 0 and 1) and can be used for simple 
decision-making tasks. 

However, as well as the signed function, we can also use other functions, e.g. linear 
function. 

yi = f (ini) = ini 

which produces continuous outputs. It is suitable for tasks where outputs need to 
vary proportionally with inputs. 

We can visualize the graphs of both functions: 
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These activation functions play a key role in determining how a single-layer 
perceptron operates. While the step function is often used in classification tasks, the 
linear function can be helpful for regression or less complex relationships. 

 

📝 3.1.2 

Which activation function is commonly used in perceptrons for binary classification 
tasks? 

• Step Function 
• Linear Function 
• Exponential Function 
• Sigmoid Function 

 

🕮 3.1.3 

In addition to the step function and linear function, other activation functions are 
often employed in neural networks for their unique properties. 

 

A piecewise linear function 

The piecewise linear function is defined by different linear equations over specific 
intervals of the input. We can define it for example as: 

 

where for inputs greater than 1/2, the output saturates at 1, for inputs smaller than 
−1/2, the output saturates at -1 and for inputs between −1/2 and 1/2, the output is 
linear and proportional to the input. 

The graph of this function has three distinct regions: 

• A flat line at y=1 for inputs above 1/2 
• A linear slope between y=−1/2 and y=1/2 
• A flat line at y=−1 for inputs below −1/2. 

 

This piecewise function can be used in networks where we want bounded outputs 
while preserving some level of proportionality for intermediate input values. It offers 
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a balance between sharp decision boundaries (step functions) and smoothness 
(sigmoidal functions). 

 

📝 3.1.4 

What is the output of the piecewise linear activation function if the input ini = 0? 

• 0 
• 1 
• -1 
• -1/2 

 

🕮 3.1.5 

Sigmodial function 

The sigmoidal function is a smooth and differentiable function, commonly used in 
neural networks due to its useful properties in the learning process. The 
mathematical form of the sigmoidal function with your specified exponent is: 

 

where α is a positive constant that controls the slope or steepness of the curve. 
Higher values of α result in a sharper transition between the outputs. 

Output values range is from 0 to 1, making it ideal for probabilistic interpretations. 
The function is smooth and differentiable, which is crucial for gradient-based 
learning algorithms. 

Graph at ini = 0, the function's output is 0.5, as ini→∞ f(ini)→1 and as ini→−∞, 
f(ini)→0. 

This function is very often used in feedforward neural networks. The function is 
"smooth", this feature is very important for setting the weights in the learning 
process. A smooth function is differentiable. 
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📝 3.1.6 

What is the effect of increasing the parameter α in the sigmoidal function?  

• It sharpens the transition between low and high output values. 
• It increases the range of output values. 
• It reduces the smoothness of the function. 
• It decreases the maximum output value. 

 

🕮 3.1.7 

We already know that a learning neuron alone can solve linearly separable problems. 
We also know that for other types of problems, neurons can be connected into neural 
networks. 

Conceptually, the simplest network is the Single Layer Perceptron. These are M 
independent, parallel working neurons. Thus, each of these neurons realizes the 
transformation of the input vector to the output value independently of the other 
neurons. 

From the point of view of organizational dynamics, the network consists of N neurons 
of the input layer and a layer of M output neurons. Both layers are fully connected to 
each other when every j-th output neuron is connected to all input neurons. 

 

In the course of active dynamics, the network generally realizes the display from 
Rn→Rm,which was set during the adaptation dynamics. The specific values of the 
output values are given by the activation transfer functions of the output neurons, 
that is, for example, in the case of sigmoidal activation functions approximating a 
sharp nonlinearity, it is the realization of the display from Rn→(0,1)m 
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📝 3.1.8 

What is the key characteristic of a single layer perceptron network? 

• It is made up of multiple independent neurons, with each output neuron 
connected to all input neurons. 

• It can solve any type of problem, whether linearly separable or not. 
• It consists of a single neuron capable of solving complex problems. 
• It does not require adaptation dynamics to perform transformations. 

 

🕮 3.1.9 

Let's consider the classification possibilities of a single-layer perceptron. If we 
consider the mapping Rn→{0,1}m, .e. the classification mapping into two classes, we 
can find m separating hyperplanes in space, one for each neuron of the output layer.  

However, the mere multiplication of neurons in the output layer does not bring any 
change in classification possibilities compared to a simple perceptron, because the 
neural network lacks the possibility to further combine the outputs of individual 
neurons and thus enable classification into several classes. 

For illustration, we present a graphic representation of the classification of the 
perceptron into the mentioned four classes. 
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📝 3.1.10 

Why does a single-layer perceptron have limited classification capabilities? 

• Its neurons work independently without combining their outputs. 
• It can only use a step activation function. 
• It cannot classify into more than two classes. 
• Adding more output neurons exponentially increases complexity. 

 

🕮 3.1.11 

Non-linearity in real problems 

Many real-world problems are inherently non-linear, meaning their solutions cannot 
be found by simple linear boundaries or transformations. Single-layer perceptrons 
are insufficient for such problems as they rely solely on linear classification. To 
address this limitation, the development of more complex neural network 
architectures became essential. 

A major breakthrough occurred in 1986 when Rumelhart, Hinton, and Williams 
introduced the error backpropagation method. This training rule revolutionized neural 
networks by enabling the adjustment of weights in feedforward networks with hidden 
layers. These hidden neurons allow networks to learn complex patterns and solve 
non-linear problems, greatly expanding their application. 

Multilayer feedforward artificial neural networks (ANNs) trained with 
backpropagation are particularly powerful. In these networks, neurons are organized 
in layers, with each layer fully connected to the next. Signals are passed only in one 
direction-forward-from the input layer to the output layer. There are no backward or 
intra-layer connections. This structure ensures efficient processing and is the 
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foundation of many modern neural network models used in complex problem-
solving. 

 

📝 3.1.12 

What key feature allows multilayer feedforward networks to solve non-linear 
problems? 

• The presence of hidden layers with neurons. 
• The use of step activation functions in neurons. 
• Connections within the same layer. 
• The ability to classify linearly separable problems. 

 

🕮 3.1.13 

Multilayer perceptron 

The first typical feedforward multilayer neural network is the Multilayer perceptron 
(MLP). It is composed of multiple layers of neurons, where adjacent layers are fully 
connected. This means that each neuron in one layer connects to every neuron in the 
next layer, ensuring comprehensive communication between layers. Importantly, 
there are no connections within the same layer. 

The structure of the MLP includes an input layer, one or more hidden layers, and an 
output layer. The number of neurons in the hidden layers is determined by the nature 
of the task and usually falls between the number of neurons in the input and output 
layers. Each layer processes the input it receives and passes the output to the next, 
realizing a mapping from Rn to Rm. This enables the MLP to handle complex 
transformations and tasks. 

he activity in an MLP progresses in discrete steps. During each step, the outputs of 
the neurons in a given layer are calculated simultaneously. For a neuron in layer k, its 
output depends on the weighted inputs from all neurons in the previous layer, 
summed and passed through an activation function. The dimension n of the input 
vector corresponds to the number of neurons in the input layer and dictates the 
structure of subsequent layers. 

The number of neurons in the hidden layers can be different, it is chosen according 
to the nature of the solved task, usually in the range between the number of input and 
output neurons. 
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A multi-layer perceptron realizes the mapping Rn→Rm 

The activity takes place in steps k, while the outputs of the j-th neurons in layer k are 
calculated in parallel according to the known relationship: 

 

where n expresses the dimension of the input vector as well as the number of 
neurons in the k-th layer 

 

📝 3.1.14 

What determines the number of neurons in the hidden layers of a Multilayer 
Perceptron? 

• The nature of the task being solved. 
• The dimension of the input vector. 
• The number of neurons in the output layer. 
• The number of connections within a layer. 

 

3.2 Adaline and Madaline  

🕮 3.2.1 

In practice, instead of a simple perceptron, a continuous perceptron is often used, 
the so-called Adaline (Adaptive Linear Neuron). 
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Adaline and Simple Perceptron have the same topology, but different learning 
method as well as the overall focus of the NN. It was described by Widrow and Hoff 
in 1960. Similar to the perceptron, it is used for linear classification into two classes. 

 

Perceptron uses class labels to learn weight values. Adaline uses continuous values 
(based on the input) to figure out the weight values, which is "stronger" because it 
tells us "by how much" we classified correctly or incorrectly. Adaline's learning 
algorithm is different. It uses the so-called gradient learning method. The 
requirement is that the learning behavior is as similar as possible to the overall 
behavior of the teacher. 

 

📝 3.2.2 

What is the primary difference between Adaline and the Simple Perceptron? 

• Adaline uses continuous values, while the Simple Perceptron uses class 
labels for learning weights. 

• Adaline has a different network topology than the Simple Perceptron. 
• Adaline uses class labels, while the Simple Perceptron uses continuous 

values for learning weights. 
• Adaline cannot perform linear classification into two classes. 
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🕮 3.2.3 

Madaline neural network 

The Madaline neural network (Many Adaptive Linear Neurons) is one of the simplest 
feedforward neural networks. It consists of Adaline neurons as its basic building 
blocks. These Adaline neurons are responsible for the initial processing, and the 
network's primary function is to perform logical operations based on their outputs. 

In Madaline, the output signal Y is determined by the logical "OR" function, which is 
activated when at least one of the hidden neurons (Z1 or Z2) generates an output 
signal. The weights v1, v2, and the bias b3 for the output neuron are fixed with values 
of 1/2. The Adaline neurons in the hidden layer use a step activation function to 
output either 1 or -1. This network is adapted using the MRI (Multiple Regression 
Interpretation) adaptation algorithm, which updates only the input weights 
connecting the hidden layer neurons. 

The training process involves initializing the weights and biases, then performing 
updates based on the error signal between the predicted output and the actual target 
output. The algorithm adjusts the weights of the connections leading to the hidden 
neurons and their corresponding biases when the network's output does not match 
the desired output. This allows the network to learn and improve its classification 
abilities. 

The basic element is the Adaline neuron. The output signal Y is equal to 1, if at least 
one value of the signal coming from the hidden neurons (i.e.Z1, Z2 or both at the same 
time).  

 

Madaline uses the MRI Adaptation Algorithm (1960) to adapt only the input weights 
to the hidden layer. 

The weight values to the output neuron Y are fixed. 
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The output neuron Y performs the logical OR function. The weights v1, v2 and b3 are 
fixed, that is: 

v1 = 1/2, v2 = 1/2, b3 = 1/2 

the activation function for Z1, Z2 and Y is a classic step function (sign function). 

We will consider the training patterns [s,t], where s is the input vector and t is the 
output signal 

The procedure: 

1. Initialization of v1, v2 and b3. Initialization of remaining weights - random. 
Setting the learning coefficient α 

2. For each training pair s:t 

• Activate input neurons xi=si 
• Calculate the input values of the hidden layers and the actual output value of 

Madaline: 

z_in1 = b1 + x1*w11 + x2*w21 

z_in2 = b2 + x1*w12 + x2*w22 

z1 = f(z_in1) 

z2 = f(z_in2) 

 

y_in = b3 + z1*v1 + z2*v2 

y = f(y_in) 

3.Update weight coefficients - network learning: 

• If y = t (i.e. the output of the network is equal to the output of the training 
pattern), then the weights and biases do not change 

• For y ≠ t and t = 1, so for weight values on connections to ZJ (J=1,2): 

wiJ(new) = wiJ(old) + alfa * (1 - z_inJ)*xi 

bJ(new) = bJ(old) + alfa * (1 - z_inJ) 

 

• For y ≠ t and t = -1, so for weight values on connections to ZJ (J=1,2): 

wiK(new) = wiK(old) + alfa * (-1 - z_inJ)*xi 

bK(new) = bK(old) + alfa * (-1 - z_inJ) 
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📝 3.2.4 

What is the main function of the output neuron Y in the Madaline network? 

• It performs the logical "OR" function on the signals from Z1 and Z2. 
• It calculates the sum of all inputs from the hidden neurons. 
• It performs the logical "AND" function on the signals from Z1 and Z2. 
• It combines the outputs from all layers using a weighted sum. 

 
 



 

 

 

From Shallow Learning to 
Deep Learning 

Chapter 4 
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4.1 Definition of deep learning 

🕮 4.1.1 

Simple kinds of networks were discussed in previous sections. Structures such as 
multi-layer perceptron can be called shallow neural networks (SNNs). ANNs that 
have many hidden layers containing weights are called deep neural networks, and the 
process of training them is called deep learning. By increasing the number of layers 
and making the ANN deeper, the model becomes more flexible and will be able to 
model more complex functions. However, to gain this increase in flexibility, you need 
more training data and more computation power to train the model. 

The term "deep" refers to the number of layers within a neural network. Traditional 
machine learning models typically process input data through a small number of 
layers, often fewer than a dozen. In contrast, deep learning models can contain 
hundreds or even thousands of layers. The use of deep neural networks allows for 
the automatic extraction of features at multiple levels of abstraction, which is critical 
for processing complex data such as images, audio, and text. By stacking multiple 
layers on top of each other, each layer can learn to transform the input data to make 
it easier for the next layer to learn a more abstract representation. This process can 
continue for many layers, allowing the network to learn highly complex 
representations of the input data. 

Overall, the term "deep" in deep learning refers to the depth of the neural network, 
and the ability of deep neural networks to learn highly complex representations of 
the input data. 

 

📝 4.1.2 

What does the term "deep" in deep learning primarily refer to? 

• The number of layers in the neural network 
• The amount of data processed by the network 
• The size of each layer in the network 
• The computational power required for training 

 

🕮 4.1.3 

Both deep neural networks (DNNs) and shallow neural networks (SNNs) are types of 
artificial neural networks (ANNs) used for machine learning tasks. They share several 
similarities, including: 
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1. Activation functions: Both DNNs and SNNs use activation functions to 
introduce nonlinearity into the network, allowing it to model complex 
relationships between the input and output. 

2. Backpropagation: Both DNNs and SNNs use a backpropagation algorithm to 
update the network weights based on the error between the predicted output 
and the actual output during training. 

3. Gradient descent: Both DNNs and SNNs use gradient descent optimization 
algorithms to minimize the error between the predicted output and the actual 
output during training. 

4. Similar architecture: SNNs and DNNs can have similar architectures, such as 
a series of fully connected layers or convolutional layers, followed by a final 
output layer. 

 

However, the main difference between DNNs and SNNs is the number of layers they 
have. While SNNs typically have only one or two layers, DNNs have many layers, 
allowing them to learn more complex and abstract representations of the input data. 
Additionally, DNNs require more computational resources and can be more difficult 
to train compared to SNNs, due to the larger number of parameters and potential 
issues such as vanishing gradients. 

 

📝 4.1.4 

Deep neural networks have 

• Long training times 
• Small number of hidden layers 
• Generally worse performance than MLP and are used for simple tasks 

 

📝 4.1.5 

What is the primary difference between deep neural networks (DNNs) and shallow 
neural networks (SNNs)? 

• DNNs have more layers, enabling them to learn more complex 
representations of input data. 

• DNNs do not use activation functions, while SNNs do. 
• SNNs cannot use backpropagation, while DNNs can. 
• SNNs require more computational resources compared to DNNs. 
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🕮 4.1.6 

Misconceptions about deep learning 

Deep learning has revolutionized many areas of artificial intelligence, demonstrating 
remarkable capabilities in fields such as image recognition, natural language 
processing, and more. However, misconceptions about its capabilities and 
applications often lead to unrealistic expectations or misuse. Addressing these 
misconceptions is crucial for effectively leveraging deep learning in real-world 
scenarios. 

1. Deep learning can solve any problem: While deep learning has shown 
impressive results in many areas, it is not a panacea for all problems. It 
works well for problems with large amounts of labeled data, but it may not 
be suitable for smaller datasets or problems where data labeling is difficult. 

2. Deep learning is a magic bullet: Deep learning requires significant expertise 
in data preparation, model architecture design, and hyperparameter tuning. It 
is not a magic bullet that can be easily applied to any problem without 
careful consideration and experimentation. 

3. Deep learning models always outperform other methods: While deep learning 
models have shown state-of-the-art performance on many benchmarks, they 
are not always the best choice for a particular problem. In some cases, 
simpler models or other machine learning techniques may be more effective. 

4. Deep learning requires massive amounts of data: While deep learning 
models generally perform better with more data, they can also be effective 
with smaller datasets or with techniques such as transfer learning or data 
augmentation. 

5. Deep learning is only for computer science experts: While deep learning does 
require a certain level of technical expertise, there are many tools and 
libraries available that make it more accessible to researchers and 
practitioners without a background in computer science. 

 

📝 4.1.7 

Which of the following are common misconceptions about deep learning? 

• Deep learning always requires massive amounts of data to work. 
• Deep learning can solve any problem. 
• Deep learning models always outperform simpler methods. 
• Deep learning requires expertise in data preparation and model tuning. 
• Tools like TensorFlow and PyTorch have made deep learning more 

accessible. 
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🕮 4.1.8 

Hyperparameters 

In deep learning, hyperparameters are parameters that are set before training begins 
and are not learned during the training process. Unlike the weights and biases of the 
model, which are adjusted during training, hyperparameters remain fixed. They 
control the behavior and performance of the model, such as its architecture, 
optimization method, and training parameters. Examples of hyperparameters include 
learning rate, batch size, and number of epochs: 

• Learning rate determines the step size for updating weights during training. 
A high learning rate might cause the model to overshoot the optimal point, 
while a low rate could slow down the learning process. 

• Number of epochs refers to the number of complete passes through the 
entire training dataset. More epochs allow the model to learn better but may 
increase the risk of overfitting. 

• Batch size specifies the number of samples processed together in a single 
iteration. Smaller batch sizes provide more updates but require more 
computational effort. 

 

Hyperparameters are critical because they influence the training process's efficiency 
and accuracy. Incorrect settings can lead to suboptimal models or even training 
failures. For instance, setting an inappropriate learning rate can hinder convergence, 
while an unsuitable batch size might result in unstable training. 

 

📝 4.1.9 

Which of the following statements about hyperparameters in deep learning are true? 

• Hyperparameters include learning rate, batch size, and number of epochs. 
• Hyperparameters must be set before training begins. 
• Hyperparameters are adjusted during training to improve model 

performance. 
• Hyperparameters directly control the behavior of backpropagation. 

 

🕮 4.1.10 

Hyperparameter tuning 

Hyperparameter tuning involves finding the optimal values for hyperparameters to 
maximize the model's performance on a given task. This process is essential 
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because even slight variations in hyperparameters can significantly affect a model's 
behavior and outcomes. Common methods for tuning include manual adjustments, 
grid search (systematic exploration of all possible combinations), and random 
search (randomly sampling combinations). 

Some automated approaches, such as Bayesian optimization and genetic 
algorithms, help optimize hyperparameters more efficiently by using intelligent 
sampling techniques. Additionally, techniques like transfer learning can reduce the 
need for extensive tuning by leveraging pre-trained models. 

Once training starts, hyperparameters remain unchanged. The weights and biases of 
the model are updated during the training process, but hyperparameters such as 
learning rate and dropout rate stay constant. If a hyperparameter needs to be 
modified, the entire training process must be restarted, emphasizing the importance 
of careful selection. 

Proper hyperparameter tuning improves training efficiency, reduces overfitting, and 
enhances the model's generalization to unseen data. For example, a well-tuned 
learning rate ensures quicker convergence, while the appropriate regularization 
parameters help prevent overfitting. 

 

📝 4.1.11 

Which of the following are true about hyperparameter tuning? 

• Transfer learning can reduce the need for extensive hyperparameter tuning. 
• Grid search systematically explores possible hyperparameter combinations. 
• Hyperparameter tuning is critical for optimizing model performance. 
• Hyperparameter tuning adjusts weights and biases during training. 

 

4.2 Tensors 

🕮 4.2.1 

Tensors are the building blocks of deep learning. They are multi-dimensional arrays 
that store numerical data in specific shapes, such as vectors, matrices, or higher-
dimensional structures. These shapes enable tensors to represent complex data 
efficiently, making them a core component of artificial neural networks (ANNs). 
Tensors are used to represent inputs, outputs, intermediate computations, and 
learned parameters such as weights and biases during training. 

Tensors play a crucial role in deep learning by enabling mathematical operations that 
transform input data into meaningful predictions. For instance, in image recognition, 
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tensors store pixel values, while in natural language processing, they represent word 
embeddings. Their flexibility allows them to handle diverse data types, such as 
images, audio, and text, which are often large and complex datasets. 

Think of tensors as containers for numbers that can be manipulated mathematically. 
This manipulation enables deep learning models to perform tasks like recognizing 
patterns, classifying objects, and generating predictions. Tensors can hold numbers 
arranged in one or more dimensions, making them adaptable to a wide range of tasks 
and applications. 

 

📝 4.2.2 

Which of the following statements about tensors are true? 

• Tensors are multi-dimensional arrays used to store numerical data in deep 
learning. 

• Tensors can handle data types such as images, audio, and text. 
• Tensors are manipulated mathematically to perform operations in deep 

learning. 
• Tensors represent only the input data in deep learning models. 

 

🕮 4.2.3 

Tensors are characterized by their shape, which determines their dimensions. The 
number of dimensions, also known as the tensor’s rank, defines its type. Tensors can 
range from 0-dimensional scalars to higher-dimensional arrays used for complex 
tasks. 

 

• Scalar (0-D tensor) consists of a single number, which makes it a zero-
dimensional array. It is an example of a zero order tensor. Scalars have no 
axes. For example, the width of an object is scalar. 
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• Vector (1-D tensor) is one-dimensional arrays and are an example of the first 
order tensor. They can be considered lists of values. Vectors have an axis. 
The size of a given object by width, height and depth is an example of a 
vector field. 

• Matrix (2-D tensor) is two-dimensional table with two axes. They are an 
example of second-order tensors. The matrix can be used to store the size of 
several objects. Each dimension of the matrix includes the size of each 
object (width, height, depth) and the other dimension of the matrix is used to 
distinguish between objects. 

• Tensor are the general entities that contain scalars, vectors, and matrices, 
although the name is generally reserved for tensors of level 3 or higher. 
Tensors can be used to store the size and location of many objects over 
time. The first dimension of the matrix includes the size of each object 
(width, height, depth), the second dimension is used to distinguish the object, 
and the third dimension describes the position of these objects over time. 

 

Although all these entities are considered tensors, the term "tensor" is often reserved 
for those with three or more dimensions. 

 

📝 4.2.4 

Order types of tensors by dimensionality: 

• Scalar 
• Matrix 
• Higher-dimensional tensor 
• Vector 

 

🕮 4.2.5 

Tensors use 

In deep learning, tensors serve as the universal data structure for inputs, outputs, and 
computations. For example, a tensor might hold pixel values for an image 
classification model or word embeddings in a natural language processing task. 
During training, tensors represent weights and biases that are updated iteratively to 
minimize error. 

Tensors undergo a series of transformations in neural networks. For instance, input 
tensors pass through layers of neurons, where weights and biases adjust the data. 
These transformations are both linear and non-linear, enabling models to learn from 
data and make predictions. 
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Tensors are highly efficient for processing large and complex datasets. Their multi-
dimensional nature allows for parallel computations, which are crucial for training 
large-scale models. Moreover, deep learning frameworks like TensorFlow and 
PyTorch provide powerful tools for tensor manipulation, making them accessible 
even for beginners. 

 

📝 4.2.6 

Which of the following are examples of tensor use in deep learning? 

• Representing pixel values in an image. 
• Updating weights during backpropagation. 
• Storing word embeddings in a language model. 
• Manipulating strings in a database. 

 

📝 4.2.7 

Project: Tensor definition 

Tensors can be created using the Variable class present in the TensorFlow library 
and passing in a value representing the tensor. 

 
import tensorflow as tf 

tensor1 = tf.Variable([1,2,3], dtype=tf.int32, 

name='my_tensor', trainable=True) 

print(tensor1) 

 
Program output: 
 

 

• dtype - the datatype of the Variable object (for the tensor defined above, the 
datatype is tf.int32). The default value for this attribute is determined from 
the values passed. 

• shape - the number of dimensions and length of each dimension of the 
Variable object (for the tensor defined above, the shape is [3]). The default 
value for this attribute is also determined from the values passed. 

• name - the name of the Variable object (for the tensor defined above, the 
name of the tensor is defined as 'my_tensor'). The default for this attribute 
is Variable. 
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• trainable - this attribute indicates whether the Variable object can be updated 
during model training (for the tensor defined above, the trainable parameter 
is set to true). The default for this attribute is true. 

 
# returns shape of the tensor 

print(tensor1.shape) 

 

# returns rank of the tensor 

print(tf.rank(tensor1)) 

 
Program output: 
(3,) 

tf.Tensor(1, shape=(), dtype=int32) 

 

This Python code snippet, leveraging the TensorFlow library, demonstrates the 
concept of tensor ranks and shapes in deep learning. Tensors are fundamental data 
structures in machine learning, representing multidimensional arrays of numbers. 

The code begins by importing the TensorFlow library, a powerful tool for numerical 
computation, particularly in machine learning and deep learning. It then proceeds to 
create tensors of varying ranks: scalars, vectors, matrices, and higher-dimensional 
tensors. 

For each tensor, the code calculates and prints its rank and shape. The rank of a 
tensor refers to the number of dimensions it possesses. The shape, on the other 
hand, specifies the size of each dimension. 

 
import tensorflow as tf 

 

# Scalar (rank 0) 

int_variable = tf.Variable(4113, tf.int16) 

 

# Vector (rank 1) 

vector_variable = tf.Variable([0.23, 0.42, 0.35], tf.float32) 

 

# Matrix (rank 2) 

matrix_variable = tf.Variable([[4113, 7511, 6259], [3870, 

6725, 6962]], tf.int32) 

 

# Tensor (rank 3) 

tensor_variable = tf.Variable([[[4113, 7511, 6259], [3870, 

6725, 6962]],  
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                               [[5102, 7038, 6591], [3661, 

5901, 6235]],  

                               [[951, 1208, 1098], [870, 645, 

948]]]) 

 

# Check rank and shape of each tensor 

print("Rank of int_variable:", tf.rank(int_variable).numpy()) 

print("Shape of int_variable:", int_variable.shape.as_list()) 

 

print("Rank of vector_variable:", 

tf.rank(vector_variable).numpy()) 

print("Shape of vector_variable:", 

vector_variable.shape.as_list()) 

 

print("Rank of matrix_variable:", 

tf.rank(matrix_variable).numpy()) 

print("Shape of matrix_variable:", 

matrix_variable.shape.as_list()) 

 

print("Rank of tensor_variable:", 

tf.rank(tensor_variable).numpy()) 

print("Shape of tensor_variable:", 

tensor_variable.shape.as_list()) 

 
Program output: 
Rank of int_variable: 0 

Shape of int_variable: [] 

Rank of vector_variable: 1 

Shape of vector_variable: [3] 

Rank of matrix_variable: 2 

Shape of matrix_variable: [2, 3] 

Rank of tensor_variable: 3 

Shape of tensor_variable: [3, 2, 3] 

 

📝 4.2.8 

What is the rank of a scalar tensor? 

• 0 
• 1 
• 2 
• 3 or more 
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4.3 TensorFlow examples 

📝 4.3.1 

Project: Iris flower classification with a simple neural network 

This assignment involves building a simple neural network in TensorFlow to classify 
Iris flower species based on sepal and petal measurements. You will use the Iris 
dataset from scikit-learn and train a model to predict petal width given sepal length 
and sepal width. 

This code demonstrates the construction and training of a basic neural network with 
TensorFlow to classify Iris flowers. The Iris dataset from scikit-learn provides data 
on sepal and petal dimensions of three flower species. The goal is to predict the petal 
width (represented by the fourth feature) based on the first three features (sepal 
length, sepal width, and petal length). 

Our neural network will have five nodes in the hidden layer. We are feeding in three 
values: the sepal length (S.L.), the sepal width (S.W.), and the petal length (P.L.). The 
target will be the petal width. In total, there will be 26 total variables in the model. 

 
import warnings 

warnings.filterwarnings("ignore") 

import matplotlib.pyplot as plt 

import numpy as np 

import tensorflow as tf 

from sklearn import datasets 

Load Iris dataset. It contains data about different types of iris plant and their 
attributes. 

 
import pandas as pd 

 

iris = datasets.load_iris() 

df = pd.DataFrame(data=iris.data, columns=iris.feature_names) 

print(df.head()) 

 

# Get Sepal length, Sepal width, Petal length 

x_vals = np.array([x[0:3] for x in iris.data]) 

# Get Petal Width 

y_vals = np.array([x[3] for x in iris.data]) 

 
Program output: 
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   sepal length (cm)  sepal width (cm)  petal length (cm)  

petal width (cm) 

0                5.1               3.5                1.4               

0.2 

1                4.9               3.0                1.4               

0.2 

2                4.7               3.2                1.3               

0.2 

3                4.6               3.1                1.5               

0.2 

4                5.0               3.6                1.4               

0.2 

 

Use predefined seed to make results reproducible - reproducibility is a crucial 
concept. It means that a given experiment or analysis can be repeated by another 
researcher and yield the same results. This is essential for validating findings, 
sharing knowledge, and building upon existing work. 

 
# make results reproducible 

seed = 3 

np.random.seed(seed)   

tf.random.set_seed(seed) 

 
# Split data into training and testing sets (80/20 split) 

train_indices = np.random.choice(len(x_vals), 

round(len(x_vals) * 0.8), replace=False) 

test_indices = np.array(list(set(range(len(x_vals))) - 

set(train_indices))) 

x_vals_train, x_vals_test = x_vals[train_indices], 

x_vals[test_indices] 

y_vals_train, y_vals_test = y_vals[train_indices], 

y_vals[test_indices] 

Min-max normalization is a technique used to scale numerical features to a specific 
range, typically between 0 and 1. This is essential in machine learning because 
features with different scales can have a significant impact on the model's 
performance. 

The normalize_cols function implements min-max normalization for each column 
(feature) in the input matrix m. It calculates the minimum and maximum values for 
each column and then rescales the values using the formula above. The 
np.nan_to_num function is used to handle potential NaN values that might arise 
during the normalization process. 
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# Normalize features (min-max normalization) 

def normalize_cols(m): 

  col_max = m.max(axis=0) 

  col_min = m.min(axis=0) 

  return (m-col_min) / (col_max - col_min) 

 

x_vals_train = np.nan_to_num(normalize_cols(x_vals_train)) 

x_vals_test = np.nan_to_num(normalize_cols(x_vals_test)) 

Batch size refers to the number of training examples used in one iteration of the 
optimization process. It's a crucial hyperparameter that can significantly impact the 
training process and model performance. 

The batch_size is set to 50. This means that during each training iteration, the model 
will be trained on a batch of 50 randomly selected training examples. The model's 
parameters will be updated based on the gradients computed from this batch. By 
using a batch size of 50, the model can balance the trade-off between computational 
efficiency and generalization performance. 

 
# Declare batch size 

batch_size = 50 

 

# Initialize input data 

x_data = tf.keras.Input(dtype=tf.float32, shape=(3,)) 

Declare the network 

This code defines the architecture of a simple neural network with one hidden layer 
to predict the petal width of an Iris flower based on its sepal length, sepal width, and 
petal length. 

Variable initialization: 

• a1 and a2 - weight matrices for the hidden and output layers, respectively. 
• b1 and b2 - bias vectors for the hidden and output layers. 

 

The weights and biases are initialized randomly using a normal distribution with a 
specified seed for reproducibility. 
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Model architecture: 

• Hidden Layer - takes the input features x_data as input, applies a linear 
transformation (tf.matmul) using the weights a1 and biases b1., applies the 
ReLU activation function to introduce non-linearity. 

• Output layer - takes the output of the hidden layer as input and applies a 
linear transformation using the weights a2 and bias b2. 

 

Model compilation 

• tf.keras.Model class is used to define the model, specifying the input 
(x_data) and output (output). 

• model.summary() method provides a concise overview of the model's 
architecture, including the number of parameters in each layer. 

 

Optimizer: 

• stochastic Gradient Descent (SGD) is chosen as the optimizer to update the 
model's weights and biases during training. 

• a learning rate of 0.005 is set to control the step size of the gradient descent 
updates. 

 
# Create variables for both NN layers 

hidden_layer_nodes = 5 

a1 = tf.Variable(tf.random.normal(shape=[3, 

hidden_layer_nodes], seed=seed))  # Weights for hidden layer 

b1 = tf.Variable(tf.random.normal(shape=[hidden_layer_nodes], 

seed=seed))  # Biases for hidden layer 

a2 = tf.Variable(tf.random.normal(shape=[hidden_layer_nodes, 

1], seed=seed))  # Weights for output layer 

b2 = tf.Variable(tf.random.normal(shape=[1], seed=seed))  # 

Bias for output layer 

 

# Define hidden layer operation with ReLU activation 

hidden_output = tf.keras.layers.Lambda(lambda x: 

tf.nn.relu(tf.matmul(x, a1) + b1)) 

 

# Define output layer operation with linear activation (for 

regression) 

output = tf.matmul(hidden_layer, a2) + b2 

 

# Build the model 
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model = tf.keras.Model(inputs=x_data, outputs=output, 

name="1layer_neural_network") 

 

# Print model summary 

model.summary() 

 

# Declare optimizer 

optimizer = tf.keras.optimizers.SGD(0.005) 

 
Program output: 
WARNING:tensorflow:The following Variables were used in a 

Lambda layer's call (tf.linalg.matmul), but are not present in 

its tracked objects:   . This is a strong indication that the 

Lambda layer should be rewritten as a subclassed Layer. 

WARNING:tensorflow:The following Variables were used in a 

Lambda layer's call (tf.__operators__.add), but are not 

present in its tracked objects:   . This is a strong 

indication that the Lambda layer should be rewritten as a 

subclassed Layer. 

Model: "1layer_neural_network" 

______________________________________________________________

___ 

 Layer (type)                Output Shape              Param #    

==============================================================

=== 

 input_1 (InputLayer)        [(None, 3)]               0          

                                                                  

 lambda (Lambda)             (None, 5)                 0          

                                                                  

 tf.linalg.matmul (TFOpLambd  (None, 1)                0          

 a)                                                               

                                                                  

 tf.__operators__.add (TFOpL  (None, 1)                0          

 ambda)                                                           

                                                                  

 

Following code implements a training loop for a simple neural network. The goal is 
to minimize the Mean Squared Error (MSE) between the network's predictions and 
the true values of the target variable (petal width in this case). 

The training process involves iteratively updating the model's parameters (weights 
and biases) using gradient descent. This is done by calculating the gradients of the 
loss function with respect to the parameters and then adjusting the parameters in 
the direction that minimizes the loss. 
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• Batching - a random subset of training data is selected in each iteration 
(batch). This helps to introduce randomness and improve generalization. 

• Forward Pass - the current batch of input data is fed into the neural network 
to obtain predictions. 

• Loss Calculation - the Mean squared error between the predicted values and 
the true target values is calculated. 

• Gradient Calculation tf.GradientTape context manager is used to record 
operations and compute gradients. The gradients of the loss with respect to 
the model's parameters are calculated. 

• Parameter Update - the optimizer (SGD in this case) updates the model's 
parameters using the calculated gradients. 

• Evaluation - the model is evaluated on the test set to monitor its 
performance during training. The test loss is calculated and stored for later 
analysis. 

• Logging - the training loss is printed every 50 iterations to track progress. 

 
# Training loop 

loss_vec = [] 

test_loss = [] 

for i in range(500): 

  rand_index = np.random.choice(len(x_vals_train), 

size=batch_size) 

  rand_x = x_vals_train[rand_index] 

  rand_y = np.transpose([y_vals_train[rand_index]]) 

 

  # Open a GradientTape. 

  with tf.GradientTape(persistent=True) as tape: 

    # Forward pass. 

    output = model(rand_x) 

     

    # Apply loss function (MSE) 

    loss = tf.reduce_mean(tf.square(rand_y - output)) 

    loss_vec.append(np.sqrt(loss)) 

     

    # Get gradients of loss with reference to the variables 

"a1", "b1", "a2" and "b2" to adjust. 

    gradients_a1 = tape.gradient(loss, a1) 

    gradients_b1 = tape.gradient(loss, b1) 

    gradients_a2 = tape.gradient(loss, a2) 

    gradients_b2 = tape.gradient(loss, b2) 

     

    # Update the variables "a1", "b1", "a2" and "b2" of the 

model. 

    optimizer.apply_gradients(zip([gradients_a1, gradients_b1, 

gradients_a2, gradients_b2], [a1, b1, a2, b2])) 
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    # Forward pass. 

    output_test = model(x_vals_test) 

    # Apply loss function (MSE) on test 

    loss_test = 

tf.reduce_mean(tf.square(np.transpose([y_vals_test]) - 

output_test)) 

    test_loss.append(np.sqrt(loss_test)) 

     

    if (i+1)%50==0: 

      print('Generation: ' + str(i+1) + '. Loss = ' + 

str(np.mean(loss))) 

 
Program output: 
WARNING:tensorflow:Calling GradientTape.gradient on a 

persistent tape inside its context is significantly less 

efficient than calling it outside the context (it causes the 

gradient ops to be recorded on the tape, leading to increased 

CPU and memory usage). Only call GradientTape.gradient inside 

the context if you actually want to trace the gradient in 

order to compute higher order derivatives. 

WARNING:tensorflow:Calling GradientTape.gradient on a 

persistent tape inside its context is significantly less 

efficient than calling it outside the context (it causes the 

gradient ops to be recorded on the tape, leading to increased 

CPU and memory usage). Only call GradientTape.gradient inside 

the context if you actually want to trace the gradient in 

order to compute higher order derivatives. 

WARNING:tensorflow:Calling GradientTape.gradient on a 

persistent tape inside its context is significantly less 

efficient than calling it outside the context (it causes the 

gradient ops to be recorded on the tape, leading to increased 

CPU and memory usage). Only call GradientTape.gradient inside 

the context if you actually want to trace the gradient in 

order to compute higher order derivatives. 

WARNING:tensorflow:Calling GradientTape.gradient on a 

persistent tape inside its context is significantly less 

efficient than calling it outside the context (it causes the 

gradient ops to be recorded on the tape, leading to increased 

CPU and memory usage). Only call GradientTape.gradient inside 

the context if you actually want to trace the gradient in 

order to compute higher order derivatives. 

Generation: 50. Loss = 0.6266393 

Generation: 100. Loss = 0.46858525 

Generation: 150. Loss = 0.34825706 



From Shallow Learning to Deep Learning | FITPED AI 

86 

Generation: 200. Loss = 0.219747 

Generation: 250. Loss = 0.24899033 

Generation: 300. Loss = 0.15766421 

Generation: 350. Loss = 0.13695493 

Generation: 400. Loss = 0.13414612 

Generation: 450. Loss = 0.11820017 

Generation: 500. Loss = 0.13063623 

 

Plot the result of training 

 
# Plot loss (MSE) over time 

plt.ylim([0, 1.0]) 

plt.plot(loss_vec, 'k-', label='Train Loss') 

plt.plot(test_loss, 'r--', label='Test Loss') 

plt.title('Loss (MSE) per Generation') 

plt.legend(loc='upper right') 

plt.xlabel('Generation') 

plt.ylabel('Loss') 

plt.show() 

 
Program output: 
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📝 4.3.2 

Project: More complex network with 3 hidden layers 

(by https://github.com/nfmcclure/tensorflow_cookbook) 

Implement a neural network model to predict birthweight based on various factors 
extracted from a dataset.  

Dataset: 

• original: 
https://github.com/nfmcclure/tensorflow_cookbook/raw/master/01_Introdu
ction/07_Working_with_Data_Sources/birthweight_data/birthweight.dat 

• local: https://priscilla.fitped.eu/data/deep_learning/birthweight.dat 

 

The 'Low Birthrate Dataset' is a dataset from a famous study by Hosmer and 
Lemeshow in 1989 called, "Low Infant Birth Weight Risk Factor Study". This example 
is predicting birth weights in a low birth weight database. We will create a neural 
network with three hidden layers. The low birth weight data set includes actual birth 
weights and a variable indicating whether the given birth weight is over or below 
2,500 grams. In this example, we will make the target the actual birth weight 
(regression) and then see what is the accuracy of the classification at the end. Finally, 
our model should be able to identify whether the birth weight is 2500 grams. 

 
import warnings 

warnings.filterwarnings("ignore") 

import tensorflow as tf 

import matplotlib.pyplot as plt 

import csv 

import random 

import numpy as np 

import requests 

1. Data acquisition and preprocessing 

• The code downloads the birth weight data from a URL and saves it locally. 
• It reads the data into a list of lists, extracting features of interest (e.g., age, 

weight, smoking habits). 
• The target variable (birth weight) is separated from the features. 

 
# Data file 

birth_weight_file = 'birth_weight.csv' 

https://github.com/nfmcclure/tensorflow_cookbook
https://github.com/nfmcclure/tensorflow_cookbook/raw/master/01_Introduction/07_Working_with_Data_Sources/birthweight_data/birthweight.dat
https://github.com/nfmcclure/tensorflow_cookbook/raw/master/01_Introduction/07_Working_with_Data_Sources/birthweight_data/birthweight.dat
https://priscilla.fitped.eu/data/deep_learning/birthweight.dat
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# download data and create data file 

birthdata_url = 

'https://github.com/nfmcclure/tensorflow_cookbook/raw/master/0

1_Introduction/07_Working_with_Data_Sources/birthweight_data/b

irthweight.dat' 

birth_file = requests.get(birthdata_url) 

birth_data = birth_file.text.split('\r\n') 

birth_header = birth_data[0].split('\t') 

birth_data = [[float(x) for x in y.split('\t') if len(x)>=1] 

for y in birth_data[1:] if len(y)>=1] 

with open(birth_weight_file, "w") as f: 

  writer = csv.writer(f) 

  writer.writerows([birth_header]) 

  writer.writerows(birth_data) 

  f.close() 

 

# read birth weight data into memory 

birth_data = [] 

with open(birth_weight_file, newline='') as csvfile: 

  csv_reader = csv.reader(csvfile) 

  birth_header = next(csv_reader) 

  for row in csv_reader: 

    birth_data.append(row) 

 

birth_data = [[float(x) for x in row] for row in birth_data] 

 

# Extract y-target (birth weight) 

y_vals = np.array([x[8] for x in birth_data]) 

 

# Filter for features of interest 

cols_of_interest = ['AGE', 'LWT', 'RACE', 'SMOKE', 'PTL', 

'HT', 'UI'] 

x_vals = np.array([[x[ix] for ix, feature in 

enumerate(birth_header) if feature in cols_of_interest] for x 

in birth_data]) 

• Data is split into training and testing sets using an 80/20 split. 

 
# set batch size for training 

batch_size = 150 

 

# make results reproducible 

seed = 3 
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np.random.seed(seed) 

tf.random.set_seed(seed) 

 

# Split data into train/test = 80%/20% 

train_indices = np.random.choice(len(x_vals), 

round(len(x_vals)*0.8), replace=False) 

test_indices = np.array(list(set(range(len(x_vals))) - 

set(train_indices))) 

x_vals_train = x_vals[train_indices] 

x_vals_test = x_vals[test_indices] 

y_vals_train = y_vals[train_indices] 

y_vals_test = y_vals[test_indices] 

• Features are normalized using min-max scaling to ensure values are 
between 0 and 1. 

 
# Record training column max and min for scaling of non-

training data 

train_max = np.max(x_vals_train, axis=0) 

train_min = np.min(x_vals_train, axis=0) 

 

# Normalize by column (min-max norm to be between 0 and 1) 

def normalize_cols(mat, max_vals, min_vals): 

  return (mat - min_vals) / (max_vals - min_vals) 

 

x_vals_train = np.nan_to_num(normalize_cols(x_vals_train, 

train_max, train_min)) 

x_vals_test = np.nan_to_num(normalize_cols(x_vals_test, 

train_max, train_min)) 

2. Model definition 

• Functions init_weight and init_bias are used to initialize weight and bias 
variables with appropriate shapes and standard deviations. 

• tf.keras.Input layer is defined to specify the input shape (number of 
features). 

 
# Define Variable Functions (weights and bias) 

def init_weight(shape, st_dev): 

  weight = tf.Variable(tf.random.normal(shape, stddev=st_dev)) 

  return(weight) 

 

def init_bias(shape, st_dev): 

  bias = tf.Variable(tf.random.normal(shape, stddev=st_dev)) 
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  return(bias) 

     

# Initialize input data 

x_data = tf.keras.Input(dtype=tf.float32, shape=(7,)) 

• Three fully connected (dense) hidden layers are created with ReLU activation 
functions. Each layer uses custom-defined fully_connected functions with 
weight and bias variables. The number of hidden nodes in each layer can be 
adjusted for experimentation. 

• A final fully connected layer with one output neuron predicts the birthweight. 

 
# Create a fully connected layer: 

def fully_connected(input_layer, weights, biases): 

  return tf.keras.layers.Lambda(lambda x: 

tf.nn.relu(tf.add(tf.matmul(x, weights), 

biases)))(input_layer) 

 

#--------Create the first layer (25 hidden nodes)-------- 

weight_1 = init_weight(shape=[7,25], st_dev=5.0) 

bias_1 = init_bias(shape=[25], st_dev=10.0) 

layer_1 = fully_connected(x_data, weight_1, bias_1) 

 

#--------Create second layer (10 hidden nodes)-------- 

weight_2 = init_weight(shape=[25, 10], st_dev=5.0) 

bias_2 = init_bias(shape=[10], st_dev=10.0) 

layer_2 = fully_connected(layer_1, weight_2, bias_2) 

 

#--------Create third layer (3 hidden nodes)-------- 

weight_3 = init_weight(shape=[10, 3], st_dev=5.0) 

bias_3 = init_bias(shape=[3], st_dev=10.0) 

layer_3 = fully_connected(layer_2, weight_3, bias_3) 

 

#--------Create output layer (1 output value)-------- 

weight_4 = init_weight(shape=[3, 1], st_dev=5.0) 

bias_4 = init_bias(shape=[1], st_dev=10.0) 

final_output = fully_connected(layer_3, weight_4, bias_4) 

 

# Build the model 

model = tf.keras.Model(inputs=x_data, outputs=final_output, 

name="multiple_layers_neural_network") 

 

# Print model summary 

model.summary() 
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Program output: 
WARNING:tensorflow: 

The following Variables were used a Lambda layer's call 

(lambda), but 

are not present in its tracked objects: 

   

   

It is possible that this is intended behavior, but it is more 

likely 

an omission. This is a strong indication that this layer 

should be 

formulated as a subclassed Layer rather than a Lambda layer. 

WARNING:tensorflow: 

The following Variables were used a Lambda layer's call 

(lambda_1), but 

are not present in its tracked objects: 

   

   

It is possible that this is intended behavior, but it is more 

likely 

an omission. This is a strong indication that this layer 

should be 

formulated as a subclassed Layer rather than a Lambda layer. 

WARNING:tensorflow: 

The following Variables were used a Lambda layer's call 

(lambda_2), but 

are not present in its tracked objects: 

   

   

It is possible that this is intended behavior, but it is more 

likely 

an omission. This is a strong indication that this layer 

should be 

formulated as a subclassed Layer rather than a Lambda layer. 

WARNING:tensorflow: 

The following Variables were used a Lambda layer's call 

(lambda_3), but 

are not present in its tracked objects: 

   

   

It is possible that this is intended behavior, but it is more 

likely 

an omission. This is a strong indication that this layer 

should be 
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formulated as a subclassed Layer rather than a Lambda layer. 

Model: "multiple_layers_neural_network" 

______________________________________________________________

___ 

 Layer (type)                Output Shape              Param #    

==============================================================

=== 

 input_1 (InputLayer)        [(None, 7)]               0          

                                                                  

 lambda (Lambda)             (None, 25)                0          

                                                                  

 lambda_1 (Lambda)           (None, 10)                0          

                                                                  

 lambda_2 (Lambda)           (None, 3)                 0          

                                                                  

 lambda_3 (Lambda)           (None, 1)                 0          

                                                                  

==============================================================

=== 

Total params: 0 

 

3. Model training 

• The Adam optimizer is used with a learning rate of 0.025 to adjust the 
model's weights and biases during training. 

• A training loop iterates for 200 epochs: 

1. A mini-batch of data is randomly selected from the training set. 
2. The model's forward pass is performed to obtain predictions for the mini-

batch. 
3. Mean absolute error is used as the loss function to measure the difference 

between predictions and actual birth weights. 
4. The GradientTape context is used to efficiently calculate gradients of the 

loss function with respect to the model's weights and biases. 
5. The gradients are applied to update the weights and biases using the Adam 

optimizer, improving the model's ability to predict birthweight. 

• After each epoch, the model's performance is evaluated on the testing set by 
calculating the MAE loss and printing it every 25 epochs. 

 
# Declare Adam optimizer 

optimizer = tf.keras.optimizers.Adam(0.025) 

 

# Training loop 
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loss_vec = [] 

test_loss = [] 

for i in range(200): 

  rand_index = np.random.choice(len(x_vals_train), 

size=batch_size) 

  rand_x = x_vals_train[rand_index] 

  rand_y = np.transpose([y_vals_train[rand_index]]) 

   

  # Open a GradientTape. 

  with tf.GradientTape(persistent=True) as tape: 

    # Forward pass. 

    output = model(rand_x) 

     

    # Apply loss function (MSE) 

    loss = tf.reduce_mean(tf.abs(rand_y - output)) 

    loss_vec.append(loss)        

         

  # Get gradients of loss with reference to the weights and 

bias variables to adjust. 

  gradients_w1 = tape.gradient(loss, weight_1) 

  gradients_b1 = tape.gradient(loss, bias_1) 

  gradients_w2 = tape.gradient(loss, weight_2) 

  gradients_b2 = tape.gradient(loss, bias_2) 

  gradients_w3 = tape.gradient(loss, weight_3) 

  gradients_b3 = tape.gradient(loss, bias_3) 

  gradients_w4 = tape.gradient(loss, weight_4) 

  gradients_b4 = tape.gradient(loss, bias_4) 

 

  # Update the weights and bias variables of the model. 

  optimizer.apply_gradients(zip([gradients_w1, gradients_b1, 

gradients_w2, gradients_b2, gradients_w3, gradients_b3, 

gradients_w4, gradients_b4], [weight_1, bias_1, weight_2, 

bias_2, weight_3, bias_3, weight_4, bias_4])) 

   

  # Forward pass. 

  output_test = model(x_vals_test) 

  # Apply loss function (MSE) on test 

  temp_loss = 

tf.reduce_mean(tf.abs(np.transpose([y_vals_test]) - 

output_test)) 

  test_loss.append(temp_loss) 

   

  if (i+1) % 25 == 0: 
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    print('Generation: ' + str(i+1) + '. Loss = ' + 

str(loss.numpy())) 

 
Program output: 
Generation: 25. Loss = 1921.8654 

Generation: 50. Loss = 1452.7341 

Generation: 75. Loss = 987.58563 

Generation: 100. Loss = 709.25836 

Generation: 125. Loss = 509.8613 

Generation: 150. Loss = 540.57904 

Generation: 175. Loss = 535.96893 

Generation: 200. Loss = 439.15442 

 

4. Evaluation and prediction 

• After training, the code calculates the model's accuracy on the training and 
testing sets. Accuracy here refers to correctly classifying whether a 
birthweight is below a certain threshold (e.g., 2500 grams in this case). 

• Finally, the code demonstrates how to make predictions for new data points 
by performing normalization and feeding them through the trained model. 

 
# Plot loss (MSE) over time 

plt.plot(loss_vec, 'k-', label='Train Loss') 

plt.plot(test_loss, 'r--', label='Test Loss') 

plt.title('Loss (MSE) per Generation') 

plt.legend(loc='upper right') 

plt.xlabel('Generation') 

plt.ylabel('Loss') 

plt.show() 

 
Program output: 
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# Model Accuracy 

actuals = np.array([x[0] for x in birth_data]) 

test_actuals = actuals[test_indices] 

train_actuals = actuals[train_indices] 

test_preds = model(x_vals_test) 

train_preds = model(x_vals_train) 

test_preds = np.array([1.0 if x < 2500.0 else 0.0 for x in 

test_preds]) 

train_preds = np.array([1.0 if x < 2500.0 else 0.0 for x in 

train_preds]) 

# Print out accuracies 

test_acc = np.mean([x == y for x, y in zip(test_preds, 

test_actuals)]) 

train_acc = np.mean([x == y for x, y in zip(train_preds, 

train_actuals)]) 

print('On predicting the category of low birthweight from 

regression output (<2500g):') 

print('Test Accuracy: {}'.format(test_acc)) 

print('Train Accuracy: {}'.format(train_acc)) 

 
Program output: 
On predicting the category of low birthweight from regression 

output (<2500g): 

Test Accuracy: 0.7631578947368421 

Train Accuracy: 0.7748344370860927 
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• Example of prediction for new data 

 
# Need new vectors of 'AGE', 'LWT', 'RACE', 'SMOKE', 'PTL', 

'HT', 'UI' 

new_data = np.array([[35, 185, 1., 0., 0., 0., 1.], 

                     [18, 160, 0., 1., 0., 0., 1.]]) 

new_data_scaled = np.nan_to_num(normalize_cols(new_data, 

train_max, train_min)) 

new_logits = model(new_data_scaled) 

new_preds = np.array([1.0 if x < 2500.0 else 0.0 for x in 

new_logits]) 

 

print('New Data Predictions: {}'.format(new_preds)) 

 
Program output: 
New Data Predictions: [1. 0.] 

 
 



 

 

 

Convolutional Neural 
Networks - CNNs 

Chapter 5 
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5.1 CNN description 

🕮 5.1.1 

Basic description of CNN 

 

A Convolutional Neural Network (CNN) is a type of deep neural network commonly 
used in image and video recognition tasks. 

The key feature of a CNN is its ability to learn hierarchical representations of input 
data through a series of convolutional layers. These layers apply a set of learnable 
filters to the input data, extracting local features such as edges and textures. The 
output of each convolutional layer is then passed through a non-linear activation 
function to introduce non-linearity and create more complex features. 

After several convolutional layers, the output is passed through a pooling layer which 
reduces the spatial resolution of the feature maps while retaining the most important 
features. Finally, the output of the last pooling layer is passed through one or more 
fully connected layers to produce a final output, typically a probability distribution 
over the possible classes. 

CNNs have been shown to be highly effective in a wide range of image recognition 
tasks, including object detection, image segmentation, and facial recognition. They 
have also been applied to other types of data such as audio and natural language 
processing. 

 

🕮 5.1.2 

What is convolution 

In a Convolutional Neural Network (CNN), convolution refers to the process of 
applying a set of filters to the input data in order to extract local features. 

In the context of image processing, the input data is typically a 3D array representing 
an image, with dimensions for width, height, and color channels. The filters, also 
known as kernels or feature detectors, are smaller 3D arrays that slide over the input 
data, computing a dot product between the filter and the input at each location, and 
producing an output in the form of a 2D activation map. 

The filters are learned through backpropagation during training, and each filter is 
optimized to detect a particular feature of the input data, such as edges or corners. 
Multiple filters are used in each convolutional layer, and the output of each filter is 
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combined to produce a set of activation maps, which are then passed through a non-
linear activation function such as ReLU. 

Convolutional layers are typically followed by pooling layers, which reduce the spatial 
resolution of the activation maps while retaining the most important features, and 
then by additional convolutional layers to extract higher-level features. 

The use of convolutional layers in CNNs has been shown to be highly effective in 
image recognition tasks, and has also been applied to other types of data such as 
audio and natural language processing. 

 

5.2 Layers and architectures I. 

🕮 5.2.1 

Convolutional Neural Networks (CNNs) are a type of deep learning architecture 
widely used for tasks involving image data, such as object recognition, image 
classification, and segmentation. The power of CNNs comes from their ability to 
automatically learn and extract hierarchical features from input data. This is 
achieved through a combination of different types of layers, each performing a 
specific role in the network. 

Layers in a CNN work together to process and transform the input data step by step. 
For example, an image of a cat is passed through a CNN, where initial layers might 
detect edges and textures, and later layers identify more complex patterns like eyes, 
whiskers, or the overall shape of a cat. 

The choice of layers in a CNN depends on the task and the structure of the input data. 
Each layer type contributes uniquely to how the data is processed, helping the model 
to extract meaningful patterns and make accurate predictions. Let’s explore the 
commonly used layers in CNNs. 

Layer types 

There are several types of layers commonly used in Convolutional Neural Networks 
(CNNs), including: 

• Convolutional layers are the core building blocks of CNNs. They use filters 
(or kernels) to scan the input data and extract local features such as edges, 
textures, and patterns. Each filter focuses on a specific aspect of the data, 
enabling the network to learn spatial relationships. 

• Pooling layers reduce the spatial dimensions of the feature maps, making 
the network more efficient and reducing the risk of overfitting. Common 
pooling methods include max pooling, which selects the maximum value 
from a region, and average pooling, which computes the average value. 
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• Fully connected layers found in the final stages of the network, these layers 
connect every neuron to all neurons in the preceding layer. They are typically 
used for high-level tasks like classification or regression. 

• Activation layers introduce non-linearity to the model, allowing it to learn 
complex patterns. Activation functions like ReLU, sigmoid, and tanh are 
commonly used to transform the output of previous layers. 

• Normalization layers - by normalizing the outputs of the previous layer, 
normalization layers improve the stability and performance of the network. 
Batch normalization is a popular technique that reduces internal covariate 
shifts. 

• Dropout layers prevent overfitting by randomly "dropping out" neurons during 
training. This forces the network to learn robust features that generalize well 
to new data. 

• Upsampling layers increase the spatial resolution of feature maps, often 
used in tasks like image generation or segmentation. They achieve this by 
repeating values or learning new values through transposed convolutions. 

The specific architecture of a CNN will depend on the particular task and the 
structure of the input data, but most CNNs will include some combination of these 
layers. 

 

📝 5.2.2 

Which of the following statements about CNN layers are correct? 

• Convolutional layers are used to extract features like edges and textures. 
• Fully connected layers are used for classification tasks in CNNs. 
• Pooling layers increase the spatial resolution of feature maps. 
• Dropout layers help reduce overfitting during training. 

 

🕮 5.2.3 

Convolution layer 

The convolutional layer is a fundamental building block of a Convolutional Neural 
Network (CNN). It applies a set of filters to the input image to extract features, by 
performing a convolution operation between the input image and a set of learnable 
filters. Each filter slides over the entire input image, computing a dot product between 
the filter weights and the pixel values at each position. The result of this operation is 
a feature map that highlights the presence of certain features in the input image. 

The learnable filters in the convolutional layer represent different characteristics of 
the input image, such as edges, textures, or colors. By stacking multiple 
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convolutional layers on top of each other, the CNN can learn increasingly complex 
and abstract features from the input image. 

Each convolutional layer typically has a number of hyperparameters, such as the 
number of filters, the size of the filters (kernel size), and the stride (the amount the 
filter shifts between each computation). The size of the output feature map is 
determined by the size of the input image, the size of the filter, and the stride, with 
smaller strides resulting in larger output feature maps. 

Convolutional layers are important in CNNs because they enable the network to 
extract useful features from the input image in a hierarchical manner, allowing it to 
identify complex patterns and structures that are relevant to the task at hand. They 
are widely used in computer vision tasks such as image classification, object 
detection, and semantic segmentation. 

 

Application of a 2x2 convolutional filter across a 5x5 input matrix producing a new 
4x4 feature layer 

 

 

📝 5.2.4 

What is the primary purpose of the convolutional layer in a Convolutional Neural 
Network? 

• To apply a set of filters for feature extraction from the input image  
• To reduce the spatial resolution of the input image 
• To randomly drop neurons during training 
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• To connect every neuron in one layer to every neuron in the previous layer 

 

🕮 5.2.5 

Pooling layer 

The pooling layer is a type of layer in a Convolutional Neural Network (CNN) that 
performs a downsampling operation on the input feature map. The pooling layer 
reduces the spatial dimensions (width and height) of the input feature map while 
preserving the depth dimension (number of channels) by combining the outputs of 
adjacent neurons in the feature map. 

The most commonly used type of pooling layer is max pooling, where the maximum 
value in each local region of the feature map is taken as the output. For example, a 
max pooling layer with a 2x2 kernel and stride of 2 would divide the input feature map 
into non-overlapping 2x2 regions and take the maximum value in each region as the 
output. This operation reduces the spatial dimensions of the feature map by a factor 
of two. 

Another type of pooling layer is average pooling, where the average value in each 
local region of the feature map is taken as the output. Average pooling can also be 
used to reduce the spatial dimensions of the feature map. 

The pooling layer is used in CNNs to reduce the spatial dimensions of the feature 
map, which can help to reduce the computational cost of the network and prevent 
overfitting by reducing the number of parameters in the model. Additionally, the 
pooling layer can help to extract invariant features from the input by taking the 
maximum or average value in each local region, which can improve the robustness 
of the model to variations in the input data. 
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📝 5.2.6 

What is the primary purpose of the pooling layer in a Convolutional Neural Network 

• To reduce the spatial dimensions of the feature map while preserving the 
depth dimension 

• To increase the spatial resolution of the feature map 
• To apply filters for feature extraction from the input image 
• To introduce non-linearity to the output of the previous layer 

 

🕮 5.2.7 

Fully connected layer 

A fully connected layer, also called a dense layer, is a type of layer in a neural network 
where every neuron in the layer is connected to every neuron in the previous layer. 

In a fully connected layer, the input is a vector and the output is another vector of a 
specified size, which represents the activations of the layer. Each neuron in the fully 
connected layer applies a weighted sum of the activations from the previous layer, 
followed by a non-linear activation function, to produce its output. 

Fully connected layers are commonly used in the final layers of a neural network, 
where they can be used for classification or regression tasks. They are also used in 
certain types of networks such as Multi-Layer Perceptrons (MLPs), where all layers 
are fully connected. However, in some types of networks such as Convolutional 
Neural Networks (CNNs) or Recurrent Neural Networks (RNNs), fully connected 
layers are used only in the final layers of the network, after convolutional or recurrent 
layers have been used to extract features from the input data. 

 

📝 5.2.8 

In a fully connected layer, what is the relationship between neurons in the current 
layer and the previous layer? 

• Every neuron in the layer is connected to every neuron in the previous layer 
• Each neuron is connected to a few neurons in the previous layer 
• Neurons are not connected to neurons in the previous layer 
• Each neuron connects to neurons in the next layer only 

 
 
 



Convolutional Neural Networks - CNNs | FITPED AI 

104 

🕮 5.2.9 

Activation layer 

An activation layer, also known as an activation function or nonlinearity, is a type of 
layer in a neural network that introduces nonlinearity into the network's output. 

The purpose of an activation layer is to apply a mathematical function to the output 
of the previous layer in order to introduce nonlinearity. Without an activation layer, 
the neural network would simply be a linear function, which would not be able to 
model complex relationships between the input and output data. 

There are several different types of activation functions used in deep learning, 
including: 

• Sigmoid function: maps the input to a value between 0 and 1, and is 
commonly used in binary classification problems. 

 

• Rectified Linear Unit (ReLU): sets all negative values in the input to zero, and 
is commonly used in image classification problems. 

 

• Leaky ReLU 

 

• Hyperbolic tangent (tanh): maps the input to a value between -1 and 1, and is 
commonly used in recurrent neural networks. 

 

 

Activation layers are typically placed after each convolutional or dense layer in a 
neural network, except for the output layer, which often uses a different activation 
function depending on the problem being solved. 
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📝 5.2.10 

What is the primary role of an activation layer in a neural network? 

• To introduce nonlinearity to the network’s output 
• To perform a linear transformation of the input 
• To reduce the number of layers in the network 
• To increase the number of neurons in the network 

 

5.3 Layers and architectures II. 

🕮 5.3.1 

Normalization layer 

A normalization layer, also known as a batch normalization layer, is a type of layer in 
a neural network that is used to normalize the input data before passing it to the next 
layer. The purpose of normalization is to ensure that the input data has a mean of 0 
and a standard deviation of 1, which can improve the performance and stability of 
the network. 

The normalization process involves subtracting the mean of the input data from each 
data point, and then dividing the result by the standard deviation of the input data. 
This makes the input data have a zero mean and a standard deviation of 1, which can 
help prevent the input from causing the activation functions to saturate, which can 
cause the network to stop learning. 

Normalization layers are commonly used in deep learning architectures, particularly 
in convolutional neural networks (CNNs) and recurrent neural networks (RNNs). They 
are typically placed after the convolutional or recurrent layers, but before the 
activation function. 

 

📝 5.3.2 

What is the main purpose of a normalization layer in a neural network? 

• To ensure the input data has a mean of 0 and a standard deviation of 1 
• To improve the learning rate by increasing the variance of the input data 
• To add additional layers to the network 
• To reduce the number of training epochs 
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🕮 5.3.3 

Dropout layer 

Dropout is a regularization technique used in deep neural networks to prevent 
overfitting. A dropout layer is a type of layer in a neural network that randomly drops 
out, or "turns off," a certain percentage of the neurons during training. The neurons 
that are dropped out change with each training iteration, which makes the network 
more robust and less likely to overfit to the training data. 

The purpose of the dropout layer is to prevent the network from relying too heavily 
on any one feature or neuron, and to encourage the network to learn more robust 
features that are useful across multiple inputs. Dropout can also help prevent the 
network from memorizing noise or outliers in the training data. 

During training, a dropout layer randomly selects a percentage of the neurons to drop 
out, based on a specified dropout rate. The remaining neurons are then scaled by a 
factor equal to 1 / (1 - dropout rate), in order to compensate for the dropped out 
neurons. During testing, all of the neurons are used, and their output is scaled by the 
same factor as during training. 

Dropout layers are commonly used in deep learning architectures, particularly in 
convolutional neural networks (CNNs) and fully connected neural networks. They are 
typically placed after each dense layer in the network. 

Example of dropout 
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📝 5.3.4 

What is the purpose of a dropout layer in a neural network? 

• To prevent overfitting by randomly turning off certain neurons during training 
• To increase the depth of the network 
• To scale the output of neurons during training 
• To decrease the learning rate of the optimizer 

 

🕮 5.3.5 

Upsampling layer 

An upsampling layer, also known as a deconvolutional layer or a transposed 
convolutional layer, is a type of layer in a neural network that is used for upsampling 
or increasing the spatial resolution of the input. 

The purpose of an upsampling layer is to increase the resolution of feature maps 
while preserving their spatial information. This is useful in tasks such as image 
segmentation, where the goal is to classify each pixel in an image into different 
classes. 

An upsampling layer works by reversing the process of a convolutional layer. In a 
convolutional layer, a filter is applied to the input feature map to produce an output 
feature map with reduced spatial resolution. In an upsampling layer, a filter is applied 
to the output feature map to produce an upsampled feature map with increased 
spatial resolution. 

There are several types of upsampling layers used in deep learning, including: 

• Nearest neighbor upsampling - simply duplicates the values in the input 
feature map to create a larger output feature map. 

• Bilinear upsampling - uses a weighted average of the four nearest pixels in 
the input feature map to generate each pixel in the output feature map. 

• Transposed convolutional upsampling uses a learnable filter to map each 
pixel in the output feature map to a patch of pixels in the input feature map, 
and then applies a convolution to generate the output feature map. 

 

Upsampling layers are commonly used in architectures such as fully convolutional 
networks (FCNs) and U-Net architectures for tasks such as semantic segmentation, 
image super-resolution, and generative modeling. 
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📝 5.3.6 

What is the main purpose of an upsampling layer in a neural network? 

• To increase the spatial resolution of feature maps while preserving their 
spatial information 

• To decrease the computational complexity of the network 
• To reduce the number of channels in the feature maps 
• To normalize the input feature map before passing it to the next layer 

 

🕮 5.3.7 

Architectures 

CNNs have evolved over the years, with numerous architectures developed for 
various tasks. Here, we will explore some of the most well-known CNN architectures 
and their contributions to the field. 

1. LeNet - developed by Yann LeCun in the 1990s, LeNet is one of the earliest 
CNNs. It was specifically designed for handwritten digit recognition and 
played a pivotal role in the development of deep learning. 

2. AlexNet developed in 2012 by Alex Krizhevsky and others, achieved 
breakthrough performance on the ImageNet dataset, significantly improving 
the accuracy of image classification tasks. It popularized the use of CNNs 
for large-scale image classification. 

3. The Visual Geometry Group at Oxford introduced VGG in 2014. This 
architecture is known for its simplicity and depth, consisting of multiple 
convolutional layers followed by fully connected layers. 

4. GoogLeNet, introduced by Google researchers in 2014, is known for its 
Inception module, which allows the network to perform multiple convolution 
operations of different sizes in parallel, improving performance. 

5. ResNet, developed by Microsoft in 2015, introduced the concept of residual 
connections, enabling the training of very deep networks by allowing the 
gradient to flow more easily through the network. 

6. DenseNet, introduced in 2017 by Facebook AI Research, promotes dense 
connections between layers, which helps reuse features more efficiently and 
reduces the number of parameters. 

7. Developed by Google in 2017, MobileNet is a lightweight architecture 
designed for mobile and embedded devices, focusing on efficiency and 
minimal computational resource usage. 

 

These CNN architectures have paved the way for more advanced networks and have 
been applied in a wide range of tasks, from image classification to object detection. 
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LeNet-5 architecture visualization 

 

AlexNet architecture visulazation 

 

 

📝 5.3.8 

Which of the following are CNN architectures developed to improve performance on 
large-scale image classification tasks? 

• AlexNet 
• ResNet  
• DenseNet 
• LeNet 
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5.4 Practical applications 

🕮 5.4.1 

Practical applications 

CNNs have revolutionized many fields due to their ability to process and analyze 
image, video, and even non-visual data. Here are some key practical applications of 
CNNs: 

1. CNNs are widely used for image classification, where they assign labels to 
input images from a predefined set. This is applicable to tasks like object 
recognition, facial recognition, and scene classification. 

2. Object detection - CNNs are also used for locating and classifying objects 
within images or videos. This is important for applications like self-driving 
cars, security surveillance, and robotics. 

3. Semantic segmentation - in this task, CNNs assign a label to every pixel in an 
image, enabling more detailed object detection and analysis. It's used for 
tasks like medical image analysis and autonomous driving. 

4. Image generation - CNNs can generate new images based on a set of input 
parameters or styles, which is useful in creative applications like art and 
design. 

5. Style transfer - CNNs can take the style of one image and apply it to another, 
combining the content of one image with the style of another. This technique 
is popular in digital art creation. 

6. Medical imaging - CNNs are used in healthcare for diagnosing diseases from 
medical images, such as identifying tumors, analyzing X-rays, and MRI 
scans. 

7. CNNs can analyze video data for tasks like action recognition, tracking 
objects across frames, and generating captions for video content. 

8. Natural language processing - although typically used for image-related 
tasks, CNNs are also applied in NLP tasks like sentiment analysis, text 
classification, and language translation. 

9. Recommendation systems - CNNs help in creating systems that recommend 
products, movies, or services based on user preferences and behavior. 

10. Autonomous vehicles - in self-driving cars, CNNs are used to detect and 
classify objects on the road, such as pedestrians, other vehicles, and traffic 
signs. 

11. Agriculture - CNNs can analyze satellite imagery to monitor crops, predict 
yields, and detect issues like pests or diseases. 

12. Robotics - CNNs are used in robotics for object recognition, manipulation, 
and navigation, making robots smarter and more autonomous. 

13. Art and music - CNNs can generate new pieces of art or music based on 
given styles or classify existing art/music according to genre. 

14. Gaming - CNNs aid in video game development for tasks such as character 
recognition, animation, and interactive game environments. 
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15. Finance - CNNs are applied in finance for tasks like fraud detection, stock 
market prediction, and risk assessment. 

 

These diverse applications show how CNNs are transforming various industries by 
automating complex tasks and providing insights from large amounts of data. 

 

📝 5.4.2 

Which of the following is a common application of CNNs in the healthcare industry? 

• Disease diagnosis from medical images  
• Fraud detection 
• Stock market prediction 
• Object recognition in self-driving cars 

 

📝 5.4.3 

In which application are CNNs used to detect and classify objects on the road? 

• Autonomous Vehicles  
• Gaming 
• Agriculture 
• Natural Language Processing 

 

🕮 5.4.4 

Image augmentation 

Image augmentation is a technique used in deep learning to increase the size and 
diversity of the training set by applying transformations to the original images. This 
technique helps to reduce overfitting and improve the performance of the model. 

There are various image augmentation techniques used in deep learning, such as: 

• Rotation - rotates the image by a certain angle to create new training 
examples. 

• Flipping - flipps the image horizontally or vertically to create a mirrored 
version of the original image. 

• Translation - shifts the image horizontally or vertically to create a new 
training example. 
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• Scaling - rescales the image to create a smaller or larger version of the 
original image. 

• Shearing - sheares the image to create a slanted version of the original 
image. 

• Zooming - zooms into or out of the image to create a new training example. 

 

These techniques can be used individually or in combination to generate a large and 
diverse set of training data. Image augmentation is particularly useful when the size 
of the original dataset is small, as it allows the model to generalize better and avoid 
overfitting to the training data. 

A bad example of image augmentation in CNN would be applying random 
transformations that are not relevant to the problem being solved. For instance, if the 
task is to recognize handwritten digits, applying random rotations or flipping the 
images horizontally or vertically may not help improve the performance of the model, 
and may even introduce noise and confuse the model. Another bad example would 
be applying excessive transformations that distort the original image beyond 
recognition. For example, scaling an image to a very small size or shearing it to a very 
high degree may create a new training example, but the resulting image may be so 
distorted that it does not resemble the original image, making it difficult for the model 
to learn from it. 

In general, image augmentation techniques should be carefully chosen based on the 
problem being solved, and should aim to create new training examples that are 
relevant and diverse, without introducing noise or distorting the original images too 
much. 

 

📝 5.4.5 

Which of the following is an example of a transformation used in image 
augmentation? 

• Scaling 
• Random noise generation 
• Image compression 
• Image encoding 

 

📝 5.4.6 

What is a potential issue with applying excessive image transformations, like 
extreme shearing or scaling, in image augmentation? 
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• It could distort the image so much that it no longer resembles the original 
content, making it difficult for the model to learn. 

• It may generate irrelevant training data. 
• It reduces the number of training examples. 
• It improves model overfitting. 

 

📝 5.4.7 

Project: Character recognition (LeNET-5 example) 

This example downloads the MNIST handwritten digits and creates a simple CNN 
network based on LeNet-5 to predict the digit category (0-9). 

 

LeNet-5 is a classic convolutional neural network architecture designed for 
handwritten digit recognition, and was introduced by Yann LeCun, Leon Bottou, 
Yoshua Bengio, and Patrick Haffner in 1998. It was one of the earliest successful 
attempts to apply deep learning techniques to image recognition tasks. 

The LeNet-5 architecture consists of seven layers, including three convolutional 
layers and two fully connected layers. It takes as input a grayscale image of size 
32x32 pixels, and outputs a probability distribution over the ten possible digit 
classes. 

The first layer is a convolutional layer with six 5x5 filters, followed by a max-pooling 
layer with a 2x2 window. The second convolutional layer has 16 5x5 filters, again 
followed by a max-pooling layer with a 2x2 window. The third convolutional layer has 
120 5x5 filters, and is followed by two fully connected layers, with 84 and 10 neurons 
respectively. The final layer uses a softmax activation function to produce the 
probability distribution over the ten digit classes. 

LeNet-5 was a groundbreaking model in the field of deep learning, and its architecture 
has been used as a starting point for many subsequent models in image recognition 
and other fields. 
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Network visualization 

 

Dataset 

MNIST (Modified National Institute of Standards and Technology) is a widely-used 
dataset in the field of machine learning, specifically in the area of computer vision. It 
consists of 70,000 grayscale images of handwritten digits, with a resolution of 28x28 
pixels. The dataset is split into a training set of 60,000 images and a test set of 10,000 
images. MNIST is often used as a benchmark dataset for image classification tasks, 
particularly for testing and comparing different machine learning algorithms, 
including convolutional neural networks (CNNs). The task is to correctly classify the 
images into their corresponding digit class, from 0 to 9. MNIST has been used 
extensively for teaching purposes in machine learning and computer vision, as it is 
relatively small and easy to work with compared to many other datasets in the field. 
It has also been used as a baseline for evaluating the performance of more complex 
datasets and models. 

 
import warnings 

warnings.filterwarnings("ignore") 

import matplotlib.pyplot as plt 

import numpy as np 

import tensorflow as tf 

 
# Load data from dataset 

(x_train, y_train), (x_test, y_test) = 

tf.keras.datasets.mnist.load_data() 

# Reshape 

x_train = x_train.reshape(-1, 28, 28, 1) 

x_test = x_test.reshape(-1, 28, 28, 1) 

#Padding the images by 2 pixels 

x_train = np.pad(x_train, ((0,0),(2,2),(2,2),(0,0)), 

'constant') 

x_test = np.pad(x_test, ((0,0),(2,2),(2,2),(0,0)), 'constant') 

Depth of the image (number of channels) is 1 because these images are grayscale. 
We'll also set up a seed to have reproducible results 
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image_width = x_train[0].shape[0] 

image_height = x_train[0].shape[1] 

num_channels = 1 # grayscale = 1 channel 

 

seed = 98 

np.random.seed(seed) 

tf.random.set_seed(seed) 

Parameters used for model training 

 
batch_size = 100 

evaluation_size = 500 

epochs = 300 

eval_every = 5 

Normalize our images to change the values of all pixels to a common scale 

 
x_train = x_train / 255 

x_test = x_test/ 255 

Declare model layers 

 
input_data = tf.keras.Input(dtype=tf.float32, 

shape=(image_width,image_height, num_channels), name="INPUT") 

 

# First Conv-ReLU-MaxPool Layer 

conv1 = tf.keras.layers.Conv2D(filters=6, kernel_size=5, 

padding='VALID', activation="relu", name="C1")(input_data) 

max_pool1 = tf.keras.layers.MaxPool2D(pool_size=2, strides=2, 

padding='SAME', name="S1")(conv1) 

# Second Conv-ReLU-MaxPool Layer 

conv2 = tf.keras.layers.Conv2D(filters=16, kernel_size=5, 

padding='VALID', strides=1, activation="relu", 

name="C3")(max_pool1) 

max_pool2 = tf.keras.layers.MaxPool2D(pool_size=2, strides=2, 

padding='SAME', name="S4")(conv2) 

# Flatten Layer 

flatten = tf.keras.layers.Flatten(name="FLATTEN")(max_pool2) 

# First Fully Connected Layer 

fully_connected1 = tf.keras.layers.Dense(units=120, 

activation="relu", name="F5")(flatten) 

# Second Fully Connected Layer 
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fully_connected2 = tf.keras.layers.Dense(units=84, 

activation="relu", name="F6")(fully_connected1) 

# Final Fully Connected Layer 

final_model_output = tf.keras.layers.Dense(units=10, 

activation="softmax", name="OUTPUT")(fully_connected2) 

model = tf.keras.Model(inputs= input_data, 

outputs=final_model_output) 

Compile the model with the sparse categorical cross-entropy loss and the ADAM 
optimizer. 

 
model.compile(optimizer="adam", 

loss="sparse_categorical_crossentropy", metrics=["accuracy"] ) 

Show model summary 

 
model.summary() 

 
Program output: 
Model: "model" 

______________________________________________________________

___ 

 Layer (type)                Output Shape              Param #    

==============================================================

=== 

 INPUT (InputLayer)          [(None, 32, 32, 1)]       0          

                                                                  

 C1 (Conv2D)                 (None, 28, 28, 6)         156        

                                                                  

 S1 (MaxPooling2D)           (None, 14, 14, 6)         0          

                                                                  

 C3 (Conv2D)                 (None, 10, 10, 16)        2416       

                                                                  

 S4 (MaxPooling2D)           (None, 5, 5, 16)          0          

                                                                  

 FLATTEN (Flatten)           (None, 400)               0          

                                                                  

 F5 (Dense)                  (None, 120)               48120      

                                                                  

 

train_loss = [] 

train_acc = [] 

test_acc = [] 
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for i in range(epochs): 

  rand_index = np.random.choice(len(x_train), size=batch_size) 

  rand_x = x_train[rand_index] 

  rand_y = y_train[rand_index] 

  history_train = model.train_on_batch(rand_x, rand_y) 

 

  if (i+1) % eval_every == 0: 

    eval_index = np.random.choice(len(x_test), 

size=evaluation_size) 

    eval_x = x_test[eval_index] 

    eval_y = y_test[eval_index]     

    history_eval = model.evaluate(eval_x,eval_y) 

    # Record and print results 

    train_loss.append(history_train[0]) 

    train_acc.append(history_train[1]) 

    test_acc.append(history_eval[1]) 

    acc_and_loss = [(i+1), history_train[0], history_train[1], 

history_eval[1]] 

    acc_and_loss = [np.round(x,2) for x in acc_and_loss] 

    print('Epoch # {}. Train Loss: {:.2f}. Train Acc (Test 

Acc): {:.2f} ({:.2f})'.format(*acc_and_loss)) 

 
print(history_train[0]) 

 
Program output: 
0.13152286410331726 

 

Plot the loss and accuracy. 

 
# Matlotlib code to plot the loss and accuracy 

eval_indices = range(0, epochs, eval_every) 

# Plot loss over time 

plt.plot(eval_indices, train_loss, 'k-') 

plt.title('Loss per Epoch') 

plt.xlabel('Epoch') 

plt.ylabel('Loss') 

plt.show() 

 

# Plot train and test accuracy 

plt.plot(eval_indices, train_acc, 'k-', label='Train Set 

Accuracy') 

plt.plot(eval_indices, test_acc, 'r--', label='Test Set 

Accuracy') 
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plt.title('Train and Test Accuracy') 

plt.xlabel('Epoch') 

plt.ylabel('Accuracy') 

plt.legend(loc='lower right') 

plt.show() 

 
Program output: 
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Results for six examples 

 
# Plot some samples and their predictions 

actuals = y_test[30:36] 

preds = model.predict(x_test[30:36]) 

predictions = np.argmax(preds,axis=1) 

images = np.squeeze(x_test[30:36]) 

Nrows = 2 

Ncols = 3 

for i in range(6): 

  plt.subplot(Nrows, Ncols, i+1) 

  plt.imshow(np.reshape(images[i], [32,32]), cmap='Greys_r') 

  plt.title('Actual: ' + str(actuals[i]) + ' Pred: ' + 

str(predictions[i]), fontsize=10) 

  frame = plt.gca() 

  frame.axes.get_xaxis().set_visible(False) 

  frame.axes.get_yaxis().set_visible(False) 

 

plt.show() 

 
Program output: 
1/1 [==============================] - ETA: 0s 

1/1 [==============================] - 0s 166ms/step 
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📝 5.4.8 

Project: More complex CNN 

Create CNN to identify 10 different classes represent airplanes, cars, birds, cats, deer, 
dogs, frogs, horses, ships, and trucks. 

This example shows more complex CNN model with dropout Extending the depth of 
CNN networks is done in a standard fashion: we just repeat the convolution, max 
pooling, and ReLU in series until we are satisfied with the depth. Many of the more 
accurate image recognition networks operate in this fashion. 

Dataset 

CIFAR-10 is a popular image classification dataset used in machine learning and 
computer vision research. It consists of 60,000 32x32 color images in 10 classes, 
with 6,000 images per class. The classes are airplane, automobile, bird, cat, deer, 
dog, frog, horse, ship, and truck. 

The dataset is divided into 50,000 training images and 10,000 test images, and is 
often used as a benchmark for image classification models. The small size of the 
images and the diversity of the classes make it a challenging dataset for machine 
learning models to accurately classify. It has been widely used to evaluate the 
performance of deep learning models such as convolutional neural networks (CNNs). 

 
import warnings 

warnings.filterwarnings("ignore") 

import matplotlib.pyplot as plt 

import numpy as np 

import tensorflow as tf 

from tensorflow import keras 

Parameters. Using 20 epochs takes a lot of time in training. It can be lowered but at 
a cost of accuracy. 

 
# Set dataset and model parameters 

batch_size = 128 

buffer_size= 128 

epochs=4 #20 

 

#Set transformation parameters 

crop_height = 24 

crop_width = 24 
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cifar_classes = ['airplane', 'automobile', 'bird', 'cat', 

'deer', 'dog', 'frog', 'horse', 'ship', 'truck'] 

Load CIFAR dataset 

 
# Get data 

print('Getting/Transforming Data.') 

(x_train, y_train), (x_test, y_test) = 

tf.keras.datasets.cifar10.load_data() 

 
Program output: 
Getting/Transforming Data. 

 

print(x_train.shape) 

 
Program output: 
(50000, 32, 32, 3) 

 

Define a reading function that will load and distort the images slightly for training 

 
# Define CIFAR reader 

def read_cifar_files(image, label): 

  final_image = tf.image.resize_with_crop_or_pad(image, 

crop_width, crop_height) 

  final_image = image / 255 

   

  # Randomly flip the image horizontally, change the 

brightness and contrast 

  final_image = tf.image.random_flip_left_right(final_image) 

  final_image = 

tf.image.random_brightness(final_image,max_delta=0.1) 

  final_image = 

tf.image.random_contrast(final_image,lower=0.5, upper=0.8) 

 

  return final_image, label 

 
dataset_train = tf.data.Dataset.from_tensor_slices((x_train, 

y_train)) 

dataset_test = tf.data.Dataset.from_tensor_slices((x_test, 

y_test)) 

 
def show(image, label): 
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  plt.figure() 

  plt.imshow(image) 

  plt.title(cifar_classes[label.numpy()[0]]) 

  plt.axis('off') 

 

for image, label in dataset_train.take(2): 

  show(image, label) 

  image, label = read_cifar_files(image, label) 

  show(image, label) 

 
Program output: 
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dataset_train_processed = 

dataset_train.shuffle(buffer_size).batch(batch_size).map(read_

cifar_files) 

dataset_test_processed = 

dataset_test.batch(batch_size).map(read_cifar_files) 

Model definition 

 
model = keras.Sequential( 

    [# First Conv-ReLU-Conv-ReLU-MaxPool Layer 

     tf.keras.layers.Conv2D(input_shape=[32,32,3], 
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                            filters=32, 

                            kernel_size=3, 

                            padding='SAME', 

                            activation="relu", 

                            kernel_initializer='he_uniform', 

                            name="C1"), 

    tf.keras.layers.Conv2D(filters=32, 

                           kernel_size=3, 

                           padding='SAME', 

                           activation="relu", 

                           kernel_initializer='he_uniform', 

                           name="C2"), 

     tf.keras.layers.MaxPool2D((2,2), 

                               name="P1"), 

     tf.keras.layers.Dropout(0.2), 

    # Second Conv-ReLU-Conv-ReLU-MaxPool Layer 

     tf.keras.layers.Conv2D(filters=64, 

                            kernel_size=3, 

                            padding='SAME', 

                            activation="relu", 

                            kernel_initializer='he_uniform', 

                            name="C3"), 

    tf.keras.layers.Conv2D(filters=64, 

                           kernel_size=3, 

                           padding='SAME', 

                           activation="relu", 

                           kernel_initializer='he_uniform', 

                           name="C4"), 

     tf.keras.layers.MaxPool2D((2,2), 

                               name="P2"), 

     tf.keras.layers.Dropout(0.2), 

    # Third Conv-ReLU-Conv-ReLU-MaxPool Layer 

     tf.keras.layers.Conv2D(filters=128, 

                            kernel_size=3, 

                            padding='SAME', 

                            activation="relu", 

                            kernel_initializer='he_uniform', 

                            name="C5"), 

    tf.keras.layers.Conv2D(filters=128, 

                           kernel_size=3, 

                           padding='SAME', 

                           activation="relu", 

                           kernel_initializer='he_uniform', 

                           name="C6"), 
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     tf.keras.layers.MaxPool2D((2,2), 

                               name="P3"), 

     tf.keras.layers.Dropout(0.2), 

     # Flatten Layer 

     tf.keras.layers.Flatten(name="FLATTEN"), 

     # Fully Connected Layer 

     tf.keras.layers.Dense(units=128, 

                           activation="relu", 

                           name="D1"), 

    tf.keras.layers.Dropout(0.2), 

    # Final Fully Connected Layer 

    tf.keras.layers.Dense(units=10, 

                          activation="softmax", 

                          name="OUTPUT") 

    ]) 

Model compilation 

 
from keras.optimizers import SGD 

model.compile( 

   # optimizer="adam",  

    loss="sparse_categorical_crossentropy", 

    metrics=["accuracy"] 

) 

model.summary() 

 
Program output: 
Model: "sequential" 

______________________________________________________________

___ 

 Layer (type)                Output Shape              Param #    

==============================================================

=== 

 C1 (Conv2D)                 (None, 32, 32, 32)        896        

                                                                  

 C2 (Conv2D)                 (None, 32, 32, 32)        9248       

                                                                  

 P1 (MaxPooling2D)           (None, 16, 16, 32)        0          

                                                                  

 dropout (Dropout)           (None, 16, 16, 32)        0          

                                                                  

 C3 (Conv2D)                 (None, 16, 16, 64)        18496      

                                                                  

 C4 (Conv2D)                 (None, 16, 16, 64)        36928      
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 P2 (MaxPooling2D)           (None, 8, 8, 64)          0          

                                                                  

 dropout_1 (Dropout)         (None, 8, 8, 64)          0          

                                                                  

 C5 (Conv2D)                 (None, 8, 8, 128)         73856      

                                                                  

 C6 (Conv2D)                 (None, 8, 8, 128)         147584     

                                                                  

 P3 (MaxPooling2D)           (None, 4, 4, 128)         0          

 

Start training 

 
history = model.fit(dataset_train_processed,  

                    validation_data=dataset_test_processed,  

                    epochs=epochs) 

 
Program output: 
 

385/391 [============================>.] - ETA: 1s - loss: 

1.1362 - accuracy: 0.5991 

386/391 [============================>.] - ETA: 1s - loss: 

1.1365 - accuracy: 0.5991 

387/391 [============================>.] - ETA: 1s - loss: 

1.1362 - accuracy: 0.5991 

388/391 [============================>.] - ETA: 0s - loss: 

1.1362 - accuracy: 0.5989 

389/391 [============================>.] - ETA: 0s - loss: 

1.1360 - accuracy: 0.5991 

390/391 [============================>.] - ETA: 0s - loss: 

1.1353 - accuracy: 0.5993 

391/391 [==============================] - ETA: 0s - loss: 

1.1353 - accuracy: 0.5993 

391/391 [==============================] - 112s 285ms/step - 

loss: 1.1353 - accuracy: 0.5993 - val_loss: 1.0027 - 

val_accuracy: 0.6467 

 

# Print loss and accuracy 

# Matlotlib code to plot the loss and accuracy 

epochs_indices = range(0, epochs, 1) 

 

# Plot loss over time 
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plt.plot(epochs_indices, history.history["loss"], 'k-') 

plt.title('Softmax Loss per Epoch') 

plt.xlabel('Epoch') 

plt.ylabel('Softmax Loss') 

plt.show() 

 

# Plot accuracy over time 

plt.plot(epochs_indices, history.history["val_accuracy"], 'k-

') 

plt.title('Test Accuracy per Epoch') 

plt.xlabel('Epoch') 

plt.ylabel('Accuracy') 

plt.show() 

 
Program output: 

 
 

5.5 Pre-trained networks 

🕮 5.5.1 

Retraining existing CNN models 

Retraining existing CNN models is a technique widely used in transfer learning, where 
a pre-trained convolutional neural network (CNN) is adapted to solve a new task. 
Instead of building a CNN from scratch, this approach leverages the knowledge and 
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features learned by a pre-trained model on a large dataset. Retraining is especially 
valuable when the new dataset is small or when computational resources are limited. 

The retraining process typically involves modifying the pre-trained CNN by removing 
its output layers, which were designed for its original task, and replacing them with 
new layers suited to the new task. For example, the original output layer designed for 
classifying 1,000 ImageNet categories can be replaced with a layer for classifying 
just a few categories in a new dataset. The early layers of the pre-trained model are 
often frozen, meaning their weights remain unchanged during training. This ensures 
that the fundamental features already learned (e.g., edges and textures) are 
preserved. The new layers are then trained using the new dataset, while optional fine-
tuning of the frozen layers can enhance the model's performance. 

Retraining saves time and computational resources compared to training a CNN 
from scratch, as the pre-trained model has already captured generic features useful 
across a variety of tasks. It also helps achieve better performance when the new 
dataset is small, as the model can transfer its understanding of similar data. This 
approach is commonly used in fields like medical imaging, where datasets are 
limited, and in applications like facial recognition or object detection, where high 
accuracy is essential. 

 

📝 5.5.2 

What is the main advantage of retraining a pre-trained CNN model instead of training 
one from scratch? 

• It reduces computational resources and time.  
• It avoids the need for fine-tuning. 
• It always results in higher accuracy. 
• It requires a larger dataset. 

 

📝 5.5.3 

In retraining a CNN, what happens to the early layers of the pre-trained model? 

• They are frozen, meaning their weights are not updated. 
• They are replaced by new layers. 
• They are completely removed from the network. 
• They are updated with random weights. 
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📝 5.5.4 

Project: Retraining example 

We will use transfer learning from a pre-trained network for CIFAR-10. The idea is to 
reuse the weights and structure of the prior model from the convolutional layers and 
retrain the fully connected layers at the top of the network. This method is called 
fine-tuning. 

Inception model 

Inception-v3 is a convolutional neural network architecture designed for image 
recognition and classification, and was introduced by Google researchers in 2015. It 
is an improvement over the earlier Inception-v1 and Inception-v2 models, and 
features a number of innovations to improve both accuracy and efficiency. The 
Inception-v3 architecture consists of many layers, including multiple convolutional 
and pooling layers, as well as a number of "inception" modules. These modules use 
a combination of 1x1, 3x3, and 5x5 convolutions to extract features from the input 
image at different scales and resolutions. In addition to these standard layers, 
Inception-v3 also includes a number of specialized layers, such as batch 
normalization layers, which help to improve the training process, and a global 
average pooling layer, which helps to reduce the number of parameters in the model. 
Inception-v3 has achieved state-of-the-art results on a number of image recognition 
benchmarks, and its architecture has been used as a starting point for many 
subsequent models in the field of computer vision. 

Dataset 

We know: CIFAR-10 is a popular image classification dataset used in machine 
learning and computer vision research. It consists of 60,000 32x32 color images in 
10 classes, with 6,000 images per class. The classes are airplane, automobile, bird, 
cat, deer, dog, frog, horse, ship, and truck. 

The dataset is divided into 50,000 training images and 10,000 test images, and is 
often used as a benchmark for image classification models. The small size of the 
images and the diversity of the classes make it a challenging dataset for machine 
learning models to accurately classify. It has been widely used to evaluate the 
performance of deep learning models such as convolutional neural networks (CNNs). 

 
import warnings 

warnings.filterwarnings("ignore") 

import tensorflow as tf 

from tensorflow import keras 

from tensorflow.keras.applications.inception_v3 import 

InceptionV3 
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from tensorflow.keras.applications.inception_v3 import 

preprocess_input, decode_predictions 

1. Prepare data 

 
# Set dataset parameters 

batch_size = 32 

buffer_size= 1000 

Download the dataset and declare the 10 categories to reference when saving the 
images later on 

 
(x_train, y_train), (x_test, y_test) = 

tf.keras.datasets.cifar10.load_data() 

 

objects = ['airplane', 'automobile', 'bird', 'cat', 'deer', 

           'dog', 'frog', 'horse', 'ship', 'truck'] 

2. Initialize the data pipeline 

Inception v3 is pretrained on the ImageNet dataset, so our CIFAR-10 images must 
match the format of these images. The width and height expected should be no 
smaller than 75, so we will resize our images to 75x75 spatial size. Then, the images 
should be normalized, so we will apply the inception preprocessing task (the 
preprocess_input method) on each image. 

 
# Create training and testing datasets from tensor slices of 

input features and labels 

dataset_train = tf.data.Dataset.from_tensor_slices((x_train, 

y_train)) 

dataset_test = tf.data.Dataset.from_tensor_slices((x_test, 

y_test)) 

 

def preprocess_cifar10(img, label): 

    # Cast image to float32 for compatibility with 

preprocessing functions 

    img = tf.cast(img, tf.float32) 

    # Resize image to 75x75 pixels for compatibility with 

InceptionV3 input size 

    img = tf.image.resize(img, (75, 75)) 

    # Apply InceptionV3-specific preprocessing to the image 



Convolutional Neural Networks - CNNs | FITPED AI 

131 

    return 

tf.keras.applications.inception_v3.preprocess_input(img), 

label 

 

# Shuffle and batch the training dataset, then apply the 

preprocessing function 

dataset_train_processed = 

dataset_train.shuffle(buffer_size).batch(batch_size).map(prepr

ocess_cifar10) 

# Batch the testing dataset and apply the preprocessing 

function 

dataset_test_processed = 

dataset_test.batch(batch_size).map(preprocess_cifar10) 

We want to load the weights without the classification head. 

 
# Load the InceptionV3 model with the following 

configurations: 

# - include_top=False: Excludes the fully connected top 

layers, making it suitable for feature extraction 

# - weights="imagenet": Loads pretrained weights from the 

ImageNet dataset 

# - input_shape=(75,75,3): Specifies the input size as 75x75 

pixels with 3 color channels (RGB) 

inception_model = InceptionV3( 

    include_top=False, 

    weights="imagenet", 

    input_shape=(75, 75, 3) 

) 

We build our own model on top of the InceptionV3 model by adding a classifier with 
three fully connected layers. 

 
# Extract the output of the InceptionV3 model as the base 

feature map 

x = inception_model.output 

 

# Apply Global Average Pooling to reduce each feature map to a 

single value 

x = keras.layers.GlobalAveragePooling2D()(x) 

 

# Add a dense layer with 1024 units and ReLU activation for 

further feature learning 
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x = keras.layers.Dense(1024, activation="relu")(x) 

 

# Add another dense layer with 128 units and ReLU activation 

for additional feature abstraction 

x = keras.layers.Dense(128, activation="relu")(x) 

 

# Add the final dense layer with 10 units (corresponding to 10 

classes) and softmax activation for classification 

output = keras.layers.Dense(10, activation="softmax")(x) 

 

# Define the full model, using the InceptionV3 model's input 

and the newly added output layers 

model = keras.Model(inputs=inception_model.input, 

outputs=output) 

We'll set the base layers in Inception as not trainable. Only the classifier weights will 
be updated during the back-propagation phase (not the Inception weights): 

 
 Freeze all layers in the InceptionV3 base model to retain 

pre-trained weights during training 

for inception_layer in inception_model.layers: 

    inception_layer.trainable = False 

 

# Compile the model with the Adam optimizer, sparse 

categorical cross-entropy loss for integer labels,  

# and accuracy as the evaluation metric 

model.compile(optimizer="adam", 

loss="sparse_categorical_crossentropy", metrics=["accuracy"]) 

Show model architecture 

 
model.summary() 

 
# Start training 

model.fit(x=dataset_train_processed ,  

          validation_data=dataset_test_processed) 

 
Program output: 
 

1556/1563 [============================>.] - ETA: 0s - loss: 

1.1405 - accuracy: 0.6028 

1557/1563 [============================>.] - ETA: 0s - loss: 

1.1405 - accuracy: 0.6029 
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1558/1563 [============================>.] - ETA: 0s - loss: 

1.1406 - accuracy: 0.6028 

1559/1563 [============================>.] - ETA: 0s - loss: 

1.1405 - accuracy: 0.6029 

1560/1563 [============================>.] - ETA: 0s - loss: 

1.1403 - accuracy: 0.6030 

1561/1563 [============================>.] - ETA: 0s - loss: 

1.1402 - accuracy: 0.6030 

1562/1563 [============================>.] - ETA: 0s - loss: 

1.1401 - accuracy: 0.6030 

1563/1563 [==============================] - 152s 94ms/step - 

loss: 1.1400 - accuracy: 0.6030 - val_loss: 1.0638 - 

val_accuracy: 0.6242 

 

Accuracy at the end is over 60%. 

Remember that we are fine-tuning the model and retraining the fully connected layers 
at the top to fit our 10-category data. 

5.6 Object detection 

🕮 5.6.1 

Binary classification 

Binary classification is the simplest approach for image classification tasks. It 
involves categorizing images into just two distinct classes, such as "cat" or "not cat." 
This simplicity makes it a common starting point for understanding classification 
models. In convolutional neural networks (CNNs), the process begins with a 
convolutional operation to extract features from images. Pooling layers, like max 
pooling and average pooling, are then used to reduce the spatial dimensions while 
retaining important features. The pooling output is further processed by a flattening 
layer, converting it into a single column of data. 

To enhance model performance, image augmentation is applied to create diverse 
training datasets, and batch normalization is used to stabilize and accelerate 
learning. These components distinguish CNNs from other artificial neural networks 
(ANNs). The binary classifier concludes with a dense output layer having a single unit 
activated by a sigmoid function, producing probabilities for the two classes. While 
effective for simple tasks, binary classifiers can be extended to classify more than 
two objects, transitioning into the realm of object classification. 
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📝 5.6.2 

What activation function is typically used in the output layer of a binary image 
classifier? 

• Sigmoid 
• ReLU 
• Softmax 
• Tanh 

 

🕮 5.6.3 

Object classification in image classification 

Object classification extends beyond binary tasks by categorizing images into 
multiple classes or identifying specific objects within images. The simplest form is 
image classification, where the goal is to assign a single label to the entire image, 
identifying its most probable category. Traditional CNNs are commonly used for this 
purpose. 

In classification with localization, the task becomes more complex, as the model 
must identify the category of an object and also locate it within the image using 
bounding boxes. Simplified models like You Only Look Once (YOLO) or R-CNN 
(Region-based Convolutional Neural Network) are often employed for this. 

Detection takes this a step further, aiming to detect, localize, and classify multiple 
objects within the same image. The output includes multiple bounding boxes and 
their associated class labels. Advanced models like YOLO and R-CNN excel in this 
domain, offering solutions to challenges like overlapping objects and varying scales. 
Thus, object classification tasks vary in complexity, with detection requiring both 
high accuracy and precise localization. 

 

📝 5.6.4 

Which models are commonly used for object detection tasks? 

• YOLO 
• R-CNN 
• VGG 
• LeNet 
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🕮 5.6.5 

Region-based convolutional neural network 

Region-based convolutional neural network (R-CNN) is a popular object detection 
algorithm that uses a combination of region proposals and convolutional neural 
networks to localize and classify objects in an image. Its process involves three key 
steps: 

1. Region proposal generation - the algorithm uses a selective search to 
generate regions of interest in an image. 

2. Feature extraction - each region is passed through a CNN to extract 
features. 

3. Classification and localization - a classifier categorizes objects, while 
bounding box regression refines object location. 

 

R-CNN was introduced in 2014 by Ross Girshick, et al. as an improvement over 
previous object detection algorithms that used hand-crafted features and sliding 
windows to classify objects. R-CNN was one of the first object detection algorithms 
to use deep learning and has since been improved upon with faster variants, such as 
Fast R-CNN and Faster R-CNN, which use a single network for region proposal and 
classification, leading to faster and more accurate object detection. There are 
improved version Fast R-CNN and Faster R-CNN. 

 

📝 5.6.6 

What is the first step in the R-CNN process? 

• Region proposal generation 
• Bounding box regression 
• Feature extraction 
• Classification 

 

🕮 5.6.7 

YOLO 

YOLO (You Only Look Once) is a deep learning object detection model that can detect 
objects in real-time images and videos with high accuracy. It was developed by 
Joseph Redmon, and it stands out from other object detection models because of its 
speed and efficiency. 
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YOLO uses a single neural network that can directly predict the bounding boxes and 
class probabilities for multiple objects in an image in one shot. This means that the 
network only needs to look at the image once to detect objects, as opposed to the 
traditional two-stage methods where the image is first segmented into regions of 
interest, and then those regions are classified. YOLO's single-stage approach makes 
it significantly faster than other object detection models while maintaining high 
accuracy. 

YOLO has been updated with several versions, including YOLOv2, YOLOv3, and 
YOLOv4, each with its own improvements and optimizations to increase speed and 
accuracy. YOLO is widely used in various applications, including self-driving cars, 
surveillance systems, and object recognition in social media. 

 

📝 5.6.8 

What are the advantages of YOLO compared to other object detection algorithms? 

• Real-time detection 
• Single-pass processing 
• Requires hand-crafted features 
• Uses sliding windows for object detection 

 

🕮 5.6.9 

Single shot detector 

Single shot detector (SSD) is an object detection algorithm that belongs to the family 
of one-stage detectors, meaning that it performs object detection in a single forward 
pass of the neural network. SSD is based on a fully convolutional neural network that 
predicts the class scores and the bounding box coordinates of multiple objects in an 
image. 

The key idea behind SSD is to use a set of default bounding boxes with different 
aspect ratios and scales at each spatial location in the feature map of the last 
convolutional layer. These default bounding boxes act as templates to detect objects 
of different sizes and shapes. The network predicts the offsets and scales of these 
default bounding boxes to obtain the final predicted bounding boxes. 

Compared to other object detection algorithms, SSD has the advantage of being 
faster and more accurate, especially for detecting small objects. It has been used in 
various applications, such as autonomous driving, robotics, and surveillance 
systems. 
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In autonomous drones, SSD is used to detect small objects like birds or obstacles 
during flight. Its ability to handle multiple object sizes and its speed make it ideal for 
time-sensitive applications. 

 

📝 5.6.10 

What is a key feature of SSD that makes it efficient? 

• Employs default bounding boxes 
• Uses selective search for region proposals 
• Divides the image into a grid for detection 
• Combines hand-crafted features with deep learning 

 

5.7 Accuracy measurement 

🕮 5.7.1 

Object detection performance evaluation 

Object detection performance evaluations typically involve measuring the accuracy 
of a model in detecting and localizing objects within an image. Some common 
metrics used for evaluation include: 

• Precision - the proportion of true positive detections (correctly identified 
objects) over the total number of detections made by the model. 

• Recall - the proportion of true positive detections over the total number of 
objects present in the image. 

• Intersection over union (IoU)- a measure of the overlap between the ground 
truth bounding box and the predicted bounding box. IoU is typically used to 
determine whether a detection is a true positive or a false positive. 

• Average precision - a metric that combines both precision and recall, by 
computing the area under the precision-recall curve. 

• Mean average precision - the average AP across all object categories in the 
dataset. 

• F1 score - the harmonic mean of precision and recall, which provides a 
balanced measure of the model's accuracy. 

 

These metrics are used to evaluate the performance of different object detection 
models and to compare them against each other on various datasets. 
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📝 5.7.2 

Which metrics are commonly used to evaluate object detection models? 

• Precision 
• Mean average precision 
• Learning rate 
• Epoch count 

 

📝 5.7.3 

What does Intersection over Union measure? 

• The overlap between the ground truth and predicted bounding boxes 
• The balance between precision and recall 
• The total number of detections made by a model 
• The area under the precision-recall curve 

 

📝 5.7.4 

Which metrics combine precision and recall for object detection? 

• F1 score 
• Average precision 
• IoU 
• Precision 

 

 



 

 

 

 

Recurrent Neural Networks 
- RNNs 

Chapter 6 
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6.1 RNN overview 

🕮 6.1.1 

Recurrent neural networks (RNNs) are a type of neural network that are commonly 
used for processing sequential data. Unlike traditional neural networks that process 
fixed-length inputs, RNNs can handle inputs of variable lengths by maintaining a 
"memory" of the previous inputs that they have processed. RNNs use this memory to 
make predictions based on the current input and the context provided by the previous 
inputs. 

RNNs consist of a series of repeating units that take an input and produce an output 
while maintaining an internal state that captures the "memory" of previous inputs. 
This internal state is passed on to the next unit in the sequence, allowing the network 
to maintain a context across multiple inputs. The output of the final unit in the 
sequence is typically fed into a fully connected layer to produce the final output of 
the network. 

RNNs are particularly well-suited for tasks such as language modeling, speech 
recognition, and natural language processing, where the input data is inherently 
sequential and the context of previous inputs is important for making accurate 
predictions. 

 

 

 

📝 6.1.2 

What is the key feature that enables RNNs to handle sequential data? 

• Maintaining a "memory" of previous inputs 
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• The use of convolutional layers 
• Processing fixed-length inputs only 
• The absence of an internal state 

 

📝 6.1.3 

For which tasks are RNNs particularly well-suited? 

• Language modeling 
• Object detection 
• Speech recognition 
• Image segmentation 

 

🕮 6.1.4 

Sequential data and deep learning models 

Sequential data refers to data sets in which each data point depends on previous 
data. Consider it a sentence, which consists of a series of words that are related to 
each other. A verb is linked to a subject and an adverb is linked to a verb. Another 
example is a stock price, where the price on a particular day is related to the price of 
the previous days. Traditional neural networks are not suitable for processing this 
type of data. There is a specific type of architecture that can ingest data sequences. 
A RNN model is a specific type of deep learning architecture in which the output of 
the model is returned to the input. This type of model has its own challenges (known 
as disappearing and exploding gradients).In many ways, a RNN is a representation 
of how the brain can work. RNN uses memory to help them learn. But how can they 
do this if the information flows only in one direction? To understand this, you first 
need to examine sequential data. This is a type of data that requires work memory 
to process data effectively. Until now, you have only investigated non-sequence 
models, such as perceptron or CNN. 

Typical examples of sequential data: 

1. Time series data includes data that is collected over time, such as stock 
prices, weather data, or sensor data. 

2. Natural language processing data includes text data, such as words or 
sentences, that have a specific sequence. 

3. Music data includes audio data that has a temporal order, such as music 
notes or beats. 

4. Video data includes data that is captured from a sequence of images, such 
as videos or motion capture data. 
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RNNs mimic certain aspects of how the human brain processes sequences, 
leveraging memory to make predictions or generate outputs that depend on historical 
inputs. 

 

📝 6.1.5 

Why are traditional neural networks unsuitable for processing sequential data? 

• They lack the ability to capture dependencies over time. 
• They do not use convolutional layers. 
• They cannot process non-image data. 
• They require labeled data for training. 

 

📝 6.1.6 

Which of the following are typical examples of sequential data? 

• Stock prices 
• Music notes 
• Static images 
• Object boundaries 

 

🕮 6.1.7 

Difference between RNN and CNN 

Recurrent Neural Networks (RNNs) and Convolutional Neural Networks (CNNs) are 
both types of deep learning models, but they are designed for different types of input 
data and tasks. 

RNNs are typically used for sequential data, where the order of the data matters, such 
as time series or natural language processing. They use feedback connections 
between neurons to maintain a memory of previous inputs, allowing them to model 
temporal dependencies in the data. 

CNNs, on the other hand, are typically used for data that has a grid-like structure, 
such as images, audio spectrograms, or even text in the form of 2D word 
embeddings. They use convolutional layers to extract local features from the data, 
and pooling layers to reduce the spatial resolution while retaining the most important 
features. 
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In terms of architecture, RNNs typically have a single recurrent layer or multiple 
stacked recurrent layers, while CNNs can have multiple convolutional layers, followed 
by pooling layers and then fully connected layers for classification. RNNs are trained 
using backpropagation through time (BPTT), while CNNs are trained using 
backpropagation through the convolutional layers. 

In summary, the main difference between RNNs and CNNs is that RNNs are designed 
for sequential data, while CNNs are designed for grid-like data such as images. 

 

📝 6.1.8 

What is the main difference between RNNs and CNNs? 

• RNNs are designed for sequential data, while CNNs are designed for grid-like 
data such as images. 

• RNNs use pooling layers, while CNNs use recurrent layers. 
• RNNs are used for grid-like data, while CNNs are used for sequential data. 
• CNNs are designed for temporal data, while RNNs are used for spatial data. 

 

📝 6.1.9 

RNNs can be typically used for 

• Sequential data 
• Image data 
• Grid structured data 

 

🕮 6.1.10 

Typical applications of RNNs 

RNNs are powerful models primarily used for tasks that involve sequential data, 
where the order of data points and the context within the sequence matter. Some 
common applications of RNNs are: 

1. Natural language processing - RNNs excel in NLP tasks such as language 
modeling, machine translation, sentiment analysis, and speech recognition. 
They are capable of capturing the temporal structure of language, which 
helps in understanding the relationship between words over time. 

2. Time series analysis - RNNs are frequently used for analyzing time-
dependent data, such as stock prices, weather data, or sensor data. By 
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analyzing patterns in time series data, RNNs can make predictions about 
future events or detect anomalies that might indicate a problem. 

3. Image and video captioning - In this application, RNNs are used to generate 
captions for images or descriptions of video sequences. The RNN processes 
visual information sequentially, capturing features and generating human-
readable descriptions of the content. 

4. Music generation - RNNs are also used to generate new music by learning 
patterns and structures from existing pieces. The model can then predict 
and generate a sequence of notes, creating compositions that follow 
musical structures. 

5. Handwriting recognition - RNNs are employed in handwriting recognition to 
process the sequence of strokes and convert them into text. The temporal 
aspect of the strokes is captured by the RNN, making it effective for 
recognizing handwritten words. 

6. Speech recognition - RNNs are integral to speech recognition systems, 
which convert spoken words into text. The sequential nature of speech data 
makes RNNs well-suited for this task, as they can recognize patterns in 
sound waves over time. 

 

Overall, RNNs are most effective for tasks where the relationships between 
consecutive data points are important, such as time series forecasting, language 
processing, and sequential pattern recognition. 

 

📝 6.1.11 

Which of the following tasks can RNNs be used for? 

• Natural language processing 
• Time series analysis 
• Image classification 
• Object detection 

 

6.2 Layers and architectures 

🕮 6.2.1 

RNN building blocks 

The first formulation of a recurrent-like neural network was created by John Hopfield 
in 1982. 



Recurrent Neural Networks - RNNs | FITPED AI 

145 

The information is transformed into a vector that can be processed by a machine. 
The RNN then processes the vector sequence one at a time. When processing each 
vector, it passes through the previous hidden state. The hidden state stores 
information from the previous step, acting as a memory type. This is done by 
combining the input and the previous hidden state with a tanh function that 
compresses values between -1 and 1. 

 

 

📝 6.2.2 

Which of the following statements are true about the building blocks of an RNN? 

• The RNN processes a sequence of vectors one at a time. 
• The hidden state stores information from previous steps. 
• RNNs use a ReLU activation function to compress values. 
• The hidden state only stores the current input vector. 

 

🕮 6.2.3 

In feed-forward neural networks, data propagates in one direction only, that is, from 
input to output. This is good approach for single input you need to process (such as 
image data seen in CNNs previously) but it does not work well for a sequence of data. 
RNNs are particularly suitable to handle cases where you have an input sequence 
instead of a single input. These are important for problems in which data sequences 
are transmitted to give a single output. 

Simply put, RNNs are networks that offer a mechanism to persist previously 
processed data over time and use it to make future predictions. It provides 
information about the previous step to the next one. This mechanism is called 
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recurrent because information is being passed from one time step to the next within 
the network. 

RNN maintains the inner state H t, combine it with the next input data Xt+1, make a 
prediction, Yt+1, and store the new inner state Ht+1.The key idea is that state update is 
a combination of the previous state time step and the current input received by the 
network. 

Given an example: 

1. At the start RNN is initialized altogether with the hidden state of that 
network. You can indicate a sentence in which you are interested in 
predicting the next word. The RNN calculation consists simply of them 
moving through the words in this sentence. 

2. At each time step, you include both the current word you're considering, and 
the previous hidden state of your RNN in the network. This can then generate 
a prediction for the next word in the sequence and use this information to 
update its hidden state. 

3. Finally, after you have passed through all the words of the sentence, your 
prediction for this missing word is simply the output of the RNN at this last 
step of time.  

 

 

As can be seen in the previous image the non-linear activation function is applied to 
get new state ht and the output yt. 
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📝 6.2.4 

What is the key mechanism that allows RNNs to handle sequential data? 

• Information is passed from one time step to the next within the network. 
• Information is passed from input to output only. 
• Each time step processes data independently. 
• Data is stored in a fixed layer for all inputs. 

 

🕮 6.2.5 

The vanishing gradient problem 

The vanishing gradient problem in RNNs is a common issue that arises during the 
training process. When backpropagating the error through multiple layers of the 
network, the gradients, which are used to update the weights, tend to become very 
small. This is especially problematic for long sequences of data, as the gradients 
shrink exponentially with each time step. The underlying cause of this issue is the 
repeated multiplication of the weight matrix during backpropagation. If the weight 
matrix has eigenvalues less than 1, the gradients diminish rapidly as they are 
propagated backward through time, making it challenging for the network to learn 
from long-term dependencies. 

The vanishing gradient problem can severely hinder the performance of an RNN, 
particularly in tasks where context from distant time steps is essential for making 
accurate predictions. In natural language processing, for instance, understanding the 
meaning of a sentence often requires knowledge of earlier words or phrases. 
Similarly, in speech recognition, the context of earlier sounds is critical for correctly 
identifying later parts of the speech. If the gradients vanish during training, the model 
may fail to capture such long-term dependencies, leading to poor performance on 
tasks that require temporal understanding. 

To mitigate the vanishing gradient problem, several modifications to the standard 
RNN architecture have been proposed. One of the most successful solutions is the 
Long Short-Term Memory (LSTM) network. LSTMs use a specialized gating 
mechanism to regulate the flow of information through the network, allowing them 
to retain important information for longer periods and avoid the problem of vanishing 
gradients. Another approach is the Gated Recurrent Unit (GRU), which is similar to 
LSTMs but with a simpler structure. Both LSTMs and GRUs are widely used in 
practice and have demonstrated significant improvements in handling long-term 
dependencies in sequential data. 

Despite the advancements with LSTMs and GRUs, the vanishing gradient problem 
remains a fundamental challenge in training RNNs. Understanding and addressing 
this issue is crucial for effectively applying RNNs to a wide range of sequential tasks, 
such as language modeling, machine translation, and time series forecasting. 
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Researchers continue to explore alternative architectures and training techniques 
that can further alleviate the vanishing gradient problem, improving the efficiency 
and accuracy of RNN-based models. 

 

📝 6.2.6 

What is the primary cause of the vanishing gradient problem in RNNs? 

• Gradients shrink exponentially as they are backpropagated through time. 
• The weight matrix has eigenvalues greater than 1. 
• The network uses a fixed learning rate. 
• The network lacks sufficient layers. 

 

🕮 6.2.7 

Long short-term memory 

Long short-term memory (LSTM) networks are a type of RNN designed to address 
the vanishing gradient problem, a common issue in traditional RNNs. In standard 
RNNs, the gradients used for weight updates can become very small as they are 
backpropagated through many time steps, making it difficult for the model to learn 
long-term dependencies. LSTM networks overcome this challenge by introducing an 
internal memory state that can store information for long periods, allowing them to 
retain critical data over long sequences. This ability to maintain long-term memory 
makes LSTMs particularly effective for tasks like natural language processing, 
speech recognition, and time series analysis. 

One of the main differences between LSTM cells and traditional RNN cells is the 
presence of memory states and gates that control the flow of information. At each 
time step, an LSTM cell takes in three inputs: the current input, the previous hidden 
state, and the previous memory state. It then processes these inputs using three key 
gates: the forget gate, the input gate, and the output gate. The forget gate determines 
how much of the previous memory state should be discarded, ensuring that the 
model does not retain unnecessary or outdated information. The input gate controls 
how much of the current input should be used to update the memory state, allowing 
the model to incorporate new information. Finally, the output gate controls how much 
of the memory state should be passed to the next time step, enabling the model to 
make predictions based on the current context. 

These gates and the memory state make LSTM cells highly effective at learning and 
retaining long-term dependencies in sequential data. For example, in natural 
language processing, LSTM networks can remember the meaning of words from 
earlier in a sentence, which is crucial for understanding the sentence as a whole. 
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Similarly, in speech recognition, LSTMs can retain information about previous 
sounds, which is important for recognizing the current word or phoneme accurately. 

LSTMs have become a standard tool in deep learning for handling sequential data 
and have significantly improved the performance of models in various fields. They 
are widely used in applications like machine translation, sentiment analysis, and even 
video analysis, where understanding temporal dependencies is essential for making 
accurate predictions. Their ability to maintain and manipulate memory over long 
sequences makes LSTMs an essential component in modern deep learning 
architectures. 

 

 

📝 6.2.8 

What is the primary function of the gates in an LSTM cell? 

• They control the flow of information into and out of the memory state. 
• They determine how much of the previous hidden state to keep. 
• They define the sequence length for training. 
• They prevent overfitting in the model. 
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🕮 6.2.9 

Steps in LSTM 

The processing steps in an LSTM cell are crucial for its ability to manage long-term 
dependencies in sequential data. These steps control how information flows through 
the cell, allowing it to remember important details over time and forget irrelevant 
ones. Here's a breakdown of the key steps in the LSTM cell: 

1. Forget - in this step, the LSTM cell decides which information from the 
previous memory state should be discarded. This is done using the forget 
gate. The forget gate looks at the previous hidden state and the current input 
to produce a value between 0 and 1, indicating how much of the previous 
memory should be retained. A value of 0 means "forget everything," while a 
value of 1 means "keep everything." 

2. Store - the LSTM cell then decides what new information should be stored in 
the memory. This is done using the input gate. The input gate takes the 
current input and the previous hidden state to decide which part of the new 
information should be added to the memory state. This step helps the cell 
learn and remember new information over time, contributing to the model's 
ability to handle long-term dependencies. 

3. Update - after storing new information, the memory state is updated. The 
previous memory state is combined with the new information that was 
stored in the previous step. The forget gate's output determines how much 
of the previous memory is kept, while the input gate decides how much of 
the new input is added. The result is a new memory state that includes both 
retained and updated information. 

4. Generate - finally, the LSTM cell generates an output based on the current 
memory state. This is done using the output gate. The output gate controls 
how much of the memory state should be passed on to the next time step, 
which could be the next LSTM cell or the final output of the model. The 
output is typically passed through an activation function (like the tanh 
function) to produce a value between -1 and 1. 

 

These processing steps - forget, store, update, and generate - work together to allow 
the LSTM to learn and maintain important information over time, making it highly 
effective for tasks like language modeling, time series prediction, and speech 
recognition. 
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📝 6.2.10 

What is the primary function of the "forget" step in an LSTM cell? 

• To decide which information from the previous memory state should be 
discarded. 

• To store new information in the memory. 
• To generate the output for the next time step. 
• To combine the previous hidden state with the current input. 

 

🕮 6.2.11 

Architectures 

RNNs have several known architectures that are commonly used for various tasks. 
Here are some of the most well-known architectures: 

1. Simple RNN is the simplest form of RNN and consists of a single layer of 
recurrent neurons. It is used for simple sequential tasks, such as language 
modeling and stock price prediction. 

2. LSTM (Long Short-Term Memory) was developed to address the vanishing 
gradient problem in simple RNNs. It has an internal memory cell and three 
gates (input, forget, and output) that control the flow of information through 
the network. LSTMs are commonly used for tasks such as speech 
recognition and text classification. 

3. GRU (Gated Recurrent Unit) is similar to the LSTM but has fewer parameters. 
It has two gates (reset and update) that control the flow of information 
through the network. GRUs are commonly used for tasks such as language 
modeling and machine translation. 

4. Bidirectional RNN processes the input sequence in both forward and 
backward directions and combines the outputs to produce a final output. It is 
commonly used for tasks such as speech recognition and sentiment 
analysis. 

5. Encoder-Decoder consists of two RNNs: an encoder network that processes 
the input sequence and a decoder network that generates the output 
sequence. It is commonly used for tasks such as machine translation and 
image captioning. 

6. Attention-based RNN uses an attention mechanism to selectively focus on 
parts of the input sequence that are relevant to the current output. It is 
commonly used for tasks such as machine translation and text 
summarization. 

 

Overall, the choice of architecture depends on the specific task and the properties of 
the input and output sequences. 
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📝 6.2.12 

Which of the following RNN architectures is designed to address the vanishing 
gradient problem and includes an internal memory cell with three gates (input, forget, 
and output)? 

• LSTM (Long Short-Term Memory) 
• Simple RNN 
• GRU (Gated Recurrent Unit) 
• Bidirectional RNN 

 

6.3 Practical examples with RNNs 

📝 6.3.1 

Project: ANN on sequential data - Nvidia stock price prediction 

Apply an artificial neural network (ANN) to predict the stock price of Nvidia using 
historical stock data. You will preprocess the data, design a neural network, and 
evaluate the model’s performance. 

This is example of regular ANN used for sequential data 

Dataset: 

• original: https://raw.githubusercontent.com/PacktWorkshops/The-
TensorFlow-Workshop/master/Chapter09/Exercise9.01/NVDA.csv 

• local: https://priscilla.fitped.eu/data/deep_learning/NVDA.csv 

 
import warnings 

warnings.filterwarnings("ignore") 

import numpy as np 

import matplotlib.pyplot as plt 

import pandas as pd 

from sklearn.preprocessing import StandardScaler, MinMaxScaler 

Load data from csv file 

 
import io 

import requests 

url="https://priscilla.fitped.eu/data/deep_learning/NVDA.csv" 

data = pd.read_csv(url) 

https://raw.githubusercontent.com/PacktWorkshops/The-TensorFlow-Workshop/master/Chapter09/Exercise9.01/NVDA.csv
https://raw.githubusercontent.com/PacktWorkshops/The-TensorFlow-Workshop/master/Chapter09/Exercise9.01/NVDA.csv
https://priscilla.fitped.eu/data/deep_learning/NVDA.csv
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Show data head and tail 

 
print(data.head()) 

 
Program output: 
         Date       Open       High    Low      Close  Adj 

Close   Volume 

0  2015-07-22  19.650000  19.650000  19.17  19.410000  

18.851749  8911800 

1  2015-07-23  19.450001  19.940001  19.41  19.650000  

19.084845  4247900 

2  2015-07-24  19.790001  19.809999  19.34  19.420000  

18.861464  4721100 

3  2015-07-27  19.250000  19.530001  19.09  19.309999  

18.754622  4810500 

4  2015-07-28  19.360001  19.860001  19.16  19.730000  

19.162542  4957700 

 

print(data.tail()) 

 
Program output: 
            Date        Open        High         Low       

Close   Adj Close  \ 

1254  2020-07-15  416.570007  417.320007  402.230011  

409.089996  409.089996    

1255  2020-07-16  400.600006  408.269989  395.820007  

405.390015  405.390015    

1256  2020-07-17  409.019989  409.940002  403.510010  

408.059998  408.059998    

1257  2020-07-20  410.970001  421.250000  406.269989  

420.429993  420.429993    

1258  2020-07-21  420.519989  422.399994  411.470001  

413.140015  413.140015    

 

        Volume   

1254  10099600   

1255   8624100   

1256   6657100   

1257   7121300   

1258   6925900   

 

# Split Training data 

data_training = data[data['Date']<'2019-01-01'].copy() 
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# Split Testing data 

data_test = data[data['Date']>='2019-01-01'].copy() 

 
training_data = data_training.drop\ 

                (['Date', 'Adj Close'], axis = 1) 

print(training_data.head()) 

 
Program output: 
        Open       High    Low      Close   Volume 

0  19.650000  19.650000  19.17  19.410000  8911800 

1  19.450001  19.940001  19.41  19.650000  4247900 

2  19.790001  19.809999  19.34  19.420000  4721100 

3  19.250000  19.530001  19.09  19.309999  4810500 

4  19.360001  19.860001  19.16  19.730000  4957700 

 

Normalisation process 

 
scaler = MinMaxScaler() 

training_data = scaler.fit_transform(training_data) 

 
X_train = [] 

y_train = [] 

 
print(training_data.shape[0]) 

 
Program output: 
868 

 

for i in range(60, training_data.shape[0]):  # Loop through 

the data starting from index 60 

    X_train.append(training_data[i-60:i])  # Append a sequence 

of 60 previous data points to X_train 

    y_train.append(training_data[i, 0])    # Append the 

current data point (first feature) to y_train 

 
X_train, y_train = np.array(X_train), np.array(y_train)  # 

Convert X_train and y_train lists into NumPy arrays 

X_train.shape, y_train.shape  # Return the shapes of the 

training data arrays 

print(X_train.shape)  # Print the shape of X_train (features) 

print(y_train.shape)  # Print the shape of y_train (target 

labels) 
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Program output: 
(808, 60, 5) 

(808,) 

 

X_old_shape = X_train.shape  # Store the original shape of 

X_train 

X_train = X_train.reshape(X_old_shape[0], 

X_old_shape[1]*X_old_shape[2])  # Flatten the second and third 

dimensions into one 

print(X_train.shape)  # Print the new shape of X_train after 

reshaping 

 
Program output: 
(808, 300) 

 

Following code imports the essential components to build a neural network model: 

1. Sequential is used to create a linear stack of layers for the model. 
2. Input layer, which can define the shape of the input data (although it is 

typically inferred in the Sequential model). 
3. Dense is a fully connected layer, which connects every neuron to every other 

neuron in the layer. 
4. Dropout - a regularization technique that helps prevent overfitting by 

randomly setting a fraction of input units to 0 at each update during training 
time. 

 
from tensorflow.keras import Sequential 

from tensorflow.keras.layers import Input, Dense, Dropout 

 
# Model definition 

regressor_ann = Sequential()  # Create a sequential model 

 

# Input layer with shape (300,) 

regressor_ann.add(Input(shape = (300,)))  

 

# First dense layer with 512 units and ReLU activation, 

followed by dropout with rate 0.2 

regressor_ann.add(Dense(units = 512, activation = 'relu'))  

regressor_ann.add(Dropout(0.2)) 

 

# Second dense layer with 128 units and ReLU activation, 

followed by dropout with rate 0.3 



Recurrent Neural Networks - RNNs | FITPED AI 

156 

regressor_ann.add(Dense(units = 128, activation = 'relu'))  

regressor_ann.add(Dropout(0.3)) 

 

# Third dense layer with 64 units and ReLU activation, 

followed by dropout with rate 0.4 

regressor_ann.add(Dense(units = 64, activation = 'relu'))  

regressor_ann.add(Dropout(0.4)) 

 

# Fourth dense layer with 16 units and ReLU activation, 

followed by dropout with rate 0.5 

regressor_ann.add(Dense(units = 16, activation = 'relu'))  

regressor_ann.add(Dropout(0.5)) 

 

# Output layer with 1 unit (regression output) 

regressor_ann.add(Dense(units = 1))  

 
regressor_ann.summary() 

 
Program output: 
Model: "sequential" 

______________________________________________________________

___ 

 Layer (type)                Output Shape              Param #    

==============================================================

=== 

 dense (Dense)               (None, 512)               154112     

                                                                  

 dropout (Dropout)           (None, 512)               0          

                                                                  

 dense_1 (Dense)             (None, 128)               65664      

                                                                  

 dropout_1 (Dropout)         (None, 128)               0          

                                                                  

 dense_2 (Dense)             (None, 64)                8256       

                                                                  

 dropout_2 (Dropout)         (None, 64)                0          

                                                                  

 

Following line of code compiles the regressor_ann model, specifying the following: 

• Optimizer: 'adam' is used for training. It's a popular optimization algorithm 
because it adapts the learning rate during training, often leading to faster 
convergence. 
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• Loss function 'mean_squared_error' - is commonly used in regression tasks. 
It calculates the average of the squared differences between the predicted 
and actual values. The model aims to minimize this loss during training, 
improving its predictions. 

 
regressor_ann.compile(optimizer='adam', \ 

                      loss = 'mean_squared_error') 

Start training 

 
regressor_ann.fit(X_train, y_train, epochs=10, batch_size=32) 

 
Program output: 
 

21/26 [=======================>......] - ETA: 0s - loss: 

0.0309 

26/26 [==============================] - 0s 6ms/step - loss: 

0.0306 

Epoch 10/10 

 

 1/26 [>.............................] - ETA: 0s - loss: 

0.0214 

11/26 [===========>..................] - ETA: 0s - loss: 

0.0251 

21/26 [=======================>......] - ETA: 0s - loss: 

0.0262 

26/26 [==============================] - 0s 5ms/step - loss: 

0.0270 

 

## Test and predict stock price 

## Prepare test dataset 

print(data_test.head()) 

 
Program output: 
           Date        Open        High         Low       

Close   Adj Close  \ 

868  2019-01-02  130.639999  138.479996  130.050003  

136.220001  135.547104    

869  2019-01-03  133.789993  135.160004  127.690002  

127.989998  127.357750    

870  2019-01-04  130.940002  137.729996  129.699997  

136.190002  135.517258    
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871  2019-01-07  138.500000  144.889999  136.429993  

143.399994  142.691620    

872  2019-01-08  146.690002  146.779999  136.899994  

139.830002  139.139282    

 

       Volume   

868  12718800   

869  17638800   

870  14640500   

871  17729000   

872  19650400   

 

print(data_training.tail(60)) 

 
Program output: 
           Date        Open        High         Low       

Close   Adj Close  \ 

808  2018-10-04  285.269989  286.250000  276.179993  

279.290009  277.632599    

809  2018-10-05  278.290009  280.799988  267.540009  

269.859985  268.258514    

810  2018-10-08  266.500000  271.160004  260.079987  

265.769989  264.192780    

811  2018-10-09  264.940002  268.760010  262.799988  

265.540009  263.964203    

812  2018-10-10  261.260010  263.109985  245.600006  

245.690002  244.231964    

813  2018-10-11  242.169998  247.559998  234.259995  

235.130005  233.734634    

814  2018-10-12  245.509995  249.539993  239.649994  

246.539993  245.076920    

815  2018-10-15  246.000000  246.000000  235.339996  

235.380005  233.983154    

816  2018-10-16  239.929993  246.279999  237.940002  

245.830002  244.371155    

817  2018-10-17  248.339996  249.880005  241.080002  

243.059998  241.617569    

818  2018-10-18  245.860001  247.410004  237.089996  

239.529999  238.108536    

819  2018-10-19  241.759995  242.550003  227.699997  

229.169998  227.810013    

820  2018-10-22  231.279999  235.320007  227.070007  

231.220001  229.847855    
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821  2018-10-23  220.429993  224.190002  216.710007  

221.059998  219.748138    

822  2018-10-24  219.509995  221.389999  198.850006  

199.410004  198.226608    

823  2018-10-25  195.470001  209.750000  193.679993  

207.839996  206.606567    

824  2018-10-26  198.309998  204.839996  193.119995  

198.289993  197.113251    

825  2018-10-29  203.990005  204.130005  176.009995  

185.619995  184.518448    

826  2018-10-30  186.550003  203.399994  185.619995  

203.000000  201.795303    

827  2018-10-31  209.649994  212.589996  204.009995  

210.830002  209.578857    

828  2018-11-01  212.300003  218.490005  207.190002  

218.110001  216.815628    

829  2018-11-02  217.729996  222.000000  210.210007  

214.919998  213.644562    

830  2018-11-05  214.389999  215.330002  205.279999  

211.770004  210.513275    

831  2018-11-06  211.449997  214.850006  209.559998  

211.059998  209.807495    

832  2018-11-07  213.750000  217.410004  211.179993  

213.789993  212.521271    

833  2018-11-08  211.399994  211.429993  203.830002  

205.990005  204.767578    

834  2018-11-09  202.399994  209.320007  201.039993  

205.669998  204.449463    

835  2018-11-12  201.979996  202.869995  188.660004  

189.539993  188.415192    

836  2018-11-13  193.490005  204.210007  193.240005  

199.309998  198.127213    

837  2018-11-14  206.300003  206.880005  192.830002  

197.190002  196.019791    

838  2018-11-15  196.949997  205.300003  195.500000  

202.389999  201.188919    

839  2018-11-16  163.320007  170.660004  161.610001  

164.429993  163.454178    

840  2018-11-19  161.789993  161.820007  144.630005  

144.699997  143.841278    

841  2018-11-20  134.059998  154.259995  133.309998  

149.080002  148.195297    

842  2018-11-21  154.619995  155.300003  143.610001  

144.710007  143.851242    
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843  2018-11-23  143.309998  149.589996  142.789993  

145.000000  144.139511    

844  2018-11-26  149.889999  153.470001  146.559998  

153.050003  152.141739    

845  2018-11-27  152.000000  157.009995  150.550003  

153.729996  152.817703    

846  2018-11-28  158.479996  160.279999  153.130005  

160.070007  159.120102    

847  2018-11-29  160.000000  161.500000  156.139999  

157.360001  156.582672    

848  2018-11-30  157.750000  163.860001  155.720001  

163.429993  162.622681    

849  2018-12-03  172.600006  174.679993  167.339996  

170.039993  169.200043    

850  2018-12-04  168.240005  168.440002  156.500000  

157.110001  156.333908    

851  2018-12-06  151.440002  158.490005  150.809998  

158.289993  157.508072    

852  2018-12-07  158.460007  158.869995  145.619995  

147.610001  146.880844    

853  2018-12-10  145.800003  152.860001  145.649994  

151.860001  151.109848    

854  2018-12-11  155.559998  155.889999  145.000000  

148.190002  147.457977    

855  2018-12-12  148.419998  152.779999  144.820007  

148.899994  148.164474    

856  2018-12-13  150.789993  153.380005  147.440002  

148.889999  148.154495    

857  2018-12-14  147.210007  150.589996  145.500000  

146.449997  145.726563    

858  2018-12-17  145.240005  148.149994  141.240005  

143.580002  142.870728    

859  2018-12-18  145.350006  150.330002  144.250000  

146.940002  146.214142    

860  2018-12-19  145.580002  147.740005  136.429993  

138.509995  137.825806    

861  2018-12-20  138.169998  141.800003  132.690002  

135.100006  134.432632    

862  2018-12-21  136.169998  137.500000  128.460007  

129.570007  128.929977    

863  2018-12-24  126.489998  129.979996  124.500000  

127.080002  126.452255    

864  2018-12-26  128.940002  133.139999  124.459999  

133.100006  132.442535    
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865  2018-12-27  130.990005  132.380005  125.180000  

131.169998  130.522049    

866  2018-12-28  132.000000  137.389999  130.309998  

133.649994  132.989807    

867  2018-12-31  135.399994  136.710007  132.259995  

133.500000  132.840530    

 

       Volume   

808   9780500   

809  10665900   

810  10215300   

811   6837500   

812  17123500   

813  18135900   

814  15205900   

815  11244000   

816  10217800   

817   8241700   

818  13100500   

819  15340200   

820   9221100   

821  15660900   

822  22107200   

823  23793000   

824  16619600   

825  18950400   

826  20179800   

827  18644300   

828  14163200   

829  11324000   

830   9483300   

831   7475300   

832  12095300   

833  12783800   

834  10331000   

835  15427900   

836  16117800   

837  13164500   

838  21017700   

839  49088000   

840  42445500   

841  42300800   

842  25637400   

843  10299200   
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844  20370800   

845  18451500   

846  20113100   

847  13729300   

848  18239100   

849  22270100   

850  20302800   

851  17307700   

852  17041900   

853  15736800   

854  16797800   

855  16353400   

856  11784600   

857  11795500   

858  16571700   

859  14109300   

860  18634100   

861  18739700   

862  21593500   

863  11596000   

864  17377500   

865  15926100   

866  15718200   

867  11628500   

 

past_60_days = data_training.tail(60) 

 
# Get the last 60 days of data from training 

past_60_days = data_training.tail(60) 

 

# Concatenate past 60 days with the test data 

df = pd.concat([past_60_days, data_test], ignore_index=True) 

 

# Drop 'Date' and 'Adj Close' columns if they exist 

df = df.drop(['Date', 'Adj Close'], axis=1, errors='ignore') 

 

# Scale the features using the already fitted scaler 

inputs = scaler.transform(df) 

 
# Initialize X_test and y_test 

X_test = [] 

y_test = [] 

 

# Create the sequences for X_test and corresponding y_test 
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for i in range(60, inputs.shape[0]): 

    X_test.append(inputs[i-60:i])  # 60 previous days as 

features 

    y_test.append(inputs[i, 0])    # Target is the first 

feature (e.g., 'Open' or the first column) 

 

# Convert X_test and y_test to numpy arrays 

X_test, y_test = np.array(X_test), np.array(y_test) 

 

# Check the original shape of X_test before reshaping 

print("Original shape of X_test:", X_test.shape) 

 

# Ensure that X_test has 3 dimensions (samples, time_steps, 

features) 

if len(X_test.shape) == 3: 

    # Reshape X_test from (samples, time_steps, features) to 

(samples, time_steps * features) 

    X_old_shape = X_test.shape 

    X_test = X_test.reshape(X_old_shape[0], X_old_shape[1] * 

X_old_shape[2]) 

 

    # Print the new shape of X_test and y_test 

    print("Reshaped shape of X_test:", X_test.shape) 

else: 

    print("X_test is not in the expected 3D format.") 

     

print("Shape of y_test:", y_test.shape) 

 
Program output: 
Original shape of X_test: (391, 60, 5) 

Reshaped shape of X_test: (391, 300) 

Shape of y_test: (391,) 

 

• regressor_ann.predict(X_test) makes predictions using the trained model 
(regressor_ann) on the test set (X_test). 

 
y_pred = regressor_ann.predict(X_test) 

 
Program output: 
 1/13 [=>............................] - ETA: 1s 

13/13 [==============================] - 0s 2ms/step 

 

print(scaler.scale_) 
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Program output: 
[3.70274364e-03 3.65992009e-03 3.75248621e-03 3.70301815e-03 

 1.09875621e-08] 

 

• Scale with the maximum value: 

 
scale = 1/3.70274364e-03 

print(scale) 

y_pred = y_pred*scale 

y_test = y_test*scale 

 
Program output: 
270.0700067909643 

 

Show the result of the predicted stock price. This result is not as good as using the 
RNN network in the next example. 

 
plt.figure(figsize=(14,5)) 

plt.plot(y_test, color = 'black', label = "Real NVDA Stock 

Price") 

plt.plot(y_pred, color = 'gray', label = 'Predicted NVDA Stock 

Price') 

plt.title('NVDA Stock Price Prediction') 

plt.xlabel('time') 

plt.ylabel('NVDA Stock Price') 

plt.legend() 

plt.show() 

 
Program output: 
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📝 6.3.2 

Project: RNN with LSTM layer - Nvidia stock price prediction 

Apply an artificial neural network (RNN with LSTM) to predict the stock price of Nvidia 
using historical stock data. You will preprocess the data, design a neural network, 
and evaluate the model’s performance. 

This example demonstrates using of RNN with LSTM layer for prediction of Nvidia 
Stock value. 

Dataset: 

• original: https://raw.githubusercontent.com/PacktWorkshops/The-
TensorFlow-Workshop/master/Chapter09/Exercise9.01/NVDA.csv 

• local: https://priscilla.fitped.eu/data/deep_learning/NVDA.csv 

 
import warnings 

warnings.filterwarnings("ignore") 

import numpy as np 

import matplotlib.pyplot as plt 

import pandas as pd 

from sklearn.preprocessing import StandardScaler, MinMaxScaler 

Read data and show from the source 

 
import io 

import requests 

url="https://priscilla.fitped.eu/data/deep_learning/NVDA.csv" 

data = pd.read_csv(url) 

print(data.head()) 

 
Program output: 
         Date       Open       High    Low      Close  Adj 

Close   Volume 

0  2015-07-22  19.650000  19.650000  19.17  19.410000  

18.851749  8911800 

1  2015-07-23  19.450001  19.940001  19.41  19.650000  

19.084845  4247900 

2  2015-07-24  19.790001  19.809999  19.34  19.420000  

18.861464  4721100 

3  2015-07-27  19.250000  19.530001  19.09  19.309999  

18.754622  4810500 

https://raw.githubusercontent.com/PacktWorkshops/The-TensorFlow-Workshop/master/Chapter09/Exercise9.01/NVDA.csv
https://raw.githubusercontent.com/PacktWorkshops/The-TensorFlow-Workshop/master/Chapter09/Exercise9.01/NVDA.csv
https://priscilla.fitped.eu/data/deep_learning/NVDA.csv
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4  2015-07-28  19.360001  19.860001  19.16  19.730000  

19.162542  4957700 

 

print(data.tail()) 

 
Program output: 
            Date        Open        High         Low       

Close   Adj Close  \ 

1254  2020-07-15  416.570007  417.320007  402.230011  

409.089996  409.089996    

1255  2020-07-16  400.600006  408.269989  395.820007  

405.390015  405.390015    

1256  2020-07-17  409.019989  409.940002  403.510010  

408.059998  408.059998    

1257  2020-07-20  410.970001  421.250000  406.269989  

420.429993  420.429993    

1258  2020-07-21  420.519989  422.399994  411.470001  

413.140015  413.140015    

 

        Volume   

1254  10099600   

1255   8624100   

1256   6657100   

1257   7121300   

1258   6925900   

 

# Split Training data 

data_training = data[data['Date']<'2019-01-01'].copy() 

print(data_training) 

 
Program output: 
           Date        Open        High         Low       

Close   Adj Close  \ 

0    2015-07-22   19.650000   19.650000   19.170000   

19.410000   18.851749    

1    2015-07-23   19.450001   19.940001   19.410000   

19.650000   19.084845    

2    2015-07-24   19.790001   19.809999   19.340000   

19.420000   18.861464    

3    2015-07-27   19.250000   19.530001   19.090000   

19.309999   18.754622    

4    2015-07-28   19.360001   19.860001   19.160000   

19.730000   19.162542    
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..          ...         ...         ...         ...         

...         ...    

863  2018-12-24  126.489998  129.979996  124.500000  

127.080002  126.452255    

864  2018-12-26  128.940002  133.139999  124.459999  

133.100006  132.442535    

865  2018-12-27  130.990005  132.380005  125.180000  

131.169998  130.522049    

866  2018-12-28  132.000000  137.389999  130.309998  

133.649994  132.989807    

867  2018-12-31  135.399994  136.710007  132.259995  

133.500000  132.840530    

 

       Volume   

0     8911800   

1     4247900   

2     4721100   

3     4810500   

4     4957700   

..        ...   

863  11596000   

864  17377500   

865  15926100   

866  15718200   

867  11628500   

 

[868 rows x 7 columns] 

 

# Split Testing data 

data_test = data[data['Date']>='2019-01-01'].copy() 

print(data_test) 

 
Program output: 
            Date        Open        High         Low       

Close   Adj Close  \ 

868   2019-01-02  130.639999  138.479996  130.050003  

136.220001  135.547104    

869   2019-01-03  133.789993  135.160004  127.690002  

127.989998  127.357750    

870   2019-01-04  130.940002  137.729996  129.699997  

136.190002  135.517258    

871   2019-01-07  138.500000  144.889999  136.429993  

143.399994  142.691620    
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872   2019-01-08  146.690002  146.779999  136.899994  

139.830002  139.139282    

...          ...         ...         ...         ...         

...         ...    

1254  2020-07-15  416.570007  417.320007  402.230011  

409.089996  409.089996    

1255  2020-07-16  400.600006  408.269989  395.820007  

405.390015  405.390015    

1256  2020-07-17  409.019989  409.940002  403.510010  

408.059998  408.059998    

1257  2020-07-20  410.970001  421.250000  406.269989  

420.429993  420.429993    

1258  2020-07-21  420.519989  422.399994  411.470001  

413.140015  413.140015    

 

        Volume   

868   12718800   

869   17638800   

870   14640500   

871   17729000   

872   19650400   

...        ...   

1254  10099600   

1255   8624100   

1256   6657100   

1257   7121300   

1258   6925900   

 

[391 rows x 7 columns] 

 

training_data = data_training.drop(['Date', 'Adj Close'], axis 

= 1) 

print(training_data.head()) 

 
Program output: 
        Open       High    Low      Close   Volume 

0  19.650000  19.650000  19.17  19.410000  8911800 

1  19.450001  19.940001  19.41  19.650000  4247900 

2  19.790001  19.809999  19.34  19.420000  4721100 

3  19.250000  19.530001  19.09  19.309999  4810500 

4  19.360001  19.860001  19.16  19.730000  4957700 

 

scaler = MinMaxScaler() 
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training_data = scaler.fit_transform(training_data) 

print(training_data) 

 
Program output: 
[[1.48109745e-03 4.39186751e-04 3.00198896e-04 3.70305518e-04 

  8.35120643e-02] 

 [7.40552430e-04 1.50056724e-03 1.20079559e-03 1.25902987e-03 

  3.22671736e-02] 

 [1.99948527e-03 1.02477031e-03 9.38121551e-04 4.07335700e-04 

  3.74664879e-02] 

 ... 

 [4.13744593e-01 4.13021997e-01 3.98101261e-01 4.14219607e-01 

  1.60582121e-01] 

 [4.17484345e-01 4.31358175e-01 4.17351508e-01 4.23403077e-01 

  1.58297807e-01] 

 [4.30073651e-01 4.28869458e-01 4.24668845e-01 4.22847646e-01 

  1.13361974e-01]] 

 

X_train = [] 

y_train = [] 

print(training_data.shape[0]) 

 
Program output: 
868 

 

for i in range(60, training_data.shape[0]): 

  X_train.append(training_data[i-60:i]) 

  y_train.append(training_data[i, 0]) 

 
X_train, y_train = np.array(X_train), np.array(y_train) 

print(X_train.shape) 

print(y_train.shape) 

 
Program output: 
(808, 60, 5) 

(808,) 

 

from tensorflow.keras import Sequential 

from tensorflow.keras.layers import Dense, LSTM, Dropout 
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Definition of a model 

 
# Define the model as a Sequential model 

regressor = Sequential() 

 

# Add the first LSTM layer with 50 units, relu activation, and 

return sequences 

regressor.add(LSTM(units=50, activation='relu', 

return_sequences=True, input_shape=(X_train.shape[1], 5))) 

# Add Dropout layer with 20% rate to prevent overfitting 

regressor.add(Dropout(0.2)) 

 

# Add the second LSTM layer with 60 units, relu activation, 

and return sequences 

regressor.add(LSTM(units=60, activation='relu', 

return_sequences=True)) 

# Add Dropout layer with 30% rate 

regressor.add(Dropout(0.3)) 

 

# Add the third LSTM layer with 80 units, relu activation, and 

return sequences 

regressor.add(LSTM(units=80, activation='relu', 

return_sequences=True)) 

# Add Dropout layer with 40% rate 

regressor.add(Dropout(0.4)) 

 

# Add the fourth LSTM layer with 120 units, relu activation 

regressor.add(LSTM(units=120, activation='relu')) 

# Add Dropout layer with 50% rate 

regressor.add(Dropout(0.5)) 

 

# Add the output Dense layer with 1 unit (for regression task) 

regressor.add(Dense(units=1)) 

Print model layers 

 
regressor.summary() 

 
Program output: 
 lstm (LSTM)                 (None, 60, 50)            11200      

                                                                  

 dropout (Dropout)           (None, 60, 50)            0          
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 lstm_1 (LSTM)               (None, 60, 60)            26640      

                                                                  

 dropout_1 (Dropout)         (None, 60, 60)            0          

                                                                  

 lstm_2 (LSTM)               (None, 60, 80)            45120      

                                                                  

 

regressor.compile(optimizer='adam', loss = 

'mean_squared_error') 

Start training 

 
regressor.fit(X_train, y_train, epochs=10, batch_size=32) 

 
Program output: 
 

24/26 [==========================>...] - ETA: 0s - loss: 

0.0092 

25/26 [===========================>..] - ETA: 0s - loss: 

0.0096 

26/26 [==============================] - ETA: 0s - loss: 

0.0096 

26/26 [==============================] - 3s 115ms/step - loss: 

0.0096 

Epoch 10/10 

 

 1/26 [>.............................] - ETA: 2s - loss: 

0.0051 

 2/26 [=>............................] - ETA: 2s - loss: 

0.0109 

 3/26 [==>...........................] - ETA: 2s - loss: 

0.0127 

 4/26 [===>..........................] - ETA: 2s - loss: 

0.0114 

 5/26 [====>.........................] - ETA: 2s - loss: 

0.0101 

 6/26 [=====>........................] - ETA: 2s - loss: 

0.0091 

 7/26 [=======>......................] - ETA: 2s - loss: 

0.0093 

 8/26 [========>.....................] - ETA: 2s - loss: 

0.0096 
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 9/26 [=========>....................] - ETA: 1s - loss: 

0.0100 

10/26 [==========>...................] - ETA: 1s - loss: 

0.0100 

11/26 [===========>..................] - ETA: 1s - loss: 

0.0101 

12/26 [============>.................] - ETA: 1s - loss: 

0.0099 

13/26 [==============>...............] - ETA: 1s - loss: 

0.0100 

14/26 [===============>..............] - ETA: 1s - loss: 

0.0104 

15/26 [================>.............] - ETA: 1s - loss: 

0.0100 

16/26 [=================>............] - ETA: 1s - loss: 

0.0097 

17/26 [==================>...........] - ETA: 1s - loss: 

0.0094 

18/26 [===================>..........] - ETA: 0s - loss: 

0.0092 

19/26 [====================>.........] - ETA: 0s - loss: 

0.0095 

20/26 [======================>.......] - ETA: 0s - loss: 

0.0097 

21/26 [=======================>......] - ETA: 0s - loss: 

0.0096 

22/26 [========================>.....] - ETA: 0s - loss: 

0.0094 

23/26 [=========================>....] - ETA: 0s - loss: 

0.0096 

24/26 [==========================>...] - ETA: 0s - loss: 

0.0097 

25/26 [===========================>..] - ETA: 0s - loss: 

0.0098 

26/26 [==============================] - ETA: 0s - loss: 

0.0098 

26/26 [==============================] - 3s 115ms/step - loss: 

0.0098 

 

# Get the last 60 days of data from training 

past_60_days = data_training.tail(60) 

 

# Concatenate past 60 days with the test data 

df = pd.concat([past_60_days, data_test], ignore_index=True) 



Recurrent Neural Networks - RNNs | FITPED AI 

173 

 

# Drop 'Date' and 'Adj Close' columns if they exist 

df = df.drop(['Date', 'Adj Close'], axis=1, errors='ignore') 

 

# Scale the features using the already fitted scaler 

inputs = scaler.transform(df) 

print(inputs) 

 
Program output: 
[[0.98500382 0.97617388 0.96472665 0.9627107  0.09305696] 

 [0.95915875 0.95622728 0.93230523 0.92779115 0.10278535] 

 [0.91550336 0.9209457  0.9043116  0.91264582 0.09783435] 

 ... 

 [1.44321835 1.42886941 1.44253078 1.4395483  0.05873841] 

 [1.45043874 1.4702631  1.45288757 1.48535462 0.06383883] 

 [1.4857999  1.47447198 1.47240054 1.4583597  0.06169186]] 

 

X_test = [] 

y_test = [] 

 

for i in range(60, inputs.shape[0]): 

  X_test.append(inputs[i-60:i]) 

  y_test.append(inputs[i, 0]) 

   

X_test, y_test = np.array(X_test), np.array(y_test) 

print(X_test.shape, y_test.shape) 

 
Program output: 
(391, 60, 5) (391,) 

 

y_pred = regressor.predict(X_test) 

 
Program output: 
 1/13 [=>............................] - ETA: 10s 

 2/13 [===>..........................] - ETA: 0s  

 3/13 [=====>........................] - ETA: 0s 

 4/13 [========>.....................] - ETA: 0s 

 5/13 [==========>...................] - ETA: 0s 

 7/13 [===============>..............] - ETA: 0s 

 8/13 [=================>............] - ETA: 0s 

 9/13 [===================>..........] - ETA: 0s 

10/13 [======================>.......] - ETA: 0s 

11/13 [========================>.....] - ETA: 0s 

12/13 [==========================>...] - ETA: 0s 
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13/13 [==============================] - 1s 51ms/step 

 

print(scaler.scale_) 

 
Program output: 
[3.70274364e-03 3.65992009e-03 3.75248621e-03 3.70301815e-03 

 1.09875621e-08] 

 

Get the scaling factor 

 
scale = 1/3.70274364e-03 

print(scale) 

 
Program output: 
270.0700067909643 

 

# scale the data 

y_pred = y_pred*scale 

y_test = y_test*scale 

 

print(y_pred[:10]) 

 
Program output: 
[[33555.266] 

 [33222.266] 

 [32894.14 ] 

 [32577.812] 

 [32283.715] 

 [32020.54 ] 

 [31795.977] 

 [31615.73 ] 

 [31484.248] 

 [31404.578]] 

 

plt.figure(figsize=(14,5)) 

plt.plot(y_test, color = 'black', label = "Real NVDA Stock 

Price") 

plt.plot(y_pred, color = 'gray', label = 'Predicted NVDA Stock 

Price') 

plt.title('NVDA Stock Price Prediction') 

plt.xlabel('time') 
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plt.ylabel('NVDA Stock Price') 

plt.legend() 

plt.show() 

 
Program output: 

 
 

 



 

 

 

 

Generative Models 

Chapter 7 
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7.1 Overview 

🕮 7.1.1 

Generative models are a fundamental category of machine learning models that 
focus on creating new data samples that resemble the patterns found in the training 
data. Unlike predictive models, which forecast outcomes based on input data, 
generative models are designed to capture the underlying distribution of the data. 
This allows them to generate entirely new examples that are indistinguishable from 
real data. 

Generative models rely on many of the techniques used in other areas of deep 
learning, such as preprocessing data, fine-tuning hyperparameters, and leveraging 
neural network architectures like CNNs and RNNs. These shared methods ensure a 
smooth transition familiar with predictive models. However, the objective of 
generative models is broader, aiming to model complex distributions rather than 
making specific predictions. 

The ability of generative models to create new, realistic samples has opened up a 
world of possibilities. From generating lifelike images to creating entirely new pieces 
of music, these models play a pivotal role in advancing artificial intelligence. They 
also demonstrate the powerful interplay between data science and creativity, making 
them an essential topic for anyone studying deep learning. 

By understanding generative models, you can explore innovative applications across 
various fields. The concepts learned from predictive models provide a strong 
foundation for tackling this exciting area of machine learning. 

 

📝 7.1.2 

Which of the following best describes the primary goal of generative models? 

• To generate new data samples similar to training data 
• To make accurate predictions based on input data 
• To identify anomalies in real-time datasets 
• To optimize hyperparameters for neural networks 

 

📝 7.1.3 

Generative models differ from predictive models because they: 

• Aim to model and recreate the data distribution 
• Focus on understanding the relationships within input data 
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• Are exclusively used for creative industries 
• Do not rely on neural network architectures like CNNs or RNNs 

 

🕮 7.1.4 

Generative models are applied in numerous domains, showcasing their versatility in 
handling complex tasks. These applications span creative industries, technical fields, 
and practical solutions, proving their relevance in real-world scenarios. 

One of the most visible uses of generative models is in media creation. They are used 
to generate realistic images of people, animals, and objects, often blurring the line 
between real and artificial. In text generation, these models can produce coherent 
narratives for chatbots, text summarization, or dialogue systems. Music generation 
further exemplifies their creativity by composing original pieces or mimicking 
specific musical styles. 

Generative models enhance machine learning by generating synthetic data for 
training, particularly when real data is limited. This process, known as data 
augmentation, helps improve the accuracy and robustness of predictive models. 
Additionally, anomaly detection benefits from generative models by identifying 
unusual patterns that deviate from the expected data distribution. 

Beyond creation and augmentation, generative models have applications in style 
transfer, where they transform images or videos into different artistic styles while 
preserving their content. They are also used in simulations, enabling the modeling of 
complex phenomena like weather patterns, traffic flow, or biological systems such 
as protein folding. 

 

📝 7.1.5 

Which application of generative models involves creating new training data to 
improve a model's accuracy? 

• Data augmentation 
• Anomaly detection 
• Style transfer 
• Simulation 
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🕮 7.1.6 

Typical applications of generative models in deep learning 

1. Image generation - generative models can be used to generate realistic 
images of faces, animals, objects, and scenes. 

2. Text generation - generative models can generate natural language text for 
applications such as chatbots, text summarization, and dialogue systems. 

3. Music generation - generative models can create new music pieces based on 
existing songs or styles. 

4. Video generation - generative models can create video sequences with 
realistic motions and actions. 

5. Data augmentation - generative models can be used to generate synthetic 
data for training deep learning models and improving their performance. 

6. Anomaly detection - generative models can detect anomalies in datasets by 
learning the distribution of normal data and identifying samples that do not 
conform to it. 

7. Style transfer - generative models can transform images or videos to 
different styles while preserving their content. 

8. Simulation - generative models can simulate complex physical or biological 
systems, such as weather patterns, traffic flow, or protein folding. 

 

📝 7.1.7 

A generative model is used to transform an image into a different artistic style while 
retaining its content. This application is known as: 

• Style transfer 
• Text generation 
• Simulation 
• Data augmentation 

 

📝 7.1.8 

Which of the following is NOT an application of generative models in deep learning? 

• Predicting stock prices 
• Image generation 
• Data augmentation 
• Music generation 
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📝 7.1.9 

Select the correct applications of generative models in deep learning: 

• Text summarization 
• Weather simulation 
• Anomaly detection 
• Object detection 

 

7.2 Generative models applications 

🕮 7.2.1 

Text generation 

Natural Language Processing (NLP) is a subfield of computer science and artificial 
intelligence that deals with the interactions between computers and human 
languages. It involves the ability of machines to read, understand, and interpret 
human language in the form of text or speech, and to generate natural language 
responses in turn. NLP technologies are used in a variety of applications, such as 
language translation, sentiment analysis, chatbots, speech recognition, and text 
summarization or text generation 

Some common steps of pre-processing data for training model include data cleaning, 
transformation, and data reduction. 

• Dataset cleaning encompasses the conversion of the case to lowercase, 
removing punctuation. 

• Tokenization in NLP is the process of breaking down text into smaller units 
called tokens. The tokens are essentially words or phrases, which can be 
further used for analysis, processing, or generating new text. Tokenization 
can be performed at different levels such as word level, subword level, or 
character level, depending on the requirements of the NLP task. In practice, 
tokenization involves various steps such as splitting text into sentences, 
removing punctuation, converting text to lowercase, and splitting words into 
individual tokens. Tokenization is a fundamental step in many NLP tasks 
such as text classification, named entity recognition, and machine 
translation. 

• In NLP, padding is a technique used to make all the text sequences of the 
same length. It is done by adding a special token (usually a zero or a PAD 
token) at the end of the shorter sentences, so that all the sequences have the 
same length. Padding is necessary for training neural networks on text data 
because the networks require fixed-size inputs, and if the inputs are of 
different lengths, it can cause issues during training. Once the padding is 
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done, the padded sequences can be fed to the neural network for further 
processing. 

• Stemming is a technique used in NLP to reduce a word to its root form, 
called a stem. This is done by removing the suffixes (endings) of words, 
which may be different forms of the same root word. For example, "running," 
"ran," and "runner" all have the same root word "run," and stemming would 
reduce all of these words to the same stem "run." The goal of stemming is to 
reduce the complexity of text data and to group together similar words so 
that they can be treated as a single entity during text analysis. Stemming is 
often used as a pre-processing step before other NLP tasks, such as text 
classification or sentiment analysis. 

 

📝 7.2.2 

What is the purpose of tokenization in Natural language processing? 

• To split text into smaller units like words or phrases 
• To remove padding from sequences 
• To reduce words to their root forms 
• To transform all text to uppercase 

 

📝 7.2.3 

Which of the following are common pre-processing steps in NLP? 

• Dataset cleaning 
• Tokenization 
• Stemming 
• Adding punctuation 

 

🕮 7.2.4 

Generative adversarial networks  

Generative Adversarial Networks (GANs) are a fascinating class of deep learning 
models that have revolutionized the field of generative modeling. A GAN consists of 
two main components: a generator and a discriminator, both of which are neural 
networks. The generator’s role is to create data samples, such as images, audio, or 
text, starting from random noise. Meanwhile, the discriminator acts as a classifier, 
distinguishing between real data (from a dataset) and fake data (produced by the 
generator). This unique setup pits the two networks against each other in a dynamic 
and iterative training process. 
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The training of GANs involves an adversarial game between the generator and the 
discriminator. Initially, the generator creates data that is clearly unrealistic, as it is 
only beginning to learn the distribution of the training data. The discriminator, on the 
other hand, is trained to identify these generated samples as fake. Over successive 
iterations, the generator learns to produce data that increasingly resembles real 
samples, while the discriminator becomes more adept at identifying subtle 
differences between real and fake data. The interplay between these two networks 
drives the learning process. 

One of the critical challenges in training GANs is achieving a balance between the 
generator and discriminator. If the discriminator becomes too strong, it can easily 
detect fake data, causing the generator to struggle to improve. Conversely, if the 
generator outpaces the discriminator, the discriminator may fail to learn effectively. 
Techniques such as tweaking the loss functions, adjusting learning rates, and using 
advanced architectures can help address these challenges and ensure stable 
training. 

GANs have found applications across numerous domains due to their ability to 
generate high-quality synthetic data. In computer vision, GANs are used to create 
photorealistic images, enhance image resolution, and generate artworks. In audio 
processing, GANs have been applied to synthesize realistic speech or music. In text 
generation, GANs contribute to tasks such as creating natural language content or 
augmenting datasets for improved model training. These versatile applications 
demonstrate the power and potential of GANs in solving real-world problems. 

Despite their success, GANs are not without limitations. Training GANs can be 
computationally expensive and prone to instability, requiring careful tuning of 
hyperparameters. Additionally, GANs sometimes generate outputs that are visually 
appealing but lack diversity, a problem known as mode collapse. Addressing these 
limitations is an active area of research, with new variants of GANs being proposed 
to overcome these challenges and expand their applications further. 

 

📝 7.2.5 

What is the primary role of the discriminator in a GAN? 

• To classify data as real or fake 
• To generate data samples 
• To adjust the generator's learning rate 
• To increase the diversity of generated data 
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📝 7.2.6 

Which of the following are typical applications of GANs? 

• Image generation 
• Speech synthesis 
• Data compression 
• Hyperparameter tuning 

 

🕮 7.2.7 

Deep convolutional generative adversarial networks 

Deep Convolutional Generative Adversarial Networks (DCGANs) are an extension of 
Generative Adversarial Networks (GANs) that incorporate deep convolutional neural 
networks (CNNs) in their architecture. Introduced in 2015, DCGANs were designed to 
improve the generation of high-quality images, addressing some of the limitations of 
traditional GANs in capturing fine details and spatial dependencies in visual data. 

In a DCGAN, both the generator and discriminator networks are built using 
convolutional layers. The generator takes a random noise vector as input and 
transforms it into an image through a series of up-sampling operations using 
transpose convolutional layers. This process allows the generator to learn and 
replicate the spatial features that define real images, resulting in outputs that are 
visually coherent and realistic. Meanwhile, the discriminator, also a deep CNN, 
classifies whether an input image is real (from the dataset) or fake (produced by the 
generator) using a series of down-sampling operations. 

The key advantage of using convolutional layers in DCGANs lies in their ability to 
model spatial hierarchies. Convolutional operations allow the generator to build 
images with consistent textures, patterns, and structures, while the discriminator 
learns to identify nuanced differences between real and synthetic images. This 
architecture makes DCGANs particularly effective for tasks where visual quality is 
critical. 

DCGANs have been successfully applied in various image generation tasks. For 
example, they have been used in image synthesis to generate entirely new images 
that resemble real-world objects. In image inpainting, DCGANs can fill in missing 
parts of an image in a visually consistent way, which is useful for repairing damaged 
photos. Additionally, they are employed in style transfer, where they enable the 
transformation of an image's visual style while preserving its content. 

Despite their strengths, DCGANs face challenges similar to traditional GANs, 
including mode collapse and instability during training. However, their use of 
convolutional architectures has significantly advanced the field of generative 
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modeling, making them a foundational approach for tasks that require high-quality 
image generation. 

 

📝 7.2.8 

What distinguishes DCGANs from traditional GANs? 

• Use of deep convolutional layers in both networks 
• Use of random noise as input 
• Focus on text generation 
• Lack of a discriminator network 

 

📝 7.2.9 

Which tasks are DCGANs particularly suited for? 

• Image synthesis 
• Image inpainting 
• Style transfer 
• Text summarization 

 

🕮 7.2.10 

Deepfake 

Deepfake technology leverages AI and deep learning techniques to create synthetic 
media, such as videos, images, or audio recordings. These can either be entirely 
fabricated or manipulated versions of authentic content, making them appear 
genuine to the human eye or ear. The term "deepfake" originates from the use of deep 
learning algorithms in generating these falsified outputs. While deepfakes can be 
incredibly convincing, they also raise significant ethical and security concerns. 

One of the primary challenges posed by deepfake technology is its potential for 
misuse. Deepfakes have been employed in the creation of fake news, leading to 
misinformation and public distrust. They have also been used for impersonation, 
allowing malicious actors to convincingly mimic someone’s appearance or voice. 
Non-consensual uses, such as creating deepfake pornography, represent another 
alarming misuse of this technology. These applications highlight the urgent need for 
regulation, detection technologies, and public awareness about deepfakes. 

On the other hand, deepfake technology also offers positive applications. In the film 
and entertainment industry, deepfakes can be used to bring historical figures to life, 
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de-age actors, or create realistic special effects. Similarly, deepfake-based 
simulations are valuable in training and education, where realistic scenarios help 
improve engagement and learning outcomes. For instance, they could simulate 
complex conversations or historical reenactments in a classroom setting. 

DCGANs can play a role in generating deepfakes, especially in creating synthetic 
images or video frames. Although DCGANs are not explicitly designed for this 
purpose, their ability to generate high-quality and realistic images makes them a 
useful component in a broader pipeline. For example, DCGANs might generate 
realistic facial features, which can then be blended into video content to create a 
deepfake. 

While DCGANs contribute to the technical foundations of deepfake generation, their 
use emphasizes the dual-edged nature of AI technologies. They exemplify how 
advanced AI can simultaneously drive innovation and raise ethical questions about 
its applications. 

 

📝 7.2.11 

What is major concern associated with deepfake technology? 

• Potential misuse for creating fake news or impersonations 
• Lack of realistic simulations 
• Limited use in entertainment 
• Inability to use AI in the generation process 

 

📝 7.2.12 

Which applications of deepfake technology can be considered positive? 

• Generating realistic simulations for training 
• De-aging actors in films 
• Creating non-consensual content 
• Misinforming the public through fake news 
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7.3 Examples of generative models 

📝 7.3.1 

Project: Generating a text using RNN 

Prepare the code uses a generative model (LSTM) to generate text based on a 
dataset of article headlines. The steps shoul be included data preprocessing, 
tokenization, padding, building the neural network model, training it, and finally using 
it for text generation. 

Dataset: 

• original: https://raw.githubusercontent.com/PacktWorkshops/The-
TensorFlow-Workshop/master/Chapter09/Datasets/Articles.csv 

• local: https://priscilla.fitped.eu/data/deep_learning/articles.csv 

 
import warnings 

warnings.filterwarnings("ignore") 

from keras.utils import pad_sequences 

from keras.models import Sequential 

from keras.layers import Embedding, LSTM, Dense, Dropout 

import tensorflow.keras.utils as ku  

from keras.preprocessing.text import Tokenizer 

import pandas as pd 

import numpy as np 

from keras.callbacks import EarlyStopping 

import string, os  

2. Fetching and cleaning the dataset 

 
url="https://priscilla.fitped.eu/data/deep_learning/articles.c

sv" 

data = pd.read_csv(url) 

print(data.columns) 

 

our_headlines = [] 

our_headlines.extend(list(data.headline.values)) 

 

our_headlines = [h for h in our_headlines if h != "Unknown"] 

print(len(our_headlines)) 

 
 

https://raw.githubusercontent.com/PacktWorkshops/The-TensorFlow-Workshop/master/Chapter09/Datasets/Articles.csv
https://raw.githubusercontent.com/PacktWorkshops/The-TensorFlow-Workshop/master/Chapter09/Datasets/Articles.csv
https://priscilla.fitped.eu/data/deep_learning/articles.csv


Generative Models | FITPED AI 

187 

 
Program output: 
Index(['abstract', 'articleID', 'articleWordCount', 'byline', 

'documentType', 

       'headline', 'keywords', 'multimedia', 'newDesk', 

'printPage', 'pubDate', 

       'sectionName', 'snippet', 'source', 'typeOfMaterial', 

'webURL'], 

      dtype='object') 

831 

 

• Remove punctuation. 
• Convert text to lowercase. 
• Ensure that only ASCII characters remain. 

 
def clean_text(txt): 

    txt = "".join(v for v in txt if v not in 

string.punctuation).lower() 

    txt = txt.encode("utf8").decode("ascii",'ignore') 

    return txt  

 

corpus = [clean_text(x) for x in our_headlines] 

print(corpus[60:80]) 

 
Program output: 
['lets go for a win on opioids', 'floridas vengeful governor', 

'how to end the politicization of the courts', 'when dr king 

came out against vietnam', 'britains trains dont run on time 

blame capitalism', 'questions for no license plates here using 

art to transcend prison walls', 'dry spell', 'are there 

subjects that should be offlimits to artists or to certain 

artists in particular', 'that is great television', 'thinking 

in code', 'how gorsuchs influence could be greater than his 

vote', 'new york today how to ease a hangover', 'trumps gifts 

to china', 'at penn station rail mishap spurs large and 

lasting headache', 'chemical attack on syrians ignites worlds 

outrage', 'adventure is still on babbos menu', 'swimming in 

the fast lane', 'a national civics exam', 'obama adviser is 

back in the political cross hairs', 'the hippies have won'] 
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3. Tokenization 

• The Tokenizer is fit on the corpus to assign each unique word a 
corresponding integer. 

• The function get_seq_of_tokens creates sequences of tokens (word 
representations) from the corpus. 

• It splits the text into n-grams (sequences of words), which are used for 
training the model. 

 
tokenizer = Tokenizer() 

 

def get_seq_of_tokens(corpus): 

    ## tokenization 

    tokenizer.fit_on_texts(corpus) 

    all_words = len(tokenizer.word_index) + 1 

     

    ## convert data to sequence of tokens  

    input_seq = [] 

    for line in corpus: 

        token_list = tokenizer.texts_to_sequences([line])[0] 

        for i in range(1, len(token_list)): 

            n_gram_sequence = token_list[:i+1] 

            input_seq.append(n_gram_sequence) 

    return input_seq, all_words 

 

our_sequences, all_words = get_seq_of_tokens(corpus) 

print(our_sequences[:20]) 

 
Program output: 
[[169, 17], [169, 17, 665], [169, 17, 665, 367], [169, 17, 

665, 367, 4], [169, 17, 665, 367, 4, 2], [169, 17, 665, 367, 

4, 2, 666], [169, 17, 665, 367, 4, 2, 666, 170], [169, 17, 

665, 367, 4, 2, 666, 170, 5], [169, 17, 665, 367, 4, 2, 666, 

170, 5, 667], [6, 80], [6, 80, 1], [6, 80, 1, 668], [6, 80, 1, 

668, 10], [6, 80, 1, 668, 10, 669], [670, 671], [670, 671, 

129], [670, 671, 129, 672], [673, 674], [673, 674, 368], [673, 

674, 368, 675]] 

 

4. Padding sequences and preparing data 

• This step ensures all input sequences are of the same length by padding 
shorter sequences with zeros (using pad_sequences). 

• The function also separates the last token as the label (the next word to 
predict) and the rest as predictors. 
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• One-hot encoding - labels are converted into one-hot encoded vectors using 
to_categorical, making them suitable for classification tasks. 

 
def generate_padded_sequences(input_seq): 

    max_sequence_len = max([len(x) for x in input_seq]) 

    input_seq = np.array(pad_sequences\ 

                         (input_seq, maxlen=max_sequence_len, 

\ 

                          padding='pre')) 

     

    predictors, label = input_seq[:,:-1],input_seq[:,-1] 

    label = ku.to_categorical(label, num_classes=all_words) 

    return predictors, label, max_sequence_len 

 

predictors, label, max_sequence_len = 

generate_padded_sequences(our_sequences) 

5. Model creation 

• The input layer is an embedding layer, which learns a dense representation 
for words in a lower-dimensional space (10 dimensions here). 

• A LSTM layer is added to capture long-term dependencies in the text data. A 
dropout layer is also included to prevent overfitting. 

• The final dense layer uses softmax activation to output a probability 
distribution over the vocabulary, predicting the next word. 

• The model is compiled with the categorical cross-entropy loss function and 
the Adam optimizer. 

 
def create_model(max_sequence_len, all_words): 

    input_len = max_sequence_len - 1 

    model = Sequential() 

     

    # Add Input Embedding Layer 

    model.add(Embedding(all_words, 10, 

input_length=input_len)) 

     

    # Add Hidden Layer 1 - LSTM Layer 

    model.add(LSTM(100)) 

    model.add(Dropout(0.1)) 

     

    # Add Output Layer 

    model.add(Dense(all_words, activation='softmax')) 
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    model.compile(loss='categorical_crossentropy', 

optimizer='adam') 

     

    return model 

 

model = create_model(max_sequence_len, all_words) 

model.summary() 

 
Program output: 
Model: "sequential" 

______________________________________________________________

___ 

 Layer (type)                Output Shape              Param #    

==============================================================

=== 

 embedding (Embedding)       (None, 18, 10)            24220      

                                                                  

 lstm (LSTM)                 (None, 100)               44400      

                                                                  

 dropout (Dropout)           (None, 100)               0          

                                                                  

 dense (Dense)               (None, 2422)              244622     

                                                                  

==============================================================

=== 

 

6. Training the model 

• The model is trained on the predictors and label using 200 epochs. During 
training, the model adjusts its parameters to minimize the loss function. 

 
model.fit(predictors, label, epochs=200, verbose=5) 

 
Program output: 
Epoch 194/200 

Epoch 195/200 

Epoch 196/200 

Epoch 197/200 

Epoch 198/200 

Epoch 199/200 

Epoch 200/200 
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7. Text generation 

• The generate_text function generates a sequence of words by predicting one 
word at a time based on the seed text. 

• It uses the trained model to predict the next word, appends it to the seed 
text, and repeats the process until the desired number of words (next_words) 
is generated. 

 
def generate_text(seed_text, next_words, model, 

max_sequence_len): 

    for _ in range(next_words): 

        token_list = 

tokenizer.texts_to_sequences([seed_text])[0] 

        token_list = pad_sequences([token_list], \ 

                                   maxlen=max_sequence_len-1, 

\ 

                                   padding='pre') 

        predicted = model.predict(token_list, verbose=0) 

         

        output_word = "" 

        for word,index in tokenizer.word_index.items(): 

            if index == predicted.any(): 

                output_word = word 

                break 

        seed_text += " "+output_word 

    return seed_text.title() 

8. Output 

• The function is called with different seed texts to generate unique sentences. 

 
print(generate_text("10 Ways", 11, model, max_sequence_len)) 

print(generate_text("europe looks to", 8, model, 

max_sequence_len)) 

print(generate_text("best way", 10, model, max_sequence_len)) 

print(generate_text("homeless in", 10, model, 

max_sequence_len)) 

print(generate_text("Unexpected results", 10, model, \ 

                     max_sequence_len)) 

print(generate_text("critics warn", 10, model, 

max_sequence_len)) 

 
Program output: 
10 Ways The The The The The The The The The The The 
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Europe Looks To The The The The The The The The 

Best Way The The The The The The The The The The 

Homeless In The The The The The The The The The The 

Unexpected Results The The The The The The The The The The 

Critics Warn The The The The The The The The The The 

 

The result you are seeing, where the model generates text like "10 Ways The The The 
The The The The The The The," is a common issue in text generation tasks, 
particularly when working with models that generate text one word at a time. The 
repeated "The" is a sign of over-reliance on the most frequent word in the vocabulary. 
By introducing diversity in the sampling method and improving the training data, you 
can encourage the model to generate more varied and coherent text. 
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🕮 8.1.2 

Statement regarding the use of Artificial Intelligence in content creation 

This content has been developed with the assistance of artificial intelligence tools, 
specifically ChatGPT, Gemini, and Notebook LM. These AI technologies were utilized 
to enhance the text by providing suggestions for rephrasing, improving clarity, and 
ensuring coherence throughout the material. The integration of these AI tools has 
enabled a more efficient content creation process while maintaining high standards 
of quality and accuracy. 

The use of AI in this context adheres to all relevant guidelines and ethical 
considerations associated with the deployment of such technologies. We 
acknowledge the importance of transparency in the content creation process and 
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aim to provide a clear understanding of how artificial intelligence has contributed to 
the final product. 
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