

Erasmus+ FITPED-AI
Future IT Professionals Education in Artificial Intelligence
(Project 2021-1-SK01-KA220-HED-000032095)

Deep Learning

Jozef Kapusta
Robert Rouš
Ján Skalka
Małgorzata Przybyła-Kasperek
Júlia Tomanová

www.fitped.eu 2024

Deep Learning

Published on

November 2024

Authors

Jozef Kapusta | Teacher.sk, Slovakia

Robert Rouš | Mendel University in Brno, Czech Republic

Ján Skalka | Constantine the Philosopher University in Nitra, Slovakia

Małgorzata Przybyła-Kasperek | University of Silesia in Katowice, Poland

Júlia Tomanová | Constantine the Philosopher University in Nitra, Slovakia

Reviewers

Piet Kommers | Helix5, Netherland

Vladimiras Dolgopolovas | Vilnius University, Lithuania

Eugenia Smyrnova-Trybulska | University of Silesia in Katowice, Poland

Erasmus+ FITPED-AI

Future IT Professionals Education in Artificial Intelligence

Project 2021-1-SK01-KA220-HED-000032095

Funded by the European Union. Views and opinions expressed are however those of
the author(s) only and do not necessarily reflect those of the European Union or Slovak
Academic Association for International Cooperation. Neither the European Union nor
the granting authority can be held responsible for them.

Licence (licence type: Attribution-Non-commercial-No Derivative Works) and may be
used by third parties as long as licensing conditions are observed. Any materials
published under the terms of a CC Licence are clearly identified as such.

All trademarks and brand names mentioned in this publication and all trademarks and
brand names mentioned that may be the intellectual property of third parties are
unconditionally subject to the provisions contained within the relevant law governing
trademarks and other related signs. The mere mention of a trademark or brand name
does not imply that such a trademark or brand name is not protected by the rights of
third parties.

© 2024 Constantine the Philosopher University in Nitra

ISBN 978-80-558-2229-7

TABLE OF CONTENTS
1 Introduction to Neural Networks .. 5

1.1 Introduction ... 6

1.2 Neural networks principle .. 10

1.3 Neural networks theory .. 13

1.4 Implementation of Boolean binary functions ... 21

2 Perceptron and Supervised Learning ... 28

2.1 Perceptron ... 29

2.2 Hebbian learning ... 34

2.3 Practical example ... 42

3 Feedforward Neural Network.. 55

3.1 Single layer perceptron... 56

3.2 Adaline and Madaline ... 63

4 From Shallow Learning to Deep Learning .. 68

4.1 Definition of deep learning ... 69

4.2 Tensors .. 73

4.3 TensorFlow examples .. 79

5 Convolutional Neural Networks - CNNs ... 97

5.1 CNN description .. 98

5.2 Layers and architectures I. ... 99

5.3 Layers and architectures II... 105

5.4 Practical applications ... 110

5.5 Pre-trained networks .. 127

5.6 Object detection .. 133

5.7 Accuracy measurement ... 137

6 Recurrent Neural Networks - RNNs .. 139

6.1 RNN overview .. 140

6.2 Layers and architectures .. 144

6.3 Practical examples with RNNs .. 152

7 Generative Models ... 176

7.1 Overview .. 177

7.2 Generative models applications .. 180

7.3 Examples of generative models .. 186

8 Resources ... 193

8.1 Bibliography... 194

Introduction to Neural
Networks

Chapter 1

Introduction to Neural Networks | FITPED AI

6

1.1 Introduction

🕮 1.1.1

A neural network is a system in computers that tries to work like the human brain.
Just like our brain has neurons that help us think, a neural network has "artificial
neurons" that help it process information. These artificial neurons are connected in
layers, and each layer has a specific task. The first layer gets the input (like an image
or a piece of text), and then the network processes this input through the different
layers to make decisions or predictions.

In simple terms, neural networks are designed to learn from examples. For example,
if you show a neural network many pictures of cats, it can learn to recognize what a
cat looks like. Then, when you show it a new picture, it can tell whether it's a cat or
not, even if it hasn't seen that exact picture before.

Neural networks are useful because they can handle complex tasks like recognizing
images, understanding speech, and even driving cars! They are able to do things that
regular computer programs cannot because they "learn" from data and improve over
time.

📝 1.1.2

What is the main role of artificial neurons in a neural network?

• To process information
• To learn from data
• To make physical decisions
• To perform arithmetic calculations

🕮 1.1.3

Neural networks are needed because some problems are too complex for traditional
computers. For example, understanding a photo, recognizing someone's voice, or
predicting what you'll like to buy next can be really difficult for a regular computer
program. Traditional programs need very clear instructions, but these tasks require
understanding patterns in data, which is something neural networks are good at.

They are important in fields like medicine, where they can help doctors detect
diseases from X-rays or other medical images. Neural networks can also be used in
everyday technology, like your smartphone’s face recognition feature or the
recommendation system on websites like YouTube or Netflix.

Introduction to Neural Networks | FITPED AI

7

Another reason we need neural networks is that they can handle huge amounts of
data. With the growth of the internet, there’s so much data available, and neural
networks can process all this information to find patterns that humans might miss.

📝 1.1.4

In what ways can neural networks be used in everyday life?

• Recognizing faces on smartphones
• Recommending videos on YouTube
• Predicting the weather
• Writing essays for students

🕮 1.1.5

Neural networks can help in many areas by solving problems that require pattern
recognition. For instance, in healthcare, they can help doctors by analyzing medical
images and detecting early signs of diseases like cancer. In the business world, they
help companies predict customer behavior, which can lead to better products or
services.

In self-driving cars, neural networks help the car understand its surroundings. The
car uses cameras and sensors to gather data, and the neural network processes this
information to make decisions like when to turn, stop, or speed up.

Neural networks can also help in translating languages. For example, Google
Translate uses neural networks to improve translations, making them more accurate
and natural over time.

📝 1.1.6

What is one way neural networks help in self-driving cars?

• They help the car understand its surroundings
• They predict the car's fuel efficiency
• They control the car's engine speed
• They translate languages spoken by passengers

Introduction to Neural Networks | FITPED AI

8

🕮 1.1.7

The principle behind neural networks

At the core of a neural network is the idea of learning from examples. When a neural
network is trained, it gets a lot of data to look at. Initially, it doesn't know much and
might make mistakes. However, it slowly improves by adjusting itself to make better
decisions. This process is similar to how you learn to play a game or a sport by
practicing over and over again.

Neural networks are made up of layers. The first layer receives input data, such as
an image, and the final layer gives the output, such as whether the image contains a
cat. The layers in between are where the neural network learns the important features
that help make the decision. The more layers the network has, the better it can handle
complicated tasks.

Training a neural network requires a lot of examples, and the network uses these to
adjust its internal settings until it becomes better at solving the task.

📝 1.1.8

How does a neural network "learn"?

• By making predictions and adjusting based on feedback
• By memorizing all the data without analyzing it
• By reading books and articles
• By copying the results from another network

🕮 1.1.9

Overfitting and underfitting

When training a neural network, it's important not to overtrain or undertrain the
network. Overfitting happens when a network learns the training data too well, so well
that it starts to focus on the tiny details or mistakes in the data. This can make the
network very good at predicting the data it’s seen, but it might struggle with new data.

Underfitting is the opposite problem. This happens when the network doesn’t learn
the data enough, meaning it doesn't make good predictions, even for the training
data. A well-trained network finds the balance between these two problems and
performs well on both seen and unseen data.

Finding this balance is essential to building a neural network that can generalize well
and solve real-world problems.

Introduction to Neural Networks | FITPED AI

9

📝 1.1.10

What does "overfitting" mean in a neural network?

• The network learns the data too well, focusing on unnecessary details
• The network works perfectly with original data
• The network doesn't learn the data enough
• The network trains on too little data

🕮 1.1.11

As technology improves, so do neural networks. They are becoming better at tasks
that were once thought to be impossible for machines. For example, AI can now
generate realistic artwork, write essays, or even create music. These advancements
are made possible because neural networks can process and learn from vast
amounts of information.

In the future, neural networks could help with even more areas of our lives. They
might help solve big global problems like climate change by predicting environmental
changes or improving renewable energy use. As the networks continue to grow, their
potential is almost limitless.

However, there are still challenges, such as making sure neural networks make fair
and unbiased decisions. It's important to keep improving these systems and make
them transparent and ethical.

📝 1.1.12

What is a challenge that needs to be addressed in the future development of neural
networks?

• Making sure they can handle more data
• Ensuring they make fair and unbiased decisions
• Limiting their use to only a few tasks
• Reducing their processing speed

Introduction to Neural Networks | FITPED AI

10

1.2 Neural networks principle

🕮 1.2.1

Machine learning algorithms are essential because they help solve problems that
traditional programming approaches can't handle. In "classic" programming, humans
write code that follows clear instructions. But some problems are too complex for
this type of programming. For example, imagine trying to create a program that can
recognize a 3D object from different angles, lighting conditions, or in a cluttered
scene. It's almost impossible because we don’t even fully understand how our brains
do it. Even if we did, writing such a program would be incredibly complicated.

That’s where machine learning comes in. Instead of writing every detail of the
program by hand, machine learning algorithms learn from examples. They process
many examples that show the right answer for each situation. This is much faster
and more efficient than trying to code everything manually.

📝 1.2.2

What is a problem that traditional programming cannot solve easily?

• Recognizing objects from multiple angles and lighting
• Sorting numbers
• Calculating the cost of an item
• Solving simple math equations

🕮 1.2.3

Neural networks are one of the best machine learning algorithms available today.
They are designed to work by mimicking the human brain's structure. Just like our
brains have neurons that work together to process information, neural networks have
artificial neurons that work in layers to understand data. These networks can be used
to solve complex problems that we can't easily code, like recognizing faces,
identifying objects in images, or predicting behaviors.

Neural networks are particularly helpful because they can be trained using examples.
For instance, if you show a neural network thousands of pictures of dogs, it can learn
what a dog looks like. After this, the neural network can identify a dog in new pictures
it has never seen before. The more examples you give it, the better it gets at solving
the problem.

Introduction to Neural Networks | FITPED AI

11

📝 1.2.4

What do neural networks try to mimic?

• The human brain
• The internet
• A computer's processing speed
• A traditional computer program

🕮 1.2.5

Machine learning and neural networks are perfect for situations where it's difficult to
write specific instructions. For example, detecting fraud in credit card transactions
is a complex task. It’s not easy to create a program with simple rules that can
accurately decide whether a transaction is fraudulent. Scammers are constantly
changing their methods, so the program must change too. Instead of trying to write
out every rule manually, machine learning algorithms look at many examples of
transactions, including both legitimate and fraudulent ones. They learn patterns that
help them recognize fraud, even when the scammer changes tactics.

This flexibility is one of the reasons machine learning is so valuable. Unlike traditional
programs that need to be constantly updated by humans, machine learning systems
can "learn" and adapt by themselves when new data is available.

📝 1.2.6

Why is machine learning better for detecting fraud than traditional programming?

• It can adapt to new fraud tactics
• It can recognize patterns from past data
• It doesn’t need examples to learn
• It relies on static, predefined rules

🕮 1.2.7

The process of training a machine learning algorithm involves feeding it many
examples. These examples show the algorithm what the correct output should be for
a given input. For example, when training a neural network to recognize a cat, you
would show it many images of cats. Over time, the neural network learns patterns in
the images that help it identify a cat.

Introduction to Neural Networks | FITPED AI

12

The goal is to create a "model" that can generalize, meaning it will work not just on
the data it was trained on, but also on new, unseen data. If done correctly, the
machine learning model can adapt to new situations and perform well even when the
conditions change.

The more examples you give the system, the more accurate its predictions or
decisions will be. So, the key to successful machine learning is having a large and
diverse dataset to train the algorithm.

📝 1.2.8

What is the goal of training a machine learning algorithm?

• To make the system generalize and work well on new data
• To make the system memorize the training data exactly
• To build a static program that can’t be updated
• To prevent any mistakes in the output

🕮 1.2.9

One of the key benefits of machine learning and neural networks is their ability to
adapt to new data. This is particularly important when dealing with situations that
change over time. For example, in the case of fraudulent credit card transactions,
new fraud patterns emerge regularly. A traditional program would need to be
manually updated every time a new scam is discovered, which takes time and effort.

However, a machine learning model can be trained on new data whenever it becomes
available. This means the system can quickly learn to detect new types of fraud
without the need for constant manual intervention. This ability to adapt makes
machine learning more efficient and cost-effective compared to traditional
programming.

📝 1.2.10

How does machine learning adapt to new data?

• By adjusting its model with new examples
• By staying the same and not learning new patterns
• By memorizing old data only
• By automatically updating its rules

Introduction to Neural Networks | FITPED AI

13

🕮 1.2.11

Neural networks are often more efficient than writing traditional programs for
complex tasks. The reason is simple: they can learn patterns from data without
needing to define every step in a complicated program. For example, instead of
writing specific rules for every possible situation a self-driving car might encounter,
a neural network can be trained with lots of examples of driving scenarios. Over time,
it learns to navigate different road conditions, traffic situations, and even
unpredictable events, all by processing the examples.

This is not only faster but also cheaper, because the cost of collecting data and
training the model is often much lower than hiring a team of programmers to write
all the rules by hand.

📝 1.2.12

Why are neural networks more efficient than traditional programs for complex tasks?

• They learn patterns from data
• They require less data to function
• They can perform tasks faster than humans
• They don’t require examples to work

1.3 Neural networks theory

🕮 1.3.1

Machine learning and neural networks are particularly useful for tasks that are too
complex or dynamic to be solved using traditional programming. In these cases,
instead of manually writing a program for each task, we rely on collecting numerous
examples of input-output pairs.

A machine learning algorithm processes data and creates a program, often referred
to as a "model," that can carry out the task. This model doesn't resemble a traditional
program with explicit rules but instead relies on patterns and relationships derived
from the data. If designed and trained properly, this program not only handles the
data it was trained on but also performs well on new, unseen cases.

One of the key advantages of using machine learning is its adaptability. When
circumstances or data patterns change, we don't need to rewrite the entire program.
Instead, we can retrain the algorithm using updated data, allowing the system to
evolve with new information. Additionally, although training machine learning models
can require significant computational resources, it is often more cost-effective than

Introduction to Neural Networks | FITPED AI

14

hiring teams of programmers to write and maintain traditional software for complex
and evolving tasks.

📝 1.3.2

Why is machine learning considered more adaptable than traditional programming?

• It can be retrained with new data to adapt to changes
• It automatically writes explicit rules for every task
• It relies on manually updated rules for changing data
• It does not require any data to function effectively

🕮 1.3.3

The reasons for studying neural networks are as follows:

1. Understanding the real functioning of the brain
2. Understand the style of parallel computing inspired by neurons and their

adaptive connections. This calculation is a very different style from the
sequential calculation. Such an approach should be good for tasks where the
brain excels (such as vision). It should be unsuitable for tasks where the
brain lags behind (for example, calculate 23 * 71). This new approach to
information processing is represented by the theory of artificial neural
networks. It is not only an effective IT tool for the creation and design of new
parallel approaches to solving artificial intelligence problems, but it is also an
integral part of modern neuroscience, which is used to access computer
simulations of processes taking place in the brain.

3. Solve practical problems using new brain-inspired machine learning
algorithms. Such algorithms are very useful, even if they are not a real (real)
demonstration of how the brain works.

📝 1.3.4

Which of the listed tasks is more suitable for solving using neural networks?

• Recognition of persons
• Calculating 1014 * 1024
• Finding persons with salary bigger than defined amount

Introduction to Neural Networks | FITPED AI

15

🕮 1.3.5

The NN theory is based on neurophysiological knowledge about the human brain. It
tries to explain behavior based on the principle of information processing in nerve
cells. The size of a human neuron is 20 µm. The human brain contains 20-100 billion
neurons, with each neuron interconnected with 1,000-10,000 other neurons. The
speed of propagation of impulses in the brain is approximately 400 km/h.

Thus, a neuron can receive signals from the surroundings from other neurons
(dendrites), the neuron processes (integrates) the received signals, the neuron (axon)
sends the processed input signals to other neurons from its surroundings.

We can even simulate one neuron (with complex processes). It is even much faster
than the real thing. However, the power of the human brain is that:

• uses a large number of slow neurons
• they are grouped into a very complex network, the size, typology and

geometry of which is inimitable
• they are very small and very "low-power"

Neurons are connected to each other in a complex network structure (called a neural
network), while individual connections have either an excitatory (increase in activity)
or an inhibitory (decrease in activity) character.

The system of connections and their excitation or the inhibitory character forms the
architecture of the neural network, which alone determines the properties of the
neural network.

📝 1.3.6

Which of the following is NOT a characteristic of the human brain's neurons?

• Neurons are large and consume a lot of power.
• Neurons are grouped into a complex network with unique geometry.
• Each neuron can connect to 1,000–10,000 other neurons.
• Neural connections can have excitatory or inhibitory effects.

🕮 1.3.7

Neuron models are largely an abstraction of the mechanism of how neuron cells
process information. It is impossible to create an exact analogy of the
"computational" capabilities of a real neuron.

Introduction to Neural Networks | FITPED AI

16

The simplest types of neural networks were proposed by McCulloch and Pitts in
1943. Their neuron model is an important landmark in the development of the theory
of neural networks. The elementary unit of the McCulloch and Pitts neural network is
the logical neuron (computational unit), and the state of the neuron is binary (ie, i t
has two possible states, 1 and 0).

The logic neuron system contains both excitatory inputs (described by binary
variables x1, x2, ..., xn, which amplify the response) and inhibitory inputs (described by
binary variables xn+1, xn+2, ..., xm, which weaken response).

Logical neurons and neural networks were first studied in the publication of Warren
McCulloch and Walter Pitts "A logical calculus of the ideas immanent to nervous
activity" from 1943, which is a landmark in the development of the metaphor of
connectionism in artificial intelligence and cognitive science. It has been shown that
neural networks are an effective computational tool in the domain of Boolean
functions.

It is interesting that the work of McCulloch and Pitts is very difficult to read, the
mathematical-logical part of the work was probably written by Walter Pitts, who was
self-taught both in logic and mathematics. Only thanks to American scientists, the
logician S.C. Kleene and the computer scientist N. Minsky, this important work was
"translated" in the second half of the 1950s into the standard language of
contemporary logic and mathematics, thus making the ideas contained in it generally
accessible and accepted.

📝 1.3.8

Which statements about the McCulloch and Pitts neuron model are true?

• The state of the logical neuron is binary, represented as 1 and 0.
• Inhibitory inputs in the model weaken the response.
• It models neurons with continuous, non-binary states.
• The neuron model was first introduced in the 1950s.

🕮 1.3.9

A logical neuron is an elementary unit of NN.

Introduction to Neural Networks | FITPED AI

17

The logic neuron system contains excitatory inputs (binary variables x 1, x2, ..., xn,
which amplify the response) and inhibitory inputs (binary variables xn+1, xn+2, ..., xm,
which weaken the response).

The state of a neuron is binary (ie it has two possible output states, 1 and 0).

The rule applies:

• the activity is one if the internal potential of the neuron defined as the
difference between the sum of the excitatory input activities and the
inhibitory input activities is greater than or equal to the threshold b,

• otherwise it is zero.

📝 1.3.10

What determines whether the state of a logical neuron is 1 or 0?

• The difference between excitatory and inhibitory inputs compared to the
threshold.

• The total number of inputs, regardless of type.
• Whether the excitatory input activities alone exceed the threshold.
• The presence of more inhibitory inputs than excitatory inputs.

🕮 1.3.11

Let's take a closer look at the previous rule.

Introduction to Neural Networks | FITPED AI

18

Transferring b to the other side of the inequality, we get

We can also rewrite the function y in the following form

when

The function represents the well-known signum function in mathematics (the
so-called "step function" or sign function).

The graph of this function is as follows:

In neural networks, the signum function is often used as an activation function,
particularly in early models like the McCulloch-Pitts neuron. It helps determine
whether a neuron "fires" (outputs 1) or remains inactive (outputs 0 or -1) based on its
input.

The function is applied to the net input of the neuron, which is typically the weighted
sum of inputs minus a threshold value (b). The signum function thus enables binary
output decisions based on whether the neuron’s inputs collectively meet or exceed
the threshold.

📝 1.3.12

What is the purpose of the signum function in a neural network?

• To determine whether the neuron “fires” based on the net input.
• To calculate the exact value of the neuron’s output.
• To adjust the weights of the inputs dynamically.

Introduction to Neural Networks | FITPED AI

19

• To prevent inhibitory inputs from affecting the output.

🕮 1.3.13

We already know that the output of an artificial neuron is defined as a signed (step)
function.

while v represents the sum of inputs and bias b.

Furthermore, we can implement simple modifications where each input xi is
multiplied by +1 or -1 depending on whether it is an inhibitory or an excitatory input.
Subsequently, we generally replace +1 or -1 with a weight wi

whereas:

We can write the resulting activity of the neuron as

🕮 1.3.14

An artificial neuron model is defined as follows:

Introduction to Neural Networks | FITPED AI

20

while y_in represents the so-called internal potential of the neuron. The internal
potential of a neuron, often denoted as yiny_{\text{in}}yin, represents the cumulative
input to the neuron before applying the activation function.

For example, for four inputs, we can imagine the neuron as follows

The neuron processes information through a set of synapses, which are connections
characterized by their weights (thickness or strength). These weights determine the
influence of each input on the neuron’s output.

A neuron can also be expressed as

while the internal potential is defined as follows:

Introduction to Neural Networks | FITPED AI

21

In practice, bias is often not singled out separately (mainly due to simpler computer
calculation). Bias is an external parameter of the artificial neuron and can be included
directly in the summation.

📝 1.3.15

Which statements about the internal potential (y in) of a neuron are true?

• It represents the weighted sum of inputs, including the bias.
• Weights determine the influence of inputs on the neuron’s output.
• The bias is always treated as a separate external parameter.
• The internal potential directly determines the weights of the inputs.

1.4 Implementation of Boolean binary functions

🕮 1.4.1

At the beginning of the era of neural networks, it was assumed that they would be
able to simulate Boolean binary functions. Although of course it is not a priority of
NN to simulate them, we can show several interesting properties of a logic neuron
on this problem.

Let us therefore assume one logic neuron with two inputs, two weights and a bias.
The activation function is a simple staircase function.

In our neuron, the weights are set as follows w1 = 1; w2 = 1 and bias w0 = -1.5.

Introduction to Neural Networks | FITPED AI

22

If we input the numbers x1 = 0 and x2 = 1, then we calculate the result of the neuron
as follows:

After inputting 0 and 1, we get the result 0. The artificial neuron probably implements
the AND logical function.

The value tables of the logical AND function are known

For correctly set weights of a neuron implementing the AND function, it is therefore
necessary that:

This inequality expresses the first row of the logic function table. The left side of the
inequality must be less than zero, because only in this case the activation step
function will give us a result equal to 0.

In this way, we create inequalities for each row of this table. To set the correct
weights, it is necessary to solve a system of inequalities (inequalities for all 4 rows
of the table)

Introduction to Neural Networks | FITPED AI

23

The solution to this system of inequalities is, for example, the values:

 w1 = 1, w2 = 1 and w0 = -1,5.

In this way, we found the weights of the artificial neuron. (w1 = 1, w2 = 1 a w0 = -1,5),
for which it will implement a logical function AND.

📝 1.4.2

What is required for an artificial neuron to implement the logical AND function?

• A system of inequalities must be solved to determine appropriate weights
and bias.

• The neuron must have at least three inputs and no bias.
• The activation function must always be linear.
• The weights must be negative to simulate logical functions.

🕮 1.4.3

Similarly, it is possible to find the weights of the neuron for the implementation of
other Boolean functions. For example for the OR function it can be scales: w1 = 1, w2
= 1 and w0 = -0,5),

Introduction to Neural Networks | FITPED AI

24

📝 1.4.4

What weights and bias allow an artificial neuron to implement the logical OR
function?

• w1=1,w2=1,w0=−0.5
• w1=2,w2=1,w0=−1
• w1=0,w2=0,w0=−0.5
• w1=1,w2=0,w0=−1.5

🕮 1.4.5

However, there are also Boolean functions that cannot be simulated by a logic
neuron. An example of such a function is, for example, a function XOR.

Introduction to Neural Networks | FITPED AI

25

In the case of this function, it is necessary to solve the following inequalities:

if we mark

we get:

However, this system of equations has no solution. Since h is a positive number, w2
and w1 are greater than h. Therefore, their sum cannot be less than h.

It means that the Logical XOR function can NOT be implemented by a single neuron.

Introduction to Neural Networks | FITPED AI

26

📝 1.4.6

Why can't the logical XOR function be implemented by a single neuron?

• A single neuron cannot separate the XOR function’s inputs using a linear
decision boundary.

• XOR requires negative weights, which a single neuron cannot handle.
• XOR is not a Boolean function, so it cannot be represented by a neuron.
• The XOR function requires more than two inputs, which a single neuron

cannot process.

🕮 1.4.7

The logical function XOR belongs to the so-called linear non-separable functions.

Definition:

The Boolean function f(x1, x2,..., xn) is linearly separable if there is such a plane w1x1 +
w2x2 + ...+ wnxn - J = 0, that separates the space of input activities such that there are
vertices in one part of the space rated 0, while in the other part of the space the
vertices are rated 1.

Theorem: A logic neuron is able to simulate only those Boolean functions that are
linearly separable.

🕮 1.4.8

The question remains how to solve the XOR problem. In the case of Boolean
functions, Boolean algebra tells us that a Boolean function can be rewritten in
conjunctive clauses. Conjunctive clauses can be expressed by one logical neuron.
We combine the outputs from these neurons into a disjunction using a neuron.

Introduction to Neural Networks | FITPED AI

27

We can attribute the XOR function as follows:

Only AND, OR and NOT functions are used in its transcription. All can be expressed
by a single neuron. We can thus create the following network:

This is how any Boolean function can be accessed. The sentence applies:

Any Boolean function f is simulated using a 3-layer neural network.

3-layer neural networks containing logic neurons are universal computing devices for
the domain of Boolean functions.

📝 1.4.9

How can the XOR problem be solved using neural networks?

• By adding more layers to the neural network to create non-linear decision
boundaries.

• By using multi-layer neural networks with non-linear activation functions.
• By using a single-layer perceptron with a linear activation function.
• By using a single neuron with the correct weights and bias.

Perceptron and Supervised
Learning

Chapter 2

Perceptron and Supervised Learning | FITPED AI

29

2.1 Perceptron

🕮 2.1.1

The main objection to an artificial neuron (as defined by McCulloch and Pitts) is that
it is not capable of learning, its parameters (weights and threshold coefficients) are
fixed so that the neuron performs the required Boolean function (logical conjunction
or conjunctive clause). Neural networks constructed from these neurons are
designed to also perform a Boolean function of general form.

However, the neuron can also be taught. During active dynamics, the neuron
performs the transformation of the input vectors to the output value. The parameters
of the neuron are constant at this moment. On the other hand, adaptive dynamics is
a process whose task is to set these parameters of the neuron so that the neuron
performs the required transformation. The parameters that are adapted during the
neuron's learning are usually only the weights of the input synapses of the neuron,
including the synapse representing the threshold.

Frank Rosemblatt (1928 - 1969) included learning in the construction of the
McCulloch and Pitts-type neuron. Weight coefficients and threshold coefficients
were considered variable parameters of the "model", which are set by the learning
process.

📝 2.1.2

What is the main limitation of the McCulloch and Pitts artificial neuron?

• Its parameters (weights and thresholds) are fixed and cannot be changed.
• It can only perform logical conjunctions and cannot handle other Boolean

functions.
• It is incapable of performing Boolean functions.
• It cannot perform transformations without learning.

🕮 2.1.3

Frank Rosemblatt's neuron was named Perceptron. It was inspired by the human eye.
He modeled perception - perception, sensation, ability to perceive.

Its task was to recognize individual recorded characters using optical sensors
arranged in a 20x20 array of elements. The basic goal of the adaptation process of
the perceptron is to set the weighting coefficients of the connections so that the
activities of neurons from the third layer (response area) correctly classify the image
falling on the retina. Regardless of the original meaning, the term perceptron is used

Perceptron and Supervised Learning | FITPED AI

30

for all feedforward neural networks, i.e. networks with a layered arrangement of
neurons and one-way signal propagation from input to output.

Rosemblatt's Perceptron

Weight coefficients and threshold coefficient are real variable parameters

📝 2.1.4

What is true about Frank Rosenblatt's perceptron?

• It was inspired by the human eye and modeled perception.
• The perceptron is now used to refer to all feedforward neural networks.
• The perceptron’s primary task was to classify images falling on the retina.
• It uses a multi-layered arrangement of neurons and bidirectional signal

propagation.

🕮 2.1.5

The "scales" or "weights" of a neuron represent its memory. Learning happens when
an adaptation algorithm adjusts these weights. This process typically occurs in
steps, where the algorithm uses a set of input-output pairs (examples) to learn from.
The algorithm tries to find the best way to transform inputs into outputs by analyzing
known examples.

In a way, the adaptation algorithm works similarly to how humans solve problems by
drawing on past experiences. It seeks the best transformation that maps input
vectors to output vectors, hoping that this solution will work for new, unseen
examples in the future.

Neural networks are powerful because they can find solutions to problems that are
difficult or even impossible to solve analytically, as long as they have enough

Perceptron and Supervised Learning | FITPED AI

31

examples. However, the main challenge is that the learned transformation is
embedded within the network structure and cannot always be easily explained

📝 2.1.6

What is the role of the weights in a neuron?

• They represent the memory of the neuron and store learned information.
• They represent the input values to the neuron.
• They are used to create the output values directly.
• They represent the input-output transformation of the entire network.

🕮 2.1.7

Adaptation algorithms in neural networks can be broadly classified into two
categories: supervised learning and unsupervised learning. These two approaches
handle learning in different ways:

Supervised learning

In supervised learning, we are given a finite, countable set of input-output pairs.
These pairs consist of an input vector x and its corresponding correct output yd. This
means we already know the desired behavior of the system for each input. A
countable finite set M of pairs x and yd is available, which represent the inputs and
the corresponding correct outputs of the solved task.

The goal is to teach the neural network how to transform input vectors into the
correct output vectors by providing it with many examples of correct
transformations. The set of all available values thus represents a known part of the
system's behavior. This set is then used by the adaptive algorithm to train the
network and also to verify its function. The set M of all available data is divided into
two parts:

• training set is used to train the neural network by adjusting the weights
based on the input-output pairs

• test set is used to evaluate the performance of the network after training to
ensure it can correctly generalize to new, unseen examples

• The ratio between the size of the training and test sets can vary depending
on the specific task or dataset.

Perceptron and Supervised Learning | FITPED AI

32

Unsupervised learning

In unsupervised learning, the neural network is provided with only input data without
any known correct outputs. The goal here is to allow the network to find patterns,
groupings, or structures within the data on its own, without direct guidance from a
labeled dataset.

📝 2.1.8

Which statements are true about supervised learning in neural networks?

• Supervised learning requires both input data and corresponding correct
outputs.

• The available data is divided into a training set and a test set.
• In supervised learning, the network tries to find patterns in data without

labeled examples.
• The ratio of the training set to test set is fixed in supervised learning.

🕮 2.1.9

Training a neuron (or a feedforward neural network) generally happens in steps,
which are repeated iteratively. Here’s how it works:

• Iterative training process - the algorithm begins by presenting individual
examples (input patterns) from the training set to the neuron. For each input,
the neuron computes an output. Based on this output, the algorithm adjusts
(or corrects) the weights of the neuron to make the output closer to the
desired value. This process is repeated multiple times over all the patterns in
the training set.

• One complete pass through all the examples in the training set is called a
learning epoch. After each epoch, the weights have been adjusted based on
the entire dataset, and the neuron has learned from all the training examples
once.

• Stopping criteria - the training process doesn’t go on forever. Stopping
adaptation is most often achieved: achieving the desired small error of the
transformation, by stopping the transformation error from falling, by reaching
the maximum number of epochs.

• Test set for evaluation - to ensure that the neuron or network has
generalized well (i.e., it can perform accurately on new, unseen data), we use
a test set. This is a separate dataset that was not used during training.
During the training process, the performance of the network is periodically
tested on this set. If the network's performance on the test set starts to
worsen as training continues, it may be a sign that the network is overfitting
(becoming too specialized to the training set) and should stop training.

Perceptron and Supervised Learning | FITPED AI

33

📝 2.1.10

What is the main purpose of a test set during the training of a neural network?

• To evaluate the performance of the network during training and ensure
generalization.

• To train the network by providing additional examples.
• To calculate the error after each epoch.
• To adjust the weights of the neurons during training.

🕮 2.1.11

Iterative learning of a neuron with a teacher follows these typical steps:

1. Preprocessing of input data - the input data is prepared and transformed
into a suitable form for the neural network.

2. Defining the training and testing sets - a set of examples (input-output pairs)
is split into a training set (for learning) and a test set (for evaluation).

3. Defining the network structure/neuron parameters - the architecture of the
network and the initial parameters (such as the number of neurons, layers,
and other configurations) are decided.

4. Initializing neuron weights - the weights of the neuron are typically set to
random values initially.

5. Set learning epoch counter - the counter for the number of learning epochs,
n=0n = 0n=0, is initialized.

The learning epoch

Each learning epoch involves several steps:

• Set epoch number - increment the learning epoch counter n=n+1n = n +
1n=n+1 and check if the number of epochs has reached a maximum limit.

• Select input vector - a single input vector is selected from the training set.
This can be done either deterministically or randomly.

• Obtain neuron response - the neuron produces an output based on the input.
• Evaluate classification error - the actual output is compared with the

expected output to calculate the classification error.
• Adjust weights - based on the error, the weights of the neuron are adjusted

to improve its response.
• Repeat for all inputs - if all inputs from the training set haven’t been tested

yet, the process repeats by selecting the next input vector.
• End of epoch evaluation - at the end of the epoch, the total error across the

training set is evaluated. If the error is below the desired threshold, the
learning stops.

Perceptron and Supervised Learning | FITPED AI

34

• If the error is insufficient or the performance is not satisfactory, the
algorithm may return to earlier steps (like adjusting the network parameters
or reinitializing weights) and continue learning.

📝 2.1.12

Which steps are involved in a learning epoch of a neuron?

• Select one input vector from the training set.
• Obtain the response of the neuron and adjust weights.
• Evaluate the test set error.
• Preprocess the input data.

2.2 Hebbian learning

🕮 2.2.1

Hebbian learning is one of the most basic and intuitive learning rules for artificial
neurons with binary inputs and outputs. It was proposed in 1949 by Canadian
psychologist Donald Hebb while studying conditioned reflexes in the brain. Hebb's
hypothesis was centered around how neural connections strengthen or weaken
based on the timing of their activation, leading to the development of a fundamental
learning principle used in artificial neural networks today.

Hebb's theory posits that:

• Conditioned reflexes - in the brain, conditioned reflexes form when the
connections between individual neurons either strengthen or weaken based
on their activation patterns.

• Simultaneous activation - when two neighboring neurons are active at the
same time (i.e., both neurons are excited), the connection between them
becomes stronger. This is the principle of "cells that fire together, wire
together."

• Discordant activation - if the neurons are activated at different times (i.e., not
in sync), the connection between them weakens.

For an artificial neuron following Hebb's rule:

• If an input neuron is excited and the output neuron also responds
appropriately (firing), the weight of the input is increased (strengthened).

• If the output neuron does not fire in response to the input neuron, the
connection between them is weakened.

Perceptron and Supervised Learning | FITPED AI

35

This means that the network adapts its weights based on correlations between the
input and output activities. If an input consistently leads to the correct output, its
associated weight increases, reinforcing the connection. Conversely, incorrect or
unrelated activations weaken the connection.

📝 2.2.2

Which of the following is a key idea of Hebbian learning?

• Neurons become stronger if they activate at the same time.
• Neurons that activate together strengthen their connection.
• Neural connections weaken when two neurons activate simultaneously.
• Learning is based on explicit feedback from the output.

🕮 2.2.3

If two neurons are active at the same time, they should have a greater degree of
mutual interaction than neurons whose activity does not show correlation. In such a
case, their interaction should be either zero or very small.

This means in practice that the synapses (weights) between neurons are
strengthened if the activity of the input neuron leads to the activity of the neuron on
the output side of the synapses.

For a neuron with binary input x, weights w, output y and predicted output yd,the Hebb
rule can be written as:

• If the neuron is activated correctly (y = 1; yd = 1), then in the next step n + 1
the wi connections that caused this activation will be strengthened by the
value ∆

• If the neuron is not activated correctly (y = 1; yd = 0), the connections that
caused this activation are weakened by the value ∆

• If the neuron is not activated (y = 0), the weights s do not change (nothing
happens)

Perceptron and Supervised Learning | FITPED AI

36

📝 2.2.4

According to Hebbian learning, what happens when a neuron is correctly activated?

• The synaptic weights between the neurons are strengthened.
• The synaptic weights between the neurons are weakened.
• The synaptic weights between the neurons remain unchanged.
• The output of the neuron can be ignored.

🕮 2.2.5

Another originally heuristic rule that is also applicable to general real inputs and
outputs of a neuron is the Delta rule. The Delta rule is an important learning rule for
adjusting the weights of neurons in a neural network. It is specifically used for linear
neurons and is based on minimizing the difference between the actual output and
the predicted output (the error).

The general form of the Delta rule is:

Δwi = μ ⋅ (yd − y) ⋅ xi

Where:

• Δwi is the change in the weight,
• μ is the learning rate constant, which controls the speed of adaptation (its

value lies between 0 and 1),
• yd is the desired output,
• y is the actual output of the neuron,
• xi is the input to the neuron.

In the Delta rule, the weight is updated based on the error (yd−y). If the output is close
to the desired output, the weight changes very little, and if the output is far from the
desired value, the weight change is larger. This helps the neuron "learn" from its
mistakes and gradually improve its performance.

The delta rule applies exactly to linear neurons, i.e. neurons with a linear activation
transfer function, but after modification it is also applicable to neurons with a
nonlinear activation transfer function.

The Delta rule can be slightly simplified by formula:

wi
n+1 = win + μ ⋅ (yd−y)

Where:

Perceptron and Supervised Learning | FITPED AI

37

• wi
n+1 is the updated weight after the learning step.

• wi
n is the current weight before the learning step.

• μ is the learning rate, a constant that controls how much the weights are
adjusted, it is a suitably chosen constant from the interval (0,1) affecting the
adaptation speed.

• yd is the desired output (target output).
• y is the actual output produced by the neuron.

Explanation:

• The current weight w i
n+1 is adjusted by an amount proportional to the error

(yd−y). This error represents the difference between the desired output yd and
the actual output y produced by the neuron.

• The weight change is scaled by the learning rate μ, which controls how large
the weight update will be.

• This update rule makes the weights move in the direction that reduces the
error between the actual and desired outputs.

• If the neuron is incorrectly activated, the weight is adjusted to reduce the
error in future predictions.

• If the neuron is correctly activated, the weight doesn't change significantly
(but still adjusts by a small amount, if necessary).

📝 2.2.6

In the Delta rule, what does μ control?

• The speed of weight adjustment.
• The number of training epochs.
• The output of the neuron.
• The size of the training set.

🕮 2.2.7

We will use Hebbian learning in perceptron training. It is intended for dichotomous
classification, i.e. splitting into two classes, where the classes are assumed to be
linearly separable in the example space. There is a possibility to separate objects in
the example space using a hyperplane, for example: a straight line in 2-dimensional
or a plane in 3-dimensional space.

Perceptron and Supervised Learning | FITPED AI

38

A neural network is a dynamic system, that is, a time-dependent system. We will talk
about the state of the neuron in time t or in time t+1.

The separating hyperplane is given by the equation:

Perceptron and Supervised Learning | FITPED AI

39

🕮 2.2.8

The learning process is a search for appropriate synaptic weights. From a practical
point of view, let's note:

w(t) = (w0(t), w1(t), w2(t), ...,wn(t))

x(t) = (x0(t), x1(t), x2(t), ...,xn(t))

where n is the number of neurons of the associative layer.

In the case of zero input, it holds that w0(t) = b and x0(t) = 1

Assume a training sample of vectors:

(x(1),y(1)), (x(2),y(2)), ... (x(m),y(m)),

where

y(t) = 1 if x(t) is from class 1 (CL1)

y(t) = -1 if x(t) is from class2 (CL2)

📝 2.2.9

In the context of a neural network, what does the bias weight w0(t) typically
represent?

• A fixed value that adjusts the output of the neuron.
• The synaptic weight for the first input neuron.
• The output of the neuron.
• The number of neurons in the layer.

Perceptron and Supervised Learning | FITPED AI

40

🕮 2.2.10

Perceptron learning algorithm

• Initialization of weights - set initial weights w(t) = (w0, w1, w2 ,..., wn), typically
to small random values, and set the bias w0 to a small random value or zero.

• If the input vector x(t) is correctly classified by w(t), then the weights do not
change - this means if the output of the perceptron is equal to the expected
output (i.e., y(t)=yd(t), no weight adjustment is needed.

• If the input vector x(t) is misclassified update the weights based on the error
between the predicted output y(t) and the desired output yd(t). Weight update
rule: w(t+1) = w(t) + η(yd(t)−y(t)) x(t) where η is the learning rate, yd(t) is the
desired output, y(t) is the predicted output, and x(t) is the input vector.

• Repeat the process for all training examples - after each input vector
x(t)x(t)x(t) is processed, the weights are updated if necessary. After
processing all the training examples (an epoch), check for convergence: If
the perceptron correctly classifies all examples, stop training.

• Terminate when convergence is achieved - if the weights have been updated
and the perceptron correctly classifies all training examples after an epoch,
stop the learning process.If convergence is not reached, repeat steps 2–4
until all examples are correctly classified.

📝 2.2.11

What happens when an input vector x(t) is correctly classified by the perceptron
during the learning process?

• The weights do not change.
• The weights are updated.
• The training is stopped.
• The bias is set to zero.

Perceptron and Supervised Learning | FITPED AI

41

🕮 2.2.12

Perceptron convergence theorem

The Perceptron convergence theorem states that, for a given training set of vectors
XXX that can be divided into two distinct classes, CL1 and CL2, which are linearly
separable, the perceptron algorithm will always converge after a finite number of
mistakes.

Key principles:

• Linearly separable data - there exists a hyperplane (a straight line in 2D, or a
plane in 3D) that can separate the two classes (CL1 and CL2) perfectly.

• Mistakes during training - the perceptron learns by adjusting its weights
every time it makes a mistake. The number of mistakes corresponds to the
number of times the perceptron misclassifies an example.

• Convergence - after making a finite number of mistakes, the perceptron will
reach a point where no further mistakes are made, and its weights will no
longer change. This means the perceptron will have learned to reliably
classify the vectors into their correct classes.

How the theorem works:

1. Training process - the perceptron receives input vectors from the training set
and classifies them. If the classification is correct, the weights stay the
same. If the classification is incorrect, the weights are adjusted according to
the error.

2. Convergence condition - the perceptron will continue to adjust the weights
until it no longer makes mistakes on the training set. This happens because
the training data is linearly separable, and the perceptron is capable of
finding a hyperplane that separates the classes without any further mistakes.

Practical implication

• When the perceptron converges, it means that the weights have adjusted in
such a way that the perceptron can now reliably classify all examples in the
training set correctly.

• The convergence is guaranteed only if the data is linearly separable. If the
data cannot be separated by a straight line (or hyperplane), the perceptron
will not converge.

Perceptron and Supervised Learning | FITPED AI

42

📝 2.2.13

What does the Perceptron convergence theorem guarantee?

• The perceptron will converge to a state where it no longer makes mistakes
on a linearly separable dataset.

• The perceptron will always reach a state of zero error on any dataset.
• The perceptron will converge faster if the data is not linearly separable.
• The perceptron will eventually classify all data points as the same class.

2.3 Practical example

🕮 2.3.1

In a practical example, we will create a perceptron for fruit classification into two
classes C1 and C2. We will adjust the weights of the perceptron using Hebb learning
based on examples from the training set.

This contains two examples (121; 16.8), (114; 15.2) from the first class C1 and two
examples (210; 9.4), (195; 8.1) from the second class C2. The first value in each
training example represents the weight of the fruit (in grams), the second its length
(in cm).

We can visualize the training set.

Perceptron and Supervised Learning | FITPED AI

43

If we knew the correct setting of the weights, then it is obvious that I will also be able
to correctly classify any fruit. Assume that we know the correct setting of the scales.

For this setting of weights, we can even determine a separating hyperplane that
separates examples of one class from another.

Perceptron and Supervised Learning | FITPED AI

44

With the correct setting of the scales, it is then easy to classify new unknown fruits.
For example, I classify fruit with a weight of 140g and a length of 17.9 cm. By simply
transferring the vector (140; 17.9) to the input of the perceptron, we can perform the
calculation.

The perceptron result classified our input example (unknown fruit) into class C1.

Perceptron and Supervised Learning | FITPED AI

45

🕮 2.3.2

The question remains how to correctly set the weights and bias value for the
perceptron. In the step element, we set the weight values as follows w1 = -30; w2 =
300 and bias w0 = -1230

Subsequently, I will go through all examples of the training set and implement
Hebbian learning.

Let's take the first example of the training set (121; 16.8), find out the response
(result) of the neuron and compare the result with the value +1 to find out if it is
necessary to adjust the weights. Comparing the result with the value +1 is important
because the first example is to be classified in class C1, i.e. the result must be +1.

The result of the perceptron is +1, the example belongs to C1, i.e. the actual result
should have been +1 as well. For this reason, there is no need to adjust the weight.

In the case of the second example, however, we find that it is necessary to adjust the
weights.

Perceptron and Supervised Learning | FITPED AI

46

We adjust the weights by applying the following formulas.

🕮 2.3.3

During perceptron learning, we used four examples of the training set to adjust the
weights by successively feeding them to the input of the perceptron, and in case of
a wrong result, we adjusted the weights using Hebbian learning. If we fed all the
examples to the input of the perceptron and adjusted the weights if necessary, we
realized one epoch of learning.

Perceptron and Supervised Learning | FITPED AI

47

For the following four training examples

In the second epoch, we can implement the following steps:

1.

Perceptron and Supervised Learning | FITPED AI

48

2.

3.

Perceptron and Supervised Learning | FITPED AI

49

4.

Note that we have not changed any weights in this epoch. It is obvious that if we were
to implement other epochs, nothing would change. So we found the right balance
setting.

We can define a separating hyperplane for this weight setting

Perceptron and Supervised Learning | FITPED AI

50

📝 2.3.4

For the previous example, we will create a simple source code. The only library we
will need is numpy.

from numpy import array

We will work with known training data.

We will copy these into the array training_data

from numpy import array

training_data = [

 (array([121,16.8]), 1),

 (array([114,15.2]), 1),

 (array([210,9.4]), -1),

 (array([195,8.1]), -1),

]

print(training_data)

Program output:
[(array([121. , 16.8]), 1), (array([114. , 15.2]), 1),

(array([210. , 9.4]), -1), (array([195. , 8.1]), -1)]

We define a signed (step) function.

def activation_fn(x):

 if x>=0:

 return 1

 else:

 return -1

In the general solution, we set the initial values of weights and bias randomly. In our
example, we will set these values directly, according to the previous settings.

Perceptron and Supervised Learning | FITPED AI

51

we set weights

w = array([-30,300])

b = -1230

eta = 0.01

In our example, for the sake of clarity, we will create only one epoch, i.e. we
recalculate the training set only once.

print('current weights: ' , w)

print('bias: ', b)

for i in range(0, 4):

 print('---')

 x, y = training_data[i]

 print('training data: ' , x , ', result: ', y)

 internal_energy = ((x * w).sum()) + b

 print('internal energy: ',internal_energy)

 prediction = activation_fn(internal_energy)

 print('prediction: ',prediction)

 error = y - prediction

 if (error != 0):

 print('needed to change weights')

 w = w + (eta * error * x)

 b = b + (eta * error * 1)

 print('current weights: ' , w)

 print('bias: ', b)

Program output:
current weights: [-30 300]

bias: -1230

training data: [121. 16.8] , result: 1

internal energy: 180.0

prediction: 1

current weights: [-30 300]

bias: -1230

training data: [114. 15.2] , result: 1

internal energy: -90.0

prediction: -1

needed to change weights

current weights: [-27.72 300.304]

bias: -1229.98

Perceptron and Supervised Learning | FITPED AI

52

training data: [210. 9.4] , result: -1

internal energy: -4228.3224

prediction: -1

current weights: [-27.72 300.304]

bias: -1229.98

training data: [195. 8.1] , result: -1

internal energy: -4202.9176

prediction: -1

current weights: [-27.72 300.304]

bias: -1229.98

For completeness, we also calculate a straight line as a separating hyperplane given
by the correct setting of weights and bias

def line(x):

 y = (w[0]*x + b)/(w[1]*(-1))

 return y

We draw the separating hyperplane graphically.

%matplotlib inline

import matplotlib.pyplot as plt

from matplotlib.colors import ListedColormap

cm = plt.cm.RdBu

cm_bright = ListedColormap(['#FF0000', '#0000FF'])

ax = plt.subplot()

ax.set_title("Result")

Plot the training points

#ax.scatter(x[:, 0], x[:, 1], c=q, cmap=cm_bright)

for x, expected in training_data:

 if expected==1:

 pattern='r'

 else:

 pattern='b'

 print(x[0])

 ax.scatter(x[0], x[1], color=pattern)

plt.plot([110,220],[line(110),line(220)])

Perceptron and Supervised Learning | FITPED AI

53

#plt.plot([25,200],[50,200])

plt.show()

print(line(110))

print(line(220))

Program output:
/home/johny/.local/lib/python3.9/site-

packages/matplotlib/projections/__init__.py:63: UserWarning:

Unable to import Axes3D. This may be due to multiple versions

of Matplotlib being installed (e.g. as a system package and as

a pip package). As a result, the 3D projection is not

available.

 warnings.warn("Unable to import Axes3D. This may be due to

multiple versions of "

121.0

114.0

210.0

195.0

14.249493846235817
24.40320475251745

The last step will be to use the trained values to predict the unknown fruit

def estimate(vector):

 internal_energy = ((vector * w).sum()) + b

Perceptron and Supervised Learning | FITPED AI

54

 prediction = activation_fn(internal_energy)

 return prediction

In the case of a fruit that is 180 g and 10 cm, we can find out that it belongs to the
second class C2

vector = array([180,10])

print(estimate(vector))

Program output:
-1

In the case of a fruit that is 140 g and 20 cm, we can find that it belongs to the first
class C1

vector = array([140,20])

print(estimate(vector))

Program output:
1

Feedforward Neural
Network

Chapter 3

Feedforward Neural Network | FITPED AI

56

3.1 Single layer perceptron

🕮 3.1.1

The activation function of a neuron determines how the neuron processes input
signals to produce an output. It is a mathematical function applied to the input sum
(ini(t)) received by the neuron.

The state of a neuron i is defined by the variable yi, expressed as:

yi = f(ini)

where, f() represents the activation function.

The common activation functions is signed (step) function defined as:

yi = f (ini) = 1 if ini >= 0 or 0 if ini < 0

Function produces binary outputs (e.g., -1 or 1, or 0 and 1) and can be used for simple
decision-making tasks.

However, as well as the signed function, we can also use other functions, e.g. linear
function.

yi = f (ini) = ini

which produces continuous outputs. It is suitable for tasks where outputs need to
vary proportionally with inputs.

We can visualize the graphs of both functions:

Feedforward Neural Network | FITPED AI

57

These activation functions play a key role in determining how a single-layer
perceptron operates. While the step function is often used in classification tasks, the
linear function can be helpful for regression or less complex relationships.

📝 3.1.2

Which activation function is commonly used in perceptrons for binary classification
tasks?

• Step Function
• Linear Function
• Exponential Function
• Sigmoid Function

🕮 3.1.3

In addition to the step function and linear function, other activation functions are
often employed in neural networks for their unique properties.

A piecewise linear function

The piecewise linear function is defined by different linear equations over specific
intervals of the input. We can define it for example as:

where for inputs greater than 1/2, the output saturates at 1, for inputs smaller than
−1/2, the output saturates at -1 and for inputs between −1/2 and 1/2, the output is
linear and proportional to the input.

The graph of this function has three distinct regions:

• A flat line at y=1 for inputs above 1/2
• A linear slope between y=−1/2 and y=1/2
• A flat line at y=−1 for inputs below −1/2.

This piecewise function can be used in networks where we want bounded outputs
while preserving some level of proportionality for intermediate input values. It offers

Feedforward Neural Network | FITPED AI

58

a balance between sharp decision boundaries (step functions) and smoothness
(sigmoidal functions).

📝 3.1.4

What is the output of the piecewise linear activation function if the input ini = 0?

• 0
• 1
• -1
• -1/2

🕮 3.1.5

Sigmodial function

The sigmoidal function is a smooth and differentiable function, commonly used in
neural networks due to its useful properties in the learning process. The
mathematical form of the sigmoidal function with your specified exponent is:

where α is a positive constant that controls the slope or steepness of the curve.
Higher values of α result in a sharper transition between the outputs.

Output values range is from 0 to 1, making it ideal for probabilistic interpretations.
The function is smooth and differentiable, which is crucial for gradient-based
learning algorithms.

Graph at ini = 0, the function's output is 0.5, as ini→∞ f(ini)→1 and as ini→−∞,
f(ini)→0.

This function is very often used in feedforward neural networks. The function is
"smooth", this feature is very important for setting the weights in the learning
process. A smooth function is differentiable.

Feedforward Neural Network | FITPED AI

59

📝 3.1.6

What is the effect of increasing the parameter α in the sigmoidal function?

• It sharpens the transition between low and high output values.
• It increases the range of output values.
• It reduces the smoothness of the function.
• It decreases the maximum output value.

🕮 3.1.7

We already know that a learning neuron alone can solve linearly separable problems.
We also know that for other types of problems, neurons can be connected into neural
networks.

Conceptually, the simplest network is the Single Layer Perceptron. These are M
independent, parallel working neurons. Thus, each of these neurons realizes the
transformation of the input vector to the output value independently of the other
neurons.

From the point of view of organizational dynamics, the network consists of N neurons
of the input layer and a layer of M output neurons. Both layers are fully connected to
each other when every j-th output neuron is connected to all input neurons.

In the course of active dynamics, the network generally realizes the display from
Rn→Rm,which was set during the adaptation dynamics. The specific values of the
output values are given by the activation transfer functions of the output neurons,
that is, for example, in the case of sigmoidal activation functions approximating a
sharp nonlinearity, it is the realization of the display from Rn→(0,1)m

Feedforward Neural Network | FITPED AI

60

📝 3.1.8

What is the key characteristic of a single layer perceptron network?

• It is made up of multiple independent neurons, with each output neuron
connected to all input neurons.

• It can solve any type of problem, whether linearly separable or not.
• It consists of a single neuron capable of solving complex problems.
• It does not require adaptation dynamics to perform transformations.

🕮 3.1.9

Let's consider the classification possibilities of a single-layer perceptron. If we
consider the mapping Rn→{0,1}m, .e. the classification mapping into two classes, we
can find m separating hyperplanes in space, one for each neuron of the output layer.

However, the mere multiplication of neurons in the output layer does not bring any
change in classification possibilities compared to a simple perceptron, because the
neural network lacks the possibility to further combine the outputs of individual
neurons and thus enable classification into several classes.

For illustration, we present a graphic representation of the classification of the
perceptron into the mentioned four classes.

Feedforward Neural Network | FITPED AI

61

📝 3.1.10

Why does a single-layer perceptron have limited classification capabilities?

• Its neurons work independently without combining their outputs.
• It can only use a step activation function.
• It cannot classify into more than two classes.
• Adding more output neurons exponentially increases complexity.

🕮 3.1.11

Non-linearity in real problems

Many real-world problems are inherently non-linear, meaning their solutions cannot
be found by simple linear boundaries or transformations. Single-layer perceptrons
are insufficient for such problems as they rely solely on linear classification. To
address this limitation, the development of more complex neural network
architectures became essential.

A major breakthrough occurred in 1986 when Rumelhart, Hinton, and Williams
introduced the error backpropagation method. This training rule revolutionized neural
networks by enabling the adjustment of weights in feedforward networks with hidden
layers. These hidden neurons allow networks to learn complex patterns and solve
non-linear problems, greatly expanding their application.

Multilayer feedforward artificial neural networks (ANNs) trained with
backpropagation are particularly powerful. In these networks, neurons are organized
in layers, with each layer fully connected to the next. Signals are passed only in one
direction-forward-from the input layer to the output layer. There are no backward or
intra-layer connections. This structure ensures efficient processing and is the

Feedforward Neural Network | FITPED AI

62

foundation of many modern neural network models used in complex problem-
solving.

📝 3.1.12

What key feature allows multilayer feedforward networks to solve non-linear
problems?

• The presence of hidden layers with neurons.
• The use of step activation functions in neurons.
• Connections within the same layer.
• The ability to classify linearly separable problems.

🕮 3.1.13

Multilayer perceptron

The first typical feedforward multilayer neural network is the Multilayer perceptron
(MLP). It is composed of multiple layers of neurons, where adjacent layers are fully
connected. This means that each neuron in one layer connects to every neuron in the
next layer, ensuring comprehensive communication between layers. Importantly,
there are no connections within the same layer.

The structure of the MLP includes an input layer, one or more hidden layers, and an
output layer. The number of neurons in the hidden layers is determined by the nature
of the task and usually falls between the number of neurons in the input and output
layers. Each layer processes the input it receives and passes the output to the next,
realizing a mapping from Rn to Rm. This enables the MLP to handle complex
transformations and tasks.

he activity in an MLP progresses in discrete steps. During each step, the outputs of
the neurons in a given layer are calculated simultaneously. For a neuron in layer k, its
output depends on the weighted inputs from all neurons in the previous layer,
summed and passed through an activation function. The dimension n of the input
vector corresponds to the number of neurons in the input layer and dictates the
structure of subsequent layers.

The number of neurons in the hidden layers can be different, it is chosen according
to the nature of the solved task, usually in the range between the number of input and
output neurons.

Feedforward Neural Network | FITPED AI

63

A multi-layer perceptron realizes the mapping Rn→Rm

The activity takes place in steps k, while the outputs of the j-th neurons in layer k are
calculated in parallel according to the known relationship:

where n expresses the dimension of the input vector as well as the number of
neurons in the k-th layer

📝 3.1.14

What determines the number of neurons in the hidden layers of a Multilayer
Perceptron?

• The nature of the task being solved.
• The dimension of the input vector.
• The number of neurons in the output layer.
• The number of connections within a layer.

3.2 Adaline and Madaline

🕮 3.2.1

In practice, instead of a simple perceptron, a continuous perceptron is often used,
the so-called Adaline (Adaptive Linear Neuron).

Feedforward Neural Network | FITPED AI

64

Adaline and Simple Perceptron have the same topology, but different learning
method as well as the overall focus of the NN. It was described by Widrow and Hoff
in 1960. Similar to the perceptron, it is used for linear classification into two classes.

Perceptron uses class labels to learn weight values. Adaline uses continuous values
(based on the input) to figure out the weight values, which is "stronger" because it
tells us "by how much" we classified correctly or incorrectly. Adaline's learning
algorithm is different. It uses the so-called gradient learning method. The
requirement is that the learning behavior is as similar as possible to the overall
behavior of the teacher.

📝 3.2.2

What is the primary difference between Adaline and the Simple Perceptron?

• Adaline uses continuous values, while the Simple Perceptron uses class
labels for learning weights.

• Adaline has a different network topology than the Simple Perceptron.
• Adaline uses class labels, while the Simple Perceptron uses continuous

values for learning weights.
• Adaline cannot perform linear classification into two classes.

Feedforward Neural Network | FITPED AI

65

🕮 3.2.3

Madaline neural network

The Madaline neural network (Many Adaptive Linear Neurons) is one of the simplest
feedforward neural networks. It consists of Adaline neurons as its basic building
blocks. These Adaline neurons are responsible for the initial processing, and the
network's primary function is to perform logical operations based on their outputs.

In Madaline, the output signal Y is determined by the logical "OR" function, which is
activated when at least one of the hidden neurons (Z1 or Z2) generates an output
signal. The weights v1, v2, and the bias b3 for the output neuron are fixed with values
of 1/2. The Adaline neurons in the hidden layer use a step activation function to
output either 1 or -1. This network is adapted using the MRI (Multiple Regression
Interpretation) adaptation algorithm, which updates only the input weights
connecting the hidden layer neurons.

The training process involves initializing the weights and biases, then performing
updates based on the error signal between the predicted output and the actual target
output. The algorithm adjusts the weights of the connections leading to the hidden
neurons and their corresponding biases when the network's output does not match
the desired output. This allows the network to learn and improve its classification
abilities.

The basic element is the Adaline neuron. The output signal Y is equal to 1, if at least
one value of the signal coming from the hidden neurons (i.e.Z1, Z2 or both at the same
time).

Madaline uses the MRI Adaptation Algorithm (1960) to adapt only the input weights
to the hidden layer.

The weight values to the output neuron Y are fixed.

Feedforward Neural Network | FITPED AI

66

The output neuron Y performs the logical OR function. The weights v1, v2 and b3 are
fixed, that is:

v1 = 1/2, v2 = 1/2, b3 = 1/2

the activation function for Z1, Z2 and Y is a classic step function (sign function).

We will consider the training patterns [s,t], where s is the input vector and t is the
output signal

The procedure:

1. Initialization of v1, v2 and b3. Initialization of remaining weights - random.
Setting the learning coefficient α

2. For each training pair s:t

• Activate input neurons xi=si
• Calculate the input values of the hidden layers and the actual output value of

Madaline:

z_in1 = b1 + x1*w11 + x2*w21

z_in2 = b2 + x1*w12 + x2*w22

z1 = f(z_in1)

z2 = f(z_in2)

y_in = b3 + z1*v1 + z2*v2

y = f(y_in)

3.Update weight coefficients - network learning:

• If y = t (i.e. the output of the network is equal to the output of the training
pattern), then the weights and biases do not change

• For y ≠ t and t = 1, so for weight values on connections to ZJ (J=1,2):

wiJ(new) = wiJ(old) + alfa * (1 - z_inJ)*xi

bJ(new) = bJ(old) + alfa * (1 - z_inJ)

• For y ≠ t and t = -1, so for weight values on connections to ZJ (J=1,2):

wiK(new) = wiK(old) + alfa * (-1 - z_inJ)*xi

bK(new) = bK(old) + alfa * (-1 - z_inJ)

Feedforward Neural Network | FITPED AI

67

📝 3.2.4

What is the main function of the output neuron Y in the Madaline network?

• It performs the logical "OR" function on the signals from Z1 and Z2.
• It calculates the sum of all inputs from the hidden neurons.
• It performs the logical "AND" function on the signals from Z1 and Z2.
• It combines the outputs from all layers using a weighted sum.

From Shallow Learning to
Deep Learning

Chapter 4

From Shallow Learning to Deep Learning | FITPED AI

69

4.1 Definition of deep learning

🕮 4.1.1

Simple kinds of networks were discussed in previous sections. Structures such as
multi-layer perceptron can be called shallow neural networks (SNNs). ANNs that
have many hidden layers containing weights are called deep neural networks, and the
process of training them is called deep learning. By increasing the number of layers
and making the ANN deeper, the model becomes more flexible and will be able to
model more complex functions. However, to gain this increase in flexibility, you need
more training data and more computation power to train the model.

The term "deep" refers to the number of layers within a neural network. Traditional
machine learning models typically process input data through a small number of
layers, often fewer than a dozen. In contrast, deep learning models can contain
hundreds or even thousands of layers. The use of deep neural networks allows for
the automatic extraction of features at multiple levels of abstraction, which is critical
for processing complex data such as images, audio, and text. By stacking multiple
layers on top of each other, each layer can learn to transform the input data to make
it easier for the next layer to learn a more abstract representation. This process can
continue for many layers, allowing the network to learn highly complex
representations of the input data.

Overall, the term "deep" in deep learning refers to the depth of the neural network,
and the ability of deep neural networks to learn highly complex representations of
the input data.

📝 4.1.2

What does the term "deep" in deep learning primarily refer to?

• The number of layers in the neural network
• The amount of data processed by the network
• The size of each layer in the network
• The computational power required for training

🕮 4.1.3

Both deep neural networks (DNNs) and shallow neural networks (SNNs) are types of
artificial neural networks (ANNs) used for machine learning tasks. They share several
similarities, including:

From Shallow Learning to Deep Learning | FITPED AI

70

1. Activation functions: Both DNNs and SNNs use activation functions to
introduce nonlinearity into the network, allowing it to model complex
relationships between the input and output.

2. Backpropagation: Both DNNs and SNNs use a backpropagation algorithm to
update the network weights based on the error between the predicted output
and the actual output during training.

3. Gradient descent: Both DNNs and SNNs use gradient descent optimization
algorithms to minimize the error between the predicted output and the actual
output during training.

4. Similar architecture: SNNs and DNNs can have similar architectures, such as
a series of fully connected layers or convolutional layers, followed by a final
output layer.

However, the main difference between DNNs and SNNs is the number of layers they
have. While SNNs typically have only one or two layers, DNNs have many layers,
allowing them to learn more complex and abstract representations of the input data.
Additionally, DNNs require more computational resources and can be more difficult
to train compared to SNNs, due to the larger number of parameters and potential
issues such as vanishing gradients.

📝 4.1.4

Deep neural networks have

• Long training times
• Small number of hidden layers
• Generally worse performance than MLP and are used for simple tasks

📝 4.1.5

What is the primary difference between deep neural networks (DNNs) and shallow
neural networks (SNNs)?

• DNNs have more layers, enabling them to learn more complex
representations of input data.

• DNNs do not use activation functions, while SNNs do.
• SNNs cannot use backpropagation, while DNNs can.
• SNNs require more computational resources compared to DNNs.

From Shallow Learning to Deep Learning | FITPED AI

71

🕮 4.1.6

Misconceptions about deep learning

Deep learning has revolutionized many areas of artificial intelligence, demonstrating
remarkable capabilities in fields such as image recognition, natural language
processing, and more. However, misconceptions about its capabilities and
applications often lead to unrealistic expectations or misuse. Addressing these
misconceptions is crucial for effectively leveraging deep learning in real-world
scenarios.

1. Deep learning can solve any problem: While deep learning has shown
impressive results in many areas, it is not a panacea for all problems. It
works well for problems with large amounts of labeled data, but it may not
be suitable for smaller datasets or problems where data labeling is difficult.

2. Deep learning is a magic bullet: Deep learning requires significant expertise
in data preparation, model architecture design, and hyperparameter tuning. It
is not a magic bullet that can be easily applied to any problem without
careful consideration and experimentation.

3. Deep learning models always outperform other methods: While deep learning
models have shown state-of-the-art performance on many benchmarks, they
are not always the best choice for a particular problem. In some cases,
simpler models or other machine learning techniques may be more effective.

4. Deep learning requires massive amounts of data: While deep learning
models generally perform better with more data, they can also be effective
with smaller datasets or with techniques such as transfer learning or data
augmentation.

5. Deep learning is only for computer science experts: While deep learning does
require a certain level of technical expertise, there are many tools and
libraries available that make it more accessible to researchers and
practitioners without a background in computer science.

📝 4.1.7

Which of the following are common misconceptions about deep learning?

• Deep learning always requires massive amounts of data to work.
• Deep learning can solve any problem.
• Deep learning models always outperform simpler methods.
• Deep learning requires expertise in data preparation and model tuning.
• Tools like TensorFlow and PyTorch have made deep learning more

accessible.

From Shallow Learning to Deep Learning | FITPED AI

72

🕮 4.1.8

Hyperparameters

In deep learning, hyperparameters are parameters that are set before training begins
and are not learned during the training process. Unlike the weights and biases of the
model, which are adjusted during training, hyperparameters remain fixed. They
control the behavior and performance of the model, such as its architecture,
optimization method, and training parameters. Examples of hyperparameters include
learning rate, batch size, and number of epochs:

• Learning rate determines the step size for updating weights during training.
A high learning rate might cause the model to overshoot the optimal point,
while a low rate could slow down the learning process.

• Number of epochs refers to the number of complete passes through the
entire training dataset. More epochs allow the model to learn better but may
increase the risk of overfitting.

• Batch size specifies the number of samples processed together in a single
iteration. Smaller batch sizes provide more updates but require more
computational effort.

Hyperparameters are critical because they influence the training process's efficiency
and accuracy. Incorrect settings can lead to suboptimal models or even training
failures. For instance, setting an inappropriate learning rate can hinder convergence,
while an unsuitable batch size might result in unstable training.

📝 4.1.9

Which of the following statements about hyperparameters in deep learning are true?

• Hyperparameters include learning rate, batch size, and number of epochs.
• Hyperparameters must be set before training begins.
• Hyperparameters are adjusted during training to improve model

performance.
• Hyperparameters directly control the behavior of backpropagation.

🕮 4.1.10

Hyperparameter tuning

Hyperparameter tuning involves finding the optimal values for hyperparameters to
maximize the model's performance on a given task. This process is essential

From Shallow Learning to Deep Learning | FITPED AI

73

because even slight variations in hyperparameters can significantly affect a model's
behavior and outcomes. Common methods for tuning include manual adjustments,
grid search (systematic exploration of all possible combinations), and random
search (randomly sampling combinations).

Some automated approaches, such as Bayesian optimization and genetic
algorithms, help optimize hyperparameters more efficiently by using intelligent
sampling techniques. Additionally, techniques like transfer learning can reduce the
need for extensive tuning by leveraging pre-trained models.

Once training starts, hyperparameters remain unchanged. The weights and biases of
the model are updated during the training process, but hyperparameters such as
learning rate and dropout rate stay constant. If a hyperparameter needs to be
modified, the entire training process must be restarted, emphasizing the importance
of careful selection.

Proper hyperparameter tuning improves training efficiency, reduces overfitting, and
enhances the model's generalization to unseen data. For example, a well-tuned
learning rate ensures quicker convergence, while the appropriate regularization
parameters help prevent overfitting.

📝 4.1.11

Which of the following are true about hyperparameter tuning?

• Transfer learning can reduce the need for extensive hyperparameter tuning.
• Grid search systematically explores possible hyperparameter combinations.
• Hyperparameter tuning is critical for optimizing model performance.
• Hyperparameter tuning adjusts weights and biases during training.

4.2 Tensors

🕮 4.2.1

Tensors are the building blocks of deep learning. They are multi-dimensional arrays
that store numerical data in specific shapes, such as vectors, matrices, or higher-
dimensional structures. These shapes enable tensors to represent complex data
efficiently, making them a core component of artificial neural networks (ANNs).
Tensors are used to represent inputs, outputs, intermediate computations, and
learned parameters such as weights and biases during training.

Tensors play a crucial role in deep learning by enabling mathematical operations that
transform input data into meaningful predictions. For instance, in image recognition,

From Shallow Learning to Deep Learning | FITPED AI

74

tensors store pixel values, while in natural language processing, they represent word
embeddings. Their flexibility allows them to handle diverse data types, such as
images, audio, and text, which are often large and complex datasets.

Think of tensors as containers for numbers that can be manipulated mathematically.
This manipulation enables deep learning models to perform tasks like recognizing
patterns, classifying objects, and generating predictions. Tensors can hold numbers
arranged in one or more dimensions, making them adaptable to a wide range of tasks
and applications.

📝 4.2.2

Which of the following statements about tensors are true?

• Tensors are multi-dimensional arrays used to store numerical data in deep
learning.

• Tensors can handle data types such as images, audio, and text.
• Tensors are manipulated mathematically to perform operations in deep

learning.
• Tensors represent only the input data in deep learning models.

🕮 4.2.3

Tensors are characterized by their shape, which determines their dimensions. The
number of dimensions, also known as the tensor’s rank, defines its type. Tensors can
range from 0-dimensional scalars to higher-dimensional arrays used for complex
tasks.

• Scalar (0-D tensor) consists of a single number, which makes it a zero-
dimensional array. It is an example of a zero order tensor. Scalars have no
axes. For example, the width of an object is scalar.

From Shallow Learning to Deep Learning | FITPED AI

75

• Vector (1-D tensor) is one-dimensional arrays and are an example of the first
order tensor. They can be considered lists of values. Vectors have an axis.
The size of a given object by width, height and depth is an example of a
vector field.

• Matrix (2-D tensor) is two-dimensional table with two axes. They are an
example of second-order tensors. The matrix can be used to store the size of
several objects. Each dimension of the matrix includes the size of each
object (width, height, depth) and the other dimension of the matrix is used to
distinguish between objects.

• Tensor are the general entities that contain scalars, vectors, and matrices,
although the name is generally reserved for tensors of level 3 or higher.
Tensors can be used to store the size and location of many objects over
time. The first dimension of the matrix includes the size of each object
(width, height, depth), the second dimension is used to distinguish the object,
and the third dimension describes the position of these objects over time.

Although all these entities are considered tensors, the term "tensor" is often reserved
for those with three or more dimensions.

📝 4.2.4

Order types of tensors by dimensionality:

• Scalar
• Matrix
• Higher-dimensional tensor
• Vector

🕮 4.2.5

Tensors use

In deep learning, tensors serve as the universal data structure for inputs, outputs, and
computations. For example, a tensor might hold pixel values for an image
classification model or word embeddings in a natural language processing task.
During training, tensors represent weights and biases that are updated iteratively to
minimize error.

Tensors undergo a series of transformations in neural networks. For instance, input
tensors pass through layers of neurons, where weights and biases adjust the data.
These transformations are both linear and non-linear, enabling models to learn from
data and make predictions.

From Shallow Learning to Deep Learning | FITPED AI

76

Tensors are highly efficient for processing large and complex datasets. Their multi-
dimensional nature allows for parallel computations, which are crucial for training
large-scale models. Moreover, deep learning frameworks like TensorFlow and
PyTorch provide powerful tools for tensor manipulation, making them accessible
even for beginners.

📝 4.2.6

Which of the following are examples of tensor use in deep learning?

• Representing pixel values in an image.
• Updating weights during backpropagation.
• Storing word embeddings in a language model.
• Manipulating strings in a database.

📝 4.2.7

Project: Tensor definition

Tensors can be created using the Variable class present in the TensorFlow library
and passing in a value representing the tensor.

import tensorflow as tf

tensor1 = tf.Variable([1,2,3], dtype=tf.int32,

name='my_tensor', trainable=True)

print(tensor1)

Program output:

• dtype - the datatype of the Variable object (for the tensor defined above, the
datatype is tf.int32). The default value for this attribute is determined from
the values passed.

• shape - the number of dimensions and length of each dimension of the
Variable object (for the tensor defined above, the shape is [3]). The default
value for this attribute is also determined from the values passed.

• name - the name of the Variable object (for the tensor defined above, the
name of the tensor is defined as 'my_tensor'). The default for this attribute
is Variable.

From Shallow Learning to Deep Learning | FITPED AI

77

• trainable - this attribute indicates whether the Variable object can be updated
during model training (for the tensor defined above, the trainable parameter
is set to true). The default for this attribute is true.

returns shape of the tensor

print(tensor1.shape)

returns rank of the tensor

print(tf.rank(tensor1))

Program output:
(3,)

tf.Tensor(1, shape=(), dtype=int32)

This Python code snippet, leveraging the TensorFlow library, demonstrates the
concept of tensor ranks and shapes in deep learning. Tensors are fundamental data
structures in machine learning, representing multidimensional arrays of numbers.

The code begins by importing the TensorFlow library, a powerful tool for numerical
computation, particularly in machine learning and deep learning. It then proceeds to
create tensors of varying ranks: scalars, vectors, matrices, and higher-dimensional
tensors.

For each tensor, the code calculates and prints its rank and shape. The rank of a
tensor refers to the number of dimensions it possesses. The shape, on the other
hand, specifies the size of each dimension.

import tensorflow as tf

Scalar (rank 0)

int_variable = tf.Variable(4113, tf.int16)

Vector (rank 1)

vector_variable = tf.Variable([0.23, 0.42, 0.35], tf.float32)

Matrix (rank 2)

matrix_variable = tf.Variable([[4113, 7511, 6259], [3870,

6725, 6962]], tf.int32)

Tensor (rank 3)

tensor_variable = tf.Variable([[[4113, 7511, 6259], [3870,

6725, 6962]],

From Shallow Learning to Deep Learning | FITPED AI

78

 [[5102, 7038, 6591], [3661,

5901, 6235]],

 [[951, 1208, 1098], [870, 645,

948]]])

Check rank and shape of each tensor

print("Rank of int_variable:", tf.rank(int_variable).numpy())

print("Shape of int_variable:", int_variable.shape.as_list())

print("Rank of vector_variable:",

tf.rank(vector_variable).numpy())

print("Shape of vector_variable:",

vector_variable.shape.as_list())

print("Rank of matrix_variable:",

tf.rank(matrix_variable).numpy())

print("Shape of matrix_variable:",

matrix_variable.shape.as_list())

print("Rank of tensor_variable:",

tf.rank(tensor_variable).numpy())

print("Shape of tensor_variable:",

tensor_variable.shape.as_list())

Program output:
Rank of int_variable: 0

Shape of int_variable: []

Rank of vector_variable: 1

Shape of vector_variable: [3]

Rank of matrix_variable: 2

Shape of matrix_variable: [2, 3]

Rank of tensor_variable: 3

Shape of tensor_variable: [3, 2, 3]

📝 4.2.8

What is the rank of a scalar tensor?

• 0
• 1
• 2
• 3 or more

From Shallow Learning to Deep Learning | FITPED AI

79

4.3 TensorFlow examples

📝 4.3.1

Project: Iris flower classification with a simple neural network

This assignment involves building a simple neural network in TensorFlow to classify
Iris flower species based on sepal and petal measurements. You will use the Iris
dataset from scikit-learn and train a model to predict petal width given sepal length
and sepal width.

This code demonstrates the construction and training of a basic neural network with
TensorFlow to classify Iris flowers. The Iris dataset from scikit-learn provides data
on sepal and petal dimensions of three flower species. The goal is to predict the petal
width (represented by the fourth feature) based on the first three features (sepal
length, sepal width, and petal length).

Our neural network will have five nodes in the hidden layer. We are feeding in three
values: the sepal length (S.L.), the sepal width (S.W.), and the petal length (P.L.). The
target will be the petal width. In total, there will be 26 total variables in the model.

import warnings

warnings.filterwarnings("ignore")

import matplotlib.pyplot as plt

import numpy as np

import tensorflow as tf

from sklearn import datasets

Load Iris dataset. It contains data about different types of iris plant and their
attributes.

import pandas as pd

iris = datasets.load_iris()

df = pd.DataFrame(data=iris.data, columns=iris.feature_names)

print(df.head())

Get Sepal length, Sepal width, Petal length

x_vals = np.array([x[0:3] for x in iris.data])

Get Petal Width

y_vals = np.array([x[3] for x in iris.data])

Program output:

From Shallow Learning to Deep Learning | FITPED AI

80

 sepal length (cm) sepal width (cm) petal length (cm)

petal width (cm)

0 5.1 3.5 1.4

0.2

1 4.9 3.0 1.4

0.2

2 4.7 3.2 1.3

0.2

3 4.6 3.1 1.5

0.2

4 5.0 3.6 1.4

0.2

Use predefined seed to make results reproducible - reproducibility is a crucial
concept. It means that a given experiment or analysis can be repeated by another
researcher and yield the same results. This is essential for validating findings,
sharing knowledge, and building upon existing work.

make results reproducible

seed = 3

np.random.seed(seed)

tf.random.set_seed(seed)

Split data into training and testing sets (80/20 split)

train_indices = np.random.choice(len(x_vals),

round(len(x_vals) * 0.8), replace=False)

test_indices = np.array(list(set(range(len(x_vals))) -

set(train_indices)))

x_vals_train, x_vals_test = x_vals[train_indices],

x_vals[test_indices]

y_vals_train, y_vals_test = y_vals[train_indices],

y_vals[test_indices]

Min-max normalization is a technique used to scale numerical features to a specific
range, typically between 0 and 1. This is essential in machine learning because
features with different scales can have a significant impact on the model's
performance.

The normalize_cols function implements min-max normalization for each column
(feature) in the input matrix m. It calculates the minimum and maximum values for
each column and then rescales the values using the formula above. The
np.nan_to_num function is used to handle potential NaN values that might arise
during the normalization process.

From Shallow Learning to Deep Learning | FITPED AI

81

Normalize features (min-max normalization)

def normalize_cols(m):

 col_max = m.max(axis=0)

 col_min = m.min(axis=0)

 return (m-col_min) / (col_max - col_min)

x_vals_train = np.nan_to_num(normalize_cols(x_vals_train))

x_vals_test = np.nan_to_num(normalize_cols(x_vals_test))

Batch size refers to the number of training examples used in one iteration of the
optimization process. It's a crucial hyperparameter that can significantly impact the
training process and model performance.

The batch_size is set to 50. This means that during each training iteration, the model
will be trained on a batch of 50 randomly selected training examples. The model's
parameters will be updated based on the gradients computed from this batch. By
using a batch size of 50, the model can balance the trade-off between computational
efficiency and generalization performance.

Declare batch size

batch_size = 50

Initialize input data

x_data = tf.keras.Input(dtype=tf.float32, shape=(3,))

Declare the network

This code defines the architecture of a simple neural network with one hidden layer
to predict the petal width of an Iris flower based on its sepal length, sepal width, and
petal length.

Variable initialization:

• a1 and a2 - weight matrices for the hidden and output layers, respectively.
• b1 and b2 - bias vectors for the hidden and output layers.

The weights and biases are initialized randomly using a normal distribution with a
specified seed for reproducibility.

From Shallow Learning to Deep Learning | FITPED AI

82

Model architecture:

• Hidden Layer - takes the input features x_data as input, applies a linear
transformation (tf.matmul) using the weights a1 and biases b1., applies the
ReLU activation function to introduce non-linearity.

• Output layer - takes the output of the hidden layer as input and applies a
linear transformation using the weights a2 and bias b2.

Model compilation

• tf.keras.Model class is used to define the model, specifying the input
(x_data) and output (output).

• model.summary() method provides a concise overview of the model's
architecture, including the number of parameters in each layer.

Optimizer:

• stochastic Gradient Descent (SGD) is chosen as the optimizer to update the
model's weights and biases during training.

• a learning rate of 0.005 is set to control the step size of the gradient descent
updates.

Create variables for both NN layers

hidden_layer_nodes = 5

a1 = tf.Variable(tf.random.normal(shape=[3,

hidden_layer_nodes], seed=seed)) # Weights for hidden layer

b1 = tf.Variable(tf.random.normal(shape=[hidden_layer_nodes],

seed=seed)) # Biases for hidden layer

a2 = tf.Variable(tf.random.normal(shape=[hidden_layer_nodes,

1], seed=seed)) # Weights for output layer

b2 = tf.Variable(tf.random.normal(shape=[1], seed=seed)) #

Bias for output layer

Define hidden layer operation with ReLU activation

hidden_output = tf.keras.layers.Lambda(lambda x:

tf.nn.relu(tf.matmul(x, a1) + b1))

Define output layer operation with linear activation (for

regression)

output = tf.matmul(hidden_layer, a2) + b2

Build the model

From Shallow Learning to Deep Learning | FITPED AI

83

model = tf.keras.Model(inputs=x_data, outputs=output,

name="1layer_neural_network")

Print model summary

model.summary()

Declare optimizer

optimizer = tf.keras.optimizers.SGD(0.005)

Program output:
WARNING:tensorflow:The following Variables were used in a

Lambda layer's call (tf.linalg.matmul), but are not present in

its tracked objects: . This is a strong indication that the

Lambda layer should be rewritten as a subclassed Layer.

WARNING:tensorflow:The following Variables were used in a

Lambda layer's call (tf.__operators__.add), but are not

present in its tracked objects: . This is a strong

indication that the Lambda layer should be rewritten as a

subclassed Layer.

Model: "1layer_neural_network"

__

 Layer (type) Output Shape Param #

==

===

 input_1 (InputLayer) [(None, 3)] 0

 lambda (Lambda) (None, 5) 0

 tf.linalg.matmul (TFOpLambd (None, 1) 0

 a)

 tf.__operators__.add (TFOpL (None, 1) 0

 ambda)

Following code implements a training loop for a simple neural network. The goal is
to minimize the Mean Squared Error (MSE) between the network's predictions and
the true values of the target variable (petal width in this case).

The training process involves iteratively updating the model's parameters (weights
and biases) using gradient descent. This is done by calculating the gradients of the
loss function with respect to the parameters and then adjusting the parameters in
the direction that minimizes the loss.

From Shallow Learning to Deep Learning | FITPED AI

84

• Batching - a random subset of training data is selected in each iteration
(batch). This helps to introduce randomness and improve generalization.

• Forward Pass - the current batch of input data is fed into the neural network
to obtain predictions.

• Loss Calculation - the Mean squared error between the predicted values and
the true target values is calculated.

• Gradient Calculation tf.GradientTape context manager is used to record
operations and compute gradients. The gradients of the loss with respect to
the model's parameters are calculated.

• Parameter Update - the optimizer (SGD in this case) updates the model's
parameters using the calculated gradients.

• Evaluation - the model is evaluated on the test set to monitor its
performance during training. The test loss is calculated and stored for later
analysis.

• Logging - the training loss is printed every 50 iterations to track progress.

Training loop

loss_vec = []

test_loss = []

for i in range(500):

 rand_index = np.random.choice(len(x_vals_train),

size=batch_size)

 rand_x = x_vals_train[rand_index]

 rand_y = np.transpose([y_vals_train[rand_index]])

 # Open a GradientTape.

 with tf.GradientTape(persistent=True) as tape:

 # Forward pass.

 output = model(rand_x)

 # Apply loss function (MSE)

 loss = tf.reduce_mean(tf.square(rand_y - output))

 loss_vec.append(np.sqrt(loss))

 # Get gradients of loss with reference to the variables

"a1", "b1", "a2" and "b2" to adjust.

 gradients_a1 = tape.gradient(loss, a1)

 gradients_b1 = tape.gradient(loss, b1)

 gradients_a2 = tape.gradient(loss, a2)

 gradients_b2 = tape.gradient(loss, b2)

 # Update the variables "a1", "b1", "a2" and "b2" of the

model.

 optimizer.apply_gradients(zip([gradients_a1, gradients_b1,

gradients_a2, gradients_b2], [a1, b1, a2, b2]))

From Shallow Learning to Deep Learning | FITPED AI

85

 # Forward pass.

 output_test = model(x_vals_test)

 # Apply loss function (MSE) on test

 loss_test =

tf.reduce_mean(tf.square(np.transpose([y_vals_test]) -

output_test))

 test_loss.append(np.sqrt(loss_test))

 if (i+1)%50==0:

 print('Generation: ' + str(i+1) + '. Loss = ' +

str(np.mean(loss)))

Program output:
WARNING:tensorflow:Calling GradientTape.gradient on a

persistent tape inside its context is significantly less

efficient than calling it outside the context (it causes the

gradient ops to be recorded on the tape, leading to increased

CPU and memory usage). Only call GradientTape.gradient inside

the context if you actually want to trace the gradient in

order to compute higher order derivatives.

WARNING:tensorflow:Calling GradientTape.gradient on a

persistent tape inside its context is significantly less

efficient than calling it outside the context (it causes the

gradient ops to be recorded on the tape, leading to increased

CPU and memory usage). Only call GradientTape.gradient inside

the context if you actually want to trace the gradient in

order to compute higher order derivatives.

WARNING:tensorflow:Calling GradientTape.gradient on a

persistent tape inside its context is significantly less

efficient than calling it outside the context (it causes the

gradient ops to be recorded on the tape, leading to increased

CPU and memory usage). Only call GradientTape.gradient inside

the context if you actually want to trace the gradient in

order to compute higher order derivatives.

WARNING:tensorflow:Calling GradientTape.gradient on a

persistent tape inside its context is significantly less

efficient than calling it outside the context (it causes the

gradient ops to be recorded on the tape, leading to increased

CPU and memory usage). Only call GradientTape.gradient inside

the context if you actually want to trace the gradient in

order to compute higher order derivatives.

Generation: 50. Loss = 0.6266393

Generation: 100. Loss = 0.46858525

Generation: 150. Loss = 0.34825706

From Shallow Learning to Deep Learning | FITPED AI

86

Generation: 200. Loss = 0.219747

Generation: 250. Loss = 0.24899033

Generation: 300. Loss = 0.15766421

Generation: 350. Loss = 0.13695493

Generation: 400. Loss = 0.13414612

Generation: 450. Loss = 0.11820017

Generation: 500. Loss = 0.13063623

Plot the result of training

Plot loss (MSE) over time

plt.ylim([0, 1.0])

plt.plot(loss_vec, 'k-', label='Train Loss')

plt.plot(test_loss, 'r--', label='Test Loss')

plt.title('Loss (MSE) per Generation')

plt.legend(loc='upper right')

plt.xlabel('Generation')

plt.ylabel('Loss')

plt.show()

Program output:

From Shallow Learning to Deep Learning | FITPED AI

87

📝 4.3.2

Project: More complex network with 3 hidden layers

(by https://github.com/nfmcclure/tensorflow_cookbook)

Implement a neural network model to predict birthweight based on various factors
extracted from a dataset.

Dataset:

• original:
https://github.com/nfmcclure/tensorflow_cookbook/raw/master/01_Introdu
ction/07_Working_with_Data_Sources/birthweight_data/birthweight.dat

• local: https://priscilla.fitped.eu/data/deep_learning/birthweight.dat

The 'Low Birthrate Dataset' is a dataset from a famous study by Hosmer and
Lemeshow in 1989 called, "Low Infant Birth Weight Risk Factor Study". This example
is predicting birth weights in a low birth weight database. We will create a neural
network with three hidden layers. The low birth weight data set includes actual birth
weights and a variable indicating whether the given birth weight is over or below
2,500 grams. In this example, we will make the target the actual birth weight
(regression) and then see what is the accuracy of the classification at the end. Finally,
our model should be able to identify whether the birth weight is 2500 grams.

import warnings

warnings.filterwarnings("ignore")

import tensorflow as tf

import matplotlib.pyplot as plt

import csv

import random

import numpy as np

import requests

1. Data acquisition and preprocessing

• The code downloads the birth weight data from a URL and saves it locally.
• It reads the data into a list of lists, extracting features of interest (e.g., age,

weight, smoking habits).
• The target variable (birth weight) is separated from the features.

Data file

birth_weight_file = 'birth_weight.csv'

https://github.com/nfmcclure/tensorflow_cookbook
https://github.com/nfmcclure/tensorflow_cookbook/raw/master/01_Introduction/07_Working_with_Data_Sources/birthweight_data/birthweight.dat
https://github.com/nfmcclure/tensorflow_cookbook/raw/master/01_Introduction/07_Working_with_Data_Sources/birthweight_data/birthweight.dat
https://priscilla.fitped.eu/data/deep_learning/birthweight.dat

From Shallow Learning to Deep Learning | FITPED AI

88

download data and create data file

birthdata_url =

'https://github.com/nfmcclure/tensorflow_cookbook/raw/master/0

1_Introduction/07_Working_with_Data_Sources/birthweight_data/b

irthweight.dat'

birth_file = requests.get(birthdata_url)

birth_data = birth_file.text.split('\r\n')

birth_header = birth_data[0].split('\t')

birth_data = [[float(x) for x in y.split('\t') if len(x)>=1]

for y in birth_data[1:] if len(y)>=1]

with open(birth_weight_file, "w") as f:

 writer = csv.writer(f)

 writer.writerows([birth_header])

 writer.writerows(birth_data)

 f.close()

read birth weight data into memory

birth_data = []

with open(birth_weight_file, newline='') as csvfile:

 csv_reader = csv.reader(csvfile)

 birth_header = next(csv_reader)

 for row in csv_reader:

 birth_data.append(row)

birth_data = [[float(x) for x in row] for row in birth_data]

Extract y-target (birth weight)

y_vals = np.array([x[8] for x in birth_data])

Filter for features of interest

cols_of_interest = ['AGE', 'LWT', 'RACE', 'SMOKE', 'PTL',

'HT', 'UI']

x_vals = np.array([[x[ix] for ix, feature in

enumerate(birth_header) if feature in cols_of_interest] for x

in birth_data])

• Data is split into training and testing sets using an 80/20 split.

set batch size for training

batch_size = 150

make results reproducible

seed = 3

From Shallow Learning to Deep Learning | FITPED AI

89

np.random.seed(seed)

tf.random.set_seed(seed)

Split data into train/test = 80%/20%

train_indices = np.random.choice(len(x_vals),

round(len(x_vals)*0.8), replace=False)

test_indices = np.array(list(set(range(len(x_vals))) -

set(train_indices)))

x_vals_train = x_vals[train_indices]

x_vals_test = x_vals[test_indices]

y_vals_train = y_vals[train_indices]

y_vals_test = y_vals[test_indices]

• Features are normalized using min-max scaling to ensure values are
between 0 and 1.

Record training column max and min for scaling of non-

training data

train_max = np.max(x_vals_train, axis=0)

train_min = np.min(x_vals_train, axis=0)

Normalize by column (min-max norm to be between 0 and 1)

def normalize_cols(mat, max_vals, min_vals):

 return (mat - min_vals) / (max_vals - min_vals)

x_vals_train = np.nan_to_num(normalize_cols(x_vals_train,

train_max, train_min))

x_vals_test = np.nan_to_num(normalize_cols(x_vals_test,

train_max, train_min))

2. Model definition

• Functions init_weight and init_bias are used to initialize weight and bias
variables with appropriate shapes and standard deviations.

• tf.keras.Input layer is defined to specify the input shape (number of
features).

Define Variable Functions (weights and bias)

def init_weight(shape, st_dev):

 weight = tf.Variable(tf.random.normal(shape, stddev=st_dev))

 return(weight)

def init_bias(shape, st_dev):

 bias = tf.Variable(tf.random.normal(shape, stddev=st_dev))

From Shallow Learning to Deep Learning | FITPED AI

90

 return(bias)

Initialize input data

x_data = tf.keras.Input(dtype=tf.float32, shape=(7,))

• Three fully connected (dense) hidden layers are created with ReLU activation
functions. Each layer uses custom-defined fully_connected functions with
weight and bias variables. The number of hidden nodes in each layer can be
adjusted for experimentation.

• A final fully connected layer with one output neuron predicts the birthweight.

Create a fully connected layer:

def fully_connected(input_layer, weights, biases):

 return tf.keras.layers.Lambda(lambda x:

tf.nn.relu(tf.add(tf.matmul(x, weights),

biases)))(input_layer)

#--------Create the first layer (25 hidden nodes)--------

weight_1 = init_weight(shape=[7,25], st_dev=5.0)

bias_1 = init_bias(shape=[25], st_dev=10.0)

layer_1 = fully_connected(x_data, weight_1, bias_1)

#--------Create second layer (10 hidden nodes)--------

weight_2 = init_weight(shape=[25, 10], st_dev=5.0)

bias_2 = init_bias(shape=[10], st_dev=10.0)

layer_2 = fully_connected(layer_1, weight_2, bias_2)

#--------Create third layer (3 hidden nodes)--------

weight_3 = init_weight(shape=[10, 3], st_dev=5.0)

bias_3 = init_bias(shape=[3], st_dev=10.0)

layer_3 = fully_connected(layer_2, weight_3, bias_3)

#--------Create output layer (1 output value)--------

weight_4 = init_weight(shape=[3, 1], st_dev=5.0)

bias_4 = init_bias(shape=[1], st_dev=10.0)

final_output = fully_connected(layer_3, weight_4, bias_4)

Build the model

model = tf.keras.Model(inputs=x_data, outputs=final_output,

name="multiple_layers_neural_network")

Print model summary

model.summary()

From Shallow Learning to Deep Learning | FITPED AI

91

Program output:
WARNING:tensorflow:

The following Variables were used a Lambda layer's call

(lambda), but

are not present in its tracked objects:

It is possible that this is intended behavior, but it is more

likely

an omission. This is a strong indication that this layer

should be

formulated as a subclassed Layer rather than a Lambda layer.

WARNING:tensorflow:

The following Variables were used a Lambda layer's call

(lambda_1), but

are not present in its tracked objects:

It is possible that this is intended behavior, but it is more

likely

an omission. This is a strong indication that this layer

should be

formulated as a subclassed Layer rather than a Lambda layer.

WARNING:tensorflow:

The following Variables were used a Lambda layer's call

(lambda_2), but

are not present in its tracked objects:

It is possible that this is intended behavior, but it is more

likely

an omission. This is a strong indication that this layer

should be

formulated as a subclassed Layer rather than a Lambda layer.

WARNING:tensorflow:

The following Variables were used a Lambda layer's call

(lambda_3), but

are not present in its tracked objects:

It is possible that this is intended behavior, but it is more

likely

an omission. This is a strong indication that this layer

should be

From Shallow Learning to Deep Learning | FITPED AI

92

formulated as a subclassed Layer rather than a Lambda layer.

Model: "multiple_layers_neural_network"

__

 Layer (type) Output Shape Param #

==

===

 input_1 (InputLayer) [(None, 7)] 0

 lambda (Lambda) (None, 25) 0

 lambda_1 (Lambda) (None, 10) 0

 lambda_2 (Lambda) (None, 3) 0

 lambda_3 (Lambda) (None, 1) 0

==

===

Total params: 0

3. Model training

• The Adam optimizer is used with a learning rate of 0.025 to adjust the
model's weights and biases during training.

• A training loop iterates for 200 epochs:

1. A mini-batch of data is randomly selected from the training set.
2. The model's forward pass is performed to obtain predictions for the mini-

batch.
3. Mean absolute error is used as the loss function to measure the difference

between predictions and actual birth weights.
4. The GradientTape context is used to efficiently calculate gradients of the

loss function with respect to the model's weights and biases.
5. The gradients are applied to update the weights and biases using the Adam

optimizer, improving the model's ability to predict birthweight.

• After each epoch, the model's performance is evaluated on the testing set by
calculating the MAE loss and printing it every 25 epochs.

Declare Adam optimizer

optimizer = tf.keras.optimizers.Adam(0.025)

Training loop

From Shallow Learning to Deep Learning | FITPED AI

93

loss_vec = []

test_loss = []

for i in range(200):

 rand_index = np.random.choice(len(x_vals_train),

size=batch_size)

 rand_x = x_vals_train[rand_index]

 rand_y = np.transpose([y_vals_train[rand_index]])

 # Open a GradientTape.

 with tf.GradientTape(persistent=True) as tape:

 # Forward pass.

 output = model(rand_x)

 # Apply loss function (MSE)

 loss = tf.reduce_mean(tf.abs(rand_y - output))

 loss_vec.append(loss)

 # Get gradients of loss with reference to the weights and

bias variables to adjust.

 gradients_w1 = tape.gradient(loss, weight_1)

 gradients_b1 = tape.gradient(loss, bias_1)

 gradients_w2 = tape.gradient(loss, weight_2)

 gradients_b2 = tape.gradient(loss, bias_2)

 gradients_w3 = tape.gradient(loss, weight_3)

 gradients_b3 = tape.gradient(loss, bias_3)

 gradients_w4 = tape.gradient(loss, weight_4)

 gradients_b4 = tape.gradient(loss, bias_4)

 # Update the weights and bias variables of the model.

 optimizer.apply_gradients(zip([gradients_w1, gradients_b1,

gradients_w2, gradients_b2, gradients_w3, gradients_b3,

gradients_w4, gradients_b4], [weight_1, bias_1, weight_2,

bias_2, weight_3, bias_3, weight_4, bias_4]))

 # Forward pass.

 output_test = model(x_vals_test)

 # Apply loss function (MSE) on test

 temp_loss =

tf.reduce_mean(tf.abs(np.transpose([y_vals_test]) -

output_test))

 test_loss.append(temp_loss)

 if (i+1) % 25 == 0:

From Shallow Learning to Deep Learning | FITPED AI

94

 print('Generation: ' + str(i+1) + '. Loss = ' +

str(loss.numpy()))

Program output:
Generation: 25. Loss = 1921.8654

Generation: 50. Loss = 1452.7341

Generation: 75. Loss = 987.58563

Generation: 100. Loss = 709.25836

Generation: 125. Loss = 509.8613

Generation: 150. Loss = 540.57904

Generation: 175. Loss = 535.96893

Generation: 200. Loss = 439.15442

4. Evaluation and prediction

• After training, the code calculates the model's accuracy on the training and
testing sets. Accuracy here refers to correctly classifying whether a
birthweight is below a certain threshold (e.g., 2500 grams in this case).

• Finally, the code demonstrates how to make predictions for new data points
by performing normalization and feeding them through the trained model.

Plot loss (MSE) over time

plt.plot(loss_vec, 'k-', label='Train Loss')

plt.plot(test_loss, 'r--', label='Test Loss')

plt.title('Loss (MSE) per Generation')

plt.legend(loc='upper right')

plt.xlabel('Generation')

plt.ylabel('Loss')

plt.show()

Program output:

From Shallow Learning to Deep Learning | FITPED AI

95

Model Accuracy

actuals = np.array([x[0] for x in birth_data])

test_actuals = actuals[test_indices]

train_actuals = actuals[train_indices]

test_preds = model(x_vals_test)

train_preds = model(x_vals_train)

test_preds = np.array([1.0 if x < 2500.0 else 0.0 for x in

test_preds])

train_preds = np.array([1.0 if x < 2500.0 else 0.0 for x in

train_preds])

Print out accuracies

test_acc = np.mean([x == y for x, y in zip(test_preds,

test_actuals)])

train_acc = np.mean([x == y for x, y in zip(train_preds,

train_actuals)])

print('On predicting the category of low birthweight from

regression output (<2500g):')

print('Test Accuracy: {}'.format(test_acc))

print('Train Accuracy: {}'.format(train_acc))

Program output:
On predicting the category of low birthweight from regression

output (<2500g):

Test Accuracy: 0.7631578947368421

Train Accuracy: 0.7748344370860927

From Shallow Learning to Deep Learning | FITPED AI

96

• Example of prediction for new data

Need new vectors of 'AGE', 'LWT', 'RACE', 'SMOKE', 'PTL',

'HT', 'UI'

new_data = np.array([[35, 185, 1., 0., 0., 0., 1.],

 [18, 160, 0., 1., 0., 0., 1.]])

new_data_scaled = np.nan_to_num(normalize_cols(new_data,

train_max, train_min))

new_logits = model(new_data_scaled)

new_preds = np.array([1.0 if x < 2500.0 else 0.0 for x in

new_logits])

print('New Data Predictions: {}'.format(new_preds))

Program output:
New Data Predictions: [1. 0.]

Convolutional Neural
Networks - CNNs

Chapter 5

Convolutional Neural Networks - CNNs | FITPED AI

98

5.1 CNN description

🕮 5.1.1

Basic description of CNN

A Convolutional Neural Network (CNN) is a type of deep neural network commonly
used in image and video recognition tasks.

The key feature of a CNN is its ability to learn hierarchical representations of input
data through a series of convolutional layers. These layers apply a set of learnable
filters to the input data, extracting local features such as edges and textures. The
output of each convolutional layer is then passed through a non-linear activation
function to introduce non-linearity and create more complex features.

After several convolutional layers, the output is passed through a pooling layer which
reduces the spatial resolution of the feature maps while retaining the most important
features. Finally, the output of the last pooling layer is passed through one or more
fully connected layers to produce a final output, typically a probability distribution
over the possible classes.

CNNs have been shown to be highly effective in a wide range of image recognition
tasks, including object detection, image segmentation, and facial recognition. They
have also been applied to other types of data such as audio and natural language
processing.

🕮 5.1.2

What is convolution

In a Convolutional Neural Network (CNN), convolution refers to the process of
applying a set of filters to the input data in order to extract local features.

In the context of image processing, the input data is typically a 3D array representing
an image, with dimensions for width, height, and color channels. The filters, also
known as kernels or feature detectors, are smaller 3D arrays that slide over the input
data, computing a dot product between the filter and the input at each location, and
producing an output in the form of a 2D activation map.

The filters are learned through backpropagation during training, and each filter is
optimized to detect a particular feature of the input data, such as edges or corners.
Multiple filters are used in each convolutional layer, and the output of each filter is

Convolutional Neural Networks - CNNs | FITPED AI

99

combined to produce a set of activation maps, which are then passed through a non-
linear activation function such as ReLU.

Convolutional layers are typically followed by pooling layers, which reduce the spatial
resolution of the activation maps while retaining the most important features, and
then by additional convolutional layers to extract higher-level features.

The use of convolutional layers in CNNs has been shown to be highly effective in
image recognition tasks, and has also been applied to other types of data such as
audio and natural language processing.

5.2 Layers and architectures I.

🕮 5.2.1

Convolutional Neural Networks (CNNs) are a type of deep learning architecture
widely used for tasks involving image data, such as object recognition, image
classification, and segmentation. The power of CNNs comes from their ability to
automatically learn and extract hierarchical features from input data. This is
achieved through a combination of different types of layers, each performing a
specific role in the network.

Layers in a CNN work together to process and transform the input data step by step.
For example, an image of a cat is passed through a CNN, where initial layers might
detect edges and textures, and later layers identify more complex patterns like eyes,
whiskers, or the overall shape of a cat.

The choice of layers in a CNN depends on the task and the structure of the input data.
Each layer type contributes uniquely to how the data is processed, helping the model
to extract meaningful patterns and make accurate predictions. Let’s explore the
commonly used layers in CNNs.

Layer types

There are several types of layers commonly used in Convolutional Neural Networks
(CNNs), including:

• Convolutional layers are the core building blocks of CNNs. They use filters
(or kernels) to scan the input data and extract local features such as edges,
textures, and patterns. Each filter focuses on a specific aspect of the data,
enabling the network to learn spatial relationships.

• Pooling layers reduce the spatial dimensions of the feature maps, making
the network more efficient and reducing the risk of overfitting. Common
pooling methods include max pooling, which selects the maximum value
from a region, and average pooling, which computes the average value.

Convolutional Neural Networks - CNNs | FITPED AI

100

• Fully connected layers found in the final stages of the network, these layers
connect every neuron to all neurons in the preceding layer. They are typically
used for high-level tasks like classification or regression.

• Activation layers introduce non-linearity to the model, allowing it to learn
complex patterns. Activation functions like ReLU, sigmoid, and tanh are
commonly used to transform the output of previous layers.

• Normalization layers - by normalizing the outputs of the previous layer,
normalization layers improve the stability and performance of the network.
Batch normalization is a popular technique that reduces internal covariate
shifts.

• Dropout layers prevent overfitting by randomly "dropping out" neurons during
training. This forces the network to learn robust features that generalize well
to new data.

• Upsampling layers increase the spatial resolution of feature maps, often
used in tasks like image generation or segmentation. They achieve this by
repeating values or learning new values through transposed convolutions.

The specific architecture of a CNN will depend on the particular task and the
structure of the input data, but most CNNs will include some combination of these
layers.

📝 5.2.2

Which of the following statements about CNN layers are correct?

• Convolutional layers are used to extract features like edges and textures.
• Fully connected layers are used for classification tasks in CNNs.
• Pooling layers increase the spatial resolution of feature maps.
• Dropout layers help reduce overfitting during training.

🕮 5.2.3

Convolution layer

The convolutional layer is a fundamental building block of a Convolutional Neural
Network (CNN). It applies a set of filters to the input image to extract features, by
performing a convolution operation between the input image and a set of learnable
filters. Each filter slides over the entire input image, computing a dot product between
the filter weights and the pixel values at each position. The result of this operation is
a feature map that highlights the presence of certain features in the input image.

The learnable filters in the convolutional layer represent different characteristics of
the input image, such as edges, textures, or colors. By stacking multiple

Convolutional Neural Networks - CNNs | FITPED AI

101

convolutional layers on top of each other, the CNN can learn increasingly complex
and abstract features from the input image.

Each convolutional layer typically has a number of hyperparameters, such as the
number of filters, the size of the filters (kernel size), and the stride (the amount the
filter shifts between each computation). The size of the output feature map is
determined by the size of the input image, the size of the filter, and the stride, with
smaller strides resulting in larger output feature maps.

Convolutional layers are important in CNNs because they enable the network to
extract useful features from the input image in a hierarchical manner, allowing it to
identify complex patterns and structures that are relevant to the task at hand. They
are widely used in computer vision tasks such as image classification, object
detection, and semantic segmentation.

Application of a 2x2 convolutional filter across a 5x5 input matrix producing a new
4x4 feature layer

📝 5.2.4

What is the primary purpose of the convolutional layer in a Convolutional Neural
Network?

• To apply a set of filters for feature extraction from the input image
• To reduce the spatial resolution of the input image
• To randomly drop neurons during training

Convolutional Neural Networks - CNNs | FITPED AI

102

• To connect every neuron in one layer to every neuron in the previous layer

🕮 5.2.5

Pooling layer

The pooling layer is a type of layer in a Convolutional Neural Network (CNN) that
performs a downsampling operation on the input feature map. The pooling layer
reduces the spatial dimensions (width and height) of the input feature map while
preserving the depth dimension (number of channels) by combining the outputs of
adjacent neurons in the feature map.

The most commonly used type of pooling layer is max pooling, where the maximum
value in each local region of the feature map is taken as the output. For example, a
max pooling layer with a 2x2 kernel and stride of 2 would divide the input feature map
into non-overlapping 2x2 regions and take the maximum value in each region as the
output. This operation reduces the spatial dimensions of the feature map by a factor
of two.

Another type of pooling layer is average pooling, where the average value in each
local region of the feature map is taken as the output. Average pooling can also be
used to reduce the spatial dimensions of the feature map.

The pooling layer is used in CNNs to reduce the spatial dimensions of the feature
map, which can help to reduce the computational cost of the network and prevent
overfitting by reducing the number of parameters in the model. Additionally, the
pooling layer can help to extract invariant features from the input by taking the
maximum or average value in each local region, which can improve the robustness
of the model to variations in the input data.

Convolutional Neural Networks - CNNs | FITPED AI

103

📝 5.2.6

What is the primary purpose of the pooling layer in a Convolutional Neural Network

• To reduce the spatial dimensions of the feature map while preserving the
depth dimension

• To increase the spatial resolution of the feature map
• To apply filters for feature extraction from the input image
• To introduce non-linearity to the output of the previous layer

🕮 5.2.7

Fully connected layer

A fully connected layer, also called a dense layer, is a type of layer in a neural network
where every neuron in the layer is connected to every neuron in the previous layer.

In a fully connected layer, the input is a vector and the output is another vector of a
specified size, which represents the activations of the layer. Each neuron in the fully
connected layer applies a weighted sum of the activations from the previous layer,
followed by a non-linear activation function, to produce its output.

Fully connected layers are commonly used in the final layers of a neural network,
where they can be used for classification or regression tasks. They are also used in
certain types of networks such as Multi-Layer Perceptrons (MLPs), where all layers
are fully connected. However, in some types of networks such as Convolutional
Neural Networks (CNNs) or Recurrent Neural Networks (RNNs), fully connected
layers are used only in the final layers of the network, after convolutional or recurrent
layers have been used to extract features from the input data.

📝 5.2.8

In a fully connected layer, what is the relationship between neurons in the current
layer and the previous layer?

• Every neuron in the layer is connected to every neuron in the previous layer
• Each neuron is connected to a few neurons in the previous layer
• Neurons are not connected to neurons in the previous layer
• Each neuron connects to neurons in the next layer only

Convolutional Neural Networks - CNNs | FITPED AI

104

🕮 5.2.9

Activation layer

An activation layer, also known as an activation function or nonlinearity, is a type of
layer in a neural network that introduces nonlinearity into the network's output.

The purpose of an activation layer is to apply a mathematical function to the output
of the previous layer in order to introduce nonlinearity. Without an activation layer,
the neural network would simply be a linear function, which would not be able to
model complex relationships between the input and output data.

There are several different types of activation functions used in deep learning,
including:

• Sigmoid function: maps the input to a value between 0 and 1, and is
commonly used in binary classification problems.

• Rectified Linear Unit (ReLU): sets all negative values in the input to zero, and
is commonly used in image classification problems.

• Leaky ReLU

• Hyperbolic tangent (tanh): maps the input to a value between -1 and 1, and is
commonly used in recurrent neural networks.

Activation layers are typically placed after each convolutional or dense layer in a
neural network, except for the output layer, which often uses a different activation
function depending on the problem being solved.

Convolutional Neural Networks - CNNs | FITPED AI

105

📝 5.2.10

What is the primary role of an activation layer in a neural network?

• To introduce nonlinearity to the network’s output
• To perform a linear transformation of the input
• To reduce the number of layers in the network
• To increase the number of neurons in the network

5.3 Layers and architectures II.

🕮 5.3.1

Normalization layer

A normalization layer, also known as a batch normalization layer, is a type of layer in
a neural network that is used to normalize the input data before passing it to the next
layer. The purpose of normalization is to ensure that the input data has a mean of 0
and a standard deviation of 1, which can improve the performance and stability of
the network.

The normalization process involves subtracting the mean of the input data from each
data point, and then dividing the result by the standard deviation of the input data.
This makes the input data have a zero mean and a standard deviation of 1, which can
help prevent the input from causing the activation functions to saturate, which can
cause the network to stop learning.

Normalization layers are commonly used in deep learning architectures, particularly
in convolutional neural networks (CNNs) and recurrent neural networks (RNNs). They
are typically placed after the convolutional or recurrent layers, but before the
activation function.

📝 5.3.2

What is the main purpose of a normalization layer in a neural network?

• To ensure the input data has a mean of 0 and a standard deviation of 1
• To improve the learning rate by increasing the variance of the input data
• To add additional layers to the network
• To reduce the number of training epochs

Convolutional Neural Networks - CNNs | FITPED AI

106

🕮 5.3.3

Dropout layer

Dropout is a regularization technique used in deep neural networks to prevent
overfitting. A dropout layer is a type of layer in a neural network that randomly drops
out, or "turns off," a certain percentage of the neurons during training. The neurons
that are dropped out change with each training iteration, which makes the network
more robust and less likely to overfit to the training data.

The purpose of the dropout layer is to prevent the network from relying too heavily
on any one feature or neuron, and to encourage the network to learn more robust
features that are useful across multiple inputs. Dropout can also help prevent the
network from memorizing noise or outliers in the training data.

During training, a dropout layer randomly selects a percentage of the neurons to drop
out, based on a specified dropout rate. The remaining neurons are then scaled by a
factor equal to 1 / (1 - dropout rate), in order to compensate for the dropped out
neurons. During testing, all of the neurons are used, and their output is scaled by the
same factor as during training.

Dropout layers are commonly used in deep learning architectures, particularly in
convolutional neural networks (CNNs) and fully connected neural networks. They are
typically placed after each dense layer in the network.

Example of dropout

Convolutional Neural Networks - CNNs | FITPED AI

107

📝 5.3.4

What is the purpose of a dropout layer in a neural network?

• To prevent overfitting by randomly turning off certain neurons during training
• To increase the depth of the network
• To scale the output of neurons during training
• To decrease the learning rate of the optimizer

🕮 5.3.5

Upsampling layer

An upsampling layer, also known as a deconvolutional layer or a transposed
convolutional layer, is a type of layer in a neural network that is used for upsampling
or increasing the spatial resolution of the input.

The purpose of an upsampling layer is to increase the resolution of feature maps
while preserving their spatial information. This is useful in tasks such as image
segmentation, where the goal is to classify each pixel in an image into different
classes.

An upsampling layer works by reversing the process of a convolutional layer. In a
convolutional layer, a filter is applied to the input feature map to produce an output
feature map with reduced spatial resolution. In an upsampling layer, a filter is applied
to the output feature map to produce an upsampled feature map with increased
spatial resolution.

There are several types of upsampling layers used in deep learning, including:

• Nearest neighbor upsampling - simply duplicates the values in the input
feature map to create a larger output feature map.

• Bilinear upsampling - uses a weighted average of the four nearest pixels in
the input feature map to generate each pixel in the output feature map.

• Transposed convolutional upsampling uses a learnable filter to map each
pixel in the output feature map to a patch of pixels in the input feature map,
and then applies a convolution to generate the output feature map.

Upsampling layers are commonly used in architectures such as fully convolutional
networks (FCNs) and U-Net architectures for tasks such as semantic segmentation,
image super-resolution, and generative modeling.

Convolutional Neural Networks - CNNs | FITPED AI

108

📝 5.3.6

What is the main purpose of an upsampling layer in a neural network?

• To increase the spatial resolution of feature maps while preserving their
spatial information

• To decrease the computational complexity of the network
• To reduce the number of channels in the feature maps
• To normalize the input feature map before passing it to the next layer

🕮 5.3.7

Architectures

CNNs have evolved over the years, with numerous architectures developed for
various tasks. Here, we will explore some of the most well-known CNN architectures
and their contributions to the field.

1. LeNet - developed by Yann LeCun in the 1990s, LeNet is one of the earliest
CNNs. It was specifically designed for handwritten digit recognition and
played a pivotal role in the development of deep learning.

2. AlexNet developed in 2012 by Alex Krizhevsky and others, achieved
breakthrough performance on the ImageNet dataset, significantly improving
the accuracy of image classification tasks. It popularized the use of CNNs
for large-scale image classification.

3. The Visual Geometry Group at Oxford introduced VGG in 2014. This
architecture is known for its simplicity and depth, consisting of multiple
convolutional layers followed by fully connected layers.

4. GoogLeNet, introduced by Google researchers in 2014, is known for its
Inception module, which allows the network to perform multiple convolution
operations of different sizes in parallel, improving performance.

5. ResNet, developed by Microsoft in 2015, introduced the concept of residual
connections, enabling the training of very deep networks by allowing the
gradient to flow more easily through the network.

6. DenseNet, introduced in 2017 by Facebook AI Research, promotes dense
connections between layers, which helps reuse features more efficiently and
reduces the number of parameters.

7. Developed by Google in 2017, MobileNet is a lightweight architecture
designed for mobile and embedded devices, focusing on efficiency and
minimal computational resource usage.

These CNN architectures have paved the way for more advanced networks and have
been applied in a wide range of tasks, from image classification to object detection.

Convolutional Neural Networks - CNNs | FITPED AI

109

LeNet-5 architecture visualization

AlexNet architecture visulazation

📝 5.3.8

Which of the following are CNN architectures developed to improve performance on
large-scale image classification tasks?

• AlexNet
• ResNet
• DenseNet
• LeNet

Convolutional Neural Networks - CNNs | FITPED AI

110

5.4 Practical applications

🕮 5.4.1

Practical applications

CNNs have revolutionized many fields due to their ability to process and analyze
image, video, and even non-visual data. Here are some key practical applications of
CNNs:

1. CNNs are widely used for image classification, where they assign labels to
input images from a predefined set. This is applicable to tasks like object
recognition, facial recognition, and scene classification.

2. Object detection - CNNs are also used for locating and classifying objects
within images or videos. This is important for applications like self-driving
cars, security surveillance, and robotics.

3. Semantic segmentation - in this task, CNNs assign a label to every pixel in an
image, enabling more detailed object detection and analysis. It's used for
tasks like medical image analysis and autonomous driving.

4. Image generation - CNNs can generate new images based on a set of input
parameters or styles, which is useful in creative applications like art and
design.

5. Style transfer - CNNs can take the style of one image and apply it to another,
combining the content of one image with the style of another. This technique
is popular in digital art creation.

6. Medical imaging - CNNs are used in healthcare for diagnosing diseases from
medical images, such as identifying tumors, analyzing X-rays, and MRI
scans.

7. CNNs can analyze video data for tasks like action recognition, tracking
objects across frames, and generating captions for video content.

8. Natural language processing - although typically used for image-related
tasks, CNNs are also applied in NLP tasks like sentiment analysis, text
classification, and language translation.

9. Recommendation systems - CNNs help in creating systems that recommend
products, movies, or services based on user preferences and behavior.

10. Autonomous vehicles - in self-driving cars, CNNs are used to detect and
classify objects on the road, such as pedestrians, other vehicles, and traffic
signs.

11. Agriculture - CNNs can analyze satellite imagery to monitor crops, predict
yields, and detect issues like pests or diseases.

12. Robotics - CNNs are used in robotics for object recognition, manipulation,
and navigation, making robots smarter and more autonomous.

13. Art and music - CNNs can generate new pieces of art or music based on
given styles or classify existing art/music according to genre.

14. Gaming - CNNs aid in video game development for tasks such as character
recognition, animation, and interactive game environments.

Convolutional Neural Networks - CNNs | FITPED AI

111

15. Finance - CNNs are applied in finance for tasks like fraud detection, stock
market prediction, and risk assessment.

These diverse applications show how CNNs are transforming various industries by
automating complex tasks and providing insights from large amounts of data.

📝 5.4.2

Which of the following is a common application of CNNs in the healthcare industry?

• Disease diagnosis from medical images
• Fraud detection
• Stock market prediction
• Object recognition in self-driving cars

📝 5.4.3

In which application are CNNs used to detect and classify objects on the road?

• Autonomous Vehicles
• Gaming
• Agriculture
• Natural Language Processing

🕮 5.4.4

Image augmentation

Image augmentation is a technique used in deep learning to increase the size and
diversity of the training set by applying transformations to the original images. This
technique helps to reduce overfitting and improve the performance of the model.

There are various image augmentation techniques used in deep learning, such as:

• Rotation - rotates the image by a certain angle to create new training
examples.

• Flipping - flipps the image horizontally or vertically to create a mirrored
version of the original image.

• Translation - shifts the image horizontally or vertically to create a new
training example.

Convolutional Neural Networks - CNNs | FITPED AI

112

• Scaling - rescales the image to create a smaller or larger version of the
original image.

• Shearing - sheares the image to create a slanted version of the original
image.

• Zooming - zooms into or out of the image to create a new training example.

These techniques can be used individually or in combination to generate a large and
diverse set of training data. Image augmentation is particularly useful when the size
of the original dataset is small, as it allows the model to generalize better and avoid
overfitting to the training data.

A bad example of image augmentation in CNN would be applying random
transformations that are not relevant to the problem being solved. For instance, if the
task is to recognize handwritten digits, applying random rotations or flipping the
images horizontally or vertically may not help improve the performance of the model,
and may even introduce noise and confuse the model. Another bad example would
be applying excessive transformations that distort the original image beyond
recognition. For example, scaling an image to a very small size or shearing it to a very
high degree may create a new training example, but the resulting image may be so
distorted that it does not resemble the original image, making it difficult for the model
to learn from it.

In general, image augmentation techniques should be carefully chosen based on the
problem being solved, and should aim to create new training examples that are
relevant and diverse, without introducing noise or distorting the original images too
much.

📝 5.4.5

Which of the following is an example of a transformation used in image
augmentation?

• Scaling
• Random noise generation
• Image compression
• Image encoding

📝 5.4.6

What is a potential issue with applying excessive image transformations, like
extreme shearing or scaling, in image augmentation?

Convolutional Neural Networks - CNNs | FITPED AI

113

• It could distort the image so much that it no longer resembles the original
content, making it difficult for the model to learn.

• It may generate irrelevant training data.
• It reduces the number of training examples.
• It improves model overfitting.

📝 5.4.7

Project: Character recognition (LeNET-5 example)

This example downloads the MNIST handwritten digits and creates a simple CNN
network based on LeNet-5 to predict the digit category (0-9).

LeNet-5 is a classic convolutional neural network architecture designed for
handwritten digit recognition, and was introduced by Yann LeCun, Leon Bottou,
Yoshua Bengio, and Patrick Haffner in 1998. It was one of the earliest successful
attempts to apply deep learning techniques to image recognition tasks.

The LeNet-5 architecture consists of seven layers, including three convolutional
layers and two fully connected layers. It takes as input a grayscale image of size
32x32 pixels, and outputs a probability distribution over the ten possible digit
classes.

The first layer is a convolutional layer with six 5x5 filters, followed by a max-pooling
layer with a 2x2 window. The second convolutional layer has 16 5x5 filters, again
followed by a max-pooling layer with a 2x2 window. The third convolutional layer has
120 5x5 filters, and is followed by two fully connected layers, with 84 and 10 neurons
respectively. The final layer uses a softmax activation function to produce the
probability distribution over the ten digit classes.

LeNet-5 was a groundbreaking model in the field of deep learning, and its architecture
has been used as a starting point for many subsequent models in image recognition
and other fields.

Convolutional Neural Networks - CNNs | FITPED AI

114

Network visualization

Dataset

MNIST (Modified National Institute of Standards and Technology) is a widely-used
dataset in the field of machine learning, specifically in the area of computer vision. It
consists of 70,000 grayscale images of handwritten digits, with a resolution of 28x28
pixels. The dataset is split into a training set of 60,000 images and a test set of 10,000
images. MNIST is often used as a benchmark dataset for image classification tasks,
particularly for testing and comparing different machine learning algorithms,
including convolutional neural networks (CNNs). The task is to correctly classify the
images into their corresponding digit class, from 0 to 9. MNIST has been used
extensively for teaching purposes in machine learning and computer vision, as it is
relatively small and easy to work with compared to many other datasets in the field.
It has also been used as a baseline for evaluating the performance of more complex
datasets and models.

import warnings

warnings.filterwarnings("ignore")

import matplotlib.pyplot as plt

import numpy as np

import tensorflow as tf

Load data from dataset

(x_train, y_train), (x_test, y_test) =

tf.keras.datasets.mnist.load_data()

Reshape

x_train = x_train.reshape(-1, 28, 28, 1)

x_test = x_test.reshape(-1, 28, 28, 1)

#Padding the images by 2 pixels

x_train = np.pad(x_train, ((0,0),(2,2),(2,2),(0,0)),

'constant')

x_test = np.pad(x_test, ((0,0),(2,2),(2,2),(0,0)), 'constant')

Depth of the image (number of channels) is 1 because these images are grayscale.
We'll also set up a seed to have reproducible results

Convolutional Neural Networks - CNNs | FITPED AI

115

image_width = x_train[0].shape[0]

image_height = x_train[0].shape[1]

num_channels = 1 # grayscale = 1 channel

seed = 98

np.random.seed(seed)

tf.random.set_seed(seed)

Parameters used for model training

batch_size = 100

evaluation_size = 500

epochs = 300

eval_every = 5

Normalize our images to change the values of all pixels to a common scale

x_train = x_train / 255

x_test = x_test/ 255

Declare model layers

input_data = tf.keras.Input(dtype=tf.float32,

shape=(image_width,image_height, num_channels), name="INPUT")

First Conv-ReLU-MaxPool Layer

conv1 = tf.keras.layers.Conv2D(filters=6, kernel_size=5,

padding='VALID', activation="relu", name="C1")(input_data)

max_pool1 = tf.keras.layers.MaxPool2D(pool_size=2, strides=2,

padding='SAME', name="S1")(conv1)

Second Conv-ReLU-MaxPool Layer

conv2 = tf.keras.layers.Conv2D(filters=16, kernel_size=5,

padding='VALID', strides=1, activation="relu",

name="C3")(max_pool1)

max_pool2 = tf.keras.layers.MaxPool2D(pool_size=2, strides=2,

padding='SAME', name="S4")(conv2)

Flatten Layer

flatten = tf.keras.layers.Flatten(name="FLATTEN")(max_pool2)

First Fully Connected Layer

fully_connected1 = tf.keras.layers.Dense(units=120,

activation="relu", name="F5")(flatten)

Second Fully Connected Layer

Convolutional Neural Networks - CNNs | FITPED AI

116

fully_connected2 = tf.keras.layers.Dense(units=84,

activation="relu", name="F6")(fully_connected1)

Final Fully Connected Layer

final_model_output = tf.keras.layers.Dense(units=10,

activation="softmax", name="OUTPUT")(fully_connected2)

model = tf.keras.Model(inputs= input_data,

outputs=final_model_output)

Compile the model with the sparse categorical cross-entropy loss and the ADAM
optimizer.

model.compile(optimizer="adam",

loss="sparse_categorical_crossentropy", metrics=["accuracy"])

Show model summary

model.summary()

Program output:
Model: "model"

__

 Layer (type) Output Shape Param #

==

===

 INPUT (InputLayer) [(None, 32, 32, 1)] 0

 C1 (Conv2D) (None, 28, 28, 6) 156

 S1 (MaxPooling2D) (None, 14, 14, 6) 0

 C3 (Conv2D) (None, 10, 10, 16) 2416

 S4 (MaxPooling2D) (None, 5, 5, 16) 0

 FLATTEN (Flatten) (None, 400) 0

 F5 (Dense) (None, 120) 48120

train_loss = []

train_acc = []

test_acc = []

Convolutional Neural Networks - CNNs | FITPED AI

117

for i in range(epochs):

 rand_index = np.random.choice(len(x_train), size=batch_size)

 rand_x = x_train[rand_index]

 rand_y = y_train[rand_index]

 history_train = model.train_on_batch(rand_x, rand_y)

 if (i+1) % eval_every == 0:

 eval_index = np.random.choice(len(x_test),

size=evaluation_size)

 eval_x = x_test[eval_index]

 eval_y = y_test[eval_index]

 history_eval = model.evaluate(eval_x,eval_y)

 # Record and print results

 train_loss.append(history_train[0])

 train_acc.append(history_train[1])

 test_acc.append(history_eval[1])

 acc_and_loss = [(i+1), history_train[0], history_train[1],

history_eval[1]]

 acc_and_loss = [np.round(x,2) for x in acc_and_loss]

 print('Epoch # {}. Train Loss: {:.2f}. Train Acc (Test

Acc): {:.2f} ({:.2f})'.format(*acc_and_loss))

print(history_train[0])

Program output:
0.13152286410331726

Plot the loss and accuracy.

Matlotlib code to plot the loss and accuracy

eval_indices = range(0, epochs, eval_every)

Plot loss over time

plt.plot(eval_indices, train_loss, 'k-')

plt.title('Loss per Epoch')

plt.xlabel('Epoch')

plt.ylabel('Loss')

plt.show()

Plot train and test accuracy

plt.plot(eval_indices, train_acc, 'k-', label='Train Set

Accuracy')

plt.plot(eval_indices, test_acc, 'r--', label='Test Set

Accuracy')

Convolutional Neural Networks - CNNs | FITPED AI

118

plt.title('Train and Test Accuracy')

plt.xlabel('Epoch')

plt.ylabel('Accuracy')

plt.legend(loc='lower right')

plt.show()

Program output:

Convolutional Neural Networks - CNNs | FITPED AI

119

Results for six examples

Plot some samples and their predictions

actuals = y_test[30:36]

preds = model.predict(x_test[30:36])

predictions = np.argmax(preds,axis=1)

images = np.squeeze(x_test[30:36])

Nrows = 2

Ncols = 3

for i in range(6):

 plt.subplot(Nrows, Ncols, i+1)

 plt.imshow(np.reshape(images[i], [32,32]), cmap='Greys_r')

 plt.title('Actual: ' + str(actuals[i]) + ' Pred: ' +

str(predictions[i]), fontsize=10)

 frame = plt.gca()

 frame.axes.get_xaxis().set_visible(False)

 frame.axes.get_yaxis().set_visible(False)

plt.show()

Program output:
1/1 [==============================] - ETA: 0s

1/1 [==============================] - 0s 166ms/step

Convolutional Neural Networks - CNNs | FITPED AI

120

📝 5.4.8

Project: More complex CNN

Create CNN to identify 10 different classes represent airplanes, cars, birds, cats, deer,
dogs, frogs, horses, ships, and trucks.

This example shows more complex CNN model with dropout Extending the depth of
CNN networks is done in a standard fashion: we just repeat the convolution, max
pooling, and ReLU in series until we are satisfied with the depth. Many of the more
accurate image recognition networks operate in this fashion.

Dataset

CIFAR-10 is a popular image classification dataset used in machine learning and
computer vision research. It consists of 60,000 32x32 color images in 10 classes,
with 6,000 images per class. The classes are airplane, automobile, bird, cat, deer,
dog, frog, horse, ship, and truck.

The dataset is divided into 50,000 training images and 10,000 test images, and is
often used as a benchmark for image classification models. The small size of the
images and the diversity of the classes make it a challenging dataset for machine
learning models to accurately classify. It has been widely used to evaluate the
performance of deep learning models such as convolutional neural networks (CNNs).

import warnings

warnings.filterwarnings("ignore")

import matplotlib.pyplot as plt

import numpy as np

import tensorflow as tf

from tensorflow import keras

Parameters. Using 20 epochs takes a lot of time in training. It can be lowered but at
a cost of accuracy.

Set dataset and model parameters

batch_size = 128

buffer_size= 128

epochs=4 #20

#Set transformation parameters

crop_height = 24

crop_width = 24

Convolutional Neural Networks - CNNs | FITPED AI

121

cifar_classes = ['airplane', 'automobile', 'bird', 'cat',

'deer', 'dog', 'frog', 'horse', 'ship', 'truck']

Load CIFAR dataset

Get data

print('Getting/Transforming Data.')

(x_train, y_train), (x_test, y_test) =

tf.keras.datasets.cifar10.load_data()

Program output:
Getting/Transforming Data.

print(x_train.shape)

Program output:
(50000, 32, 32, 3)

Define a reading function that will load and distort the images slightly for training

Define CIFAR reader

def read_cifar_files(image, label):

 final_image = tf.image.resize_with_crop_or_pad(image,

crop_width, crop_height)

 final_image = image / 255

 # Randomly flip the image horizontally, change the

brightness and contrast

 final_image = tf.image.random_flip_left_right(final_image)

 final_image =

tf.image.random_brightness(final_image,max_delta=0.1)

 final_image =

tf.image.random_contrast(final_image,lower=0.5, upper=0.8)

 return final_image, label

dataset_train = tf.data.Dataset.from_tensor_slices((x_train,

y_train))

dataset_test = tf.data.Dataset.from_tensor_slices((x_test,

y_test))

def show(image, label):

Convolutional Neural Networks - CNNs | FITPED AI

122

 plt.figure()

 plt.imshow(image)

 plt.title(cifar_classes[label.numpy()[0]])

 plt.axis('off')

for image, label in dataset_train.take(2):

 show(image, label)

 image, label = read_cifar_files(image, label)

 show(image, label)

Program output:

Convolutional Neural Networks - CNNs | FITPED AI

123

dataset_train_processed =

dataset_train.shuffle(buffer_size).batch(batch_size).map(read_

cifar_files)

dataset_test_processed =

dataset_test.batch(batch_size).map(read_cifar_files)

Model definition

model = keras.Sequential(

 [# First Conv-ReLU-Conv-ReLU-MaxPool Layer

 tf.keras.layers.Conv2D(input_shape=[32,32,3],

Convolutional Neural Networks - CNNs | FITPED AI

124

 filters=32,

 kernel_size=3,

 padding='SAME',

 activation="relu",

 kernel_initializer='he_uniform',

 name="C1"),

 tf.keras.layers.Conv2D(filters=32,

 kernel_size=3,

 padding='SAME',

 activation="relu",

 kernel_initializer='he_uniform',

 name="C2"),

 tf.keras.layers.MaxPool2D((2,2),

 name="P1"),

 tf.keras.layers.Dropout(0.2),

 # Second Conv-ReLU-Conv-ReLU-MaxPool Layer

 tf.keras.layers.Conv2D(filters=64,

 kernel_size=3,

 padding='SAME',

 activation="relu",

 kernel_initializer='he_uniform',

 name="C3"),

 tf.keras.layers.Conv2D(filters=64,

 kernel_size=3,

 padding='SAME',

 activation="relu",

 kernel_initializer='he_uniform',

 name="C4"),

 tf.keras.layers.MaxPool2D((2,2),

 name="P2"),

 tf.keras.layers.Dropout(0.2),

 # Third Conv-ReLU-Conv-ReLU-MaxPool Layer

 tf.keras.layers.Conv2D(filters=128,

 kernel_size=3,

 padding='SAME',

 activation="relu",

 kernel_initializer='he_uniform',

 name="C5"),

 tf.keras.layers.Conv2D(filters=128,

 kernel_size=3,

 padding='SAME',

 activation="relu",

 kernel_initializer='he_uniform',

 name="C6"),

Convolutional Neural Networks - CNNs | FITPED AI

125

 tf.keras.layers.MaxPool2D((2,2),

 name="P3"),

 tf.keras.layers.Dropout(0.2),

 # Flatten Layer

 tf.keras.layers.Flatten(name="FLATTEN"),

 # Fully Connected Layer

 tf.keras.layers.Dense(units=128,

 activation="relu",

 name="D1"),

 tf.keras.layers.Dropout(0.2),

 # Final Fully Connected Layer

 tf.keras.layers.Dense(units=10,

 activation="softmax",

 name="OUTPUT")

])

Model compilation

from keras.optimizers import SGD

model.compile(

 # optimizer="adam",

 loss="sparse_categorical_crossentropy",

 metrics=["accuracy"]

)

model.summary()

Program output:
Model: "sequential"

__

 Layer (type) Output Shape Param #

==

===

 C1 (Conv2D) (None, 32, 32, 32) 896

 C2 (Conv2D) (None, 32, 32, 32) 9248

 P1 (MaxPooling2D) (None, 16, 16, 32) 0

 dropout (Dropout) (None, 16, 16, 32) 0

 C3 (Conv2D) (None, 16, 16, 64) 18496

 C4 (Conv2D) (None, 16, 16, 64) 36928

Convolutional Neural Networks - CNNs | FITPED AI

126

 P2 (MaxPooling2D) (None, 8, 8, 64) 0

 dropout_1 (Dropout) (None, 8, 8, 64) 0

 C5 (Conv2D) (None, 8, 8, 128) 73856

 C6 (Conv2D) (None, 8, 8, 128) 147584

 P3 (MaxPooling2D) (None, 4, 4, 128) 0

Start training

history = model.fit(dataset_train_processed,

 validation_data=dataset_test_processed,

 epochs=epochs)

Program output:

385/391 [============================>.] - ETA: 1s - loss:

1.1362 - accuracy: 0.5991

386/391 [============================>.] - ETA: 1s - loss:

1.1365 - accuracy: 0.5991

387/391 [============================>.] - ETA: 1s - loss:

1.1362 - accuracy: 0.5991

388/391 [============================>.] - ETA: 0s - loss:

1.1362 - accuracy: 0.5989

389/391 [============================>.] - ETA: 0s - loss:

1.1360 - accuracy: 0.5991

390/391 [============================>.] - ETA: 0s - loss:

1.1353 - accuracy: 0.5993

391/391 [==============================] - ETA: 0s - loss:

1.1353 - accuracy: 0.5993

391/391 [==============================] - 112s 285ms/step -

loss: 1.1353 - accuracy: 0.5993 - val_loss: 1.0027 -

val_accuracy: 0.6467

Print loss and accuracy

Matlotlib code to plot the loss and accuracy

epochs_indices = range(0, epochs, 1)

Plot loss over time

Convolutional Neural Networks - CNNs | FITPED AI

127

plt.plot(epochs_indices, history.history["loss"], 'k-')

plt.title('Softmax Loss per Epoch')

plt.xlabel('Epoch')

plt.ylabel('Softmax Loss')

plt.show()

Plot accuracy over time

plt.plot(epochs_indices, history.history["val_accuracy"], 'k-

')

plt.title('Test Accuracy per Epoch')

plt.xlabel('Epoch')

plt.ylabel('Accuracy')

plt.show()

Program output:

5.5 Pre-trained networks

🕮 5.5.1

Retraining existing CNN models

Retraining existing CNN models is a technique widely used in transfer learning, where
a pre-trained convolutional neural network (CNN) is adapted to solve a new task.
Instead of building a CNN from scratch, this approach leverages the knowledge and

Convolutional Neural Networks - CNNs | FITPED AI

128

features learned by a pre-trained model on a large dataset. Retraining is especially
valuable when the new dataset is small or when computational resources are limited.

The retraining process typically involves modifying the pre-trained CNN by removing
its output layers, which were designed for its original task, and replacing them with
new layers suited to the new task. For example, the original output layer designed for
classifying 1,000 ImageNet categories can be replaced with a layer for classifying
just a few categories in a new dataset. The early layers of the pre-trained model are
often frozen, meaning their weights remain unchanged during training. This ensures
that the fundamental features already learned (e.g., edges and textures) are
preserved. The new layers are then trained using the new dataset, while optional fine-
tuning of the frozen layers can enhance the model's performance.

Retraining saves time and computational resources compared to training a CNN
from scratch, as the pre-trained model has already captured generic features useful
across a variety of tasks. It also helps achieve better performance when the new
dataset is small, as the model can transfer its understanding of similar data. This
approach is commonly used in fields like medical imaging, where datasets are
limited, and in applications like facial recognition or object detection, where high
accuracy is essential.

📝 5.5.2

What is the main advantage of retraining a pre-trained CNN model instead of training
one from scratch?

• It reduces computational resources and time.
• It avoids the need for fine-tuning.
• It always results in higher accuracy.
• It requires a larger dataset.

📝 5.5.3

In retraining a CNN, what happens to the early layers of the pre-trained model?

• They are frozen, meaning their weights are not updated.
• They are replaced by new layers.
• They are completely removed from the network.
• They are updated with random weights.

Convolutional Neural Networks - CNNs | FITPED AI

129

📝 5.5.4

Project: Retraining example

We will use transfer learning from a pre-trained network for CIFAR-10. The idea is to
reuse the weights and structure of the prior model from the convolutional layers and
retrain the fully connected layers at the top of the network. This method is called
fine-tuning.

Inception model

Inception-v3 is a convolutional neural network architecture designed for image
recognition and classification, and was introduced by Google researchers in 2015. It
is an improvement over the earlier Inception-v1 and Inception-v2 models, and
features a number of innovations to improve both accuracy and efficiency. The
Inception-v3 architecture consists of many layers, including multiple convolutional
and pooling layers, as well as a number of "inception" modules. These modules use
a combination of 1x1, 3x3, and 5x5 convolutions to extract features from the input
image at different scales and resolutions. In addition to these standard layers,
Inception-v3 also includes a number of specialized layers, such as batch
normalization layers, which help to improve the training process, and a global
average pooling layer, which helps to reduce the number of parameters in the model.
Inception-v3 has achieved state-of-the-art results on a number of image recognition
benchmarks, and its architecture has been used as a starting point for many
subsequent models in the field of computer vision.

Dataset

We know: CIFAR-10 is a popular image classification dataset used in machine
learning and computer vision research. It consists of 60,000 32x32 color images in
10 classes, with 6,000 images per class. The classes are airplane, automobile, bird,
cat, deer, dog, frog, horse, ship, and truck.

The dataset is divided into 50,000 training images and 10,000 test images, and is
often used as a benchmark for image classification models. The small size of the
images and the diversity of the classes make it a challenging dataset for machine
learning models to accurately classify. It has been widely used to evaluate the
performance of deep learning models such as convolutional neural networks (CNNs).

import warnings

warnings.filterwarnings("ignore")

import tensorflow as tf

from tensorflow import keras

from tensorflow.keras.applications.inception_v3 import

InceptionV3

Convolutional Neural Networks - CNNs | FITPED AI

130

from tensorflow.keras.applications.inception_v3 import

preprocess_input, decode_predictions

1. Prepare data

Set dataset parameters

batch_size = 32

buffer_size= 1000

Download the dataset and declare the 10 categories to reference when saving the
images later on

(x_train, y_train), (x_test, y_test) =

tf.keras.datasets.cifar10.load_data()

objects = ['airplane', 'automobile', 'bird', 'cat', 'deer',

 'dog', 'frog', 'horse', 'ship', 'truck']

2. Initialize the data pipeline

Inception v3 is pretrained on the ImageNet dataset, so our CIFAR-10 images must
match the format of these images. The width and height expected should be no
smaller than 75, so we will resize our images to 75x75 spatial size. Then, the images
should be normalized, so we will apply the inception preprocessing task (the
preprocess_input method) on each image.

Create training and testing datasets from tensor slices of

input features and labels

dataset_train = tf.data.Dataset.from_tensor_slices((x_train,

y_train))

dataset_test = tf.data.Dataset.from_tensor_slices((x_test,

y_test))

def preprocess_cifar10(img, label):

 # Cast image to float32 for compatibility with

preprocessing functions

 img = tf.cast(img, tf.float32)

 # Resize image to 75x75 pixels for compatibility with

InceptionV3 input size

 img = tf.image.resize(img, (75, 75))

 # Apply InceptionV3-specific preprocessing to the image

Convolutional Neural Networks - CNNs | FITPED AI

131

 return

tf.keras.applications.inception_v3.preprocess_input(img),

label

Shuffle and batch the training dataset, then apply the

preprocessing function

dataset_train_processed =

dataset_train.shuffle(buffer_size).batch(batch_size).map(prepr

ocess_cifar10)

Batch the testing dataset and apply the preprocessing

function

dataset_test_processed =

dataset_test.batch(batch_size).map(preprocess_cifar10)

We want to load the weights without the classification head.

Load the InceptionV3 model with the following

configurations:

- include_top=False: Excludes the fully connected top

layers, making it suitable for feature extraction

- weights="imagenet": Loads pretrained weights from the

ImageNet dataset

- input_shape=(75,75,3): Specifies the input size as 75x75

pixels with 3 color channels (RGB)

inception_model = InceptionV3(

 include_top=False,

 weights="imagenet",

 input_shape=(75, 75, 3)

)

We build our own model on top of the InceptionV3 model by adding a classifier with
three fully connected layers.

Extract the output of the InceptionV3 model as the base

feature map

x = inception_model.output

Apply Global Average Pooling to reduce each feature map to a

single value

x = keras.layers.GlobalAveragePooling2D()(x)

Add a dense layer with 1024 units and ReLU activation for

further feature learning

Convolutional Neural Networks - CNNs | FITPED AI

132

x = keras.layers.Dense(1024, activation="relu")(x)

Add another dense layer with 128 units and ReLU activation

for additional feature abstraction

x = keras.layers.Dense(128, activation="relu")(x)

Add the final dense layer with 10 units (corresponding to 10

classes) and softmax activation for classification

output = keras.layers.Dense(10, activation="softmax")(x)

Define the full model, using the InceptionV3 model's input

and the newly added output layers

model = keras.Model(inputs=inception_model.input,

outputs=output)

We'll set the base layers in Inception as not trainable. Only the classifier weights will
be updated during the back-propagation phase (not the Inception weights):

 Freeze all layers in the InceptionV3 base model to retain

pre-trained weights during training

for inception_layer in inception_model.layers:

 inception_layer.trainable = False

Compile the model with the Adam optimizer, sparse

categorical cross-entropy loss for integer labels,

and accuracy as the evaluation metric

model.compile(optimizer="adam",

loss="sparse_categorical_crossentropy", metrics=["accuracy"])

Show model architecture

model.summary()

Start training

model.fit(x=dataset_train_processed ,

 validation_data=dataset_test_processed)

Program output:

1556/1563 [============================>.] - ETA: 0s - loss:

1.1405 - accuracy: 0.6028

1557/1563 [============================>.] - ETA: 0s - loss:

1.1405 - accuracy: 0.6029

Convolutional Neural Networks - CNNs | FITPED AI

133

1558/1563 [============================>.] - ETA: 0s - loss:

1.1406 - accuracy: 0.6028

1559/1563 [============================>.] - ETA: 0s - loss:

1.1405 - accuracy: 0.6029

1560/1563 [============================>.] - ETA: 0s - loss:

1.1403 - accuracy: 0.6030

1561/1563 [============================>.] - ETA: 0s - loss:

1.1402 - accuracy: 0.6030

1562/1563 [============================>.] - ETA: 0s - loss:

1.1401 - accuracy: 0.6030

1563/1563 [==============================] - 152s 94ms/step -

loss: 1.1400 - accuracy: 0.6030 - val_loss: 1.0638 -

val_accuracy: 0.6242

Accuracy at the end is over 60%.

Remember that we are fine-tuning the model and retraining the fully connected layers
at the top to fit our 10-category data.

5.6 Object detection

🕮 5.6.1

Binary classification

Binary classification is the simplest approach for image classification tasks. It
involves categorizing images into just two distinct classes, such as "cat" or "not cat."
This simplicity makes it a common starting point for understanding classification
models. In convolutional neural networks (CNNs), the process begins with a
convolutional operation to extract features from images. Pooling layers, like max
pooling and average pooling, are then used to reduce the spatial dimensions while
retaining important features. The pooling output is further processed by a flattening
layer, converting it into a single column of data.

To enhance model performance, image augmentation is applied to create diverse
training datasets, and batch normalization is used to stabilize and accelerate
learning. These components distinguish CNNs from other artificial neural networks
(ANNs). The binary classifier concludes with a dense output layer having a single unit
activated by a sigmoid function, producing probabilities for the two classes. While
effective for simple tasks, binary classifiers can be extended to classify more than
two objects, transitioning into the realm of object classification.

Convolutional Neural Networks - CNNs | FITPED AI

134

📝 5.6.2

What activation function is typically used in the output layer of a binary image
classifier?

• Sigmoid
• ReLU
• Softmax
• Tanh

🕮 5.6.3

Object classification in image classification

Object classification extends beyond binary tasks by categorizing images into
multiple classes or identifying specific objects within images. The simplest form is
image classification, where the goal is to assign a single label to the entire image,
identifying its most probable category. Traditional CNNs are commonly used for this
purpose.

In classification with localization, the task becomes more complex, as the model
must identify the category of an object and also locate it within the image using
bounding boxes. Simplified models like You Only Look Once (YOLO) or R-CNN
(Region-based Convolutional Neural Network) are often employed for this.

Detection takes this a step further, aiming to detect, localize, and classify multiple
objects within the same image. The output includes multiple bounding boxes and
their associated class labels. Advanced models like YOLO and R-CNN excel in this
domain, offering solutions to challenges like overlapping objects and varying scales.
Thus, object classification tasks vary in complexity, with detection requiring both
high accuracy and precise localization.

📝 5.6.4

Which models are commonly used for object detection tasks?

• YOLO
• R-CNN
• VGG
• LeNet

Convolutional Neural Networks - CNNs | FITPED AI

135

🕮 5.6.5

Region-based convolutional neural network

Region-based convolutional neural network (R-CNN) is a popular object detection
algorithm that uses a combination of region proposals and convolutional neural
networks to localize and classify objects in an image. Its process involves three key
steps:

1. Region proposal generation - the algorithm uses a selective search to
generate regions of interest in an image.

2. Feature extraction - each region is passed through a CNN to extract
features.

3. Classification and localization - a classifier categorizes objects, while
bounding box regression refines object location.

R-CNN was introduced in 2014 by Ross Girshick, et al. as an improvement over
previous object detection algorithms that used hand-crafted features and sliding
windows to classify objects. R-CNN was one of the first object detection algorithms
to use deep learning and has since been improved upon with faster variants, such as
Fast R-CNN and Faster R-CNN, which use a single network for region proposal and
classification, leading to faster and more accurate object detection. There are
improved version Fast R-CNN and Faster R-CNN.

📝 5.6.6

What is the first step in the R-CNN process?

• Region proposal generation
• Bounding box regression
• Feature extraction
• Classification

🕮 5.6.7

YOLO

YOLO (You Only Look Once) is a deep learning object detection model that can detect
objects in real-time images and videos with high accuracy. It was developed by
Joseph Redmon, and it stands out from other object detection models because of its
speed and efficiency.

Convolutional Neural Networks - CNNs | FITPED AI

136

YOLO uses a single neural network that can directly predict the bounding boxes and
class probabilities for multiple objects in an image in one shot. This means that the
network only needs to look at the image once to detect objects, as opposed to the
traditional two-stage methods where the image is first segmented into regions of
interest, and then those regions are classified. YOLO's single-stage approach makes
it significantly faster than other object detection models while maintaining high
accuracy.

YOLO has been updated with several versions, including YOLOv2, YOLOv3, and
YOLOv4, each with its own improvements and optimizations to increase speed and
accuracy. YOLO is widely used in various applications, including self-driving cars,
surveillance systems, and object recognition in social media.

📝 5.6.8

What are the advantages of YOLO compared to other object detection algorithms?

• Real-time detection
• Single-pass processing
• Requires hand-crafted features
• Uses sliding windows for object detection

🕮 5.6.9

Single shot detector

Single shot detector (SSD) is an object detection algorithm that belongs to the family
of one-stage detectors, meaning that it performs object detection in a single forward
pass of the neural network. SSD is based on a fully convolutional neural network that
predicts the class scores and the bounding box coordinates of multiple objects in an
image.

The key idea behind SSD is to use a set of default bounding boxes with different
aspect ratios and scales at each spatial location in the feature map of the last
convolutional layer. These default bounding boxes act as templates to detect objects
of different sizes and shapes. The network predicts the offsets and scales of these
default bounding boxes to obtain the final predicted bounding boxes.

Compared to other object detection algorithms, SSD has the advantage of being
faster and more accurate, especially for detecting small objects. It has been used in
various applications, such as autonomous driving, robotics, and surveillance
systems.

Convolutional Neural Networks - CNNs | FITPED AI

137

In autonomous drones, SSD is used to detect small objects like birds or obstacles
during flight. Its ability to handle multiple object sizes and its speed make it ideal for
time-sensitive applications.

📝 5.6.10

What is a key feature of SSD that makes it efficient?

• Employs default bounding boxes
• Uses selective search for region proposals
• Divides the image into a grid for detection
• Combines hand-crafted features with deep learning

5.7 Accuracy measurement

🕮 5.7.1

Object detection performance evaluation

Object detection performance evaluations typically involve measuring the accuracy
of a model in detecting and localizing objects within an image. Some common
metrics used for evaluation include:

• Precision - the proportion of true positive detections (correctly identified
objects) over the total number of detections made by the model.

• Recall - the proportion of true positive detections over the total number of
objects present in the image.

• Intersection over union (IoU)- a measure of the overlap between the ground
truth bounding box and the predicted bounding box. IoU is typically used to
determine whether a detection is a true positive or a false positive.

• Average precision - a metric that combines both precision and recall, by
computing the area under the precision-recall curve.

• Mean average precision - the average AP across all object categories in the
dataset.

• F1 score - the harmonic mean of precision and recall, which provides a
balanced measure of the model's accuracy.

These metrics are used to evaluate the performance of different object detection
models and to compare them against each other on various datasets.

Convolutional Neural Networks - CNNs | FITPED AI

138

📝 5.7.2

Which metrics are commonly used to evaluate object detection models?

• Precision
• Mean average precision
• Learning rate
• Epoch count

📝 5.7.3

What does Intersection over Union measure?

• The overlap between the ground truth and predicted bounding boxes
• The balance between precision and recall
• The total number of detections made by a model
• The area under the precision-recall curve

📝 5.7.4

Which metrics combine precision and recall for object detection?

• F1 score
• Average precision
• IoU
• Precision

Recurrent Neural Networks
- RNNs

Chapter 6

Recurrent Neural Networks - RNNs | FITPED AI

140

6.1 RNN overview

🕮 6.1.1

Recurrent neural networks (RNNs) are a type of neural network that are commonly
used for processing sequential data. Unlike traditional neural networks that process
fixed-length inputs, RNNs can handle inputs of variable lengths by maintaining a
"memory" of the previous inputs that they have processed. RNNs use this memory to
make predictions based on the current input and the context provided by the previous
inputs.

RNNs consist of a series of repeating units that take an input and produce an output
while maintaining an internal state that captures the "memory" of previous inputs.
This internal state is passed on to the next unit in the sequence, allowing the network
to maintain a context across multiple inputs. The output of the final unit in the
sequence is typically fed into a fully connected layer to produce the final output of
the network.

RNNs are particularly well-suited for tasks such as language modeling, speech
recognition, and natural language processing, where the input data is inherently
sequential and the context of previous inputs is important for making accurate
predictions.

📝 6.1.2

What is the key feature that enables RNNs to handle sequential data?

• Maintaining a "memory" of previous inputs

Recurrent Neural Networks - RNNs | FITPED AI

141

• The use of convolutional layers
• Processing fixed-length inputs only
• The absence of an internal state

📝 6.1.3

For which tasks are RNNs particularly well-suited?

• Language modeling
• Object detection
• Speech recognition
• Image segmentation

🕮 6.1.4

Sequential data and deep learning models

Sequential data refers to data sets in which each data point depends on previous
data. Consider it a sentence, which consists of a series of words that are related to
each other. A verb is linked to a subject and an adverb is linked to a verb. Another
example is a stock price, where the price on a particular day is related to the price of
the previous days. Traditional neural networks are not suitable for processing this
type of data. There is a specific type of architecture that can ingest data sequences.
A RNN model is a specific type of deep learning architecture in which the output of
the model is returned to the input. This type of model has its own challenges (known
as disappearing and exploding gradients).In many ways, a RNN is a representation
of how the brain can work. RNN uses memory to help them learn. But how can they
do this if the information flows only in one direction? To understand this, you first
need to examine sequential data. This is a type of data that requires work memory
to process data effectively. Until now, you have only investigated non-sequence
models, such as perceptron or CNN.

Typical examples of sequential data:

1. Time series data includes data that is collected over time, such as stock
prices, weather data, or sensor data.

2. Natural language processing data includes text data, such as words or
sentences, that have a specific sequence.

3. Music data includes audio data that has a temporal order, such as music
notes or beats.

4. Video data includes data that is captured from a sequence of images, such
as videos or motion capture data.

Recurrent Neural Networks - RNNs | FITPED AI

142

RNNs mimic certain aspects of how the human brain processes sequences,
leveraging memory to make predictions or generate outputs that depend on historical
inputs.

📝 6.1.5

Why are traditional neural networks unsuitable for processing sequential data?

• They lack the ability to capture dependencies over time.
• They do not use convolutional layers.
• They cannot process non-image data.
• They require labeled data for training.

📝 6.1.6

Which of the following are typical examples of sequential data?

• Stock prices
• Music notes
• Static images
• Object boundaries

🕮 6.1.7

Difference between RNN and CNN

Recurrent Neural Networks (RNNs) and Convolutional Neural Networks (CNNs) are
both types of deep learning models, but they are designed for different types of input
data and tasks.

RNNs are typically used for sequential data, where the order of the data matters, such
as time series or natural language processing. They use feedback connections
between neurons to maintain a memory of previous inputs, allowing them to model
temporal dependencies in the data.

CNNs, on the other hand, are typically used for data that has a grid-like structure,
such as images, audio spectrograms, or even text in the form of 2D word
embeddings. They use convolutional layers to extract local features from the data,
and pooling layers to reduce the spatial resolution while retaining the most important
features.

Recurrent Neural Networks - RNNs | FITPED AI

143

In terms of architecture, RNNs typically have a single recurrent layer or multiple
stacked recurrent layers, while CNNs can have multiple convolutional layers, followed
by pooling layers and then fully connected layers for classification. RNNs are trained
using backpropagation through time (BPTT), while CNNs are trained using
backpropagation through the convolutional layers.

In summary, the main difference between RNNs and CNNs is that RNNs are designed
for sequential data, while CNNs are designed for grid-like data such as images.

📝 6.1.8

What is the main difference between RNNs and CNNs?

• RNNs are designed for sequential data, while CNNs are designed for grid-like
data such as images.

• RNNs use pooling layers, while CNNs use recurrent layers.
• RNNs are used for grid-like data, while CNNs are used for sequential data.
• CNNs are designed for temporal data, while RNNs are used for spatial data.

📝 6.1.9

RNNs can be typically used for

• Sequential data
• Image data
• Grid structured data

🕮 6.1.10

Typical applications of RNNs

RNNs are powerful models primarily used for tasks that involve sequential data,
where the order of data points and the context within the sequence matter. Some
common applications of RNNs are:

1. Natural language processing - RNNs excel in NLP tasks such as language
modeling, machine translation, sentiment analysis, and speech recognition.
They are capable of capturing the temporal structure of language, which
helps in understanding the relationship between words over time.

2. Time series analysis - RNNs are frequently used for analyzing time-
dependent data, such as stock prices, weather data, or sensor data. By

Recurrent Neural Networks - RNNs | FITPED AI

144

analyzing patterns in time series data, RNNs can make predictions about
future events or detect anomalies that might indicate a problem.

3. Image and video captioning - In this application, RNNs are used to generate
captions for images or descriptions of video sequences. The RNN processes
visual information sequentially, capturing features and generating human-
readable descriptions of the content.

4. Music generation - RNNs are also used to generate new music by learning
patterns and structures from existing pieces. The model can then predict
and generate a sequence of notes, creating compositions that follow
musical structures.

5. Handwriting recognition - RNNs are employed in handwriting recognition to
process the sequence of strokes and convert them into text. The temporal
aspect of the strokes is captured by the RNN, making it effective for
recognizing handwritten words.

6. Speech recognition - RNNs are integral to speech recognition systems,
which convert spoken words into text. The sequential nature of speech data
makes RNNs well-suited for this task, as they can recognize patterns in
sound waves over time.

Overall, RNNs are most effective for tasks where the relationships between
consecutive data points are important, such as time series forecasting, language
processing, and sequential pattern recognition.

📝 6.1.11

Which of the following tasks can RNNs be used for?

• Natural language processing
• Time series analysis
• Image classification
• Object detection

6.2 Layers and architectures

🕮 6.2.1

RNN building blocks

The first formulation of a recurrent-like neural network was created by John Hopfield
in 1982.

Recurrent Neural Networks - RNNs | FITPED AI

145

The information is transformed into a vector that can be processed by a machine.
The RNN then processes the vector sequence one at a time. When processing each
vector, it passes through the previous hidden state. The hidden state stores
information from the previous step, acting as a memory type. This is done by
combining the input and the previous hidden state with a tanh function that
compresses values between -1 and 1.

📝 6.2.2

Which of the following statements are true about the building blocks of an RNN?

• The RNN processes a sequence of vectors one at a time.
• The hidden state stores information from previous steps.
• RNNs use a ReLU activation function to compress values.
• The hidden state only stores the current input vector.

🕮 6.2.3

In feed-forward neural networks, data propagates in one direction only, that is, from
input to output. This is good approach for single input you need to process (such as
image data seen in CNNs previously) but it does not work well for a sequence of data.
RNNs are particularly suitable to handle cases where you have an input sequence
instead of a single input. These are important for problems in which data sequences
are transmitted to give a single output.

Simply put, RNNs are networks that offer a mechanism to persist previously
processed data over time and use it to make future predictions. It provides
information about the previous step to the next one. This mechanism is called

Recurrent Neural Networks - RNNs | FITPED AI

146

recurrent because information is being passed from one time step to the next within
the network.

RNN maintains the inner state H t, combine it with the next input data Xt+1, make a
prediction, Yt+1, and store the new inner state Ht+1.The key idea is that state update is
a combination of the previous state time step and the current input received by the
network.

Given an example:

1. At the start RNN is initialized altogether with the hidden state of that
network. You can indicate a sentence in which you are interested in
predicting the next word. The RNN calculation consists simply of them
moving through the words in this sentence.

2. At each time step, you include both the current word you're considering, and
the previous hidden state of your RNN in the network. This can then generate
a prediction for the next word in the sequence and use this information to
update its hidden state.

3. Finally, after you have passed through all the words of the sentence, your
prediction for this missing word is simply the output of the RNN at this last
step of time.

As can be seen in the previous image the non-linear activation function is applied to
get new state ht and the output yt.

Recurrent Neural Networks - RNNs | FITPED AI

147

📝 6.2.4

What is the key mechanism that allows RNNs to handle sequential data?

• Information is passed from one time step to the next within the network.
• Information is passed from input to output only.
• Each time step processes data independently.
• Data is stored in a fixed layer for all inputs.

🕮 6.2.5

The vanishing gradient problem

The vanishing gradient problem in RNNs is a common issue that arises during the
training process. When backpropagating the error through multiple layers of the
network, the gradients, which are used to update the weights, tend to become very
small. This is especially problematic for long sequences of data, as the gradients
shrink exponentially with each time step. The underlying cause of this issue is the
repeated multiplication of the weight matrix during backpropagation. If the weight
matrix has eigenvalues less than 1, the gradients diminish rapidly as they are
propagated backward through time, making it challenging for the network to learn
from long-term dependencies.

The vanishing gradient problem can severely hinder the performance of an RNN,
particularly in tasks where context from distant time steps is essential for making
accurate predictions. In natural language processing, for instance, understanding the
meaning of a sentence often requires knowledge of earlier words or phrases.
Similarly, in speech recognition, the context of earlier sounds is critical for correctly
identifying later parts of the speech. If the gradients vanish during training, the model
may fail to capture such long-term dependencies, leading to poor performance on
tasks that require temporal understanding.

To mitigate the vanishing gradient problem, several modifications to the standard
RNN architecture have been proposed. One of the most successful solutions is the
Long Short-Term Memory (LSTM) network. LSTMs use a specialized gating
mechanism to regulate the flow of information through the network, allowing them
to retain important information for longer periods and avoid the problem of vanishing
gradients. Another approach is the Gated Recurrent Unit (GRU), which is similar to
LSTMs but with a simpler structure. Both LSTMs and GRUs are widely used in
practice and have demonstrated significant improvements in handling long-term
dependencies in sequential data.

Despite the advancements with LSTMs and GRUs, the vanishing gradient problem
remains a fundamental challenge in training RNNs. Understanding and addressing
this issue is crucial for effectively applying RNNs to a wide range of sequential tasks,
such as language modeling, machine translation, and time series forecasting.

Recurrent Neural Networks - RNNs | FITPED AI

148

Researchers continue to explore alternative architectures and training techniques
that can further alleviate the vanishing gradient problem, improving the efficiency
and accuracy of RNN-based models.

📝 6.2.6

What is the primary cause of the vanishing gradient problem in RNNs?

• Gradients shrink exponentially as they are backpropagated through time.
• The weight matrix has eigenvalues greater than 1.
• The network uses a fixed learning rate.
• The network lacks sufficient layers.

🕮 6.2.7

Long short-term memory

Long short-term memory (LSTM) networks are a type of RNN designed to address
the vanishing gradient problem, a common issue in traditional RNNs. In standard
RNNs, the gradients used for weight updates can become very small as they are
backpropagated through many time steps, making it difficult for the model to learn
long-term dependencies. LSTM networks overcome this challenge by introducing an
internal memory state that can store information for long periods, allowing them to
retain critical data over long sequences. This ability to maintain long-term memory
makes LSTMs particularly effective for tasks like natural language processing,
speech recognition, and time series analysis.

One of the main differences between LSTM cells and traditional RNN cells is the
presence of memory states and gates that control the flow of information. At each
time step, an LSTM cell takes in three inputs: the current input, the previous hidden
state, and the previous memory state. It then processes these inputs using three key
gates: the forget gate, the input gate, and the output gate. The forget gate determines
how much of the previous memory state should be discarded, ensuring that the
model does not retain unnecessary or outdated information. The input gate controls
how much of the current input should be used to update the memory state, allowing
the model to incorporate new information. Finally, the output gate controls how much
of the memory state should be passed to the next time step, enabling the model to
make predictions based on the current context.

These gates and the memory state make LSTM cells highly effective at learning and
retaining long-term dependencies in sequential data. For example, in natural
language processing, LSTM networks can remember the meaning of words from
earlier in a sentence, which is crucial for understanding the sentence as a whole.

Recurrent Neural Networks - RNNs | FITPED AI

149

Similarly, in speech recognition, LSTMs can retain information about previous
sounds, which is important for recognizing the current word or phoneme accurately.

LSTMs have become a standard tool in deep learning for handling sequential data
and have significantly improved the performance of models in various fields. They
are widely used in applications like machine translation, sentiment analysis, and even
video analysis, where understanding temporal dependencies is essential for making
accurate predictions. Their ability to maintain and manipulate memory over long
sequences makes LSTMs an essential component in modern deep learning
architectures.

📝 6.2.8

What is the primary function of the gates in an LSTM cell?

• They control the flow of information into and out of the memory state.
• They determine how much of the previous hidden state to keep.
• They define the sequence length for training.
• They prevent overfitting in the model.

Recurrent Neural Networks - RNNs | FITPED AI

150

🕮 6.2.9

Steps in LSTM

The processing steps in an LSTM cell are crucial for its ability to manage long-term
dependencies in sequential data. These steps control how information flows through
the cell, allowing it to remember important details over time and forget irrelevant
ones. Here's a breakdown of the key steps in the LSTM cell:

1. Forget - in this step, the LSTM cell decides which information from the
previous memory state should be discarded. This is done using the forget
gate. The forget gate looks at the previous hidden state and the current input
to produce a value between 0 and 1, indicating how much of the previous
memory should be retained. A value of 0 means "forget everything," while a
value of 1 means "keep everything."

2. Store - the LSTM cell then decides what new information should be stored in
the memory. This is done using the input gate. The input gate takes the
current input and the previous hidden state to decide which part of the new
information should be added to the memory state. This step helps the cell
learn and remember new information over time, contributing to the model's
ability to handle long-term dependencies.

3. Update - after storing new information, the memory state is updated. The
previous memory state is combined with the new information that was
stored in the previous step. The forget gate's output determines how much
of the previous memory is kept, while the input gate decides how much of
the new input is added. The result is a new memory state that includes both
retained and updated information.

4. Generate - finally, the LSTM cell generates an output based on the current
memory state. This is done using the output gate. The output gate controls
how much of the memory state should be passed on to the next time step,
which could be the next LSTM cell or the final output of the model. The
output is typically passed through an activation function (like the tanh
function) to produce a value between -1 and 1.

These processing steps - forget, store, update, and generate - work together to allow
the LSTM to learn and maintain important information over time, making it highly
effective for tasks like language modeling, time series prediction, and speech
recognition.

Recurrent Neural Networks - RNNs | FITPED AI

151

📝 6.2.10

What is the primary function of the "forget" step in an LSTM cell?

• To decide which information from the previous memory state should be
discarded.

• To store new information in the memory.
• To generate the output for the next time step.
• To combine the previous hidden state with the current input.

🕮 6.2.11

Architectures

RNNs have several known architectures that are commonly used for various tasks.
Here are some of the most well-known architectures:

1. Simple RNN is the simplest form of RNN and consists of a single layer of
recurrent neurons. It is used for simple sequential tasks, such as language
modeling and stock price prediction.

2. LSTM (Long Short-Term Memory) was developed to address the vanishing
gradient problem in simple RNNs. It has an internal memory cell and three
gates (input, forget, and output) that control the flow of information through
the network. LSTMs are commonly used for tasks such as speech
recognition and text classification.

3. GRU (Gated Recurrent Unit) is similar to the LSTM but has fewer parameters.
It has two gates (reset and update) that control the flow of information
through the network. GRUs are commonly used for tasks such as language
modeling and machine translation.

4. Bidirectional RNN processes the input sequence in both forward and
backward directions and combines the outputs to produce a final output. It is
commonly used for tasks such as speech recognition and sentiment
analysis.

5. Encoder-Decoder consists of two RNNs: an encoder network that processes
the input sequence and a decoder network that generates the output
sequence. It is commonly used for tasks such as machine translation and
image captioning.

6. Attention-based RNN uses an attention mechanism to selectively focus on
parts of the input sequence that are relevant to the current output. It is
commonly used for tasks such as machine translation and text
summarization.

Overall, the choice of architecture depends on the specific task and the properties of
the input and output sequences.

Recurrent Neural Networks - RNNs | FITPED AI

152

📝 6.2.12

Which of the following RNN architectures is designed to address the vanishing
gradient problem and includes an internal memory cell with three gates (input, forget,
and output)?

• LSTM (Long Short-Term Memory)
• Simple RNN
• GRU (Gated Recurrent Unit)
• Bidirectional RNN

6.3 Practical examples with RNNs

📝 6.3.1

Project: ANN on sequential data - Nvidia stock price prediction

Apply an artificial neural network (ANN) to predict the stock price of Nvidia using
historical stock data. You will preprocess the data, design a neural network, and
evaluate the model’s performance.

This is example of regular ANN used for sequential data

Dataset:

• original: https://raw.githubusercontent.com/PacktWorkshops/The-
TensorFlow-Workshop/master/Chapter09/Exercise9.01/NVDA.csv

• local: https://priscilla.fitped.eu/data/deep_learning/NVDA.csv

import warnings

warnings.filterwarnings("ignore")

import numpy as np

import matplotlib.pyplot as plt

import pandas as pd

from sklearn.preprocessing import StandardScaler, MinMaxScaler

Load data from csv file

import io

import requests

url="https://priscilla.fitped.eu/data/deep_learning/NVDA.csv"

data = pd.read_csv(url)

https://raw.githubusercontent.com/PacktWorkshops/The-TensorFlow-Workshop/master/Chapter09/Exercise9.01/NVDA.csv
https://raw.githubusercontent.com/PacktWorkshops/The-TensorFlow-Workshop/master/Chapter09/Exercise9.01/NVDA.csv
https://priscilla.fitped.eu/data/deep_learning/NVDA.csv

Recurrent Neural Networks - RNNs | FITPED AI

153

Show data head and tail

print(data.head())

Program output:
 Date Open High Low Close Adj

Close Volume

0 2015-07-22 19.650000 19.650000 19.17 19.410000

18.851749 8911800

1 2015-07-23 19.450001 19.940001 19.41 19.650000

19.084845 4247900

2 2015-07-24 19.790001 19.809999 19.34 19.420000

18.861464 4721100

3 2015-07-27 19.250000 19.530001 19.09 19.309999

18.754622 4810500

4 2015-07-28 19.360001 19.860001 19.16 19.730000

19.162542 4957700

print(data.tail())

Program output:
 Date Open High Low

Close Adj Close \

1254 2020-07-15 416.570007 417.320007 402.230011

409.089996 409.089996

1255 2020-07-16 400.600006 408.269989 395.820007

405.390015 405.390015

1256 2020-07-17 409.019989 409.940002 403.510010

408.059998 408.059998

1257 2020-07-20 410.970001 421.250000 406.269989

420.429993 420.429993

1258 2020-07-21 420.519989 422.399994 411.470001

413.140015 413.140015

 Volume

1254 10099600

1255 8624100

1256 6657100

1257 7121300

1258 6925900

Split Training data

data_training = data[data['Date']<'2019-01-01'].copy()

Recurrent Neural Networks - RNNs | FITPED AI

154

Split Testing data

data_test = data[data['Date']>='2019-01-01'].copy()

training_data = data_training.drop\

 (['Date', 'Adj Close'], axis = 1)

print(training_data.head())

Program output:
 Open High Low Close Volume

0 19.650000 19.650000 19.17 19.410000 8911800

1 19.450001 19.940001 19.41 19.650000 4247900

2 19.790001 19.809999 19.34 19.420000 4721100

3 19.250000 19.530001 19.09 19.309999 4810500

4 19.360001 19.860001 19.16 19.730000 4957700

Normalisation process

scaler = MinMaxScaler()

training_data = scaler.fit_transform(training_data)

X_train = []

y_train = []

print(training_data.shape[0])

Program output:
868

for i in range(60, training_data.shape[0]): # Loop through

the data starting from index 60

 X_train.append(training_data[i-60:i]) # Append a sequence

of 60 previous data points to X_train

 y_train.append(training_data[i, 0]) # Append the

current data point (first feature) to y_train

X_train, y_train = np.array(X_train), np.array(y_train) #

Convert X_train and y_train lists into NumPy arrays

X_train.shape, y_train.shape # Return the shapes of the

training data arrays

print(X_train.shape) # Print the shape of X_train (features)

print(y_train.shape) # Print the shape of y_train (target

labels)

Recurrent Neural Networks - RNNs | FITPED AI

155

Program output:
(808, 60, 5)

(808,)

X_old_shape = X_train.shape # Store the original shape of

X_train

X_train = X_train.reshape(X_old_shape[0],

X_old_shape[1]*X_old_shape[2]) # Flatten the second and third

dimensions into one

print(X_train.shape) # Print the new shape of X_train after

reshaping

Program output:
(808, 300)

Following code imports the essential components to build a neural network model:

1. Sequential is used to create a linear stack of layers for the model.
2. Input layer, which can define the shape of the input data (although it is

typically inferred in the Sequential model).
3. Dense is a fully connected layer, which connects every neuron to every other

neuron in the layer.
4. Dropout - a regularization technique that helps prevent overfitting by

randomly setting a fraction of input units to 0 at each update during training
time.

from tensorflow.keras import Sequential

from tensorflow.keras.layers import Input, Dense, Dropout

Model definition

regressor_ann = Sequential() # Create a sequential model

Input layer with shape (300,)

regressor_ann.add(Input(shape = (300,)))

First dense layer with 512 units and ReLU activation,

followed by dropout with rate 0.2

regressor_ann.add(Dense(units = 512, activation = 'relu'))

regressor_ann.add(Dropout(0.2))

Second dense layer with 128 units and ReLU activation,

followed by dropout with rate 0.3

Recurrent Neural Networks - RNNs | FITPED AI

156

regressor_ann.add(Dense(units = 128, activation = 'relu'))

regressor_ann.add(Dropout(0.3))

Third dense layer with 64 units and ReLU activation,

followed by dropout with rate 0.4

regressor_ann.add(Dense(units = 64, activation = 'relu'))

regressor_ann.add(Dropout(0.4))

Fourth dense layer with 16 units and ReLU activation,

followed by dropout with rate 0.5

regressor_ann.add(Dense(units = 16, activation = 'relu'))

regressor_ann.add(Dropout(0.5))

Output layer with 1 unit (regression output)

regressor_ann.add(Dense(units = 1))

regressor_ann.summary()

Program output:
Model: "sequential"

__

 Layer (type) Output Shape Param #

==

===

 dense (Dense) (None, 512) 154112

 dropout (Dropout) (None, 512) 0

 dense_1 (Dense) (None, 128) 65664

 dropout_1 (Dropout) (None, 128) 0

 dense_2 (Dense) (None, 64) 8256

 dropout_2 (Dropout) (None, 64) 0

Following line of code compiles the regressor_ann model, specifying the following:

• Optimizer: 'adam' is used for training. It's a popular optimization algorithm
because it adapts the learning rate during training, often leading to faster
convergence.

Recurrent Neural Networks - RNNs | FITPED AI

157

• Loss function 'mean_squared_error' - is commonly used in regression tasks.
It calculates the average of the squared differences between the predicted
and actual values. The model aims to minimize this loss during training,
improving its predictions.

regressor_ann.compile(optimizer='adam', \

 loss = 'mean_squared_error')

Start training

regressor_ann.fit(X_train, y_train, epochs=10, batch_size=32)

Program output:

21/26 [=======================>......] - ETA: 0s - loss:

0.0309

26/26 [==============================] - 0s 6ms/step - loss:

0.0306

Epoch 10/10

 1/26 [>.............................] - ETA: 0s - loss:

0.0214

11/26 [===========>..................] - ETA: 0s - loss:

0.0251

21/26 [=======================>......] - ETA: 0s - loss:

0.0262

26/26 [==============================] - 0s 5ms/step - loss:

0.0270

Test and predict stock price

Prepare test dataset

print(data_test.head())

Program output:
 Date Open High Low

Close Adj Close \

868 2019-01-02 130.639999 138.479996 130.050003

136.220001 135.547104

869 2019-01-03 133.789993 135.160004 127.690002

127.989998 127.357750

870 2019-01-04 130.940002 137.729996 129.699997

136.190002 135.517258

Recurrent Neural Networks - RNNs | FITPED AI

158

871 2019-01-07 138.500000 144.889999 136.429993

143.399994 142.691620

872 2019-01-08 146.690002 146.779999 136.899994

139.830002 139.139282

 Volume

868 12718800

869 17638800

870 14640500

871 17729000

872 19650400

print(data_training.tail(60))

Program output:
 Date Open High Low

Close Adj Close \

808 2018-10-04 285.269989 286.250000 276.179993

279.290009 277.632599

809 2018-10-05 278.290009 280.799988 267.540009

269.859985 268.258514

810 2018-10-08 266.500000 271.160004 260.079987

265.769989 264.192780

811 2018-10-09 264.940002 268.760010 262.799988

265.540009 263.964203

812 2018-10-10 261.260010 263.109985 245.600006

245.690002 244.231964

813 2018-10-11 242.169998 247.559998 234.259995

235.130005 233.734634

814 2018-10-12 245.509995 249.539993 239.649994

246.539993 245.076920

815 2018-10-15 246.000000 246.000000 235.339996

235.380005 233.983154

816 2018-10-16 239.929993 246.279999 237.940002

245.830002 244.371155

817 2018-10-17 248.339996 249.880005 241.080002

243.059998 241.617569

818 2018-10-18 245.860001 247.410004 237.089996

239.529999 238.108536

819 2018-10-19 241.759995 242.550003 227.699997

229.169998 227.810013

820 2018-10-22 231.279999 235.320007 227.070007

231.220001 229.847855

Recurrent Neural Networks - RNNs | FITPED AI

159

821 2018-10-23 220.429993 224.190002 216.710007

221.059998 219.748138

822 2018-10-24 219.509995 221.389999 198.850006

199.410004 198.226608

823 2018-10-25 195.470001 209.750000 193.679993

207.839996 206.606567

824 2018-10-26 198.309998 204.839996 193.119995

198.289993 197.113251

825 2018-10-29 203.990005 204.130005 176.009995

185.619995 184.518448

826 2018-10-30 186.550003 203.399994 185.619995

203.000000 201.795303

827 2018-10-31 209.649994 212.589996 204.009995

210.830002 209.578857

828 2018-11-01 212.300003 218.490005 207.190002

218.110001 216.815628

829 2018-11-02 217.729996 222.000000 210.210007

214.919998 213.644562

830 2018-11-05 214.389999 215.330002 205.279999

211.770004 210.513275

831 2018-11-06 211.449997 214.850006 209.559998

211.059998 209.807495

832 2018-11-07 213.750000 217.410004 211.179993

213.789993 212.521271

833 2018-11-08 211.399994 211.429993 203.830002

205.990005 204.767578

834 2018-11-09 202.399994 209.320007 201.039993

205.669998 204.449463

835 2018-11-12 201.979996 202.869995 188.660004

189.539993 188.415192

836 2018-11-13 193.490005 204.210007 193.240005

199.309998 198.127213

837 2018-11-14 206.300003 206.880005 192.830002

197.190002 196.019791

838 2018-11-15 196.949997 205.300003 195.500000

202.389999 201.188919

839 2018-11-16 163.320007 170.660004 161.610001

164.429993 163.454178

840 2018-11-19 161.789993 161.820007 144.630005

144.699997 143.841278

841 2018-11-20 134.059998 154.259995 133.309998

149.080002 148.195297

842 2018-11-21 154.619995 155.300003 143.610001

144.710007 143.851242

Recurrent Neural Networks - RNNs | FITPED AI

160

843 2018-11-23 143.309998 149.589996 142.789993

145.000000 144.139511

844 2018-11-26 149.889999 153.470001 146.559998

153.050003 152.141739

845 2018-11-27 152.000000 157.009995 150.550003

153.729996 152.817703

846 2018-11-28 158.479996 160.279999 153.130005

160.070007 159.120102

847 2018-11-29 160.000000 161.500000 156.139999

157.360001 156.582672

848 2018-11-30 157.750000 163.860001 155.720001

163.429993 162.622681

849 2018-12-03 172.600006 174.679993 167.339996

170.039993 169.200043

850 2018-12-04 168.240005 168.440002 156.500000

157.110001 156.333908

851 2018-12-06 151.440002 158.490005 150.809998

158.289993 157.508072

852 2018-12-07 158.460007 158.869995 145.619995

147.610001 146.880844

853 2018-12-10 145.800003 152.860001 145.649994

151.860001 151.109848

854 2018-12-11 155.559998 155.889999 145.000000

148.190002 147.457977

855 2018-12-12 148.419998 152.779999 144.820007

148.899994 148.164474

856 2018-12-13 150.789993 153.380005 147.440002

148.889999 148.154495

857 2018-12-14 147.210007 150.589996 145.500000

146.449997 145.726563

858 2018-12-17 145.240005 148.149994 141.240005

143.580002 142.870728

859 2018-12-18 145.350006 150.330002 144.250000

146.940002 146.214142

860 2018-12-19 145.580002 147.740005 136.429993

138.509995 137.825806

861 2018-12-20 138.169998 141.800003 132.690002

135.100006 134.432632

862 2018-12-21 136.169998 137.500000 128.460007

129.570007 128.929977

863 2018-12-24 126.489998 129.979996 124.500000

127.080002 126.452255

864 2018-12-26 128.940002 133.139999 124.459999

133.100006 132.442535

Recurrent Neural Networks - RNNs | FITPED AI

161

865 2018-12-27 130.990005 132.380005 125.180000

131.169998 130.522049

866 2018-12-28 132.000000 137.389999 130.309998

133.649994 132.989807

867 2018-12-31 135.399994 136.710007 132.259995

133.500000 132.840530

 Volume

808 9780500

809 10665900

810 10215300

811 6837500

812 17123500

813 18135900

814 15205900

815 11244000

816 10217800

817 8241700

818 13100500

819 15340200

820 9221100

821 15660900

822 22107200

823 23793000

824 16619600

825 18950400

826 20179800

827 18644300

828 14163200

829 11324000

830 9483300

831 7475300

832 12095300

833 12783800

834 10331000

835 15427900

836 16117800

837 13164500

838 21017700

839 49088000

840 42445500

841 42300800

842 25637400

843 10299200

Recurrent Neural Networks - RNNs | FITPED AI

162

844 20370800

845 18451500

846 20113100

847 13729300

848 18239100

849 22270100

850 20302800

851 17307700

852 17041900

853 15736800

854 16797800

855 16353400

856 11784600

857 11795500

858 16571700

859 14109300

860 18634100

861 18739700

862 21593500

863 11596000

864 17377500

865 15926100

866 15718200

867 11628500

past_60_days = data_training.tail(60)

Get the last 60 days of data from training

past_60_days = data_training.tail(60)

Concatenate past 60 days with the test data

df = pd.concat([past_60_days, data_test], ignore_index=True)

Drop 'Date' and 'Adj Close' columns if they exist

df = df.drop(['Date', 'Adj Close'], axis=1, errors='ignore')

Scale the features using the already fitted scaler

inputs = scaler.transform(df)

Initialize X_test and y_test

X_test = []

y_test = []

Create the sequences for X_test and corresponding y_test

Recurrent Neural Networks - RNNs | FITPED AI

163

for i in range(60, inputs.shape[0]):

 X_test.append(inputs[i-60:i]) # 60 previous days as

features

 y_test.append(inputs[i, 0]) # Target is the first

feature (e.g., 'Open' or the first column)

Convert X_test and y_test to numpy arrays

X_test, y_test = np.array(X_test), np.array(y_test)

Check the original shape of X_test before reshaping

print("Original shape of X_test:", X_test.shape)

Ensure that X_test has 3 dimensions (samples, time_steps,

features)

if len(X_test.shape) == 3:

 # Reshape X_test from (samples, time_steps, features) to

(samples, time_steps * features)

 X_old_shape = X_test.shape

 X_test = X_test.reshape(X_old_shape[0], X_old_shape[1] *

X_old_shape[2])

 # Print the new shape of X_test and y_test

 print("Reshaped shape of X_test:", X_test.shape)

else:

 print("X_test is not in the expected 3D format.")

print("Shape of y_test:", y_test.shape)

Program output:
Original shape of X_test: (391, 60, 5)

Reshaped shape of X_test: (391, 300)

Shape of y_test: (391,)

• regressor_ann.predict(X_test) makes predictions using the trained model
(regressor_ann) on the test set (X_test).

y_pred = regressor_ann.predict(X_test)

Program output:
 1/13 [=>............................] - ETA: 1s

13/13 [==============================] - 0s 2ms/step

print(scaler.scale_)

Recurrent Neural Networks - RNNs | FITPED AI

164

Program output:
[3.70274364e-03 3.65992009e-03 3.75248621e-03 3.70301815e-03

 1.09875621e-08]

• Scale with the maximum value:

scale = 1/3.70274364e-03

print(scale)

y_pred = y_pred*scale

y_test = y_test*scale

Program output:
270.0700067909643

Show the result of the predicted stock price. This result is not as good as using the
RNN network in the next example.

plt.figure(figsize=(14,5))

plt.plot(y_test, color = 'black', label = "Real NVDA Stock

Price")

plt.plot(y_pred, color = 'gray', label = 'Predicted NVDA Stock

Price')

plt.title('NVDA Stock Price Prediction')

plt.xlabel('time')

plt.ylabel('NVDA Stock Price')

plt.legend()

plt.show()

Program output:

Recurrent Neural Networks - RNNs | FITPED AI

165

📝 6.3.2

Project: RNN with LSTM layer - Nvidia stock price prediction

Apply an artificial neural network (RNN with LSTM) to predict the stock price of Nvidia
using historical stock data. You will preprocess the data, design a neural network,
and evaluate the model’s performance.

This example demonstrates using of RNN with LSTM layer for prediction of Nvidia
Stock value.

Dataset:

• original: https://raw.githubusercontent.com/PacktWorkshops/The-
TensorFlow-Workshop/master/Chapter09/Exercise9.01/NVDA.csv

• local: https://priscilla.fitped.eu/data/deep_learning/NVDA.csv

import warnings

warnings.filterwarnings("ignore")

import numpy as np

import matplotlib.pyplot as plt

import pandas as pd

from sklearn.preprocessing import StandardScaler, MinMaxScaler

Read data and show from the source

import io

import requests

url="https://priscilla.fitped.eu/data/deep_learning/NVDA.csv"

data = pd.read_csv(url)

print(data.head())

Program output:
 Date Open High Low Close Adj

Close Volume

0 2015-07-22 19.650000 19.650000 19.17 19.410000

18.851749 8911800

1 2015-07-23 19.450001 19.940001 19.41 19.650000

19.084845 4247900

2 2015-07-24 19.790001 19.809999 19.34 19.420000

18.861464 4721100

3 2015-07-27 19.250000 19.530001 19.09 19.309999

18.754622 4810500

https://raw.githubusercontent.com/PacktWorkshops/The-TensorFlow-Workshop/master/Chapter09/Exercise9.01/NVDA.csv
https://raw.githubusercontent.com/PacktWorkshops/The-TensorFlow-Workshop/master/Chapter09/Exercise9.01/NVDA.csv
https://priscilla.fitped.eu/data/deep_learning/NVDA.csv

Recurrent Neural Networks - RNNs | FITPED AI

166

4 2015-07-28 19.360001 19.860001 19.16 19.730000

19.162542 4957700

print(data.tail())

Program output:
 Date Open High Low

Close Adj Close \

1254 2020-07-15 416.570007 417.320007 402.230011

409.089996 409.089996

1255 2020-07-16 400.600006 408.269989 395.820007

405.390015 405.390015

1256 2020-07-17 409.019989 409.940002 403.510010

408.059998 408.059998

1257 2020-07-20 410.970001 421.250000 406.269989

420.429993 420.429993

1258 2020-07-21 420.519989 422.399994 411.470001

413.140015 413.140015

 Volume

1254 10099600

1255 8624100

1256 6657100

1257 7121300

1258 6925900

Split Training data

data_training = data[data['Date']<'2019-01-01'].copy()

print(data_training)

Program output:
 Date Open High Low

Close Adj Close \

0 2015-07-22 19.650000 19.650000 19.170000

19.410000 18.851749

1 2015-07-23 19.450001 19.940001 19.410000

19.650000 19.084845

2 2015-07-24 19.790001 19.809999 19.340000

19.420000 18.861464

3 2015-07-27 19.250000 19.530001 19.090000

19.309999 18.754622

4 2015-07-28 19.360001 19.860001 19.160000

19.730000 19.162542

Recurrent Neural Networks - RNNs | FITPED AI

167

..

... ...

863 2018-12-24 126.489998 129.979996 124.500000

127.080002 126.452255

864 2018-12-26 128.940002 133.139999 124.459999

133.100006 132.442535

865 2018-12-27 130.990005 132.380005 125.180000

131.169998 130.522049

866 2018-12-28 132.000000 137.389999 130.309998

133.649994 132.989807

867 2018-12-31 135.399994 136.710007 132.259995

133.500000 132.840530

 Volume

0 8911800

1 4247900

2 4721100

3 4810500

4 4957700

.. ...

863 11596000

864 17377500

865 15926100

866 15718200

867 11628500

[868 rows x 7 columns]

Split Testing data

data_test = data[data['Date']>='2019-01-01'].copy()

print(data_test)

Program output:
 Date Open High Low

Close Adj Close \

868 2019-01-02 130.639999 138.479996 130.050003

136.220001 135.547104

869 2019-01-03 133.789993 135.160004 127.690002

127.989998 127.357750

870 2019-01-04 130.940002 137.729996 129.699997

136.190002 135.517258

871 2019-01-07 138.500000 144.889999 136.429993

143.399994 142.691620

Recurrent Neural Networks - RNNs | FITPED AI

168

872 2019-01-08 146.690002 146.779999 136.899994

139.830002 139.139282

...

... ...

1254 2020-07-15 416.570007 417.320007 402.230011

409.089996 409.089996

1255 2020-07-16 400.600006 408.269989 395.820007

405.390015 405.390015

1256 2020-07-17 409.019989 409.940002 403.510010

408.059998 408.059998

1257 2020-07-20 410.970001 421.250000 406.269989

420.429993 420.429993

1258 2020-07-21 420.519989 422.399994 411.470001

413.140015 413.140015

 Volume

868 12718800

869 17638800

870 14640500

871 17729000

872 19650400

... ...

1254 10099600

1255 8624100

1256 6657100

1257 7121300

1258 6925900

[391 rows x 7 columns]

training_data = data_training.drop(['Date', 'Adj Close'], axis

= 1)

print(training_data.head())

Program output:
 Open High Low Close Volume

0 19.650000 19.650000 19.17 19.410000 8911800

1 19.450001 19.940001 19.41 19.650000 4247900

2 19.790001 19.809999 19.34 19.420000 4721100

3 19.250000 19.530001 19.09 19.309999 4810500

4 19.360001 19.860001 19.16 19.730000 4957700

scaler = MinMaxScaler()

Recurrent Neural Networks - RNNs | FITPED AI

169

training_data = scaler.fit_transform(training_data)

print(training_data)

Program output:
[[1.48109745e-03 4.39186751e-04 3.00198896e-04 3.70305518e-04

 8.35120643e-02]

 [7.40552430e-04 1.50056724e-03 1.20079559e-03 1.25902987e-03

 3.22671736e-02]

 [1.99948527e-03 1.02477031e-03 9.38121551e-04 4.07335700e-04

 3.74664879e-02]

 ...

 [4.13744593e-01 4.13021997e-01 3.98101261e-01 4.14219607e-01

 1.60582121e-01]

 [4.17484345e-01 4.31358175e-01 4.17351508e-01 4.23403077e-01

 1.58297807e-01]

 [4.30073651e-01 4.28869458e-01 4.24668845e-01 4.22847646e-01

 1.13361974e-01]]

X_train = []

y_train = []

print(training_data.shape[0])

Program output:
868

for i in range(60, training_data.shape[0]):

 X_train.append(training_data[i-60:i])

 y_train.append(training_data[i, 0])

X_train, y_train = np.array(X_train), np.array(y_train)

print(X_train.shape)

print(y_train.shape)

Program output:
(808, 60, 5)

(808,)

from tensorflow.keras import Sequential

from tensorflow.keras.layers import Dense, LSTM, Dropout

Recurrent Neural Networks - RNNs | FITPED AI

170

Definition of a model

Define the model as a Sequential model

regressor = Sequential()

Add the first LSTM layer with 50 units, relu activation, and

return sequences

regressor.add(LSTM(units=50, activation='relu',

return_sequences=True, input_shape=(X_train.shape[1], 5)))

Add Dropout layer with 20% rate to prevent overfitting

regressor.add(Dropout(0.2))

Add the second LSTM layer with 60 units, relu activation,

and return sequences

regressor.add(LSTM(units=60, activation='relu',

return_sequences=True))

Add Dropout layer with 30% rate

regressor.add(Dropout(0.3))

Add the third LSTM layer with 80 units, relu activation, and

return sequences

regressor.add(LSTM(units=80, activation='relu',

return_sequences=True))

Add Dropout layer with 40% rate

regressor.add(Dropout(0.4))

Add the fourth LSTM layer with 120 units, relu activation

regressor.add(LSTM(units=120, activation='relu'))

Add Dropout layer with 50% rate

regressor.add(Dropout(0.5))

Add the output Dense layer with 1 unit (for regression task)

regressor.add(Dense(units=1))

Print model layers

regressor.summary()

Program output:
 lstm (LSTM) (None, 60, 50) 11200

 dropout (Dropout) (None, 60, 50) 0

Recurrent Neural Networks - RNNs | FITPED AI

171

 lstm_1 (LSTM) (None, 60, 60) 26640

 dropout_1 (Dropout) (None, 60, 60) 0

 lstm_2 (LSTM) (None, 60, 80) 45120

regressor.compile(optimizer='adam', loss =

'mean_squared_error')

Start training

regressor.fit(X_train, y_train, epochs=10, batch_size=32)

Program output:

24/26 [==========================>...] - ETA: 0s - loss:

0.0092

25/26 [===========================>..] - ETA: 0s - loss:

0.0096

26/26 [==============================] - ETA: 0s - loss:

0.0096

26/26 [==============================] - 3s 115ms/step - loss:

0.0096

Epoch 10/10

 1/26 [>.............................] - ETA: 2s - loss:

0.0051

 2/26 [=>............................] - ETA: 2s - loss:

0.0109

 3/26 [==>...........................] - ETA: 2s - loss:

0.0127

 4/26 [===>..........................] - ETA: 2s - loss:

0.0114

 5/26 [====>.........................] - ETA: 2s - loss:

0.0101

 6/26 [=====>........................] - ETA: 2s - loss:

0.0091

 7/26 [=======>......................] - ETA: 2s - loss:

0.0093

 8/26 [========>.....................] - ETA: 2s - loss:

0.0096

Recurrent Neural Networks - RNNs | FITPED AI

172

 9/26 [=========>....................] - ETA: 1s - loss:

0.0100

10/26 [==========>...................] - ETA: 1s - loss:

0.0100

11/26 [===========>..................] - ETA: 1s - loss:

0.0101

12/26 [============>.................] - ETA: 1s - loss:

0.0099

13/26 [==============>...............] - ETA: 1s - loss:

0.0100

14/26 [===============>..............] - ETA: 1s - loss:

0.0104

15/26 [================>.............] - ETA: 1s - loss:

0.0100

16/26 [=================>............] - ETA: 1s - loss:

0.0097

17/26 [==================>...........] - ETA: 1s - loss:

0.0094

18/26 [===================>..........] - ETA: 0s - loss:

0.0092

19/26 [====================>.........] - ETA: 0s - loss:

0.0095

20/26 [======================>.......] - ETA: 0s - loss:

0.0097

21/26 [=======================>......] - ETA: 0s - loss:

0.0096

22/26 [========================>.....] - ETA: 0s - loss:

0.0094

23/26 [=========================>....] - ETA: 0s - loss:

0.0096

24/26 [==========================>...] - ETA: 0s - loss:

0.0097

25/26 [===========================>..] - ETA: 0s - loss:

0.0098

26/26 [==============================] - ETA: 0s - loss:

0.0098

26/26 [==============================] - 3s 115ms/step - loss:

0.0098

Get the last 60 days of data from training

past_60_days = data_training.tail(60)

Concatenate past 60 days with the test data

df = pd.concat([past_60_days, data_test], ignore_index=True)

Recurrent Neural Networks - RNNs | FITPED AI

173

Drop 'Date' and 'Adj Close' columns if they exist

df = df.drop(['Date', 'Adj Close'], axis=1, errors='ignore')

Scale the features using the already fitted scaler

inputs = scaler.transform(df)

print(inputs)

Program output:
[[0.98500382 0.97617388 0.96472665 0.9627107 0.09305696]

 [0.95915875 0.95622728 0.93230523 0.92779115 0.10278535]

 [0.91550336 0.9209457 0.9043116 0.91264582 0.09783435]

 ...

 [1.44321835 1.42886941 1.44253078 1.4395483 0.05873841]

 [1.45043874 1.4702631 1.45288757 1.48535462 0.06383883]

 [1.4857999 1.47447198 1.47240054 1.4583597 0.06169186]]

X_test = []

y_test = []

for i in range(60, inputs.shape[0]):

 X_test.append(inputs[i-60:i])

 y_test.append(inputs[i, 0])

X_test, y_test = np.array(X_test), np.array(y_test)

print(X_test.shape, y_test.shape)

Program output:
(391, 60, 5) (391,)

y_pred = regressor.predict(X_test)

Program output:
 1/13 [=>............................] - ETA: 10s

 2/13 [===>..........................] - ETA: 0s

 3/13 [=====>........................] - ETA: 0s

 4/13 [========>.....................] - ETA: 0s

 5/13 [==========>...................] - ETA: 0s

 7/13 [===============>..............] - ETA: 0s

 8/13 [=================>............] - ETA: 0s

 9/13 [===================>..........] - ETA: 0s

10/13 [======================>.......] - ETA: 0s

11/13 [========================>.....] - ETA: 0s

12/13 [==========================>...] - ETA: 0s

Recurrent Neural Networks - RNNs | FITPED AI

174

13/13 [==============================] - 1s 51ms/step

print(scaler.scale_)

Program output:
[3.70274364e-03 3.65992009e-03 3.75248621e-03 3.70301815e-03

 1.09875621e-08]

Get the scaling factor

scale = 1/3.70274364e-03

print(scale)

Program output:
270.0700067909643

scale the data

y_pred = y_pred*scale

y_test = y_test*scale

print(y_pred[:10])

Program output:
[[33555.266]

 [33222.266]

 [32894.14]

 [32577.812]

 [32283.715]

 [32020.54]

 [31795.977]

 [31615.73]

 [31484.248]

 [31404.578]]

plt.figure(figsize=(14,5))

plt.plot(y_test, color = 'black', label = "Real NVDA Stock

Price")

plt.plot(y_pred, color = 'gray', label = 'Predicted NVDA Stock

Price')

plt.title('NVDA Stock Price Prediction')

plt.xlabel('time')

Recurrent Neural Networks - RNNs | FITPED AI

175

plt.ylabel('NVDA Stock Price')

plt.legend()

plt.show()

Program output:

Generative Models

Chapter 7

Generative Models | FITPED AI

177

7.1 Overview

🕮 7.1.1

Generative models are a fundamental category of machine learning models that
focus on creating new data samples that resemble the patterns found in the training
data. Unlike predictive models, which forecast outcomes based on input data,
generative models are designed to capture the underlying distribution of the data.
This allows them to generate entirely new examples that are indistinguishable from
real data.

Generative models rely on many of the techniques used in other areas of deep
learning, such as preprocessing data, fine-tuning hyperparameters, and leveraging
neural network architectures like CNNs and RNNs. These shared methods ensure a
smooth transition familiar with predictive models. However, the objective of
generative models is broader, aiming to model complex distributions rather than
making specific predictions.

The ability of generative models to create new, realistic samples has opened up a
world of possibilities. From generating lifelike images to creating entirely new pieces
of music, these models play a pivotal role in advancing artificial intelligence. They
also demonstrate the powerful interplay between data science and creativity, making
them an essential topic for anyone studying deep learning.

By understanding generative models, you can explore innovative applications across
various fields. The concepts learned from predictive models provide a strong
foundation for tackling this exciting area of machine learning.

📝 7.1.2

Which of the following best describes the primary goal of generative models?

• To generate new data samples similar to training data
• To make accurate predictions based on input data
• To identify anomalies in real-time datasets
• To optimize hyperparameters for neural networks

📝 7.1.3

Generative models differ from predictive models because they:

• Aim to model and recreate the data distribution
• Focus on understanding the relationships within input data

Generative Models | FITPED AI

178

• Are exclusively used for creative industries
• Do not rely on neural network architectures like CNNs or RNNs

🕮 7.1.4

Generative models are applied in numerous domains, showcasing their versatility in
handling complex tasks. These applications span creative industries, technical fields,
and practical solutions, proving their relevance in real-world scenarios.

One of the most visible uses of generative models is in media creation. They are used
to generate realistic images of people, animals, and objects, often blurring the line
between real and artificial. In text generation, these models can produce coherent
narratives for chatbots, text summarization, or dialogue systems. Music generation
further exemplifies their creativity by composing original pieces or mimicking
specific musical styles.

Generative models enhance machine learning by generating synthetic data for
training, particularly when real data is limited. This process, known as data
augmentation, helps improve the accuracy and robustness of predictive models.
Additionally, anomaly detection benefits from generative models by identifying
unusual patterns that deviate from the expected data distribution.

Beyond creation and augmentation, generative models have applications in style
transfer, where they transform images or videos into different artistic styles while
preserving their content. They are also used in simulations, enabling the modeling of
complex phenomena like weather patterns, traffic flow, or biological systems such
as protein folding.

📝 7.1.5

Which application of generative models involves creating new training data to
improve a model's accuracy?

• Data augmentation
• Anomaly detection
• Style transfer
• Simulation

Generative Models | FITPED AI

179

🕮 7.1.6

Typical applications of generative models in deep learning

1. Image generation - generative models can be used to generate realistic
images of faces, animals, objects, and scenes.

2. Text generation - generative models can generate natural language text for
applications such as chatbots, text summarization, and dialogue systems.

3. Music generation - generative models can create new music pieces based on
existing songs or styles.

4. Video generation - generative models can create video sequences with
realistic motions and actions.

5. Data augmentation - generative models can be used to generate synthetic
data for training deep learning models and improving their performance.

6. Anomaly detection - generative models can detect anomalies in datasets by
learning the distribution of normal data and identifying samples that do not
conform to it.

7. Style transfer - generative models can transform images or videos to
different styles while preserving their content.

8. Simulation - generative models can simulate complex physical or biological
systems, such as weather patterns, traffic flow, or protein folding.

📝 7.1.7

A generative model is used to transform an image into a different artistic style while
retaining its content. This application is known as:

• Style transfer
• Text generation
• Simulation
• Data augmentation

📝 7.1.8

Which of the following is NOT an application of generative models in deep learning?

• Predicting stock prices
• Image generation
• Data augmentation
• Music generation

Generative Models | FITPED AI

180

📝 7.1.9

Select the correct applications of generative models in deep learning:

• Text summarization
• Weather simulation
• Anomaly detection
• Object detection

7.2 Generative models applications

🕮 7.2.1

Text generation

Natural Language Processing (NLP) is a subfield of computer science and artificial
intelligence that deals with the interactions between computers and human
languages. It involves the ability of machines to read, understand, and interpret
human language in the form of text or speech, and to generate natural language
responses in turn. NLP technologies are used in a variety of applications, such as
language translation, sentiment analysis, chatbots, speech recognition, and text
summarization or text generation

Some common steps of pre-processing data for training model include data cleaning,
transformation, and data reduction.

• Dataset cleaning encompasses the conversion of the case to lowercase,
removing punctuation.

• Tokenization in NLP is the process of breaking down text into smaller units
called tokens. The tokens are essentially words or phrases, which can be
further used for analysis, processing, or generating new text. Tokenization
can be performed at different levels such as word level, subword level, or
character level, depending on the requirements of the NLP task. In practice,
tokenization involves various steps such as splitting text into sentences,
removing punctuation, converting text to lowercase, and splitting words into
individual tokens. Tokenization is a fundamental step in many NLP tasks
such as text classification, named entity recognition, and machine
translation.

• In NLP, padding is a technique used to make all the text sequences of the
same length. It is done by adding a special token (usually a zero or a PAD
token) at the end of the shorter sentences, so that all the sequences have the
same length. Padding is necessary for training neural networks on text data
because the networks require fixed-size inputs, and if the inputs are of
different lengths, it can cause issues during training. Once the padding is

Generative Models | FITPED AI

181

done, the padded sequences can be fed to the neural network for further
processing.

• Stemming is a technique used in NLP to reduce a word to its root form,
called a stem. This is done by removing the suffixes (endings) of words,
which may be different forms of the same root word. For example, "running,"
"ran," and "runner" all have the same root word "run," and stemming would
reduce all of these words to the same stem "run." The goal of stemming is to
reduce the complexity of text data and to group together similar words so
that they can be treated as a single entity during text analysis. Stemming is
often used as a pre-processing step before other NLP tasks, such as text
classification or sentiment analysis.

📝 7.2.2

What is the purpose of tokenization in Natural language processing?

• To split text into smaller units like words or phrases
• To remove padding from sequences
• To reduce words to their root forms
• To transform all text to uppercase

📝 7.2.3

Which of the following are common pre-processing steps in NLP?

• Dataset cleaning
• Tokenization
• Stemming
• Adding punctuation

🕮 7.2.4

Generative adversarial networks

Generative Adversarial Networks (GANs) are a fascinating class of deep learning
models that have revolutionized the field of generative modeling. A GAN consists of
two main components: a generator and a discriminator, both of which are neural
networks. The generator’s role is to create data samples, such as images, audio, or
text, starting from random noise. Meanwhile, the discriminator acts as a classifier,
distinguishing between real data (from a dataset) and fake data (produced by the
generator). This unique setup pits the two networks against each other in a dynamic
and iterative training process.

Generative Models | FITPED AI

182

The training of GANs involves an adversarial game between the generator and the
discriminator. Initially, the generator creates data that is clearly unrealistic, as it is
only beginning to learn the distribution of the training data. The discriminator, on the
other hand, is trained to identify these generated samples as fake. Over successive
iterations, the generator learns to produce data that increasingly resembles real
samples, while the discriminator becomes more adept at identifying subtle
differences between real and fake data. The interplay between these two networks
drives the learning process.

One of the critical challenges in training GANs is achieving a balance between the
generator and discriminator. If the discriminator becomes too strong, it can easily
detect fake data, causing the generator to struggle to improve. Conversely, if the
generator outpaces the discriminator, the discriminator may fail to learn effectively.
Techniques such as tweaking the loss functions, adjusting learning rates, and using
advanced architectures can help address these challenges and ensure stable
training.

GANs have found applications across numerous domains due to their ability to
generate high-quality synthetic data. In computer vision, GANs are used to create
photorealistic images, enhance image resolution, and generate artworks. In audio
processing, GANs have been applied to synthesize realistic speech or music. In text
generation, GANs contribute to tasks such as creating natural language content or
augmenting datasets for improved model training. These versatile applications
demonstrate the power and potential of GANs in solving real-world problems.

Despite their success, GANs are not without limitations. Training GANs can be
computationally expensive and prone to instability, requiring careful tuning of
hyperparameters. Additionally, GANs sometimes generate outputs that are visually
appealing but lack diversity, a problem known as mode collapse. Addressing these
limitations is an active area of research, with new variants of GANs being proposed
to overcome these challenges and expand their applications further.

📝 7.2.5

What is the primary role of the discriminator in a GAN?

• To classify data as real or fake
• To generate data samples
• To adjust the generator's learning rate
• To increase the diversity of generated data

Generative Models | FITPED AI

183

📝 7.2.6

Which of the following are typical applications of GANs?

• Image generation
• Speech synthesis
• Data compression
• Hyperparameter tuning

🕮 7.2.7

Deep convolutional generative adversarial networks

Deep Convolutional Generative Adversarial Networks (DCGANs) are an extension of
Generative Adversarial Networks (GANs) that incorporate deep convolutional neural
networks (CNNs) in their architecture. Introduced in 2015, DCGANs were designed to
improve the generation of high-quality images, addressing some of the limitations of
traditional GANs in capturing fine details and spatial dependencies in visual data.

In a DCGAN, both the generator and discriminator networks are built using
convolutional layers. The generator takes a random noise vector as input and
transforms it into an image through a series of up-sampling operations using
transpose convolutional layers. This process allows the generator to learn and
replicate the spatial features that define real images, resulting in outputs that are
visually coherent and realistic. Meanwhile, the discriminator, also a deep CNN,
classifies whether an input image is real (from the dataset) or fake (produced by the
generator) using a series of down-sampling operations.

The key advantage of using convolutional layers in DCGANs lies in their ability to
model spatial hierarchies. Convolutional operations allow the generator to build
images with consistent textures, patterns, and structures, while the discriminator
learns to identify nuanced differences between real and synthetic images. This
architecture makes DCGANs particularly effective for tasks where visual quality is
critical.

DCGANs have been successfully applied in various image generation tasks. For
example, they have been used in image synthesis to generate entirely new images
that resemble real-world objects. In image inpainting, DCGANs can fill in missing
parts of an image in a visually consistent way, which is useful for repairing damaged
photos. Additionally, they are employed in style transfer, where they enable the
transformation of an image's visual style while preserving its content.

Despite their strengths, DCGANs face challenges similar to traditional GANs,
including mode collapse and instability during training. However, their use of
convolutional architectures has significantly advanced the field of generative

Generative Models | FITPED AI

184

modeling, making them a foundational approach for tasks that require high-quality
image generation.

📝 7.2.8

What distinguishes DCGANs from traditional GANs?

• Use of deep convolutional layers in both networks
• Use of random noise as input
• Focus on text generation
• Lack of a discriminator network

📝 7.2.9

Which tasks are DCGANs particularly suited for?

• Image synthesis
• Image inpainting
• Style transfer
• Text summarization

🕮 7.2.10

Deepfake

Deepfake technology leverages AI and deep learning techniques to create synthetic
media, such as videos, images, or audio recordings. These can either be entirely
fabricated or manipulated versions of authentic content, making them appear
genuine to the human eye or ear. The term "deepfake" originates from the use of deep
learning algorithms in generating these falsified outputs. While deepfakes can be
incredibly convincing, they also raise significant ethical and security concerns.

One of the primary challenges posed by deepfake technology is its potential for
misuse. Deepfakes have been employed in the creation of fake news, leading to
misinformation and public distrust. They have also been used for impersonation,
allowing malicious actors to convincingly mimic someone’s appearance or voice.
Non-consensual uses, such as creating deepfake pornography, represent another
alarming misuse of this technology. These applications highlight the urgent need for
regulation, detection technologies, and public awareness about deepfakes.

On the other hand, deepfake technology also offers positive applications. In the film
and entertainment industry, deepfakes can be used to bring historical figures to life,

Generative Models | FITPED AI

185

de-age actors, or create realistic special effects. Similarly, deepfake-based
simulations are valuable in training and education, where realistic scenarios help
improve engagement and learning outcomes. For instance, they could simulate
complex conversations or historical reenactments in a classroom setting.

DCGANs can play a role in generating deepfakes, especially in creating synthetic
images or video frames. Although DCGANs are not explicitly designed for this
purpose, their ability to generate high-quality and realistic images makes them a
useful component in a broader pipeline. For example, DCGANs might generate
realistic facial features, which can then be blended into video content to create a
deepfake.

While DCGANs contribute to the technical foundations of deepfake generation, their
use emphasizes the dual-edged nature of AI technologies. They exemplify how
advanced AI can simultaneously drive innovation and raise ethical questions about
its applications.

📝 7.2.11

What is major concern associated with deepfake technology?

• Potential misuse for creating fake news or impersonations
• Lack of realistic simulations
• Limited use in entertainment
• Inability to use AI in the generation process

📝 7.2.12

Which applications of deepfake technology can be considered positive?

• Generating realistic simulations for training
• De-aging actors in films
• Creating non-consensual content
• Misinforming the public through fake news

Generative Models | FITPED AI

186

7.3 Examples of generative models

📝 7.3.1

Project: Generating a text using RNN

Prepare the code uses a generative model (LSTM) to generate text based on a
dataset of article headlines. The steps shoul be included data preprocessing,
tokenization, padding, building the neural network model, training it, and finally using
it for text generation.

Dataset:

• original: https://raw.githubusercontent.com/PacktWorkshops/The-
TensorFlow-Workshop/master/Chapter09/Datasets/Articles.csv

• local: https://priscilla.fitped.eu/data/deep_learning/articles.csv

import warnings

warnings.filterwarnings("ignore")

from keras.utils import pad_sequences

from keras.models import Sequential

from keras.layers import Embedding, LSTM, Dense, Dropout

import tensorflow.keras.utils as ku

from keras.preprocessing.text import Tokenizer

import pandas as pd

import numpy as np

from keras.callbacks import EarlyStopping

import string, os

2. Fetching and cleaning the dataset

url="https://priscilla.fitped.eu/data/deep_learning/articles.c

sv"

data = pd.read_csv(url)

print(data.columns)

our_headlines = []

our_headlines.extend(list(data.headline.values))

our_headlines = [h for h in our_headlines if h != "Unknown"]

print(len(our_headlines))

https://raw.githubusercontent.com/PacktWorkshops/The-TensorFlow-Workshop/master/Chapter09/Datasets/Articles.csv
https://raw.githubusercontent.com/PacktWorkshops/The-TensorFlow-Workshop/master/Chapter09/Datasets/Articles.csv
https://priscilla.fitped.eu/data/deep_learning/articles.csv

Generative Models | FITPED AI

187

Program output:
Index(['abstract', 'articleID', 'articleWordCount', 'byline',

'documentType',

 'headline', 'keywords', 'multimedia', 'newDesk',

'printPage', 'pubDate',

 'sectionName', 'snippet', 'source', 'typeOfMaterial',

'webURL'],

 dtype='object')

831

• Remove punctuation.
• Convert text to lowercase.
• Ensure that only ASCII characters remain.

def clean_text(txt):

 txt = "".join(v for v in txt if v not in

string.punctuation).lower()

 txt = txt.encode("utf8").decode("ascii",'ignore')

 return txt

corpus = [clean_text(x) for x in our_headlines]

print(corpus[60:80])

Program output:
['lets go for a win on opioids', 'floridas vengeful governor',

'how to end the politicization of the courts', 'when dr king

came out against vietnam', 'britains trains dont run on time

blame capitalism', 'questions for no license plates here using

art to transcend prison walls', 'dry spell', 'are there

subjects that should be offlimits to artists or to certain

artists in particular', 'that is great television', 'thinking

in code', 'how gorsuchs influence could be greater than his

vote', 'new york today how to ease a hangover', 'trumps gifts

to china', 'at penn station rail mishap spurs large and

lasting headache', 'chemical attack on syrians ignites worlds

outrage', 'adventure is still on babbos menu', 'swimming in

the fast lane', 'a national civics exam', 'obama adviser is

back in the political cross hairs', 'the hippies have won']

Generative Models | FITPED AI

188

3. Tokenization

• The Tokenizer is fit on the corpus to assign each unique word a
corresponding integer.

• The function get_seq_of_tokens creates sequences of tokens (word
representations) from the corpus.

• It splits the text into n-grams (sequences of words), which are used for
training the model.

tokenizer = Tokenizer()

def get_seq_of_tokens(corpus):

 ## tokenization

 tokenizer.fit_on_texts(corpus)

 all_words = len(tokenizer.word_index) + 1

 ## convert data to sequence of tokens

 input_seq = []

 for line in corpus:

 token_list = tokenizer.texts_to_sequences([line])[0]

 for i in range(1, len(token_list)):

 n_gram_sequence = token_list[:i+1]

 input_seq.append(n_gram_sequence)

 return input_seq, all_words

our_sequences, all_words = get_seq_of_tokens(corpus)

print(our_sequences[:20])

Program output:
[[169, 17], [169, 17, 665], [169, 17, 665, 367], [169, 17,

665, 367, 4], [169, 17, 665, 367, 4, 2], [169, 17, 665, 367,

4, 2, 666], [169, 17, 665, 367, 4, 2, 666, 170], [169, 17,

665, 367, 4, 2, 666, 170, 5], [169, 17, 665, 367, 4, 2, 666,

170, 5, 667], [6, 80], [6, 80, 1], [6, 80, 1, 668], [6, 80, 1,

668, 10], [6, 80, 1, 668, 10, 669], [670, 671], [670, 671,

129], [670, 671, 129, 672], [673, 674], [673, 674, 368], [673,

674, 368, 675]]

4. Padding sequences and preparing data

• This step ensures all input sequences are of the same length by padding
shorter sequences with zeros (using pad_sequences).

• The function also separates the last token as the label (the next word to
predict) and the rest as predictors.

Generative Models | FITPED AI

189

• One-hot encoding - labels are converted into one-hot encoded vectors using
to_categorical, making them suitable for classification tasks.

def generate_padded_sequences(input_seq):

 max_sequence_len = max([len(x) for x in input_seq])

 input_seq = np.array(pad_sequences\

 (input_seq, maxlen=max_sequence_len,

\

 padding='pre'))

 predictors, label = input_seq[:,:-1],input_seq[:,-1]

 label = ku.to_categorical(label, num_classes=all_words)

 return predictors, label, max_sequence_len

predictors, label, max_sequence_len =

generate_padded_sequences(our_sequences)

5. Model creation

• The input layer is an embedding layer, which learns a dense representation
for words in a lower-dimensional space (10 dimensions here).

• A LSTM layer is added to capture long-term dependencies in the text data. A
dropout layer is also included to prevent overfitting.

• The final dense layer uses softmax activation to output a probability
distribution over the vocabulary, predicting the next word.

• The model is compiled with the categorical cross-entropy loss function and
the Adam optimizer.

def create_model(max_sequence_len, all_words):

 input_len = max_sequence_len - 1

 model = Sequential()

 # Add Input Embedding Layer

 model.add(Embedding(all_words, 10,

input_length=input_len))

 # Add Hidden Layer 1 - LSTM Layer

 model.add(LSTM(100))

 model.add(Dropout(0.1))

 # Add Output Layer

 model.add(Dense(all_words, activation='softmax'))

Generative Models | FITPED AI

190

 model.compile(loss='categorical_crossentropy',

optimizer='adam')

 return model

model = create_model(max_sequence_len, all_words)

model.summary()

Program output:
Model: "sequential"

__

 Layer (type) Output Shape Param #

==

===

 embedding (Embedding) (None, 18, 10) 24220

 lstm (LSTM) (None, 100) 44400

 dropout (Dropout) (None, 100) 0

 dense (Dense) (None, 2422) 244622

==

===

6. Training the model

• The model is trained on the predictors and label using 200 epochs. During
training, the model adjusts its parameters to minimize the loss function.

model.fit(predictors, label, epochs=200, verbose=5)

Program output:
Epoch 194/200

Epoch 195/200

Epoch 196/200

Epoch 197/200

Epoch 198/200

Epoch 199/200

Epoch 200/200

Generative Models | FITPED AI

191

7. Text generation

• The generate_text function generates a sequence of words by predicting one
word at a time based on the seed text.

• It uses the trained model to predict the next word, appends it to the seed
text, and repeats the process until the desired number of words (next_words)
is generated.

def generate_text(seed_text, next_words, model,

max_sequence_len):

 for _ in range(next_words):

 token_list =

tokenizer.texts_to_sequences([seed_text])[0]

 token_list = pad_sequences([token_list], \

 maxlen=max_sequence_len-1,

\

 padding='pre')

 predicted = model.predict(token_list, verbose=0)

 output_word = ""

 for word,index in tokenizer.word_index.items():

 if index == predicted.any():

 output_word = word

 break

 seed_text += " "+output_word

 return seed_text.title()

8. Output

• The function is called with different seed texts to generate unique sentences.

print(generate_text("10 Ways", 11, model, max_sequence_len))

print(generate_text("europe looks to", 8, model,

max_sequence_len))

print(generate_text("best way", 10, model, max_sequence_len))

print(generate_text("homeless in", 10, model,

max_sequence_len))

print(generate_text("Unexpected results", 10, model, \

 max_sequence_len))

print(generate_text("critics warn", 10, model,

max_sequence_len))

Program output:
10 Ways The The The The The The The The The The The

Generative Models | FITPED AI

192

Europe Looks To The The The The The The The The

Best Way The The The The The The The The The The

Homeless In The The The The The The The The The The

Unexpected Results The The The The The The The The The The

Critics Warn The The The The The The The The The The

The result you are seeing, where the model generates text like "10 Ways The The The
The The The The The The The," is a common issue in text generation tasks,
particularly when working with models that generate text one word at a time. The
repeated "The" is a sign of over-reliance on the most frequent word in the vocabulary.
By introducing diversity in the sampling method and improving the training data, you
can encourage the model to generate more varied and coherent text.

Resources

Chapter 8

Resources | FITPED AI

194

8.1 Bibliography

🕮 8.1.1

Literature

1. Artificial Neural Networks (Part 1) - Classification Using Single Layer
Perceptron Model - http://scholastictutors.webs.com/

2. Becker, D.: Deep Learning in Python,
https://www.datacamp.com/courses/deep-learning-in-python

3. Blaha, M.: Umělá inteligence -
http://portal.matematickabiologie.cz/index.php?pg=analyza-a-hodnoceni-
biologickych-dat--umela-inteligence

4. Hinton, G.: Neural Networks for Machine Learning, University of Toronto.
https://www.coursera.org/learn/neural-networks/home/welcome

5. Kvasnička, V.: Neurónové siete
http://www2.fiit.stuba.sk/~kvasnicka/NeuralNetworks/index.html

6. Sinčák, P., Andrejková, G.: Neurónové siete - Inžiniersky prístup (1. diel)
http://neuron-
ai.tuke.sk/cig/source/publications/books/NS1/html/index.html

7. Volná, E.: Neuronové sítě 1 -
https://www1.osu.cz/~volna/Neuronove_site_skripta.pdf

Notable sources

1. https://github.com/khoih-prog/deeplearning-models
2. https://raw.githubusercontent.com/PacktWorkshops/The-TensorFlow-

Workshop/master/

🕮 8.1.2

Statement regarding the use of Artificial Intelligence in content creation

This content has been developed with the assistance of artificial intelligence tools,
specifically ChatGPT, Gemini, and Notebook LM. These AI technologies were utilized
to enhance the text by providing suggestions for rephrasing, improving clarity, and
ensuring coherence throughout the material. The integration of these AI tools has
enabled a more efficient content creation process while maintaining high standards
of quality and accuracy.

The use of AI in this context adheres to all relevant guidelines and ethical
considerations associated with the deployment of such technologies. We
acknowledge the importance of transparency in the content creation process and

http://scholastictutors.webs.com/
https://www.datacamp.com/courses/deep-learning-in-python
http://portal.matematickabiologie.cz/index.php?pg=analyza-a-hodnoceni-biologickych-dat--umela-inteligence
http://portal.matematickabiologie.cz/index.php?pg=analyza-a-hodnoceni-biologickych-dat--umela-inteligence
https://www.coursera.org/learn/neural-networks/home/welcome
http://www2.fiit.stuba.sk/~kvasnicka/NeuralNetworks/index.html
http://neuron-ai.tuke.sk/cig/source/publications/books/NS1/html/index.html
http://neuron-ai.tuke.sk/cig/source/publications/books/NS1/html/index.html
https://www1.osu.cz/~volna/Neuronove_site_skripta.pdf
https://github.com/khoih-prog/deeplearning-models
https://raw.githubusercontent.com/PacktWorkshops/The-TensorFlow-Workshop/master/
https://raw.githubusercontent.com/PacktWorkshops/The-TensorFlow-Workshop/master/

Resources | FITPED AI

195

aim to provide a clear understanding of how artificial intelligence has contributed to
the final product.

Resources | FITPED AI

196

