

Erasmus+ FITPED-AI
Future IT Professionals Education in Artificial Intelligence
(Project 2021-1-SK01-KA220-HED-000032095)

Knowledge Discovery

Ľubomír Benko
Ján Skalka
Jaroslav Reichel
Lívia Kelebercová
Michal Munk
Júlia Tomanová
Vladimiras Dolgopolovas
Małgorzata Przybyła-Kasperek

www.fitped.eu 2024

Knowledge Discovery

Published on

November 2024

Authors

Ľubomír Benko | Constantine the Philosopher University in Nitra, Slovakia

Ján Skalka | Constantine the Philosopher University in Nitra, Slovakia

Jaroslav Reichel | Constantine the Philosopher University in Nitra, Slovakia

Lívia Kelebercová | Constantine the Philosopher University in Nitra, Slovakia

Michal Munk | Constantine the Philosopher University in Nitra, Slovakia

Júlia Tomanová | Constantine the Philosopher University in Nitra, Slovakia

Vladimiras Dolgopolovas | Vilnius University, Lithuania

Małgorzata Przybyła-Kasperek | University of Silesia in Katowice, Poland

Reviewers

Piet Kommers | Helix5, Netherland

Peter Švec | Teacher.sk, Slovakia

Vaida Masiulionytė-Dagienė | Vilnius University, Lithuania

Cyril Klimeš | Mendel University in Brno, Czech Republic

Erasmus+ FITPED-AI

Future IT Professionals Education in Artificial Intelligence

Project 2021-1-SK01-KA220-HED-000032095

Funded by the European Union. Views and opinions expressed are however those of
the author(s) only and do not necessarily reflect those of the European Union or Slovak
Academic Association for International Cooperation. Neither the European Union nor
the granting authority can be held responsible for them.

Licence (licence type: Attribution-Non-commercial-No Derivative Works) and may be
used by third parties as long as licensing conditions are observed. Any materials
published under the terms of a CC Licence are clearly identified as such.

All trademarks and brand names mentioned in this publication and all trademarks and
brand names mentioned that may be the intellectual property of third parties are
unconditionally subject to the provisions contained within the relevant law governing
trademarks and other related signs. The mere mention of a trademark or brand name
does not imply that such a trademark or brand name is not protected by the rights of
third parties.

© 2024 Constantine the Philosopher University in Nitra

ISBN 978-80-558-2227-3

TABLE OF CONTENTS
1 Basic Features ... 5

1.1 Introduction ... 6

1.2 Data description .. 9

2 Exploratory Analysis .. 21

2.1 Descriptive statistics .. 22

2.2 Data visualisation ... 34

2.3 Data summarization ... 48

3 Data Analysis ... 58

3.1 Univariate analysis .. 59

3.2 Bivariance analysis ... 73

3.3 Multivariate analysis ... 83

4 Project - Data Analysis .. 101

4.1 Project – Exploration data analysis .. 102

5 Analysis of Titanic Data .. 119

5.1 Analysis of Titanic data .. 120

Summarisation .. 137

6 Introduction .. 138

6.1 What is summarisation .. 139

6.2 Quality and challenges ... 141

7 Extraction and Abstraction ... 143

7.1 Extraction .. 144

7.2 Abstraction I. ... 148

7.3 Abstraction II. .. 151

8 Keyword Extraction .. 156

8.1 Introduction ... 157

8.2 Statistical approaches.. 159

8.3 Graph based approaches ... 177

8.4 Machine learning based approaches .. 186

8.5 Deep learning based approaches .. 196

8.6 Evaluation .. 198

Basic Features

Chapter 1

Basic Features | FITPED AI

6

1.1 Introduction

📝 1.1.1

The Knowledge Discovery - Introduction course focuses on the process of
transforming data into information and knowledge. We will introduce the field of
knowledge discovery and practically demonstrate how to extract relevant
information from data. The course will consist of a theoretical and a practical part
that complements each other. We will work in the Python programming language and
will use mainly the Pandas library.

📝 1.1.2

As more and more data accumulates in today's world, whether on the web or other
physical storage, the concept of Knowledge Discovery has emerged. By knowledge
we mean information that is of value to us. Knowledge discovery can be understood
as a process that consists of the following tasks:

• data selection,
• data preprocessing,
• data transformation,
• data analysis,
• results interpretation.

We can discover knowledge from a variety of sources, whether from databases, texts,
or the web.

📝 1.1.3

The CRISP-DM methodology is one of the most widely used and versatile techniques
for solving various knowledge discovery tasks. The methodology consists of the
following steps:

• business understanding,
• data understanding,
• data preparation,
• modeling,
• evaluation,
• deployment.

The order of the phases is not fixed and the process is cyclical. It was primarily
developed for project management in the area of knowledge discovery from
databases, but is applicable to other areas as well.

Basic Features | FITPED AI

7

📝 1.1.4

First, let's recall the work with data files. In our course, we will mainly use the pandas
library for working with data. Pandas contains a function for importing data from
different data files and writing back the output in different formats. Most often we
will encounter files saved in CSV format. Reading a CSV file and then transforming it
into a tabular structure (DataFrame) is built into the pandas library using the
read_csv() function. The first parameter of the function is the path to the file and the
second parameter is sep, which we can use to define a separator. The default value
in the case of the separator is a comma but we will often encounter a semicolon.

import pandas as pd

df = pd.read_csv('dataset.csv', sep=';')

📝 1.1.5

Another option is to use datasets provided by other libraries such as Sklearn. This
library is designed to work with machine learning and provides multiple datasets for
different tasks. Using the import function, we can import different data files. Then
we just need to create an instance of that data file and load it into the pandas
DataFrame structure. In the final result, the result is similar to if we loaded a CSV file
from disk.

import pandas as pd

from sklearn.datasets import load_wine

wine = load_wine()

df = pd.DataFrame(data=wine.data, columns= wine.feature_names)

print(df)

Program output:
 alcohol malic_acid ash alcalinity_of_ash magnesium

total_phenols \

0 14.23 1.71 2.43 15.6 127.0

2.80

1 13.20 1.78 2.14 11.2 100.0

2.65

2 13.16 2.36 2.67 18.6 101.0

2.80

3 14.37 1.95 2.50 16.8 113.0

3.85

4 13.24 2.59 2.87 21.0 118.0

2.80

Basic Features | FITPED AI

8

..

...

173 13.71 5.65 2.45 20.5 95.0

1.68

174 13.40 3.91 2.48 23.0 102.0

1.80

175 13.27 4.28 2.26 20.0 120.0

1.59

176 13.17 2.59 2.37 20.0 120.0

1.65

177 14.13 4.10 2.74 24.5 96.0

2.05

 flavanoids nonflavanoid_phenols proanthocyanins

color_intensity hue \

0 3.06 0.28 2.29

5.64 1.04

1 2.76 0.26 1.28

4.38 1.05

2 3.24 0.30 2.81

5.68 1.03

3 3.49 0.24 2.18

7.80 0.86

4 2.69 0.39 1.82

4.32 1.04

..

... ...

173 0.61 0.52 1.06

7.70 0.64

174 0.75 0.43 1.41

7.30 0.70

175 0.69 0.43 1.35

10.20 0.59

176 0.68 0.53 1.46

9.30 0.60

177 0.76 0.56 1.35

9.20 0.61

 od280/od315_of_diluted_wines proline

0 3.92 1065.0

1 3.40 1050.0

2 3.17 1185.0

3 3.45 1480.0

4 2.93 735.0

Basic Features | FITPED AI

9

..

173 1.74 740.0

174 1.56 750.0

175 1.56 835.0

176 1.62 840.0

177 1.60 560.0

[178 rows x 13 columns]

📝 1.1.6

Load from the sklearn library the dataset california_housing, which contains records
of homes in California. You fetch the dataset into an object using the
fetch_california_housing() function. List the names of the columns that the dataset
contains, separated by commas.

import pandas as pd

from sklearn.datasets import fetch_california_housing

1.2 Data description

📝 1.2.1

In the first part, we focus on the fact that it needs to understand what data we've
actually retrieved. However, we don't go in-depth yet because we are trying to first
understand the problem we want to solve in the context of the whole dataset and the
meaning of the variables. So let's look first at how much and what type of data is in
the data set. This is what the shape() and info() functions that describe the data set
are there to do. Shape returns information about the number of rows and columns.
Info also provides more detailed information about the individual variables and
especially their data type.

import pandas as pd

from sklearn.datasets import load_wine

wine = load_wine()

df = pd.DataFrame(data=wine.data, columns= wine.feature_names)

print(df.info())

Program output:

Basic Features | FITPED AI

10

RangeIndex: 178 entries, 0 to 177

Data columns (total 13 columns):

 # Column Non-Null Count Dtype

--- ------ -------------- -----

 0 alcohol 178 non-null float64

 1 malic_acid 178 non-null float64

 2 ash 178 non-null float64

 3 alcalinity_of_ash 178 non-null float64

 4 magnesium 178 non-null float64

 5 total_phenols 178 non-null float64

 6 flavanoids 178 non-null float64

 7 nonflavanoid_phenols 178 non-null float64

 8 proanthocyanins 178 non-null float64

 9 color_intensity 178 non-null float64

 10 hue 178 non-null float64

 11 od280/od315_of_diluted_wines 178 non-null float64

 12 proline 178 non-null float64

dtypes: float64(13)

memory usage: 18.2 KB

None

The dataset contains 178 rows and 13 columns. All variables are in decimal format.
We can also see that the dataset does not contain any missing values.

📝 1.2.2

Load from the sklearn library the dataset california_housing that contains records of
homes in California. You fetch the dataset into an object using the
fetch_california_housing() function. Examine the dataset and select the correct
assertions about the retrieved data.

import pandas as pd

from sklearn.datasets import fetch_california_housing

cali = fetch_california_housing()

df = pd.DataFrame(data=cali.data, columns=cali.feature_names)

print(df.info())

Program output:

RangeIndex: 20640 entries, 0 to 20639

Basic Features | FITPED AI

11

Data columns (total 8 columns):

 # Column Non-Null Count Dtype

--- ------ -------------- -----

 0 MedInc 20640 non-null float64

 1 HouseAge 20640 non-null float64

 2 AveRooms 20640 non-null float64

 3 AveBedrms 20640 non-null float64

 4 Population 20640 non-null float64

 5 AveOccup 20640 non-null float64

 6 Latitude 20640 non-null float64

 7 Longitude 20640 non-null float64

dtypes: float64(8)

memory usage: 1.3 MB

None

• the dataset consists of 20640 rows and 8 columns
• all variables are in decimal format
• the dataset consists of 8 rows and 20640 columns
• all variables are in integer format
• the dataset also contains missing values
• the dataset does not contain missing values

📝 1.2.3

Most often, the first functions used when loading a data file are the pandas head()
and tail() library functions. These functions display the first and last 5 records of the
dataset. In this way, we are able to quickly explore a small portion of the data file.

import pandas as pd

from sklearn.datasets import load_wine

wine = load_wine()

df = pd.DataFrame(data=wine.data, columns= wine.feature_names)

print('Head:')

print(df.head())

print('Tail:')

print(df.tail())

Program output:
Head:

 alcohol malic_acid ash alcalinity_of_ash magnesium

total_phenols \

Basic Features | FITPED AI

12

0 14.23 1.71 2.43 15.6 127.0

2.80

1 13.20 1.78 2.14 11.2 100.0

2.65

2 13.16 2.36 2.67 18.6 101.0

2.80

3 14.37 1.95 2.50 16.8 113.0

3.85

4 13.24 2.59 2.87 21.0 118.0

2.80

 flavanoids nonflavanoid_phenols proanthocyanins

color_intensity hue \

0 3.06 0.28 2.29

5.64 1.04

1 2.76 0.26 1.28

4.38 1.05

2 3.24 0.30 2.81

5.68 1.03

3 3.49 0.24 2.18

7.80 0.86

4 2.69 0.39 1.82

4.32 1.04

 od280/od315_of_diluted_wines proline

0 3.92 1065.0

1 3.40 1050.0

2 3.17 1185.0

3 3.45 1480.0

4 2.93 735.0

Tail:

 alcohol malic_acid ash alcalinity_of_ash magnesium

total_phenols \

173 13.71 5.65 2.45 20.5 95.0

1.68

174 13.40 3.91 2.48 23.0 102.0

1.80

175 13.27 4.28 2.26 20.0 120.0

1.59

176 13.17 2.59 2.37 20.0 120.0

1.65

177 14.13 4.10 2.74 24.5 96.0

2.05

Basic Features | FITPED AI

13

 flavanoids nonflavanoid_phenols proanthocyanins

color_intensity hue \

173 0.61 0.52 1.06

7.7 0.64

174 0.75 0.43 1.41

7.3 0.70

175 0.69 0.43 1.35

10.2 0.59

176 0.68 0.53 1.46

9.3 0.60

177 0.76 0.56 1.35

9.2 0.61

 od280/od315_of_diluted_wines proline

173 1.74 740.0

174 1.56 750.0

175 1.56 835.0

176 1.62 840.0

177 1.60 560.0

📝 1.2.4

Load from the sklearn library the dataset california_housing, which contains records
of homes in California. You fetch the dataset into an object using the
fetch_california_housing() function. The dataset consists of the following variables:

• MedInc - the median income of homes in the block
• HouseAge - the median age of houses in the block
• AveRooms - the average number of rooms per household
• AveBedrms - the average number of bedrooms per household
• Population - population
• AveOccup - the average number of household members
• Latitude - latitude of the block
• Longitude - longitude of the block

Examine the dataset and list the median age of the houses of the first block. Round
the result to a whole number.

import pandas as pd

from sklearn.datasets import fetch_california_housing

cali = fetch_california_housing()

df = pd.DataFrame(data=cali.data, columns=cali.feature_names)

Basic Features | FITPED AI

14

print(df.head())

Program output:
 MedInc HouseAge AveRooms AveBedrms Population AveOccup

Latitude \

0 8.3252 41.0 6.984127 1.023810 322.0 2.555556

37.88

1 8.3014 21.0 6.238137 0.971880 2401.0 2.109842

37.86

2 7.2574 52.0 8.288136 1.073446 496.0 2.802260

37.85

3 5.6431 52.0 5.817352 1.073059 558.0 2.547945

37.85

4 3.8462 52.0 6.281853 1.081081 565.0 2.181467

37.85

 Longitude

0 -122.23

1 -122.22

2 -122.24

3 -122.25

4 -122.25

📝 1.2.5

The describe() function provides purely descriptive information about the dataset.
This information includes statistics that summarize the variables, their variance, the
presence of missing values, and their shape. The basic statistics displayed by the
function are as follows:

• count - number of elements,
• mean - average value,
• std - standard deviation of observations
• min - minimum value
• 25% - lower quartile
• 50% - median
• 75% - upper quartile
• max - maximum value

import pandas as pd

from sklearn.datasets import load_wine

wine = load_wine()

df = pd.DataFrame(data=wine.data, columns= wine.feature_names)

Basic Features | FITPED AI

15

print(df.describe())

Program output:
 alcohol malic_acid ash alcalinity_of_ash

magnesium \

count 178.000000 178.000000 178.000000 178.000000

178.000000

mean 13.000618 2.336348 2.366517 19.494944

99.741573

std 0.811827 1.117146 0.274344 3.339564

14.282484

min 11.030000 0.740000 1.360000 10.600000

70.000000

25% 12.362500 1.602500 2.210000 17.200000

88.000000

50% 13.050000 1.865000 2.360000 19.500000

98.000000

75% 13.677500 3.082500 2.557500 21.500000

107.000000

max 14.830000 5.800000 3.230000 30.000000

162.000000

 total_phenols flavanoids nonflavanoid_phenols

proanthocyanins \

count 178.000000 178.000000 178.000000

178.000000

mean 2.295112 2.029270 0.361854

1.590899

std 0.625851 0.998859 0.124453

0.572359

min 0.980000 0.340000 0.130000

0.410000

25% 1.742500 1.205000 0.270000

1.250000

50% 2.355000 2.135000 0.340000

1.555000

75% 2.800000 2.875000 0.437500

1.950000

max 3.880000 5.080000 0.660000

3.580000

 color_intensity hue

od280/od315_of_diluted_wines proline

count 178.000000 178.000000

178.000000 178.000000

Basic Features | FITPED AI

16

mean 5.058090 0.957449

2.611685 746.893258

std 2.318286 0.228572

0.709990 314.907474

min 1.280000 0.480000

1.270000 278.000000

25% 3.220000 0.782500

1.937500 500.500000

50% 4.690000 0.965000

2.780000 673.500000

75% 6.200000 1.120000

3.170000 985.000000

max 13.000000 1.710000

4.000000 1680.000000

📝 1.2.6

Load from the sklearn library the dataset california_housing, which contains records
of homes in California. You fetch the dataset into an object using the
fetch_california_housing() function. What is the average value of the average
population per block?

import pandas as pd

from sklearn.datasets import fetch_california_housing

cali = fetch_california_housing()

df = pd.DataFrame(data=cali.data, columns=cali.feature_names)

print(df.describe())

Program output:
 MedInc HouseAge AveRooms AveBedrms

Population \

count 20640.000000 20640.000000 20640.000000 20640.000000

20640.000000

mean 3.870671 28.639486 5.429000 1.096675

1425.476744

std 1.899822 12.585558 2.474173 0.473911

1132.462122

min 0.499900 1.000000 0.846154 0.333333

3.000000

25% 2.563400 18.000000 4.440716 1.006079

787.000000

Basic Features | FITPED AI

17

50% 3.534800 29.000000 5.229129 1.048780

1166.000000

75% 4.743250 37.000000 6.052381 1.099526

1725.000000

max 15.000100 52.000000 141.909091 34.066667

35682.000000

 AveOccup Latitude Longitude

count 20640.000000 20640.000000 20640.000000

mean 3.070655 35.631861 -119.569704

std 10.386050 2.135952 2.003532

min 0.692308 32.540000 -124.350000

25% 2.429741 33.930000 -121.800000

50% 2.818116 34.260000 -118.490000

75% 3.282261 37.710000 -118.010000

max 1243.333333 41.950000 -114.310000

📝 1.2.7

Load from the sklearn library the dataset california_housing, which contains records
of homes in California. You fetch the dataset into an object using the
fetch_california_housing() function. What is the median age of the houses in the
block? Print the result as an integer.

import pandas as pd

from sklearn.datasets import fetch_california_housing

cali = fetch_california_housing()

df = pd.DataFrame(data=cali.data, columns=cali.feature_names)

print(df.describe())

Program output:
 MedInc HouseAge AveRooms AveBedrms

Population \

count 20640.000000 20640.000000 20640.000000 20640.000000

20640.000000

mean 3.870671 28.639486 5.429000 1.096675

1425.476744

Basic Features | FITPED AI

18

std 1.899822 12.585558 2.474173 0.473911

1132.462122

min 0.499900 1.000000 0.846154 0.333333

3.000000

25% 2.563400 18.000000 4.440716 1.006079

787.000000

50% 3.534800 29.000000 5.229129 1.048780

1166.000000

75% 4.743250 37.000000 6.052381 1.099526

1725.000000

max 15.000100 52.000000 141.909091 34.066667

35682.000000

 AveOccup Latitude Longitude

count 20640.000000 20640.000000 20640.000000

mean 3.070655 35.631861 -119.569704

std 10.386050 2.135952 2.003532

min 0.692308 32.540000 -124.350000

25% 2.429741 33.930000 -121.800000

50% 2.818116 34.260000 -118.490000

75% 3.282261 37.710000 -118.010000

max 1243.333333 41.950000 -114.310000

📝 1.2.8

Another way to get to know a data file is to use the info() function. This function gives
us more concise information than describe() but we get information about the data
type of the variables. We can also use the info() function to find out if the data file
contains missing values.

import pandas as pd

from sklearn.datasets import load_wine

wine = load_wine()

df = pd.DataFrame(data=wine.data, columns= wine.feature_names)

print(df.info())

Program output:

RangeIndex: 178 entries, 0 to 177

Data columns (total 13 columns):

 # Column Non-Null Count Dtype

--- ------ -------------- -----

 0 alcohol 178 non-null float64

Basic Features | FITPED AI

19

 1 malic_acid 178 non-null float64

 2 ash 178 non-null float64

 3 alcalinity_of_ash 178 non-null float64

 4 magnesium 178 non-null float64

 5 total_phenols 178 non-null float64

 6 flavanoids 178 non-null float64

 7 nonflavanoid_phenols 178 non-null float64

 8 proanthocyanins 178 non-null float64

 9 color_intensity 178 non-null float64

 10 hue 178 non-null float64

 11 od280/od315_of_diluted_wines 178 non-null float64

 12 proline 178 non-null float64

dtypes: float64(13)

memory usage: 18.2 KB

None

📝 1.2.9

Load from the sklearn library the dataset california_housing, which contains records
of homes in California. You fetch the dataset into an object using the
fetch_california_housing() function. What data type are most of the variables in the
dataset?

import pandas as pd

from sklearn.datasets import fetch_california_housing

cali = fetch_california_housing()

df = pd.DataFrame(data=cali.data, columns=cali.feature_names)

print(df.info())

Program output:

RangeIndex: 20640 entries, 0 to 20639

Data columns (total 8 columns):

 # Column Non-Null Count Dtype

--- ------ -------------- -----

 0 MedInc 20640 non-null float64

 1 HouseAge 20640 non-null float64

 2 AveRooms 20640 non-null float64

 3 AveBedrms 20640 non-null float64

 4 Population 20640 non-null float64

 5 AveOccup 20640 non-null float64

Basic Features | FITPED AI

20

 6 Latitude 20640 non-null float64

 7 Longitude 20640 non-null float64

dtypes: float64(8)

memory usage: 1.3 MB

None

Exploratory Analysis

Chapter 2

Exploratory Analysis | FITPED AI

22

2.1 Descriptive statistics

📝 2.1.1

Exploratory analysis methods are used to discover patterns, generate hypotheses,
recognize specificities, and illustrate phenomena. The starting point of any data
analysis is the data itself. The data do not have to satisfy certain conditions (e.g. the
data must have been obtained by random sampling). The main point is to represent
the data in different ways and to recognise regularities and irregularities, structures,
patterns and peculiarities. In the exploratory process, we look for interesting
configurations and relationships in the data. If we want to compare two or more
variables, we need appropriate quantities that will numerically characterize the basic
properties of the frequency distribution. Such amounts are called numerical
characteristics and can be divided into three categories:

• position characteristics - represent a certain level or position of the character
around which the residuals are concentrated. This position is measured by
different kinds of mean values such as arithmetic, harmonic and geometric
mean, modus, median and quantiles.

• variability characteristics - they express the differences (variability,
dispersion) of the values and are an important factor when comparing
variables in which the position characteristics are identical. The best known
are quantile, quartile and variation range, quartile deviation, mean deviation,
proportional mean deviation, variance, standard deviation and coefficient of
variation.

• characteristics of skewness and peakedness measures - moment
characteristics are required for their calculation. The best known are the
skewness coefficient, the kurtosis coefficient and the Pearson skewness
measure.

📝 2.1.2

Most descriptive statistics include Python functions. However, in order to understand
what is behind the called function, we need to understand at least the mathematical
notation of the statistics. Let's first introduce different averages.

Arithmetic mean - is the sum of all given values divided by their number. In Python,
we can use the mean() function of the statistics library to calculate it.

Exploratory Analysis | FITPED AI

23

Harmonic mean - is the inverse of the arithmetic mean of the inverted values. In
Python, we can use the harmonic_mean() function of the statistics library to calculate
it.

Geometric mean - is the product of the positive numbers is the product of the values
squared to the number of values. The similarity to the arithmetic mean is in the
substitution of the sum of the operation by product and division by the n-th root. In
Python, we can use the geometric_mean() function of the statistics library to do the
calculation.

import pandas as pd

import statistics as stat

from sklearn.datasets import load_wine

wine = load_wine()

df = pd.DataFrame(data=wine.data, columns= wine.feature_names)

print('Arithmetic mean:',stat.mean(df['magnesium']))

print('Harmonic mean:',stat.harmonic_mean(df['magnesium']))

print('Geometric mean:',stat.geometric_mean(df['magnesium']))

Program output:
Arithmetic mean: 99.74157303370787

Harmonic mean: 97.9056614747819

Geometric mean: 98.79450755406194

📝 2.1.3

Load from the sklearn library the dataset california_housing, which contains records
of homes in California. You fetch the dataset into an object using the

Exploratory Analysis | FITPED AI

24

fetch_california_housing() function. What is the value of the harmonic mean of the
age of the houses in the block? Round the result to two decimal places.

import pandas as pd

from scipy import stats

from sklearn.datasets import fetch_california_housing

cali = fetch_california_housing()

df = pd.DataFrame(data=cali.data, columns=cali.feature_names)

print(round(stats.hmean(df['HouseAge']),2))

Program output:
20.38

📝 2.1.4

Other statistics used include the modus and median.

Modus - represents the most frequent value occurring in the variable under study. In
Python, we can use the mode() function of the statistics library to calculate it.

Median - this is the mean value of the variable under study, with the requirement that
the values must be arranged in a non-decreasing sequence. We have defined n as
the number of values and xi as the value at the i-th position. Then for an even number
of elements we calculate the median as follows:

For an odd number of elements, we proceed as follows:

In Python, we can use the median() function of the statistics library to calculate.

Exploratory Analysis | FITPED AI

25

We distinguish three cases depending on what is the relative position of the modus,
median and arithmetic mean of the examined variable. If , then we speak about
symmetric frequency distribution. If , then we speak about negative skewness. In
the case of , we speak about positive skewness.

import pandas as pd

import statistics as stat

from sklearn.datasets import load_wine

wine = load_wine()

df = pd.DataFrame(data=wine.data, columns= wine.feature_names)

print('Modus:',stat.mode(df['magnesium']))

print('Median:',stat.median(df['magnesium']))

Program output:
Modus: 88.0

Median: 98.0

📝 2.1.5

Use of individual position characteristics:

• We use the mean mainly for metric variables in the case of symmetric
distributions and the use of parametric tests.

• We use the median for intensive variables in the case we want to know the
centre of the data distribution, in the case of outliers and skewed
distribution.

• We use the modus for variables when the distribution has multiple peaks.
• In the case of a symmetric distribution, all these characteristics are

approximately the same.

📝 2.1.6

Load from the sklearn library the dataset california_housing, which contains records
of homes in California. You fetch the dataset into an object using the
fetch_california_housing() function. What is the most common value for the age of
the houses in the block? Print the result as an integer.

import pandas as pd

import statistics as stat

from sklearn.datasets import fetch_california_housing

Exploratory Analysis | FITPED AI

26

cali = fetch_california_housing()

df = pd.DataFrame(data=cali.data, columns=cali.feature_names)

print(round(stat.mode(df['HouseAge']),2))

Program output:
52.0

📝 2.1.7

Load from the sklearn library the dataset california_housing, which contains records
of homes in California. You fetch the dataset into an object using the
fetch_california_housing() function. Examine the variable age of the houses in the
block and identify the frequency distribution of the variable being examined. List the
values of the mean, median, and mode rounded to two decimal places in the
following form:

positive skewness, mean: 42.53, median: 22.36, modus: 30.00

import pandas as pd

import statistics as stat

from sklearn.datasets import fetch_california_housing

cali = fetch_california_housing()

df = pd.DataFrame(data=cali.data, columns=cali.feature_names)

print(round(stat.mode(df['HouseAge']),2))

print(round(stat.mean(df['HouseAge']),2))

print(round(stat.median(df['HouseAge']),2))

Program output:
52.0

28.64

29.0

📝 2.1.8

Quantiles are numerical values that divide the sorted values of the variable under
study in non-decreasing order into k equal parts. The best-known are the median
(k=2), quartiles (k=4), deciles (k=10) and percentiles (k=100).

Quartiles represent percentiles with levels of 25%, 50% and 75%. Quartiles divide the
set into 4 parts.

Exploratory Analysis | FITPED AI

27

• QI is the first/lower quartile and the 25th percentile or x0,25.
• QII is the second quartile or 50th percentile or median x0,5.
• QIII is the third/upper quartile or 75th percentile or x0,75.

In Python, we have two options to get the upper and lower quartile. The first option
is the describe() function of the pandas library. The second option is to use the numpy
library, which contains a quantile() function whose second parameter is the
percentile. So if we specify 0.25 as a parameter the function will result in a lower
quartile and 0.75 will result in an upper quartile.

Using the upper and lower quartiles, we can calculate the quartile range which
represents the region of the middle 50% of the values of the variable. This measure
of variability is not affected by extreme values of the variable. In Python, we can use
the iqr() function of the scipy library to calculate this or substitute the upper and lower
quartiles into the formula:

import pandas as pd

import numpy as np

from scipy import stats

from sklearn.datasets import load_wine

wine = load_wine()

df = pd.DataFrame(data=wine.data, columns= wine.feature_names)

print(df['magnesium'].describe())

print('Upper quartile:',np.quantile(df['magnesium'],0.75))

print('Lower quartile:',np.quantile(df['magnesium'],0.25))

print('Quartile range:',stats.iqr(df['magnesium']))

Exploratory Analysis | FITPED AI

28

Program output:
count 178.000000

mean 99.741573

std 14.282484

min 70.000000

25% 88.000000

50% 98.000000

75% 107.000000

max 162.000000

Name: magnesium, dtype: float64

Upper quartile: 107.0

Lower quartile: 88.0

Quartile range: 19.0

📝 2.1.9

Load from the sklearn library the dataset california_housing, which contains records
of homes in California. You fetch the dataset into an object using the
fetch_california_housing() function. Examine the variable age of houses in the block
and calculate the quartile range of the variable being examined. Round the result to
integers.

import pandas as pd

from scipy import stats

from sklearn.datasets import fetch_california_housing

cali = fetch_california_housing()

df = pd.DataFrame(data=cali.data, columns=cali.feature_names)

print('Quartile range:',stats.iqr(df['HouseAge']))

Program output:
Quartile range: 19.0

📝 2.1.10

Data with the same mean can have different scatter. The amount of variability in the
data can be determined by a suitably chosen variability characteristic or measure of
dispersion. One of these is the quartile range introduced earlier. Others are:

The variance - the most commonly used characteristic of variability, referred to as s2,
which is the root mean square deviation of the measurement from the arithmetic

Exploratory Analysis | FITPED AI

29

mean. The larger the variance the more the data deviate from the mean. In Python,
we can use the var() function of the numpy library or the pvariance() function of the
statistics library to calculate this.

Standard deviation - this is the positive square root of the variance, denoted as s.
The greater the difference in the values of the examined variable the greater the value
of the standard deviation. In Python, we can use the std() function of the numpy
library or the pstdev() function of the statistics library to do the calculation.

Coefficient of variation - used for comparing variability and represents a relative
measure of variability. It does not depend on the units in which the values of the
variable are expressed, unlike the variance and standard deviation. If the value of the
coefficient of variation is greater than 50%, the arithmetic mean loses its meaning
because the statistical population is heterogeneous and the arithmetic mean cannot
represent it. In this case, we use the median instead of the arithmetic mean as mean.
In Python, we have to calculate the given coefficient using the following formula:

import pandas as pd

import statistics as stat

import numpy as np

from sklearn.datasets import load_wine

wine = load_wine()

df = pd.DataFrame(data=wine.data, columns= wine.feature_names)

print('The variance

Statistics:',stat.pvariance(df['magnesium']))

print('The variance Numpy:',np.var(df['magnesium']))

print('Standard deviation

Statistics:',stat.pstdev(df['magnesium']))

print('Standard deviation Numpy:',np.std(df['magnesium']))

Exploratory Analysis | FITPED AI

30

print('Coefficient of variation

Statistics:',stat.pstdev(df['magnesium'])/stat.mean(df['magnes

ium'])*100)

print('Coefficient of variation

Numpy:',np.std(df['magnesium'])/np.mean(df['magnesium'])*100)

Program output:
The variance Statistics: 202.8433278626436

The variance Numpy: 202.8433278626436

Standard deviation Statistics: 14.242307673359806

Standard deviation Numpy: 14.242307673359806

Coefficient of variation Statistics: 14.27920899998899

Coefficient of variation Numpy: 14.27920899998899

📝 2.1.11

Use of individual variability characteristics:

• Standard deviation and variance measure the dispersion around the mean
and are used when the mean is appropriate as a measure of the mean.

• Standard deviation and dispersion are strongly affected by outliers, so in this
case, we prefer the quartile range, median absolute deviation, and mean
absolute deviation from the median, respectively.

• In the case of a strongly skewed distribution, the standard deviation and
variance do not provide good information about the dispersion of the data.

• In case we want to assess the relative magnitude of the dispersion of the
data from the mean we use the coefficient of variation.

📝 2.1.12

Load from the sklearn library the dataset california_housing, which contains records
of homes in California. You fetch the dataset into an object using the
fetch_california_housing() function. Examine the variable age of the houses in the
block to see if the coefficient of variation is greater than 50%. List the yes/no values
and write the result as a percentage rounded to two decimal places. For example:

yes, 58.56%

import pandas as pd

import numpy as np

from sklearn.datasets import fetch_california_housing

cali = fetch_california_housing()

df = pd.DataFrame(data=cali.data, columns=cali.feature_names)

Exploratory Analysis | FITPED AI

31

print('Coefficient of

variation:',round(np.std(df['HouseAge'])/np.mean(df['HouseAge'

])*100,2))

Program output:
Coefficient of variation: 43.94

📝 2.1.13

A final option in descriptive statistics is to look at the shape of the data distribution
using skewness and kurtosis.

The skewness a3 measures the degree of asymmetry in the distribution of a variable.
A positive value means that the mean is greater than the median, so most of the
values are less than the mean. In this case, the distribution is skewed to the left. A
negative value means that the median is greater than the mean and hence most
values are greater than the mean. In this case, the distribution is skewed to the right.
Values close to 0 indicate a symmetric distribution, which means that the mean and
median are equal. In Python, we can use the skew() function of the scipy library to
calculate this. It is calculated as follows:

where

Kurtosis a4 measures the degree of steepness of the distribution of a variable. A
positive value means that the distribution is more skewed. A negative value means

Exploratory Analysis | FITPED AI

32

that the distribution is flatter. In Python, we can use the kurtosis() function of the
scipy library to calculate this. It is given by the relation

import pandas as pd

from scipy import stats

from sklearn.datasets import load_wine

wine = load_wine()

df = pd.DataFrame(data=wine.data, columns= wine.feature_names)

print('Skewness:',stats.skew(df['magnesium']))

print('Kurtosis:',stats.kurtosis(df['magnesium'],

fisher=True))

Program output:
Skewness: 1.088914887210701

Kurtosis: 2.0128060084773907

📝 2.1.14

If we have non-zero values for the result of skewness and skewness, then it is
obvious that the data under study do not have a normal distribution. However, it may
be that the values are close enough, but not quite equal to 0. We can use the Shapiro-
Wilk test to estimate the probability that the data under study have a normal
distribution. The null hypothesis of the Shapiro-Wilk test is that the data have a
normal distribution. If the resulting p-value is less than or equal to 0.05, we reject the
null hypothesis and assume that the data under study do not have a normal
distribution. In Python, we can use the shapiro() function of the scipy library to
perform the calculation.

Exploratory Analysis | FITPED AI

33

Using individual shape characteristics:

• We use skewness if we want to see if lower values are more frequent than
higher values or vice versa.

• We use kurtosis if we want to see how the values of a variable actually
cluster around the mean.

import pandas as pd

from scipy import stats

from sklearn.datasets import load_wine

wine = load_wine()

df = pd.DataFrame(data=wine.data, columns= wine.feature_names)

p_value = round(stats.shapiro(df['magnesium'])[1],4)

if p_value<=0.05:

 print('p =',p_value, 'the null hypothesis is rejected')

else:

 print('p =',p_value, 'the null hypothesis is not rejected')

Program output:
p = 0.0 the null hypothesis is rejected

📝 2.1.15

Load from the sklearn library the dataset california_housing, which contains records
of homes in California. You fetch the dataset into an object using the
fetch_california_housing() function. Examine the variable age of the houses in the
block to see if the variable has a normal distribution. Print if it does/does not have a
normal distribution and also list the associated skewness, and kurtosis statistics and
verify the p-value. Round the results to two decimal places. Notation:

does not have a normal distribution, p = 0.02, skew = 0.12,

kurtosis = -0.25

import pandas as pd

from scipy import stats

from sklearn.datasets import fetch_california_housing

cali = fetch_california_housing()

df = pd.DataFrame(data=cali.data, columns=cali.feature_names)

print('Skewness:',round(stats.skew(df['HouseAge']),2))

print('Kurtosis:',round(stats.kurtosis(df['HouseAge'],

fisher=True),2))

Exploratory Analysis | FITPED AI

34

p_value = round(stats.shapiro(df['HouseAge'])[1],4)

if p_value<=0.05:

 print('p =',p_value, 'the null hypothesis is rejected')

else:

 print('p =',p_value, 'the null hypothesis is not rejected')

Program output:
Skewness: 0.06

Kurtosis: -0.8

p = 0.0 the null hypothesis is rejected

2.2 Data visualisation

📝 2.2.1

Data visualization can tell us much more about the data than just the numbers. With
visualization, we can more easily uncover configurations and data structures. We use
graphical methods to look for outliers, recognize clusters in data, check data
distributions and assumptions, explore relationships between variables, compare
measures of mean and variance, or examine time-dependent data. Graphical
methods are useful for showing broader properties of data. If we want to present the
selected data in a precise form it is better to show it in tables. When analyzing a
graph we evaluate densities, clusters, gaps, outliers, and the shape of the
distribution.

Graphs can be grouped according to different criteria. In our case, we will divide them
by usage. However, we will by no means cover all possibilities but we will try to
present the most important ones. Some graphs are so specific that they are only part
of specific analyses. An example of such a graph is the dendrogram that is part of
cluster analysis and is used to visualize clusters in the data space.

📝 2.2.2

We can examine the abundance of the data in each variable in different ways. One
possibility is by using the value_counts() function of the pandas library. The result is
a listing of the unique values and the number of repetitions in the data set. If we set
the normalize parameter in the function to True, the resulting counts are output in
percentage notation. The last option is to visualize the frequencies using the plot()
function, where we can choose a bar chart type by setting the kind parameter to bar.

We have also added a target column to our data file. This column is used for the
classification task, where based on the other variables we can classify the wine into
the given three categories. In our case, for the moment, it will mainly serve us to
better understand the data.

Exploratory Analysis | FITPED AI

35

import pandas as pd

from sklearn.datasets import load_wine

wine = load_wine()

df = pd.DataFrame(data=wine.data, columns= wine.feature_names)

df["target"] = wine.target

print('Frequencies:',df['target'].value_counts(),sep='\n')

print('Percentages:',df['target'].value_counts(normalize=True)

,sep='\n')

df['target'].value_counts().plot(kind='bar')

Program output:
Frequencies:

1 71

0 59

2 48

Name: target, dtype: int64

Percentages:

1 0.398876

0 0.331461

2 0.269663

Name: target, dtype: float64

📝 2.2.3

Load from the sklearn library the dataset california_housing, which contains records
of homes in California. You fetch the dataset into an object using the

Exploratory Analysis | FITPED AI

36

fetch_california_housing() function. What is the number of oldest houses by the
average age of the houses in the block? List the average age and the number of
records for it.

24: 875

import pandas as pd

from scipy import stats

from sklearn.datasets import fetch_california_housing

cali = fetch_california_housing()

df = pd.DataFrame(data=cali.data, columns=cali.feature_names)

df['HouseAge'].value_counts().plot(kind='bar')

print(df.HouseAge.value_counts())

Program output:
52.0 1273

36.0 862

35.0 824

16.0 771

17.0 698

34.0 689

26.0 619

33.0 615

18.0 570

25.0 566

32.0 565

37.0 537

15.0 512

19.0 502

27.0 488

24.0 478

30.0 476

28.0 471

20.0 465

29.0 461

31.0 458

23.0 448

21.0 446

14.0 412

22.0 399

38.0 394

39.0 369

42.0 368

Exploratory Analysis | FITPED AI

37

44.0 356

43.0 353

40.0 304

13.0 302

41.0 296

45.0 294

10.0 264

11.0 254

46.0 245

5.0 244

12.0 238

8.0 206

9.0 205

47.0 198

4.0 191

48.0 177

7.0 175

6.0 160

50.0 136

49.0 134

3.0 62

2.0 58

51.0 48

1.0 4

Name: HouseAge, dtype: int64

Exploratory Analysis | FITPED AI

38

📝 2.2.4

If we want to look at the distribution of the data or the distribution of the data, we
can use a histogram. The histogram works with intervals where the intervals are
represented by the width of the bar (x-axis) and the number of cases that fall within
the interval is represented by the height of the bar (y-axis). Visualization of the
histogram is possible using the plot() function, where we can choose the type of the
plot by setting the kind parameter to hist.

import pandas as pd

from sklearn.datasets import load_wine

wine = load_wine()

df = pd.DataFrame(data=wine.data, columns= wine.feature_names)

df['magnesium'].plot(kind='hist', title='magnesium')

Program output:

📝 2.2.5

Load from the sklearn library the dataset california_housing, which contains records
of homes in California. You fetch the dataset into an object using the
fetch_california_housing() function. Visualize a histogram of each variable in the
dataset. Which of the histograms visualize information about the rooms in the
houses?

Exploratory Analysis | FITPED AI

39

import pandas as pd

from scipy import stats

from sklearn.datasets import fetch_california_housing

cali = fetch_california_housing()

df = pd.DataFrame(data=cali.data, columns=cali.feature_names)

print(df.info())

#df['MedInc'].plot(kind='hist')

#df['HouseAge'].plot(kind='hist')

#df['AveRooms'].plot(kind='hist')

#df['AveBedrms'].plot(kind='hist')

#df['Population'].plot(kind='hist')

#df['AveOccup'].plot(kind='hist')

#df['Latitude'].plot(kind='hist')

#df['Longitude'].plot(kind='hist')

Program output:

RangeIndex: 20640 entries, 0 to 20639

Data columns (total 8 columns):

 # Column Non-Null Count Dtype

--- ------ -------------- -----

 0 MedInc 20640 non-null float64

 1 HouseAge 20640 non-null float64

 2 AveRooms 20640 non-null float64

 3 AveBedrms 20640 non-null float64

 4 Population 20640 non-null float64

 5 AveOccup 20640 non-null float64

 6 Latitude 20640 non-null float64

 7 Longitude 20640 non-null float64

dtypes: float64(8)

memory usage: 1.3 MB

None

Exploratory Analysis | FITPED AI

40

Exploratory Analysis | FITPED AI

41

Exploratory Analysis | FITPED AI

42

Exploratory Analysis | FITPED AI

43

Exploratory Analysis | FITPED AI

44

📝 2.2.6

We covered descriptive statistics in the previous lesson. In addition to numerical
characteristics, we can also visualize descriptive statistics using a box plot. Thus,
we can assess and compare measures of the location and dispersion of values in
their neighbourhood. Visualization of the histogram is possible using the boxplot()
function, which is found in the matplotlib library. As the first parameter, we specify
the variable we want to visualize. The showmeans parameter adds visual information
about the mean value to our graph, which is represented by the green triangle. The
red line tells us the mean value. The rectangle, in turn, gives us the upper-to-lower
quartile boundary. The maximum and minimum are bounded by lines from the
rectangle upwards and downwards.

import pandas as pd

from sklearn.datasets import load_wine

import matplotlib.pyplot as plt

wine = load_wine()

df = pd.DataFrame(data=wine.data, columns= wine.feature_names)

plt.boxplot(df['magnesium'], showmeans=True)

Exploratory Analysis | FITPED AI

45

Program output:

📝 2.2.7

Using the matplotlib library, we can also visualize multiple box plots at the same time.
As a first parameter, we send not a single variable but a list of variables to be
examined. We can then color-code the variables using various settings, which you
can see in the following code. In our case, we have combined variables whose range
of values is approximately similar. However, it is more transparent to observe the
individual variables separately so that we are not affected by the different scales of
values.

import pandas as pd

from sklearn.datasets import load_wine

import matplotlib.pyplot as plt

wine = load_wine()

df = pd.DataFrame(data=wine.data, columns= wine.feature_names)

box =

plt.boxplot([df['total_phenols'],df['flavanoids'],df['proantho

cyanins']], showmeans=True)

#boxes customization

plt.setp(box['boxes'][0], color='green')

plt.setp(box['caps'][0], color='green')

plt.setp(box['caps'][1], color='green')

plt.setp(box['whiskers'][0], color='green')

plt.setp(box['whiskers'][1], color='green')

Exploratory Analysis | FITPED AI

46

plt.setp(box['boxes'][1], color='red')

plt.setp(box['caps'][2], color='red')

plt.setp(box['caps'][3], color='red')

plt.setp(box['whiskers'][2], color='red')

plt.setp(box['whiskers'][3], color='red')

plt.title('Distribution of wine attributes')

plt.xticks([1,2,3], ['total

phenols','flavanoids','proanthocyanins'])

plt.show()

Program output:

📝 2.2.8

Load from the sklearn library the dataset california_housing, which contains records
of homes in California. You fetch the dataset into an object using the
fetch_california_housing() function. Use the box plot to examine each attribute of
the dataset and select the correct assertions.

We will add one more column to our data file, target. This column is used for the
classification task where based on the other variables we can classify the median
California home price value, expressed in hundreds of thousands of dollars. In our
case, it will mainly serve us to better understand the data.

Exploratory Analysis | FITPED AI

47

import pandas as pd

import matplotlib.pyplot as plt

from scipy import stats

from sklearn.datasets import fetch_california_housing

cali = fetch_california_housing()

df = pd.DataFrame(data=cali.data, columns=cali.feature_names)

#print(df.info())

#plt.boxplot(df['HouseAge'], showmeans=True)

#plt.boxplot(df['AveRooms'], showmeans=True)

#plt.boxplot(df['AveBedrms'], showmeans=True)

plt.boxplot(df['AveOccup'], showmeans=True)

#plt.boxplot(df['Population'], showmeans=True)

Program output:

• the average age of the houses is close to the median age of the houses in the
block

• descriptive statistics of the average number of rooms and bedrooms are
similar

• the age of houses has a normal distribution
• the average age of the houses is similar to the average number of rooms

Exploratory Analysis | FITPED AI

48

📝 2.2.9

There is no standard that specifies which chart we should use to visualize the data.
However, there are a few guidelines that can help us choose:

• It is important to understand what type of data we are examining. If you have
continuous variables, then a histogram would be a good choice. Similarly, if
we want to display a ranking, an ordered bar chart would be a good choice.

• Let's choose a graph that effectively conveys the correct and relevant
meaning of the data without actually misrepresenting the facts.

• Simplicity is best. It is considered better to draw a simple graph that is easy
to understand than to draw complex graphs that require several reports and
texts to understand.

• Let's choose a diagram that does not overwhelm the audience with
information. Our goal should be to illustrate abstract information clearly.

2.3 Data summarization

📝 2.3.1

During data analysis, it is often necessary to group data based on certain criteria.
The concepts of clustering occur in several parts of data analysis. The pandas library
contains a groupby() function that groups our dataset into different classes over
which we can perform aggregation. The groupby() function performs two basic
functions: it divides the data into groups based on certain criteria and applies the
function to each group separately. The result of groupby() is a structure that provides
us with several aggregation functions such as sum(), mean(), median(), min(), max(),
and so on.

import pandas as pd

from sklearn.datasets import load_wine

wine = load_wine()

df = pd.DataFrame(data=wine.data, columns= wine.feature_names)

df["target"] = wine.target

print(df.groupby('target').mean())

Program output:
 alcohol malic_acid ash alcalinity_of_ash

magnesium \

target

0 13.744746 2.010678 2.455593 17.037288

106.338983

1 12.278732 1.932676 2.244789 20.238028

94.549296

Exploratory Analysis | FITPED AI

49

2 13.153750 3.333750 2.437083 21.416667

99.312500

 total_phenols flavanoids nonflavanoid_phenols

proanthocyanins \

target

0 2.840169 2.982373 0.290000

1.899322

1 2.258873 2.080845 0.363662

1.630282

2 1.678750 0.781458 0.447500

1.153542

 color_intensity hue

od280/od315_of_diluted_wines proline

target

0 5.528305 1.062034

3.157797 1115.711864

1 3.086620 1.056282

2.785352 519.507042

2 7.396250 0.682708

1.683542 629.895833

📝 2.3.2

Load from the sklearn library the dataset california_housing, which contains records
of homes in California. You fetch the dataset into an object using the
fetch_california_housing() function.

We'll also add a target column to our dataset. This column is used for the
classification task, where based on the other variables we can classify the median
price value of California homes, expressed in hundreds of thousands of dollars. In
our case, for the moment, it will mainly serve us to better understand the data.

Using clustering based on the target variable, find the median value of the age of
homes in the block for a target value of 5. Round the result to a whole number.

import pandas as pd

import matplotlib.pyplot as plt

from sklearn.datasets import fetch_california_housing

cali = fetch_california_housing()

df = pd.DataFrame(data=cali.data, columns=cali.feature_names)

Exploratory Analysis | FITPED AI

50

df['target'] = cali.target

print(df.groupby('target').mean())

Program output:
 MedInc HouseAge AveRooms AveBedrms Population

AveOccup \

target

0.14999 2.122475 30.750000 6.575951 2.016259 305.25000

2.566440

0.17500 2.366700 39.000000 3.572464 1.217391 259.00000

1.876812

0.22500 1.818075 36.250000 3.975628 1.265805 2112.00000

3.652335

0.25000 0.857100 21.000000 1.629630 1.222222 64.00000

2.370370

0.26600 2.301300 34.000000 4.897959 1.051020 808.00000

2.748299

...

...

4.98800 8.248000 29.000000 7.072727 0.978182 826.00000

3.003636

4.99000 8.148900 18.000000 6.600817 1.001362 1634.00000

2.226158

4.99100 6.786100 28.000000 7.386861 1.083942 617.00000

2.251825

5.00000 3.899581 38.000000 4.773400 1.094456 1036.00000

2.097639

5.00001 7.825123 33.802073 6.817436 1.097833 1112.80829

2.570442

 Latitude Longitude

target

0.14999 37.665000 -120.197500

0.17500 34.150000 -118.330000

0.22500 36.005000 -119.335000

0.25000 32.790000 -114.650000

0.26600 35.130000 -119.450000

...

4.98800 37.330000 -122.060000

4.99000 37.890000 -122.180000

4.99100 33.550000 -117.770000

5.00000 35.584444 -120.155556

5.00001 35.225751 -119.702477

[3842 rows x 8 columns]

Exploratory Analysis | FITPED AI

51

📝 2.3.3

Aggregation is the process of performing any mathematical operation on a set of
data or a subset of it. Aggregation is one of the many techniques in the pandas library
that is used to manipulate data in data analysis.

The aggregate() function is used to apply aggregation to one or more columns. Some
of the most commonly used aggregations are as follows:

• sum: returns the sum of the values
• min: returns the minimum of the values
• max: returns the maximum of the values

It is important to note that we can only perform aggregations over numeric values.

import pandas as pd

from sklearn.datasets import load_wine

wine = load_wine()

df = pd.DataFrame(data=wine.data, columns= wine.feature_names)

df["target"] = wine.target

print(df.aggregate('max'))

Program output:
alcohol 14.83

malic_acid 5.80

ash 3.23

alcalinity_of_ash 30.00

magnesium 162.00

total_phenols 3.88

flavanoids 5.08

nonflavanoid_phenols 0.66

proanthocyanins 3.58

color_intensity 13.00

hue 1.71

od280/od315_of_diluted_wines 4.00

proline 1680.00

target 2.00

dtype: float64

Exploratory Analysis | FITPED AI

52

📝 2.3.4

Load from the sklearn library the dataset california_housing, which contains records
of homes in California. You fetch the dataset into an object using the
fetch_california_housing() function.

Use aggregation to find the lowest value in the MedInc column. Round the result to
two decimal places.

import pandas as pd

import matplotlib.pyplot as plt

from sklearn.datasets import fetch_california_housing

cali = fetch_california_housing()

df = pd.DataFrame(data=cali.data, columns=cali.feature_names)

print(round(df.aggregate(min),2))

Program output:
MedInc 0.50

HouseAge 1.00

AveRooms 0.85

AveBedrms 0.33

Population 3.00

AveOccup 0.69

Latitude 32.54

Longitude -124.35

dtype: float64

📝 2.3.5

The most important operations implemented by groupby() are aggregation, filter,
transform, and apply. An efficient way to implement aggregation functions in a data
file is to execute them after grouping the required columns. The aggregation function
returns one aggregated value for each group. After creating these groups, we can
apply several aggregation operations to the data grouped in this way.

The advantage of aggregation is that we can also work with functions from other
libraries, such as numpy, in the call to get the value of standard deviation and so on.
The following notation will allow us to create different views of the variables we are
examining, with the addition that we can also create their naming and thus make the
table in question clearer.

Exploratory Analysis | FITPED AI

53

import pandas as pd

import numpy as np

from sklearn.datasets import load_wine

wine = load_wine()

df = pd.DataFrame(data=wine.data, columns= wine.feature_names)

df["target"] = wine.target

df_group = df.groupby('target').aggregate(

 mean_alcohol=('alcohol', np.mean),

 max_ash=('ash', np.max),

 std_magnesium=('magnesium', np.std)

)

print(df_group)

Program output:
 mean_alcohol max_ash std_magnesium

target

0 13.744746 3.22 10.498949

1 12.278732 3.23 16.753497

2 13.153750 2.86 10.890473

📝 2.3.6

Load from the sklearn library the dataset california_housing, which contains records
of homes in California. You fetch the dataset into an object using the
fetch_california_housing() function.

Combine different aggregation methods for different variables. Aggregate the data
based on the variable target. Then output a value of 5 for the target:

• the minimum of the AveRooms variable
• the median of the variable AveOccup
• the maximum of the variable AveBedrms

Round the result to two decimal places and output in the following format:

AveRooms: 3.52 AveOccup: 2.98 AveBedrms: 1.25

import pandas as pd

import matplotlib.pyplot as plt

import numpy as np

from sklearn.datasets import fetch_california_housing

cali = fetch_california_housing()

Exploratory Analysis | FITPED AI

54

df = pd.DataFrame(data=cali.data, columns=cali.feature_names)

df['target']=cali.target

df_group = df.groupby('target').aggregate(

 min_rooms=('AveRooms', np.min),

 med_occup=('AveOccup', np.median),

 max_bedrms=('AveBedrms', np.max)

).round(2)

print(df_group)

Program output:
 min_rooms med_occup max_bedrms

target

0.14999 3.57 2.52 3.50

0.17500 3.57 1.88 1.22

0.22500 2.02 3.35 1.49

0.25000 1.63 2.37 1.22

0.26600 4.90 2.75 1.05

...

4.98800 7.07 3.00 0.98

4.99000 6.60 2.23 1.00

4.99100 7.39 2.25 1.08

5.00000 2.83 1.90 1.36

5.00001 1.82 2.52 25.64

[3842 rows x 3 columns]

📝 2.3.7

An essential part of data summarization is the use of a contingency table. A
contingency table is a table that is used to clearly summarize the relationship
between two (or more) variables. The rows of the contingency table correspond to
the possible values of the first variable, and the columns to the possible values of
the second. The corresponding cell of the contingency table usually contains the
number of cases where at the same time the first variable had a value corresponding
to the corresponding row and the second variable had a value corresponding to the
corresponding column. The pandas library provides two options for creating a
contingency table, the pivot_table() and crosstab() functions. Since both functions
generate the same output but the pivot_table() function offers more options, we will
only work with it. Using the aggfunc parameter, we can again specify the aggregation
function. If we don't specify this parameter, the contingency table generates average
values by default. The parameter margins=True allows us to turn on aggregation for
all rows in the table.

Exploratory Analysis | FITPED AI

55

import pandas as pd

import numpy as np

from sklearn.datasets import load_wine

wine = load_wine()

df = pd.DataFrame(data=wine.data, columns= wine.feature_names)

df["target"] = wine.target

table = pd.pivot_table(df, index =["target"], aggfunc=np.mean,

margins=True)

print(table)

Program output:
 alcalinity_of_ash alcohol ash

color_intensity flavanoids \

target

0 17.037288 13.744746 2.455593

5.528305 2.982373

1 20.238028 12.278732 2.244789

3.086620 2.080845

2 21.416667 13.153750 2.437083

7.396250 0.781458

All 19.494944 13.000618 2.366517

5.058090 2.029270

 hue magnesium malic_acid nonflavanoid_phenols

\

target

0 1.062034 106.338983 2.010678 0.290000

1 1.056282 94.549296 1.932676 0.363662

2 0.682708 99.312500 3.333750 0.447500

All 0.957449 99.741573 2.336348 0.361854

 od280/od315_of_diluted_wines proanthocyanins

proline \

target

0 3.157797 1.899322

1115.711864

1 2.785352 1.630282

519.507042

2 1.683542 1.153542

629.895833

All 2.611685 1.590899

746.893258

Exploratory Analysis | FITPED AI

56

 total_phenols

target

0 2.840169

1 2.258873

2 1.678750

All 2.295112

📝 2.3.8

Load from the sklearn library the dataset california_housing, which contains records
of homes in California. You fetch the dataset into an object using the
fetch_california_housing() function.

Group the data based on the target variable. Use the contingency table to find the
standard deviation value for the entire table for the Population column. Round the
result to two decimal places.

import pandas as pd

import matplotlib.pyplot as plt

import numpy as np

from sklearn.datasets import fetch_california_housing

cali = fetch_california_housing()

df = pd.DataFrame(data=cali.data, columns=cali.feature_names)

df['target']=cali.target

table = pd.pivot_table(df, index =["target"], aggfunc=np.std,

margins=True).round(2)

print(table)

Program output:
 AveBedrms AveOccup AveRooms HouseAge Latitude

Longitude MedInc \

target

0.14999 1.03 0.38 4.05 16.68 2.86

3.21 1.53

0.225 0.15 0.74 2.31 20.85 2.50

2.89 1.02

0.3 1.01 0.68 2.27 15.56 1.22

2.63 1.01

Exploratory Analysis | FITPED AI

57

0.325 0.67 0.32 3.49 16.58 2.71

2.98 1.13

0.375 0.47 3.22 1.56 13.95 2.73

1.79 0.56

...

... ...

4.956 0.01 0.21 1.43 1.41 0.01

0.06 3.13

4.964 0.11 0.13 0.64 8.49 3.20

3.34 0.93

5.0 0.09 0.58 1.54 12.73 1.98

2.21 1.31

5.00001 0.80 1.49 4.67 13.03 1.78

1.95 3.25

All 0.47 10.39 2.47 12.59 2.14

2.00 1.90

 Population

target

0.14999 299.62

0.225 3186.56

0.3 114.55

0.325 415.47

0.375 2745.95

... ...

4.956 272.94

4.964 160.51

5.0 671.25

5.00001 813.32

All 1132.43

[3117 rows x 8 columns]

Data Analysis

Chapter 3

Data Analysis | FITPED AI

59

3.1 Univariate analysis

📝 3.1.1

Each data set we want to analyze will have different fields (i.e., columns) of multiple
observations (i.e., variables) that represent different facts. The columns of the
dataset are most likely related to each other because they are collected from the
same event. One field of a record may or may not affect the value of another field.
To examine the type of relationships that these columns have, and to analyze the
cause and effect between them, we need to work our way to identifying the
dependencies that exist between the variables. The strength of such a relationship
between two fields of a data set is called correlation, which is represented by a
numerical value between -1 and 1.

For example, height and weight are correlated, so it can be assumed that taller people
are usually heavier than shorter ones. If we have a new person who is taller than the
average height we observed before, then they are more likely to weigh more than the
average weight we observed.

Correlation tells us how variables change together, in the same or opposite direction,
and in the strength of the relationship. We calculate the Pearson correlation
coefficient to find the correlation. If the correlation is +1, then it can be said to be a
perfect positive/linear correlation (variable A is directly proportional to variable B),
while a correlation of -1 is a perfect negative correlation (variable A is inversely
proportional to variable B). Values closer to 0 are not correlated. If the correlation
coefficients are close to 1 in absolute value, the variables are said to have a strong
correlation; in comparison, those close to 0.5 have a weak correlation.

📝 3.1.2

In the previous chapter, we focused on descriptive statistics. We had a variable that
contained numerical values and we calculated the mean, median, and mode and
analyzed the distribution of the values. We then grouped the data based on the target
variable and then calculated the mean, median, modus, and standard deviation for
each option. Analysis of one type of data is called univariate analysis.

Univariate analysis is the simplest form of data analysis. It means that our data has
only one type of variable and that we perform the analysis over it. The main goal of
the univariate analysis is to take the data, summarize it, and find patterns among the
values. It does not deal with causes or relationships between values. A few
techniques that describe ways found in univariate data include central tendency (i.e.,
mean, mode, and median) and dispersion (i.e., range, variance, maximum and
minimum quartiles (including interquartile range), and standard deviation).

Let us recap the whole process over the new data matrix. The data matrix contains
information on the sales of games in recent years. Using the info() function, we can
find out what variables are in the dataset and possibly how much missing data each

Data Analysis | FITPED AI

60

variable contains. Then, using the describe() function we can find the mean, median,
maximum, minimum and standard deviation.

import pandas as pd

df =

pd.read_csv('https://priscilla.fitped.eu/data/pandas/games_sal

es.csv', sep=',')

print(df.info())

print(df.describe())

Program output:

RangeIndex: 55792 entries, 0 to 55791

Data columns (total 16 columns):

 # Column Non-Null Count Dtype

--- ------ -------------- -----

 0 Rank 55792 non-null int64

 1 Name 55792 non-null object

 2 Genre 55792 non-null object

 3 ESRB_Rating 23623 non-null object

 4 Platform 55792 non-null object

 5 Publisher 55792 non-null object

 6 Developer 55775 non-null object

 7 Critic_Score 6536 non-null float64

 8 User_Score 335 non-null float64

 9 Total_Shipped 1827 non-null float64

 10 Global_Sales 19415 non-null float64

 11 NA_Sales 12964 non-null float64

 12 PAL_Sales 13189 non-null float64

 13 JP_Sales 7043 non-null float64

 14 Other_Sales 15522 non-null float64

 15 Year 54813 non-null float64

dtypes: float64(9), int64(1), object(6)

memory usage: 6.8+ MB

None

 Rank Critic_Score User_Score Total_Shipped

Global_Sales \

count 55792.000000 6536.000000 335.000000 1827.000000

19415.000000

mean 27896.500000 7.213709 8.253433 1.887258

0.365503

Data Analysis | FITPED AI

61

std 16105.907446 1.454079 1.401489 4.195693

0.833022

min 1.000000 1.000000 2.000000 0.030000

0.000000

25% 13948.750000 6.400000 7.800000 0.200000

0.030000

50% 27896.500000 7.500000 8.500000 0.590000

0.120000

75% 41844.250000 8.300000 9.100000 1.800000

0.360000

max 55792.000000 10.000000 10.000000 82.860000

20.320000

 NA_Sales PAL_Sales JP_Sales Other_Sales

Year

count 12964.000000 13189.000000 7043.000000 15522.000000

54813.000000

mean 0.275541 0.155263 0.110402 0.044719

2005.659095

std 0.512809 0.399257 0.184673 0.129554

8.355585

min 0.000000 0.000000 0.000000 0.000000

1970.000000

25% 0.050000 0.010000 0.020000 0.000000

2000.000000

50% 0.120000 0.040000 0.050000 0.010000

2008.000000

75% 0.290000 0.140000 0.120000 0.040000

2011.000000

max 9.760000 9.850000 2.690000 3.120000

2020.000000

📝 3.1.3

Read data from the banking.csv file, which contains information about the bank's
customers. There are several variables in the file, which can be clearly divided into 3
categories:

Customer demographic information:

• customer_id - customer identifier
• vintage - how long the customer has been with the bank in the number of

days
• age - age of the customer

Data Analysis | FITPED AI

62

• gender - gender of the customer
• occupation - occupation of the customer
• city - city of the customer (anonymised)

Information related to the bank for customers:

• customer_nw_category - customer value (3:low 2:medium 1:high)
• branch_code - branch code for the customer's account
• days_since_last_transaction - number of days since the last payment in the

last 1 year

Transaction information:

• current_balance - balance as of the current day
• previous_month_end_balance - month-end balance in the previous month
• average_monthly_balance_prevQ - average monthly balances in the previous

quarter
• average_monthly_balance_prevQ2 - average monthly balances two quarters

back
• percent_change_credits - percentage change in credits between the last two

quarters
• current_month_credit - the total amount of credits in the current month
• previous_month_credit - the total amount of credit in the previous month
• current_month_debit - the total amount of debt in the current month
• previous_month_debit - the total amount of debt in the previous month
• current_month_balance - average balance in the current month
• previous_month_balance - average balance in the previous month
• churn - client at risk - client's average balance falls below the minimum

balance in the following quarter (1/0)

After loading the data file, examine the variables and print the average value of the
current balance across all accounts (current_balance).

import pandas as pd

df =

pd.read_csv('https://priscilla.fitped.eu/data/pandas/banking.c

sv', sep=',', decimal='.')

pd.set_option('display.float_format', lambda x: f'{x:.3f}')

print(df.info())

print(df.describe())

Data Analysis | FITPED AI

63

Program output:

RangeIndex: 28382 entries, 0 to 28381

Data columns (total 21 columns):

 # Column Non-Null Count Dtype

--- ------ -------------- -----

 0 customer_id 28382 non-null int64

 1 vintage 28382 non-null int64

 2 age 28382 non-null int64

 3 gender 27857 non-null object

 4 dependents 25919 non-null float64

 5 occupation 28302 non-null object

 6 city 27579 non-null float64

 7 customer_nw_category 28382 non-null int64

 8 branch_code 28382 non-null int64

 9 current_balance 28382 non-null float64

 10 previous_month_end_balance 28382 non-null float64

 11 average_monthly_balance_prevQ 28382 non-null float64

 12 average_monthly_balance_prevQ2 28382 non-null float64

 13 current_month_credit 28382 non-null float64

 14 previous_month_credit 28382 non-null float64

 15 current_month_debit 28382 non-null float64

 16 previous_month_debit 28382 non-null float64

 17 current_month_balance 28382 non-null float64

 18 previous_month_balance 28382 non-null float64

 19 churn 28382 non-null int64

 20 last_transaction 28382 non-null object

dtypes: float64(12), int64(6), object(3)

memory usage: 4.5+ MB

None

 customer_id vintage age dependents city

\

count 28382.000 28382.000 28382.000 25919.000 27579.000

mean 15143.509 2091.144 48.208 0.347 796.110

std 8746.454 272.677 17.807 0.998 432.872

min 1.000 73.000 1.000 0.000 0.000

25% 7557.250 1958.000 36.000 0.000 409.000

50% 15150.500 2154.000 46.000 0.000 834.000

75% 22706.750 2292.000 60.000 0.000 1096.000

max 30301.000 2476.000 90.000 52.000 1649.000

 customer_nw_category branch_code current_balance \

count 28382.000 28382.000 28382.000

mean 2.226 925.975 7380.552

Data Analysis | FITPED AI

64

std 0.660 937.799 42598.712

min 1.000 1.000 -5503.960

25% 2.000 176.000 1784.470

50% 2.000 572.000 3281.255

75% 3.000 1440.000 6635.820

max 3.000 4782.000 5905904.030

 previous_month_end_balance

average_monthly_balance_prevQ \

count 28382.000

28382.000

mean 7495.771

7496.780

std 42529.345

41726.219

min -3149.570

1428.690

25% 1906.000

2180.945

50% 3379.915

3542.865

75% 6656.535

6666.887

max 5740438.630

5700289.570

 average_monthly_balance_prevQ2 current_month_credit \

count 28382.000 28382.000

mean 7124.209 3433.252

std 44575.810 77071.452

min -16506.100 0.010

25% 1832.507 0.310

50% 3359.600 0.610

75% 6517.960 707.272

max 5010170.100 12269845.390

 previous_month_credit current_month_debit

previous_month_debit \

count 28382.000 28382.000

28382.000

mean 3261.694 3658.745

3339.761

std 29688.889 51985.424

24301.112

Data Analysis | FITPED AI

65

min 0.010 0.010

0.010

25% 0.330 0.410

0.410

50% 0.630 91.930

109.960

75% 749.235 1360.435

1357.553

max 2361808.290 7637857.360

1414168.060

 current_month_balance previous_month_balance churn

count 28382.000 28382.000 28382.000

mean 7451.133 7495.177 0.185

std 42033.939 42431.979 0.389

min -3374.180 -5171.920 0.000

25% 1996.765 2074.407 0.000

50% 3447.995 3465.235 0.000

75% 6667.958 6654.693 0.000

max 5778184.770 5720144.500 1.000

📝 3.1.4

The next step is to use visualization to examine the distribution of the selected
variables. Let's look at the distribution of the Year variable that we can examine using
a histogram. Before we visualize the histogram, we can see how many years are
actually in our dataset. We can get the number of unique years by using the unique()
function, which returns the unique elements of the variable under study. We can then
use this value to partition the histogram into exactly a unique number of years, giving
us an accurate representation of the counts for those years. From the graph, we can
observe that from around 2008 onwards, the production of games started to decline.

import pandas as pd

df =

pd.read_csv('https://priscilla.fitped.eu/data/pandas/games_sal

es.csv', sep=',')

y_bins = len(df['Year'].unique())

df['Year'].plot(kind='hist', bins=y_bins)

Data Analysis | FITPED AI

66

Program output:

📝 3.1.5

Next, we can take a look at the ratings of games by critics and users. On closer
inspection of the records, we find that the User_Score variable contains a significant
number of missing values. While we are left with few records after removing them
we can observe through visualization that users tend to rate games more positively,
as a higher value means a better score. This can also be seen by comparing the
average values, which have a difference of about 1 point.

import pandas as pd

df =

pd.read_csv('https://priscilla.fitped.eu/data/pandas/games_sal

es.csv', sep=',')

print(df['Critic_Score'].describe())

df['Critic_Score'].dropna().plot(kind='hist')

print(df['User_Score'].describe())

df['User_Score'].dropna().plot(kind='hist')

Data Analysis | FITPED AI

67

Program output:
count 6536.000000

mean 7.213709

std 1.454079

min 1.000000

25% 6.400000

50% 7.500000

75% 8.300000

max 10.000000

Name: Critic_Score, dtype: float64

count 335.000000

mean 8.253433

std 1.401489

min 2.000000

25% 7.800000

50% 8.500000

75% 9.100000

max 10.000000

Name: User_Score, dtype: float64

📝 3.1.6

The next step is to examine the categorical variables. We start by looking at which
platform most games have been produced for. However, since the frequency graph
is rather opaque, we will only select the top 30 most numerous platforms. The
describe() function doesn't give us information about the basic statistics in the case

Data Analysis | FITPED AI

68

of a categorical variable but we can find out the number of elements, the number of
categories, and the most numerous category in this way.

import pandas as pd

df =

pd.read_csv('https://priscilla.fitped.eu/data/pandas/games_sal

es.csv', sep=',')

print(df['Platform'].describe())

df['Platform'].dropna().value_counts().iloc[:30].plot(kind='ba

r')

Program output:
count 55792

unique 74

top PC

freq 10978

Name: Platform, dtype: object

📝 3.1.7

The genre of games gave us interesting results, where the most numerous games
were from the miscellaneous genre, which can probably mean an increase in Indie
games. The second most numerous games were action games, followed by

Data Analysis | FITPED AI

69

adventure and sports games. On the other hand, strategy games were not as
abundant despite often being a popular game type.

We can follow a similar approach when examining other categorical variables such
as publisher (Developer).

import pandas as pd

df =

pd.read_csv('https://priscilla.fitped.eu/data/pandas/games_sal

es.csv', sep=',')

print(df['Genre'].describe())

df['Genre'].dropna().value_counts().plot(kind='bar')

Program output:
count 55792

unique 20

top Misc

freq 9476

Name: Genre, dtype: object

Data Analysis | FITPED AI

70

📝 3.1.8

Load the data from the banking.csv file, which contains information about the bank's
customers. After loading the data file, find out what is the ratio of males and females
among the bank's customers (gender). We recommend using the visualization and
writing out both genders and the percentages rounded to two decimal places in the
result.

male: 54.25% female: 45.75%

import pandas as pd

df =

pd.read_csv('https://priscilla.fitped.eu/data/pandas/banking.c

sv', sep=',', decimal='.')

df['gender'] = df['gender'].astype('category') # set

occupation as categorical variable

df['gender'].value_counts(normalize=True).mul(100).plot(kind='

bar')

print(df['gender'].value_counts(normalize=True).mul(100).round

(2))

Program output:
Male 59.4

Female 40.6

Name: gender, dtype: float64

Data Analysis | FITPED AI

71

📝 3.1.9

Load data from the banking.csv file, which contains information about the bank's
customers. After loading the data file find out what is the most common occupation
of the bank's customers (occupation). We recommend using the visualization and
printing the occupation and the percentage rounded to two decimal places in the
result.

import pandas as pd

df =

pd.read_csv('https://priscilla.fitped.eu/data/pandas/banking.c

sv', sep=',', decimal='.')

df['occupation'] = df['occupation'].astype('category') # set

occupation as categorical variable

df['occupation'].value_counts(normalize=True).mul(100).plot(ki

nd='bar')

print(df['occupation'].value_counts(normalize=True).mul(100).r

ound(2))

Data Analysis | FITPED AI

72

Program output:
self_employed 61.750

salaried 23.690

student 7.270

retired 7.150

company 0.140

Name: occupation, dtype: float64

📝 3.1.10

Load the data from the banking.csv file, which contains information about the bank's
customers. After loading the data file find out what is the most common rating of the
bank's customers (customer_nw_category). We recommend using the visualization
and writing out the rating number and percentage rounded to two decimal places in
the result.

import pandas as pd

df =

pd.read_csv('https://priscilla.fitped.eu/data/pandas/banking.c

sv', sep=',', decimal='.')

Data Analysis | FITPED AI

73

df['customer_nw_category'] =

df['customer_nw_category'].astype('category') # set occupation

as categorical variable

df['customer_nw_category'].value_counts(normalize=True).mul(10

0).plot(kind='bar')

print(df['customer_nw_category'].value_counts(normalize=True).

mul(100).round(2))

Program output:
2 51.30

3 35.63

1 13.08

Name: customer_nw_category, dtype: float64

3.2 Bivariance analysis

📝 3.2.1

This is an analysis of more than one (exactly two) type of variables. Bivariate analysis
is used to see if there is a relationship between two different variables. When we
create a scatter plot by plotting one variable against the other in the Cartesian plane
(think of the x and y axes), we get a picture of what the data is trying to tell us. If the
data points appear to correspond to a straight line or curve, then there is a
relationship or correlation between the two variables. In general, bivariate analysis
helps us predict the value of one variable (i.e., the dependent variable) if we know the
value of the independent variable.

Data Analysis | FITPED AI

74

Let's look at our dataset of games. Using a scatter plot we can compare and see if
critics' ratings have an impact on the worldwide sales of the games in question. From
the graph, we can observe that sales increase as critics' ratings increase, so we can
assume that ratings have an effect on the marketability of games. We can use either
the plot() function of the pandas library. Or we can use the more advanced seaborn
library, which offers a much larger number of functions when creating plots. The
lmplot() function adds a regression line to the scatter plot, which tells us whether
two variables are dependent on each other. If the values are close to the line, then we
can say that there is a dependency between the two variables.

import pandas as pd

import seaborn as sns

from matplotlib import pyplot as plt

df =

pd.read_csv('https://priscilla.fitped.eu/data/pandas/games_sal

es.csv', sep=',')

print(df.info())

#df.plot(x='Critic_Score',y='Global_Sales',kind='scatter') #

using pandas

sns.lmplot(x='Critic_Score',y='Global_Sales',data=df) # using

seaborn with line

Program output:

RangeIndex: 55792 entries, 0 to 55791

Data columns (total 16 columns):

 # Column Non-Null Count Dtype

--- ------ -------------- -----

 0 Rank 55792 non-null int64

 1 Name 55792 non-null object

 2 Genre 55792 non-null object

 3 ESRB_Rating 23623 non-null object

 4 Platform 55792 non-null object

 5 Publisher 55792 non-null object

 6 Developer 55775 non-null object

 7 Critic_Score 6536 non-null float64

 8 User_Score 335 non-null float64

 9 Total_Shipped 1827 non-null float64

 10 Global_Sales 19415 non-null float64

 11 NA_Sales 12964 non-null float64

 12 PAL_Sales 13189 non-null float64

 13 JP_Sales 7043 non-null float64

 14 Other_Sales 15522 non-null float64

Data Analysis | FITPED AI

75

 15 Year 54813 non-null float64

dtypes: float64(9), int64(1), object(6)

memory usage: 6.8+ MB

None

📝 3.2.2

Another way to find out the dependency between two variables is to use boxplot().
Again, we have the option to use both the pandas and seaborn libraries and the
notation is similar. This time we look at the effect of game genre on the marketability
of games. Since worldwide sales contain too much data, let's focus on just one
market, e.g. Japan. As we can see from the graph, the number of genres can
overwhelm the x-axis, so we need to rotate the labels 90 degrees to increase the
clarity of the graph.

We can observe that the yield from the Role-playing and Sports genres is higher than
that from the Racing and Shooter genres. Most genres contain outliers that represent
high returns.

import pandas as pd

import seaborn as sns

Data Analysis | FITPED AI

76

from matplotlib import pyplot as plt

df =

pd.read_csv('https://priscilla.fitped.eu/data/pandas/games_sal

es.csv', sep=',')

print(df.info())

#df.boxplot(by='Genre',column='JP_Sales')

gr = sns.boxplot(x='Genre',y='JP_Sales',data=df)

gr.set_xticklabels(gr.get_xticklabels(), rotation=90)

Program output:

RangeIndex: 55792 entries, 0 to 55791

Data columns (total 16 columns):

 # Column Non-Null Count Dtype

--- ------ -------------- -----

 0 Rank 55792 non-null int64

 1 Name 55792 non-null object

 2 Genre 55792 non-null object

 3 ESRB_Rating 23623 non-null object

 4 Platform 55792 non-null object

 5 Publisher 55792 non-null object

 6 Developer 55775 non-null object

 7 Critic_Score 6536 non-null float64

 8 User_Score 335 non-null float64

 9 Total_Shipped 1827 non-null float64

 10 Global_Sales 19415 non-null float64

 11 NA_Sales 12964 non-null float64

 12 PAL_Sales 13189 non-null float64

 13 JP_Sales 7043 non-null float64

 14 Other_Sales 15522 non-null float64

 15 Year 54813 non-null float64

dtypes: float64(9), int64(1), object(6)

memory usage: 6.8+ MB

None

Data Analysis | FITPED AI

77

📝 3.2.3

In the next section, we can look at the impact of the game platform on marketability.
However, we have too many platforms in the dataset to make sense of the
visualization. Therefore, we will only choose the TOP10 most numerous platforms
and visualize only their profit using boxplot().

A surprising result from the graph is that the revenue of the most used platform (PC)
is lower than for example the different PlayStation types.

import pandas as pd

import seaborn as sns

from matplotlib import pyplot as plt

df =

pd.read_csv('https://priscilla.fitped.eu/data/pandas/games_sal

es.csv', sep=',')

#print(df.info())

print(df['Platform'].dropna().value_counts().iloc[:10])

platforms =

['PC','PS2','DS','PS','XBL','PSN','PS3','PSP','PS4','X360']

Data Analysis | FITPED AI

78

df_plat = df[df['Platform'].isin(platforms)]

#df_plat.boxplot(by='Genre',column='Global_Sales')

gr = sns.boxplot(x='Platform',y='Global_Sales',data=df_plat)

gr.set_xticklabels(gr.get_xticklabels(), rotation=90)

Program output:
PC 10978

PS2 3564

DS 3292

PS 2703

XBL 2115

PSN 2004

PS3 1870

PSP 1804

PS4 1755

X360 1701

Name: Platform, dtype: int64

📝 3.2.4

Load the data from the banking.csv file, which contains information about the bank's
customers. After loading the data file, determine does the length of the customer's
relationship with the bank have an impact on customer exposure (churn and vintage).
We recommend using visualization in the form of a boxplot.

Data Analysis | FITPED AI

79

import pandas as pd

import seaborn as sns

df =

pd.read_csv('https://priscilla.fitped.eu/data/pandas/banking.c

sv', sep=',', decimal='.')

gr = sns.boxplot(x='churn',y='vintage',data=df)

Program output:

• the length of the contract has no effect
• the length of the contract has an impact
• the distribution of the variable is similar
• the distribution of the variable is significantly different

📝 3.2.5

Load the data from the banking.csv file, which contains information about the bank's
customers. After loading the data file, find out what is the ratio of male and female
customers at risk among the bank's customers (churn and gender). We recommend
using a visualization, listing both genders and the percentage rounded to two decimal
places in the result. We recommend the use of a bar chart.

male churn: 54.25% female churn: 45.75%

import pandas as pd

import seaborn as sns

Data Analysis | FITPED AI

80

df =

pd.read_csv('https://priscilla.fitped.eu/data/pandas/banking.c

sv', sep=',', decimal='.')

df['gender'] = df['gender'].astype('category') # set as

categorical variable

dfd = df[['gender','churn']][:]

sns.countplot(x='gender', hue='churn', data=dfd)

print(dfd['churn'].loc[dfd['gender']=='Male'].value_counts(nor

malize=True).mul(100).round(2))

print(dfd['churn'].loc[dfd['gender']=='Female'].value_counts(n

ormalize=True).mul(100).round(2))

Program output:
0 80.85

1 19.15

Name: churn, dtype: float64

0 82.45

1 17.55

Name: churn, dtype: float64

📝 3.2.6

Load the data from the banking.csv file, which contains information about the bank's
customers. After loading the data file, find out what is the ratio of customers at risk

Data Analysis | FITPED AI

81

based on age among the bank's customers (churn and age). Create a new categorical
variable to classify the following age categories:

• young - age<18
• adult - 18<=age<60
• senior - age>=60

We recommend using visualization and printing all age categories and percentages
rounded to two decimal places in the result. We recommend the use of a bar chart.

young: 50.24% adult: 27.75% senior: 22.01%

import pandas as pd

import seaborn as sns

df =

pd.read_csv('https://priscilla.fitped.eu/data/pandas/banking.c

sv', sep=',', decimal='.')

dfd = df[['churn','age']][:]

dfd['age_group'] = 'str'

dfd['age_group'][dfd['age']>=60] = 'senior'

dfd['age_group'][(dfd['age']<60) & (dfd['age']>=18)] = 'adult'

dfd['age_group'][dfd['age']<18] = 'young'

sns.countplot(x='age_group', hue='churn', data=dfd)

print(dfd['churn'].loc[dfd['age_group']=='senior'].value_count

s(normalize=True).mul(100).round(2))

print(dfd['churn'].loc[dfd['age_group']=='adult'].value_counts

(normalize=True).mul(100).round(2))

print(dfd['churn'].loc[dfd['age_group']=='young'].value_counts

(normalize=True).mul(100).round(2))

Program output:
:8: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a

DataFrame

See the caveats in the documentation:

https://pandas.pydata.org/pandas-

docs/stable/user_guide/indexing.html#returning-a-view-versus-

a-copy

 dfd['age_group'][dfd['age']>=60] = 'senior'

:9: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a

DataFrame

Data Analysis | FITPED AI

82

See the caveats in the documentation:

https://pandas.pydata.org/pandas-

docs/stable/user_guide/indexing.html#returning-a-view-versus-

a-copy

 dfd['age_group'][(dfd['age']<60) & (dfd['age']>=18)] =

'adult'

:10: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a

DataFrame

See the caveats in the documentation:

https://pandas.pydata.org/pandas-

docs/stable/user_guide/indexing.html#returning-a-view-versus-

a-copy

 dfd['age_group'][dfd['age']<18] = 'young'

0 83.17

1 16.83

Name: churn, dtype: float64

0 80.61

1 19.39

Name: churn, dtype: float64

0 87.1

1 12.9

Name: churn, dtype: float64

Data Analysis | FITPED AI

83

3.3 Multivariate analysis

📝 3.3.1

Multivariate analysis is the analysis of three or more variables. This allows us to
examine correlations (i.e. how one variable changes relative to another) and attempt
to make more accurate predictions of future behaviour than a bivariate analysis.
Initially, we explored the visualization of univariate analysis and bivariate analysis;
we will follow a similar approach for multivariate analysis.

One common way to visualize multivariate data is to create a matrix scatter plot, also
known as a pairwise plot. A pairwise plot shows each pair of variables in contrast to
each other. The pairwise plot allows us to see both the distribution of each variable
and the relationships between the two variables.

import pandas as pd

import seaborn as sns

from matplotlib import pyplot as plt

df =

pd.read_csv('https://priscilla.fitped.eu/data/pandas/games_sal

es.csv', sep=',')

#print(df.info())

sns.pairplot(data=df,

vars=['Global_Sales','Critic_Score','User_Score'], kind='reg')

Data Analysis | FITPED AI

84

Program output:

We obtained a 3x3 matrix graph for the Global_Sales, Critics_Score and User_Score
columns. The histogram on the diagonal allows us to show the distribution of one
variable. The regression plots on the upper and lower triangles show the relationship
between the two variables. The left graph in the third row shows a regression plot
representing that there is no correlation between global sales and user score. In
comparison, the middle regression plot in the bottom row shows that there is a
correlation between critic scores and user scores.

📝 3.3.2

We can augment the pairwise graph with additional information by inserting a color
into the graph based on a categorical variable. Therefore, let's insert information
about different genres into the graph. Density plots on the diagonal allow us to see

Data Analysis | FITPED AI

85

the distribution of one variable, while scatter plots on the upper and lower triangles
show the relationship (or correlation) between two variables. The hue parameter is
the name of the variable that is used to label the data points, which in our case is the
thesis genre. The downside of our view is that we have too many different genres
and therefore the visualization is a bit messy.

import pandas as pd

import seaborn as sns

from matplotlib import pyplot as plt

df =

pd.read_csv('https://priscilla.fitped.eu/data/pandas/games_sal

es.csv', sep=',')

#print(df.info())

sns.set(style='ticks', color_codes=True)

sns.pairplot(data=df,

vars=['Global_Sales','Critic_Score','User_Score'],

hue='Genre')

Program output:

Data Analysis | FITPED AI

86

📝 3.3.3

Correlation analysis is an effective technique for determining whether there is a
correlation or dependence (relationship) between variables. The calculation of the
linear (Pearson) correlation coefficient for a pair of variables can be done using the
corr() function of the pandas library or the pearsonr() function of the scipy library for
a particular pair of variables. In this case, we can observe that there is a small
dependence between critics' ratings and worldwide sales but it is statistically
significant since the p-value is less than 0.05.

import pandas as pd

from scipy import stats

df =

pd.read_csv('https://priscilla.fitped.eu/data/pandas/games_sal

es.csv', sep=',')

dfd = df[['Global_Sales','Critic_Score']].dropna()

corr = stats.pearsonr(dfd['Global_Sales'],

dfd['Critic_Score'])

print("p-value:\t", corr[1])

print("cor:\t\t", corr[0])

Program output:
p-value: 3.7086715030237096e-87

cor: 0.2959412674530926

📝 3.3.4

Load the data from the banking.csv file, which contains information about the bank's
customers. After loading the data file, see if there is a correlation between the
variables age and current_balance. In this way, we want to see if there is a correlation
between the age of the customers and their current account balance. Print whether
there is a statistically significant relationship between the variables (yes/no) and the
correlation value rounded to 2 decimal places and the p-value.

no, p-value: 0.12, cor: 0.45

import pandas as pd

from scipy import stats

Data Analysis | FITPED AI

87

df =

pd.read_csv('https://priscilla.fitped.eu/data/pandas/banking.c

sv', sep=',', decimal='.')

dfd =

df[['age','current_balance']].dropna()#df[['churn','gender']][

:]

corr = stats.pearsonr(dfd['age'], dfd['current_balance'])

print("p-value:\t", round(corr[1],2))

print("cor:\t\t", round(corr[0],2))

Program output:
p-value: 0.0

cor: 0.05

📝 3.3.5

Load the data from the banking.csv file, which contains information about the bank's
customers. After loading the data file, see if there is a correlation between the
previous_month_end_balance and current_balance variables. In this way, we want to
see if there is a correlation between the previous month's account balance and the
current account balance. List whether there is a statistically significant relationship
between the variables (yes/no) and the correlation value rounded to 2 decimal places
and the p-value.

no, p-value: 0.12, cor: 0.45

import pandas as pd

from scipy import stats

df =

pd.read_csv('https://priscilla.fitped.eu/data/pandas/banking.c

sv', sep=',', decimal='.')

dfd =

df[['previous_month_end_balance','current_balance']].dropna()

corr = stats.pearsonr(dfd['previous_month_end_balance'],

dfd['current_balance'])

print("p-value:\t", round(corr[1],2))

print("cor:\t\t", round(corr[0],2))

Data Analysis | FITPED AI

88

Program output:
p-value: 0.0

cor: 0.95

📝 3.3.6

Using the corr() function of the pandas library, we can generate a table of correlations
of all variables in the dataset. A correlation coefficient approaching 1 indicates a very
strong positive correlation between two variables. We can observe this on the
diagonal, which actually compares a given variable to itself, so it will be 1.

import pandas as pd

df =

pd.read_csv('https://priscilla.fitped.eu/data/pandas/games_sal

es.csv', sep=',')

dfd = df[['Global_Sales','Critic_Score']].dropna()

correlation = df.corr(method='pearson')

print(correlation)

Program output:
 Rank Critic_Score User_Score

Total_Shipped \

Rank 1.000000 -0.137650 -0.293034 -

0.441132

Critic_Score -0.137650 1.000000 0.582673

0.203425

User_Score -0.293034 0.582673 1.000000 -

0.025732

Total_Shipped -0.441132 0.203425 -0.025732

1.000000

Global_Sales -0.554659 0.295941 0.241650

NaN

NA_Sales -0.550922 0.314285 0.234039

NaN

PAL_Sales -0.438841 0.253431 0.190490

NaN

JP_Sales -0.443212 0.174933 0.108721

NaN

Data Analysis | FITPED AI

89

Other_Sales -0.427737 0.254755 0.224679

NaN

Year -0.097345 0.015670 -0.116728 -

0.169701

 Global_Sales NA_Sales PAL_Sales JP_Sales

Other_Sales \

Rank -0.554659 -0.550922 -0.438841 -0.443212

-0.427737

Critic_Score 0.295941 0.314285 0.253431 0.174933

0.254755

User_Score 0.241650 0.234039 0.190490 0.108721

0.224679

Total_Shipped NaN NaN NaN NaN

NaN

Global_Sales 1.000000 0.914964 0.904582 0.228782

0.856798

NA_Sales 0.914964 1.000000 0.683959 0.075239

0.687831

PAL_Sales 0.904582 0.683959 1.000000 0.123954

0.814068

JP_Sales 0.228782 0.075239 0.123954 1.000000

0.082254

Other_Sales 0.856798 0.687831 0.814068 0.082254

1.000000

Year -0.041354 -0.059352 0.082548 -0.351626

0.089282

 Year

Rank -0.097345

Critic_Score 0.015670

User_Score -0.116728

Total_Shipped -0.169701

Global_Sales -0.041354

NA_Sales -0.059352

PAL_Sales 0.082548

JP_Sales -0.351626

Other_Sales 0.089282

Year 1.000000

📝 3.3.7

We can also visualize the correlation between variables using a heatmap. This way
we can immediately see which variables have a high correlation and vice versa. We
will use the heatmap() function of the seaborn library.

Data Analysis | FITPED AI

90

import pandas as pd

import seaborn as sns

from matplotlib import pyplot as plt

df =

pd.read_csv('https://priscilla.fitped.eu/data/pandas/games_sal

es.csv', sep=',')

correlation = df.corr(method='pearson')

sns.heatmap(correlation, xticklabels=correlation.columns,

yticklabels=correlation.columns)

Program output:

📝 3.3.8

Load the data from the banking.csv file, which contains information about the bank's
customers. After loading the data file, find out the correlation between all the
variables. We recommend using a heatmap() type chart. Based on the visualization,
select the true statements.

import pandas as pd

from scipy import stats

Data Analysis | FITPED AI

91

import seaborn as sns

df =

pd.read_csv('https://priscilla.fitped.eu/data/pandas/banking.c

sv', sep=',', decimal='.')

correlation = df.corr(method='pearson')

sns.heatmap(correlation, xticklabels=correlation.columns,

yticklabels=correlation.columns)

print(correlation)

Program output:
 customer_id vintage

age dependents \

customer_id 1.000000 -0.007750 -

0.000442 -0.008616

vintage -0.007750 1.000000

0.006220 0.005192

age -0.000442 0.006220

1.000000 -0.000612

dependents -0.008616 0.005192 -

0.000612 1.000000

city 0.000743 0.007616

0.015439 0.001892

customer_nw_category 0.009618 -0.001154 -

0.076532 0.013134

branch_code -0.000286 0.003512 -

0.058990 0.020141

current_balance 0.006589 0.000031

0.054346 -0.003070

previous_month_end_balance 0.005819 -0.000669

0.058342 0.000216

average_monthly_balance_prevQ 0.004485 -0.002054

0.061708 0.001213

average_monthly_balance_prevQ2 -0.002532 -0.001759

0.059607 0.002949

current_month_credit 0.002494 -0.004617

0.023840 0.003260

previous_month_credit -0.006414 -0.000169

0.029961 0.025054

current_month_debit 0.002603 -0.004978

0.027702 0.008207

previous_month_debit -0.008760 -0.006760

0.033296 0.032021

Data Analysis | FITPED AI

92

current_month_balance 0.005140 -0.000550

0.057662 -0.000652

previous_month_balance 0.004553 -0.002208

0.060297 0.001239

churn -0.002723 -0.004769 -

0.020012 0.033487

 city customer_nw_category

branch_code \

customer_id 0.000743 0.009618

-0.000286

vintage 0.007616 -0.001154

0.003512

age 0.015439 -0.076532

-0.058990

dependents 0.001892 0.013134

0.020141

city 1.000000 0.006613

-0.061234

customer_nw_category 0.006613 1.000000

0.235059

branch_code -0.061234 0.235059

1.000000

current_balance -0.005654 -0.058314

0.000181

previous_month_end_balance -0.004089 -0.059854

0.000214

average_monthly_balance_prevQ -0.006298 -0.059535

0.001955

average_monthly_balance_prevQ2 -0.007891 -0.047010

0.001310

current_month_credit 0.004118 -0.025254

-0.013988

previous_month_credit 0.008087 -0.072374

-0.023849

current_month_debit 0.001465 -0.035917

-0.016944

previous_month_debit 0.005995 -0.071721

-0.017584

current_month_balance -0.005796 -0.058648

0.001031

previous_month_balance -0.005839 -0.059113

0.002080

Data Analysis | FITPED AI

93

churn -0.001585 0.006551

0.035469

 current_balance

previous_month_end_balance \

customer_id 0.006589

0.005819

vintage 0.000031

-0.000669

age 0.054346

0.058342

dependents -0.003070

0.000216

city -0.005654

-0.004089

customer_nw_category -0.058314

-0.059854

branch_code 0.000181

0.000214

current_balance 1.000000

0.947276

previous_month_end_balance 0.947276

1.000000

average_monthly_balance_prevQ 0.958307

0.970530

average_monthly_balance_prevQ2 0.714600

0.722998

current_month_credit 0.030371

0.032493

previous_month_credit 0.061754

0.114222

current_month_debit 0.044412

0.066329

previous_month_debit 0.081247

0.109606

current_month_balance 0.983412

0.974714

previous_month_balance 0.942207

0.969605

churn -0.024181

0.006886

 average_monthly_balance_prevQ

\

Data Analysis | FITPED AI

94

customer_id 0.004485

vintage -0.002054

age 0.061708

dependents 0.001213

city -0.006298

customer_nw_category -0.059535

branch_code 0.001955

current_balance 0.958307

previous_month_end_balance 0.970530

average_monthly_balance_prevQ 1.000000

average_monthly_balance_prevQ2 0.763495

current_month_credit 0.033639

previous_month_credit 0.085699

current_month_debit 0.060579

previous_month_debit 0.121272

current_month_balance 0.976290

previous_month_balance 0.994038

churn 0.011960

 average_monthly_balance_prevQ2

\

customer_id -0.002532

vintage -0.001759

age 0.059607

dependents 0.002949

city -0.007891

customer_nw_category -0.047010

branch_code 0.001310

current_balance 0.714600

previous_month_end_balance 0.722998

average_monthly_balance_prevQ 0.763495

average_monthly_balance_prevQ2 1.000000

current_month_credit 0.036271

previous_month_credit 0.062264

current_month_debit 0.045239

previous_month_debit 0.102519

current_month_balance 0.725826

previous_month_balance 0.736635

churn 0.018376

 current_month_credit

previous_month_credit \

customer_id 0.002494

-0.006414

Data Analysis | FITPED AI

95

vintage -0.004617

-0.000169

age 0.023840

0.029961

dependents 0.003260

0.025054

city 0.004118

0.008087

customer_nw_category -0.025254

-0.072374

branch_code -0.013988

-0.023849

current_balance 0.030371

0.061754

previous_month_end_balance 0.032493

0.114222

average_monthly_balance_prevQ 0.033639

0.085699

average_monthly_balance_prevQ2 0.036271

0.062264

current_month_credit 1.000000

0.168561

previous_month_credit 0.168561

1.000000

current_month_debit 0.937021

0.165092

previous_month_debit 0.135729

0.733953

current_month_balance 0.034182

0.085320

previous_month_balance 0.038254

0.108496

churn 0.020755

0.042179

 current_month_debit

previous_month_debit \

customer_id 0.002603

-0.008760

vintage -0.004978

-0.006760

age 0.027702

0.033296

Data Analysis | FITPED AI

96

dependents 0.008207

0.032021

city 0.001465

0.005995

customer_nw_category -0.035917

-0.071721

branch_code -0.016944

-0.017584

current_balance 0.044412

0.081247

previous_month_end_balance 0.066329

0.109606

average_monthly_balance_prevQ 0.060579

0.121272

average_monthly_balance_prevQ2 0.045239

0.102519

current_month_credit 0.937021

0.135729

previous_month_credit 0.165092

0.733953

current_month_debit 1.000000

0.191755

previous_month_debit 0.191755

1.000000

current_month_balance 0.069720

0.102010

previous_month_balance 0.063375

0.139723

churn 0.048041

0.073058

 current_month_balance

previous_month_balance \

customer_id 0.005140

0.004553

vintage -0.000550

-0.002208

age 0.057662

0.060297

dependents -0.000652

0.001239

city -0.005796

-0.005839

Data Analysis | FITPED AI

97

customer_nw_category -0.058648

-0.059113

branch_code 0.001031

0.002080

current_balance 0.983412

0.942207

previous_month_end_balance 0.974714

0.969605

average_monthly_balance_prevQ 0.976290

0.994038

average_monthly_balance_prevQ2 0.725826

0.736635

current_month_credit 0.034182

0.038254

previous_month_credit 0.085320

0.108496

current_month_debit 0.069720

0.063375

previous_month_debit 0.102010

0.139723

current_month_balance 1.000000

0.963276

previous_month_balance 0.963276

1.000000

churn -0.006391

0.014593

 churn

customer_id -0.002723

vintage -0.004769

age -0.020012

dependents 0.033487

city -0.001585

customer_nw_category 0.006551

branch_code 0.035469

current_balance -0.024181

previous_month_end_balance 0.006886

average_monthly_balance_prevQ 0.011960

average_monthly_balance_prevQ2 0.018376

current_month_credit 0.020755

previous_month_credit 0.042179

current_month_debit 0.048041

previous_month_debit 0.073058

current_month_balance -0.006391

Data Analysis | FITPED AI

98

previous_month_balance 0.014593

churn 1.000000

• there is no relationship between demographic variables
• there is a relationship between demographic variables
• there is a relationship between customer variables
• there is no relationship between customer variables
• there is a relationship between variables on transactions
• there is no relationship between transaction variables

📝 3.3.9

Load the data from the banking.csv file, which contains information about the bank's
customers. After loading the data file, find the correlation between the variables from
the category of transaction information. We recommend using a heatmap() type
chart. Based on the visualization, select the true statements.

import pandas as pd

from scipy import stats

import seaborn as sns

Data Analysis | FITPED AI

99

df =

pd.read_csv('https://priscilla.fitped.eu/data/pandas/banking.c

sv', sep=',', decimal='.')

print(df.info())

dfd =

df[['current_balance','previous_month_end_balance','average_mo

nthly_balance_prevQ','average_monthly_balance_prevQ2','current

_month_credit','previous_month_credit','current_month_debit','

previous_month_debit','current_month_balance','previous_month_

balance','churn']][:]

correlation = dfd.corr(method='pearson')

sns.heatmap(correlation, xticklabels=correlation.columns,

yticklabels=correlation.columns)

#print(correlation)

Program output:

RangeIndex: 28382 entries, 0 to 28381

Data columns (total 21 columns):

 # Column Non-Null Count Dtype

--- ------ -------------- -----

 0 customer_id 28382 non-null int64

 1 vintage 28382 non-null int64

 2 age 28382 non-null int64

 3 gender 27857 non-null object

 4 dependents 25919 non-null float64

 5 occupation 28302 non-null object

 6 city 27579 non-null float64

 7 customer_nw_category 28382 non-null int64

 8 branch_code 28382 non-null int64

 9 current_balance 28382 non-null float64

 10 previous_month_end_balance 28382 non-null float64

 11 average_monthly_balance_prevQ 28382 non-null float64

 12 average_monthly_balance_prevQ2 28382 non-null float64

 13 current_month_credit 28382 non-null float64

 14 previous_month_credit 28382 non-null float64

 15 current_month_debit 28382 non-null float64

 16 previous_month_debit 28382 non-null float64

 17 current_month_balance 28382 non-null float64

 18 previous_month_balance 28382 non-null float64

 19 churn 28382 non-null int64

 20 last_transaction 28382 non-null object

dtypes: float64(12), int64(6), object(3)

Data Analysis | FITPED AI

100

memory usage: 4.5+ MB

None

• there is a relationship between the current balance and balances from
previous months

• there is no relationship between the current balance and balances from
previous months

• the transaction variables debit/credit are mainly correlated with each other
• the transaction variables debit/credit are correlated with all variables
• the transaction variables debit/credit do not correlate with the balance

variables
• the transaction variables debit/credit are correlated with the balance variables

Project - Data Analysis

Chapter 4

Project - Data Analysis | FITPED AI

102

4.1 Project – Exploration data analysis

📝 4.1.1

The project focuses on the analysis of the company's employees. The dataset
contains information about employees. The most important data and variables used
in the analysis are:

• Age - age of the employee
• Department - department
• DistanceFromHome - the distance of the employee's home from the place of

work
• Education - level of education
• EducationField - the area in which the employee has studied
• MonthlyIncome - monthly income
• JobLevel - job position level (values from 1 to 5)
• YearsAtCompany - the number of years he has worked in the company
• TotalWorkingYears - total number of years of employment

import library

import pandas as pd

read csv https://priscilla.fitped.eu/data/nlp/employees.csv

df =

pd.read_csv('https://priscilla.fitped.eu/data/nlp/employees.cs

v', sep=',')

explore dataset

print(df.info())

Program output:

RangeIndex: 1470 entries, 0 to 1469

Data columns (total 35 columns):

 # Column Non-Null Count Dtype

--- ------ -------------- -----

 0 Age 1470 non-null int64

 1 Attrition 1470 non-null object

 2 BusinessTravel 1470 non-null object

 3 DailyRate 1470 non-null int64

 4 Department 1470 non-null object

 5 DistanceFromHome 1470 non-null int64

 6 Education 1470 non-null int64

 7 EducationField 1470 non-null object

 8 EmployeeCount 1470 non-null int64

 9 EmployeeNumber 1470 non-null int64

 10 EnvironmentSatisfaction 1470 non-null int64

Project - Data Analysis | FITPED AI

103

 11 Gender 1470 non-null object

 12 HourlyRate 1470 non-null int64

 13 JobInvolvement 1470 non-null int64

 14 JobLevel 1470 non-null int64

 15 JobRole 1470 non-null object

 16 JobSatisfaction 1470 non-null int64

 17 MaritalStatus 1470 non-null object

 18 MonthlyIncome 1470 non-null int64

 19 MonthlyRate 1470 non-null int64

 20 NumCompaniesWorked 1470 non-null int64

 21 Over18 1470 non-null object

 22 OverTime 1470 non-null object

 23 PercentSalaryHike 1470 non-null int64

 24 PerformanceRating 1470 non-null int64

 25 RelationshipSatisfaction 1470 non-null int64

 26 StandardHours 1470 non-null int64

 27 StockOptionLevel 1470 non-null int64

 28 TotalWorkingYears 1470 non-null int64

 29 TrainingTimesLastYear 1470 non-null int64

 30 WorkLifeBalance 1470 non-null int64

 31 YearsAtCompany 1470 non-null int64

 32 YearsInCurrentRole 1470 non-null int64

 33 YearsSinceLastPromotion 1470 non-null int64

 34 YearsWithCurrManager 1470 non-null int64

dtypes: int64(26), object(9)

memory usage: 402.1+ KB

None

📝 4.1.2

Calculate the absolute frequencies of employees for all departments (Department).
How many employees does the Sales Department have?

import library

import pandas as pd

read csv

df =

pd.read_csv('https://priscilla.fitped.eu/data/nlp/employees.cs

v', sep=',')

calculate counts of employess in departments

Project - Data Analysis | FITPED AI

104

📝 4.1.3

You can already calculate the number of employees in each department. Complete
the code in one line to calculate the average of these numbers. The result should be
490.

import library

import pandas as pd

read csv

df =

pd.read_csv('https://priscilla.fitped.eu/data/nlp/employees.cs

v', sep=',')

calculate mean of counts of employess in departments

📝 4.1.4

What command do we use to plot the histogram for sorting the DailyRate variable?

import library

import pandas as pd

read csv

df =

pd.read_csv('https://raw.githubusercontent.com/sasu4/pris_data

/main/employees.csv', sep=',')

df["DailyRate"].plot.hist()

df["DailyRate"].plot.bar()

•
• df["DailyRate"].value_counts().plot.bar()
• df["DailyRate"].value_counts().plot.hist()

📝 4.1.5

Calculate the frequencies of employees according to the level of education they have
attained. However, calculate these numbers only for employees from the Sales
Department.

How many employees in the sales department have a level of education higher than
3?

import library

import pandas as pd

read csv

Project - Data Analysis | FITPED AI

105

df =

pd.read_csv('https://priscilla.fitped.eu/data/nlp/employees.cs

v', sep=',')

filter only the sales department and list the numbers for

education

📝 4.1.6

How do we calculate the variation range of the DailyRate variable?

import library

import pandas as pd

read csv

df =

pd.read_csv('https://priscilla.fitped.eu/data/nlp/employees.cs

v', sep=',')

df["DailyRate"].max()-df["DailyRate"].min()

df["DailyRate"].max()+df["DailyRate"].min()

df["DailyRate"].sum()-df["DailyRate"].count()

df["DailyRate"].min()-df["DailyRate"].max()

df["DailyRate"].sum()-df["DailyRate"].avg()

📝 4.1.7

What does it mean if the standard deviation is high?

• The values are more scattered within the variation range.
• Most of the values are around the average.
• Most values are around the median.
• Values are scattered well outside the range of variation too.

📝 4.1.8

What is the standard deviation of the age of employees? (round the result to 2
decimal places)

import library

import pandas as pd

read csv

df =

pd.read_csv('https://priscilla.fitped.eu/data/nlp/employees.cs

v', sep=',')

calculate the standard deviation of the variable Age using

the pandas library

Project - Data Analysis | FITPED AI

106

📝 4.1.9

Use the Matplotlib library to plot a box plot for the distance of the employee's home
from the work location. Which of the following box plots visualizes the distribution
of this variable?

import library

import pandas as pd

import matplotlib.pyplot as plt

read csv

df =

pd.read_csv('https://priscilla.fitped.eu/data/nlp/employees.cs

v', sep=',')

display a boxplot for distance from home using the

matplotlib library

Project - Data Analysis | FITPED AI

107

Project - Data Analysis | FITPED AI

108

Project - Data Analysis | FITPED AI

109

📝 4.1.10

Plot a box plot of the distribution of the age of employees who have graduated with
a degree in human resources.

Which of the following plots shows this?

import library

import pandas as pd

import matplotlib.pyplot as plt

read csv

df =

pd.read_csv('https://priscilla.fitped.eu/data/nlp/employees.cs

v', sep=',')

display a box plot for the age of employees who have a

degree in human resources

Project - Data Analysis | FITPED AI

110

Project - Data Analysis | FITPED AI

111

Project - Data Analysis | FITPED AI

112

📝 4.1.11

If a variable has a positive skewness, it means that:

• Most values are close to the measure of central tendency
• The values are relatively homogenously distributed over the variation range
• Most values are greater than average
• Most values are less than the average

Project - Data Analysis | FITPED AI

113

📝 4.1.12

Plot a histogram that describes the distribution of a variable that represents the total
number of years of employment of an employee. Use 8 intervals.

Which of the following statements can be read from the plot?

import library

import pandas as pd

read csv

df =

pd.read_csv('https://priscilla.fitped.eu/data/nlp/employees.cs

v', sep=',')

draw a histogram of the variable total number of years the

employee has worked

df["TotalWorkingYears"].plot.hist(bins = 8)

• The kurtosis is probably positive
• The kurtosis is probably negative
• The kurtosis is probably close to zero
• The skewness is probably positive
• The skewness is probably negative
• The skewness is probably close to zero
• Probably does not have a normal distribution
• Probably has a normal distribution
• The mode is 7.5
• The median is less than 15
• The mode is in the interval of 5 to 10
• The median is greater than 15

📝 4.1.13

Show the pivot table to find the frequencies for the combinations of what department
the employee works in and what level of education they have attained.

Select from the options, combining which will give the resulting number of such
employees 128.

import library

import pandas as pd

import numpy as np

read csv

df =

pd.read_csv('https://priscilla.fitped.eu/data/nlp/employees.cs

v', sep=',')

Project - Data Analysis | FITPED AI

114

draw a pivot table for department and level of education

• Sales
• Research & Development
• Human Resources
• 4
• 1
• 2
• 3
• 5

📝 4.1.14

Use the Seaborn library to show box plots for monthly employee income
(MonthlyIncome). Plot a box plot for each group by education (Education).

After the plots are drawn, identify the group (level of education attained) that has the
highest income. What color is the box plot for this group with the default Seaborn
setting?

import libraries

import pandas as pd

import seaborn as sns

read csv

df =

pd.read_csv('https://priscilla.fitped.eu/data/nlp/employees.cs

v', sep=',')

• purple
• blue
• yellow
• orange
• red

📝 4.1.15

Draw box plots for the variable age using the Seaborn library. However, the output
should contain two box plots, one for the group with JobLevel equal to 1 and the
other with JobLevel equal to 5.

What can be clearly deduced from this visualization?

import libraries

import pandas as pd

Project - Data Analysis | FITPED AI

115

import seaborn as sns

import matplotlib.pyplot as plt

read csv

df =

pd.read_csv('https://priscilla.fitped.eu/data/nlp/employees.cs

v', sep=',')

dark design setting

plot = sns.set(style="darkgrid")

draw boxplots for the age variable for the group with

JobLevel equal to 1 and the other with JobLevel equal to 2.

plot =

show chart

plt.show()

• No employee at level 5 is less than 35 years of age.
• Every employee of the company is less than 60 years old.
• The youngest employee at Level 5 is older than 75% of all employees at Level

1.
• That a Level 1 employee would be over 53 years old is exceptional.
• The range of variation in the age of employees at level 1 is approximately 18

to 52 years.
• All employees at level 5 are between 39 and 60 years of age.
• The majority of Level 1 employees are between the ages of 27 and 37.
• The average age of employees at Level 1 is 32.

📝 4.1.16

Which of the following tests are used to test the normality of a variable?

• Lilliefors' test
• Kolmogorov-Smirnov test
• Shapiro-Wilk W test
• T-test
• Cochran-Cox test
• Mann-Whitney U test

📝 4.1.17

Use the Shapiro-Wilk test to check the normality of the variable age. Show the result.
Copy the entire output of the test into the answer sheet.

import library

import pandas as pd

from scipy import stats

read csv

Project - Data Analysis | FITPED AI

116

df =

pd.read_csv('https://priscilla.fitped.eu/data/nlp/employees.cs

v', sep=',')

use the Shapiro-Wilk test to verify the normality of the age

variable

📝 4.1.18

Verify that the variable age has a normal distribution.

import library

import pandas as pd

from scipy import stats

read csv

df =

pd.read_csv('https://priscilla.fitped.eu/data/nlp/employees.cs

v', sep=',')

• It does not have a normal distribution.
• It has a normal distribution.

📝 4.1.19

Draw a jointplot from the Seaborn library for the variable monthly income and total
number of years of employment (not just at this company).

Which of the following statements can be read from the plot?

import libraries

import pandas as pd

import seaborn as sns

import matplotlib.pyplot as plt

read csv

df =

pd.read_csv('https://priscilla.fitped.eu/data/nlp/employees.cs

v', sep=',')

draw a jointplot from the Seaborn library for the variable

monthly income and total years worked

• Monthly income depends significantly on the number of years of employment.
• Monthly income does not depend significantly on the number of years of

employment.
• The variable MonthlyIncome does not have a normal distribution.

Project - Data Analysis | FITPED AI

117

• The variable MonthlyIncome has a normal distribution.
• The TotalWorkingYears variable does not have a normal distribution.
• The TotalWorkingYears variable has a normal distribution.
• If an employee has a higher income, he or she also has more years of

employment.
• If an employee has less income, he or she has less years of employment.

📝 4.1.20

Using the Scipy library, calculate Pearson's R with the corresponding p-value.
Evaluate the correlation between the variable monthly income and the number of
years worked in the company.

Copy the entire output into your answer.

import library

import pandas as pd

from scipy import stats

read csv

df =

pd.read_csv('https://priscilla.fitped.eu/data/nlp/employees.cs

v', sep=',')

evaluate the correlation between the variable monthly income

and the number of years worked in the company

📝 4.1.21

Calculate the correlation coefficients between the variables Age, DailyRate,
JobLevel, MonthlyIncome, TotalWorkingYears, YearsAtCompany.

On which variable does the employee's monthly income depend most?

import libraries

import pandas as pd

import seaborn as sns

import matplotlib.pyplot as plt

read csv

df =

pd.read_csv('https://priscilla.fitped.eu/data/nlp/employees.cs

v', sep=',')

Project - Data Analysis | FITPED AI

118

calculate the correlation coefficients between the variables

Age, DailyRate, JobLevel, MonthlyIncome, TotalWorkingYears,

YearsAtCompany

• JobLevel
• Age
• DailyRate
• TotalWorkingYears
• YearsAtCompany

Analysis of Titanic Data

Chapter 5

Analysis of Titanic Data | FITPED AI

120

5.1 Analysis of Titanic data

📝 5.1.1

The data analysis project focuses on a very popular dataset related to the sinking of
the Titanic. In this tragedy, 1502 of the 2224 passengers and crew died. The dataset
contains information on 887 actual Titanic passengers. Each line represents one
passenger. The columns contain the following information about the passengers:

• PassenderID - unique passenger identifier
• Survived - information on whether the passenger survived (1) or not (0)
• Pclass - passenger class (1,2,3)
• Name - name of the passenger
• Sex - passenger's gender
• Age - age of the passenger
• SibSp - number of siblings or spouses on board
• Parch - number of parents or children on board
• Ticket - ticket number
• Fare - fare of the ticket
• Cabin - cabin number
• Embarked - the city where the passenger boarded (C - Cherbourg, S -

Southampton, Q - Queenstown)

In the following micro-lectures, we will look at which characteristics had the highest
correlation with passengers' chances of survival.

import library

import pandas as pd

read csv from

https://priscilla.fitped.eu/data/pandas/titanic.csv

df =

pd.read_csv('https://priscilla.fitped.eu/data/pandas/titanic.c

sv', sep=',')

explore dataset

print(df.info())

Program output:

RangeIndex: 891 entries, 0 to 890

Data columns (total 12 columns):

 # Column Non-Null Count Dtype

--- ------ -------------- -----

 0 PassengerId 891 non-null int64

 1 Survived 891 non-null int64

 2 Pclass 891 non-null int64

Analysis of Titanic Data | FITPED AI

121

 3 Name 891 non-null object

 4 Sex 891 non-null object

 5 Age 714 non-null float64

 6 SibSp 891 non-null int64

 7 Parch 891 non-null int64

 8 Ticket 891 non-null object

 9 Fare 891 non-null float64

 10 Cabin 204 non-null object

 11 Embarked 889 non-null object

dtypes: float64(2), int64(5), object(5)

memory usage: 83.7+ KB

None

📝 5.1.2

Load the data from the dataset titanic.csv (the file is located at
https://priscilla.fitped.eu/data/pandas/titanic.csv). Examine the data in the dataset
and see if the dataset contains any missing data. If so, list the variable with the
largest number and its count. Print the result in the following form:

PassengerID: 235

import library

import pandas as pd

read csv from

https://priscilla.fitped.eu/data/pandas/titanic.csv

df =

pd.read_csv('https://priscilla.fitped.eu/data/pandas/titanic.c

sv', sep=',')

explore dataset

total = df.isnull().sum().sort_values(ascending=False)

print(total)

Program output:
Cabin 687

Age 177

Embarked 2

PassengerId 0

Survived 0

Pclass 0

Name 0

Sex 0

SibSp 0

Parch 0

Analysis of Titanic Data | FITPED AI

122

Ticket 0

Fare 0

dtype: int64

📝 5.1.3

After reviewing the missing data, decide which statements are true.

• except for the variables Cabin, Age and Cabin, the other variables are fine
• the Cabin variable contains too many missing values
• we need to delete all rows that contain missing values
• we need to complete all rows of the Cabin variable that contain missing values
• we will not consider the Cabin variable because it contains too many missing

values
• the Age variable will not be considered because it contains too many missing

values

📝 5.1.4

Load the data from the dataset titanic.csv (the file is located at
https://priscilla.fitped.eu/data/pandas/titanic.csv). Examine the data in the dataset
to determine the ratio of male to female survivors. Write out the result as a
percentage rounded to two decimal places and in the following format:

Male: 23.50%, Female: 33.42%

import library

import pandas as pd

read csv from

https://priscilla.fitped.eu/data/pandas/titanic.csv

df =

pd.read_csv('https://priscilla.fitped.eu/data/pandas/titanic.c

sv', sep=',')

explore dataset

#percentage of women survived

women = df.loc[df.Sex == 'female']["Survived"]

rate_women = round(sum(women)/len(women)*100,2)

#percentage of men survived

men = df.loc[df.Sex == 'male']["Survived"]

rate_men = round(sum(men)/len(men)*100,2)

print(str(rate_women) +" % of women who survived.")

print(str(rate_men) + " % of men who survived.")

Analysis of Titanic Data | FITPED AI

123

Program output:
74.2 % of women who survived.

18.89 % of men who survived.

📝 5.1.5

Based on an examination of the ratio of male to female survivors of the disaster
decide which statements are true. You can help by visualizing using a bar graph. Also,
visualise the proportion of men and women on the boat.

import library

import pandas as pd

import seaborn as sns

import matplotlib.pyplot as plt

read csv from

https://priscilla.fitped.eu/data/pandas/titanic.csv

df =

pd.read_csv('https://priscilla.fitped.eu/data/pandas/titanic.c

sv', sep=',')

explore dataset

df['SurvivedCat'] = df['Survived'].map({0:"not_survived",

1:"survived"})

fig, ax = plt.subplots(1, 2, figsize = (10, 8))

df["Sex"].value_counts().plot.bar(color = "skyblue", ax =

ax[0])

ax[0].set_title("Number Of Passengers By Sex")

ax[0].set_ylabel("Population")

sns.countplot(x="Sex", hue = "SurvivedCat", data = df)

ax[1].set_title("Sex: Survived vs Dead")

plt.show()

Analysis of Titanic Data | FITPED AI

124

Program output:

• the percentage of female survivors is high
• the percentage of male survivors is high
• the percentage of male survivors is low
• the percentage of female survivors is low
• gender can affect the chance of survival
• gender does not affect the chance of survival
• there were more men than women on the ship
• there were more women than men on the ship
• there were approximately the same number of men as women on the ship

📝 5.1.6

Load the data from the dataset titanic.csv (the file is located at
https://priscilla.fitped.eu/data/pandas/titanic.csv). Examine the data in the dataset
and find out the distribution of the number of passengers in each class. Write the
result in numbers and in the following format:

Analysis of Titanic Data | FITPED AI

125

Class 1: 459, Class 2: 232, Class 3: 120

import library

import pandas as pd

read csv from

https://priscilla.fitped.eu/data/pandas/titanic.csv

df =

pd.read_csv('https://priscilla.fitped.eu/data/pandas/titanic.c

sv', sep=',')

explore dataset

fig, ax = plt.subplots(1, 2, figsize = (10, 8))

df["Pclass"].value_counts().plot.bar(color = "skyblue", ax =

ax[0])

ax[0].set_title("Number Of Passengers By Pclass")

ax[0].set_ylabel("Population")

sns.countplot(x="Pclass", hue = "Survived", data = df, ax =

ax[1])

ax[1].set_title("Pclass: Survived vs Dead")

plt.show()

print(df['Pclass'].value_counts())

Analysis of Titanic Data | FITPED AI

126

Program output:

3 491

1 216

2 184

Name: Pclass, dtype: int64

📝 5.1.7

Based on a review of the distribution of passengers by class, review the distribution
of passengers who survived the disaster by class. Decide which statements are true.
You can help by visualizing using a bar graph.

import library

import pandas as pd

read csv from

https://priscilla.fitped.eu/data/pandas/titanic.csv

df =

pd.read_csv('https://priscilla.fitped.eu/data/pandas/titanic.c

sv', sep=',')

Analysis of Titanic Data | FITPED AI

127

explore dataset

fig, ax = plt.subplots(1, 2, figsize = (10, 8))

df["Pclass"].value_counts().plot.bar(color = "skyblue", ax =

ax[0])

ax[0].set_title("Number Of Passengers By Pclass")

ax[0].set_ylabel("Population")

sns.countplot(x="Pclass", hue = "Survived", data = df, ax =

ax[1])

ax[1].set_title("Pclass: Survived vs Dead")

plt.show()

print(df['Pclass'].value_counts())

Program output:

3 491

1 216

2 184

Name: Pclass, dtype: int64

• most passengers were in 3rd class
• most passengers were in 2nd class

Analysis of Titanic Data | FITPED AI

128

• most passengers were in 1st class
• fewest passengers were in 2nd class
• fewest passengers were in 1st class
• fewest passengers were in 3rd class
• most of the 3rd class passengers did not survive the crash
• most of the 3rd class passengers survived the crash
• most of the 1st class passengers did not survive the disaster

📝 5.1.8

Load the data from the dataset titanic.csv (the file is located at
https://priscilla.fitped.eu/data/pandas/titanic.csv). Examine the data in the dataset
and find the distribution of the number of passengers by embarkation point. Write
the result in numbers and in the following format:

S: 459, C: 232, Q: 120

import library

import pandas as pd

import matplotlib.pyplot as plt

import seaborn as sns

read csv from

https://priscilla.fitped.eu/data/pandas/titanic.csv

df =

pd.read_csv('https://priscilla.fitped.eu/data/pandas/titanic.c

sv', sep=',')

explore dataset

fig, ax = plt.subplots(1, 2, figsize = (10, 8))

df["Embarked"].value_counts().plot.bar(color = "skyblue", ax =

ax[0])

ax[0].set_title("Number Of Passengers By Embarked")

ax[0].set_ylabel("Number")

sns.countplot(x="Embarked", hue = "Survived", data = df, ax =

ax[1])

ax[1].set_title("Embarked: Survived vs Unsurvived")

plt.show()

print(df['Embarked'].value_counts())

Analysis of Titanic Data | FITPED AI

129

Program output:

S 644

C 168

Q 77

Name: Embarked, dtype: int64

📝 5.1.9

Based on a review of passenger class distribution, examine the distribution of
survivors by embarkation location. Decide which statements are true. You can help
by visualizing using a bar graph.

import library

import pandas as pd

import matplotlib.pyplot as plt

import seaborn as sns

read csv from

https://priscilla.fitped.eu/data/pandas/titanic.csv

Analysis of Titanic Data | FITPED AI

130

df =

pd.read_csv('https://priscilla.fitped.eu/data/pandas/titanic.c

sv', sep=',')

explore dataset

fig, ax = plt.subplots(1, 2, figsize = (10, 8))

df["Embarked"].value_counts().plot.bar(color = "skyblue", ax =

ax[0])

ax[0].set_title("Number Of Passengers By Embarked")

ax[0].set_ylabel("Number")

sns.countplot(x="Embarked", hue = "Survived", data = df, ax =

ax[1])

ax[1].set_title("Embarked: Survived vs Unsurvived")

plt.show()

Program output:

• most passengers boarded at Southampton
• more than half of the passengers boarded at Southampton did not survive the

crash
• only the passengers who embarked at Cherbourg survived more than died
• fewest passengers boarded in Queenstown

Analysis of Titanic Data | FITPED AI

131

• most passengers boarded in Queenstown
• fewest passengers boarded in Cherbourg
• most passengers embarked in Cherbourg
• more than half of the passengers embarked at Cherbourg did not survive the

disaster

📝 5.1.10

Load the data from the dataset titanic.csv (the file is located at
https://priscilla.fitped.eu/data/pandas/titanic.csv). Examine the data in the dataset
and find out the age distribution of the passengers. Write the most numerous age
category in the following format (we recommend visualizing it as a histogram):

40-45

import library

import pandas as pd

import matplotlib.pyplot as plt

import seaborn as sns

read csv from

https://priscilla.fitped.eu/data/pandas/titanic.csv

df =

pd.read_csv('https://priscilla.fitped.eu/data/pandas/titanic.c

sv', sep=',')

explore dataset

sns.histplot(df['Age'].dropna())

Program output:
24.00 30

22.00 27

18.00 26

19.00 25

28.00 25

 ..

36.50 1

55.50 1

0.92 1

23.50 1

74.00 1

Name: Age, Length: 88, dtype: int64

Analysis of Titanic Data | FITPED AI

132

📝 5.1.11

Load the data from the dataset titanic.csv (the file is located at
https://priscilla.fitped.eu/data/pandas/titanic.csv). Examine the data in the dataset
and see if there is a correlation between age and whether or not the passenger
survived the crash. Write whether there is a statistically significant relationship
between the variables (yes/no) and the correlation value rounded to 2 decimal places
and the p-value.

no, p-value: 0.12, cor: 0.45

import library

import pandas as pd

from scipy import stats

read csv from

https://priscilla.fitped.eu/data/pandas/titanic.csv

df =

pd.read_csv('https://priscilla.fitped.eu/data/pandas/titanic.c

sv', sep=',')

dfd = df[['Age','Survived']].dropna()

explore dataset

corr = stats.pearsonr(dfd['Age'], dfd['Survived'])

print("p-value:\t", round(corr[1],2))

print("cor:\t\t", round(corr[0],2))

Analysis of Titanic Data | FITPED AI

133

Program output:
p-value: 0.04

cor: -0.08

📝 5.1.12

Load the data from the dataset titanic.csv (the file is located at
https://priscilla.fitped.eu/data/pandas/titanic.csv). Examine the data in the dataset
to see if there is a correlation between class and whether or not the passenger
survived the crash. Write whether there is a statistically significant relationship
between the variables (yes/no) and the correlation value rounded to 2 decimal places
and the p-value.

no, p-value: 0.12, cor: 0.45

import library

import pandas as pd

from scipy import stats

read csv from

https://priscilla.fitped.eu/data/pandas/titanic.csv

df =

pd.read_csv('https://priscilla.fitped.eu/data/pandas/titanic.c

sv', sep=',')

dfd = df[['Pclass','Survived']].dropna()

explore dataset

corr = stats.pearsonr(dfd['Pclass'], dfd['Survived'])

print("p-value:\t", round(corr[1],2))

print("cor:\t\t", round(corr[0],2))

Program output:
p-value: 0.0

cor: -0.34

📝 5.1.13

Load the data from the dataset titanic.csv (the file is located at
https://priscilla.fitped.eu/data/pandas/titanic.csv). Examine the data in the dataset
and see if there is a correlation between the number of siblings (Sibsp) and whether
or not the passenger survived the crash. Write whether there is a statistically
significant relationship between the variables (yes/no) and the correlation value
rounded to 2 decimal places and the p-value.

no, p-value: 0.12, cor: 0.45

Analysis of Titanic Data | FITPED AI

134

import library

import pandas as pd

from scipy import stats

read csv from

https://priscilla.fitped.eu/data/pandas/titanic.csv

df =

pd.read_csv('https://priscilla.fitped.eu/data/pandas/titanic.c

sv', sep=',')

dfd = df[['SibSp','Survived']].dropna()

explore dataset

corr = stats.pearsonr(dfd['SibSp'], dfd['Survived'])

print("p-value:\t", round(corr[1],2))

print("cor:\t\t", round(corr[0],2))

Program output:
p-value: 0.29

cor: -0.04

📝 5.1.14

Load the data from the dataset titanic.csv (the file is located at
https://priscilla.fitped.eu/data/pandas/titanic.csv). Examine the data in the dataset
and see if there is a correlation between the number of children (Parch) and whether
or not the passenger survived the crash. Write whether there is a statistically
significant relationship between the variables (yes/no) and the correlation value
rounded to 2 decimal places and the p-value.

no, p-value: 0.12, cor: 0.45

import library

import pandas as pd

from scipy import stats

read csv from

https://priscilla.fitped.eu/data/pandas/titanic.csv

df =

pd.read_csv('https://priscilla.fitped.eu/data/pandas/titanic.c

sv', sep=',')

dfd = df[['Parch','Survived']].dropna()

explore dataset

corr = stats.pearsonr(dfd['Parch'], dfd['Survived'])

print("p-value:\t", round(corr[1],2))

print("cor:\t\t", round(corr[0],2))

Analysis of Titanic Data | FITPED AI

135

Program output:
p-value: 0.01

cor: 0.08

📝 5.1.15

Load the data from the dataset titanic.csv (the file is located at
https://priscilla.fitped.eu/data/pandas/titanic.csv). Examine the data in the dataset
and see if there is a correlation between the ticket price and whether or not the
passenger survived the disaster. Write whether there is a statistically significant
relationship between the variables (yes/no) and the correlation value rounded to 2
decimal places and the p-value.

no, p-value: 0.12, cor: 0.45

import library

import pandas as pd

from scipy import stats

read csv from

https://priscilla.fitped.eu/data/pandas/titanic.csv

df =

pd.read_csv('https://priscilla.fitped.eu/data/pandas/titanic.c

sv', sep=',')

dfd = df[['Fare','Survived']].dropna()

explore dataset

corr = stats.pearsonr(dfd['Fare'], dfd['Survived'])

print("p-value:\t", round(corr[1],2))

print("cor:\t\t", round(corr[0],2))

Program output:
p-value: 0.0

cor: 0.26

📝 5.1.16

Load the data from the dataset titanic.csv (the file is located at
https://priscilla.fitped.eu/data/pandas/titanic.csv). Examine the data in the dataset
and see if there is a correlation between the embarkation point and whether or not
the passenger survived the disaster. The embarkation variable must be transformed
into numerical values before analysis. Write whether there is a statistically significant
relationship between the variables (yes/no) and the correlation value rounded to 2
decimal places and the p-value.

Analysis of Titanic Data | FITPED AI

136

no, p-value: 0.12, cor: 0.45

import library

import pandas as pd

from scipy import stats

read csv from

https://priscilla.fitped.eu/data/pandas/titanic.csv

df =

pd.read_csv('https://priscilla.fitped.eu/data/pandas/titanic.c

sv', sep=',')

dfd = df[['Embarked','Survived']].dropna()

dfd['Embarked'] = dfd['Embarked'].map({"S":1,

"C":2,"Q":2,"NaN":0})

explore dataset

corr = stats.pearsonr(dfd['Embarked'], dfd['Survived'])

print("p-value:\t", round(corr[1],2))

print("cor:\t\t", round(corr[0],2))

Program output:
p-value: 0.0

cor: 0.15

📝 5.1.17

Based on the results obtained from the data analysis, select the passenger
characteristics that have an impact on disaster survival.

• Age
• Pclass
• Sibsp
• Parch
• Fare
• Embarked

Summarisation

Introduction

Chapter 6

Introduction | FITPED AI

139

6.1 What is summarisation

🕮 6.1.1

The explosion of electronic documents on the internet has made information more
accessible than ever. However, the sheer length of many of these documents can
make them difficult to digest quickly. This is where the field of Natural Language
Processing (NLP) steps in, particularly with algorithms designed for text
summarization. NLP, a branch of artificial intelligence, focuses on enabling
computers to understand and process human language. One important task in NLP
is summarization, which condenses lengthy text into shorter, coherent summaries
without losing essential information. Summarization has become essential, allowing
users to extract key information from documents swiftly.

NLP encompasses a variety of tasks that make human language processing easier
for computers. Some of these tasks include analyzing the grammatical properties of
texts, translating languages, and text autocompletion (as seen in search engines).
Summarization is one of the more complex tasks, as it involves distilling a large body
of information into a brief but complete version. This function is especially helpful in
handling research articles, reports, and other long documents. Summarization can
range from condensing a text to key sentences or phrases, down to a coherent
paragraph that captures the main points.

A subfield of NLP, automatic summarization, allows for rapid and reliable extraction
of the most relevant information from texts. This capability is commonly employed
on news websites to provide quick article previews, helping readers grasp essential
points without reading the entire text. However, automatic summarization is
challenging. Unlike humans, computers do not "read" text in the same way, making it
a difficult process to achieve both coherence and informativeness. Yet, with NLP
advancements, automatic summarization continues to evolve, providing practical
solutions to information overload.

📝 6.1.2

Select tasks typical of natural language processing

• determining the parts of speech in the text
• machine translation of documents
• summarization of the text
• image processing

📝 6.1.3

NLP allows computers to process human language, enabling tasks like translation,
_____, and text _____. Summarization is one of the tasks that requires complex
algorithms to convert long documents into _____ summaries.

Introduction | FITPED AI

140

• generation
• analysis
• coherent

🕮 6.1.4

Text summarization can significantly simplify the process of understanding long
materials, such as research papers and reports, by condensing them into essential
points. With automatic text summarization, it is possible to reduce extensive texts
to a shorter form, be it a few sentences, paragraphs, or key phrases, without losing
core information. This approach not only saves time but also helps readers to focus
on the most important parts of a text. Text summarization has become an essential
tool in NLP, where the goal is to produce a summary that contains all the critical
details of the original document while taking up less space.

The essence of text summarization is in creating a summary, which is a shortened
version of the text that preserves the original meaning and key points. An effective
summary captures important information from one or more documents and usually
should not exceed half the original document’s length. The process can be applied in
many domains, from academic research to media, where article snippets are
generated automatically to give readers a quick overview. Summarization can be
either extractive (taking parts of the original text directly) or abstractive (creating
new sentences based on understanding the text), each with its benefits and
challenges.

Automatic summarization is challenging because it requires algorithms to select,
arrange, and present information coherently. While humans can read and interpret
meaning, computers need structured approaches to ensure they capture essential
ideas accurately. Nevertheless, advancements in NLP techniques continue to
improve the quality of automatic summaries, making it a valuable asset in many
fields, especially where quick comprehension of complex information is necessary.

📝 6.1.5

What are benefits of text summarization?

• Reduces the length of texts without losing essential information
• Saves time for readers by providing condensed information
• Increases the original text length for better comprehension
• Adds redundant details to the summary

📝 6.1.6

Summarization condenses long texts, helping readers grasp essential information.
An effective summary retains the _____ meaning of the document, making sure all
_____ details are kept, while removing less _____ parts.

• important

Introduction | FITPED AI

141

• core
• critical

6.2 Quality and challenges

🕮 6.2.1

Quality criteria

In text summarization, maintaining quality is essential to ensure that the summary
captures the most relevant points of the original document. The quality of a summary
can be judged by specific criteria: information coverage, coherence, redundancy
minimization, and brevity. Each of these criteria plays a role in creating summaries
that are not only concise but also meaningful. For example, information coverage is
a measure of how much important information the summary retains from the original
text.

Coherence is another critical factor, as it determines how logically and smoothly the
sentences in the summary flow. A coherent summary helps readers to understand
the relationships between ideas and follow the main points without confusion.
Minimizing redundancy involves avoiding repetitive information, which can make
summaries lengthy and less effective. Finally, brevity measures the length of the
summary relative to the original text; an ideal summary is short yet packed with
meaningful information, ensuring no unnecessary details are included.

By following these quality criteria, automated summarization systems aim to
produce summaries that are both informative and compact. Each criterion
contributes to the overall effectiveness of the summary, whether it is being used in
research, news articles, or general information processing. Striking a balance
between these criteria ensures that users receive a high-quality, easily
understandable summary.

📝 6.2.2

What is meant by "information coverage" in summarization?

• The summary contains all essential information from the original text
• The summary is short and lacks details
• The summary repeats key points multiple times
• The summary only covers minor points

📝 6.2.3

Summaries should be _____ to keep essential points clear. They also need _____ to
connect ideas smoothly and should avoid _____, which adds unnecessary length.

• redundancy

Introduction | FITPED AI

142

• brevity
• coherence

🕮 6.2.4

Challenges

Automatic summarization is a highly challenging task within NLP due to the difficulty
of emulating human comprehension. When a person summarizes text, they rely on
an in-depth understanding of context and meaning, which allows them to capture
essential points accurately. However, computers cannot interpret language as
intuitively as humans, making it difficult for algorithms to achieve a summary with
similar coherence and depth. Summarization algorithms must therefore be carefully
designed to handle complex tasks, such as selecting relevant information and
arranging it meaningfully.

One primary challenge in automatic summarization is maintaining coherence, as
computers may struggle to establish logical flow when sentences are reordered or
rephrased. Furthermore, it can be difficult for algorithms to decide which details are
essential without human-like understanding. Algorithms can end up with summaries
that are either too brief and miss key information or too detailed and redundant.

Despite these challenges, advancements in NLP have led to improved methods for
automatic summarization. With more sophisticated algorithms, summarization tools
can now provide summaries that are more coherent, concise, and useful. However,
the task remains complex, as each document presents unique content and context
that requires careful processing for effective summarization.

📝 6.2.5

What are challenges in automatic summarization?

• Achieving coherence in sentence structure
• Emulating human comprehension
• Repeating information to maintain context
• Increasing summary length for more detail

Extraction and Abstraction

Chapter 7

Extraction and Abstraction | FITPED AI

144

7.1 Extraction

🕮 7.1.1

Approaches to summarization – extraction vs. abstraction

Summarization is an essential technique for simplifying lengthy documents and
extracting key insights without losing critical information. In the context of Natural
Language Processing (NLP), two main approaches to summarization are widely
used: extraction and abstraction. Extractive summarization focuses on identifying
and reordering the most relevant sentences directly from the source text to form a
shorter version. Unlike abstraction, extractive summarization does not create any
new sentences; instead, it uses pre-existing content. In contrast, abstraction takes a
different approach by creating new sentences that capture the essential meaning of
the original document.

Extractive summarization is typically more straightforward since it relies on
identifying and selecting the most informative sentences. This is achieved through
algorithms that rank sentences based on relevance, often using statistical or
machine learning techniques to assess which parts of the text contain the most
important information. Abstractive summarization, however, is more complex as it
requires the generation of new text, demanding a higher level of linguistic and
semantic understanding, often involving deep learning models.

Each method has distinct advantages and limitations. Extractive summaries
maintain the original text structure, which may sometimes lack coherence in the
summary. Abstractive summarization, while potentially more coherent, can be
challenging due to the computational requirements and need for deep semantic
comprehension. Both approaches are vital for various applications, from news
aggregation to academic research.

📝 7.1.2

Choose the correct statements about extractive summarization

• decides which sentences from the text are significant and need to be
included in the summary

• the summarized text consists only of the sentences that were in the original
text

• uses the concept of sentence scoring
• the summarized text also consists of new sentences that were not in the

original text
• does not use the concept of sentence punctuation

Extraction and Abstraction | FITPED AI

145

📝 7.1.3

Which summarization approach involves generating new sentences?

• Abstraction
• Extraction
• Compression
• Rephrasing

🕮 7.1.4

TF-IDF Method

Extractive summarization aims to rank sentences by relevance and extract only the
most informative ones. One common technique is TF-IDF (Term Frequency-Inverse
Document Frequency), a statistical measure used to identify significant words within
a document. The “term frequency” component of TF-IDF calculates how frequently a
word appears in the document. However, commonly used words, like “the” and “and,”
often appear frequently across texts and add little to the summary. The “inverse
document frequency” component of TF-IDF addresses this by reducing the
importance of commonly used words and emphasizing terms unique to the
document.

To calculate TF-IDF, each word’s frequency in the document is compared against its
frequency in a larger set of documents, adjusting its significance accordingly. Words
with high TF-IDF scores tend to be unique and relevant to the document, which helps
algorithms identify which sentences should be extracted into a summary.

For extractive summarization, TF-IDF helps isolate sentences rich in high-score
words. These sentences are then reassembled into a summary. This approach,
although simple, is effective in creating summaries that retain important terms and
concepts while discarding redundant information.

📝 7.1.5

Which of the following are components of the TF-IDF method?

• Term frequency
• Inverse document frequency
• Sentence length
• Sentence position

Extraction and Abstraction | FITPED AI

146

🕮 7.1.6

Graph-based methods

Graph-based methods for extractive summarization utilize a visual structure to
represent relationships among sentences in a document. Here, sentences are
represented as nodes within a graph, while edges connect sentences that share
common words or phrases. The more connections a sentence node has, the more
relevant it is considered, making it more likely to be included in the summary.

The algorithm typically starts by calculating a similarity score for each sentence,
connecting sentences with overlapping terms. Sentences with the highest degree of
connectivity (those with the most edges) are chosen for the summary. This approach
is especially effective in maintaining coherence, as connected sentences tend to flow
better in the final summary.

Graph-based methods are beneficial for extracting key content in documents where
sentences are highly interconnected. An example of this approach is the TextRank
algorithm, which is widely used in NLP for summarization and other tasks like
keyword extraction.

📝 7.1.7

In a graph-based summarization method, what do the nodes represent?

• Sentences
• Keywords
• Paragraphs
• Documents

🕮 7.1.8

Machine learning-based summarization

Machine learning methods treat summarization as a classification problem, where
sentences are labeled as “summary” or “non-summary” sentences. During training, a
model learns to recognize characteristics that typically belong to sentences in a
summary. Features such as sentence length, position, and relevance to the
document’s title are often used to train the classifier.

In practice, machine learning-based summarization requires a training dataset with
examples of summary and non-summary sentences. Once trained, the classifier can
identify and select sentences that are likely to be relevant, making the summarization
process more accurate and adaptable to different types of content.

These models can be trained on labeled datasets and refined over time. As more
data is used for training, the classifier becomes better at distinguishing between
significant and insignificant information.

Extraction and Abstraction | FITPED AI

147

📝 7.1.9

Which features are typically used in machine learning-based summarization?

• Sentence position
• Relevance to title
• Language complexity
• Paragraph length

📝 7.1.10

What is the main goal of machine learning-based summarization?

• To classify sentences as summary or non-summary sentences
• To predict document length
• To extract keywords only
• To identify all repeated phrases

🕮 7.1.11

Fuzzy logic in summarization

Fuzzy logic-based summarization methods evaluate sentences based on various
characteristics, such as length, similarity to the title, and presence of keywords.
Unlike strict binary logic, fuzzy logic assigns sentences a score between 0 and 1,
indicating their degree of importance. This flexibility allows sentences with varying
levels of relevance to be included in the summary based on defined rules.

For instance, sentences containing keywords relevant to the document’s title may
score higher, while sentences with excessive detail score lower. Fuzzy logic’s
adaptability makes it particularly useful for dynamic summaries, where multiple
factors influence sentence selection. The scoring mechanism also helps in
minimizing redundancy, ensuring that only the most unique and relevant sentences
are included.

This approach is suitable for complex documents, where simple extraction methods
might miss nuances. Fuzzy logic systems can be fine-tuned to prioritize sentences
that best represent the document’s overall theme.

📝 7.1.12

Which method assigns importance scores to sentences between 0 and 1?

• Fuzzy logic
• Graph-based methods
• Neural networks
• TF-IDF

Extraction and Abstraction | FITPED AI

148

7.2 Abstraction I.

🕮 7.2.1

Abstract summarization is a sophisticated technique in natural language processing
(NLP) that aims to generate a coherent summary by creating new sentences. Unlike
extractive summarization, which pulls directly from the original text, abstract
summarization involves interpreting and paraphrasing the content, similar to how a
human might summarize. This approach begins with generating a transient
representation of the text, identifying primary topics and "indicators," such as
sentence length and the presence of specific key terms, to determine the text's most
important sections. The sentences with the highest scores are selected to build the
summary.

This summarization approach is more complex than extractive summarization, as it
requires a deep understanding of the text’s semantics—the meaning and
relationships between ideas, concepts, and topics within the document. To achieve
this, advanced NLP techniques are employed to "read" the document in context and
synthesize information into new, concise sentences, effectively rephrasing the
source material without losing key information.

Various methods can be used in abstract summarization, each offering unique
advantages in achieving coherence and informativeness. By creating summaries that
are not limited to direct quotes from the text, abstract summarization is particularly
useful for applications like news generation, academic research, and digital
assistants, where a fluent and original summary is required.

📝 7.2.2

Choose the correct statements about abstract summarization

• the created summary contains only the sentences that were in the original
text

• it relies entirely on the concept of sentence scoring
• uses the indicator representation to express the importance of individual

parts of the text
• the summary contains sentences that were not in the original text

📝 7.2.3

Which elements are considered in creating a transient representation for abstract
summarization?

• Main topics
• Indicator words
• Sentence punctuation
• Page length

Extraction and Abstraction | FITPED AI

149

🕮 7.2.4

Tree-based methods

Tree-based methods for abstract summarization use a dependency tree to analyze
and structure the content of the document. In this approach, sentences are broken
down into their grammatical components to reveal relationships between words. A
notable technique is "sentence fusion," where sentences across multiple documents
are combined to create a cohesive summary. This method is advantageous for
summarizing extensive documents or combining information from various sources.

The dependency tree enables the summarizer to organize and fuse similar
sentences, ensuring that the final summary contains only unique, relevant
information. By examining sentence structures, tree-based methods can identify the
core ideas across documents, simplifying complex information and removing
redundancies.

Tree-based summarization is highly effective in environments requiring precision
and clarity, such as legal documents, research papers, or medical reports. The
dependency tree helps ensure that the summary retains its logical structure, making
the information easier to understand.

📝 7.2.5

What is the purpose of using a dependency tree in tree-based methods?

• To analyze relationships between words
• To select random sentences
• To count words
• To calculate term frequency

📝 7.2.6

What are the benefits of tree-based methods in summarization?

• Combining information from multiple sources
• Organizing sentences for clarity
• Increasing document length
• Selecting text based on page layout

🕮 7.2.7

Template-based methods

Template-based methods approach summarization by mapping specific patterns
and extraction rules within a document to a template structure. The system uses
linguistic patterns to identify relevant text snippets, which are then matched to pre-

Extraction and Abstraction | FITPED AI

150

designed template "slots" or placeholders, resulting in a concise database-driven
summary. For instance, in a business report, templates might include categories
such as "Introduction," "Key Findings," and "Conclusion," with content from the
document inserted into each relevant section.

This method is especially useful for summarizing repetitive or standardized content,
where specific types of information consistently appear. Template-based methods
can improve the efficiency of summarization processes, especially when dealing with
highly structured data.

These methods are ideal in fields like finance or healthcare, where standardized
reporting is essential, as they ensure critical details are included while reducing the
need for manual input. However, template-based summaries may lack flexibility for
unstructured or highly varied content, as they rely on predefined patterns.

📝 7.2.8

What does a template-based method in summarization primarily rely on?

• Predefined patterns and rules
• Sentence length
• Word frequency
• Sentence complexity

📝 7.2.9

What are advantages of template-based methods?

• Standardization of summaries
• Efficiency in structured data summarization
• Flexibility in unstructured content
• Emphasis on informal language

🕮 7.2.10

Rule-based methods

Rule-based methods in abstract summarization operate by defining rules that
classify sentences into categories, such as “summary” or “non-summary.” These
rules focus on the use of verbs, nouns, and phrases with similar meanings, which
help the system recognize important content. A set of extraction rules is created,
enabling the summarizer to select sentences that best capture the essence of the
document.

This approach is well-suited for specific domains where certain linguistic patterns
regularly appear, making it easier to create reliable rules. For instance, in scientific
articles, rules might prioritize sentences with terms like "results" or "conclusions" to
capture essential findings.

Extraction and Abstraction | FITPED AI

151

While rule-based methods offer precise summaries in controlled environments, their
effectiveness may be limited when applied to general text with unpredictable
sentence structures or vocabulary. However, they remain a valuable tool for
generating domain-specific summaries that require accuracy and consistency.

📝 7.2.11

Rule-based methods in summarization work by:

• Applying predefined linguistic rules
• Randomly selecting sentences
• Only selecting the first sentences
• Ignoring all verbs and nouns

📝 7.2.12

What advantages do rule-based summarization methods provide?

• Precision in domain-specific summaries
• Consistency across similar documents
• Adaptability to all types of documents
• Random selection of sentences

7.3 Abstraction II.

🕮 7.3.1

Ontology-based methods

Ontology-based methods leverage domain-specific knowledge to create summaries,
making them particularly useful when summarizing content within a specific field.
An ontology is a structured representation of knowledge, where concepts are
organized and linked based on relationships relevant to the domain. In ontology-
based summarization, sentences are processed to ensure they align with the defined
concepts, and relationships in the ontology. For example, in a medical ontology,
terms like "symptoms," "diagnosis," and "treatment" may guide the summarization
process.

This method compresses and reformulates sentences based on domain-relevant
criteria, using both linguistic and NLP techniques. By following a structured
knowledge base, ontology-based methods ensure that the summary focuses on the
most critical and relevant details, maintaining coherence and context.

Ontology-based summarization excels in areas like scientific literature and technical
fields where precise terminology and concept relationships are essential. However,
it may require extensive resources to develop domain-specific ontologies, making it
best suited for specialized applications.

Extraction and Abstraction | FITPED AI

152

📝 7.3.2

In which situation is an ontology-based summarization method most useful?

• Summarizing domain-specific content
• Summarizing fiction books
• Summarizing random internet articles
• Selecting keywords for general essays

📝 7.3.3

What are key aspects of ontology-based summarization?

• Use of domain knowledge
• Structured relationships between concepts
• Emphasis on unrelated sentences
• Lack of specialized terminology

🕮 7.3.4

Combined approaches

Combined summarization is an advanced method that integrates both extractive and
abstractive techniques to create concise, coherent summaries. In this approach, an
extractive summarizer is first used to strip the original text of redundant or irrelevant
information, isolating the most critical sentences. This “cleaned” text is then passed
to an abstract generator, which rephrases and reorganizes the selected content into
a more fluent and cohesive summary. By using extraction as a preliminary step, the
abstract generator can focus solely on rephrasing important details, resulting in a
more accurate and meaningful summary.

One of the key advantages of combined summarization is its ability to work
efficiently with complex documents, as it minimizes processing time by dealing only
with relevant information. This approach also reduces potential errors in abstraction,
as it prevents the generator from paraphrasing unnecessary details, which could lead
to inaccuracies. Combined summarization is particularly valuable in applications
requiring high precision and readability, such as news summarization, where both
relevance and fluency are critical.

Modern algorithms, such as the BART (Bidirectional and Auto-Regressive
Transformers) model, employ combined summarization techniques to deliver high-
quality summaries. These algorithms are trained to process and refine extracted
content through sophisticated language modeling, making combined summarization
one of the most effective approaches in text summarization today.

Extraction and Abstraction | FITPED AI

153

📝 7.3.5

Which aspects characterize combined summarization?

• Integration of extractive and abstractive methods
• Use of an abstract generator on pre-selected text
• Ignoring redundant information
• Repeating important sentences

🕮 7.3.6

Multimodal semantic model

The Multimodal Semantic Model is a sophisticated summarization technique that
utilizes an object-based knowledge representation to create structured summaries.
In this approach, text is broken down into nodes and links. Nodes represent individual
concepts, while links show the relationships between these concepts, forming a
network of interconnected ideas. This structure allows the summarizer to capture
the core ideas within the text in an organized manner, enhancing the readability and
cohesion of the resulting summary.

An information density metric is used to evaluate and score the significance of
concepts within the text. This metric considers several factors, such as the
completeness of ideas, the relationships between nodes, and the frequency of term
occurrences. Important concepts are prioritized based on these scores, which
ensures that the summary includes the most relevant and essential information
without redundancy.

Once key concepts are identified, they are transformed into coherent sentences that
form the final summary. By focusing on concept relationships and term significance,
the Multimodal Semantic Model excels at producing summaries that are not only
concise but also maintain the intended meaning of the original text, making it highly
useful for applications that require precise and detailed information retention.

📝 7.3.7

In the Multimodal Semantic Model, what do the links represent?

• Relationships between concepts
• Individual terms
• Sentence scores
• Irrelevant information

Extraction and Abstraction | FITPED AI

154

📝 7.3.8

What factors does the information density metric consider in the Multimodal
Semantic Model?

• Completeness of ideas
• Frequency of term occurrences
• Sentence length
• Grammar and syntax

🕮 7.3.9

Semantic text representation model

The Semantic Text Representation Model is a summarization approach that focuses
on the semantic content of words rather than their syntactic arrangement. Unlike
traditional methods that rely on word positioning or structure, this model delves into
the meaning behind words and phrases, analyzing the inherent concepts within the
text. By interpreting semantic relationships, this model generates summaries that
reflect the intended message of the original material more effectively.

In practice, the Semantic Text Representation Model works by identifying key
concepts and ideas and examining the connections between them. These
connections help the summarizer understand the underlying themes of the text,
making it possible to condense content while preserving its core meaning. This
method is especially beneficial when summarizing texts that contain nuanced
language or multiple layers of meaning.

The Semantic Text Representation Model is particularly valuable in fields that require
a deep understanding of context, such as legal or academic texts. It prioritizes
semantic understanding over mere word frequency, which enables it to produce
summaries that are accurate and contextually relevant, capturing both the explicit
and implicit information within a document.

📝 7.3.10

What is the main focus of the Semantic Text Representation Model?

• Understanding the meaning behind words
• Counting sentence length
• Using only sentence structure
• Relying on word frequency alone

Extraction and Abstraction | FITPED AI

155

📝 7.3.11

Which features are central to the Semantic Text Representation Model?

• Focus on semantics of words
• Preservation of core meaning
• Only syntax and structure
• Surface-level word frequency

Keyword Extraction

Chapter 8

Keyword Extraction | FITPED AI

157

8.1 Introduction

🕮 8.1.1

Keyword extraction is a summarization technique designed to capture essential
words or phrases from a document, making it easier to understand the document's
core themes without reading it in full. This process identifies a small but
representative set of terms, known as key phrases, which succinctly convey the
document's main ideas. Keyword extraction is widely applied in content management
fields, including search engine optimization, advertising, and recommendation
systems, to ensure relevant information is highlighted. For instance, when a user
encounters an ad or webpage with well-selected keywords, they are more likely to
find the content useful and engaging.

The primary goal of keyword extraction is to save time by efficiently conveying the
main ideas within extensive text. Key phrases streamline the information for the end
user, which is particularly valuable in our fast-paced, data-saturated environment. As
a result, keyword extraction has become a fundamental tool for professionals across
industries, especially in contexts where quickly grasping content is critical.

There are two main approaches to keyword extraction: simple statistical methods
and machine learning-based techniques. Statistical methods use frequency and
distribution patterns to select keywords, while machine learning methods apply
trained models to recognize important phrases. By leveraging both approaches,
systems can deliver accurate and contextually relevant keyword sets, improving
content management and search efficiency.

📝 8.1.2

Which field frequently uses keyword extraction for better content management?

• Search engine optimization
• Financial reporting
• Legal drafting
• Physics simulations

📝 8.1.3

What are some common applications of keyword extraction?

• Content management
• Recommendation systems
• Real estate pricing
• Network security analysis

Keyword Extraction | FITPED AI

158

🕮 8.1.4

Types of keyword extraction approaches

Keyword extraction techniques are generally divided into two primary categories:
simple statistical approaches and machine learning-based approaches. Statistical
approaches focus on identifying keywords based on word frequency, co-occurrence,
and other straightforward metrics. This means that frequently appearing or highly
associated words are more likely to be selected as keywords. These methods are
computationally efficient, making them popular in scenarios where quick keyword
extraction is needed without extensive processing.

Machine learning-based approaches, on the other hand, involve training algorithms
to recognize keywords based on patterns within a training dataset. These models are
typically more accurate than simple statistical methods because they are tailored to
specific contexts and learn from annotated data to make refined predictions.
Machine learning approaches can identify keywords even in complex language
structures by using labeled examples that guide the model to discern important
terms.

In addition to these two categories, several hybrid approaches combine both
statistical and machine learning techniques, resulting in more precise keyword
extraction. For instance, hybrid methods may use statistical filters to pre-select
potential keywords, then apply machine learning to fine-tune the list. By combining
strengths from both approaches, hybrid methods offer a balanced solution that
provides both speed and contextual accuracy.

📝 8.1.5

Which of the following are main types of keyword extraction approaches?

• Simple statistical approaches
• Machine learning-based approaches
• Mathematical modeling
• Heuristic sorting

📝 8.1.6

What do machine learning-based approaches in keyword extraction rely on?

• Pattern recognition in training data
• Frequency of stop words
• Random word selection
• Simple word counting

Keyword Extraction | FITPED AI

159

🕮 8.1.7

Preprocessing

Preprocessing text is an essential step in preparing documents for keyword
extraction, as it cleans and standardizes the text for optimal results. One of the first
steps in preprocessing is the removal of stop words—common words like “and,” “the,”
and “in” that do not carry specific meaning. Stop words, although frequently
occurring, do not contribute to the core message of a text and can clutter keyword
extraction if left unfiltered. Many libraries, such as the Natural Language Toolkit
(NLTK) in Python, provide extensive lists of stop words for different languages,
simplifying this step.

Another crucial preprocessing step is converting all text to lowercase. This step
prevents keywords from being duplicated due to case sensitivity, where “Keyword”
and “keyword” might both be considered unique keywords. By converting the entire
text to lowercase, we ensure a consistent format, enabling algorithms to identify
keywords more accurately.

Finally, the removal of punctuation and special characters is necessary, especially
when processing informal text such as social media content. Characters like
hashtags, emojis, or unusual symbols often carry little to no semantic meaning and
could distort keyword extraction if included. These preprocessing steps work
together to enhance keyword extraction by ensuring only meaningful words are
considered, resulting in cleaner, more relevant keywords.

📝 8.1.8

What are some standard preprocessing steps for keyword extraction?

• Removing stop words
• Lowercasing text
• Increasing punctuation frequency
• Doubling key phrases

8.2 Statistical approaches

🕮 8.2.1

Simple statistical approaches in keyword extraction focus on analyzing word
frequency and distribution within a text. These methods operate under the
assumption that frequently occurring words or terms that appear together are likely
to be essential to the text’s meaning. One common statistical method is Term
Frequency-Inverse Document Frequency (TF-IDF), which evaluates a word’s
importance based on how often it appears in a document relative to its occurrence
across a set of documents. This way, words that are significant within the context of
the document are highlighted as potential keywords.

Keyword Extraction | FITPED AI

160

Statistical approaches are particularly effective for quick, general keyword extraction
since they rely on straightforward calculations rather than complex algorithms. For
example, TF-IDF can be applied to identify terms that are unique to a particular article
within a large set of documents, helping distinguish specialized topics or unique
themes.

While statistical methods are easy to implement and efficient in processing time,
they may not fully capture the context or nuanced meaning of a text. This is where
machine learning-based methods often outperform simple statistical methods by
providing richer and more context-aware keyword selections.

📝 8.2.2

Which are characteristics of statistical keyword extraction methods?

• Relies on frequency and co-occurrence
• Offers computational efficiency
• Requires complex training data
• Depends on image recognition

🕮 8.2.3

Statistical approaches extract keywords by using statistical functions such as TF-
IDF (Term Frequency-Inverse Document Frequency), n-gram statistics, word co-
occurrences, and other statistics. Most statistical approaches are language-
independent, meaning that they can be used for texts in a language if a large enough
corpus is available. In addition to applicability to active language, speed is an
indisputable advantage of statistical approaches. algorithms are rather faster in
contrast to approaches that are based on machine learning.

TF-IDF (Term Frequency - Inverse Document Frequency)

TF-IDF is one of the most well-known possible approaches to find important words
from a document. TF-IDF talks about the importance of the words in the document
in relation to the entire corpus. It is already clear from the name of the approach that
this approach is composed of two components, namely the TF component and the
IDF component.

The TF (Term Frequency) component expresses how often (frequency) a given word
occurs in a document from the corpus. it is usually normalized by dividing the
document's word count to avoid overestimating long documents, where the search
term may appear more often than shorter ones, without making the document more
relevant. Therefore, we obtain the TF component according to the following, where
the number of occurrences of the word ti in the document is not dj. The denominator
expresses the sum of the number of occurrences of all words in the document.

Keyword Extraction | FITPED AI

161

IDF (Inverse Document Frequency) talks about specific words. In principle, it can be
said that the more often a word occurs in documents, the less important it is (a word
that occurs in all documents, such as the English article "the" or the Slovak
conjunction "a", is mostly unusable in searches). We calculate the IDF for the word i
using the formula below, where |D| represents the number of documents in which we
search and |{j : ti ϵ dj}| is the number of documents that contain the word i.

📝 8.2.4

TF-IDF talks about the importance of the words in the document in relation to the
entire corpus

• True
• False

🕮 8.2.5

RAKE (Rapid Automatic Keyword Extraction)

RAKE (Rapid Automatic Keyword Extraction) is a statistical approach that has gained
significant popularity in keyword extraction due to its efficiency and simplicity. The
core idea behind RAKE is that important keywords often consist of multiple words,
such as "good camera" or "quality sound," rather than isolated single words. This
approach is particularly useful when dealing with multi-word phrases, which are
frequently seen in customer feedback, product reviews, and other domain-specific
texts. Unlike many other methods, RAKE does not rely on word frequency alone but
on the co-occurrence of words within the same context, which makes it particularly
adept at extracting meaningful phrases.

The RAKE algorithm works by first removing stop words (e.g., "and," "the," "is") and
punctuation from the text, ensuring that only content-carrying words remain. Once
this preprocessing is complete, the algorithm builds a co-occurrence matrix, which
calculates how often words appear together in the same context. For example, in a
product review, phrases like "good camera" might frequently appear together, making
them a strong candidate for keyword extraction. The co-occurrence matrix helps
identify these significant word pairs (or n-grams), highlighting those combinations
that occur most frequently within the text.

One of the key advantages of RAKE is its ability to efficiently process large texts
without the need for complex training data or heavy computational resources. It

Keyword Extraction | FITPED AI

162

focuses on word co-occurrence patterns, making it highly effective in domains where
context and relationships between terms are crucial. However, while RAKE is
relatively simple, its performance can vary depending on the quality of the input text
and the relevance of the co-occurring words. Despite this, RAKE remains a popular
choice for extracting meaningful keywords in many real-world applications, such as
customer feedback analysis, document summarization, and more.

The input to the algorithm is the text cleaned of trace words and punctuation. The
algorithm then calculates the co-occurrence matrix.

Each word is then assigned a score. The degree of the word in the matrix is calculated
- the sum of the number of common occurrences divided by the frequency of their
occurrence. Frequency of occurrence means how many times a word occurs in the
corpus.

The final score for the identified key phrases will be the sum of the scores of the
individual words that the key phrase contains. So for the keyword phrase "feature
extraction" the value will be equal to 4.66.

Keyword Extraction | FITPED AI

163

📝 8.2.6

What is the basis of the RAKE algorithm?

• co-occurrences of words
• cosine similarity
• frequency of words in text

📝 8.2.7

Project: Implementation of the RAKE algorithm

To implement the RAKE algorithm, we will first start the nltk library, rake-nltk. After
installation, we can import the libraries. Lists of stop words are available on various
websites. We could download any of them and implement it in our code as a letter.
However, we can also use the list of stop words offered by the nltk library. In our
case, we will show the extraction of keywords from simple text, which will be stored
in a string variable.

We will have to tokenize this text into sentences, for which we will use the Punkt
Sentence Tokenizer, which divides the text into a list of sentences. We have the
following text: "Text summarization is a method which belongs to the area of Natural
Language Processing. Keyword extraction is a process of obtaining the most
important keywords in a document. Keyword extraction is usefull text summarization
technique." Let's save this text as a string variable. Let's just convert this text to
lowercase letters. Let's save a list of our stop words in the stop_words variable.

import nltk

from rake_nltk import Rake

nltk.download('stopwords')

from nltk.corpus import stopwords

nltk.download('punkt')

text = "Text summarization is a method which belongs to the

area of Natural Language Processing. Keyword extraction is a

process of obtaining the most important words in document.

Keyword extraction is usefull text summarization technique."

text = text.lower()

stop_words = nltk.corpus.stopwords.words('english')

Program output:
[nltk_data] Downloading package stopwords to

/home/johny/nltk_data...

[nltk_data] Package stopwords is already up-to-date!

Keyword Extraction | FITPED AI

164

[nltk_data] Downloading package punkt to

/home/johny/nltk_data...

[nltk_data] Package punkt is already up-to-date!

In the rake_extractor variable, we initialize the Rake class that will perform the
extraction. The stopwords parameter specifies a list of words to be removed from
the text. The range of n-grams, i.e. the number of words we want our keywords to
contain, is determined by the min_length parameter, which defines the minimum
number of words that phrases must contain, and the max_length parameter, which
defines the maximum number of words. words that the extracted key phrases may
contain. In our case, we want phrases that have exactly two words. The
include_repeated_phrases parameter specifies whether we want the extracted
keywords to be repeated in the result. We then call the function
extract_keywords_from_text which will accept our variable named text as a
parameter.

Initialize the RAKE extractor

rake_extractor = Rake(stopwords = stop_words, min_length=2,

max_length=2, include_repeated_phrases=False)

Extract keywords from the input text

rake_extractor.extract_keywords_from_text(text)

Get the ranked phrases with their scores

ranked_phrases = rake_extractor.get_ranked_phrases()

Output the ranked keyword phrases with their relevance

scores

print(ranked_phrases)

Program output:
['text summarization', 'keyword extraction', 'important

words']

and to get the keywords we will use the get_ranked_phrases or
get_ranked_phrases_with_scores method depending on whether we want to see the
rank scores for our keywords as well.

print(rake_extractor.get_ranked_phrases_with_scores())

Program output:
[(4.0, 'text summarization'), (4.0, 'keyword extraction'),

(4.0, 'important words')]

Keyword Extraction | FITPED AI

165

🕮 8.2.8

YAKE

YAKE (Yet Another Keyword Extractor) is another advanced keyword extraction
method that uses the TF-IDF technique. However, YAKE introduces a more nuanced
approach to extracting keywords by incorporating several additional features that
enhance the accuracy of keyword selection. YAKE stands out by using a combination
of both TF-IDF scores and new statistical features to better capture the context and
importance of candidate keywords in a document.

YAKE works by analyzing the location and frequency of candidate words within a
document. The method uses five key features to calculate the importance of each
word:

1. WC (Word Case): This feature reflects the case of the candidate word. Words
that appear in uppercase or as part of titles may be considered more
important because they often represent key concepts or proper nouns.

2. WP (Word Position): This factor emphasizes the position of the word in the
document. Words that appear near the beginning of the document are given
more importance because they often introduce main topics.

3. WF (Word Frequency): This feature reflects how frequently a word appears
within the document. Words that are mentioned more often are assumed to
be more relevant to the overall context of the document.

4. WRC (Word-Related Context): This feature measures the relatedness of a
candidate word to other words in its context. If a word is surrounded by
different or important words, it is considered to be more significant.

5. WD (Word Distribution in Sentences): This feature looks at how often the
candidate word appears across different sentences. Words that appear
across multiple sentences are deemed to represent broader concepts and
are therefore given higher scores.

By considering these five features in addition to the traditional TF-IDF score, YAKE
can provide a more comprehensive and context-sensitive evaluation of keywords.
This makes YAKE particularly useful in extracting keywords from documents with
complex structures or varied content, where the position, frequency, and context of
words play an important role in determining their significance.

These five values are combined to calculate S(w) as shown in the formula below.

Finally, the final S(kw) of each candidate word is calculated using the 3-gram model
as shown in the following equation, where kw represents the candidate word and TF
represents the frequency of the key phrase. The smaller the value of S(kw), the more
likely it is that kw will be a key phrase.

Keyword Extraction | FITPED AI

166

📝 8.2.9

Project: Implementation of the YAKE algorithm

Implement the YAKE (Yet Another Keyword Extractor) algorithm for automatic
keyword extraction from a given text document. The YAKE method calculates
keyword scores based on several features like word frequency, position, case, and
context in the document.

import string

import nltk

from collections import Counter

import math

Download NLTK stopwords if not already downloaded

nltk.download('stopwords')

nltk.download('punkt')

from nltk.corpus import stopwords

from nltk.tokenize import word_tokenize, sent_tokenize

Program output:
[nltk_data] Downloading package stopwords to

/home/johny/nltk_data...

[nltk_data] Package stopwords is already up-to-date!

[nltk_data] Downloading package punkt to

/home/johny/nltk_data...

[nltk_data] Package punkt is already up-to-date!

1. Preprocessing

• Converts text to lowercase to avoid case sensitivity issues.
• Removes punctuation to ensure that symbols do not affect the keyword

extraction.
• Removes stopwords (common words like "the", "is", etc.) that don't add much

value to the meaning of the text.

Step 1: Preprocess the Text

def preprocess_text(text):

 # Convert text to lowercase

 text = text.lower()

Keyword Extraction | FITPED AI

167

 # Remove punctuation

 text = text.translate(str.maketrans('', '',

string.punctuation))

 # Tokenize the text into words

 words = word_tokenize(text)

 # Remove stopwords

 stop_words = set(stopwords.words('english'))

 filtered_words = [word for word in words if word not in

stop_words]

 return filtered_words, text

2. Calculate Term Frequency (TF)

• Counts the frequency of each word and normalizes it by dividing by the total
number of words in the text

Step 2: Calculate Term Frequency (TF)

def compute_tf(words):

 tf = Counter(words)

 total_words = len(words)

 tf_scores = {word: count / total_words for word, count in

tf.items()}

 return tf_scores

3. Word Position (WP):

• Calculates the average position of each word in the sentences of the
document. Words that appear earlier in the document are given higher
importance.

Step 3: Calculate Word Position (WP)

def compute_wp(text, words):

 sentences = sent_tokenize(text)

 wp_scores = {}

 for word in words:

 positions = []

 for i, sentence in enumerate(sentences):

 if word in sentence.lower():

 positions.append(i)

Keyword Extraction | FITPED AI

168

 wp_scores[word] = sum(positions) / len(positions) if

positions else 0

 return wp_scores

4. Word Frequency (WF):

• Counts how many times each word appears in the document, higher
frequency means higher importance.

Step 4: Calculate Word Frequency (WF)

def compute_wf(words):

 word_count = Counter(words)

 return word_count

5. Word Related Context (WRC):

• Analyzes the context in which a word appears by looking at its co-occurrence
with other words in the same sentence. More diverse context usually implies
higher importance.

Step 5: Calculate Word Related Context (WRC)

def compute_wrc(text, words):

 sentences = sent_tokenize(text)

 wrc_scores = {}

 for word in words:

 related_words = set()

 for sentence in sentences:

 if word in sentence.lower():

 sentence_words = set(word_tokenize(sentence))

 related_words.update(sentence_words)

 wrc_scores[word] = len(related_words)

 return wrc_scores

6. Word Distribution (WD):

• Measures how spread out a word is across different sentences. A word that
appears in multiple sentences tends to be more relevant to the overall
document.

Step 6: Calculate Word Distribution (WD)

def compute_wd(text, words):

 sentences = sent_tokenize(text)

Keyword Extraction | FITPED AI

169

 wd_scores = {}

 for word in words:

 sentence_count = 0

 for sentence in sentences:

 if word in sentence.lower():

 sentence_count += 1

 wd_scores[word] = sentence_count / len(sentences)

 return wd_scores

7. Rank Keywords:

• Combines all the computed scores and ranks the keywords based on their
final scores.

Step 7: Rank Keywords with YAKE Features

def yake_ranking(tf_scores, wp_scores, wf_scores, wrc_scores,

wd_scores):

 keyword_scores = {}

 for word in tf_scores:

 # Calculate a combined score based on all features

(you can add weights here)

 score = (tf_scores[word] + wp_scores.get(word, 0) +

 wf_scores[word] + wrc_scores.get(word, 0) +

 wd_scores.get(word, 0))

 keyword_scores[word] = score

 # Rank keywords by score (higher is better)

 ranked_keywords = sorted(keyword_scores.items(),

key=lambda x: x[1], reverse=True)

 return ranked_keywords

• and run:

Example Text

text = """

Keyword extraction is an important task in Natural Language

Processing.

The goal is to extract the most relevant words or phrases that

represent the content of the document.

Keyword Extraction | FITPED AI

170

YAKE is a keyword extraction technique that uses several

features to evaluate the importance of a word.

"""

Preprocess text

filtered_words, processed_text = preprocess_text(text)

Compute TF, WP, WF, WRC, and WD features

tf_scores = compute_tf(filtered_words)

wp_scores = compute_wp(processed_text, filtered_words)

wf_scores = compute_wf(filtered_words)

wrc_scores = compute_wrc(processed_text, filtered_words)

wd_scores = compute_wd(processed_text, filtered_words)

Rank keywords using YAKE

ranked_keywords = yake_ranking(tf_scores, wp_scores,

wf_scores, wrc_scores, wd_scores)

Display the ranked keywords

print("Ranked Keywords:")

for word, score in ranked_keywords:

 print(f"{word}: {score:.4f}")

Program output:
Ranked Keywords:

keyword: 36.0800

extraction: 36.0800

important: 35.0400

task: 35.0400

natural: 35.0400

language: 35.0400

processing: 35.0400

goal: 35.0400

extract: 35.0400

relevant: 35.0400

words: 35.0400

phrases: 35.0400

represent: 35.0400

content: 35.0400

document: 35.0400

yake: 35.0400

technique: 35.0400

uses: 35.0400

several: 35.0400

features: 35.0400

Keyword Extraction | FITPED AI

171

evaluate: 35.0400

importance: 35.0400

word: 35.0400

🕮 8.2.10

KP-Miner

The KP-Miner method is a more advanced technique for keyword extraction that
builds upon basic statistical methods like TF-IDF (Term Frequency-Inverse Document
Frequency). Unlike simpler methods that rely solely on frequency, KP-Miner
introduces additional steps and statistical functions to enhance keyword extraction,
making it especially useful for handling more complex documents. This method
consists of three key steps: candidate word selection, score calculation, and final
selection of keywords based on a combination of these scores.

1. In the first step, candidate words are selected from the document. These are
words that could potentially be important keywords. KP-Miner introduces
two key factors at this stage: the Least Allowable Seen Frequency (LASF)
factor, which ensures that only words that appear more than a specified
number of times (denoted as "n") in the document are considered
candidates. This prevents overly rare or irrelevant words from being
considered as key phrases. Additionally, the method introduces the CutOff
factor, which filters out words that appear after a certain position in the
document. If a word appears beyond this threshold, it is deemed less likely to
be important and is removed from the pool of candidates.

2. The second step involves calculating a score for each candidate word. This
score is typically based on both the frequency of the word in the document
and its importance across a larger corpus. The TF-IDF score is commonly
used to determine how important a word is within the context of the
document compared to other documents in the corpus. The higher the TF-
IDF score, the more relevant the word is considered.

3. Finally, in the third step, the candidate words are ranked by their calculated
scores. The words with the highest scores are selected as the final
keywords. This combination of frequency-based filters and statistical
scoring ensures that the keywords extracted are both relevant and
representative of the document's main topics.

The KP-Miner method is particularly useful for long and complex documents because
it filters out less relevant terms early in the process and uses statistical scoring to
ensure that the most meaningful terms are selected. By combining multiple
statistical techniques, it achieves more accurate and contextually relevant keyword
extraction compared to simpler methods.

Keyword Extraction | FITPED AI

172

📝 8.2.11

List the steps of the KP-miner algorithm

• TF calculation
• Calculation of candidate words
• Calculation of TF-IDF
• Calculation of IDF
• Calculation Factor of the lowest permissible frequency of vision and CutOff

📝 8.2.12

The difference between YAKE and KP-miner is that KP-miner uses candidate word
locations or TF-IDF information and introduces a new set of five features

• True
• False

📝 8.2.13

Project: Implementation of KP miner method

Implement the KP-Miner algorithm for keyword extraction from a text document. KP-
Miner is a more advanced method that uses Term Frequency-Inverse Document
Frequency (TF-IDF) to assess the importance of candidate phrases. The algorithm
includes three main steps: candidate selection, scoring of candidates, and final
keyword selection. It introduces two unique statistical functions to improve keyword
extraction: Least Allowable Seen Frequency (LASF) and CutOff.

import string

import nltk

from collections import Counter

import math

from nltk.tokenize import word_tokenize, sent_tokenize

from nltk.corpus import stopwords

Download necessary NLTK resources if not already downloaded

nltk.download('stopwords')

nltk.download('punkt')

Program output:
[nltk_data] Downloading package stopwords to

/home/johny/nltk_data...

[nltk_data] Package stopwords is already up-to-date!

Keyword Extraction | FITPED AI

173

[nltk_data] Downloading package punkt to

/home/johny/nltk_data...

[nltk_data] Package punkt is already up-to-date!

1. Preprocessing:

• Converts text to lowercase and removes punctuation and stopwords to avoid
irrelevant words affecting the keyword extraction.

Step 1: Preprocess the Text

def preprocess_text(text):

 text = text.lower() # Convert text to lowercase

 text = text.translate(str.maketrans('', '',

string.punctuation)) # Remove punctuation

 words = word_tokenize(text) # Tokenize the text into

words

 stop_words = set(stopwords.words('english'))

 filtered_words = [word for word in words if word not in

stop_words] # Remove stopwords

 return filtered_words

2. Compute Term Frequency (TF)

• Computes how frequently each word appears in the document. Higher
frequency indicates that a word is more important.

Step 2: Compute Term Frequency (TF)

def compute_tf(words):

 tf = Counter(words)

 total_words = len(words)

 tf_scores = {word: count / total_words for word, count in

tf.items()}

 return tf_scores

3. Compute Inverse Document Frequency (IDF)

• Calculates the IDF score for each word based on how often it appears in the
entire corpus. Words that are common across documents get lower IDF
scores, while rare words get higher scores.

Step 3: Compute Inverse Document Frequency (IDF)

def compute_idf(corpus, word):

Keyword Extraction | FITPED AI

174

 num_docs_containing_word = sum(1 for doc in corpus if word

in doc)

 return math.log(len(corpus) / (num_docs_containing_word +

1))

4. Compute TF-IDF Score

• Combines the TF and IDF scores to give a weighted importance score for
each word.

Step 4: Compute TF-IDF Score

def compute_tfidf(tf_scores, idf_scores):

 tfidf_scores = {}

 for word, tf_score in tf_scores.items():

 tfidf_scores[word] = tf_score * idf_scores.get(word,

0)

 return tfidf_scores

5. Select Candidate Words

• LASF (Least Allowable Seen Frequency): Ensures that only words that
appear more than a certain number of times (threshold) in the document are
considered as candidates.

• CutOff: Discards words that appear after a specified position in the
document to filter out less relevant terms.

Step 5: Select Candidate Words Using LASF and CutOff

def select_candidates(filtered_words, tfidf_scores,

original_text, cutoff_position=2, lasf_threshold=1):

 candidate_words = {}

 # Apply Least Allowable Seen Frequency (LASF)

 word_frequency = Counter(filtered_words)

 for word, freq in word_frequency.items():

 if freq >= lasf_threshold:

 candidate_words[word] = tfidf_scores.get(word, 0)

 # Apply CutOff - Discard words that appear after the

cutoff position in the document

 sentences = sent_tokenize(original_text)

 cutoff_words = set()

 for i, sentence in enumerate(sentences[:cutoff_position]):

 for word in word_tokenize(sentence):

 cutoff_words.add(word.lower())

Keyword Extraction | FITPED AI

175

 candidate_words = {word: score for word, score in

candidate_words.items() if word in cutoff_words}

 return candidate_words

6. Rank Keywords:

• Rank the candidate words based on their final score. The words with the
highest score are considered the most important keywords.

Step 6: Rank Keywords Based on Their Scores

def rank_keywords(candidate_words):

 ranked_keywords = sorted(candidate_words.items(),

key=lambda x: x[1], reverse=True)

 return ranked_keywords

• and run:

Example corpus for testing the function

corpus = [

 "Keyword extraction is an essential process in natural

language processing.",

 "KP-Miner is a keyword extraction algorithm that uses TF-

IDF and additional statistical methods.",

 "In the KP-Miner algorithm, candidate words are selected

based on frequency and position within the document."

]

Preprocess the corpus and extract words from all documents

all_filtered_words = [preprocess_text(doc) for doc in corpus]

Compute the IDF score for each word in the entire corpus

idf_scores = {}

all_words = set(word for doc in all_filtered_words for word in

doc)

for word in all_words:

 idf_scores[word] = compute_idf(all_filtered_words, word)

Initialize a list to store tfidf_scores for each document

separately

all_tfidf_scores = []

For each document, compute the TF and TF-IDF scores

Keyword Extraction | FITPED AI

176

for i, doc in enumerate(all_filtered_words):

 tf_scores = compute_tf(doc)

 tfidf_scores = compute_tfidf(tf_scores, idf_scores)

 all_tfidf_scores.append(tfidf_scores)

Apply LASF and CutOff to select candidate words for each

document in the corpus

for i, (doc, tfidf_scores, original_text) in

enumerate(zip(all_filtered_words, all_tfidf_scores, corpus)):

 candidate_words = select_candidates(doc, tfidf_scores,

original_text)

 ranked_keywords = rank_keywords(candidate_words)

 # Display the ranked keywords with their scores

 print(f"\nRanked Keywords for Document {i + 1}:")

 for word, score in ranked_keywords:

 print(f"{word}: {score:.4f}")

Program output:
Ranked Keywords for Document 1:

essential: 0.0579

process: 0.0579

natural: 0.0579

language: 0.0579

processing: 0.0579

keyword: 0.0000

extraction: 0.0000

Ranked Keywords for Document 2:

uses: 0.0451

additional: 0.0451

statistical: 0.0451

methods: 0.0451

keyword: 0.0000

extraction: 0.0000

algorithm: 0.0000

Ranked Keywords for Document 3:

candidate: 0.0405

words: 0.0405

selected: 0.0405

based: 0.0405

frequency: 0.0405

position: 0.0405

within: 0.0405

Keyword Extraction | FITPED AI

177

document: 0.0405

algorithm: 0.0000

8.3 Graph based approaches

🕮 8.3.1

In keyword extraction, graph-based approaches leverage the structure of a graph to
identify important terms or phrases in a document. These methods treat the words
or phrases as nodes in a graph, where edges represent relationships between them
based on co-occurrence, proximity, or semantic similarity. By incorporating global
information from the entire document, graph-based algorithms can capture more
complex relationships than local methods. Unlike simpler methods, which rely solely
on individual words or statistical counts, graph-based methods consider both local
and global information to rank words or phrases based on their overall importance in
the context of the entire document.

📝 8.3.2

Which of the following are characteristics of graph-based approaches in keyword
extraction?

• They treat words or phrases as nodes in a graph, connected by edges.
• They incorporate global information from the entire document.
• They rely on statistical counts of individual words only.
• They only consider the co-occurrence of words within a single sentence.

🕮 8.3.3

PageRank

Many graph-based algorithms rely on the PageRank algorithm as their foundation.
Originally developed to rank web pages based on the quantity and quality of links
pointing to them, PageRank has been adapted for keyword extraction by ranking
words or phrases in a document according to their relationships with other terms. In
the context of keyword extraction, the goal is to identify which words or phrases are
most important by considering not just their frequency but also their contextual
connections with other terms in the text. These connections are often modeled as a
graph, where the weight of the edges represents the strength of the relationship
between two terms.

The PageRank algorithm operates recursively to rank nodes based on the importance
of the nodes they are connected to. The basic PageRank formula for keyword
extraction is similar to its original use in ranking web pages:

Keyword Extraction | FITPED AI

178

Where:

• PR(A) is the PageRank of page A,
• PR(Ti) is the PageRank of page Ti (the pages linking to A),
• C(Ti) is the number of links on page Ti,
• N is the total number of pages,
• d is the damping factor, which accounts for the probability that a user will

stop clicking on links (typically set around 0.85),
• 1−d / N represents a baseline probability that a page may be randomly

selected.

The damping factor d is a critical component, as it helps to mitigate the impact of
pages that have a large number of outgoing links, which could otherwise unfairly
skew the results. Additionally, it handles the situation where a page may not have any
incoming links, ensuring that every page still receives a minimum rank.

In summary, graph-based approaches like PageRank allow for the calculation of node
importance by incorporating both local and global structural information in the graph,
making them effective for tasks like web page ranking, recommendation systems,
and network analysis. The recursive nature of these algorithms ensures that they can
dynamically adjust based on the entire graph, leading to more accurate and
comprehensive results.

🕮 8.3.4

TextRank

TextRank applies the PageRank algorithm to a graph where vertices represent words
in a document. The edges between the words are weighted based on their co-
occurrence, proximity, and syntactic relationships within the text.

A distinctive feature of TextRank is its ability to handle different domains, languages,
and genres by incorporating deep linguistic knowledge or using annotated corpora.
Unlike the original PageRank algorithm, which assumes an unweighted graph,
TextRank works with a weighted graph to reflect the strength of relationships
between words. This is particularly important as natural language texts contain a rich
variety of relationships that must be captured effectively. TextRank is flexible and
can be adapted to various domains, making it highly transferable and useful in
multiple applications.

The first step in applying TextRank is tokenizing the input text and then annotating
the tokens with Part-of-Speech (POS) tags. Research has shown that TextRank

Keyword Extraction | FITPED AI

179

performs best when only nouns and adjectives are used as vertices. A syntactic filter
is applied to exclude other parts of speech, ensuring that only meaningful and
relevant words contribute to the graph's structure. This approach combines graph-
based methods with linguistic features, making TextRank a powerful tool for keyword
extraction across different types of text.

Here’s how the TextRank algorithm works step-by-step:

1. Text Preprocessing - before applying TextRank, the input text needs to be
preprocessed. This typically involves:Tokenization: Breaking the text into individual
words or phrases; POS Tagging: Annotating each word with its part of speech (noun,
verb, adjective, etc.). The TextRank algorithm typically focuses on nouns and
adjectives because they carry the most semantic meaning relevant to keyword
extraction; Syntactic Filtering: Filtering out parts of speech that are not useful for
keyword extraction, such as verbs or stop words, leaving nouns and adjectives to
form the vertices of the graph.

2. Constructing the Graph - In TextRank, the text is represented as a graph where
Vertices (nodes): The nodes of the graph represent words (or phrases) from the
document that are considered important for the task, typically nouns and adjectives;
Edges: Edges represent the relationships between words. These are created based
on co-occurrence within a certain window (i.e., words that appear in close proximity
to each other). This edge is weighted, with the strength of the relationship determined
by the frequency of co-occurrence.

3. Building the Weighted Graph - After the preprocessing steps, the graph is built
with the following details: Each word that remains after POS tagging and syntactic
filtering is a vertex; The edges between these vertices are weighted based on how
often the words co-occur or their semantic relationships. In some implementations,
semantic similarity measures (such as cosine similarity) can also be used to adjust
the weight of edges. In TextRank, the weight of the edge between two words is
typically computed as: Weight of an edge: Based on the co-occurrence frequency
between the two words in the document (or context window).

4. Applying the PageRank Algorithm - Once the graph is constructed, TextRank
applies the PageRank algorithm to this graph to rank the vertices (words or phrases)
based on their importance in the entire document. PageRank works iteratively by
updating the rank of each vertex based on the ranks of neighboring vertices: Each
vertex’s rank is computed by accumulating the rank of its neighbors, weighted by the
edges between them.

The formula for updating the rank of vertex Vi is:

where:

Keyword Extraction | FITPED AI

180

• R(Vi) is the rank of vertex Vi,
• d is the damping factor (usually set between 0.1 and 0.3),
• Vj represents neighboring vertices,
• C(Vj) is the number of outgoing edges from Vj,
• The sum represents the cumulative rank from neighboring vertices.

This process is repeated iteratively until the rank values converge (i.e., the ranks stop
changing significantly between iterations).

5. Selecting the Key Phrases - After applying the PageRank algorithm, the vertices
(words or phrases) are ranked based on their importance scores. The words/phrases
with the highest ranks are considered the most important keywords or key phrases
in the document. Typically, the top-ranked words are extracted as key terms or
phrases that summarize the content of the document.

📝 8.3.5

Which of the following are true about the TextRank algorithm?

• TextRank applies a syntactic filter to exclude parts of speech other than
nouns and adjectives.

• The algorithm uses a weighted graph based on co-occurrence and syntactic
relationships between words.

• TextRank uses an unweighted graph, like the original PageRank algorithm.
• TextRank is not applicable to different domains or languages.

📝 8.3.6

The difference between the TextRank and PageRank algorithms is the weight
assigned based on the two words in the predefined window and the number of words
the algorithms keep as potential keywords.

• yes
• no

🕮 8.3.7

SingleRank

SingleRank is an extension of the TextRank algorithm, which itself is based on the
PageRank algorithm. While SingleRank shares many similarities with TextRank, there
are two key differences that set it apart and affect its performance in keyword
extraction tasks.

Keyword Extraction | FITPED AI

181

1. Edge Weighting Based on Word Distance

Like TextRank, SingleRank constructs a graph where vertices represent words, and
edges represent relationships between words based on their co-occurrence in the
document. However, unlike TextRank, which considers the co-occurrence of words
in a predefined window without accounting for the distance between them,
SingleRank assigns weights to edges based on the distance between two co-
occurring words. This means that words that appear close to each other in the
document will have stronger connections (higher weights), reflecting a more
significant relationship between them.

For example, in the sentence "The dog chased the cat," the words "dog" and "chased"
would be connected with a higher weight because they are closer together, indicating
a stronger semantic connection. Conversely, words that are farther apart in the text
may be assigned a lower edge weight.

2. Retention of All Keywords

Another key difference between SingleRank and TextRank is how they handle the
number of extracted keywords. In TextRank, the top-ranked 30% of words or phrases
are typically selected as the final key terms, based on their PageRank scores. This
means that only the most important terms are kept.

In contrast, SingleRank keeps all the words after running the PageRank algorithm,
rather than just the top-ranked ones. This approach leads to a broader set of
keywords, ensuring that more terms are retained, which can be useful in contexts
where a larger pool of keywords is desired or where all terms are relevant for further
analysis.

Steps in the SingleRank Algorithm

1. Text Preprocessing: Like TextRank, the first step in SingleRank is text
preprocessing, which includes tokenization and POS tagging. Words are filtered
based on their syntactic roles (e.g., nouns and adjectives are kept as vertices).

2. Graph Construction: A graph is built where:

• Vertices represent the filtered words (nouns and adjectives).
• Edges are formed based on word co-occurrence, with additional weight given

to words that appear closer together in the text (based on a predefined
window size).

3. PageRank Algorithm: The PageRank algorithm is applied to the graph to rank the
importance of each word. Each word's rank is influenced by its connections with
other words in the document, considering both local co-occurrence and the distance
between words.

Keyword Extraction | FITPED AI

182

4. Selection of Keywords: Unlike TextRank, where only the top 30% of ranked words
are selected, SingleRank retains all the words as potential keywords after running the
PageRank algorithm. This ensures that a larger set of keywords is considered.

Key features of SingleRank

• Distance-Aware Edge Weights: By factoring in the distance between co-
occurring words, SingleRank refines the relationship between words and
improves the accuracy of keyword extraction, especially for longer
documents.

• Broader Keyword Set: By keeping all the words rather than just the top-
ranked 30%, SingleRank offers a more exhaustive list of keywords, which can
be useful for tasks that require a wide range of terms.

• Simplicity and Efficiency: Like TextRank, SingleRank is unsupervised,
meaning it does not require labeled data or extensive training, making it
simple to implement and use.

📝 8.3.8

What is the main difference between SingleRank and TextRank?

• SingleRank assigns edge weights based on word distance, while TextRank
does not.

• SingleRank retains only the top 30% of ranked words, while TextRank retains
all words.

• SingleRank uses only adjectives for keyword extraction, while TextRank uses
all parts of speech.

• SingleRank does not use the PageRank algorithm, while TextRank does.

🕮 8.3.9

TopicRank

The TopicRank algorithm is another graph-based method used for keyword
extraction. Unlike TextRank and SingleRank, which focus on individual words or word
relationships, TopicRank targets extracting key phrases that represent topics present
throughout the document. The algorithm assumes that key phrases related to the
same topic are important for summarizing the document. Therefore, it ranks these
key phrases based on their relevance and importance within the document.

The TopicRank algorithm involves three main steps: identifying topics, chart-based
assessment, and keyword selection.

1. The first step is to identify topics within the document, which are groups of
related key phrases that represent a central theme.

2. Once the topics are identified, a chart-based assessment step assigns
relevance scores to different topics and their associated key phrases.

Keyword Extraction | FITPED AI

183

3. Finally, in the keyword selection step, the algorithm chooses the most
relevant key phrase for each identified topic.

This process is achieved using different strategies, such as selecting the most
frequent key phrase, choosing the key phrase that appears first in the document, or
selecting the key phrase that represents the centroid of the cluster.

Topic identification strategies

There are three strategies used in TopicRank to select the most representative key
phrase for each topic. The first strategy involves converting all key phrases back to
their generic form and selecting the first one that appears in the document. The
second strategy selects the most frequent key phrase, assuming that frequent
phrases are more relevant to the overall topic. The third strategy is based on
selecting the key phrase closest to the centroid of the cluster, where the centroid
represents the central point or the most significant phrase in the group of related
phrases. This approach is useful when the document contains multiple overlapping
themes and helps in finding the most representative term for each topic.

📝 8.3.10

Sort the steps of the TopicRank algorithm

• keyword selection
• chart-based assessment
• topic identification

📝 8.3.11

Which of the following are strategies used by the TopicRank algorithm to select key
phrases?

• Choosing the key phrase that appears first in the document.
• Selecting the most frequent key phrase.
• Selecting the key phrase that has the highest TF-IDF score.
• Selecting the key phrase closest to the centroid of the cluster.

📝 8.3.12

Which of the following are strategies used by the TopicRank algorithm to select key
phrases?

• Choosing the key phrase that appears first in the document.
• Selecting the most frequent key phrase.
• Selecting the key phrase that has the highest TF-IDF score.
• Selecting the key phrase closest to the centroid of the cluster.

Keyword Extraction | FITPED AI

184

📝 8.3.13

Project: Implementing the TextRank algorithm

The aim is to identify and extract important keywords from a given text document by
leveraging the relationships between words in the document.

Importing necessary libraries

import spacy

from sklearn.metrics.pairwise import cosine_similarity

import numpy as np

Load the spaCy model for tokenization and POS tagging

nlp = spacy.load("en_core_web_sm")

1. Data Collection

• Collect or create a text document that you would like to extract keywords
from. For this example, we will use a sample text document.

Sample text to extract keywords from

text = """TextRank is a graph-based algorithm used for keyword

extraction. It ranks words based on their importance within a

text. TextRank uses graph-based methods and operates on

weighted graphs."""

Step 1: Preprocessing the text (tokenization, POS tagging,

stop word removal, lemmatization)

doc = nlp(text)

tokens = [token.lemma_ for token in doc if not token.is_stop

and not token.is_punct and token.pos_ in ["NOUN", "ADJ"]]

2. Preprocessing the Text

• Tokenization: Split the text into tokens (words).
• POS Tagging: Use Part-of-Speech (POS) tagging to filter out non-nouns and

adjectives, as they are considered key for extracting meaningful keywords.
• Remove Stop Words: Remove common stop words (e.g., "is", "and", "the")

from the token list to avoid unnecessary words.
• Lemmatization: Convert words to their base form.

Step 2: Constructing the graph (using co-occurrence of

words)

Keyword Extraction | FITPED AI

185

Create a co-occurrence matrix (size: n x n, where n is the

number of tokens)

word_count = len(tokens)

co_occurrence_matrix = np.zeros((word_count, word_count))

Calculate co-occurrence (based on window of 2 words)

window_size = 2

for i in range(word_count):

 for j in range(max(0, i - window_size), min(word_count, i

+ window_size + 1)):

 if i != j:

 co_occurrence_matrix[i][j] = 1

3. TextRank Algorithm Implementation

• Graph Construction: Build a graph where each word is a node, and edges
represent the relationships between words based on co-occurrence (i.e., the
words that appear near each other in the text).

• Weighted Graph: Assign weights to the edges based on the distance
between words in the text.

• PageRank Algorithm: Apply the PageRank algorithm to rank the nodes
(words) in terms of importance. Words with higher ranks will be considered
more important.

Step 3: Applying PageRank (using cosine similarity to weight

the edges)

cosine_sim = cosine_similarity(co_occurrence_matrix)

Initialize PageRank scores (using a simple uniform

distribution)

pagerank_scores = np.ones(word_count) / word_count

Damping factor for PageRank

damping_factor = 0.85

iterations = 100

PageRank algorithm: iterative process to calculate the rank

of each word

for _ in range(iterations):

 new_scores = (1 - damping_factor) / word_count +

damping_factor * np.dot(cosine_sim, pagerank_scores)

 pagerank_scores = new_scores

Keyword Extraction | FITPED AI

186

4. Extracting Keywords

• After running the PageRank algorithm, sort the words based on their rank
and select the top-ranking words as the extracted keywords.

Step 4: Extracting the top keywords based on their rank

keyword_ranks = [(tokens[i], pagerank_scores[i]) for i in

range(word_count)]

keyword_ranks_sorted = sorted(keyword_ranks, key=lambda x:

x[1], reverse=True)

• and run:

Top 5 keywords

top_keywords = keyword_ranks_sorted[:5]

Displaying the results

print("Top Keywords and their scores:")

for keyword, score in top_keywords:

 print(f"{keyword}: {score}")

Program output:
Top Keywords and their scores:

importance: 1.6474711062025287e+47

word: 1.5133000924445996e+47

text: 1.5133000924445996e+47

extraction: 1.28080457127524e+47

graph: 1.28080457127524e+47

8.4 Machine learning based approaches

🕮 8.4.1

Machine learning-based approaches to keyword extraction transform the task into a
classification or prediction problem. This process relies on supervised learning,
where a model trained on a labeled dataset determines if a candidate word in the text
qualifies as a keyword or not. By utilizing this data, machine learning methods
provide a more refined extraction, often capturing words with high semantic
relevance. These methods require less preprocessing of text and can yield keywords
that align closely with the document's meaning, which is a key advantage over
simpler, rule-based methods.

Keyword Extraction | FITPED AI

187

Despite their effectiveness, machine learning-based approaches also have certain
limitations. Models are often specific to the language and context of the training
data. This means that if the dataset changes or if keywords are required for a new
domain, the model may need to be retrained, which can be time-consuming and
resource-intensive. Furthermore, machine learning methods involve a higher
computational load than statistical approaches, leading to slower extraction times.

For tasks that demand both accuracy and semantic richness, machine learning-
based keyword extraction methods are highly effective. However, practitioners must
weigh the need for context-specific training and higher processing demands. When
used appropriately, machine learning approaches significantly enhance keyword
extraction by focusing on semantic alignment with the document's content.

📝 8.4.2

Which of the following is an advantage of machine learning-based keyword
extraction methods?

• High semantic relevance
• Reduced computational load
• General domain adaptability
• Simple rule-based processing

📝 8.4.3

What is a limitation of machine learning-based keyword extraction methods?

• Language and context dependency
• Higher computational load
• Requires extensive text preprocessing
• Minimal computational requirements

🕮 8.4.4

KeyBERT

KeyBERT is a widely used keyword extraction method that utilizes a pre-trained BERT
(Bidirectional Encoder Representations from Transformers) model. This technique
begins by converting the document into a set of fixed-size vectors that capture its
semantic meaning. KeyBERT then breaks down the document into smaller phrases
and identifies the candidate phrases that best represent its content. These vectors
are crucial because they provide a representation of the document's semantics,
enabling the extraction of keywords that align with the document’s core topics.

Next, candidate keywords are generated using simple statistical techniques, such as
term frequency and TF-IDF. These phrases are processed through the BERT model
to generate a phrase-level representation. This step is essential because it allows

Keyword Extraction | FITPED AI

188

KeyBERT to match the meaning of phrases closely with the content of the document,
rather than relying solely on frequency or position in the text.

Finally, KeyBERT computes the cosine similarity between the document-level and
phrase-level representations to identify the most relevant keywords. These keywords,
ranked by similarity scores, are chosen as the most representative of the document’s
content. The use of a semantic model like BERT makes KeyBERT particularly
effective in identifying keywords that are contextually accurate.

📝 8.4.5

What is the main purpose of the BERT model in KeyBERT?

• To create a semantic representation of the document
• To count word frequencies
• To calculate TF-IDF scores
• To simplify keyword generation

📝 8.4.6

List the steps of the KeyBERT algorithm

• Creating a phrase-level representation
• Creating a document-level representation
• Getting key phrases
• Selection of candidate phrases
• The document is sent to the BERT model
• Calculation of cosine similarity

🕮 8.4.7

KEA

KEA, one of the earliest machine learning-based keyword extraction methods,
employs a Naive Bayes classifier to evaluate the importance of candidate keywords.
In this approach, each candidate word is analyzed by calculating its TF-IDF score and
its first occurrence within the text. These values serve as inputs to the Naive Bayes
classifier, which then predicts the likelihood that a candidate word is a keyword. This
classification enables KEA to capture words that are not only frequently used but
also contextually significant within the document.

The TF-IDF calculation in KEA prioritizes words that appear often in a specific
document but are less common across other documents. This makes it an effective
measure for distinguishing words that are unique to the content. Additionally, the
model considers where the word first appears, based on the assumption that words
introduced earlier in the text may be more important.

Keyword Extraction | FITPED AI

189

While KEA offers a foundational method for keyword extraction, it has limitations in
handling more complex language patterns. However, it remains a useful model for
straightforward documents and demonstrates how early machine learning models
can aid in efficient keyword extraction.

📝 8.4.8

What feature does KEA use to classify a candidate word as a keyword?

• TF-IDF score
• Cosine similarity
• POS tagging
• Word embeddings

📝 8.4.9

Which classifier does KEA use in its keyword extraction method?

• Naive Bayes
• SVM
• Decision Tree
• Random Forest

📝 8.4.10

Project: KEA-based keyword extraction

Implement a KEA-based keyword extraction system that calculates TF-IDF values
and the first occurrence position of candidate phrases, then uses a Naive Bayes
classifier to determine whether a candidate phrase is a keyword. This system will
classify keywords based on these features using labeled training data.

import string

import nltk

import numpy as np

from sklearn.feature_extraction.text import TfidfVectorizer

from sklearn.model_selection import train_test_split

from sklearn.naive_bayes import MultinomialNB

from sklearn.metrics import classification_report

from nltk.corpus import stopwords

from nltk.tokenize import word_tokenize

Download necessary NLTK resources

nltk.download('punkt')

nltk.download('stopwords')

Keyword Extraction | FITPED AI

190

Program output:
[nltk_data] Downloading package punkt to

/home/johny/nltk_data...

[nltk_data] Package punkt is already up-to-date!

[nltk_data] Downloading package stopwords to

/home/johny/nltk_data...

[nltk_data] Package stopwords is already up-to-date!

1. Preprocessing

• The text is tokenized, cleaned, and stopwords are removed.

Preprocess text: tokenize, remove punctuation and stopwords

def preprocess_text(text):

 text = text.lower()

 text = text.translate(str.maketrans("", "",

string.punctuation))

 words = word_tokenize(text)

 stop_words = set(stopwords.words("english"))

 filtered_words = [word for word in words if word not in

stop_words]

 return filtered_words

2. TF-IDF Calculation

• Using TfidfVectorizer, we calculate the TF-IDF scores of candidate phrases in
the corpus.

Calculate TF-IDF scores for the corpus

def calculate_tfidf(corpus):

 vectorizer = TfidfVectorizer()

 tfidf_matrix = vectorizer.fit_transform(corpus)

 feature_names = vectorizer.get_feature_names_out()

 return tfidf_matrix, feature_names

Find the first occurrence position of a word in text

def get_first_occurrence_position(text, word):

 words = np.array(text.split())

 indices = np.where(words == word)[0]

 return indices[0] + 1 if indices.size > 0 else len(words)

Keyword Extraction | FITPED AI

191

3. Feature Extraction

• For each word, two features are generated: TF-IDF score and the first
occurrence position.

Extract features (TF-IDF score and first occurrence) for

each word

def extract_features(text, feature_names, tfidf_vector):

 features = []

 for word in feature_names:

 # Find the index of the word in feature_names using

np.where

 word_index = np.where(feature_names == word)[0][0]

 tfidf_score = tfidf_vector[0, word_index] # TF-IDF

value for the word

 first_occurrence = get_first_occurrence_position(text,

word) # First position

 features.append([tfidf_score, first_occurrence])

 return np.array(features)

4. Training the Classifier

• Using a Naive Bayes classifier, the model is trained on labeled data. Each
word in the corpus is labeled as either a keyword (1) or a non-keyword (0).

Sample corpus for testing the function

corpus = [

 "Machine learning-based approaches use supervised learning

for keyword extraction.",

 "KeyBERT is a keyword extraction model based on BERT

embeddings.",

 "KEA algorithm uses Naive Bayes classifier for keyword

extraction."

]

Preprocess the corpus and extract features

tfidf_matrix, feature_names = calculate_tfidf(corpus)

Labels (example labels) - tou need to corrext it

labels = [

 [1, 0, 1, 0, 1, 0, 1, 0], # Adjusted to match document's

feature count after preprocessing

 [1, 1, 0, 1, 0, 1, 0, 1], # Adjusted

 [1, 0, 1, 1, 0, 0, 1, 0] # Adjusted

Keyword Extraction | FITPED AI

192

]

Check and print feature extraction for each document

feature_data = []

all_labels = []

for i, doc in enumerate(corpus):

 tfidf_vector = tfidf_matrix[i]

 preprocessed_text = " ".join(preprocess_text(doc))

 features = extract_features(preprocessed_text,

feature_names, tfidf_vector)

 feature_data.append(features)

 all_labels.extend(labels[i]) # Flattened labels for each

document

Convert to numpy arrays

X = np.vstack(feature_data) # Feature matrix

y = np.array(all_labels) # Flattened labels

Debug print to check shapes

print("Shape of X (features):", X.shape)

print("Shape of y (labels):", y.shape)

Program output:
Shape of X (features): (63, 2)

Shape of y (labels): (24,)

5. Keyword Prediction

• The classifier is used to predict keywords in a new document by applying it
to the extracted features.

Train-test split (proceed only if shapes are consistent)

if X.shape[0] == y.shape[0]:

 X_train, X_test, y_train, y_test = train_test_split(X, y,

test_size=0.2, random_state=42)

 # Train Naive Bayes classifier

 classifier = MultinomialNB()

 classifier.fit(X_train, y_train)

 # Evaluate the model

 y_pred = classifier.predict(X_test)

Keyword Extraction | FITPED AI

193

 print("Classification Report:\n",

classification_report(y_test, y_pred))

 # New document for keyword extraction

 new_document = "KEA algorithm uses Naive Bayes to classify

keywords based on TF-IDF and position."

 preprocessed_text = "

".join(preprocess_text(new_document))

 tfidf_vector, _ = calculate_tfidf([new_document])

 new_features = extract_features(preprocessed_text,

feature_names, tfidf_vector)

 # Predict keywords

 predictions = classifier.predict(new_features)

 predicted_keywords = [feature_names[i] for i in

range(len(predictions)) if predictions[i] == 1]

 print("Predicted Keywords:", predicted_keywords)

else:

 print("Error: The shapes of X and y are inconsistent.

Please check label alignment.")

Program output:
Error: The shapes of X and y are inconsistent. Please check

label alignment.

Correct the mistake and show that you understand the algorithm.

📝 8.4.11

Project: KeyBERT algorithm implementation

For running following project use another infrastructure (local or server).

Implement a KeyBERT-based keyword extraction system that identifies the most
relevant keywords from a document based on their semantic similarity to the
document's content. This system will utilize BERT embeddings to generate both
document-level and phrase-level representations and identify keywords based on
cosine similarity.

import numpy as np

from sklearn.metrics.pairwise import cosine_similarity

from transformers import AutoTokenizer, AutoModel

from keybert import KeyBERT

Keyword Extraction | FITPED AI

194

Load the pre-trained BERT model and tokenizer

model_name = "distilbert-base-nli-mean-tokens" # Can use

other BERT variants

tokenizer = AutoTokenizer.from_pretrained(model_name)

model = AutoModel.from_pretrained(model_name)

from nltk.corpus import stopwords

from nltk.tokenize import word_tokenize

import string

Download stopwords if not already downloaded

import nltk

nltk.download('stopwords')

nltk.download('punkt')

1. Preprocessing

• The text is cleaned by removing punctuation and stopwords and converting it
to lowercase.

def preprocess_text(text):

 # Lowercase text

 text = text.lower()

 # Remove punctuation

 text = text.translate(str.maketrans("", "",

string.punctuation))

 # Tokenize text

 words = word_tokenize(text)

 # Remove stopwords

 stop_words = set(stopwords.words("english"))

 filtered_words = [word for word in words if word not in

stop_words]

 return " ".join(filtered_words)

2. BERT Embeddings

• Using a pre-trained BERT model, embeddings for both the document and
each candidate phrase are generated.

def get_embedding(text):

 # Tokenize and create input tensors

 inputs = tokenizer(text, return_tensors="pt",

padding=True, truncation=True)

 outputs = model(**inputs)

Keyword Extraction | FITPED AI

195

 # Get the embeddings from the BERT model and compute mean

pooling

 embeddings = outputs.last_hidden_state.mean(dim=1)

 return embeddings.detach().numpy()

Example Document

document = "Machine learning-based approaches use supervised

learning to extract keywords. KeyBERT is a popular method for

this purpose."

preprocessed_document = preprocess_text(document)

doc_embedding = get_embedding(preprocessed_document)

3. Candidate Generation

• KeyBERT uses simple statistical methods to generate candidate keywords.
These candidates are sent back into the model for further embedding.

Initialize KeyBERT with the BERT model

kw_model = KeyBERT(model=model_name)

Generate candidate keywords

candidate_keywords =

kw_model.extract_keywords(preprocessed_document, top_n=10)

print("Candidate Keywords:", candidate_keywords)

4. Cosine Similarity Calculation

• The similarity between the document embedding and each candidate phrase
embedding is calculated using cosine similarity.

def rank_keywords(document, candidates):

 doc_embedding = get_embedding(document)

 candidate_embeddings = [get_embedding(candidate[0]) for

candidate in candidates]

 similarity_scores = [cosine_similarity(doc_embedding,

candidate_emb)[0][0] for candidate_emb in

candidate_embeddings]

 return [(candidates[i][0], similarity_scores[i]) for i in

range(len(candidates))]

Rank candidates by similarity to the document

ranked_keywords = rank_keywords(preprocessed_document,

candidate_keywords)

Keyword Extraction | FITPED AI

196

ranked_keywords = sorted(ranked_keywords, key=lambda x: x[1],

reverse=True)

print("Ranked Keywords:", ranked_keywords)

5. Keyword Selection

• Keywords are ranked by their similarity scores, and the top results are
chosen as the keywords that best represent the document.

Choose top N keywords

top_n = 5

top_keywords = ranked_keywords[:top_n]

print("Top Keywords:", top_keywords)

8.5 Deep learning based approaches

🕮 8.5.1

Sequence labeling

Sequence labeling models, like Conditional Random Fields (CRF) and Hidden Markov
Models (HMM), are another approach to keyword extraction. These models treat text
as a sequence and analyze the relationship between words to identify likely
keywords. Unlike simple frequency-based methods, sequence labeling considers the
context of each word within the document, making it particularly useful for structured
text with clear syntactic patterns.

In keyword extraction, sequence labeling models are trained on annotated datasets,
where words are labeled as keywords or non-keywords. The model then learns
patterns that are typical of keywords, such as certain positional features or
surrounding words. Once trained, the model can analyze new texts to predict which
words serve as keywords.

This approach is beneficial for documents where context matters, as it allows the
model to identify keywords that are relevant based on word sequences and
relationships. Sequence labeling models can adapt to more complex documents and
offer a more nuanced analysis than basic statistical methods.

📝 8.5.2

Which keyword extraction model treats text as a sequence?

• Sequence labeling models
• KeyBERT
• Term frequency-based models
• KEA

Keyword Extraction | FITPED AI

197

📝 8.5.3

Which types of models are commonly used in sequence labeling for keyword
extraction?

• Conditional Random Fields
• Hidden Markov Models
• Naive Bayes
• SVM

🕮 8.5.4

Challenges

Machine learning-based approaches to keyword extraction offer great benefits but
also present certain challenges. One significant issue is the need for a labeled
dataset, which requires time and resources to prepare. Unlike rule-based approaches,
these methods depend on annotated data for training, which can make initial setup
costly.

Furthermore, machine learning-based keyword extraction models are often
language-specific. If a model is trained on English text, it may not perform well on
text in other languages without additional training. This language dependency limits
the scalability of these models and requires practitioners to consider multilingual
datasets if they want to expand the model’s application.

Finally, machine learning models typically demand substantial computational
resources, which can be a barrier in cases where keyword extraction must be
performed in real-time or on a large dataset. Despite these challenges, machine
learning-based keyword extraction methods remain essential for capturing keywords
with high semantic relevance in complex documents.

📝 8.5.5

What is a common challenge of machine learning-based keyword extraction
methods?

• Need for labeled datasets
• Language dependency
• High scalability across languages
• Low computational requirements

Keyword Extraction | FITPED AI

198

📝 8.5.6

Which of the following is NOT a benefit of machine learning-based keyword
extraction?

• Minimal preprocessing requirements
• High semantic relevance
• Capturing complex document relationships
• Use in specialized domains

8.6 Evaluation

📝 8.6.1

Statistics-based metrics focus on evaluating an algorithm’s keyword extraction
performance by examining the proportions of true positives, false positives, and false
negatives. These metrics are valuable for assessing the algorithm's general accuracy
and ability to avoid false extractions. Precision, recall, and the F1-score are
prominent statistics-based metrics used to analyze the extracted keywords' quality
and relevance compared to a reference set of manually assigned keywords.

The precision metric calculates the proportion of true positives (correctly identified
keywords) relative to all extracted keywords (both true positives and false positives).
The formula for precision is:

Where:

• TP = True Positives (correctly identified keywords)
• FP = False Positives (incorrectly identified keywords)

In this way, precision assesses the accuracy of the keywords the algorithm identifies,
showing how well it avoids extracting irrelevant keywords. Recall, on the other hand,
measures the algorithm’s coverage by calculating the proportion of true positives out
of all relevant keywords, including those that were missed (false negatives). The
formula for recall is:

Keyword Extraction | FITPED AI

199

Where:

• FN = False Negatives (missed relevant keywords)

The F1-score, or harmonic mean, combines precision and recall, reflecting an
algorithm’s ability to balance accuracy and coverage. It provides a single measure
that accounts for both metrics, making it a valuable tool when an algorithm needs
high precision and recall. The formula for the F1-score is:

Together, these metrics enable a statistical assessment that highlights an
algorithm's strengths and areas that might need improvement.

📝 8.6.2

What are two primary metrics used to evaluate keyword extraction algorithms?

• Precision
• Recall
• Random Sampling
• Harmonic Mean

📝 8.6.3

Linguistics-based metrics

While statistical metrics assess the quantity and accuracy of extracted keywords,
linguistics-based metrics focus more on the quality of keyword ranking and their
semantic relevance within the document. These metrics are designed to evaluate
how well the algorithm ranks key phrases and whether the most important phrases
appear higher in the results. Three important ranking metrics are Mean Reciprocal
Rank (MRR), Mean Average Precision (MAP), and Precision at K (P@K).

Keyword Extraction | FITPED AI

200

Mean Reciprocal Rank (MRR) is a metric used to evaluate models that return an
ordered list of key phrases. MRR gives the average rank of the first correct keyword
in the list, penalizing the model if the correct keyword is ranked too low. The formula
for MRR is:

Where:

• d is the number of documents,
• rank is the rank position of the first relevant keyword in document iii.

MRR only cares about the highest-ranked relevant key phrase, making it a suitable
measure for evaluating the overall quality of keyword ranking.

Mean Average Precision (MAP), on the other hand, takes into account the order of
the returned list of key phrases. It calculates the average precision over all relevant
phrases, considering both the precision of the correct phrases and their positions.
The formula for MAP is:

Where:

• APi is the average precision for document iii,
• ∣N∣ is the total number of documents.

MAP provides a more nuanced view of the ranking quality by considering the entire
list of key phrases, not just the first relevant one.

Keyword Extraction | FITPED AI

201

📝 8.6.4

Which metric measures how well an algorithm captures all relevant keywords?

• Recall
• Precision
• Mean Reciprocal Rank
• Mean Average Precision

📝 8.6.5

Which metrics help determine the relevance and completeness of extracted
keywords?

• F1-score
• Recall
• Mean Average Precision
• Keyword Density

📝 8.6.6

Recall is another critical metric used in keyword extraction, and it evaluates how well
the algorithm retrieves all the relevant keywords from a document. Unlike precision,
which focuses on the relevance of the retrieved keywords, recall is concerned with
the completeness of the extraction process. High recall indicates that most of the
relevant keywords in a document have been successfully identified, while low recall
suggests that the algorithm is missing many important keywords.

Recall is calculated by dividing the number of true positives (relevant keywords
correctly identified) by the sum of true positives and false negatives (relevant
keywords that were missed by the algorithm). The formula for recall is:

Where:

• TP = True Positives (relevant keywords identified correctly),
• FN = False Negatives (relevant keywords missed).

For many applications, recall is just as important as precision. In situations where it
is crucial to extract all possible relevant keywords, such as in medical or legal text
analysis, optimizing for recall can ensure that no key information is missed. However,
recall optimization often results in lower precision, as more irrelevant keywords may
be retrieved in an attempt to capture all relevant ones.

Keyword Extraction | FITPED AI

202

📝 8.6.7

What does the Mean Reciprocal Rank (MRR) metric measure?

• The rank of the first relevant keyword
• The total number of keywords
• The precision of all keywords
• The number of relevant keywords

📝 8.6.8

What metrics focus on the ranking order of key phrases?

• Mean Reciprocal Rank (MRR)
• Mean Average Precision (MAP)
• Precision
• Recall

📝 8.6.9

Precision is one of the most fundamental metrics for keyword extraction, assessing
the accuracy of the keywords that are retrieved by the algorithm. Specifically, it
measures how many of the extracted key phrases are actually relevant to the
document or text. A high precision score means that the algorithm is very accurate
in selecting the relevant keywords, while a low precision score indicates that the
algorithm is pulling in a lot of irrelevant keywords.

Mathematically, precision is defined as the number of true positives (relevant
keywords correctly identified) divided by the sum of true positives and false positives
(irrelevant keywords incorrectly identified). The formula for precision is:

Where:

• TP = True Positives (relevant keywords identified correctly),
• FP = False Positives (irrelevant keywords incorrectly identified).

Precision is particularly important in scenarios where extracting irrelevant keywords
could significantly impact the quality of results. For example, in a search engine,
displaying irrelevant results can detract from the user experience. By optimizing for
precision, algorithms can ensure that only the most pertinent keywords are extracted.

Keyword Extraction | FITPED AI

203

📝 8.6.10

What does the precision metric specifically assess in keyword extraction?

• The accuracy of the keywords retrieved
• The number of relevant documents
• The total number of keywords
• The semantic relevance of keywords

📝 8.6.11

Which components are involved in calculating recall?

• True Positives (TP)
• False Negatives (FN)
• False Positives (FP)
• Total Number of Extracted Keywords

Keyword Extraction | FITPED AI

204

