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1.1 Introduction 

📝 1.1.1 

The Knowledge Discovery - Introduction course focuses on the process of 
transforming data into information and knowledge. We will introduce the field of 
knowledge discovery and practically demonstrate how to extract relevant 
information from data. The course will consist of a theoretical and a practical part 
that complements each other. We will work in the Python programming language and 
will use mainly the Pandas library. 

📝 1.1.2 

As more and more data accumulates in today's world, whether on the web or other 
physical storage, the concept of Knowledge Discovery has emerged. By knowledge 
we mean information that is of value to us. Knowledge discovery can be understood 
as a process that consists of the following tasks: 

• data selection, 
• data preprocessing, 
• data transformation, 
• data analysis, 
• results interpretation. 

We can discover knowledge from a variety of sources, whether from databases, texts, 
or the web. 

📝 1.1.3 

The CRISP-DM methodology is one of the most widely used and versatile techniques 
for solving various knowledge discovery tasks. The methodology consists of the 
following steps: 

• business understanding, 
• data understanding, 
• data preparation, 
• modeling, 
• evaluation, 
• deployment. 

The order of the phases is not fixed and the process is cyclical. It was primarily 
developed for project management in the area of knowledge discovery from 
databases, but is applicable to other areas as well. 
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📝 1.1.4 

First, let's recall the work with data files. In our course, we will mainly use the pandas 
library for working with data. Pandas contains a function for importing data from 
different data files and writing back the output in different formats. Most often we 
will encounter files saved in CSV format. Reading a CSV file and then transforming it 
into a tabular structure (DataFrame) is built into the pandas library using the 
read_csv() function. The first parameter of the function is the path to the file and the 
second parameter is sep, which we can use to define a separator. The default value 
in the case of the separator is a comma but we will often encounter a semicolon. 

 
import pandas as pd 

 

df = pd.read_csv('dataset.csv', sep=';') 

📝 1.1.5 

Another option is to use datasets provided by other libraries such as Sklearn. This 
library is designed to work with machine learning and provides multiple datasets for 
different tasks. Using the import function, we can import different data files. Then 
we just need to create an instance of that data file and load it into the pandas 
DataFrame structure. In the final result, the result is similar to if we loaded a CSV file 
from disk. 

 
import pandas as pd 

from sklearn.datasets import load_wine 

 

wine = load_wine() 

df = pd.DataFrame(data=wine.data, columns= wine.feature_names) 

print(df) 

 
Program output: 
     alcohol  malic_acid   ash  alcalinity_of_ash  magnesium  

total_phenols  \ 

0      14.23        1.71  2.43               15.6      127.0           

2.80    

1      13.20        1.78  2.14               11.2      100.0           

2.65    

2      13.16        2.36  2.67               18.6      101.0           

2.80    

3      14.37        1.95  2.50               16.8      113.0           

3.85    

4      13.24        2.59  2.87               21.0      118.0           

2.80    
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..       ...         ...   ...                ...        ...            

...    

173    13.71        5.65  2.45               20.5       95.0           

1.68    

174    13.40        3.91  2.48               23.0      102.0           

1.80    

175    13.27        4.28  2.26               20.0      120.0           

1.59    

176    13.17        2.59  2.37               20.0      120.0           

1.65    

177    14.13        4.10  2.74               24.5       96.0           

2.05    

 

     flavanoids  nonflavanoid_phenols  proanthocyanins  

color_intensity   hue  \ 

0          3.06                  0.28             2.29             

5.64  1.04    

1          2.76                  0.26             1.28             

4.38  1.05    

2          3.24                  0.30             2.81             

5.68  1.03    

3          3.49                  0.24             2.18             

7.80  0.86    

4          2.69                  0.39             1.82             

4.32  1.04    

..          ...                   ...              ...              

...   ...    

173        0.61                  0.52             1.06             

7.70  0.64    

174        0.75                  0.43             1.41             

7.30  0.70    

175        0.69                  0.43             1.35            

10.20  0.59    

176        0.68                  0.53             1.46             

9.30  0.60    

177        0.76                  0.56             1.35             

9.20  0.61    

 

     od280/od315_of_diluted_wines  proline   

0                            3.92   1065.0   

1                            3.40   1050.0   

2                            3.17   1185.0   

3                            3.45   1480.0   

4                            2.93    735.0   
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..                            ...      ...   

173                          1.74    740.0   

174                          1.56    750.0   

175                          1.56    835.0   

176                          1.62    840.0   

177                          1.60    560.0   

 

[178 rows x 13 columns] 

 

📝 1.1.6 

Load from the sklearn library the dataset california_housing, which contains records 
of homes in California. You fetch the dataset into an object using the 
fetch_california_housing() function. List the names of the columns that the dataset 
contains, separated by commas. 

 
import pandas as pd 

from sklearn.datasets import fetch_california_housing 

1.2 Data description 

📝 1.2.1 

In the first part, we focus on the fact that it needs to understand what data we've 
actually retrieved. However, we don't go in-depth yet because we are trying to first 
understand the problem we want to solve in the context of the whole dataset and the 
meaning of the variables. So let's look first at how much and what type of data is in 
the data set. This is what the shape() and info() functions that describe the data set 
are there to do. Shape returns information about the number of rows and columns. 
Info also provides more detailed information about the individual variables and 
especially their data type. 

 
import pandas as pd 

from sklearn.datasets import load_wine 

 

wine = load_wine() 

df = pd.DataFrame(data=wine.data, columns= wine.feature_names) 

print(df.info()) 

 
 
 
Program output: 
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RangeIndex: 178 entries, 0 to 177 

Data columns (total 13 columns): 

 #   Column                        Non-Null Count  Dtype   

---  ------                        --------------  -----   

 0   alcohol                       178 non-null    float64 

 1   malic_acid                    178 non-null    float64 

 2   ash                           178 non-null    float64 

 3   alcalinity_of_ash             178 non-null    float64 

 4   magnesium                     178 non-null    float64 

 5   total_phenols                 178 non-null    float64 

 6   flavanoids                    178 non-null    float64 

 7   nonflavanoid_phenols          178 non-null    float64 

 8   proanthocyanins               178 non-null    float64 

 9   color_intensity               178 non-null    float64 

 10  hue                           178 non-null    float64 

 11  od280/od315_of_diluted_wines  178 non-null    float64 

 12  proline                       178 non-null    float64 

dtypes: float64(13) 

memory usage: 18.2 KB 

None 

 

The dataset contains 178 rows and 13 columns. All variables are in decimal format. 
We can also see that the dataset does not contain any missing values. 

📝 1.2.2 

Load from the sklearn library the dataset california_housing that contains records of 
homes in California. You fetch the dataset into an object using the 
fetch_california_housing() function. Examine the dataset and select the correct 
assertions about the retrieved data. 

 
import pandas as pd 

from sklearn.datasets import fetch_california_housing 

 

cali = fetch_california_housing() 

 

df = pd.DataFrame(data=cali.data, columns=cali.feature_names) 

print(df.info()) 

 
 
 
Program output: 
 

RangeIndex: 20640 entries, 0 to 20639 
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Data columns (total 8 columns): 

 #   Column      Non-Null Count  Dtype   

---  ------      --------------  -----   

 0   MedInc      20640 non-null  float64 

 1   HouseAge    20640 non-null  float64 

 2   AveRooms    20640 non-null  float64 

 3   AveBedrms   20640 non-null  float64 

 4   Population  20640 non-null  float64 

 5   AveOccup    20640 non-null  float64 

 6   Latitude    20640 non-null  float64 

 7   Longitude   20640 non-null  float64 

dtypes: float64(8) 

memory usage: 1.3 MB 

None 

 

• the dataset consists of 20640 rows and 8 columns 
• all variables are in decimal format 
• the dataset consists of 8 rows and 20640 columns 
• all variables are in integer format 
• the dataset also contains missing values 
• the dataset does not contain missing values 

📝 1.2.3 

Most often, the first functions used when loading a data file are the pandas head() 
and tail() library functions. These functions display the first and last 5 records of the 
dataset. In this way, we are able to quickly explore a small portion of the data file. 

 
import pandas as pd 

from sklearn.datasets import load_wine 

 

wine = load_wine() 

df = pd.DataFrame(data=wine.data, columns= wine.feature_names) 

print('Head:') 

print(df.head()) 

print('Tail:') 

print(df.tail()) 

 
 
Program output: 
Head: 

   alcohol  malic_acid   ash  alcalinity_of_ash  magnesium  

total_phenols  \ 
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0    14.23        1.71  2.43               15.6      127.0           

2.80    

1    13.20        1.78  2.14               11.2      100.0           

2.65    

2    13.16        2.36  2.67               18.6      101.0           

2.80    

3    14.37        1.95  2.50               16.8      113.0           

3.85    

4    13.24        2.59  2.87               21.0      118.0           

2.80    

 

   flavanoids  nonflavanoid_phenols  proanthocyanins  

color_intensity   hue  \ 

0        3.06                  0.28             2.29             

5.64  1.04    

1        2.76                  0.26             1.28             

4.38  1.05    

2        3.24                  0.30             2.81             

5.68  1.03    

3        3.49                  0.24             2.18             

7.80  0.86    

4        2.69                  0.39             1.82             

4.32  1.04    

 

   od280/od315_of_diluted_wines  proline   

0                          3.92   1065.0   

1                          3.40   1050.0   

2                          3.17   1185.0   

3                          3.45   1480.0   

4                          2.93    735.0   

Tail: 

     alcohol  malic_acid   ash  alcalinity_of_ash  magnesium  

total_phenols  \ 

173    13.71        5.65  2.45               20.5       95.0           

1.68    

174    13.40        3.91  2.48               23.0      102.0           

1.80    

175    13.27        4.28  2.26               20.0      120.0           

1.59    

176    13.17        2.59  2.37               20.0      120.0           

1.65    

177    14.13        4.10  2.74               24.5       96.0           

2.05    
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     flavanoids  nonflavanoid_phenols  proanthocyanins  

color_intensity   hue  \ 

173        0.61                  0.52             1.06              

7.7  0.64    

174        0.75                  0.43             1.41              

7.3  0.70    

175        0.69                  0.43             1.35             

10.2  0.59    

176        0.68                  0.53             1.46              

9.3  0.60    

177        0.76                  0.56             1.35              

9.2  0.61    

 

     od280/od315_of_diluted_wines  proline   

173                          1.74    740.0   

174                          1.56    750.0   

175                          1.56    835.0   

176                          1.62    840.0   

177                          1.60    560.0   

 

📝 1.2.4 

Load from the sklearn library the dataset california_housing, which contains records 
of homes in California. You fetch the dataset into an object using the 
fetch_california_housing() function. The dataset consists of the following variables: 

• MedInc - the median income of homes in the block 
• HouseAge - the median age of houses in the block 
• AveRooms - the average number of rooms per household 
• AveBedrms - the average number of bedrooms per household 
• Population - population 
• AveOccup - the average number of household members 
• Latitude - latitude of the block 
• Longitude - longitude of the block 

Examine the dataset and list the median age of the houses of the first block. Round 
the result to a whole number. 

 
import pandas as pd 

from sklearn.datasets import fetch_california_housing 

 

cali = fetch_california_housing() 

 

df = pd.DataFrame(data=cali.data, columns=cali.feature_names) 
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print(df.head()) 

 
Program output: 
   MedInc  HouseAge  AveRooms  AveBedrms  Population  AveOccup  

Latitude  \ 

0  8.3252      41.0  6.984127   1.023810       322.0  2.555556     

37.88    

1  8.3014      21.0  6.238137   0.971880      2401.0  2.109842     

37.86    

2  7.2574      52.0  8.288136   1.073446       496.0  2.802260     

37.85    

3  5.6431      52.0  5.817352   1.073059       558.0  2.547945     

37.85    

4  3.8462      52.0  6.281853   1.081081       565.0  2.181467     

37.85    

 

   Longitude   

0    -122.23   

1    -122.22   

2    -122.24   

3    -122.25   

4    -122.25   

 

📝 1.2.5 

The describe() function provides purely descriptive information about the dataset. 
This information includes statistics that summarize the variables, their variance, the 
presence of missing values, and their shape. The basic statistics displayed by the 
function are as follows: 

• count - number of elements, 
• mean - average value, 
• std - standard deviation of observations 
• min - minimum value 
• 25% - lower quartile 
• 50% - median 
• 75% - upper quartile 
• max - maximum value 

 
import pandas as pd 

from sklearn.datasets import load_wine 

 

wine = load_wine() 

df = pd.DataFrame(data=wine.data, columns= wine.feature_names) 



Basic Features | FITPED AI 

15 

print(df.describe()) 

 
Program output: 
          alcohol  malic_acid         ash  alcalinity_of_ash   

magnesium  \ 

count  178.000000  178.000000  178.000000         178.000000  

178.000000    

mean    13.000618    2.336348    2.366517          19.494944   

99.741573    

std      0.811827    1.117146    0.274344           3.339564   

14.282484    

min     11.030000    0.740000    1.360000          10.600000   

70.000000    

25%     12.362500    1.602500    2.210000          17.200000   

88.000000    

50%     13.050000    1.865000    2.360000          19.500000   

98.000000    

75%     13.677500    3.082500    2.557500          21.500000  

107.000000    

max     14.830000    5.800000    3.230000          30.000000  

162.000000    

 

       total_phenols  flavanoids  nonflavanoid_phenols  

proanthocyanins  \ 

count     178.000000  178.000000            178.000000       

178.000000    

mean        2.295112    2.029270              0.361854         

1.590899    

std         0.625851    0.998859              0.124453         

0.572359    

min         0.980000    0.340000              0.130000         

0.410000    

25%         1.742500    1.205000              0.270000         

1.250000    

50%         2.355000    2.135000              0.340000         

1.555000    

75%         2.800000    2.875000              0.437500         

1.950000    

max         3.880000    5.080000              0.660000         

3.580000    

 

       color_intensity         hue  

od280/od315_of_diluted_wines      proline   

count       178.000000  178.000000                    

178.000000   178.000000   
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mean          5.058090    0.957449                      

2.611685   746.893258   

std           2.318286    0.228572                      

0.709990   314.907474   

min           1.280000    0.480000                      

1.270000   278.000000   

25%           3.220000    0.782500                      

1.937500   500.500000   

50%           4.690000    0.965000                      

2.780000   673.500000   

75%           6.200000    1.120000                      

3.170000   985.000000   

max          13.000000    1.710000                      

4.000000  1680.000000   

 

📝 1.2.6 

Load from the sklearn library the dataset california_housing, which contains records 
of homes in California. You fetch the dataset into an object using the 
fetch_california_housing() function. What is the average value of the average 
population per block? 

 
import pandas as pd 

from sklearn.datasets import fetch_california_housing 

 

cali = fetch_california_housing() 

 

df = pd.DataFrame(data=cali.data, columns=cali.feature_names) 

print(df.describe()) 

 
Program output: 
             MedInc      HouseAge      AveRooms     AveBedrms    

Population  \ 

count  20640.000000  20640.000000  20640.000000  20640.000000  

20640.000000    

mean       3.870671     28.639486      5.429000      1.096675   

1425.476744    

std        1.899822     12.585558      2.474173      0.473911   

1132.462122    

min        0.499900      1.000000      0.846154      0.333333      

3.000000    

25%        2.563400     18.000000      4.440716      1.006079    

787.000000    
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50%        3.534800     29.000000      5.229129      1.048780   

1166.000000    

75%        4.743250     37.000000      6.052381      1.099526   

1725.000000    

max       15.000100     52.000000    141.909091     34.066667  

35682.000000    

 

           AveOccup      Latitude     Longitude   

count  20640.000000  20640.000000  20640.000000   

mean       3.070655     35.631861   -119.569704   

std       10.386050      2.135952      2.003532   

min        0.692308     32.540000   -124.350000   

25%        2.429741     33.930000   -121.800000   

50%        2.818116     34.260000   -118.490000   

75%        3.282261     37.710000   -118.010000   

max     1243.333333     41.950000   -114.310000   

 

📝 1.2.7 

Load from the sklearn library the dataset california_housing, which contains records 
of homes in California. You fetch the dataset into an object using the 
fetch_california_housing() function. What is the median age of the houses in the 
block? Print the result as an integer. 

 
import pandas as pd 

from sklearn.datasets import fetch_california_housing 

 

cali = fetch_california_housing() 

 

df = pd.DataFrame(data=cali.data, columns=cali.feature_names) 

print(df.describe()) 

 
 
 
 
Program output: 
             MedInc      HouseAge      AveRooms     AveBedrms    

Population  \ 

count  20640.000000  20640.000000  20640.000000  20640.000000  

20640.000000    

mean       3.870671     28.639486      5.429000      1.096675   

1425.476744    
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std        1.899822     12.585558      2.474173      0.473911   

1132.462122    

min        0.499900      1.000000      0.846154      0.333333      

3.000000    

25%        2.563400     18.000000      4.440716      1.006079    

787.000000    

50%        3.534800     29.000000      5.229129      1.048780   

1166.000000    

75%        4.743250     37.000000      6.052381      1.099526   

1725.000000    

max       15.000100     52.000000    141.909091     34.066667  

35682.000000    

 

           AveOccup      Latitude     Longitude   

count  20640.000000  20640.000000  20640.000000   

mean       3.070655     35.631861   -119.569704   

std       10.386050      2.135952      2.003532   

min        0.692308     32.540000   -124.350000   

25%        2.429741     33.930000   -121.800000   

50%        2.818116     34.260000   -118.490000   

75%        3.282261     37.710000   -118.010000   

max     1243.333333     41.950000   -114.310000   

 

📝 1.2.8 

Another way to get to know a data file is to use the info() function. This function gives 
us more concise information than describe() but we get information about the data 
type of the variables. We can also use the info() function to find out if the data file 
contains missing values. 

import pandas as pd 

from sklearn.datasets import load_wine 

 

wine = load_wine() 

df = pd.DataFrame(data=wine.data, columns= wine.feature_names) 

print(df.info()) 

 
Program output: 
 

RangeIndex: 178 entries, 0 to 177 

Data columns (total 13 columns): 

 #   Column                        Non-Null Count  Dtype   

---  ------                        --------------  -----   

 0   alcohol                       178 non-null    float64 
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 1   malic_acid                    178 non-null    float64 

 2   ash                           178 non-null    float64 

 3   alcalinity_of_ash             178 non-null    float64 

 4   magnesium                     178 non-null    float64 

 5   total_phenols                 178 non-null    float64 

 6   flavanoids                    178 non-null    float64 

 7   nonflavanoid_phenols          178 non-null    float64 

 8   proanthocyanins               178 non-null    float64 

 9   color_intensity               178 non-null    float64 

 10  hue                           178 non-null    float64 

 11  od280/od315_of_diluted_wines  178 non-null    float64 

 12  proline                       178 non-null    float64 

dtypes: float64(13) 

memory usage: 18.2 KB 

None 

 

📝 1.2.9 

Load from the sklearn library the dataset california_housing, which contains records 
of homes in California. You fetch the dataset into an object using the 
fetch_california_housing() function. What data type are most of the variables in the 
dataset? 

 
import pandas as pd 

from sklearn.datasets import fetch_california_housing 

 

cali = fetch_california_housing() 

 

df = pd.DataFrame(data=cali.data, columns=cali.feature_names) 

print(df.info()) 

 
Program output: 
 

RangeIndex: 20640 entries, 0 to 20639 

Data columns (total 8 columns): 

 #   Column      Non-Null Count  Dtype   

---  ------      --------------  -----   

 0   MedInc      20640 non-null  float64 

 1   HouseAge    20640 non-null  float64 

 2   AveRooms    20640 non-null  float64 

 3   AveBedrms   20640 non-null  float64 

 4   Population  20640 non-null  float64 

 5   AveOccup    20640 non-null  float64 
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 6   Latitude    20640 non-null  float64 

 7   Longitude   20640 non-null  float64 

dtypes: float64(8) 

memory usage: 1.3 MB 

None 

 



 

 

Exploratory Analysis 

Chapter 2 
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2.1 Descriptive statistics 

📝 2.1.1 

Exploratory analysis methods are used to discover patterns, generate hypotheses, 
recognize specificities, and illustrate phenomena. The starting point of any data 
analysis is the data itself. The data do not have to satisfy certain conditions (e.g. the 
data must have been obtained by random sampling). The main point is to represent 
the data in different ways and to recognise regularities and irregularities, structures, 
patterns and peculiarities. In the exploratory process, we look for interesting 
configurations and relationships in the data. If we want to compare two or more 
variables, we need appropriate quantities that will numerically characterize the basic 
properties of the frequency distribution. Such amounts are called numerical 
characteristics and can be divided into three categories: 

• position characteristics - represent a certain level or position of the character 
around which the residuals are concentrated. This position is measured by 
different kinds of mean values such as arithmetic, harmonic and geometric 
mean, modus, median and quantiles. 

• variability characteristics - they express the differences (variability, 
dispersion) of the values and are an important factor when comparing 
variables in which the position characteristics are identical. The best known 
are quantile, quartile and variation range, quartile deviation, mean deviation, 
proportional mean deviation, variance, standard deviation and coefficient of 
variation. 

• characteristics of skewness and peakedness measures - moment 
characteristics are required for their calculation. The best known are the 
skewness coefficient, the kurtosis coefficient and the Pearson skewness 
measure. 

📝 2.1.2 

Most descriptive statistics include Python functions. However, in order to understand 
what is behind the called function, we need to understand at least the mathematical 
notation of the statistics. Let's first introduce different averages. 

Arithmetic mean - is the sum of all given values divided by their number. In Python, 
we can use the mean() function of the statistics library to calculate it. 
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Harmonic mean - is the inverse of the arithmetic mean of the inverted values. In 
Python, we can use the harmonic_mean() function of the statistics library to calculate 
it. 

 

Geometric mean - is the product of the positive numbers is the product of the values 
squared to the number of values. The similarity to the arithmetic mean is in the 
substitution of the sum of the operation by product and division by the n-th root. In 
Python, we can use the geometric_mean() function of the statistics library to do the 
calculation. 

 

 
import pandas as pd 

import statistics as stat 

from sklearn.datasets import load_wine 

 

wine = load_wine() 

df = pd.DataFrame(data=wine.data, columns= wine.feature_names) 

print('Arithmetic mean:',stat.mean(df['magnesium'])) 

print('Harmonic mean:',stat.harmonic_mean(df['magnesium'])) 

print('Geometric mean:',stat.geometric_mean(df['magnesium'])) 

 
Program output: 
Arithmetic mean: 99.74157303370787 

Harmonic mean: 97.9056614747819 

Geometric mean: 98.79450755406194 

 

📝 2.1.3 

Load from the sklearn library the dataset california_housing, which contains records 
of homes in California. You fetch the dataset into an object using the 
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fetch_california_housing() function. What is the value of the harmonic mean of the 
age of the houses in the block? Round the result to two decimal places. 

 
import pandas as pd 

from scipy import stats 

from sklearn.datasets import fetch_california_housing 

 

cali = fetch_california_housing() 

 

df = pd.DataFrame(data=cali.data, columns=cali.feature_names) 

print(round(stats.hmean(df['HouseAge']),2)) 

 
Program output: 
20.38 

 

📝 2.1.4 

Other statistics used include the modus and median. 

Modus - represents the most frequent value occurring in the variable under study. In 
Python, we can use the mode() function of the statistics library to calculate it. 

 

Median - this is the mean value of the variable under study, with the requirement that 
the values must be arranged in a non-decreasing sequence. We have defined n as 
the number of values and xi as the value at the i-th position. Then for an even number 
of elements we calculate the median as follows: 

 

For an odd number of elements, we proceed as follows: 

 

In Python, we can use the median() function of the statistics library to calculate. 
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We distinguish three cases depending on what is the relative position of the modus, 
median and arithmetic mean of the examined variable. If , then we speak about 
symmetric frequency distribution. If , then we speak about negative skewness. In 
the case of , we speak about positive skewness. 

 
import pandas as pd 

import statistics as stat 

from sklearn.datasets import load_wine 

 

wine = load_wine() 

df = pd.DataFrame(data=wine.data, columns= wine.feature_names) 

print('Modus:',stat.mode(df['magnesium'])) 

print('Median:',stat.median(df['magnesium'])) 

 
Program output: 
Modus: 88.0 

Median: 98.0 

 

📝 2.1.5 

Use of individual position characteristics: 

• We use the mean mainly for metric variables in the case of symmetric 
distributions and the use of parametric tests. 

• We use the median for intensive variables in the case we want to know the 
centre of the data distribution, in the case of outliers and skewed 
distribution. 

• We use the modus for variables when the distribution has multiple peaks. 
• In the case of a symmetric distribution, all these characteristics are 

approximately the same. 

📝 2.1.6 

Load from the sklearn library the dataset california_housing, which contains records 
of homes in California. You fetch the dataset into an object using the 
fetch_california_housing() function. What is the most common value for the age of 
the houses in the block? Print the result as an integer. 

 
import pandas as pd 

import statistics as stat 

from sklearn.datasets import fetch_california_housing 
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cali = fetch_california_housing() 

 

df = pd.DataFrame(data=cali.data, columns=cali.feature_names) 

print(round(stat.mode(df['HouseAge']),2)) 

 
 
Program output: 
52.0 

 

📝 2.1.7 

Load from the sklearn library the dataset california_housing, which contains records 
of homes in California. You fetch the dataset into an object using the 
fetch_california_housing() function. Examine the variable age of the houses in the 
block and identify the frequency distribution of the variable being examined. List the 
values of the mean, median, and mode rounded to two decimal places in the 
following form: 

positive skewness, mean: 42.53, median: 22.36, modus: 30.00 

 
import pandas as pd 

import statistics as stat 

from sklearn.datasets import fetch_california_housing 

 

cali = fetch_california_housing() 

 

df = pd.DataFrame(data=cali.data, columns=cali.feature_names) 

print(round(stat.mode(df['HouseAge']),2)) 

print(round(stat.mean(df['HouseAge']),2)) 

print(round(stat.median(df['HouseAge']),2)) 

 
Program output: 
52.0 

28.64 

29.0 

 

📝 2.1.8 

Quantiles are numerical values that divide the sorted values of the variable under 
study in non-decreasing order into k equal parts. The best-known are the median 
(k=2), quartiles (k=4), deciles (k=10) and percentiles (k=100). 

Quartiles represent percentiles with levels of 25%, 50% and 75%. Quartiles divide the 
set into 4 parts. 
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• QI is the first/lower quartile and the 25th percentile or x0,25. 
• QII is the second quartile or 50th percentile or median x0,5. 
• QIII is the third/upper quartile or 75th percentile or x0,75. 

 

 

In Python, we have two options to get the upper and lower quartile. The first option 
is the describe() function of the pandas library. The second option is to use the numpy 
library, which contains a quantile() function whose second parameter is the 
percentile. So if we specify 0.25 as a parameter the function will result in a lower 
quartile and 0.75 will result in an upper quartile. 

Using the upper and lower quartiles, we can calculate the quartile range which 
represents the region of the middle 50% of the values of the variable. This measure 
of variability is not affected by extreme values of the variable. In Python, we can use 
the iqr() function of the scipy library to calculate this or substitute the upper and lower 
quartiles into the formula: 

 

 
import pandas as pd 

import numpy as np 

from scipy import stats 

from sklearn.datasets import load_wine 

 

wine = load_wine() 

df = pd.DataFrame(data=wine.data, columns= wine.feature_names) 

print(df['magnesium'].describe()) 

print('Upper quartile:',np.quantile(df['magnesium'],0.75)) 

print('Lower quartile:',np.quantile(df['magnesium'],0.25)) 

print('Quartile range:',stats.iqr(df['magnesium'])) 
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Program output: 
count    178.000000 

mean      99.741573 

std       14.282484 

min       70.000000 

25%       88.000000 

50%       98.000000 

75%      107.000000 

max      162.000000 

Name: magnesium, dtype: float64 

Upper quartile: 107.0 

Lower quartile: 88.0 

Quartile range: 19.0 

 

📝 2.1.9 

Load from the sklearn library the dataset california_housing, which contains records 
of homes in California. You fetch the dataset into an object using the 
fetch_california_housing() function. Examine the variable age of houses in the block 
and calculate the quartile range of the variable being examined. Round the result to 
integers. 

 
import pandas as pd 

from scipy import stats 

from sklearn.datasets import fetch_california_housing 

 

cali = fetch_california_housing() 

 

df = pd.DataFrame(data=cali.data, columns=cali.feature_names) 

print('Quartile range:',stats.iqr(df['HouseAge'])) 

 
Program output: 
Quartile range: 19.0 

 

📝 2.1.10 

Data with the same mean can have different scatter. The amount of variability in the 
data can be determined by a suitably chosen variability characteristic or measure of 
dispersion. One of these is the quartile range introduced earlier. Others are: 

The variance - the most commonly used characteristic of variability, referred to as s2, 
which is the root mean square deviation of the measurement from the arithmetic 
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mean. The larger the variance the more the data deviate from the mean. In Python, 
we can use the var() function of the numpy library or the pvariance() function of the 
statistics library to calculate this. 

 

Standard deviation - this is the positive square root of the variance, denoted as s. 
The greater the difference in the values of the examined variable the greater the value 
of the standard deviation. In Python, we can use the std() function of the numpy 
library or the pstdev() function of the statistics library to do the calculation. 

 

Coefficient of variation - used for comparing variability and represents a relative 
measure of variability. It does not depend on the units in which the values of the 
variable are expressed, unlike the variance and standard deviation. If the value of the 
coefficient of variation is greater than 50%, the arithmetic mean loses its meaning 
because the statistical population is heterogeneous and the arithmetic mean cannot 
represent it. In this case, we use the median instead of the arithmetic mean as mean. 
In Python, we have to calculate the given coefficient using the following formula: 

 

 
import pandas as pd 

import statistics as stat 

import numpy as np 

from sklearn.datasets import load_wine 

 

wine = load_wine() 

df = pd.DataFrame(data=wine.data, columns= wine.feature_names) 

print('The variance 

Statistics:',stat.pvariance(df['magnesium'])) 

print('The variance Numpy:',np.var(df['magnesium'])) 

print('Standard deviation 

Statistics:',stat.pstdev(df['magnesium'])) 

print('Standard deviation Numpy:',np.std(df['magnesium'])) 
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print('Coefficient of variation 

Statistics:',stat.pstdev(df['magnesium'])/stat.mean(df['magnes

ium'])*100) 

print('Coefficient of variation 

Numpy:',np.std(df['magnesium'])/np.mean(df['magnesium'])*100) 

 
Program output: 
The variance Statistics: 202.8433278626436 

The variance Numpy: 202.8433278626436 

Standard deviation Statistics: 14.242307673359806 

Standard deviation Numpy: 14.242307673359806 

Coefficient of variation Statistics: 14.27920899998899 

Coefficient of variation Numpy: 14.27920899998899 

📝 2.1.11 

Use of individual variability characteristics: 

• Standard deviation and variance measure the dispersion around the mean 
and are used when the mean is appropriate as a measure of the mean. 

• Standard deviation and dispersion are strongly affected by outliers, so in this 
case, we prefer the quartile range, median absolute deviation, and mean 
absolute deviation from the median, respectively. 

• In the case of a strongly skewed distribution, the standard deviation and 
variance do not provide good information about the dispersion of the data. 

• In case we want to assess the relative magnitude of the dispersion of the 
data from the mean we use the coefficient of variation. 

📝 2.1.12 

Load from the sklearn library the dataset california_housing, which contains records 
of homes in California. You fetch the dataset into an object using the 
fetch_california_housing() function. Examine the variable age of the houses in the 
block to see if the coefficient of variation is greater than 50%. List the yes/no values 
and write the result as a percentage rounded to two decimal places. For example: 

yes, 58.56% 

 
import pandas as pd 

import numpy as np 

from sklearn.datasets import fetch_california_housing 

 

cali = fetch_california_housing() 

 

df = pd.DataFrame(data=cali.data, columns=cali.feature_names) 
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print('Coefficient of 

variation:',round(np.std(df['HouseAge'])/np.mean(df['HouseAge'

])*100,2)) 

 
Program output: 
Coefficient of variation: 43.94 

 

📝 2.1.13 

A final option in descriptive statistics is to look at the shape of the data distribution 
using skewness and kurtosis. 

The skewness a3 measures the degree of asymmetry in the distribution of a variable. 
A positive value means that the mean is greater than the median, so most of the 
values are less than the mean. In this case, the distribution is skewed to the left. A 
negative value means that the median is greater than the mean and hence most 
values are greater than the mean. In this case, the distribution is skewed to the right. 
Values close to 0 indicate a symmetric distribution, which means that the mean and 
median are equal. In Python, we can use the skew() function of the scipy library to 
calculate this. It is calculated as follows: 

 

where 

 

 

Kurtosis a4 measures the degree of steepness of the distribution of a variable. A 
positive value means that the distribution is more skewed. A negative value means 
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that the distribution is flatter. In Python, we can use the  kurtosis() function of the 
scipy library to calculate this. It is given by the relation 

 

 

 
import pandas as pd 

from scipy import stats 

from sklearn.datasets import load_wine 

 

wine = load_wine() 

df = pd.DataFrame(data=wine.data, columns= wine.feature_names) 

print('Skewness:',stats.skew(df['magnesium'])) 

print('Kurtosis:',stats.kurtosis(df['magnesium'], 

fisher=True)) 

 
Program output: 
Skewness: 1.088914887210701 

Kurtosis: 2.0128060084773907 

 

📝 2.1.14 

If we have non-zero values for the result of skewness and skewness, then it is 
obvious that the data under study do not have a normal distribution. However, it may 
be that the values are close enough, but not quite equal to 0. We can use the Shapiro-
Wilk test to estimate the probability that the data under study have a normal 
distribution. The null hypothesis of the Shapiro-Wilk test is that the data have a 
normal distribution. If the resulting p-value is less than or equal to 0.05, we reject the 
null hypothesis and assume that the data under study do not have a normal 
distribution. In Python, we can use the shapiro() function of the scipy library to 
perform the calculation. 

 



Exploratory Analysis | FITPED AI 

33 

Using individual shape characteristics: 

• We use skewness if we want to see if lower values are more frequent than 
higher values or vice versa. 

• We use kurtosis if we want to see how the values of a variable actually 
cluster around the mean. 

 
import pandas as pd 

from scipy import stats 

from sklearn.datasets import load_wine 

 

wine = load_wine() 

df = pd.DataFrame(data=wine.data, columns= wine.feature_names) 

p_value = round(stats.shapiro(df['magnesium'])[1],4) 

if p_value<=0.05: 

  print('p =',p_value, 'the null hypothesis is rejected') 

else: 

  print('p =',p_value, 'the null hypothesis is not rejected') 

 
Program output: 
p = 0.0 the null hypothesis is rejected 

 

📝 2.1.15 

Load from the sklearn library the dataset california_housing, which contains records 
of homes in California. You fetch the dataset into an object using the 
fetch_california_housing() function. Examine the variable age of the houses in the 
block to see if the variable has a normal distribution. Print if it does/does not have a 
normal distribution and also list the associated skewness, and kurtosis statistics and 
verify the p-value. Round the results to two decimal places. Notation: 

does not have a normal distribution, p = 0.02, skew = 0.12, 

kurtosis = -0.25 

 
import pandas as pd 

from scipy import stats 

from sklearn.datasets import fetch_california_housing 

 

cali = fetch_california_housing() 

 

df = pd.DataFrame(data=cali.data, columns=cali.feature_names) 

print('Skewness:',round(stats.skew(df['HouseAge']),2)) 

print('Kurtosis:',round(stats.kurtosis(df['HouseAge'], 

fisher=True),2)) 
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p_value = round(stats.shapiro(df['HouseAge'])[1],4) 

if p_value<=0.05: 

  print('p =',p_value, 'the null hypothesis is rejected') 

else: 

  print('p =',p_value, 'the null hypothesis is not rejected') 

 
Program output: 
Skewness: 0.06 

Kurtosis: -0.8 

p = 0.0 the null hypothesis is rejected 

 

2.2 Data visualisation 

📝 2.2.1 

Data visualization can tell us much more about the data than just the numbers. With 
visualization, we can more easily uncover configurations and data structures. We use 
graphical methods to look for outliers, recognize clusters in data, check data 
distributions and assumptions, explore relationships between variables, compare 
measures of mean and variance, or examine time-dependent data. Graphical 
methods are useful for showing broader properties of data. If we want to present the 
selected data in a precise form it is better to show it in tables. When analyzing a 
graph we evaluate densities, clusters, gaps, outliers, and the shape of the 
distribution. 

Graphs can be grouped according to different criteria. In our case, we will divide them 
by usage. However, we will by no means cover all possibilities but we will try to 
present the most important ones. Some graphs are so specific that they are only part 
of specific analyses. An example of such a graph is the dendrogram that is part of 
cluster analysis and is used to visualize clusters in the data space. 

📝 2.2.2 

We can examine the abundance of the data in each variable in different ways. One 
possibility is by using the value_counts() function of the pandas library. The result is 
a listing of the unique values and the number of repetitions in the data set. If we set 
the normalize parameter in the function to True, the resulting counts are output in 
percentage notation. The last option is to visualize the frequencies using the plot() 
function, where we can choose a bar chart type by setting the kind parameter to bar.  

We have also added a target column to our data file. This column is used for the 
classification task, where based on the other variables we can classify the wine into 
the given three categories. In our case, for the moment, it will mainly serve us to 
better understand the data. 
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import pandas as pd 

from sklearn.datasets import load_wine 

 

wine = load_wine() 

df = pd.DataFrame(data=wine.data, columns= wine.feature_names) 

df["target"] = wine.target 

print('Frequencies:',df['target'].value_counts(),sep='\n') 

print('Percentages:',df['target'].value_counts(normalize=True)

,sep='\n') 

df['target'].value_counts().plot(kind='bar') 

 
 
Program output: 
Frequencies: 

1    71 

0    59 

2    48 

Name: target, dtype: int64 

Percentages: 

1    0.398876 

0    0.331461 

2    0.269663 

Name: target, dtype: float64 

 
 

📝 2.2.3 

Load from the sklearn library the dataset california_housing, which contains records 
of homes in California. You fetch the dataset into an object using the 
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fetch_california_housing() function. What is the number of oldest houses by the 
average age of the houses in the block? List the average age and the number of 
records for it. 

24: 875 

 
import pandas as pd 

from scipy import stats 

from sklearn.datasets import fetch_california_housing 

 

cali = fetch_california_housing() 

 

df = pd.DataFrame(data=cali.data, columns=cali.feature_names) 

df['HouseAge'].value_counts().plot(kind='bar') 

print(df.HouseAge.value_counts()) 

 
Program output: 
52.0    1273 

36.0     862 

35.0     824 

16.0     771 

17.0     698 

34.0     689 

26.0     619 

33.0     615 

18.0     570 

25.0     566 

32.0     565 

37.0     537 

15.0     512 

19.0     502 

27.0     488 

24.0     478 

30.0     476 

28.0     471 

20.0     465 

29.0     461 

31.0     458 

23.0     448 

21.0     446 

14.0     412 

22.0     399 

38.0     394 

39.0     369 

42.0     368 



Exploratory Analysis | FITPED AI 

37 

44.0     356 

43.0     353 

40.0     304 

13.0     302 

41.0     296 

45.0     294 

10.0     264 

11.0     254 

46.0     245 

5.0      244 

12.0     238 

8.0      206 

9.0      205 

47.0     198 

4.0      191 

48.0     177 

7.0      175 

6.0      160 

50.0     136 

49.0     134 

3.0       62 

2.0       58 

51.0      48 

1.0        4 

Name: HouseAge, dtype: int64 
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📝 2.2.4 

If we want to look at the distribution of the data or the distribution of the data, we 
can use a histogram. The histogram works with intervals where the intervals are 
represented by the width of the bar (x-axis) and the number of cases that fall within 
the interval is represented by the height of the bar (y-axis). Visualization of the 
histogram is possible using the plot() function, where we can choose the type of the 
plot by setting the kind parameter to hist. 

 
import pandas as pd 

from sklearn.datasets import load_wine 

 

wine = load_wine() 

df = pd.DataFrame(data=wine.data, columns= wine.feature_names) 

df['magnesium'].plot(kind='hist', title='magnesium') 

 
Program output: 

 
 

📝 2.2.5 

Load from the sklearn library the dataset california_housing, which contains records 
of homes in California. You fetch the dataset into an object using the 
fetch_california_housing() function. Visualize a histogram of each variable in the 
dataset. Which of the histograms visualize information about the rooms in the 
houses? 
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import pandas as pd 

from scipy import stats 

from sklearn.datasets import fetch_california_housing 

 

cali = fetch_california_housing() 

 

df = pd.DataFrame(data=cali.data, columns=cali.feature_names) 

print(df.info()) 

#df['MedInc'].plot(kind='hist') 

#df['HouseAge'].plot(kind='hist') 

#df['AveRooms'].plot(kind='hist') 

#df['AveBedrms'].plot(kind='hist') 

#df['Population'].plot(kind='hist') 

#df['AveOccup'].plot(kind='hist') 

#df['Latitude'].plot(kind='hist') 

#df['Longitude'].plot(kind='hist') 

 
Program output: 
 

RangeIndex: 20640 entries, 0 to 20639 

Data columns (total 8 columns): 

 #   Column      Non-Null Count  Dtype   

---  ------      --------------  -----   

 0   MedInc      20640 non-null  float64 

 1   HouseAge    20640 non-null  float64 

 2   AveRooms    20640 non-null  float64 

 3   AveBedrms   20640 non-null  float64 

 4   Population  20640 non-null  float64 

 5   AveOccup    20640 non-null  float64 

 6   Latitude    20640 non-null  float64 

 7   Longitude   20640 non-null  float64 

dtypes: float64(8) 

memory usage: 1.3 MB 

None 
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📝 2.2.6 

We covered descriptive statistics in the previous lesson. In addition to numerical 
characteristics, we can also visualize descriptive statistics using a box plot. Thus, 
we can assess and compare measures of the location and dispersion of values in 
their neighbourhood. Visualization of the histogram is possible using the boxplot() 
function, which is found in the matplotlib library. As the first parameter, we specify 
the variable we want to visualize. The showmeans parameter adds visual information 
about the mean value to our graph, which is represented by the green triangle. The 
red line tells us the mean value. The rectangle, in turn, gives us the upper-to-lower 
quartile boundary. The maximum and minimum are bounded by lines from the 
rectangle upwards and downwards. 

 
import pandas as pd 

from sklearn.datasets import load_wine 

import matplotlib.pyplot as plt 

 

wine = load_wine() 

df = pd.DataFrame(data=wine.data, columns= wine.feature_names) 

plt.boxplot(df['magnesium'], showmeans=True) 
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Program output: 

 
 

📝 2.2.7 

Using the matplotlib library, we can also visualize multiple box plots at the same time. 
As a first parameter, we send not a single variable but a list of variables to be 
examined. We can then color-code the variables using various settings, which you 
can see in the following code. In our case, we have combined variables whose range 
of values is approximately similar. However, it is more transparent to observe the 
individual variables separately so that we are not affected by the different scales of 
values. 

 
import pandas as pd 

from sklearn.datasets import load_wine 

import matplotlib.pyplot as plt 

 

wine = load_wine() 

df = pd.DataFrame(data=wine.data, columns= wine.feature_names) 

box = 

plt.boxplot([df['total_phenols'],df['flavanoids'],df['proantho

cyanins']], showmeans=True) 

#boxes customization 

plt.setp(box['boxes'][0], color='green') 

plt.setp(box['caps'][0], color='green') 

plt.setp(box['caps'][1], color='green') 

plt.setp(box['whiskers'][0], color='green') 

plt.setp(box['whiskers'][1], color='green') 
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plt.setp(box['boxes'][1], color='red') 

plt.setp(box['caps'][2], color='red') 

plt.setp(box['caps'][3], color='red') 

plt.setp(box['whiskers'][2], color='red') 

plt.setp(box['whiskers'][3], color='red') 

 

plt.title('Distribution of wine attributes') 

plt.xticks([1,2,3], ['total 

phenols','flavanoids','proanthocyanins']) 

 

plt.show() 

 
Program output: 

 
 

📝 2.2.8 

Load from the sklearn library the dataset california_housing, which contains records 
of homes in California. You fetch the dataset into an object using the 
fetch_california_housing() function. Use the box plot to examine each attribute of 
the dataset and select the correct assertions. 

We will add one more column to our data file, target. This column is used for the 
classification task where based on the other variables we can classify the median 
California home price value, expressed in hundreds of thousands of dollars. In our 
case, it will mainly serve us to better understand the data. 
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import pandas as pd 

import matplotlib.pyplot as plt 

from scipy import stats 

from sklearn.datasets import fetch_california_housing 

 

cali = fetch_california_housing() 

 

df = pd.DataFrame(data=cali.data, columns=cali.feature_names) 

#print(df.info()) 

#plt.boxplot(df['HouseAge'], showmeans=True) 

#plt.boxplot(df['AveRooms'], showmeans=True) 

#plt.boxplot(df['AveBedrms'], showmeans=True) 

plt.boxplot(df['AveOccup'], showmeans=True) 

#plt.boxplot(df['Population'], showmeans=True) 

 
Program output: 

 
 

• the average age of the houses is close to the median age of the houses in the 
block 

• descriptive statistics of the average number of rooms and bedrooms are 
similar 

• the age of houses has a normal distribution 
• the average age of the houses is similar to the average number of rooms 
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📝 2.2.9 

There is no standard that specifies which chart we should use to visualize the data. 
However, there are a few guidelines that can help us choose: 

• It is important to understand what type of data we are examining. If you have 
continuous variables, then a histogram would be a good choice. Similarly, if 
we want to display a ranking, an ordered bar chart would be a good choice. 

• Let's choose a graph that effectively conveys the correct and relevant 
meaning of the data without actually misrepresenting the facts. 

• Simplicity is best. It is considered better to draw a simple graph that is easy 
to understand than to draw complex graphs that require several reports and 
texts to understand. 

• Let's choose a diagram that does not overwhelm the audience with 
information. Our goal should be to illustrate abstract information clearly. 

2.3 Data summarization 

📝 2.3.1 

During data analysis, it is often necessary to group data based on certain criteria. 
The concepts of clustering occur in several parts of data analysis. The pandas library 
contains a groupby() function that groups our dataset into different classes over 
which we can perform aggregation. The groupby() function performs two basic 
functions: it divides the data into groups based on certain criteria and applies the 
function to each group separately. The result of groupby() is a structure that provides 
us with several aggregation functions such as sum(), mean(), median(), min(), max(), 
and so on. 

 
import pandas as pd 

from sklearn.datasets import load_wine 

 

wine = load_wine() 

df = pd.DataFrame(data=wine.data, columns= wine.feature_names) 

df["target"] = wine.target 

print(df.groupby('target').mean()) 

 
Program output: 
          alcohol  malic_acid       ash  alcalinity_of_ash   

magnesium  \ 

target                                                                    

0       13.744746    2.010678  2.455593          17.037288  

106.338983    

1       12.278732    1.932676  2.244789          20.238028   

94.549296    
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2       13.153750    3.333750  2.437083          21.416667   

99.312500    

 

        total_phenols  flavanoids  nonflavanoid_phenols  

proanthocyanins  \ 

target                                                                      

0            2.840169    2.982373              0.290000         

1.899322    

1            2.258873    2.080845              0.363662         

1.630282    

2            1.678750    0.781458              0.447500         

1.153542    

 

        color_intensity       hue  

od280/od315_of_diluted_wines      proline   

target                                                                         

0              5.528305  1.062034                      

3.157797  1115.711864   

1              3.086620  1.056282                      

2.785352   519.507042   

2              7.396250  0.682708                      

1.683542   629.895833   

 

📝 2.3.2 

Load from the sklearn library the dataset california_housing, which contains records 
of homes in California. You fetch the dataset into an object using the 
fetch_california_housing() function. 

We'll also add a target column to our dataset. This column is used for the 
classification task, where based on the other variables we can classify the median 
price value of California homes, expressed in hundreds of thousands of dollars. In 
our case, for the moment, it will mainly serve us to better understand the data. 

Using clustering based on the target variable, find the median value of the age of 
homes in the block for a target value of 5. Round the result to a whole number. 

 
import pandas as pd 

import matplotlib.pyplot as plt 

from sklearn.datasets import fetch_california_housing 

 

cali = fetch_california_housing() 

 

df = pd.DataFrame(data=cali.data, columns=cali.feature_names) 
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df['target'] = cali.target 

print(df.groupby('target').mean()) 

 
Program output: 
           MedInc   HouseAge  AveRooms  AveBedrms  Population  

AveOccup  \ 

target                                                                     

0.14999  2.122475  30.750000  6.575951   2.016259   305.25000  

2.566440    

0.17500  2.366700  39.000000  3.572464   1.217391   259.00000  

1.876812    

0.22500  1.818075  36.250000  3.975628   1.265805  2112.00000  

3.652335    

0.25000  0.857100  21.000000  1.629630   1.222222    64.00000  

2.370370    

0.26600  2.301300  34.000000  4.897959   1.051020   808.00000  

2.748299    

...           ...        ...       ...        ...         ...       

...    

4.98800  8.248000  29.000000  7.072727   0.978182   826.00000  

3.003636    

4.99000  8.148900  18.000000  6.600817   1.001362  1634.00000  

2.226158    

4.99100  6.786100  28.000000  7.386861   1.083942   617.00000  

2.251825    

5.00000  3.899581  38.000000  4.773400   1.094456  1036.00000  

2.097639    

5.00001  7.825123  33.802073  6.817436   1.097833  1112.80829  

2.570442    

 

          Latitude   Longitude   

target                           

0.14999  37.665000 -120.197500   

0.17500  34.150000 -118.330000   

0.22500  36.005000 -119.335000   

0.25000  32.790000 -114.650000   

0.26600  35.130000 -119.450000   

...            ...         ...   

4.98800  37.330000 -122.060000   

4.99000  37.890000 -122.180000   

4.99100  33.550000 -117.770000   

5.00000  35.584444 -120.155556   

5.00001  35.225751 -119.702477   

 

[3842 rows x 8 columns] 
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📝 2.3.3 

Aggregation is the process of performing any mathematical operation on a set of 
data or a subset of it. Aggregation is one of the many techniques in the pandas library 
that is used to manipulate data in data analysis. 

The aggregate() function is used to apply aggregation to one or more columns. Some 
of the most commonly used aggregations are as follows: 

• sum: returns the sum of the values 
• min: returns the minimum of the values 
• max: returns the maximum of the values 

It is important to note that we can only perform aggregations over numeric values. 

 
import pandas as pd 

from sklearn.datasets import load_wine 

 

wine = load_wine() 

df = pd.DataFrame(data=wine.data, columns= wine.feature_names) 

df["target"] = wine.target 

print(df.aggregate('max')) 

 
Program output: 
alcohol                           14.83 

malic_acid                         5.80 

ash                                3.23 

alcalinity_of_ash                 30.00 

magnesium                        162.00 

total_phenols                      3.88 

flavanoids                         5.08 

nonflavanoid_phenols               0.66 

proanthocyanins                    3.58 

color_intensity                   13.00 

hue                                1.71 

od280/od315_of_diluted_wines       4.00 

proline                         1680.00 

target                             2.00 

dtype: float64 
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📝 2.3.4 

Load from the sklearn library the dataset california_housing, which contains records 
of homes in California. You fetch the dataset into an object using the 
fetch_california_housing() function. 

Use aggregation to find the lowest value in the MedInc column. Round the result to 
two decimal places. 

 
import pandas as pd 

import matplotlib.pyplot as plt 

from sklearn.datasets import fetch_california_housing 

 

cali = fetch_california_housing() 

 

df = pd.DataFrame(data=cali.data, columns=cali.feature_names) 

print(round(df.aggregate(min),2)) 

 
Program output: 
MedInc          0.50 

HouseAge        1.00 

AveRooms        0.85 

AveBedrms       0.33 

Population      3.00 

AveOccup        0.69 

Latitude       32.54 

Longitude    -124.35 

dtype: float64 

 

📝 2.3.5 

The most important operations implemented by groupby() are aggregation, filter, 
transform, and apply. An efficient way to implement aggregation functions in a data 
file is to execute them after grouping the required columns. The aggregation function 
returns one aggregated value for each group. After creating these groups, we can 
apply several aggregation operations to the data grouped in this way. 

The advantage of aggregation is that we can also work with functions from other 
libraries, such as numpy, in the call to get the value of standard deviation and so on. 
The following notation will allow us to create different views of the variables we are 
examining, with the addition that we can also create their naming and thus make the 
table in question clearer. 
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import pandas as pd 

import numpy as np 

from sklearn.datasets import load_wine 

 

wine = load_wine() 

df = pd.DataFrame(data=wine.data, columns= wine.feature_names) 

df["target"] = wine.target 

 

df_group = df.groupby('target').aggregate( 

  mean_alcohol=('alcohol', np.mean), 

  max_ash=('ash', np.max), 

  std_magnesium=('magnesium', np.std) 

) 

print(df_group) 

 
Program output: 
        mean_alcohol  max_ash  std_magnesium 

target                                       

0          13.744746     3.22      10.498949 

1          12.278732     3.23      16.753497 

2          13.153750     2.86      10.890473 

📝 2.3.6 

Load from the sklearn library the dataset california_housing, which contains records 
of homes in California. You fetch the dataset into an object using the 
fetch_california_housing() function. 

Combine different aggregation methods for different variables. Aggregate the data 
based on the variable target. Then output a value of 5 for the target: 

• the minimum of the AveRooms variable 
• the median of the variable AveOccup 
• the maximum of the variable AveBedrms 

Round the result to two decimal places and output in the following format: 

AveRooms: 3.52 AveOccup: 2.98 AveBedrms: 1.25 

 
import pandas as pd 

import matplotlib.pyplot as plt 

import numpy as np 

from sklearn.datasets import fetch_california_housing 

 

cali = fetch_california_housing() 
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df = pd.DataFrame(data=cali.data, columns=cali.feature_names) 

df['target']=cali.target 

df_group = df.groupby('target').aggregate( 

  min_rooms=('AveRooms', np.min), 

  med_occup=('AveOccup', np.median), 

  max_bedrms=('AveBedrms', np.max) 

).round(2) 

print(df_group) 

 
Program output: 
         min_rooms  med_occup  max_bedrms 

target                                    

0.14999       3.57       2.52        3.50 

0.17500       3.57       1.88        1.22 

0.22500       2.02       3.35        1.49 

0.25000       1.63       2.37        1.22 

0.26600       4.90       2.75        1.05 

...            ...        ...         ... 

4.98800       7.07       3.00        0.98 

4.99000       6.60       2.23        1.00 

4.99100       7.39       2.25        1.08 

5.00000       2.83       1.90        1.36 

5.00001       1.82       2.52       25.64 

 

[3842 rows x 3 columns] 

 

📝 2.3.7 

An essential part of data summarization is the use of a contingency table. A 
contingency table is a table that is used to clearly summarize the relationship 
between two (or more) variables. The rows of the contingency table correspond to 
the possible values of the first variable, and the columns to the possible values of 
the second. The corresponding cell of the contingency table usually contains the 
number of cases where at the same time the first variable had a value corresponding 
to the corresponding row and the second variable had a value corresponding to the 
corresponding column. The pandas library provides two options for creating a 
contingency table, the pivot_table() and crosstab() functions. Since both functions 
generate the same output but the pivot_table() function offers more options, we will 
only work with it. Using the aggfunc parameter, we can again specify the aggregation 
function. If we don't specify this parameter, the contingency table generates average 
values by default. The parameter margins=True allows us to turn on aggregation for 
all rows in the table. 

 
 



Exploratory Analysis | FITPED AI 

55 

import pandas as pd 

import numpy as np 

from sklearn.datasets import load_wine 

 

wine = load_wine() 

df = pd.DataFrame(data=wine.data, columns= wine.feature_names) 

df["target"] = wine.target 

 

table = pd.pivot_table(df, index =["target"], aggfunc=np.mean, 

margins=True) 

 

print(table) 

 
Program output: 
        alcalinity_of_ash    alcohol       ash  

color_intensity  flavanoids  \ 

target                                                                         

0               17.037288  13.744746  2.455593         

5.528305    2.982373    

1               20.238028  12.278732  2.244789         

3.086620    2.080845    

2               21.416667  13.153750  2.437083         

7.396250    0.781458    

All             19.494944  13.000618  2.366517         

5.058090    2.029270    

 

             hue   magnesium  malic_acid  nonflavanoid_phenols  

\ 

target                                                            

0       1.062034  106.338983    2.010678              0.290000    

1       1.056282   94.549296    1.932676              0.363662    

2       0.682708   99.312500    3.333750              0.447500    

All     0.957449   99.741573    2.336348              0.361854    

 

        od280/od315_of_diluted_wines  proanthocyanins      

proline  \ 

target                                                                

0                           3.157797         1.899322  

1115.711864    

1                           2.785352         1.630282   

519.507042    

2                           1.683542         1.153542   

629.895833    

All                         2.611685         1.590899   

746.893258    
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        total_phenols   

target                  

0            2.840169   

1            2.258873   

2            1.678750   

All          2.295112   

 

📝 2.3.8 

Load from the sklearn library the dataset california_housing, which contains records 
of homes in California. You fetch the dataset into an object using the 
fetch_california_housing() function. 

Group the data based on the target variable. Use the contingency table to find the 
standard deviation value for the entire table for the Population column. Round the 
result to two decimal places. 

 
import pandas as pd 

import matplotlib.pyplot as plt 

import numpy as np 

from sklearn.datasets import fetch_california_housing 

 

cali = fetch_california_housing() 

 

df = pd.DataFrame(data=cali.data, columns=cali.feature_names) 

df['target']=cali.target 

 

table = pd.pivot_table(df, index =["target"], aggfunc=np.std, 

margins=True).round(2) 

print(table) 

 
Program output: 
         AveBedrms  AveOccup  AveRooms  HouseAge  Latitude  

Longitude  MedInc  \ 

target                                                                           

0.14999       1.03      0.38      4.05     16.68      2.86       

3.21    1.53    

0.225         0.15      0.74      2.31     20.85      2.50       

2.89    1.02    

0.3           1.01      0.68      2.27     15.56      1.22       

2.63    1.01    
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0.325         0.67      0.32      3.49     16.58      2.71       

2.98    1.13    

0.375         0.47      3.22      1.56     13.95      2.73       

1.79    0.56    

...            ...       ...       ...       ...       ...        

...     ...    

4.956         0.01      0.21      1.43      1.41      0.01       

0.06    3.13    

4.964         0.11      0.13      0.64      8.49      3.20       

3.34    0.93    

5.0           0.09      0.58      1.54     12.73      1.98       

2.21    1.31    

5.00001       0.80      1.49      4.67     13.03      1.78       

1.95    3.25    

All           0.47     10.39      2.47     12.59      2.14       

2.00    1.90    

 

         Population   

target                

0.14999      299.62   

0.225       3186.56   

0.3          114.55   

0.325        415.47   

0.375       2745.95   

...             ...   

4.956        272.94   

4.964        160.51   

5.0          671.25   

5.00001      813.32   

All         1132.43   

 

[3117 rows x 8 columns] 



 

 

 

Data Analysis 

Chapter 3 
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3.1 Univariate analysis 

📝 3.1.1 

Each data set we want to analyze will have different fields (i.e., columns) of multiple 
observations (i.e., variables) that represent different facts. The columns of the 
dataset are most likely related to each other because they are collected from the 
same event. One field of a record may or may not affect the value of another field. 
To examine the type of relationships that these columns have, and to analyze the 
cause and effect between them, we need to work our way to identifying the 
dependencies that exist between the variables. The strength of such a relationship 
between two fields of a data set is called correlation, which is represented by a 
numerical value between -1 and 1. 

For example, height and weight are correlated, so it can be assumed that taller people 
are usually heavier than shorter ones. If we have a new person who is taller than the 
average height we observed before, then they are more likely to weigh more than the 
average weight we observed. 

Correlation tells us how variables change together, in the same or opposite direction, 
and in the strength of the relationship. We calculate the Pearson correlation 
coefficient to find the correlation. If the correlation is +1, then it can be said to be a 
perfect positive/linear correlation (variable A is directly proportional to variable B), 
while a correlation of -1 is a perfect negative correlation (variable A is inversely 
proportional to variable B). Values closer to 0 are not correlated. If the correlation 
coefficients are close to 1 in absolute value, the variables are said to have a strong 
correlation; in comparison, those close to 0.5 have a weak correlation. 

📝 3.1.2 

In the previous chapter, we focused on descriptive statistics. We had a variable that 
contained numerical values and we calculated the mean, median, and mode and 
analyzed the distribution of the values. We then grouped the data based on the target 
variable and then calculated the mean, median, modus, and standard deviation for 
each option. Analysis of one type of data is called univariate analysis. 

Univariate analysis is the simplest form of data analysis. It means that our data has 
only one type of variable and that we perform the analysis over it. The main goal of 
the univariate analysis is to take the data, summarize it, and find patterns among the 
values. It does not deal with causes or relationships between values. A few 
techniques that describe ways found in univariate data include central tendency (i.e., 
mean, mode, and median) and dispersion (i.e., range, variance, maximum and 
minimum quartiles (including interquartile range), and standard deviation). 

Let us recap the whole process over the new data matrix. The data matrix contains 
information on the sales of games in recent years. Using the info() function, we can 
find out what variables are in the dataset and possibly how much missing data each 
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variable contains. Then, using the describe() function we can find the mean, median, 
maximum, minimum and standard deviation. 

 
import pandas as pd 

 

df = 

pd.read_csv('https://priscilla.fitped.eu/data/pandas/games_sal

es.csv', sep=',') 

 

print(df.info()) 

 

print(df.describe()) 

 
Program output: 
 

RangeIndex: 55792 entries, 0 to 55791 

Data columns (total 16 columns): 

 #   Column         Non-Null Count  Dtype   

---  ------         --------------  -----   

 0   Rank           55792 non-null  int64   

 1   Name           55792 non-null  object  

 2   Genre          55792 non-null  object  

 3   ESRB_Rating    23623 non-null  object  

 4   Platform       55792 non-null  object  

 5   Publisher      55792 non-null  object  

 6   Developer      55775 non-null  object  

 7   Critic_Score   6536 non-null   float64 

 8   User_Score     335 non-null    float64 

 9   Total_Shipped  1827 non-null   float64 

 10  Global_Sales   19415 non-null  float64 

 11  NA_Sales       12964 non-null  float64 

 12  PAL_Sales      13189 non-null  float64 

 13  JP_Sales       7043 non-null   float64 

 14  Other_Sales    15522 non-null  float64 

 15  Year           54813 non-null  float64 

dtypes: float64(9), int64(1), object(6) 

memory usage: 6.8+ MB 

None 

               Rank  Critic_Score  User_Score  Total_Shipped  

Global_Sales  \ 

count  55792.000000   6536.000000  335.000000    1827.000000  

19415.000000    

mean   27896.500000      7.213709    8.253433       1.887258      

0.365503    
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std    16105.907446      1.454079    1.401489       4.195693      

0.833022    

min        1.000000      1.000000    2.000000       0.030000      

0.000000    

25%    13948.750000      6.400000    7.800000       0.200000      

0.030000    

50%    27896.500000      7.500000    8.500000       0.590000      

0.120000    

75%    41844.250000      8.300000    9.100000       1.800000      

0.360000    

max    55792.000000     10.000000   10.000000      82.860000     

20.320000    

 

           NA_Sales     PAL_Sales     JP_Sales   Other_Sales          

Year   

count  12964.000000  13189.000000  7043.000000  15522.000000  

54813.000000   

mean       0.275541      0.155263     0.110402      0.044719   

2005.659095   

std        0.512809      0.399257     0.184673      0.129554      

8.355585   

min        0.000000      0.000000     0.000000      0.000000   

1970.000000   

25%        0.050000      0.010000     0.020000      0.000000   

2000.000000   

50%        0.120000      0.040000     0.050000      0.010000   

2008.000000   

75%        0.290000      0.140000     0.120000      0.040000   

2011.000000   

max        9.760000      9.850000     2.690000      3.120000   

2020.000000   

 

📝 3.1.3 

Read data from the banking.csv file, which contains information about the bank's 
customers. There are several variables in the file, which can be clearly divided into 3 
categories: 

Customer demographic information: 

• customer_id - customer identifier 
• vintage - how long the customer has been with the bank in the number of 

days 
• age - age of the customer 
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• gender - gender of the customer 
• occupation - occupation of the customer 
• city - city of the customer (anonymised) 

Information related to the bank for customers: 

• customer_nw_category - customer value (3:low 2:medium 1:high) 
• branch_code - branch code for the customer's account 
• days_since_last_transaction - number of days since the last payment in the 

last 1 year 

Transaction information: 

• current_balance - balance as of the current day 
• previous_month_end_balance - month-end balance in the previous month 
• average_monthly_balance_prevQ - average monthly balances in the previous 

quarter 
• average_monthly_balance_prevQ2 - average monthly balances two quarters 

back 
• percent_change_credits - percentage change in credits between the last two 

quarters 
• current_month_credit - the total amount of credits in the current month 
• previous_month_credit - the total amount of credit in the previous month 
• current_month_debit - the total amount of debt in the current month 
• previous_month_debit - the total amount of debt in the previous month 
• current_month_balance - average balance in the current month 
• previous_month_balance - average balance in the previous month 
• churn - client at risk - client's average balance falls below the minimum 

balance in the following quarter (1/0) 

 

After loading the data file, examine the variables and print the average value of the 
current balance across all accounts (current_balance). 

 
import pandas as pd 

 

df = 

pd.read_csv('https://priscilla.fitped.eu/data/pandas/banking.c

sv', sep=',', decimal='.') 

pd.set_option('display.float_format', lambda x: f'{x:.3f}') 

print(df.info()) 

 

print(df.describe()) 
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Program output: 
 

RangeIndex: 28382 entries, 0 to 28381 

Data columns (total 21 columns): 

 #   Column                          Non-Null Count  Dtype   

---  ------                          --------------  -----   

 0   customer_id                     28382 non-null  int64   

 1   vintage                         28382 non-null  int64   

 2   age                             28382 non-null  int64   

 3   gender                          27857 non-null  object  

 4   dependents                      25919 non-null  float64 

 5   occupation                      28302 non-null  object  

 6   city                            27579 non-null  float64 

 7   customer_nw_category            28382 non-null  int64   

 8   branch_code                     28382 non-null  int64   

 9   current_balance                 28382 non-null  float64 

 10  previous_month_end_balance      28382 non-null  float64 

 11  average_monthly_balance_prevQ   28382 non-null  float64 

 12  average_monthly_balance_prevQ2  28382 non-null  float64 

 13  current_month_credit            28382 non-null  float64 

 14  previous_month_credit           28382 non-null  float64 

 15  current_month_debit             28382 non-null  float64 

 16  previous_month_debit            28382 non-null  float64 

 17  current_month_balance           28382 non-null  float64 

 18  previous_month_balance          28382 non-null  float64 

 19  churn                           28382 non-null  int64   

 20  last_transaction                28382 non-null  object  

dtypes: float64(12), int64(6), object(3) 

memory usage: 4.5+ MB 

None 

       customer_id   vintage       age  dependents      city  

\ 

count    28382.000 28382.000 28382.000   25919.000 27579.000    

mean     15143.509  2091.144    48.208       0.347   796.110    

std       8746.454   272.677    17.807       0.998   432.872    

min          1.000    73.000     1.000       0.000     0.000    

25%       7557.250  1958.000    36.000       0.000   409.000    

50%      15150.500  2154.000    46.000       0.000   834.000    

75%      22706.750  2292.000    60.000       0.000  1096.000    

max      30301.000  2476.000    90.000      52.000  1649.000    

 

       customer_nw_category  branch_code  current_balance  \ 

count             28382.000    28382.000        28382.000    

mean                  2.226      925.975         7380.552    
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std                   0.660      937.799        42598.712    

min                   1.000        1.000        -5503.960    

25%                   2.000      176.000         1784.470    

50%                   2.000      572.000         3281.255    

75%                   3.000     1440.000         6635.820    

max                   3.000     4782.000      5905904.030    

 

       previous_month_end_balance  

average_monthly_balance_prevQ  \ 

count                   28382.000                      

28382.000    

mean                     7495.771                       

7496.780    

std                     42529.345                      

41726.219    

min                     -3149.570                       

1428.690    

25%                      1906.000                       

2180.945    

50%                      3379.915                       

3542.865    

75%                      6656.535                       

6666.887    

max                   5740438.630                    

5700289.570    

 

       average_monthly_balance_prevQ2  current_month_credit  \ 

count                       28382.000             28382.000    

mean                         7124.209              3433.252    

std                         44575.810             77071.452    

min                        -16506.100                 0.010    

25%                          1832.507                 0.310    

50%                          3359.600                 0.610    

75%                          6517.960               707.272    

max                       5010170.100          12269845.390    

 

       previous_month_credit  current_month_debit  

previous_month_debit  \ 

count              28382.000            28382.000             

28382.000    

mean                3261.694             3658.745              

3339.761    

std                29688.889            51985.424             

24301.112    
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min                    0.010                0.010                 

0.010    

25%                    0.330                0.410                 

0.410    

50%                    0.630               91.930               

109.960    

75%                  749.235             1360.435              

1357.553    

max              2361808.290          7637857.360           

1414168.060    

 

       current_month_balance  previous_month_balance     churn   

count              28382.000               28382.000 28382.000   

mean                7451.133                7495.177     0.185   

std                42033.939               42431.979     0.389   

min                -3374.180               -5171.920     0.000   

25%                 1996.765                2074.407     0.000   

50%                 3447.995                3465.235     0.000   

75%                 6667.958                6654.693     0.000   

max              5778184.770             5720144.500     1.000   

📝 3.1.4 

The next step is to use visualization to examine the distribution of the selected 
variables. Let's look at the distribution of the Year variable that we can examine using 
a histogram. Before we visualize the histogram, we can see how many years are 
actually in our dataset. We can get the number of unique years by using the unique() 
function, which returns the unique elements of the variable under study. We can then 
use this value to partition the histogram into exactly a unique number of years, giving 
us an accurate representation of the counts for those years. From the graph, we can 
observe that from around 2008 onwards, the production of games started to decline. 

 
import pandas as pd 

 

df = 

pd.read_csv('https://priscilla.fitped.eu/data/pandas/games_sal

es.csv', sep=',') 

 

y_bins = len(df['Year'].unique()) 

 

df['Year'].plot(kind='hist', bins=y_bins) 
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Program output: 

 
 

📝 3.1.5 

Next, we can take a look at the ratings of games by critics and users. On closer 
inspection of the records, we find that the User_Score variable contains a significant 
number of missing values. While we are left with few records after removing them 
we can observe through visualization that users tend to rate games more positively, 
as a higher value means a better score. This can also be seen by comparing the 
average values, which have a difference of about 1 point. 

 
import pandas as pd 

 

df = 

pd.read_csv('https://priscilla.fitped.eu/data/pandas/games_sal

es.csv', sep=',') 

print(df['Critic_Score'].describe()) 

 

df['Critic_Score'].dropna().plot(kind='hist') 

 

print(df['User_Score'].describe()) 

 

df['User_Score'].dropna().plot(kind='hist') 
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Program output: 
count    6536.000000 

mean        7.213709 

std         1.454079 

min         1.000000 

25%         6.400000 

50%         7.500000 

75%         8.300000 

max        10.000000 

Name: Critic_Score, dtype: float64 

count    335.000000 

mean       8.253433 

std        1.401489 

min        2.000000 

25%        7.800000 

50%        8.500000 

75%        9.100000 

max       10.000000 

Name: User_Score, dtype: float64 

 
 

📝 3.1.6 

The next step is to examine the categorical variables. We start by looking at which 
platform most games have been produced for. However, since the frequency graph 
is rather opaque, we will only select the top 30 most numerous platforms. The 
describe() function doesn't give us information about the basic statistics in the case 
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of a categorical variable but we can find out the number of elements, the number of 
categories, and the most numerous category in this way. 

 
import pandas as pd 

 

df = 

pd.read_csv('https://priscilla.fitped.eu/data/pandas/games_sal

es.csv', sep=',') 

print(df['Platform'].describe()) 

 

df['Platform'].dropna().value_counts().iloc[:30].plot(kind='ba

r') 

 
Program output: 
count     55792 

unique       74 

top          PC 

freq      10978 

Name: Platform, dtype: object 

 
 

📝 3.1.7 

The genre of games gave us interesting results, where the most numerous games 
were from the miscellaneous genre, which can probably mean an increase in Indie 
games. The second most numerous games were action games, followed by 
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adventure and sports games. On the other hand, strategy games were not as 
abundant despite often being a popular game type. 

We can follow a similar approach when examining other categorical variables such 
as publisher (Developer). 

 
import pandas as pd 

 

df = 

pd.read_csv('https://priscilla.fitped.eu/data/pandas/games_sal

es.csv', sep=',') 

print(df['Genre'].describe()) 

 

df['Genre'].dropna().value_counts().plot(kind='bar') 

 
Program output: 
count     55792 

unique       20 

top        Misc 

freq       9476 

Name: Genre, dtype: object 
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📝 3.1.8 

Load the data from the banking.csv file, which contains information about the bank's 
customers. After loading the data file, find out what is the ratio of males and females 
among the bank's customers (gender). We recommend using the visualization and 
writing out both genders and the percentages rounded to two decimal places in the 
result. 

male: 54.25% female: 45.75% 

 
import pandas as pd 

 

df = 

pd.read_csv('https://priscilla.fitped.eu/data/pandas/banking.c

sv', sep=',', decimal='.') 

 

df['gender'] = df['gender'].astype('category') # set 

occupation as categorical variable 

 

df['gender'].value_counts(normalize=True).mul(100).plot(kind='

bar') 

 

print(df['gender'].value_counts(normalize=True).mul(100).round

(2)) 

Program output: 
Male      59.4 

Female    40.6 

Name: gender, dtype: float64 
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📝 3.1.9 

Load data from the banking.csv file, which contains information about the bank's 
customers. After loading the data file find out what is the most common occupation 
of the bank's customers (occupation). We recommend using the visualization and 
printing the occupation and the percentage rounded to two decimal places in the 
result. 

 
import pandas as pd 

 

df = 

pd.read_csv('https://priscilla.fitped.eu/data/pandas/banking.c

sv', sep=',', decimal='.') 

 

df['occupation'] = df['occupation'].astype('category') # set 

occupation as categorical variable 

 

df['occupation'].value_counts(normalize=True).mul(100).plot(ki

nd='bar') 

 

print(df['occupation'].value_counts(normalize=True).mul(100).r

ound(2)) 
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Program output: 
self_employed   61.750 

salaried        23.690 

student          7.270 

retired          7.150 

company          0.140 

Name: occupation, dtype: float64 

 
 

📝 3.1.10 

Load the data from the banking.csv file, which contains information about the bank's 
customers. After loading the data file find out what is the most common rating of the 
bank's customers (customer_nw_category). We recommend using the visualization 
and writing out the rating number and percentage rounded to two decimal places in 
the result. 

 
import pandas as pd 

 

df = 

pd.read_csv('https://priscilla.fitped.eu/data/pandas/banking.c

sv', sep=',', decimal='.') 
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df['customer_nw_category'] = 

df['customer_nw_category'].astype('category') # set occupation 

as categorical variable 

 

df['customer_nw_category'].value_counts(normalize=True).mul(10

0).plot(kind='bar') 

 

print(df['customer_nw_category'].value_counts(normalize=True).

mul(100).round(2)) 

 
Program output: 
2    51.30 

3    35.63 

1    13.08 

Name: customer_nw_category, dtype: float64 

 
 

3.2 Bivariance analysis 

📝 3.2.1 

This is an analysis of more than one (exactly two) type of variables. Bivariate analysis 
is used to see if there is a relationship between two different variables. When we 
create a scatter plot by plotting one variable against the other in the Cartesian plane 
(think of the x and y axes), we get a picture of what the data is trying to tell us. If the 
data points appear to correspond to a straight line or curve, then there is a 
relationship or correlation between the two variables. In general, bivariate analysis 
helps us predict the value of one variable (i.e., the dependent variable) if we know the 
value of the independent variable. 
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Let's look at our dataset of games. Using a scatter plot we can compare and see if 
critics' ratings have an impact on the worldwide sales of the games in question. From 
the graph, we can observe that sales increase as critics' ratings increase, so we can 
assume that ratings have an effect on the marketability of games. We can use either 
the plot() function of the pandas library. Or we can use the more advanced seaborn 
library, which offers a much larger number of functions when creating plots. The 
lmplot() function adds a regression line to the scatter plot, which tells us whether 
two variables are dependent on each other. If the values are close to the line, then we 
can say that there is a dependency between the two variables. 

 
import pandas as pd 

import seaborn as sns 

from matplotlib import pyplot as plt 

 

df = 

pd.read_csv('https://priscilla.fitped.eu/data/pandas/games_sal

es.csv', sep=',') 

print(df.info()) 

#df.plot(x='Critic_Score',y='Global_Sales',kind='scatter') # 

using pandas 

sns.lmplot(x='Critic_Score',y='Global_Sales',data=df) # using 

seaborn with line 

 
Program output: 
 

RangeIndex: 55792 entries, 0 to 55791 

Data columns (total 16 columns): 

 #   Column         Non-Null Count  Dtype   

---  ------         --------------  -----   

 0   Rank           55792 non-null  int64   

 1   Name           55792 non-null  object  

 2   Genre          55792 non-null  object  

 3   ESRB_Rating    23623 non-null  object  

 4   Platform       55792 non-null  object  

 5   Publisher      55792 non-null  object  

 6   Developer      55775 non-null  object  

 7   Critic_Score   6536 non-null   float64 

 8   User_Score     335 non-null    float64 

 9   Total_Shipped  1827 non-null   float64 

 10  Global_Sales   19415 non-null  float64 

 11  NA_Sales       12964 non-null  float64 

 12  PAL_Sales      13189 non-null  float64 

 13  JP_Sales       7043 non-null   float64 

 14  Other_Sales    15522 non-null  float64 
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 15  Year           54813 non-null  float64 

dtypes: float64(9), int64(1), object(6) 

memory usage: 6.8+ MB 

None 

 
 

📝 3.2.2 

Another way to find out the dependency between two variables is to use boxplot(). 
Again, we have the option to use both the pandas and seaborn libraries and the 
notation is similar. This time we look at the effect of game genre on the marketability 
of games. Since worldwide sales contain too much data, let's focus on just one 
market, e.g. Japan. As we can see from the graph, the number of genres can 
overwhelm the x-axis, so we need to rotate the labels 90 degrees to increase the 
clarity of the graph. 

We can observe that the yield from the Role-playing and Sports genres is higher than 
that from the Racing and Shooter genres. Most genres contain outliers that represent 
high returns. 

 
import pandas as pd 

import seaborn as sns 
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from matplotlib import pyplot as plt 

 

df = 

pd.read_csv('https://priscilla.fitped.eu/data/pandas/games_sal

es.csv', sep=',') 

print(df.info()) 

#df.boxplot(by='Genre',column='JP_Sales') 

gr = sns.boxplot(x='Genre',y='JP_Sales',data=df) 

gr.set_xticklabels(gr.get_xticklabels(), rotation=90) 

 
Program output: 
 

RangeIndex: 55792 entries, 0 to 55791 

Data columns (total 16 columns): 

 #   Column         Non-Null Count  Dtype   

---  ------         --------------  -----   

 0   Rank           55792 non-null  int64   

 1   Name           55792 non-null  object  

 2   Genre          55792 non-null  object  

 3   ESRB_Rating    23623 non-null  object  

 4   Platform       55792 non-null  object  

 5   Publisher      55792 non-null  object  

 6   Developer      55775 non-null  object  

 7   Critic_Score   6536 non-null   float64 

 8   User_Score     335 non-null    float64 

 9   Total_Shipped  1827 non-null   float64 

 10  Global_Sales   19415 non-null  float64 

 11  NA_Sales       12964 non-null  float64 

 12  PAL_Sales      13189 non-null  float64 

 13  JP_Sales       7043 non-null   float64 

 14  Other_Sales    15522 non-null  float64 

 15  Year           54813 non-null  float64 

dtypes: float64(9), int64(1), object(6) 

memory usage: 6.8+ MB 

None 
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📝 3.2.3 

In the next section, we can look at the impact of the game platform on marketability. 
However, we have too many platforms in the dataset to make sense of the 
visualization. Therefore, we will only choose the TOP10 most numerous platforms 
and visualize only their profit using boxplot(). 

A surprising result from the graph is that the revenue of the most used platform (PC) 
is lower than for example the different PlayStation types. 

 
import pandas as pd 

import seaborn as sns 

from matplotlib import pyplot as plt 

 

df = 

pd.read_csv('https://priscilla.fitped.eu/data/pandas/games_sal

es.csv', sep=',') 

#print(df.info()) 

print(df['Platform'].dropna().value_counts().iloc[:10]) 

platforms = 

['PC','PS2','DS','PS','XBL','PSN','PS3','PSP','PS4','X360'] 
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df_plat = df[df['Platform'].isin(platforms)] 

#df_plat.boxplot(by='Genre',column='Global_Sales') 

gr = sns.boxplot(x='Platform',y='Global_Sales',data=df_plat) 

gr.set_xticklabels(gr.get_xticklabels(), rotation=90) 

 
Program output: 
PC      10978 

PS2      3564 

DS       3292 

PS       2703 

XBL      2115 

PSN      2004 

PS3      1870 

PSP      1804 

PS4      1755 

X360     1701 

Name: Platform, dtype: int64 

 
 

📝 3.2.4 

Load the data from the banking.csv file, which contains information about the bank's 
customers. After loading the data file, determine does the length of the customer's 
relationship with the bank have an impact on customer exposure (churn and vintage). 
We recommend using visualization in the form of a boxplot. 
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import pandas as pd 

import seaborn as sns 

 

df = 

pd.read_csv('https://priscilla.fitped.eu/data/pandas/banking.c

sv', sep=',', decimal='.') 

 

gr = sns.boxplot(x='churn',y='vintage',data=df) 

 
Program output: 

 
 

• the length of the contract has no effect 
• the length of the contract has an impact 
• the distribution of the variable is similar 
• the distribution of the variable is significantly different 

📝 3.2.5 

Load the data from the banking.csv file, which contains information about the bank's 
customers. After loading the data file, find out what is the ratio of male and female 
customers at risk among the bank's customers (churn and gender). We recommend 
using a visualization, listing both genders and the percentage rounded to two decimal 
places in the result. We recommend the use of a bar chart. 

male churn: 54.25% female churn: 45.75% 

 
import pandas as pd 

import seaborn as sns 
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df = 

pd.read_csv('https://priscilla.fitped.eu/data/pandas/banking.c

sv', sep=',', decimal='.') 

 

df['gender'] = df['gender'].astype('category') # set as 

categorical variable 

dfd = df[['gender','churn']][:] 

sns.countplot(x='gender', hue='churn', data=dfd) 

 

print(dfd['churn'].loc[dfd['gender']=='Male'].value_counts(nor

malize=True).mul(100).round(2)) 

print(dfd['churn'].loc[dfd['gender']=='Female'].value_counts(n

ormalize=True).mul(100).round(2)) 

 
Program output: 
0    80.85 

1    19.15 

Name: churn, dtype: float64 

0    82.45 

1    17.55 

Name: churn, dtype: float64 

 
 

📝 3.2.6 

Load the data from the banking.csv file, which contains information about the bank's 
customers. After loading the data file, find out what is the ratio of customers at risk 



Data Analysis | FITPED AI 

81 

based on age among the bank's customers (churn and age). Create a new categorical 
variable to classify the following age categories: 

• young - age<18 
• adult - 18<=age<60 
• senior - age>=60 

We recommend using visualization and printing all age categories and percentages 
rounded to two decimal places in the result. We recommend the use of a bar chart. 

young: 50.24% adult: 27.75% senior: 22.01% 

 
import pandas as pd 

import seaborn as sns 

 

df = 

pd.read_csv('https://priscilla.fitped.eu/data/pandas/banking.c

sv', sep=',', decimal='.') 

 

dfd = df[['churn','age']][:] 

dfd['age_group'] = 'str' 

dfd['age_group'][dfd['age']>=60] = 'senior' 

dfd['age_group'][(dfd['age']<60) & (dfd['age']>=18)] = 'adult' 

dfd['age_group'][dfd['age']<18] = 'young' 

sns.countplot(x='age_group', hue='churn', data=dfd) 

 

print(dfd['churn'].loc[dfd['age_group']=='senior'].value_count

s(normalize=True).mul(100).round(2)) 

print(dfd['churn'].loc[dfd['age_group']=='adult'].value_counts

(normalize=True).mul(100).round(2)) 

print(dfd['churn'].loc[dfd['age_group']=='young'].value_counts

(normalize=True).mul(100).round(2)) 

 
Program output: 
:8: SettingWithCopyWarning:  

A value is trying to be set on a copy of a slice from a 

DataFrame 

 

See the caveats in the documentation: 

https://pandas.pydata.org/pandas-

docs/stable/user_guide/indexing.html#returning-a-view-versus-

a-copy 

  dfd['age_group'][dfd['age']>=60] = 'senior' 

:9: SettingWithCopyWarning:  

A value is trying to be set on a copy of a slice from a 

DataFrame 
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See the caveats in the documentation: 

https://pandas.pydata.org/pandas-

docs/stable/user_guide/indexing.html#returning-a-view-versus-

a-copy 

  dfd['age_group'][(dfd['age']<60) & (dfd['age']>=18)] = 

'adult' 

:10: SettingWithCopyWarning:  

A value is trying to be set on a copy of a slice from a 

DataFrame 

 

See the caveats in the documentation: 

https://pandas.pydata.org/pandas-

docs/stable/user_guide/indexing.html#returning-a-view-versus-

a-copy 

  dfd['age_group'][dfd['age']<18] = 'young' 

0    83.17 

1    16.83 

Name: churn, dtype: float64 

0    80.61 

1    19.39 

Name: churn, dtype: float64 

0    87.1 

1    12.9 

Name: churn, dtype: float64 
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3.3 Multivariate analysis 

📝 3.3.1 

Multivariate analysis is the analysis of three or more variables. This allows us to 
examine correlations (i.e. how one variable changes relative to another) and attempt 
to make more accurate predictions of future behaviour than a bivariate analysis. 
Initially, we explored the visualization of univariate analysis and bivariate analysis; 
we will follow a similar approach for multivariate analysis. 

One common way to visualize multivariate data is to create a matrix scatter plot, also 
known as a pairwise plot. A pairwise plot shows each pair of variables in contrast to 
each other. The pairwise plot allows us to see both the distribution of each variable 
and the relationships between the two variables. 

 
import pandas as pd 

import seaborn as sns 

from matplotlib import pyplot as plt 

 

df = 

pd.read_csv('https://priscilla.fitped.eu/data/pandas/games_sal

es.csv', sep=',') 

#print(df.info()) 

sns.pairplot(data=df, 

vars=['Global_Sales','Critic_Score','User_Score'], kind='reg') 
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Program output: 

 
 

We obtained a 3x3 matrix graph for the Global_Sales, Critics_Score and User_Score 
columns. The histogram on the diagonal allows us to show the distribution of one 
variable. The regression plots on the upper and lower triangles show the relationship 
between the two variables. The left graph in the third row shows a regression plot 
representing that there is no correlation between global sales and user score. In 
comparison, the middle regression plot in the bottom row shows that there is a 
correlation between critic scores and user scores. 

📝 3.3.2 

We can augment the pairwise graph with additional information by inserting a color 
into the graph based on a categorical variable. Therefore, let's insert information 
about different genres into the graph. Density plots on the diagonal allow us to see 
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the distribution of one variable, while scatter plots on the upper and lower triangles 
show the relationship (or correlation) between two variables. The hue parameter is 
the name of the variable that is used to label the data points, which in our case is the 
thesis genre. The downside of our view is that we have too many different genres 
and therefore the visualization is a bit messy. 

 
import pandas as pd 

import seaborn as sns 

from matplotlib import pyplot as plt 

 

df = 

pd.read_csv('https://priscilla.fitped.eu/data/pandas/games_sal

es.csv', sep=',') 

#print(df.info()) 

sns.set(style='ticks', color_codes=True) 

sns.pairplot(data=df, 

vars=['Global_Sales','Critic_Score','User_Score'], 

hue='Genre') 

 
Program output: 
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📝 3.3.3 

Correlation analysis is an effective technique for determining whether there is a 
correlation or dependence (relationship) between variables. The calculation of the 
linear (Pearson) correlation coefficient for a pair of variables can be done using the 
corr() function of the pandas library or the pearsonr() function of the scipy library for 
a particular pair of variables. In this case, we can observe that there is a small 
dependence between critics' ratings and worldwide sales but it is statistically 
significant since the p-value is less than 0.05. 

 
import pandas as pd 

from scipy import stats 

 

df = 

pd.read_csv('https://priscilla.fitped.eu/data/pandas/games_sal

es.csv', sep=',') 

 

dfd = df[['Global_Sales','Critic_Score']].dropna() 

 

corr = stats.pearsonr(dfd['Global_Sales'], 

dfd['Critic_Score']) 

print("p-value:\t", corr[1]) 

print("cor:\t\t", corr[0]) 

 
Program output: 
p-value:  3.7086715030237096e-87 

cor:   0.2959412674530926 

 

📝 3.3.4 

Load the data from the banking.csv file, which contains information about the bank's 
customers. After loading the data file, see if there is a correlation between the 
variables age and current_balance. In this way, we want to see if there is a correlation 
between the age of the customers and their current account balance. Print whether 
there is a statistically significant relationship between the variables (yes/no) and the 
correlation value rounded to 2 decimal places and the p-value. 

no, p-value: 0.12, cor: 0.45 

 
import pandas as pd 

from scipy import stats 
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df = 

pd.read_csv('https://priscilla.fitped.eu/data/pandas/banking.c

sv', sep=',', decimal='.') 

 

dfd = 

df[['age','current_balance']].dropna()#df[['churn','gender']][

:] 

 

corr = stats.pearsonr(dfd['age'], dfd['current_balance']) 

print("p-value:\t", round(corr[1],2)) 

print("cor:\t\t", round(corr[0],2)) 

 
Program output: 
p-value:  0.0 

cor:   0.05 

 

📝 3.3.5 

Load the data from the banking.csv file, which contains information about the bank's 
customers. After loading the data file, see if there is a correlation between the 
previous_month_end_balance and current_balance variables. In this way, we want to 
see if there is a correlation between the previous month's account balance and the 
current account balance. List whether there is a statistically significant relationship 
between the variables (yes/no) and the correlation value rounded to 2 decimal places 
and the p-value. 

no, p-value: 0.12, cor: 0.45 

 
import pandas as pd 

from scipy import stats 

 

df = 

pd.read_csv('https://priscilla.fitped.eu/data/pandas/banking.c

sv', sep=',', decimal='.') 

 

dfd = 

df[['previous_month_end_balance','current_balance']].dropna() 

 

corr = stats.pearsonr(dfd['previous_month_end_balance'], 

dfd['current_balance']) 

print("p-value:\t", round(corr[1],2)) 

print("cor:\t\t", round(corr[0],2)) 
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Program output: 
p-value:  0.0 

cor:   0.95 

 

📝 3.3.6 

Using the corr() function of the pandas library, we can generate a table of correlations 
of all variables in the dataset. A correlation coefficient approaching 1 indicates a very 
strong positive correlation between two variables. We can observe this on the 
diagonal, which actually compares a given variable to itself, so it will be 1. 

 
import pandas as pd 

 

df = 

pd.read_csv('https://priscilla.fitped.eu/data/pandas/games_sal

es.csv', sep=',') 

 

dfd = df[['Global_Sales','Critic_Score']].dropna() 

 

correlation = df.corr(method='pearson') 

print(correlation) 

 
Program output: 
                   Rank  Critic_Score  User_Score  

Total_Shipped  \ 

Rank           1.000000     -0.137650   -0.293034      -

0.441132    

Critic_Score  -0.137650      1.000000    0.582673       

0.203425    

User_Score    -0.293034      0.582673    1.000000      -

0.025732    

Total_Shipped -0.441132      0.203425   -0.025732       

1.000000    

Global_Sales  -0.554659      0.295941    0.241650            

NaN    

NA_Sales      -0.550922      0.314285    0.234039            

NaN    

PAL_Sales     -0.438841      0.253431    0.190490            

NaN    

JP_Sales      -0.443212      0.174933    0.108721            

NaN    
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Other_Sales   -0.427737      0.254755    0.224679            

NaN    

Year          -0.097345      0.015670   -0.116728      -

0.169701    

 

               Global_Sales  NA_Sales  PAL_Sales  JP_Sales  

Other_Sales  \ 

Rank              -0.554659 -0.550922  -0.438841 -0.443212    

-0.427737    

Critic_Score       0.295941  0.314285   0.253431  0.174933     

0.254755    

User_Score         0.241650  0.234039   0.190490  0.108721     

0.224679    

Total_Shipped           NaN       NaN        NaN       NaN          

NaN    

Global_Sales       1.000000  0.914964   0.904582  0.228782     

0.856798    

NA_Sales           0.914964  1.000000   0.683959  0.075239     

0.687831    

PAL_Sales          0.904582  0.683959   1.000000  0.123954     

0.814068    

JP_Sales           0.228782  0.075239   0.123954  1.000000     

0.082254    

Other_Sales        0.856798  0.687831   0.814068  0.082254     

1.000000    

Year              -0.041354 -0.059352   0.082548 -0.351626     

0.089282    

 

                   Year   

Rank          -0.097345   

Critic_Score   0.015670   

User_Score    -0.116728   

Total_Shipped -0.169701   

Global_Sales  -0.041354   

NA_Sales      -0.059352   

PAL_Sales      0.082548   

JP_Sales      -0.351626   

Other_Sales    0.089282   

Year           1.000000   

📝 3.3.7 

We can also visualize the correlation between variables using a heatmap. This way 
we can immediately see which variables have a high correlation and vice versa. We 
will use the heatmap() function of the seaborn library. 
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import pandas as pd 

import seaborn as sns 

from matplotlib import pyplot as plt 

 

df = 

pd.read_csv('https://priscilla.fitped.eu/data/pandas/games_sal

es.csv', sep=',') 

correlation = df.corr(method='pearson') 

sns.heatmap(correlation, xticklabels=correlation.columns, 

yticklabels=correlation.columns) 

 
Program output: 

 
 

📝 3.3.8 

Load the data from the banking.csv file, which contains information about the bank's 
customers. After loading the data file, find out the correlation between all the 
variables. We recommend using a heatmap() type chart. Based on the visualization, 
select the true statements. 

 
import pandas as pd 

from scipy import stats 
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import seaborn as sns 

 

df = 

pd.read_csv('https://priscilla.fitped.eu/data/pandas/banking.c

sv', sep=',', decimal='.') 

 

correlation = df.corr(method='pearson') 

sns.heatmap(correlation, xticklabels=correlation.columns, 

yticklabels=correlation.columns) 

print(correlation) 

 
Program output: 
                                customer_id   vintage       

age  dependents  \ 

customer_id                        1.000000 -0.007750 -

0.000442   -0.008616    

vintage                           -0.007750  1.000000  

0.006220    0.005192    

age                               -0.000442  0.006220  

1.000000   -0.000612    

dependents                        -0.008616  0.005192 -

0.000612    1.000000    

city                               0.000743  0.007616  

0.015439    0.001892    

customer_nw_category               0.009618 -0.001154 -

0.076532    0.013134    

branch_code                       -0.000286  0.003512 -

0.058990    0.020141    

current_balance                    0.006589  0.000031  

0.054346   -0.003070    

previous_month_end_balance         0.005819 -0.000669  

0.058342    0.000216    

average_monthly_balance_prevQ      0.004485 -0.002054  

0.061708    0.001213    

average_monthly_balance_prevQ2    -0.002532 -0.001759  

0.059607    0.002949    

current_month_credit               0.002494 -0.004617  

0.023840    0.003260    

previous_month_credit             -0.006414 -0.000169  

0.029961    0.025054    

current_month_debit                0.002603 -0.004978  

0.027702    0.008207    

previous_month_debit              -0.008760 -0.006760  

0.033296    0.032021    
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current_month_balance              0.005140 -0.000550  

0.057662   -0.000652    

previous_month_balance             0.004553 -0.002208  

0.060297    0.001239    

churn                             -0.002723 -0.004769 -

0.020012    0.033487    

 

                                    city  customer_nw_category  

branch_code  \ 

customer_id                     0.000743              0.009618    

-0.000286    

vintage                         0.007616             -0.001154     

0.003512    

age                             0.015439             -0.076532    

-0.058990    

dependents                      0.001892              0.013134     

0.020141    

city                            1.000000              0.006613    

-0.061234    

customer_nw_category            0.006613              1.000000     

0.235059    

branch_code                    -0.061234              0.235059     

1.000000    

current_balance                -0.005654             -0.058314     

0.000181    

previous_month_end_balance     -0.004089             -0.059854     

0.000214    

average_monthly_balance_prevQ  -0.006298             -0.059535     

0.001955    

average_monthly_balance_prevQ2 -0.007891             -0.047010     

0.001310    

current_month_credit            0.004118             -0.025254    

-0.013988    

previous_month_credit           0.008087             -0.072374    

-0.023849    

current_month_debit             0.001465             -0.035917    

-0.016944    

previous_month_debit            0.005995             -0.071721    

-0.017584    

current_month_balance          -0.005796             -0.058648     

0.001031    

previous_month_balance         -0.005839             -0.059113     

0.002080    
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churn                          -0.001585              0.006551     

0.035469    

 

                                current_balance  

previous_month_end_balance  \ 

customer_id                            0.006589                    

0.005819    

vintage                                0.000031                   

-0.000669    

age                                    0.054346                    

0.058342    

dependents                            -0.003070                    

0.000216    

city                                  -0.005654                   

-0.004089    

customer_nw_category                  -0.058314                   

-0.059854    

branch_code                            0.000181                    

0.000214    

current_balance                        1.000000                    

0.947276    

previous_month_end_balance             0.947276                    

1.000000    

average_monthly_balance_prevQ          0.958307                    

0.970530    

average_monthly_balance_prevQ2         0.714600                    

0.722998    

current_month_credit                   0.030371                    

0.032493    

previous_month_credit                  0.061754                    

0.114222    

current_month_debit                    0.044412                    

0.066329    

previous_month_debit                   0.081247                    

0.109606    

current_month_balance                  0.983412                    

0.974714    

previous_month_balance                 0.942207                    

0.969605    

churn                                 -0.024181                    

0.006886    

 

                                average_monthly_balance_prevQ  

\ 
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customer_id                                          0.004485    

vintage                                             -0.002054    

age                                                  0.061708    

dependents                                           0.001213    

city                                                -0.006298    

customer_nw_category                                -0.059535    

branch_code                                          0.001955    

current_balance                                      0.958307    

previous_month_end_balance                           0.970530    

average_monthly_balance_prevQ                        1.000000    

average_monthly_balance_prevQ2                       0.763495    

current_month_credit                                 0.033639    

previous_month_credit                                0.085699    

current_month_debit                                  0.060579    

previous_month_debit                                 0.121272    

current_month_balance                                0.976290    

previous_month_balance                               0.994038    

churn                                                0.011960    

 

                                average_monthly_balance_prevQ2  

\ 

customer_id                                          -0.002532    

vintage                                              -0.001759    

age                                                   0.059607    

dependents                                            0.002949    

city                                                 -0.007891    

customer_nw_category                                 -0.047010    

branch_code                                           0.001310    

current_balance                                       0.714600    

previous_month_end_balance                            0.722998    

average_monthly_balance_prevQ                         0.763495    

average_monthly_balance_prevQ2                        1.000000    

current_month_credit                                  0.036271    

previous_month_credit                                 0.062264    

current_month_debit                                   0.045239    

previous_month_debit                                  0.102519    

current_month_balance                                 0.725826    

previous_month_balance                                0.736635    

churn                                                 0.018376    

 

                                current_month_credit  

previous_month_credit  \ 

customer_id                                 0.002494              

-0.006414    
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vintage                                    -0.004617              

-0.000169    

age                                         0.023840               

0.029961    

dependents                                  0.003260               

0.025054    

city                                        0.004118               

0.008087    

customer_nw_category                       -0.025254              

-0.072374    

branch_code                                -0.013988              

-0.023849    

current_balance                             0.030371               

0.061754    

previous_month_end_balance                  0.032493               

0.114222    

average_monthly_balance_prevQ               0.033639               

0.085699    

average_monthly_balance_prevQ2              0.036271               

0.062264    

current_month_credit                        1.000000               

0.168561    

previous_month_credit                       0.168561               

1.000000    

current_month_debit                         0.937021               

0.165092    

previous_month_debit                        0.135729               

0.733953    

current_month_balance                       0.034182               

0.085320    

previous_month_balance                      0.038254               

0.108496    

churn                                       0.020755               

0.042179    

 

                                current_month_debit  

previous_month_debit  \ 

customer_id                                0.002603             

-0.008760    

vintage                                   -0.004978             

-0.006760    

age                                        0.027702              

0.033296    
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dependents                                 0.008207              

0.032021    

city                                       0.001465              

0.005995    

customer_nw_category                      -0.035917             

-0.071721    

branch_code                               -0.016944             

-0.017584    

current_balance                            0.044412              

0.081247    

previous_month_end_balance                 0.066329              

0.109606    

average_monthly_balance_prevQ              0.060579              

0.121272    

average_monthly_balance_prevQ2             0.045239              

0.102519    

current_month_credit                       0.937021              

0.135729    

previous_month_credit                      0.165092              

0.733953    

current_month_debit                        1.000000              

0.191755    

previous_month_debit                       0.191755              

1.000000    

current_month_balance                      0.069720              

0.102010    

previous_month_balance                     0.063375              

0.139723    

churn                                      0.048041              

0.073058    

 

                                current_month_balance  

previous_month_balance  \ 

customer_id                                  0.005140                

0.004553    

vintage                                     -0.000550               

-0.002208    

age                                          0.057662                

0.060297    

dependents                                  -0.000652                

0.001239    

city                                        -0.005796               

-0.005839    
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customer_nw_category                        -0.058648               

-0.059113    

branch_code                                  0.001031                

0.002080    

current_balance                              0.983412                

0.942207    

previous_month_end_balance                   0.974714                

0.969605    

average_monthly_balance_prevQ                0.976290                

0.994038    

average_monthly_balance_prevQ2               0.725826                

0.736635    

current_month_credit                         0.034182                

0.038254    

previous_month_credit                        0.085320                

0.108496    

current_month_debit                          0.069720                

0.063375    

previous_month_debit                         0.102010                

0.139723    

current_month_balance                        1.000000                

0.963276    

previous_month_balance                       0.963276                

1.000000    

churn                                       -0.006391                

0.014593    

 

                                   churn   

customer_id                    -0.002723   

vintage                        -0.004769   

age                            -0.020012   

dependents                      0.033487   

city                           -0.001585   

customer_nw_category            0.006551   

branch_code                     0.035469   

current_balance                -0.024181   

previous_month_end_balance      0.006886   

average_monthly_balance_prevQ   0.011960   

average_monthly_balance_prevQ2  0.018376   

current_month_credit            0.020755   

previous_month_credit           0.042179   

current_month_debit             0.048041   

previous_month_debit            0.073058   

current_month_balance          -0.006391   
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previous_month_balance          0.014593   

churn                           1.000000   

 
 

• there is no relationship between demographic variables 
• there is a relationship between demographic variables 
• there is a relationship between customer variables 
• there is no relationship between customer variables 
• there is a relationship between variables on transactions 
• there is no relationship between transaction variables 

📝 3.3.9 

Load the data from the banking.csv file, which contains information about the bank's 
customers. After loading the data file, find the correlation between the variables from 
the category of transaction information. We recommend using a heatmap() type 
chart. Based on the visualization, select the true statements. 

 
import pandas as pd 

from scipy import stats 

import seaborn as sns 
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df = 

pd.read_csv('https://priscilla.fitped.eu/data/pandas/banking.c

sv', sep=',', decimal='.') 

print(df.info()) 

dfd = 

df[['current_balance','previous_month_end_balance','average_mo

nthly_balance_prevQ','average_monthly_balance_prevQ2','current

_month_credit','previous_month_credit','current_month_debit','

previous_month_debit','current_month_balance','previous_month_

balance','churn']][:] 

 

correlation = dfd.corr(method='pearson') 

sns.heatmap(correlation, xticklabels=correlation.columns, 

yticklabels=correlation.columns) 

#print(correlation) 

 
Program output: 
 

RangeIndex: 28382 entries, 0 to 28381 

Data columns (total 21 columns): 

 #   Column                          Non-Null Count  Dtype   

---  ------                          --------------  -----   

 0   customer_id                     28382 non-null  int64   

 1   vintage                         28382 non-null  int64   

 2   age                             28382 non-null  int64   

 3   gender                          27857 non-null  object  

 4   dependents                      25919 non-null  float64 

 5   occupation                      28302 non-null  object  

 6   city                            27579 non-null  float64 

 7   customer_nw_category            28382 non-null  int64   

 8   branch_code                     28382 non-null  int64   

 9   current_balance                 28382 non-null  float64 

 10  previous_month_end_balance      28382 non-null  float64 

 11  average_monthly_balance_prevQ   28382 non-null  float64 

 12  average_monthly_balance_prevQ2  28382 non-null  float64 

 13  current_month_credit            28382 non-null  float64 

 14  previous_month_credit           28382 non-null  float64 

 15  current_month_debit             28382 non-null  float64 

 16  previous_month_debit            28382 non-null  float64 

 17  current_month_balance           28382 non-null  float64 

 18  previous_month_balance          28382 non-null  float64 

 19  churn                           28382 non-null  int64   

 20  last_transaction                28382 non-null  object  

dtypes: float64(12), int64(6), object(3) 
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memory usage: 4.5+ MB 

None 

 
 

• there is a relationship between the current balance and balances from 
previous months 

• there is no relationship between the current balance and balances from 
previous months 

• the transaction variables debit/credit are mainly correlated with each other 
• the transaction variables debit/credit are correlated with all variables 
• the transaction variables debit/credit do not correlate with the balance 

variables 
• the transaction variables debit/credit are correlated with the balance variables 



 

 

Project - Data Analysis 

Chapter 4 
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4.1 Project – Exploration data analysis 

📝 4.1.1 

The project focuses on the analysis of the company's employees. The dataset 
contains information about employees. The most important data and variables used 
in the analysis are: 

• Age - age of the employee 
• Department - department 
• DistanceFromHome - the distance of the employee's home from the place of 

work 
• Education - level of education 
• EducationField - the area in which the employee has studied 
• MonthlyIncome - monthly income 
• JobLevel - job position level (values from 1 to 5) 
• YearsAtCompany - the number of years he has worked in the company 
• TotalWorkingYears - total number of years of employment 

 
# import library 

import pandas as pd 

# read csv https://priscilla.fitped.eu/data/nlp/employees.csv 

df = 

pd.read_csv('https://priscilla.fitped.eu/data/nlp/employees.cs

v', sep=',') 

# explore dataset 

print(df.info()) 

 
Program output: 
 

RangeIndex: 1470 entries, 0 to 1469 

Data columns (total 35 columns): 

 #   Column                    Non-Null Count  Dtype  

---  ------                    --------------  -----  

 0   Age                       1470 non-null   int64  

 1   Attrition                 1470 non-null   object 

 2   BusinessTravel            1470 non-null   object 

 3   DailyRate                 1470 non-null   int64  

 4   Department                1470 non-null   object 

 5   DistanceFromHome          1470 non-null   int64  

 6   Education                 1470 non-null   int64  

 7   EducationField            1470 non-null   object 

 8   EmployeeCount             1470 non-null   int64  

 9   EmployeeNumber            1470 non-null   int64  

 10  EnvironmentSatisfaction   1470 non-null   int64  
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 11  Gender                    1470 non-null   object 

 12  HourlyRate                1470 non-null   int64  

 13  JobInvolvement            1470 non-null   int64  

 14  JobLevel                  1470 non-null   int64  

 15  JobRole                   1470 non-null   object 

 16  JobSatisfaction           1470 non-null   int64  

 17  MaritalStatus             1470 non-null   object 

 18  MonthlyIncome             1470 non-null   int64  

 19  MonthlyRate               1470 non-null   int64  

 20  NumCompaniesWorked        1470 non-null   int64  

 21  Over18                    1470 non-null   object 

 22  OverTime                  1470 non-null   object 

 23  PercentSalaryHike         1470 non-null   int64  

 24  PerformanceRating         1470 non-null   int64  

 25  RelationshipSatisfaction  1470 non-null   int64  

 26  StandardHours             1470 non-null   int64  

 27  StockOptionLevel          1470 non-null   int64  

 28  TotalWorkingYears         1470 non-null   int64  

 29  TrainingTimesLastYear     1470 non-null   int64  

 30  WorkLifeBalance           1470 non-null   int64  

 31  YearsAtCompany            1470 non-null   int64  

 32  YearsInCurrentRole        1470 non-null   int64  

 33  YearsSinceLastPromotion   1470 non-null   int64  

 34  YearsWithCurrManager      1470 non-null   int64  

dtypes: int64(26), object(9) 

memory usage: 402.1+ KB 

None 

 

📝 4.1.2 

Calculate the absolute frequencies of employees for all departments (Department). 
How many employees does the Sales Department have? 

 
# import library 

import pandas as pd 

# read csv 

df = 

pd.read_csv('https://priscilla.fitped.eu/data/nlp/employees.cs

v', sep=',') 

# calculate counts of employess in departments 
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📝 4.1.3 

You can already calculate the number of employees in each department. Complete 
the code in one line to calculate the average of these numbers. The result should be 
490. 

 
# import library 

import pandas as pd 

# read csv 

df = 

pd.read_csv('https://priscilla.fitped.eu/data/nlp/employees.cs

v', sep=',') 

# calculate mean of counts of employess in departments 

📝 4.1.4 

What command do we use to plot the histogram for sorting the DailyRate variable? 

 
# import library 

import pandas as pd 

# read csv 

df = 

pd.read_csv('https://raw.githubusercontent.com/sasu4/pris_data

/main/employees.csv', sep=',') 

df["DailyRate"].plot.hist() 

df["DailyRate"].plot.bar() 

•  
• df["DailyRate"].value_counts().plot.bar() 
• df["DailyRate"].value_counts().plot.hist() 

📝 4.1.5 

Calculate the frequencies of employees according to the level of education they have 
attained. However, calculate these numbers only for employees from the  Sales 
Department. 

How many employees in the sales department have a level of education higher than 
3? 

 
# import library 

import pandas as pd 

# read csv 
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df = 

pd.read_csv('https://priscilla.fitped.eu/data/nlp/employees.cs

v', sep=',') 

# filter only the sales department and list the numbers for 

education 

📝 4.1.6 

How do we calculate the variation range of the DailyRate variable? 

 
# import library 

import pandas as pd 

# read csv 

df = 

pd.read_csv('https://priscilla.fitped.eu/data/nlp/employees.cs

v', sep=',') 

df["DailyRate"].max()-df["DailyRate"].min() 

df["DailyRate"].max()+df["DailyRate"].min() 

df["DailyRate"].sum()-df["DailyRate"].count() 

df["DailyRate"].min()-df["DailyRate"].max() 

df["DailyRate"].sum()-df["DailyRate"].avg() 

📝 4.1.7 

What does it mean if the standard deviation is high? 

• The values are more scattered within the variation range. 
• Most of the values are around the average. 
• Most values are around the median. 
• Values are scattered well outside the range of variation too. 

📝 4.1.8 

What is the standard deviation of the age of employees? (round the result to 2 
decimal places) 

 
# import library 

import pandas as pd 

# read csv 

df = 

pd.read_csv('https://priscilla.fitped.eu/data/nlp/employees.cs

v', sep=',') 

# calculate the standard deviation of the variable Age using 

the pandas library 
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📝 4.1.9 

Use the Matplotlib library to plot a box plot for the distance of the employee's home 
from the work location. Which of the following box plots visualizes the distribution 
of this variable? 

 
# import library 

import pandas as pd 

import matplotlib.pyplot as plt 

# read csv 

df = 

pd.read_csv('https://priscilla.fitped.eu/data/nlp/employees.cs

v', sep=',') 

# display a boxplot for distance from home using the 

matplotlib library 
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📝 4.1.10 

Plot a box plot of the distribution of the age of employees who have graduated with 
a degree in human resources. 

Which of the following plots shows this? 

 
# import library 

import pandas as pd 

import matplotlib.pyplot as plt 

# read csv 

df = 

pd.read_csv('https://priscilla.fitped.eu/data/nlp/employees.cs

v', sep=',') 

# display a box plot for the age of employees who have a 

degree in human resources 
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📝 4.1.11 

If a variable has a positive skewness, it means that: 

• Most values are close to the measure of central tendency 
• The values are relatively homogenously distributed over the variation range 
• Most values are greater than average 
• Most values are less than the average 
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📝 4.1.12 

Plot a histogram that describes the distribution of a variable that represents the total 
number of years of employment of an employee. Use 8 intervals. 

Which of the following statements can be read from the plot? 

 
# import library 

import pandas as pd 

# read csv 

df = 

pd.read_csv('https://priscilla.fitped.eu/data/nlp/employees.cs

v', sep=',') 

# draw a histogram of the variable total number of years the 

employee has worked 

df["TotalWorkingYears"].plot.hist(bins = 8) 

• The kurtosis is probably positive 
• The kurtosis is probably negative 
• The kurtosis is probably close to zero 
• The skewness is probably positive 
• The skewness is probably negative 
• The skewness is probably close to zero 
• Probably does not have a normal distribution 
• Probably has a normal distribution 
• The mode is 7.5 
• The median is less than 15 
• The mode is in the interval of 5 to 10 
• The median is greater than 15 

📝 4.1.13 

Show the pivot table to find the frequencies for the combinations of what department 
the employee works in and what level of education they have attained. 

Select from the options, combining which will give the resulting number of such 
employees 128. 

 
# import library 

import pandas as pd 

import numpy as np 

# read csv 

df = 

pd.read_csv('https://priscilla.fitped.eu/data/nlp/employees.cs

v', sep=',') 
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# draw a pivot table for department and level of education 

• Sales 
• Research & Development 
• Human Resources 
• 4 
• 1 
• 2 
• 3 
• 5 

📝 4.1.14 

Use the Seaborn library to show box plots for monthly employee income 
(MonthlyIncome). Plot a box plot for each group by education (Education). 

After the plots are drawn, identify the group (level of education attained) that has the 
highest income. What color is the box plot for this group with the default Seaborn 
setting? 

 
# import libraries 

import pandas as pd 

import seaborn as sns 

# read csv 

df = 

pd.read_csv('https://priscilla.fitped.eu/data/nlp/employees.cs

v', sep=',') 

 

• purple 
• blue 
• yellow 
• orange 
• red 

📝 4.1.15 

Draw box plots for the variable age using the Seaborn library. However, the output 
should contain two box plots, one for the group with JobLevel equal to 1 and the 
other with JobLevel equal to 5. 

What can be clearly deduced from this visualization? 

 
# import libraries 

import pandas as pd 
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import seaborn as sns 

import matplotlib.pyplot as plt 

# read csv 

df = 

pd.read_csv('https://priscilla.fitped.eu/data/nlp/employees.cs

v', sep=',') 

# dark design setting 

plot = sns.set(style="darkgrid") 

# draw boxplots for the age variable for the group with 

JobLevel equal to 1 and the other with JobLevel equal to 2. 

plot =  

# show chart 

plt.show() 

• No employee at level 5 is less than 35 years of age. 
• Every employee of the company is less than 60 years old. 
• The youngest employee at Level 5 is older than 75% of all employees at Level 

1. 
• That a Level 1 employee would be over 53 years old is exceptional. 
• The range of variation in the age of employees at level 1 is approximately 18 

to 52 years. 
• All employees at level 5 are between 39 and 60 years of age. 
• The majority of Level 1 employees are between the ages of 27 and 37. 
• The average age of employees at Level 1 is 32. 

📝 4.1.16 

Which of the following tests are used to test the normality of a variable? 

• Lilliefors' test 
• Kolmogorov-Smirnov test 
• Shapiro-Wilk W test 
• T-test 
• Cochran-Cox test 
• Mann-Whitney U test 

📝 4.1.17 

Use the Shapiro-Wilk test to check the normality of the variable age. Show the result. 
Copy the entire output of the test into the answer sheet. 

 
# import library 

import pandas as pd 

from scipy import stats 

# read csv 
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df = 

pd.read_csv('https://priscilla.fitped.eu/data/nlp/employees.cs

v', sep=',') 

# use the Shapiro-Wilk test to verify the normality of the age 

variable 

📝 4.1.18 

Verify that the variable age has a normal distribution. 

 
# import library 

import pandas as pd 

from scipy import stats 

# read csv 

df = 

pd.read_csv('https://priscilla.fitped.eu/data/nlp/employees.cs

v', sep=',') 

• It does not have a normal distribution. 
• It has a normal distribution. 

📝 4.1.19 

Draw a jointplot from the Seaborn library for the variable monthly income and total 
number of years of employment (not just at this company). 

Which of the following statements can be read from the plot? 

 
# import libraries 

import pandas as pd 

import seaborn as sns 

import matplotlib.pyplot as plt 

# read csv 

df = 

pd.read_csv('https://priscilla.fitped.eu/data/nlp/employees.cs

v', sep=',') 

 

# draw a jointplot from the Seaborn library for the variable 

monthly income and total years worked 

• Monthly income depends significantly on the number of years of employment. 
• Monthly income does not depend significantly on the number of years of 

employment. 
• The variable MonthlyIncome does not have a normal distribution. 
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• The variable MonthlyIncome has a normal distribution. 
• The TotalWorkingYears variable does not have a normal distribution. 
• The TotalWorkingYears variable has a normal distribution. 
• If an employee has a higher income, he or she also has more years of 

employment. 
• If an employee has less income, he or she has less years of employment. 

 

📝 4.1.20 

Using the Scipy library, calculate Pearson's R with the corresponding p-value. 
Evaluate the correlation between the variable monthly income and the number of 
years worked in the company. 

Copy the entire output into your answer. 

 
# import library 

import pandas as pd 

from scipy import stats 

# read csv 

df = 

pd.read_csv('https://priscilla.fitped.eu/data/nlp/employees.cs

v', sep=',') 

# evaluate the correlation between the variable monthly income 

and the number of years worked in the company 

📝 4.1.21 

Calculate the correlation coefficients between the variables Age, DailyRate, 
JobLevel, MonthlyIncome, TotalWorkingYears, YearsAtCompany. 

On which variable does the employee's monthly income depend most? 

 
# import libraries 

import pandas as pd 

import seaborn as sns 

import matplotlib.pyplot as plt 

# read csv 

df = 

pd.read_csv('https://priscilla.fitped.eu/data/nlp/employees.cs

v', sep=',') 
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# calculate the correlation coefficients between the variables 

Age, DailyRate, JobLevel, MonthlyIncome, TotalWorkingYears, 

YearsAtCompany 

• JobLevel 
• Age 
• DailyRate 
• TotalWorkingYears 
• YearsAtCompany 



 

 

Analysis of Titanic Data 

Chapter 5 
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5.1 Analysis of Titanic data 

📝 5.1.1 

The data analysis project focuses on a very popular dataset related to the sinking of 
the Titanic. In this tragedy, 1502 of the 2224 passengers and crew died. The dataset 
contains information on 887 actual Titanic passengers. Each line represents one 
passenger. The columns contain the following information about the passengers: 

• PassenderID - unique passenger identifier 
• Survived - information on whether the passenger survived (1) or not (0) 
• Pclass - passenger class (1,2,3) 
• Name - name of the passenger 
• Sex - passenger's gender 
• Age - age of the passenger 
• SibSp - number of siblings or spouses on board 
• Parch - number of parents or children on board 
• Ticket - ticket number 
• Fare - fare of the ticket 
• Cabin - cabin number 
• Embarked - the city where the passenger boarded (C - Cherbourg, S - 

Southampton, Q - Queenstown) 

In the following micro-lectures, we will look at which characteristics had the highest 
correlation with passengers' chances of survival. 

 
# import library 

import pandas as pd 

# read csv from 

https://priscilla.fitped.eu/data/pandas/titanic.csv 

df = 

pd.read_csv('https://priscilla.fitped.eu/data/pandas/titanic.c

sv', sep=',') 

# explore dataset 

print(df.info()) 

 
Program output: 
 

RangeIndex: 891 entries, 0 to 890 

Data columns (total 12 columns): 

 #   Column       Non-Null Count  Dtype   

---  ------       --------------  -----   

 0   PassengerId  891 non-null    int64   

 1   Survived     891 non-null    int64   

 2   Pclass       891 non-null    int64   
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 3   Name         891 non-null    object  

 4   Sex          891 non-null    object  

 5   Age          714 non-null    float64 

 6   SibSp        891 non-null    int64   

 7   Parch        891 non-null    int64   

 8   Ticket       891 non-null    object  

 9   Fare         891 non-null    float64 

 10  Cabin        204 non-null    object  

 11  Embarked     889 non-null    object  

dtypes: float64(2), int64(5), object(5) 

memory usage: 83.7+ KB 

None 

 

📝 5.1.2 

Load the data from the dataset titanic.csv (the file is located at 
https://priscilla.fitped.eu/data/pandas/titanic.csv). Examine the data in the dataset 
and see if the dataset contains any missing data. If so, list the variable with the 
largest number and its count. Print the result in the following form: 

PassengerID: 235 

 
# import library 

import pandas as pd 

# read csv from 

https://priscilla.fitped.eu/data/pandas/titanic.csv 

df = 

pd.read_csv('https://priscilla.fitped.eu/data/pandas/titanic.c

sv', sep=',') 

# explore dataset 

total = df.isnull().sum().sort_values(ascending=False) 

print(total) 

 
Program output: 
Cabin          687 

Age            177 

Embarked         2 

PassengerId      0 

Survived         0 

Pclass           0 

Name             0 

Sex              0 

SibSp            0 

Parch            0 
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Ticket           0 

Fare             0 

dtype: int64 

📝 5.1.3 

After reviewing the missing data, decide which statements are true. 

• except for the variables Cabin, Age and Cabin, the other variables are fine 
• the Cabin variable contains too many missing values 
• we need to delete all rows that contain missing values 
• we need to complete all rows of the Cabin variable that contain missing values 
• we will not consider the Cabin variable because it contains too many missing 

values 
• the Age variable will not be considered because it contains too many missing 

values 

📝 5.1.4 

Load the data from the dataset titanic.csv (the file is located at 
https://priscilla.fitped.eu/data/pandas/titanic.csv). Examine the data in the dataset 
to determine the ratio of male to female survivors. Write out the result as a 
percentage rounded to two decimal places and in the following format: 

Male: 23.50%, Female: 33.42% 

 
# import library 

import pandas as pd 

# read csv from 

https://priscilla.fitped.eu/data/pandas/titanic.csv 

df = 

pd.read_csv('https://priscilla.fitped.eu/data/pandas/titanic.c

sv', sep=',') 

# explore dataset 

#percentage of women survived 

women = df.loc[df.Sex == 'female']["Survived"] 

rate_women = round(sum(women)/len(women)*100,2) 

 

#percentage of men survived 

men = df.loc[df.Sex == 'male']["Survived"] 

rate_men = round(sum(men)/len(men)*100,2) 

 

print(str(rate_women) +" % of women who survived." ) 

print(str(rate_men) + " % of men who survived." ) 
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Program output: 
74.2 % of women who survived. 

18.89 % of men who survived. 

 

📝 5.1.5 

Based on an examination of the ratio of male to female survivors of the disaster 
decide which statements are true. You can help by visualizing using a bar graph. Also, 
visualise the proportion of men and women on the boat. 

 
# import library 

import pandas as pd 

import seaborn as sns 

import matplotlib.pyplot as plt 

# read csv from 

https://priscilla.fitped.eu/data/pandas/titanic.csv 

df = 

pd.read_csv('https://priscilla.fitped.eu/data/pandas/titanic.c

sv', sep=',') 

# explore dataset 

df['SurvivedCat'] = df['Survived'].map({0:"not_survived", 

1:"survived"}) 

 

fig, ax = plt.subplots(1, 2, figsize = (10, 8)) 

df["Sex"].value_counts().plot.bar(color = "skyblue", ax = 

ax[0]) 

ax[0].set_title("Number Of Passengers By Sex") 

ax[0].set_ylabel("Population") 

sns.countplot(x="Sex", hue = "SurvivedCat", data = df) 

ax[1].set_title("Sex: Survived vs Dead") 

plt.show() 
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Program output: 

 
 

• the percentage of female survivors is high 
• the percentage of male survivors is high 
• the percentage of male survivors is low 
• the percentage of female survivors is low  
• gender can affect the chance of survival 
• gender does not affect the chance of survival 
• there were more men than women on the ship 
• there were more women than men on the ship 
• there were approximately the same number of men as women on the ship 

📝 5.1.6 

Load the data from the dataset titanic.csv (the file is located at 
https://priscilla.fitped.eu/data/pandas/titanic.csv). Examine the data in the dataset 
and find out the distribution of the number of passengers in each class. Write the 
result in numbers and in the following format: 
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Class 1: 459, Class 2: 232, Class 3: 120 

 
# import library 

import pandas as pd 

# read csv from 

https://priscilla.fitped.eu/data/pandas/titanic.csv 

df = 

pd.read_csv('https://priscilla.fitped.eu/data/pandas/titanic.c

sv', sep=',') 

# explore dataset 

fig, ax = plt.subplots(1, 2, figsize = (10, 8)) 

df["Pclass"].value_counts().plot.bar(color = "skyblue", ax = 

ax[0]) 

ax[0].set_title("Number Of Passengers By Pclass") 

ax[0].set_ylabel("Population") 

sns.countplot(x="Pclass", hue = "Survived", data = df, ax = 

ax[1]) 

ax[1].set_title("Pclass: Survived vs Dead") 

plt.show() 

 

print(df['Pclass'].value_counts()) 
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Program output: 

 
3    491 

1    216 

2    184 

Name: Pclass, dtype: int64 

 

📝 5.1.7 

Based on a review of the distribution of passengers by class, review the distribution 
of passengers who survived the disaster by class. Decide which statements are true. 
You can help by visualizing using a bar graph. 

 
# import library 

import pandas as pd 

# read csv from 

https://priscilla.fitped.eu/data/pandas/titanic.csv 

df = 

pd.read_csv('https://priscilla.fitped.eu/data/pandas/titanic.c

sv', sep=',') 
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# explore dataset 

fig, ax = plt.subplots(1, 2, figsize = (10, 8)) 

df["Pclass"].value_counts().plot.bar(color = "skyblue", ax = 

ax[0]) 

ax[0].set_title("Number Of Passengers By Pclass") 

ax[0].set_ylabel("Population") 

sns.countplot(x="Pclass", hue = "Survived", data = df, ax = 

ax[1]) 

ax[1].set_title("Pclass: Survived vs Dead") 

plt.show() 

 

print(df['Pclass'].value_counts()) 

 
Program output: 

 
3    491 

1    216 

2    184 

Name: Pclass, dtype: int64 

 

• most passengers were in 3rd class 
• most passengers were in 2nd class 
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• most passengers were in 1st class 
• fewest passengers were in 2nd class 
• fewest passengers were in 1st class 
• fewest passengers were in 3rd class 
• most of the 3rd class passengers did not survive the crash 
• most of the 3rd class passengers survived the crash 
• most of the 1st class passengers did not survive the disaster 

📝 5.1.8 

Load the data from the dataset titanic.csv (the file is located at 
https://priscilla.fitped.eu/data/pandas/titanic.csv). Examine the data in the dataset 
and find the distribution of the number of passengers by embarkation point. Write 
the result in numbers and in the following format: 

S: 459, C: 232, Q: 120 

 
# import library 

import pandas as pd 

import matplotlib.pyplot as plt 

import seaborn as sns 

# read csv from 

https://priscilla.fitped.eu/data/pandas/titanic.csv 

df = 

pd.read_csv('https://priscilla.fitped.eu/data/pandas/titanic.c

sv', sep=',') 

# explore dataset 

fig, ax = plt.subplots(1, 2, figsize = (10, 8)) 

df["Embarked"].value_counts().plot.bar(color = "skyblue", ax = 

ax[0]) 

ax[0].set_title("Number Of Passengers By Embarked") 

ax[0].set_ylabel("Number") 

sns.countplot(x="Embarked", hue = "Survived", data = df, ax = 

ax[1]) 

ax[1].set_title("Embarked: Survived vs Unsurvived") 

plt.show() 

 

 

print(df['Embarked'].value_counts()) 
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Program output: 

 
S    644 

C    168 

Q     77 

Name: Embarked, dtype: int64 

 

📝 5.1.9 

Based on a review of passenger class distribution, examine the distribution of 
survivors by embarkation location. Decide which statements are true. You can help 
by visualizing using a bar graph. 

 
# import library 

import pandas as pd 

import matplotlib.pyplot as plt 

import seaborn as sns 

# read csv from 

https://priscilla.fitped.eu/data/pandas/titanic.csv 
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df = 

pd.read_csv('https://priscilla.fitped.eu/data/pandas/titanic.c

sv', sep=',') 

# explore dataset 

fig, ax = plt.subplots(1, 2, figsize = (10, 8)) 

df["Embarked"].value_counts().plot.bar(color = "skyblue", ax = 

ax[0]) 

ax[0].set_title("Number Of Passengers By Embarked") 

ax[0].set_ylabel("Number") 

sns.countplot(x="Embarked", hue = "Survived", data = df, ax = 

ax[1]) 

ax[1].set_title("Embarked: Survived vs Unsurvived") 

plt.show() 

 
Program output: 

 
 

• most passengers boarded at Southampton 
• more than half of the passengers boarded at Southampton did not survive the 

crash 
• only the passengers who embarked at Cherbourg survived more than died 
• fewest passengers boarded in Queenstown 
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• most passengers boarded in Queenstown 
• fewest passengers boarded in Cherbourg 
• most passengers embarked in Cherbourg 
• more than half of the passengers embarked at Cherbourg did not survive the 

disaster 

📝 5.1.10 

Load the data from the dataset titanic.csv (the file is located at 
https://priscilla.fitped.eu/data/pandas/titanic.csv). Examine the data in the dataset 
and find out the age distribution of the passengers. Write the most numerous age 
category in the following format (we recommend visualizing it as a histogram): 

40-45 

 
# import library 

import pandas as pd 

import matplotlib.pyplot as plt 

import seaborn as sns 

# read csv from 

https://priscilla.fitped.eu/data/pandas/titanic.csv 

df = 

pd.read_csv('https://priscilla.fitped.eu/data/pandas/titanic.c

sv', sep=',') 

# explore dataset 

sns.histplot(df['Age'].dropna()) 

 
Program output: 
24.00    30 

22.00    27 

18.00    26 

19.00    25 

28.00    25 

         .. 

36.50     1 

55.50     1 

0.92      1 

23.50     1 

74.00     1 

Name: Age, Length: 88, dtype: int64 
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📝 5.1.11 

Load the data from the dataset titanic.csv (the file is located at 
https://priscilla.fitped.eu/data/pandas/titanic.csv). Examine the data in the dataset 
and see if there is a correlation between age and whether or not the passenger 
survived the crash. Write whether there is a statistically significant relationship 
between the variables (yes/no) and the correlation value rounded to 2 decimal places 
and the p-value. 

no, p-value: 0.12, cor: 0.45 

 
# import library 

import pandas as pd 

from scipy import stats  

# read csv from 

https://priscilla.fitped.eu/data/pandas/titanic.csv 

df = 

pd.read_csv('https://priscilla.fitped.eu/data/pandas/titanic.c

sv', sep=',') 

dfd = df[['Age','Survived']].dropna() 

# explore dataset 

corr = stats.pearsonr(dfd['Age'], dfd['Survived']) 

print("p-value:\t", round(corr[1],2)) 

print("cor:\t\t", round(corr[0],2)) 
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Program output: 
p-value:  0.04 

cor:   -0.08 

 

📝 5.1.12 

Load the data from the dataset titanic.csv (the file is located at 
https://priscilla.fitped.eu/data/pandas/titanic.csv). Examine the data in the dataset 
to see if there is a correlation between class and whether or not the passenger 
survived the crash. Write whether there is a statistically significant relationship 
between the variables (yes/no) and the correlation value rounded to 2 decimal places 
and the p-value. 

no, p-value: 0.12, cor: 0.45 

 
# import library 

import pandas as pd 

from scipy import stats  

# read csv from 

https://priscilla.fitped.eu/data/pandas/titanic.csv 

df = 

pd.read_csv('https://priscilla.fitped.eu/data/pandas/titanic.c

sv', sep=',') 

dfd = df[['Pclass','Survived']].dropna() 

# explore dataset 

corr = stats.pearsonr(dfd['Pclass'], dfd['Survived']) 

print("p-value:\t", round(corr[1],2)) 

print("cor:\t\t", round(corr[0],2)) 

 
Program output: 
p-value:  0.0 

cor:   -0.34 

 

📝 5.1.13 

Load the data from the dataset titanic.csv (the file is located at 
https://priscilla.fitped.eu/data/pandas/titanic.csv). Examine the data in the dataset 
and see if there is a correlation between the number of siblings (Sibsp) and whether 
or not the passenger survived the crash. Write whether there is a statistically 
significant relationship between the variables (yes/no) and the correlation value 
rounded to 2 decimal places and the p-value. 

no, p-value: 0.12, cor: 0.45 
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# import library 

import pandas as pd 

from scipy import stats  

# read csv from 

https://priscilla.fitped.eu/data/pandas/titanic.csv 

df = 

pd.read_csv('https://priscilla.fitped.eu/data/pandas/titanic.c

sv', sep=',') 

dfd = df[['SibSp','Survived']].dropna() 

# explore dataset 

corr = stats.pearsonr(dfd['SibSp'], dfd['Survived']) 

print("p-value:\t", round(corr[1],2)) 

print("cor:\t\t", round(corr[0],2)) 

 
Program output: 
p-value:  0.29 

cor:   -0.04 

 

📝 5.1.14 

Load the data from the dataset titanic.csv (the file is located at 
https://priscilla.fitped.eu/data/pandas/titanic.csv). Examine the data in the dataset 
and see if there is a correlation between the number of children (Parch) and whether 
or not the passenger survived the crash. Write whether there is a statistically 
significant relationship between the variables (yes/no) and the correlation value 
rounded to 2 decimal places and the p-value. 

no, p-value: 0.12, cor: 0.45 

 
# import library 

import pandas as pd 

from scipy import stats  

# read csv from 

https://priscilla.fitped.eu/data/pandas/titanic.csv 

df = 

pd.read_csv('https://priscilla.fitped.eu/data/pandas/titanic.c

sv', sep=',') 

dfd = df[['Parch','Survived']].dropna() 

# explore dataset 

corr = stats.pearsonr(dfd['Parch'], dfd['Survived']) 

print("p-value:\t", round(corr[1],2)) 

print("cor:\t\t", round(corr[0],2)) 
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Program output: 
p-value:  0.01 

cor:   0.08 

 

📝 5.1.15 

Load the data from the dataset titanic.csv (the file is located at 
https://priscilla.fitped.eu/data/pandas/titanic.csv). Examine the data in the dataset 
and see if there is a correlation between the ticket price and whether or not the 
passenger survived the disaster. Write whether there is a statistically significant 
relationship between the variables (yes/no) and the correlation value rounded to 2 
decimal places and the p-value. 

no, p-value: 0.12, cor: 0.45 

 
# import library 

import pandas as pd 

from scipy import stats  

# read csv from 

https://priscilla.fitped.eu/data/pandas/titanic.csv 

df = 

pd.read_csv('https://priscilla.fitped.eu/data/pandas/titanic.c

sv', sep=',') 

dfd = df[['Fare','Survived']].dropna() 

# explore dataset 

corr = stats.pearsonr(dfd['Fare'], dfd['Survived']) 

print("p-value:\t", round(corr[1],2)) 

print("cor:\t\t", round(corr[0],2)) 

 
Program output: 
p-value:  0.0 

cor:   0.26 

 

📝 5.1.16 

Load the data from the dataset titanic.csv (the file is located at 
https://priscilla.fitped.eu/data/pandas/titanic.csv). Examine the data in the dataset 
and see if there is a correlation between the embarkation point and whether or not 
the passenger survived the disaster. The embarkation variable must be transformed 
into numerical values before analysis. Write whether there is a statistically significant 
relationship between the variables (yes/no) and the correlation value rounded to 2 
decimal places and the p-value. 
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no, p-value: 0.12, cor: 0.45 

 
# import library 

import pandas as pd 

from scipy import stats  

# read csv from 

https://priscilla.fitped.eu/data/pandas/titanic.csv 

df = 

pd.read_csv('https://priscilla.fitped.eu/data/pandas/titanic.c

sv', sep=',') 

dfd = df[['Embarked','Survived']].dropna() 

dfd['Embarked'] = dfd['Embarked'].map({"S":1, 

"C":2,"Q":2,"NaN":0}) 

# explore dataset 

corr = stats.pearsonr(dfd['Embarked'], dfd['Survived']) 

print("p-value:\t", round(corr[1],2)) 

print("cor:\t\t", round(corr[0],2)) 

 
 
Program output: 
p-value:  0.0 

cor:   0.15 

 

📝 5.1.17 

Based on the results obtained from the data analysis, select the passenger 
characteristics that have an impact on disaster survival. 

• Age 
• Pclass 
• Sibsp 
• Parch 
• Fare 
• Embarked 
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6.1 What is summarisation 

🕮 6.1.1 

The explosion of electronic documents on the internet has made information more 
accessible than ever. However, the sheer length of many of these documents can 
make them difficult to digest quickly. This is where the field of Natural Language 
Processing (NLP) steps in, particularly with algorithms designed for text 
summarization. NLP, a branch of artificial intelligence, focuses on enabling 
computers to understand and process human language. One important task in NLP 
is summarization, which condenses lengthy text into shorter, coherent summaries 
without losing essential information. Summarization has become essential, allowing 
users to extract key information from documents swiftly. 

NLP encompasses a variety of tasks that make human language processing easier 
for computers. Some of these tasks include analyzing the grammatical properties of 
texts, translating languages, and text autocompletion (as seen in search engines). 
Summarization is one of the more complex tasks, as it involves distilling a large body 
of information into a brief but complete version. This function is especially helpful in 
handling research articles, reports, and other long documents. Summarization can 
range from condensing a text to key sentences or phrases, down to a coherent 
paragraph that captures the main points. 

A subfield of NLP, automatic summarization, allows for rapid and reliable extraction 
of the most relevant information from texts. This capability is commonly employed 
on news websites to provide quick article previews, helping readers grasp essential 
points without reading the entire text. However, automatic summarization is 
challenging. Unlike humans, computers do not "read" text in the same way, making it 
a difficult process to achieve both coherence and informativeness. Yet, with NLP 
advancements, automatic summarization continues to evolve, providing practical 
solutions to information overload. 

📝 6.1.2 

Select tasks typical of natural language processing 

• determining the parts of speech in the text 
• machine translation of documents 
• summarization of the text 
• image processing 

📝 6.1.3 

NLP allows computers to process human language, enabling tasks like translation, 
_____, and text _____. Summarization is one of the tasks that requires complex 
algorithms to convert long documents into _____ summaries. 
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• generation 
• analysis 
• coherent 

🕮 6.1.4 

Text summarization can significantly simplify the process of understanding long 
materials, such as research papers and reports, by condensing them into essential 
points. With automatic text summarization, it is possible to reduce extensive texts 
to a shorter form, be it a few sentences, paragraphs, or key phrases, without losing 
core information. This approach not only saves time but also helps readers to focus 
on the most important parts of a text. Text summarization has become an essential 
tool in NLP, where the goal is to produce a summary that contains all the critical 
details of the original document while taking up less space. 

The essence of text summarization is in creating a summary, which is a shortened 
version of the text that preserves the original meaning and key points. An effective 
summary captures important information from one or more documents and usually 
should not exceed half the original document’s length. The process can  be applied in 
many domains, from academic research to media, where article snippets are 
generated automatically to give readers a quick overview. Summarization can be 
either extractive (taking parts of the original text directly) or abstractive (creating 
new sentences based on understanding the text), each with its benefits and 
challenges. 

Automatic summarization is challenging because it requires algorithms to select, 
arrange, and present information coherently. While humans can read and interpret 
meaning, computers need structured approaches to ensure they capture essential 
ideas accurately. Nevertheless, advancements in NLP techniques continue to 
improve the quality of automatic summaries, making it a valuable asset in many 
fields, especially where quick comprehension of complex information is necessary. 

📝 6.1.5 

What are benefits of text summarization? 

• Reduces the length of texts without losing essential information 
• Saves time for readers by providing condensed information 
• Increases the original text length for better comprehension 
• Adds redundant details to the summary 

📝 6.1.6 

Summarization condenses long texts, helping readers grasp essential information. 
An effective summary retains the _____ meaning of the document, making sure all 
_____ details are kept, while removing less _____ parts. 

• important 
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• core 
• critical 

6.2 Quality and challenges 

🕮 6.2.1 

Quality criteria 

In text summarization, maintaining quality is essential to ensure that the summary 
captures the most relevant points of the original document. The quality of a summary 
can be judged by specific criteria: information coverage, coherence, redundancy 
minimization, and brevity. Each of these criteria plays a role in creating summaries 
that are not only concise but also meaningful. For example, information coverage is 
a measure of how much important information the summary retains from the original 
text. 

Coherence is another critical factor, as it determines how logically and smoothly the 
sentences in the summary flow. A coherent summary helps readers to understand 
the relationships between ideas and follow the main points without confusion. 
Minimizing redundancy involves avoiding repetitive information, which can make 
summaries lengthy and less effective. Finally, brevity measures the length of the 
summary relative to the original text; an ideal summary is short yet packed with 
meaningful information, ensuring no unnecessary details are included. 

By following these quality criteria, automated summarization systems aim to 
produce summaries that are both informative and compact. Each criterion 
contributes to the overall effectiveness of the summary, whether it is being used in 
research, news articles, or general information processing. Striking a balance 
between these criteria ensures that users receive a high-quality, easily 
understandable summary. 

📝 6.2.2 

What is meant by "information coverage" in summarization? 

• The summary contains all essential information from the original text 
• The summary is short and lacks details 
• The summary repeats key points multiple times 
• The summary only covers minor points 

📝 6.2.3 

Summaries should be _____ to keep essential points clear. They also need _____ to 
connect ideas smoothly and should avoid _____, which adds unnecessary length. 

• redundancy 
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• brevity 
• coherence 

🕮 6.2.4 

Challenges 

Automatic summarization is a highly challenging task within NLP due to the difficulty 
of emulating human comprehension. When a person summarizes text, they rely on 
an in-depth understanding of context and meaning, which allows them to capture 
essential points accurately. However, computers cannot interpret language as 
intuitively as humans, making it difficult for algorithms to achieve a summary with 
similar coherence and depth. Summarization algorithms must therefore be carefully 
designed to handle complex tasks, such as selecting relevant information and 
arranging it meaningfully. 

One primary challenge in automatic summarization is maintaining coherence, as 
computers may struggle to establish logical flow when sentences are reordered or 
rephrased. Furthermore, it can be difficult for algorithms to decide which details are 
essential without human-like understanding. Algorithms can end up with summaries 
that are either too brief and miss key information or too detailed and redundant. 

Despite these challenges, advancements in NLP have led to improved methods for 
automatic summarization. With more sophisticated algorithms, summarization tools 
can now provide summaries that are more coherent, concise, and useful. However, 
the task remains complex, as each document presents unique content and context 
that requires careful processing for effective summarization. 

📝 6.2.5 

What are challenges in automatic summarization? 

• Achieving coherence in sentence structure 
• Emulating human comprehension 
• Repeating information to maintain context 
• Increasing summary length for more detail 
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7.1 Extraction 

🕮 7.1.1 

Approaches to summarization – extraction vs. abstraction 

Summarization is an essential technique for simplifying lengthy documents and 
extracting key insights without losing critical information. In the context of Natural 
Language Processing (NLP), two main approaches to summarization are widely 
used: extraction and abstraction. Extractive summarization focuses on identifying 
and reordering the most relevant sentences directly from the source text to form a 
shorter version. Unlike abstraction, extractive summarization does not create any 
new sentences; instead, it uses pre-existing content. In contrast, abstraction takes a 
different approach by creating new sentences that capture the essential meaning of 
the original document. 

Extractive summarization is typically more straightforward since it relies on 
identifying and selecting the most informative sentences. This is achieved through 
algorithms that rank sentences based on relevance, often using statistical or 
machine learning techniques to assess which parts of the text contain the most 
important information. Abstractive summarization, however, is more complex as it 
requires the generation of new text, demanding a higher level of linguistic and 
semantic understanding, often involving deep learning models. 

Each method has distinct advantages and limitations. Extractive summaries 
maintain the original text structure, which may sometimes lack coherence in the 
summary. Abstractive summarization, while potentially more coherent, can be 
challenging due to the computational requirements and need for deep semantic 
comprehension. Both approaches are vital for various applications, from news 
aggregation to academic research. 

📝 7.1.2 

Choose the correct statements about extractive summarization 

• decides which sentences from the text are significant and need to be 
included in the summary 

• the summarized text consists only of the sentences that were in the original 
text 

• uses the concept of sentence scoring 
• the summarized text also consists of new sentences that were not in the 

original text 
• does not use the concept of sentence punctuation 
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📝 7.1.3 

Which summarization approach involves generating new sentences? 

• Abstraction 
• Extraction 
• Compression 
• Rephrasing 

🕮 7.1.4 

TF-IDF Method 

Extractive summarization aims to rank sentences by relevance and extract only the 
most informative ones. One common technique is TF-IDF (Term Frequency-Inverse 
Document Frequency), a statistical measure used to identify significant words within 
a document. The “term frequency” component of TF-IDF calculates how frequently a 
word appears in the document. However, commonly used words, like “the” and “and,” 
often appear frequently across texts and add little to the summary. The “inverse 
document frequency” component of TF-IDF addresses this by reducing the 
importance of commonly used words and emphasizing terms unique to the 
document. 

To calculate TF-IDF, each word’s frequency in the document is compared against its 
frequency in a larger set of documents, adjusting its significance accordingly. Words 
with high TF-IDF scores tend to be unique and relevant to the document, which helps 
algorithms identify which sentences should be extracted into a summary. 

For extractive summarization, TF-IDF helps isolate sentences rich in high-score 
words. These sentences are then reassembled into a summary. This approach, 
although simple, is effective in creating summaries that retain important terms and 
concepts while discarding redundant information. 

📝 7.1.5 

Which of the following are components of the TF-IDF method? 

• Term frequency 
• Inverse document frequency 
• Sentence length 
• Sentence position 
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🕮 7.1.6 

Graph-based methods 

Graph-based methods for extractive summarization utilize a visual structure to 
represent relationships among sentences in a document. Here, sentences are 
represented as nodes within a graph, while edges connect sentences that share 
common words or phrases. The more connections a sentence node has, the more 
relevant it is considered, making it more likely to be included in the summary. 

The algorithm typically starts by calculating a similarity score for each sentence, 
connecting sentences with overlapping terms. Sentences with the highest degree of 
connectivity (those with the most edges) are chosen for the summary. This approach 
is especially effective in maintaining coherence, as connected sentences tend to flow 
better in the final summary. 

Graph-based methods are beneficial for extracting key content in documents where 
sentences are highly interconnected. An example of this approach is the TextRank 
algorithm, which is widely used in NLP for summarization and other tasks like 
keyword extraction. 

📝 7.1.7 

In a graph-based summarization method, what do the nodes represent? 

• Sentences 
• Keywords 
• Paragraphs 
• Documents 

🕮 7.1.8 

Machine learning-based summarization 

Machine learning methods treat summarization as a classification problem, where 
sentences are labeled as “summary” or “non-summary” sentences. During training, a 
model learns to recognize characteristics that typically belong to sentences in a 
summary. Features such as sentence length, position, and relevance to the 
document’s title are often used to train the classifier. 

In practice, machine learning-based summarization requires a training dataset with 
examples of summary and non-summary sentences. Once trained, the classifier can 
identify and select sentences that are likely to be relevant, making the summarization 
process more accurate and adaptable to different types of content. 

These models can be trained on labeled datasets and refined over time. As more 
data is used for training, the classifier becomes better at distinguishing between 
significant and insignificant information. 
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📝 7.1.9 

Which features are typically used in machine learning-based summarization? 

• Sentence position 
• Relevance to title 
• Language complexity 
• Paragraph length 

📝 7.1.10 

What is the main goal of machine learning-based summarization? 

• To classify sentences as summary or non-summary sentences 
• To predict document length 
• To extract keywords only 
• To identify all repeated phrases 

🕮 7.1.11 

Fuzzy logic in summarization 

Fuzzy logic-based summarization methods evaluate sentences based on various 
characteristics, such as length, similarity to the title, and presence of keywords. 
Unlike strict binary logic, fuzzy logic assigns sentences a score between 0 and 1, 
indicating their degree of importance. This flexibility allows sentences with varying 
levels of relevance to be included in the summary based on defined rules. 

For instance, sentences containing keywords relevant to the document’s title may 
score higher, while sentences with excessive detail score lower. Fuzzy logic’s 
adaptability makes it particularly useful for dynamic summaries, where multiple 
factors influence sentence selection. The scoring mechanism also helps in 
minimizing redundancy, ensuring that only the most unique and relevant sentences 
are included. 

This approach is suitable for complex documents, where simple extraction methods 
might miss nuances. Fuzzy logic systems can be fine-tuned to prioritize sentences 
that best represent the document’s overall theme. 

📝 7.1.12 

Which method assigns importance scores to sentences between 0 and 1? 

• Fuzzy logic 
• Graph-based methods 
• Neural networks 
• TF-IDF 
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7.2 Abstraction I. 

🕮 7.2.1 

Abstract summarization is a sophisticated technique in natural language processing 
(NLP) that aims to generate a coherent summary by creating new sentences. Unlike 
extractive summarization, which pulls directly from the original text, abstract 
summarization involves interpreting and paraphrasing the content, similar to how a 
human might summarize. This approach begins with generating a transient 
representation of the text, identifying primary topics and "indicators," such as 
sentence length and the presence of specific key terms, to determine the text's most 
important sections. The sentences with the highest scores are selected to build the 
summary. 

This summarization approach is more complex than extractive summarization, as it 
requires a deep understanding of the text’s semantics—the meaning and 
relationships between ideas, concepts, and topics within the document. To achieve 
this, advanced NLP techniques are employed to "read" the document in context and 
synthesize information into new, concise sentences, effectively rephrasing the 
source material without losing key information. 

Various methods can be used in abstract summarization, each offering unique 
advantages in achieving coherence and informativeness. By creating summaries that 
are not limited to direct quotes from the text, abstract summarization is particularly 
useful for applications like news generation, academic research, and digital 
assistants, where a fluent and original summary is required. 

📝 7.2.2 

Choose the correct statements about abstract summarization 

• the created summary contains only the sentences that were in the original 
text 

• it relies entirely on the concept of sentence scoring 
• uses the indicator representation to express the importance of individual 

parts of the text 
• the summary contains sentences that were not in the original text 

📝 7.2.3 

Which elements are considered in creating a transient representation for abstract 
summarization? 

• Main topics 
• Indicator words 
• Sentence punctuation 
• Page length 
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🕮 7.2.4 

Tree-based methods 

Tree-based methods for abstract summarization use a dependency tree to analyze 
and structure the content of the document. In this approach, sentences are broken 
down into their grammatical components to reveal relationships between words. A 
notable technique is "sentence fusion," where sentences across multiple documents 
are combined to create a cohesive summary. This method is advantageous for 
summarizing extensive documents or combining information from various sources. 

The dependency tree enables the summarizer to organize and fuse similar 
sentences, ensuring that the final summary contains only unique, relevant 
information. By examining sentence structures, tree-based methods can identify the 
core ideas across documents, simplifying complex information and removing 
redundancies. 

Tree-based summarization is highly effective in environments requiring precision 
and clarity, such as legal documents, research papers, or medical reports. The 
dependency tree helps ensure that the summary retains its logical structure, making 
the information easier to understand. 

📝 7.2.5 

What is the purpose of using a dependency tree in tree-based methods? 

• To analyze relationships between words 
• To select random sentences 
• To count words 
• To calculate term frequency 

📝 7.2.6 

What are the benefits of tree-based methods in summarization? 

• Combining information from multiple sources 
• Organizing sentences for clarity 
• Increasing document length 
• Selecting text based on page layout 

🕮 7.2.7 

Template-based methods 

Template-based methods approach summarization by mapping specific patterns 
and extraction rules within a document to a template structure. The system uses 
linguistic patterns to identify relevant text snippets, which are then matched to pre-
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designed template "slots" or placeholders, resulting in a concise database-driven 
summary. For instance, in a business report, templates might include categories 
such as "Introduction," "Key Findings," and "Conclusion," with content from the 
document inserted into each relevant section. 

This method is especially useful for summarizing repetitive or standardized content, 
where specific types of information consistently appear. Template-based methods 
can improve the efficiency of summarization processes, especially when dealing with 
highly structured data. 

These methods are ideal in fields like finance or healthcare, where standardized 
reporting is essential, as they ensure critical details are included while reducing the 
need for manual input. However, template-based summaries may lack flexibility for 
unstructured or highly varied content, as they rely on predefined patterns. 

📝 7.2.8 

What does a template-based method in summarization primarily rely on? 

• Predefined patterns and rules 
• Sentence length 
• Word frequency 
• Sentence complexity 

📝 7.2.9 

What are advantages of template-based methods? 

• Standardization of summaries 
• Efficiency in structured data summarization 
• Flexibility in unstructured content 
• Emphasis on informal language 

🕮 7.2.10 

Rule-based methods 

Rule-based methods in abstract summarization operate by defining rules that 
classify sentences into categories, such as “summary” or “non-summary.” These 
rules focus on the use of verbs, nouns, and phrases with similar meanings, which 
help the system recognize important content. A set of extraction rules is created, 
enabling the summarizer to select sentences that best capture the essence of the 
document. 

This approach is well-suited for specific domains where certain linguistic patterns 
regularly appear, making it easier to create reliable rules. For instance, in scientific 
articles, rules might prioritize sentences with terms like "results" or "conclusions" to 
capture essential findings. 
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While rule-based methods offer precise summaries in controlled environments, their 
effectiveness may be limited when applied to general text with unpredictable 
sentence structures or vocabulary. However, they remain a valuable tool for 
generating domain-specific summaries that require accuracy and consistency. 

📝 7.2.11 

Rule-based methods in summarization work by: 

• Applying predefined linguistic rules 
• Randomly selecting sentences 
• Only selecting the first sentences 
• Ignoring all verbs and nouns 

📝 7.2.12 

What advantages do rule-based summarization methods provide? 

• Precision in domain-specific summaries 
• Consistency across similar documents 
• Adaptability to all types of documents 
• Random selection of sentences 

7.3 Abstraction II. 

🕮 7.3.1 

Ontology-based methods 

Ontology-based methods leverage domain-specific knowledge to create summaries, 
making them particularly useful when summarizing content within a specific field. 
An ontology is a structured representation of knowledge, where concepts are 
organized and linked based on relationships relevant to the domain. In ontology-
based summarization, sentences are processed to ensure they align with the defined 
concepts, and relationships in the ontology. For example, in a medical ontology, 
terms like "symptoms," "diagnosis," and "treatment" may guide the summarization 
process. 

This method compresses and reformulates sentences based on domain-relevant 
criteria, using both linguistic and NLP techniques. By following a structured 
knowledge base, ontology-based methods ensure that the summary focuses on the 
most critical and relevant details, maintaining coherence and context. 

Ontology-based summarization excels in areas like scientific literature and technical 
fields where precise terminology and concept relationships are essential. However, 
it may require extensive resources to develop domain-specific ontologies, making it 
best suited for specialized applications. 
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📝 7.3.2 

In which situation is an ontology-based summarization method most useful? 

• Summarizing domain-specific content 
• Summarizing fiction books 
• Summarizing random internet articles 
• Selecting keywords for general essays 

📝 7.3.3 

What are key aspects of ontology-based summarization? 

• Use of domain knowledge 
• Structured relationships between concepts 
• Emphasis on unrelated sentences 
• Lack of specialized terminology 

🕮 7.3.4 

Combined approaches 

Combined summarization is an advanced method that integrates both extractive and 
abstractive techniques to create concise, coherent summaries. In this approach, an 
extractive summarizer is first used to strip the original text of redundant or irrelevant 
information, isolating the most critical sentences. This “cleaned” text is then passed 
to an abstract generator, which rephrases and reorganizes the selected content into 
a more fluent and cohesive summary. By using extraction as a preliminary step, the 
abstract generator can focus solely on rephrasing important details, resulting in a 
more accurate and meaningful summary. 

One of the key advantages of combined summarization is its ability to work 
efficiently with complex documents, as it minimizes processing time by dealing only 
with relevant information. This approach also reduces potential errors in abstraction, 
as it prevents the generator from paraphrasing unnecessary details, which could lead 
to inaccuracies. Combined summarization is particularly valuable in applications 
requiring high precision and readability, such as news summarization, where both 
relevance and fluency are critical. 

Modern algorithms, such as the BART (Bidirectional and Auto-Regressive 
Transformers) model, employ combined summarization techniques to deliver high-
quality summaries. These algorithms are trained to process and refine extracted 
content through sophisticated language modeling, making combined summarization 
one of the most effective approaches in text summarization today. 
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📝 7.3.5 

Which aspects characterize combined summarization? 

• Integration of extractive and abstractive methods 
• Use of an abstract generator on pre-selected text 
• Ignoring redundant information 
• Repeating important sentences 

🕮 7.3.6 

Multimodal semantic model 

The Multimodal Semantic Model is a sophisticated summarization technique that 
utilizes an object-based knowledge representation to create structured summaries. 
In this approach, text is broken down into nodes and links. Nodes represent individual 
concepts, while links show the relationships between these concepts, forming a 
network of interconnected ideas. This structure allows the summarizer to capture 
the core ideas within the text in an organized manner, enhancing the readability and 
cohesion of the resulting summary. 

An information density metric is used to evaluate and score the significance of 
concepts within the text. This metric considers several factors, such as the 
completeness of ideas, the relationships between nodes, and the frequency of term 
occurrences. Important concepts are prioritized based on these scores, which 
ensures that the summary includes the most relevant and essential information 
without redundancy. 

Once key concepts are identified, they are transformed into coherent sentences that 
form the final summary. By focusing on concept relationships and term significance, 
the Multimodal Semantic Model excels at producing summaries that are not only 
concise but also maintain the intended meaning of the original text, making it highly 
useful for applications that require precise and detailed information retention. 

📝 7.3.7 

In the Multimodal Semantic Model, what do the links represent? 

• Relationships between concepts 
• Individual terms 
• Sentence scores 
• Irrelevant information 
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📝 7.3.8 

What factors does the information density metric consider in the Multimodal 
Semantic Model? 

• Completeness of ideas 
• Frequency of term occurrences 
• Sentence length 
• Grammar and syntax 

🕮 7.3.9 

Semantic text representation model 

The Semantic Text Representation Model is a summarization approach that focuses 
on the semantic content of words rather than their syntactic arrangement. Unlike 
traditional methods that rely on word positioning or structure, this model delves into 
the meaning behind words and phrases, analyzing the inherent concepts within the 
text. By interpreting semantic relationships, this model generates summaries that 
reflect the intended message of the original material more effectively. 

In practice, the Semantic Text Representation Model works by identifying key 
concepts and ideas and examining the connections between them. These 
connections help the summarizer understand the underlying themes of the text, 
making it possible to condense content while preserving its core meaning. This 
method is especially beneficial when summarizing texts that contain nuanced 
language or multiple layers of meaning. 

The Semantic Text Representation Model is particularly valuable in fields that require 
a deep understanding of context, such as legal or academic texts. It prioritizes 
semantic understanding over mere word frequency, which enables it to produce 
summaries that are accurate and contextually relevant, capturing both the explicit 
and implicit information within a document. 

📝 7.3.10 

What is the main focus of the Semantic Text Representation Model? 

• Understanding the meaning behind words 
• Counting sentence length 
• Using only sentence structure 
• Relying on word frequency alone 
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📝 7.3.11 

Which features are central to the Semantic Text Representation Model? 

• Focus on semantics of words 
• Preservation of core meaning 
• Only syntax and structure 
• Surface-level word frequency 

 



 

 

Keyword Extraction 

Chapter 8 
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8.1 Introduction 

🕮 8.1.1 

Keyword extraction is a summarization technique designed to capture essential 
words or phrases from a document, making it easier to understand the document's 
core themes without reading it in full. This process identifies a small but 
representative set of terms, known as key phrases, which succinctly convey the 
document's main ideas. Keyword extraction is widely applied in content management 
fields, including search engine optimization, advertising, and recommendation 
systems, to ensure relevant information is highlighted. For instance, when a user 
encounters an ad or webpage with well-selected keywords, they are more likely to 
find the content useful and engaging. 

The primary goal of keyword extraction is to save time by efficiently conveying the 
main ideas within extensive text. Key phrases streamline the information for the end 
user, which is particularly valuable in our fast-paced, data-saturated environment. As 
a result, keyword extraction has become a fundamental tool for professionals across 
industries, especially in contexts where quickly grasping content is critical. 

There are two main approaches to keyword extraction: simple statistical methods 
and machine learning-based techniques. Statistical methods use frequency and 
distribution patterns to select keywords, while machine learning methods apply 
trained models to recognize important phrases. By leveraging both approaches, 
systems can deliver accurate and contextually relevant keyword sets, improving 
content management and search efficiency. 

📝 8.1.2 

Which field frequently uses keyword extraction for better content management? 

• Search engine optimization 
• Financial reporting 
• Legal drafting 
• Physics simulations 

📝 8.1.3 

What are some common applications of keyword extraction? 

• Content management 
• Recommendation systems 
• Real estate pricing 
• Network security analysis 
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🕮 8.1.4 

Types of keyword extraction approaches 

Keyword extraction techniques are generally divided into two primary categories: 
simple statistical approaches and machine learning-based approaches. Statistical 
approaches focus on identifying keywords based on word frequency, co-occurrence, 
and other straightforward metrics. This means that frequently appearing or highly 
associated words are more likely to be selected as keywords. These methods are 
computationally efficient, making them popular in scenarios where quick keyword 
extraction is needed without extensive processing. 

Machine learning-based approaches, on the other hand, involve training algorithms 
to recognize keywords based on patterns within a training dataset. These models are 
typically more accurate than simple statistical methods because they are tailored to 
specific contexts and learn from annotated data to make refined predictions. 
Machine learning approaches can identify keywords even in complex language 
structures by using labeled examples that guide the model to discern important 
terms. 

In addition to these two categories, several hybrid approaches combine both 
statistical and machine learning techniques, resulting in more precise keyword 
extraction. For instance, hybrid methods may use statistical filters to pre-select 
potential keywords, then apply machine learning to fine-tune the list. By combining 
strengths from both approaches, hybrid methods offer a balanced solution that 
provides both speed and contextual accuracy. 

📝 8.1.5 

Which of the following are main types of keyword extraction approaches? 

• Simple statistical approaches 
• Machine learning-based approaches 
• Mathematical modeling 
• Heuristic sorting 

📝 8.1.6 

What do machine learning-based approaches in keyword extraction rely on? 

• Pattern recognition in training data 
• Frequency of stop words 
• Random word selection 
• Simple word counting 
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🕮 8.1.7 

Preprocessing 

Preprocessing text is an essential step in preparing documents for keyword 
extraction, as it cleans and standardizes the text for optimal results. One of the first 
steps in preprocessing is the removal of stop words—common words like “and,” “the,” 
and “in” that do not carry specific meaning. Stop words, although frequently 
occurring, do not contribute to the core message of a text and can clutter keyword 
extraction if left unfiltered. Many libraries, such as the Natural Language Toolkit 
(NLTK) in Python, provide extensive lists of stop words for different languages, 
simplifying this step. 

Another crucial preprocessing step is converting all text to lowercase. This step 
prevents keywords from being duplicated due to case sensitivity, where “Keyword” 
and “keyword” might both be considered unique keywords. By converting the entire 
text to lowercase, we ensure a consistent format, enabling algorithms to identify 
keywords more accurately. 

Finally, the removal of punctuation and special characters is necessary, especially 
when processing informal text such as social media content. Characters like 
hashtags, emojis, or unusual symbols often carry little to no semantic meaning and 
could distort keyword extraction if included. These preprocessing steps work 
together to enhance keyword extraction by ensuring only meaningful words are 
considered, resulting in cleaner, more relevant keywords. 

📝 8.1.8 

What are some standard preprocessing steps for keyword extraction? 

• Removing stop words 
• Lowercasing text 
• Increasing punctuation frequency 
• Doubling key phrases 

8.2 Statistical approaches 

🕮 8.2.1 

Simple statistical approaches in keyword extraction focus on analyzing word 
frequency and distribution within a text. These methods operate under the 
assumption that frequently occurring words or terms that appear together are likely 
to be essential to the text’s meaning. One common statistical method is Term 
Frequency-Inverse Document Frequency (TF-IDF), which evaluates a word’s 
importance based on how often it appears in a document relative to its occurrence 
across a set of documents. This way, words that are significant within the context of 
the document are highlighted as potential keywords. 
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Statistical approaches are particularly effective for quick, general keyword extraction 
since they rely on straightforward calculations rather than complex algorithms. For 
example, TF-IDF can be applied to identify terms that are unique to a particular article 
within a large set of documents, helping distinguish specialized topics or unique 
themes. 

While statistical methods are easy to implement and efficient in processing time, 
they may not fully capture the context or nuanced meaning of a text. This is where 
machine learning-based methods often outperform simple statistical methods by 
providing richer and more context-aware keyword selections. 

📝 8.2.2 

Which are characteristics of statistical keyword extraction methods? 

• Relies on frequency and co-occurrence 
• Offers computational efficiency 
• Requires complex training data 
• Depends on image recognition 

🕮 8.2.3 

Statistical approaches extract keywords by using statistical functions such as TF-
IDF (Term Frequency-Inverse Document Frequency), n-gram statistics, word co-
occurrences, and other statistics. Most statistical approaches are language-
independent, meaning that they can be used for texts in a language if a large enough 
corpus is available. In addition to applicability to active language, speed is an 
indisputable advantage of statistical approaches. algorithms are rather faster in 
contrast to approaches that are based on machine learning. 

TF-IDF (Term Frequency - Inverse Document Frequency) 

TF-IDF is one of the most well-known possible approaches to find important words 
from a document. TF-IDF talks about the importance of the words in the document 
in relation to the entire corpus. It is already clear from the name of the approach that 
this approach is composed of two components, namely the TF component and the 
IDF component.  

The TF (Term Frequency) component expresses how often (frequency) a given word 
occurs in a document from the corpus. it is usually normalized by dividing the 
document's word count to avoid overestimating long documents, where the search 
term may appear more often than shorter ones, without making the document more 
relevant. Therefore, we obtain the TF component according to the following, where 
the number of occurrences of the word ti in the document is not dj. The denominator 
expresses the sum of the number of occurrences of all words in the document. 
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IDF (Inverse Document Frequency) talks about specific words. In principle, it can be 
said that the more often a word occurs in documents, the less important it is (a word 
that occurs in all documents, such as the English article "the" or the Slovak 
conjunction "a", is mostly unusable in searches). We calculate the IDF for the word i 
using the formula below, where |D| represents the number of documents in which we 
search and |{j : ti ϵ dj}| is the number of documents that contain the word i. 

 

📝 8.2.4 

TF-IDF talks about the importance of the words in the document in relation to the 
entire corpus 

• True 
• False 

🕮 8.2.5 

RAKE (Rapid Automatic Keyword Extraction) 

RAKE (Rapid Automatic Keyword Extraction) is a statistical approach that has gained 
significant popularity in keyword extraction due to its efficiency and simplicity. The 
core idea behind RAKE is that important keywords often consist of multiple words, 
such as "good camera" or "quality sound," rather than isolated single words. This 
approach is particularly useful when dealing with multi-word phrases, which are 
frequently seen in customer feedback, product reviews, and other domain-specific 
texts. Unlike many other methods, RAKE does not rely on word frequency alone but 
on the co-occurrence of words within the same context, which makes it particularly 
adept at extracting meaningful phrases. 

The RAKE algorithm works by first removing stop words (e.g., "and," "the," "is") and 
punctuation from the text, ensuring that only content-carrying words remain. Once 
this preprocessing is complete, the algorithm builds a co-occurrence matrix, which 
calculates how often words appear together in the same context. For example, in a 
product review, phrases like "good camera" might frequently appear together, making 
them a strong candidate for keyword extraction. The co-occurrence matrix helps 
identify these significant word pairs (or n-grams), highlighting those combinations 
that occur most frequently within the text. 

One of the key advantages of RAKE is its ability to efficiently process large texts 
without the need for complex training data or heavy computational resources. It 
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focuses on word co-occurrence patterns, making it highly effective in domains where 
context and relationships between terms are crucial. However, while RAKE is 
relatively simple, its performance can vary depending on the quality of the input text 
and the relevance of the co-occurring words. Despite this, RAKE remains a popular 
choice for extracting meaningful keywords in many real-world applications, such as 
customer feedback analysis, document summarization, and more. 

The input to the algorithm is the text cleaned of trace words and punctuation. The 
algorithm then calculates the co-occurrence matrix. 

 

Each word is then assigned a score. The degree of the word in the matrix is calculated 
- the sum of the number of common occurrences divided by the frequency of their 
occurrence. Frequency of occurrence means how many times a word occurs in the 
corpus. 

 

The final score for the identified key phrases will be the sum of the scores of the 
individual words that the key phrase contains. So for the keyword phrase "feature 
extraction" the value will be equal to 4.66. 
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📝 8.2.6 

What is the basis of the RAKE algorithm? 

• co-occurrences of words 
• cosine similarity 
• frequency of words in text 

📝 8.2.7 

Project: Implementation of the RAKE algorithm 

To implement the RAKE algorithm, we will first start the nltk library, rake-nltk. After 
installation, we can import the libraries. Lists of stop words are available on various 
websites. We could download any of them and implement it in our code as a letter. 
However, we can also use the list of stop words offered by the nltk library. In our 
case, we will show the extraction of keywords from simple text, which will be stored 
in a string variable. 

We will have to tokenize this text into sentences, for which we will use the Punkt 
Sentence Tokenizer, which divides the text into a list of sentences. We have the 
following text: "Text summarization is a method which belongs to the area of Natural 
Language Processing. Keyword extraction is a process of obtaining the most 
important keywords in a document. Keyword extraction is usefull text summarization 
technique." Let's save this text as a string variable. Let's just convert this text to 
lowercase letters. Let's save a list of our stop words in the stop_words variable. 

 
import nltk 

from rake_nltk import Rake 

nltk.download('stopwords') 

from nltk.corpus import stopwords 

nltk.download('punkt') 

 

text = "Text summarization is a method which belongs to the 

area of Natural Language Processing. Keyword extraction is a 

process of obtaining the most important words in document. 

Keyword extraction is usefull text summarization technique." 

text = text.lower() 

 

stop_words = nltk.corpus.stopwords.words('english') 

 
Program output: 
[nltk_data] Downloading package stopwords to 

/home/johny/nltk_data... 

[nltk_data]   Package stopwords is already up-to-date! 
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[nltk_data] Downloading package punkt to 

/home/johny/nltk_data... 

[nltk_data]   Package punkt is already up-to-date! 

 

In the rake_extractor variable, we initialize the Rake class that will perform the 
extraction. The stopwords parameter specifies a list of words to be removed from 
the text. The range of n-grams, i.e. the number of words we want our keywords to 
contain, is determined by the min_length parameter, which defines the minimum 
number of words that phrases must contain, and the max_length parameter, which 
defines the maximum number of words. words that the extracted key phrases may 
contain. In our case, we want phrases that have exactly two words. The 
include_repeated_phrases parameter specifies whether we want the extracted 
keywords to be repeated in the result. We then call the function 
extract_keywords_from_text which will accept our variable named text as a 
parameter. 

 
# Initialize the RAKE extractor 

rake_extractor = Rake(stopwords = stop_words, min_length=2, 

max_length=2, include_repeated_phrases=False) 

 

# Extract keywords from the input text 

rake_extractor.extract_keywords_from_text(text) 

 

# Get the ranked phrases with their scores 

ranked_phrases = rake_extractor.get_ranked_phrases() 

 

# Output the ranked keyword phrases with their relevance 

scores 

print(ranked_phrases) 

 
Program output: 
['text summarization', 'keyword extraction', 'important 

words'] 

 

and to get the keywords we will use the get_ranked_phrases or 
get_ranked_phrases_with_scores method depending on whether we want to see the 
rank scores for our keywords as well. 

 
print(rake_extractor.get_ranked_phrases_with_scores()) 

 
Program output: 
[(4.0, 'text summarization'), (4.0, 'keyword extraction'), 

(4.0, 'important words')] 
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🕮 8.2.8 

YAKE 

YAKE (Yet Another Keyword Extractor) is another advanced keyword extraction 
method that uses the TF-IDF technique. However, YAKE introduces a more nuanced 
approach to extracting keywords by incorporating several additional features that 
enhance the accuracy of keyword selection. YAKE stands out by using a combination 
of both TF-IDF scores and new statistical features to better capture the context and 
importance of candidate keywords in a document. 

YAKE works by analyzing the location and frequency of candidate words within a 
document. The method uses five key features to calculate the importance of each 
word: 

1. WC (Word Case): This feature reflects the case of the candidate word. Words 
that appear in uppercase or as part of titles may be considered more 
important because they often represent key concepts or proper nouns. 

2. WP (Word Position): This factor emphasizes the position of the word in the 
document. Words that appear near the beginning of the document are given 
more importance because they often introduce main topics. 

3. WF (Word Frequency): This feature reflects how frequently a word appears 
within the document. Words that are mentioned more often are assumed to 
be more relevant to the overall context of the document. 

4. WRC (Word-Related Context): This feature measures the relatedness of a 
candidate word to other words in its context. If a word is surrounded by 
different or important words, it is considered to be more significant. 

5. WD (Word Distribution in Sentences): This feature looks at how often the 
candidate word appears across different sentences. Words that appear 
across multiple sentences are deemed to represent broader concepts and 
are therefore given higher scores. 

By considering these five features in addition to the traditional TF-IDF score, YAKE 
can provide a more comprehensive and context-sensitive evaluation of keywords. 
This makes YAKE particularly useful in extracting keywords from documents with 
complex structures or varied content, where the position, frequency, and context of 
words play an important role in determining their significance. 

These five values are combined to calculate S(w) as shown in the formula below. 

 

Finally, the final S(kw) of each candidate word is calculated using the 3-gram model 
as shown in the following equation, where kw represents the candidate word and TF 
represents the frequency of the key phrase. The smaller the value of S(kw), the more 
likely it is that kw will be a key phrase. 
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📝 8.2.9 

Project: Implementation of the YAKE algorithm 

Implement the YAKE (Yet Another Keyword Extractor) algorithm for automatic 
keyword extraction from a given text document. The YAKE method calculates 
keyword scores based on several features like word frequency, position, case, and 
context in the document. 

 
import string 

import nltk 

from collections import Counter 

import math 

 

# Download NLTK stopwords if not already downloaded 

nltk.download('stopwords') 

nltk.download('punkt') 

from nltk.corpus import stopwords 

from nltk.tokenize import word_tokenize, sent_tokenize 

 
Program output: 
[nltk_data] Downloading package stopwords to 

/home/johny/nltk_data... 

[nltk_data]   Package stopwords is already up-to-date! 

[nltk_data] Downloading package punkt to 

/home/johny/nltk_data... 

[nltk_data]   Package punkt is already up-to-date! 

 

1. Preprocessing 

• Converts text to lowercase to avoid case sensitivity issues. 
• Removes punctuation to ensure that symbols do not affect the keyword 

extraction. 
• Removes stopwords (common words like "the", "is", etc.) that don't add much 

value to the meaning of the text. 

 
# Step 1: Preprocess the Text 

def preprocess_text(text): 

    # Convert text to lowercase 

    text = text.lower() 
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    # Remove punctuation 

    text = text.translate(str.maketrans('', '', 

string.punctuation)) 

     

    # Tokenize the text into words 

    words = word_tokenize(text) 

     

    # Remove stopwords 

    stop_words = set(stopwords.words('english')) 

    filtered_words = [word for word in words if word not in 

stop_words] 

     

    return filtered_words, text 

2. Calculate Term Frequency (TF) 

• Counts the frequency of each word and normalizes it by dividing by the total 
number of words in the text 

 
# Step 2: Calculate Term Frequency (TF) 

def compute_tf(words): 

    tf = Counter(words) 

    total_words = len(words) 

    tf_scores = {word: count / total_words for word, count in 

tf.items()} 

    return tf_scores 

3. Word Position (WP): 

• Calculates the average position of each word in the sentences of the 
document. Words that appear earlier in the document are given higher 
importance. 

 
# Step 3: Calculate Word Position (WP) 

def compute_wp(text, words): 

    sentences = sent_tokenize(text) 

    wp_scores = {} 

     

    for word in words: 

        positions = [] 

        for i, sentence in enumerate(sentences): 

            if word in sentence.lower(): 

                positions.append(i) 
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        wp_scores[word] = sum(positions) / len(positions) if 

positions else 0 

    return wp_scores 

 

4. Word Frequency (WF): 

• Counts how many times each word appears in the document, higher 
frequency means higher importance. 

 
# Step 4: Calculate Word Frequency (WF) 

def compute_wf(words): 

    word_count = Counter(words) 

    return word_count 

5. Word Related Context (WRC): 

• Analyzes the context in which a word appears by looking at its co-occurrence 
with other words in the same sentence. More diverse context usually implies 
higher importance. 

 
# Step 5: Calculate Word Related Context (WRC) 

def compute_wrc(text, words): 

    sentences = sent_tokenize(text) 

    wrc_scores = {} 

     

    for word in words: 

        related_words = set() 

        for sentence in sentences: 

            if word in sentence.lower(): 

                sentence_words = set(word_tokenize(sentence)) 

                related_words.update(sentence_words) 

        wrc_scores[word] = len(related_words) 

    return wrc_scores 

6. Word Distribution (WD): 

• Measures how spread out a word is across different sentences. A word that 
appears in multiple sentences tends to be more relevant to the overall 
document. 

 
# Step 6: Calculate Word Distribution (WD) 

def compute_wd(text, words): 

    sentences = sent_tokenize(text) 
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    wd_scores = {} 

     

    for word in words: 

        sentence_count = 0 

        for sentence in sentences: 

            if word in sentence.lower(): 

                sentence_count += 1 

        wd_scores[word] = sentence_count / len(sentences) 

    return wd_scores 

7. Rank Keywords: 

• Combines all the computed scores and ranks the keywords based on their 
final scores. 

 
# Step 7: Rank Keywords with YAKE Features 

def yake_ranking(tf_scores, wp_scores, wf_scores, wrc_scores, 

wd_scores): 

    keyword_scores = {} 

     

    for word in tf_scores: 

        # Calculate a combined score based on all features 

(you can add weights here) 

        score = (tf_scores[word] + wp_scores.get(word, 0) + 

                 wf_scores[word] + wrc_scores.get(word, 0) + 

                 wd_scores.get(word, 0)) 

        keyword_scores[word] = score 

     

    # Rank keywords by score (higher is better) 

    ranked_keywords = sorted(keyword_scores.items(), 

key=lambda x: x[1], reverse=True) 

     

    return ranked_keywords 

• and run: 

 
# Example Text 

text = """ 

Keyword extraction is an important task in Natural Language 

Processing.  

The goal is to extract the most relevant words or phrases that 

represent the content of the document. 
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YAKE is a keyword extraction technique that uses several 

features to evaluate the importance of a word. 

""" 

 

# Preprocess text 

filtered_words, processed_text = preprocess_text(text) 

 

# Compute TF, WP, WF, WRC, and WD features 

tf_scores = compute_tf(filtered_words) 

wp_scores = compute_wp(processed_text, filtered_words) 

wf_scores = compute_wf(filtered_words) 

wrc_scores = compute_wrc(processed_text, filtered_words) 

wd_scores = compute_wd(processed_text, filtered_words) 

 

# Rank keywords using YAKE 

ranked_keywords = yake_ranking(tf_scores, wp_scores, 

wf_scores, wrc_scores, wd_scores) 

 

# Display the ranked keywords 

print("Ranked Keywords:") 

for word, score in ranked_keywords: 

    print(f"{word}: {score:.4f}") 

 
Program output: 
Ranked Keywords: 

keyword: 36.0800 

extraction: 36.0800 

important: 35.0400 

task: 35.0400 

natural: 35.0400 

language: 35.0400 

processing: 35.0400 

goal: 35.0400 

extract: 35.0400 

relevant: 35.0400 

words: 35.0400 

phrases: 35.0400 

represent: 35.0400 

content: 35.0400 

document: 35.0400 

yake: 35.0400 

technique: 35.0400 

uses: 35.0400 

several: 35.0400 

features: 35.0400 
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evaluate: 35.0400 

importance: 35.0400 

word: 35.0400 

 

🕮 8.2.10 

KP-Miner 

The KP-Miner method is a more advanced technique for keyword extraction that 
builds upon basic statistical methods like TF-IDF (Term Frequency-Inverse Document 
Frequency). Unlike simpler methods that rely solely on frequency, KP-Miner 
introduces additional steps and statistical functions to enhance keyword extraction, 
making it especially useful for handling more complex documents. This method 
consists of three key steps: candidate word selection, score calculation, and final 
selection of keywords based on a combination of these scores. 

1. In the first step, candidate words are selected from the document. These are 
words that could potentially be important keywords. KP-Miner introduces 
two key factors at this stage: the Least Allowable Seen Frequency (LASF) 
factor, which ensures that only words that appear more than a specified 
number of times (denoted as "n") in the document are considered 
candidates. This prevents overly rare or irrelevant words from being 
considered as key phrases. Additionally, the method introduces the CutOff 
factor, which filters out words that appear after a certain position in the 
document. If a word appears beyond this threshold, it is deemed less likely to 
be important and is removed from the pool of candidates. 

2. The second step involves calculating a score for each candidate word. This 
score is typically based on both the frequency of the word in the document 
and its importance across a larger corpus. The TF-IDF score is commonly 
used to determine how important a word is within the context of the 
document compared to other documents in the corpus. The higher the TF-
IDF score, the more relevant the word is considered.  

3. Finally, in the third step, the candidate words are ranked by their calculated 
scores. The words with the highest scores are selected as the final 
keywords. This combination of frequency-based filters and statistical 
scoring ensures that the keywords extracted are both relevant and 
representative of the document's main topics. 

The KP-Miner method is particularly useful for long and complex documents because 
it filters out less relevant terms early in the process and uses statistical scoring to 
ensure that the most meaningful terms are selected. By combining multiple 
statistical techniques, it achieves more accurate and contextually relevant keyword 
extraction compared to simpler methods. 
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📝 8.2.11 

List the steps of the KP-miner algorithm 

• TF calculation 
• Calculation of candidate words 
• Calculation of TF-IDF 
• Calculation of IDF 
• Calculation Factor of the lowest permissible frequency of vision and CutOff 

📝 8.2.12 

The difference between YAKE and KP-miner is that KP-miner uses candidate word 
locations or TF-IDF information and introduces a new set of five features 

• True 
• False 

📝 8.2.13 

Project: Implementation of KP miner method 

Implement the KP-Miner algorithm for keyword extraction from a text document. KP-
Miner is a more advanced method that uses Term Frequency-Inverse Document 
Frequency (TF-IDF) to assess the importance of candidate phrases. The algorithm 
includes three main steps: candidate selection, scoring of candidates, and final 
keyword selection. It introduces two unique statistical functions to improve keyword 
extraction: Least Allowable Seen Frequency (LASF) and CutOff. 

 
import string 

import nltk 

from collections import Counter 

import math 

from nltk.tokenize import word_tokenize, sent_tokenize 

from nltk.corpus import stopwords 

 

# Download necessary NLTK resources if not already downloaded 

nltk.download('stopwords') 

nltk.download('punkt') 

 
Program output: 
[nltk_data] Downloading package stopwords to 

/home/johny/nltk_data... 

[nltk_data]   Package stopwords is already up-to-date! 
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[nltk_data] Downloading package punkt to 

/home/johny/nltk_data... 

[nltk_data]   Package punkt is already up-to-date! 

 

1. Preprocessing: 

• Converts text to lowercase and removes punctuation and stopwords to avoid 
irrelevant words affecting the keyword extraction. 

 
# Step 1: Preprocess the Text 

def preprocess_text(text): 

    text = text.lower()  # Convert text to lowercase 

    text = text.translate(str.maketrans('', '', 

string.punctuation))  # Remove punctuation 

    words = word_tokenize(text)  # Tokenize the text into 

words 

    stop_words = set(stopwords.words('english')) 

    filtered_words = [word for word in words if word not in 

stop_words]  # Remove stopwords 

    return filtered_words 

2. Compute Term Frequency (TF) 

• Computes how frequently each word appears in the document. Higher 
frequency indicates that a word is more important. 

 
# Step 2: Compute Term Frequency (TF) 

def compute_tf(words): 

    tf = Counter(words) 

    total_words = len(words) 

    tf_scores = {word: count / total_words for word, count in 

tf.items()} 

    return tf_scores 

3. Compute Inverse Document Frequency (IDF) 

• Calculates the IDF score for each word based on how often it appears in the 
entire corpus. Words that are common across documents get lower IDF 
scores, while rare words get higher scores. 

 
# Step 3: Compute Inverse Document Frequency (IDF) 

def compute_idf(corpus, word): 
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    num_docs_containing_word = sum(1 for doc in corpus if word 

in doc) 

    return math.log(len(corpus) / (num_docs_containing_word + 

1)) 

4. Compute TF-IDF Score 

• Combines the TF and IDF scores to give a weighted importance score for 
each word. 

 
# Step 4: Compute TF-IDF Score 

def compute_tfidf(tf_scores, idf_scores): 

    tfidf_scores = {} 

    for word, tf_score in tf_scores.items(): 

        tfidf_scores[word] = tf_score * idf_scores.get(word, 

0) 

    return tfidf_scores 

5. Select Candidate Words 

• LASF (Least Allowable Seen Frequency): Ensures that only words that 
appear more than a certain number of times (threshold) in the document are 
considered as candidates. 

• CutOff: Discards words that appear after a specified position in the 
document to filter out less relevant terms. 

 
# Step 5: Select Candidate Words Using LASF and CutOff 

def select_candidates(filtered_words, tfidf_scores, 

original_text, cutoff_position=2, lasf_threshold=1): 

    candidate_words = {} 

     

    # Apply Least Allowable Seen Frequency (LASF) 

    word_frequency = Counter(filtered_words) 

    for word, freq in word_frequency.items(): 

        if freq >= lasf_threshold: 

            candidate_words[word] = tfidf_scores.get(word, 0) 

     

    # Apply CutOff - Discard words that appear after the 

cutoff position in the document 

    sentences = sent_tokenize(original_text) 

    cutoff_words = set() 

    for i, sentence in enumerate(sentences[:cutoff_position]): 

        for word in word_tokenize(sentence): 

            cutoff_words.add(word.lower()) 
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    candidate_words = {word: score for word, score in 

candidate_words.items() if word in cutoff_words} 

    return candidate_words 

6. Rank Keywords: 

• Rank the candidate words based on their final score. The words with the 
highest score are considered the most important keywords. 

 
# Step 6: Rank Keywords Based on Their Scores 

def rank_keywords(candidate_words): 

    ranked_keywords = sorted(candidate_words.items(), 

key=lambda x: x[1], reverse=True) 

    return ranked_keywords 

• and run: 

 
# Example corpus for testing the function 

corpus = [ 

    "Keyword extraction is an essential process in natural 

language processing.", 

    "KP-Miner is a keyword extraction algorithm that uses TF-

IDF and additional statistical methods.", 

    "In the KP-Miner algorithm, candidate words are selected 

based on frequency and position within the document." 

] 

 

# Preprocess the corpus and extract words from all documents 

all_filtered_words = [preprocess_text(doc) for doc in corpus] 

 

# Compute the IDF score for each word in the entire corpus 

idf_scores = {} 

all_words = set(word for doc in all_filtered_words for word in 

doc) 

for word in all_words: 

    idf_scores[word] = compute_idf(all_filtered_words, word) 

 

# Initialize a list to store tfidf_scores for each document 

separately 

all_tfidf_scores = [] 

 

# For each document, compute the TF and TF-IDF scores 
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for i, doc in enumerate(all_filtered_words): 

    tf_scores = compute_tf(doc) 

    tfidf_scores = compute_tfidf(tf_scores, idf_scores) 

    all_tfidf_scores.append(tfidf_scores) 

 

# Apply LASF and CutOff to select candidate words for each 

document in the corpus 

for i, (doc, tfidf_scores, original_text) in 

enumerate(zip(all_filtered_words, all_tfidf_scores, corpus)): 

    candidate_words = select_candidates(doc, tfidf_scores, 

original_text) 

    ranked_keywords = rank_keywords(candidate_words) 

     

    # Display the ranked keywords with their scores 

    print(f"\nRanked Keywords for Document {i + 1}:") 

    for word, score in ranked_keywords: 

        print(f"{word}: {score:.4f}") 

 
Program output: 
Ranked Keywords for Document 1: 

essential: 0.0579 

process: 0.0579 

natural: 0.0579 

language: 0.0579 

processing: 0.0579 

keyword: 0.0000 

extraction: 0.0000 

 

Ranked Keywords for Document 2: 

uses: 0.0451 

additional: 0.0451 

statistical: 0.0451 

methods: 0.0451 

keyword: 0.0000 

extraction: 0.0000 

algorithm: 0.0000 

 

Ranked Keywords for Document 3: 

candidate: 0.0405 

words: 0.0405 

selected: 0.0405 

based: 0.0405 

frequency: 0.0405 

position: 0.0405 

within: 0.0405 
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document: 0.0405 

algorithm: 0.0000 

 

8.3 Graph based approaches 

🕮 8.3.1 

In keyword extraction, graph-based approaches leverage the structure of a graph to 
identify important terms or phrases in a document. These methods treat the words 
or phrases as nodes in a graph, where edges represent relationships between them 
based on co-occurrence, proximity, or semantic similarity. By incorporating global 
information from the entire document, graph-based algorithms can capture more 
complex relationships than local methods. Unlike simpler methods, which rely solely 
on individual words or statistical counts, graph-based methods consider both local 
and global information to rank words or phrases based on their overall importance in 
the context of the entire document. 

📝 8.3.2 

Which of the following are characteristics of graph-based approaches in keyword 
extraction? 

• They treat words or phrases as nodes in a graph, connected by edges. 
• They incorporate global information from the entire document. 
• They rely on statistical counts of individual words only. 
• They only consider the co-occurrence of words within a single sentence. 

🕮 8.3.3 

PageRank 

Many graph-based algorithms rely on the PageRank algorithm as their foundation. 
Originally developed to rank web pages based on the quantity and quality of links 
pointing to them, PageRank has been adapted for keyword extraction by ranking 
words or phrases in a document according to their relationships with other terms. In 
the context of keyword extraction, the goal is to identify which words or phrases are 
most important by considering not just their frequency but also their contextual 
connections with other terms in the text. These connections are often modeled as a 
graph, where the weight of the edges represents the strength of the relationship 
between two terms. 

The PageRank algorithm operates recursively to rank nodes based on the importance 
of the nodes they are connected to. The basic PageRank formula for keyword 
extraction is similar to its original use in ranking web pages: 
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Where: 

• PR(A) is the PageRank of page A, 
• PR(Ti) is the PageRank of page Ti (the pages linking to A), 
• C(Ti) is the number of links on page Ti, 
• N is the total number of pages, 
• d is the damping factor, which accounts for the probability that a user will 

stop clicking on links (typically set around 0.85), 
• 1−d / N represents a baseline probability that a page may be randomly 

selected. 

 

The damping factor d is a critical component, as it helps to mitigate the impact of 
pages that have a large number of outgoing links, which could otherwise unfairly 
skew the results. Additionally, it handles the situation where a page may not have any 
incoming links, ensuring that every page still receives a minimum rank. 

In summary, graph-based approaches like PageRank allow for the calculation of node 
importance by incorporating both local and global structural information in the graph, 
making them effective for tasks like web page ranking, recommendation systems, 
and network analysis. The recursive nature of these algorithms ensures that they can 
dynamically adjust based on the entire graph, leading to more accurate and 
comprehensive results. 

🕮 8.3.4 

TextRank 

TextRank applies the PageRank algorithm to a graph where vertices represent words 
in a document. The edges between the words are weighted based on their co-
occurrence, proximity, and syntactic relationships within the text. 

A distinctive feature of TextRank is its ability to handle different domains, languages, 
and genres by incorporating deep linguistic knowledge or using annotated corpora. 
Unlike the original PageRank algorithm, which assumes an unweighted graph, 
TextRank works with a weighted graph to reflect the strength of relationships 
between words. This is particularly important as natural language texts contain a rich 
variety of relationships that must be captured effectively. TextRank is flexible and 
can be adapted to various domains, making it highly transferable and useful in 
multiple applications. 

The first step in applying TextRank is tokenizing the input text and then annotating 
the tokens with Part-of-Speech (POS) tags. Research has shown that TextRank 
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performs best when only nouns and adjectives are used as vertices. A syntactic filter 
is applied to exclude other parts of speech, ensuring that only meaningful and 
relevant words contribute to the graph's structure. This approach combines graph-
based methods with linguistic features, making TextRank a powerful tool for keyword 
extraction across different types of text. 

Here’s how the TextRank algorithm works step-by-step: 

1. Text Preprocessing - before applying TextRank, the input text needs to be 
preprocessed. This typically involves:Tokenization: Breaking the text into individual 
words or phrases; POS Tagging: Annotating each word with its part of speech (noun, 
verb, adjective, etc.). The TextRank algorithm typically focuses on nouns and 
adjectives because they carry the most semantic meaning relevant to keyword 
extraction; Syntactic Filtering: Filtering out parts of speech that are not useful for 
keyword extraction, such as verbs or stop words, leaving nouns and adjectives to 
form the vertices of the graph. 

2. Constructing the Graph - In TextRank, the text is represented as a graph where 
Vertices (nodes): The nodes of the graph represent words (or phrases) from the 
document that are considered important for the task, typically nouns and adjectives; 
Edges: Edges represent the relationships between words. These are created based 
on co-occurrence within a certain window (i.e., words that appear in close proximity 
to each other). This edge is weighted, with the strength of the relationship determined 
by the frequency of co-occurrence. 

3. Building the Weighted Graph - After the preprocessing steps, the graph is built 
with the following details: Each word that remains after POS tagging and syntactic 
filtering is a vertex; The edges between these vertices are weighted based on how 
often the words co-occur or their semantic relationships. In some implementations, 
semantic similarity measures (such as cosine similarity) can also be used to adjust 
the weight of edges. In TextRank, the weight of the edge between two words is 
typically computed as: Weight of an edge: Based on the co-occurrence frequency 
between the two words in the document (or context window). 

4. Applying the PageRank Algorithm - Once the graph is constructed, TextRank 
applies the PageRank algorithm to this graph to rank the vertices (words or phrases) 
based on their importance in the entire document. PageRank works iteratively by 
updating the rank of each vertex based on the ranks of neighboring vertices: Each 
vertex’s rank is computed by accumulating the rank of its neighbors, weighted by the 
edges between them.  

The formula for updating the rank of vertex Vi is:  

 

where: 
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• R(Vi) is the rank of vertex Vi, 
• d is the damping factor (usually set between 0.1 and 0.3), 
• Vj represents neighboring vertices, 
• C(Vj) is the number of outgoing edges from Vj, 
• The sum represents the cumulative rank from neighboring vertices. 

 

This process is repeated iteratively until the rank values converge (i.e., the ranks stop 
changing significantly between iterations). 

5. Selecting the Key Phrases - After applying the PageRank algorithm, the vertices 
(words or phrases) are ranked based on their importance scores. The words/phrases 
with the highest ranks are considered the most important keywords or key phrases 
in the document. Typically, the top-ranked words are extracted as key terms or 
phrases that summarize the content of the document. 

📝 8.3.5 

Which of the following are true about the TextRank algorithm? 

• TextRank applies a syntactic filter to exclude parts of speech other than 
nouns and adjectives. 

• The algorithm uses a weighted graph based on co-occurrence and syntactic 
relationships between words. 

• TextRank uses an unweighted graph, like the original PageRank algorithm. 
• TextRank is not applicable to different domains or languages. 

📝 8.3.6 

The difference between the TextRank and PageRank algorithms is the weight 
assigned based on the two words in the predefined window and the number of words 
the algorithms keep as potential keywords. 

• yes 
• no 

🕮 8.3.7 

SingleRank 

SingleRank is an extension of the TextRank algorithm, which itself is based on the 
PageRank algorithm. While SingleRank shares many similarities with TextRank, there 
are two key differences that set it apart and affect its performance in keyword 
extraction tasks. 
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1. Edge Weighting Based on Word Distance 

Like TextRank, SingleRank constructs a graph where vertices represent words, and 
edges represent relationships between words based on their co-occurrence in the 
document. However, unlike TextRank, which considers the co-occurrence of words 
in a predefined window without accounting for the distance between them, 
SingleRank assigns weights to edges based on the distance between two co-
occurring words. This means that words that appear close to each other in the 
document will have stronger connections (higher weights), reflecting a more 
significant relationship between them. 

For example, in the sentence "The dog chased the cat," the words "dog" and "chased" 
would be connected with a higher weight because they are closer together, indicating 
a stronger semantic connection. Conversely, words that are farther apart in the text 
may be assigned a lower edge weight. 

2. Retention of All Keywords 

Another key difference between SingleRank and TextRank is how they handle the 
number of extracted keywords. In TextRank, the top-ranked 30% of words or phrases 
are typically selected as the final key terms, based on their PageRank scores. This 
means that only the most important terms are kept. 

In contrast, SingleRank keeps all the words after running the PageRank algorithm, 
rather than just the top-ranked ones. This approach leads to a broader set of 
keywords, ensuring that more terms are retained, which can be useful in contexts 
where a larger pool of keywords is desired or where all terms are relevant for further 
analysis. 

Steps in the SingleRank Algorithm 

1. Text Preprocessing: Like TextRank, the first step in SingleRank is text 
preprocessing, which includes tokenization and POS tagging. Words are filtered 
based on their syntactic roles (e.g., nouns and adjectives are kept as vertices). 

2. Graph Construction: A graph is built where: 

• Vertices represent the filtered words (nouns and adjectives). 
• Edges are formed based on word co-occurrence, with additional weight given 

to words that appear closer together in the text (based on a predefined 
window size). 

3. PageRank Algorithm: The PageRank algorithm is applied to the graph to rank the 
importance of each word. Each word's rank is influenced by its connections with 
other words in the document, considering both local co-occurrence and the distance 
between words. 
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4. Selection of Keywords: Unlike TextRank, where only the top 30% of ranked words 
are selected, SingleRank retains all the words as potential keywords after running the 
PageRank algorithm. This ensures that a larger set of keywords is considered. 

Key features of SingleRank 

• Distance-Aware Edge Weights: By factoring in the distance between co-
occurring words, SingleRank refines the relationship between words and 
improves the accuracy of keyword extraction, especially for longer 
documents. 

• Broader Keyword Set: By keeping all the words rather than just the top-
ranked 30%, SingleRank offers a more exhaustive list of keywords, which can 
be useful for tasks that require a wide range of terms. 

• Simplicity and Efficiency: Like TextRank, SingleRank is unsupervised, 
meaning it does not require labeled data or extensive training, making it 
simple to implement and use. 

📝 8.3.8 

What is the main difference between SingleRank and TextRank? 

• SingleRank assigns edge weights based on word distance, while TextRank 
does not. 

• SingleRank retains only the top 30% of ranked words, while TextRank retains 
all words. 

• SingleRank uses only adjectives for keyword extraction, while TextRank uses 
all parts of speech. 

• SingleRank does not use the PageRank algorithm, while TextRank does. 

🕮 8.3.9 

TopicRank 

The TopicRank algorithm is another graph-based method used for keyword 
extraction. Unlike TextRank and SingleRank, which focus on individual words or word 
relationships, TopicRank targets extracting key phrases that represent topics present 
throughout the document. The algorithm assumes that key phrases related to the 
same topic are important for summarizing the document. Therefore, it ranks these 
key phrases based on their relevance and importance within the document. 

The TopicRank algorithm involves three main steps: identifying topics, chart-based 
assessment, and keyword selection.  

1. The first step is to identify topics within the document, which are groups of 
related key phrases that represent a central theme.  

2. Once the topics are identified, a chart-based assessment step assigns 
relevance scores to different topics and their associated key phrases.  
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3. Finally, in the keyword selection step, the algorithm chooses the most 
relevant key phrase for each identified topic.  

This process is achieved using different strategies, such as selecting the most 
frequent key phrase, choosing the key phrase that appears first in the document, or 
selecting the key phrase that represents the centroid of the cluster. 

Topic identification strategies 

There are three strategies used in TopicRank to select the most representative key 
phrase for each topic. The first strategy involves converting all key phrases back to 
their generic form and selecting the first one that appears in the document. The 
second strategy selects the most frequent key phrase, assuming that frequent 
phrases are more relevant to the overall topic. The third strategy is based on 
selecting the key phrase closest to the centroid of the cluster, where the centroid 
represents the central point or the most significant phrase in the group of related 
phrases. This approach is useful when the document contains multiple overlapping 
themes and helps in finding the most representative term for each topic. 

📝 8.3.10 

Sort the steps of the TopicRank algorithm 

• keyword selection 
• chart-based assessment 
• topic identification 

📝 8.3.11 

Which of the following are strategies used by the TopicRank algorithm to select key 
phrases? 

• Choosing the key phrase that appears first in the document. 
• Selecting the most frequent key phrase. 
• Selecting the key phrase that has the highest TF-IDF score. 
• Selecting the key phrase closest to the centroid of the cluster. 

 

📝 8.3.12 

Which of the following are strategies used by the TopicRank algorithm to select key 
phrases? 

• Choosing the key phrase that appears first in the document. 
• Selecting the most frequent key phrase. 
• Selecting the key phrase that has the highest TF-IDF score. 
• Selecting the key phrase closest to the centroid of the cluster. 
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📝 8.3.13 

Project: Implementing the TextRank algorithm 

The aim is to identify and extract important keywords from a given text document by 
leveraging the relationships between words in the document. 

 
# Importing necessary libraries 

import spacy 

from sklearn.metrics.pairwise import cosine_similarity 

import numpy as np 

 

# Load the spaCy model for tokenization and POS tagging 

nlp = spacy.load("en_core_web_sm") 

1. Data Collection 

• Collect or create a text document that you would like to extract keywords 
from. For this example, we will use a sample text document. 

 
# Sample text to extract keywords from 

text = """TextRank is a graph-based algorithm used for keyword 

extraction. It ranks words based on their importance within a 

text. TextRank uses graph-based methods and operates on 

weighted graphs.""" 

 

# Step 1: Preprocessing the text (tokenization, POS tagging, 

stop word removal, lemmatization) 

doc = nlp(text) 

tokens = [token.lemma_ for token in doc if not token.is_stop 

and not token.is_punct and token.pos_ in ["NOUN", "ADJ"]] 

2. Preprocessing the Text 

• Tokenization: Split the text into tokens (words). 
• POS Tagging: Use Part-of-Speech (POS) tagging to filter out non-nouns and 

adjectives, as they are considered key for extracting meaningful keywords. 
• Remove Stop Words: Remove common stop words (e.g., "is", "and", "the") 

from the token list to avoid unnecessary words. 
• Lemmatization: Convert words to their base form. 

 
# Step 2: Constructing the graph (using co-occurrence of 

words) 
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# Create a co-occurrence matrix (size: n x n, where n is the 

number of tokens) 

word_count = len(tokens) 

co_occurrence_matrix = np.zeros((word_count, word_count)) 

 

# Calculate co-occurrence (based on window of 2 words) 

window_size = 2 

for i in range(word_count): 

    for j in range(max(0, i - window_size), min(word_count, i 

+ window_size + 1)): 

        if i != j: 

            co_occurrence_matrix[i][j] = 1 

3. TextRank Algorithm Implementation 

• Graph Construction: Build a graph where each word is a node, and edges 
represent the relationships between words based on co-occurrence (i.e., the 
words that appear near each other in the text). 

• Weighted Graph: Assign weights to the edges based on the distance 
between words in the text. 

• PageRank Algorithm: Apply the PageRank algorithm to rank the nodes 
(words) in terms of importance. Words with higher ranks will be considered 
more important. 

 
# Step 3: Applying PageRank (using cosine similarity to weight 

the edges) 

cosine_sim = cosine_similarity(co_occurrence_matrix) 

 

# Initialize PageRank scores (using a simple uniform 

distribution) 

pagerank_scores = np.ones(word_count) / word_count 

 

# Damping factor for PageRank 

damping_factor = 0.85 

iterations = 100 

 

# PageRank algorithm: iterative process to calculate the rank 

of each word 

for _ in range(iterations): 

    new_scores = (1 - damping_factor) / word_count + 

damping_factor * np.dot(cosine_sim, pagerank_scores) 

    pagerank_scores = new_scores 

 

 



Keyword Extraction | FITPED AI 

186 

4. Extracting Keywords 

• After running the PageRank algorithm, sort the words based on their rank 
and select the top-ranking words as the extracted keywords. 

 
# Step 4: Extracting the top keywords based on their rank 

keyword_ranks = [(tokens[i], pagerank_scores[i]) for i in 

range(word_count)] 

keyword_ranks_sorted = sorted(keyword_ranks, key=lambda x: 

x[1], reverse=True) 

• and run: 

 
# Top 5 keywords 

top_keywords = keyword_ranks_sorted[:5] 

 

# Displaying the results 

print("Top Keywords and their scores:") 

for keyword, score in top_keywords: 

    print(f"{keyword}: {score}") 

 
Program output: 
Top Keywords and their scores: 

importance: 1.6474711062025287e+47 

word: 1.5133000924445996e+47 

text: 1.5133000924445996e+47 

extraction: 1.28080457127524e+47 

graph: 1.28080457127524e+47 

 

8.4 Machine learning based approaches 

🕮 8.4.1 

Machine learning-based approaches to keyword extraction transform the task into a 
classification or prediction problem. This process relies on supervised learning, 
where a model trained on a labeled dataset determines if a candidate word in the text 
qualifies as a keyword or not. By utilizing this data, machine learning methods 
provide a more refined extraction, often capturing words with high semantic 
relevance. These methods require less preprocessing of text and can yield keywords 
that align closely with the document's meaning, which is a key advantage over 
simpler, rule-based methods. 



Keyword Extraction | FITPED AI 

187 

Despite their effectiveness, machine learning-based approaches also have certain 
limitations. Models are often specific to the language and context of the training 
data. This means that if the dataset changes or if keywords are required for a new 
domain, the model may need to be retrained, which can be time-consuming and 
resource-intensive. Furthermore, machine learning methods involve a higher 
computational load than statistical approaches, leading to slower extraction times. 

For tasks that demand both accuracy and semantic richness, machine learning-
based keyword extraction methods are highly effective. However, practitioners must 
weigh the need for context-specific training and higher processing demands. When 
used appropriately, machine learning approaches significantly enhance keyword 
extraction by focusing on semantic alignment with the document's content. 

📝 8.4.2 

Which of the following is an advantage of machine learning-based keyword 
extraction methods? 

• High semantic relevance 
• Reduced computational load 
• General domain adaptability 
• Simple rule-based processing 

📝 8.4.3 

What is a limitation of machine learning-based keyword extraction methods? 

• Language and context dependency 
• Higher computational load 
• Requires extensive text preprocessing 
• Minimal computational requirements 

🕮 8.4.4 

KeyBERT 

KeyBERT is a widely used keyword extraction method that utilizes a pre-trained BERT 
(Bidirectional Encoder Representations from Transformers) model. This technique 
begins by converting the document into a set of fixed-size vectors that capture its 
semantic meaning. KeyBERT then breaks down the document into smaller phrases 
and identifies the candidate phrases that best represent its content. These vectors 
are crucial because they provide a representation of the document's semantics, 
enabling the extraction of keywords that align with the document’s core topics. 

Next, candidate keywords are generated using simple statistical techniques, such as 
term frequency and TF-IDF. These phrases are processed through the BERT model 
to generate a phrase-level representation. This step is essential because it allows 
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KeyBERT to match the meaning of phrases closely with the content of the document, 
rather than relying solely on frequency or position in the text. 

Finally, KeyBERT computes the cosine similarity between the document-level and 
phrase-level representations to identify the most relevant keywords. These keywords, 
ranked by similarity scores, are chosen as the most representative of the document’s 
content. The use of a semantic model like BERT makes KeyBERT particularly 
effective in identifying keywords that are contextually accurate. 

📝 8.4.5 

What is the main purpose of the BERT model in KeyBERT? 

• To create a semantic representation of the document 
• To count word frequencies 
• To calculate TF-IDF scores 
• To simplify keyword generation 

📝 8.4.6 

List the steps of the KeyBERT algorithm 

• Creating a phrase-level representation 
• Creating a document-level representation 
• Getting key phrases 
• Selection of candidate phrases 
• The document is sent to the BERT model 
• Calculation of cosine similarity 

🕮 8.4.7 

KEA 

KEA, one of the earliest machine learning-based keyword extraction methods, 
employs a Naive Bayes classifier to evaluate the importance of candidate keywords. 
In this approach, each candidate word is analyzed by calculating its TF-IDF score and 
its first occurrence within the text. These values serve as inputs to the Naive Bayes 
classifier, which then predicts the likelihood that a candidate word is a keyword. This 
classification enables KEA to capture words that are not only frequently used but 
also contextually significant within the document. 

The TF-IDF calculation in KEA prioritizes words that appear often in a specific 
document but are less common across other documents. This makes it an effective 
measure for distinguishing words that are unique to the content. Additionally, the 
model considers where the word first appears, based on the assumption that words 
introduced earlier in the text may be more important. 
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While KEA offers a foundational method for keyword extraction, it has limitations in 
handling more complex language patterns. However, it remains a useful model for 
straightforward documents and demonstrates how early machine learning models 
can aid in efficient keyword extraction. 

📝 8.4.8 

What feature does KEA use to classify a candidate word as a keyword? 

• TF-IDF score 
• Cosine similarity 
• POS tagging 
• Word embeddings 

📝 8.4.9 

Which classifier does KEA use in its keyword extraction method? 

• Naive Bayes 
• SVM 
• Decision Tree 
• Random Forest 

📝 8.4.10 

Project: KEA-based keyword extraction 

Implement a KEA-based keyword extraction system that calculates TF-IDF values 
and the first occurrence position of candidate phrases, then uses a Naive Bayes 
classifier to determine whether a candidate phrase is a keyword. This system will 
classify keywords based on these features using labeled training data. 

 
import string 

import nltk 

import numpy as np 

from sklearn.feature_extraction.text import TfidfVectorizer 

from sklearn.model_selection import train_test_split 

from sklearn.naive_bayes import MultinomialNB 

from sklearn.metrics import classification_report 

from nltk.corpus import stopwords 

from nltk.tokenize import word_tokenize 

 

# Download necessary NLTK resources 

nltk.download('punkt') 

nltk.download('stopwords') 
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Program output: 
[nltk_data] Downloading package punkt to 

/home/johny/nltk_data... 

[nltk_data]   Package punkt is already up-to-date! 

[nltk_data] Downloading package stopwords to 

/home/johny/nltk_data... 

[nltk_data]   Package stopwords is already up-to-date! 

 

1. Preprocessing 

• The text is tokenized, cleaned, and stopwords are removed. 

 
# Preprocess text: tokenize, remove punctuation and stopwords 

def preprocess_text(text): 

    text = text.lower() 

    text = text.translate(str.maketrans("", "", 

string.punctuation)) 

    words = word_tokenize(text) 

    stop_words = set(stopwords.words("english")) 

    filtered_words = [word for word in words if word not in 

stop_words] 

    return filtered_words 

2. TF-IDF Calculation 

• Using TfidfVectorizer, we calculate the TF-IDF scores of candidate phrases in 
the corpus. 

 
# Calculate TF-IDF scores for the corpus 

def calculate_tfidf(corpus): 

    vectorizer = TfidfVectorizer() 

    tfidf_matrix = vectorizer.fit_transform(corpus) 

    feature_names = vectorizer.get_feature_names_out() 

    return tfidf_matrix, feature_names 

 

# Find the first occurrence position of a word in text 

def get_first_occurrence_position(text, word): 

    words = np.array(text.split()) 

    indices = np.where(words == word)[0] 

    return indices[0] + 1 if indices.size > 0 else len(words) 
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3. Feature Extraction 

• For each word, two features are generated: TF-IDF score and the first 
occurrence position. 

 
# Extract features (TF-IDF score and first occurrence) for 

each word 

def extract_features(text, feature_names, tfidf_vector): 

    features = [] 

    for word in feature_names: 

        # Find the index of the word in feature_names using 

np.where 

        word_index = np.where(feature_names == word)[0][0] 

        tfidf_score = tfidf_vector[0, word_index]  # TF-IDF 

value for the word 

        first_occurrence = get_first_occurrence_position(text, 

word)  # First position 

        features.append([tfidf_score, first_occurrence]) 

    return np.array(features) 

4. Training the Classifier 

• Using a Naive Bayes classifier, the model is trained on labeled data. Each 
word in the corpus is labeled as either a keyword (1) or a non-keyword (0). 

 
# Sample corpus for testing the function 

corpus = [ 

    "Machine learning-based approaches use supervised learning 

for keyword extraction.", 

    "KeyBERT is a keyword extraction model based on BERT 

embeddings.", 

    "KEA algorithm uses Naive Bayes classifier for keyword 

extraction." 

] 

 

# Preprocess the corpus and extract features 

tfidf_matrix, feature_names = calculate_tfidf(corpus) 

 

# Labels (example labels) - tou need to corrext it 

labels = [ 

    [1, 0, 1, 0, 1, 0, 1, 0],   # Adjusted to match document's 

feature count after preprocessing 

    [1, 1, 0, 1, 0, 1, 0, 1],   # Adjusted 

    [1, 0, 1, 1, 0, 0, 1, 0]    # Adjusted 
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] 

 

# Check and print feature extraction for each document 

feature_data = [] 

all_labels = [] 

 

for i, doc in enumerate(corpus): 

    tfidf_vector = tfidf_matrix[i] 

    preprocessed_text = " ".join(preprocess_text(doc)) 

    features = extract_features(preprocessed_text, 

feature_names, tfidf_vector) 

    feature_data.append(features) 

    all_labels.extend(labels[i])  # Flattened labels for each 

document 

 

# Convert to numpy arrays 

X = np.vstack(feature_data)  # Feature matrix 

y = np.array(all_labels)      # Flattened labels 

 

# Debug print to check shapes 

print("Shape of X (features):", X.shape) 

print("Shape of y (labels):", y.shape) 

 
Program output: 
Shape of X (features): (63, 2) 

Shape of y (labels): (24,) 

 

5. Keyword Prediction 

• The classifier is used to predict keywords in a new document by applying it 
to the extracted features. 

 
# Train-test split (proceed only if shapes are consistent) 

if X.shape[0] == y.shape[0]: 

    X_train, X_test, y_train, y_test = train_test_split(X, y, 

test_size=0.2, random_state=42) 

 

    # Train Naive Bayes classifier 

    classifier = MultinomialNB() 

    classifier.fit(X_train, y_train) 

 

    # Evaluate the model 

    y_pred = classifier.predict(X_test) 
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    print("Classification Report:\n", 

classification_report(y_test, y_pred)) 

 

    # New document for keyword extraction 

    new_document = "KEA algorithm uses Naive Bayes to classify 

keywords based on TF-IDF and position." 

    preprocessed_text = " 

".join(preprocess_text(new_document)) 

    tfidf_vector, _ = calculate_tfidf([new_document]) 

    new_features = extract_features(preprocessed_text, 

feature_names, tfidf_vector) 

 

    # Predict keywords 

    predictions = classifier.predict(new_features) 

    predicted_keywords = [feature_names[i] for i in 

range(len(predictions)) if predictions[i] == 1] 

    print("Predicted Keywords:", predicted_keywords) 

else: 

    print("Error: The shapes of X and y are inconsistent. 

Please check label alignment.") 

 
Program output: 
Error: The shapes of X and y are inconsistent. Please check 

label alignment. 

 

Correct the mistake and show that you understand the algorithm. 

📝 8.4.11 

Project: KeyBERT algorithm implementation 

For running following project use another infrastructure (local or server).  

Implement a KeyBERT-based keyword extraction system that identifies the most 
relevant keywords from a document based on their semantic similarity to the 
document's content. This system will utilize BERT embeddings to generate both 
document-level and phrase-level representations and identify keywords based on 
cosine similarity. 

 
import numpy as np 

from sklearn.metrics.pairwise import cosine_similarity 

from transformers import AutoTokenizer, AutoModel 

from keybert import KeyBERT 
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# Load the pre-trained BERT model and tokenizer 

model_name = "distilbert-base-nli-mean-tokens"  # Can use 

other BERT variants 

tokenizer = AutoTokenizer.from_pretrained(model_name) 

model = AutoModel.from_pretrained(model_name) 

 

from nltk.corpus import stopwords 

from nltk.tokenize import word_tokenize 

import string 

 

# Download stopwords if not already downloaded 

import nltk 

nltk.download('stopwords') 

nltk.download('punkt') 

1. Preprocessing 

• The text is cleaned by removing punctuation and stopwords and converting it 
to lowercase. 

 
def preprocess_text(text): 

    # Lowercase text 

    text = text.lower() 

    # Remove punctuation 

    text = text.translate(str.maketrans("", "", 

string.punctuation)) 

    # Tokenize text 

    words = word_tokenize(text) 

    # Remove stopwords 

    stop_words = set(stopwords.words("english")) 

    filtered_words = [word for word in words if word not in 

stop_words] 

    return " ".join(filtered_words) 

2. BERT Embeddings 

• Using a pre-trained BERT model, embeddings for both the document and 
each candidate phrase are generated. 

 
def get_embedding(text): 

    # Tokenize and create input tensors 

    inputs = tokenizer(text, return_tensors="pt", 

padding=True, truncation=True) 

    outputs = model(**inputs) 
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    # Get the embeddings from the BERT model and compute mean 

pooling 

    embeddings = outputs.last_hidden_state.mean(dim=1) 

    return embeddings.detach().numpy() 

 

# Example Document 

document = "Machine learning-based approaches use supervised 

learning to extract keywords. KeyBERT is a popular method for 

this purpose." 

preprocessed_document = preprocess_text(document) 

doc_embedding = get_embedding(preprocessed_document) 

3. Candidate Generation 

• KeyBERT uses simple statistical methods to generate candidate keywords. 
These candidates are sent back into the model for further embedding. 

 
# Initialize KeyBERT with the BERT model 

kw_model = KeyBERT(model=model_name) 

 

# Generate candidate keywords 

candidate_keywords = 

kw_model.extract_keywords(preprocessed_document, top_n=10) 

print("Candidate Keywords:", candidate_keywords) 

4. Cosine Similarity Calculation 

• The similarity between the document embedding and each candidate phrase 
embedding is calculated using cosine similarity. 

 
def rank_keywords(document, candidates): 

    doc_embedding = get_embedding(document) 

    candidate_embeddings = [get_embedding(candidate[0]) for 

candidate in candidates] 

    similarity_scores = [cosine_similarity(doc_embedding, 

candidate_emb)[0][0] for candidate_emb in 

candidate_embeddings] 

    return [(candidates[i][0], similarity_scores[i]) for i in 

range(len(candidates))] 

 

# Rank candidates by similarity to the document 

ranked_keywords = rank_keywords(preprocessed_document, 

candidate_keywords) 
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ranked_keywords = sorted(ranked_keywords, key=lambda x: x[1], 

reverse=True) 

print("Ranked Keywords:", ranked_keywords) 

5. Keyword Selection 

• Keywords are ranked by their similarity scores, and the top results are 
chosen as the keywords that best represent the document. 

 
# Choose top N keywords 

top_n = 5 

top_keywords = ranked_keywords[:top_n] 

print("Top Keywords:", top_keywords) 

8.5 Deep learning based approaches 

🕮 8.5.1 

Sequence labeling 

Sequence labeling models, like Conditional Random Fields (CRF) and Hidden Markov 
Models (HMM), are another approach to keyword extraction. These models treat text 
as a sequence and analyze the relationship between words to identify likely 
keywords. Unlike simple frequency-based methods, sequence labeling considers the 
context of each word within the document, making it particularly useful for structured 
text with clear syntactic patterns. 

In keyword extraction, sequence labeling models are trained on annotated datasets, 
where words are labeled as keywords or non-keywords. The model then learns 
patterns that are typical of keywords, such as certain positional features or 
surrounding words. Once trained, the model can analyze new texts to predict which 
words serve as keywords. 

This approach is beneficial for documents where context matters, as it allows the 
model to identify keywords that are relevant based on word sequences and 
relationships. Sequence labeling models can adapt to more complex documents and 
offer a more nuanced analysis than basic statistical methods. 

📝 8.5.2 

Which keyword extraction model treats text as a sequence? 

• Sequence labeling models 
• KeyBERT 
• Term frequency-based models 
• KEA 
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📝 8.5.3 

Which types of models are commonly used in sequence labeling for keyword 
extraction? 

• Conditional Random Fields 
• Hidden Markov Models 
• Naive Bayes 
• SVM 

🕮 8.5.4 

Challenges 

Machine learning-based approaches to keyword extraction offer great benefits but 
also present certain challenges. One significant issue is the need for a labeled 
dataset, which requires time and resources to prepare. Unlike rule-based approaches, 
these methods depend on annotated data for training, which can make initial setup 
costly. 

Furthermore, machine learning-based keyword extraction models are often 
language-specific. If a model is trained on English text, it may not perform well on 
text in other languages without additional training. This language dependency limits 
the scalability of these models and requires practitioners to consider multilingual 
datasets if they want to expand the model’s application. 

Finally, machine learning models typically demand substantial computational 
resources, which can be a barrier in cases where keyword extraction must be 
performed in real-time or on a large dataset. Despite these challenges, machine 
learning-based keyword extraction methods remain essential for capturing keywords 
with high semantic relevance in complex documents. 

📝 8.5.5 

What is a common challenge of machine learning-based keyword extraction 
methods? 

• Need for labeled datasets 
• Language dependency 
• High scalability across languages 
• Low computational requirements 
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📝 8.5.6 

Which of the following is NOT a benefit of machine learning-based keyword 
extraction? 

• Minimal preprocessing requirements 
• High semantic relevance 
• Capturing complex document relationships 
• Use in specialized domains 

8.6 Evaluation 

📝 8.6.1 

Statistics-based metrics focus on evaluating an algorithm’s keyword extraction 
performance by examining the proportions of true positives, false positives, and false 
negatives. These metrics are valuable for assessing the algorithm's general accuracy 
and ability to avoid false extractions. Precision, recall, and the F1-score are 
prominent statistics-based metrics used to analyze the extracted keywords' quality 
and relevance compared to a reference set of manually assigned keywords. 

The precision metric calculates the proportion of true positives (correctly identified 
keywords) relative to all extracted keywords (both true positives and false positives). 
The formula for precision is: 

 

Where: 

• TP = True Positives (correctly identified keywords) 
• FP = False Positives (incorrectly identified keywords) 

 

In this way, precision assesses the accuracy of the keywords the algorithm identifies, 
showing how well it avoids extracting irrelevant keywords. Recall, on the other hand, 
measures the algorithm’s coverage by calculating the proportion of true positives out 
of all relevant keywords, including those that were missed (false negatives). The 
formula for recall is: 
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Where: 

• FN = False Negatives (missed relevant keywords) 

 

The F1-score, or harmonic mean, combines precision and recall, reflecting an 
algorithm’s ability to balance accuracy and coverage. It provides a single measure 
that accounts for both metrics, making it a valuable tool when an algorithm needs 
high precision and recall. The formula for the F1-score is: 

 

Together, these metrics enable a statistical assessment that highlights an 
algorithm's strengths and areas that might need improvement. 

📝 8.6.2 

What are two primary metrics used to evaluate keyword extraction algorithms? 

• Precision 
• Recall 
• Random Sampling 
• Harmonic Mean 

📝 8.6.3 

Linguistics-based metrics 

While statistical metrics assess the quantity and accuracy of extracted keywords, 
linguistics-based metrics focus more on the quality of keyword ranking and their 
semantic relevance within the document. These metrics are designed to evaluate 
how well the algorithm ranks key phrases and whether the most important phrases 
appear higher in the results. Three important ranking metrics are Mean Reciprocal 
Rank (MRR), Mean Average Precision (MAP), and Precision at K (P@K). 
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Mean Reciprocal Rank (MRR) is a metric used to evaluate models that return an 
ordered list of key phrases. MRR gives the average rank of the first correct keyword 
in the list, penalizing the model if the correct keyword is ranked too low. The formula 
for MRR is: 

 

Where: 

• d is the number of documents, 
• rank is the rank position of the first relevant keyword in document iii. 

 

MRR only cares about the highest-ranked relevant key phrase, making it a suitable 
measure for evaluating the overall quality of keyword ranking. 

Mean Average Precision (MAP), on the other hand, takes into account the order of 
the returned list of key phrases. It calculates the average precision over all relevant 
phrases, considering both the precision of the correct phrases and their positions. 
The formula for MAP is: 

 

Where: 

• APi is the average precision for document iii, 
• ∣N∣ is the total number of documents. 

MAP provides a more nuanced view of the ranking quality by considering the entire 
list of key phrases, not just the first relevant one. 
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📝 8.6.4 

Which metric measures how well an algorithm captures all relevant keywords? 

• Recall  
• Precision 
• Mean Reciprocal Rank 
• Mean Average Precision 

📝 8.6.5 

Which metrics help determine the relevance and completeness of extracted 
keywords? 

• F1-score 
• Recall 
• Mean Average Precision 
• Keyword Density 

📝 8.6.6 

Recall is another critical metric used in keyword extraction, and it evaluates how well 
the algorithm retrieves all the relevant keywords from a document. Unlike precision, 
which focuses on the relevance of the retrieved keywords, recall is concerned with 
the completeness of the extraction process. High recall indicates that most of the 
relevant keywords in a document have been successfully identified, while low recall 
suggests that the algorithm is missing many important keywords. 

Recall is calculated by dividing the number of true positives (relevant keywords 
correctly identified) by the sum of true positives and false negatives (relevant 
keywords that were missed by the algorithm). The formula for recall is: 

 

Where: 

• TP = True Positives (relevant keywords identified correctly), 
• FN = False Negatives (relevant keywords missed). 

For many applications, recall is just as important as precision. In situations where it 
is crucial to extract all possible relevant keywords, such as in medical or legal text 
analysis, optimizing for recall can ensure that no key information is missed. However, 
recall optimization often results in lower precision, as more irrelevant keywords may 
be retrieved in an attempt to capture all relevant ones. 
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📝 8.6.7 

What does the Mean Reciprocal Rank (MRR) metric measure? 

• The rank of the first relevant keyword 
• The total number of keywords 
• The precision of all keywords 
• The number of relevant keywords 

📝 8.6.8 

What metrics focus on the ranking order of key phrases? 

• Mean Reciprocal Rank (MRR) 
• Mean Average Precision (MAP) 
• Precision 
• Recall 

📝 8.6.9 

Precision is one of the most fundamental metrics for keyword extraction, assessing 
the accuracy of the keywords that are retrieved by the algorithm. Specifically, it 
measures how many of the extracted key phrases are actually relevant to the 
document or text. A high precision score means that the algorithm is very accurate 
in selecting the relevant keywords, while a low precision score indicates that the 
algorithm is pulling in a lot of irrelevant keywords. 

Mathematically, precision is defined as the number of true positives (relevant 
keywords correctly identified) divided by the sum of true positives and false positives 
(irrelevant keywords incorrectly identified). The formula for precision is: 

 

Where: 

• TP = True Positives (relevant keywords identified correctly), 
• FP = False Positives (irrelevant keywords incorrectly identified). 

Precision is particularly important in scenarios where extracting irrelevant keywords 
could significantly impact the quality of results. For example, in a search engine, 
displaying irrelevant results can detract from the user experience. By optimizing for 
precision, algorithms can ensure that only the most pertinent keywords are extracted. 
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📝 8.6.10 

What does the precision metric specifically assess in keyword extraction? 

• The accuracy of the keywords retrieved  
• The number of relevant documents 
• The total number of keywords 
• The semantic relevance of keywords 

📝 8.6.11 

Which components are involved in calculating recall? 

• True Positives (TP) 
• False Negatives (FN)  
• False Positives (FP) 
• Total Number of Extracted Keywords 
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