

Erasmus+ FITPED-AI
Future IT Professionals Education in Artificial Intelligence
(Project 2021-1-SK01-KA220-HED-000032095)

Python – Data Structures

Ján Skalka
Ľubomír Benko
Vaida Masiulionytė-Dagienė
Peter Švec
Júlia Tomanová

www.fitped.eu 2024

Python – Data Structures

Published on

November 2024

Authors

Ján Skalka | Constantine the Philosopher University in Nitra, Slovakia

Ľubomír Benko | Constantine the Philosopher University in Nitra, Slovakia

Vaida Masiulionytė-Dagienė | Vilnius University, Lithuania

Peter Švec | Teacher.sk, Slovakia

Júlia Tomanová | Constantine the Philosopher University in Nitra, Slovakia

Reviewers

Piet Kommers | Helix5, Netherland

Roman Valovič | Mendel University in Brno, Czech Republic

Cyril Klimeš | Mendel University in Brno, Czech Republic

Vladimiras Dolgopolovas | Vilnius University, Lithuania

Erasmus+ FITPED-AI

Future IT Professionals Education in Artificial Intelligence

Project 2021-1-SK01-KA220-HED-000032095

Funded by the European Union. Views and opinions expressed are however those of
the author(s) only and do not necessarily reflect those of the European Union or Slovak
Academic Association for International Cooperation. Neither the European Union nor
the granting authority can be held responsible for them.

Licence (licence type: Attribution-Non-commercial-No Derivative Works) and may be
used by third parties as long as licensing conditions are observed. Any materials
published under the terms of a CC Licence are clearly identified as such.

All trademarks and brand names mentioned in this publication and all trademarks and
brand names mentioned that may be the intellectual property of third parties are
unconditionally subject to the provisions contained within the relevant law governing
trademarks and other related signs. The mere mention of a trademark or brand name
does not imply that such a trademark or brand name is not protected by the rights of
third parties.

© 2024 Constantine the Philosopher University in Nitra

ISBN 978-80-558-2226-6

TABLE OF CONTENTS
1 Sandbox .. 6

2 Exceptions .. 8

2.1 Avoiding errors .. 9

2.2 Exception processing ... 12

2.3 Different types of errors ... 17

2.4 Exceptions generating .. 25

2.5 Exceptions (programs) ... 31

3 Files ... 33

3.1 Files .. 34

3.2 Reading and writing .. 38

3.3 More operations .. 44

3.4 Files (examples and programs) ... 49

4 Lists .. 59

4.1 List ... 60

4.2 List elements ... 63

4.3 List editing ... 68

4.4 List (programs) ... 74

5 List Processing .. 78

5.1 Creating a list .. 79

5.2 Processing elements .. 84

5.3 Slices.. 90

5.4 List comprehension .. 94

5.5 List (Programs II.) ... 99

6 Lists and Memory .. 102

6.1 List in memory .. 103

6.2 List elements ... 108

6.3 Arrangement ... 114

6.4 List as a parameter ... 118

6.5 Programs ... 125

7 Tuple ... 129

7.1 Tuple .. 130

7.2 Elements manipulation .. 134

7.3 Use of tuple ... 139

7.4 Variadic function ... 142

7.5 Programs ... 146

8 List of Lists ... 152

8.1 Matrix introduction ... 153

8.2 Tables .. 158

8.3 Operations in a table .. 162

8.4 Reading and processing data .. 168

8.5 Data in files.. 178

8.6 Matrix in math ... 185

8.7 Matrix (programs) ... 189

8.8 Tables (programs) .. 191

9 Set ... 197

9.1 What is set ... 198

9.2 Comparison ... 202

9.3 Working with set ... 204

9.4 Programs (set) .. 208

10 Dictionary ... 213

10.1 What is dictionary ... 214

10.2 Dictionary iterating ... 219

10.3 Typical examples .. 223

10.4 Programs (dictionary) .. 229

Sandbox

Chapter 1

Sandbox | FITPED AI

7

In its online version, this course is designed in such a way that in almost every
place there is a window in which you can write and run any Python code.

Exceptions

Chapter 2

Exceptions | FITPED AI

9

2.1 Avoiding errors

📝 2.1.1

Exception

Exception, or an exceptional state (exception) is a situation in the program that
occurs in the case of an error during the program's execution and usually
interrupts/terminates the execution of the program.

Many errors can be predicted and treated directly by the program or programmed
so that they will not occur.

A typical example is avoiding division by zero:

a = 1

b = 0

if b == 0:

 print("cannot be divided by zero");

else:

 print("share:", a / b);

In the code, we check whether the variable b does not contain a value that could
cause the program to crash, and if so, we do not perform an unsafe operation, but
inform the user that the operation cannot be performed.

This way we prevent an operation that could cause an error.

📝 2.1.2

Arrange the function and code lines so that the program correctly handles division
by zero.

• def calculation(a, b):
• result = calculation(10, 0)
•
• return "error"
• print(result)
• if b != 0:
• else:
• return a / b

📝 2.1.3

However, there are often situations in which programming the treatment of a
potential error is too complicated, or several types of errors can occur on one line.

Exceptions | FITPED AI

10

A typical operation is e.g. loading inputs and their subsequent conversion to a
number.

When a non-numeric h value is entered, the following code causes an error:

ta = input()

a = int(ta)

print(a)

Program output:
 tenValueError

invalid literal for int() with base 10: 'ten'

Checking such a situation is quite simple:
value = input("Enter a number: ")

if value.isdigit():

 number = int(value)

else:

 print("conversion error")

 number = 0

Program output:
Enter a number: twoconversion error

📝 2.1.4

Complete the code so that the loading of a positive integer value repeats until the
user enters a valid value:

while _____:

 input_t = input("Enter a positive integer: ")

 if input_t._____():

 number = int(input_t)

 else:

 print("Not a positive integer. Again.")

📝 2.1.5

Checking the correctness of the whole number is a bit more complicated, while
negative numbers can also be entered.

In such a case, the use of the isdigit() function is no longer sufficient for us,
because the sign "-" is not considered a digit.

We can divide the verification of correctness into several conditions, while we must
treat single-digit numbers separately:

Exceptions | FITPED AI

11

value = input()

if (len(value) == 1 and value[0] in '123456789'): # if it is a

single-digit number

 number = int(input_t)

elif value[0] in '-123456789': # valid beginning of a number

 if (value[1:].isdigit()): # checking remaining values

 number = int(value)

 else:

 print("invalid input")

else:

 print("invalid input")

📝 2.1.6

For which expressions does the isdigit() function return False?

• 42.75
• abc
• 100,000
• -538
• 0
• 007
• 12345
• 98765 43210

📝 2.1.7

Replace()

To solve many tasks, Python programmers use the so-called sparrow cannon.

They can simplify the assigned task with a programming-complicated operation,
which can be written in one command in Python.

An example can be verifying the correctness of an input of a real number, where
they replace the first occurrence of a dot with an empty string and then check
whether the remaining characters are numbers:

value = input("Enter a number: ")

Checking whether the input without the first occurrence of a

dot is a numeric string

if value.replace(".", "", 1).isdigit():

 number = float(value)

 print(f"You entered a valid number: {number}")

Exceptions | FITPED AI

12

else:

 print("This is not a valid decimal number.")

Program output:
Enter a number: 12.15You entered a valid number: 12.15

The replace() function replaces the occurrence of the character "." for an empty
string, but it is limited for only the first occurrence (third parameter).

⌨ 2.1.8 Decimal number input

Write a program to check whether the input is a correct real number. If yes,
separate its whole and decimal parts with a dash, if not, write "incorrect data". Do
not use try - except and do not consider the scientific format of a number,

input: 3.14

output: 3 - 14

input: -42.75

output: -42 - 75

input: 12.34.56

output: incorrect data

2.2 Exception processing

📝 2.2.1

The codes providing the processing of inputs presented in the previous tasks are
quite extensive and it is inefficient to devote a significant part of the code to their
processing. In addition, it is likely that the programmer cannot predict all situations
that may occur anyway.

In all modern programming languages, there is a tool through which we can create
blocks in the code that allow us to catch an exception and deal with it.

In Python, it is try - except in the following form:

some introductory code

try:

 # commands during which an error can occur

except:

 # what to do if an error occurred

code continues

Exceptions | FITPED AI

13

The beginning of the try block monitors whether an exception occurs. If it occurs, it
does not continue with the commands, but jumps to the except block and executes
the commands in it (usually error information).

Unless an error occurs between the try-except statements, the program skips the
statements in the except block and continues beyond it.

📝 2.2.2

In Python, which pair of statements ensures that an exception is caught and
handled?

• try - except
• try - expect
• try - catch
• try - stop

📝 2.2.3

A program to catch the exception for converting the input to a number could then
look like this:

ta = input()

try:

 a = int(ta)

 print(a)

except:

 print('an error in conversion occurred')

print('code proceeds')

If an error occurs with the commands in the 3rd or 4th line the except block takes
control and executes the commands specified in it. In this case, it's the printout of
an error. After the command in the except block is executed, it continues beyond it.

If an error occurs during a command in the try section, the commands that are
listed after the line with the error are not executed - it immediately proceeds to the
except block.

If you enter a non-numeric input, the print command in the 4th line will no longer be
executed.

📝 2.2.4

Complete the program for loading a decimal number:

ta = input()

_____:

Exceptions | FITPED AI

14

 a = _____(ta)

 print(a)

_____:

 print('conversion error occurred')

print('the code proceeds')

• try
• try
• int
• float
• except
• str
• double
• expect

📝 2.2.5

Try extend

How big the try block should be can be discussed, its extend can be different for
different tasks, there are also situations when it makes sense to insert practically
the entire code into it.

If, for the execution of the program, we need a variable to be available, the value of
which is checked and assigned in the try block, it is necessary to fill it with some
initial value before assigning the input to it, e.g.:

ta = input()

g = -1

try:

 g = int(ta)

except:

 print('conversion error occurred')

print('the code proceeds')

print(g)

Program output:
 tenconversion error occurred

the code proceeds

-1

If we were to limit its existence to try, and an error would occur, the variable would
not be defined:

ta = input()

try:

 h = int(ta)

Exceptions | FITPED AI

15

except:

 print('an error after the conversion occurred')

print('code proceeds')

print(h)

Program output:
 tenan error after the conversion occurred

code proceeds

NameError

name 'h' is not defined

An alternative is to set the default value in the except section:

ta = input()

try:

 i = int(ta)

except:

 print('an error after the conversion occurred')

 i = -1

print('the code proceeds')

print(i)

Program output:
 tenan error after the conversion occurred

the code proceeds

-1

📝 2.2.6

Complete the program for processing numerical inputs for division:

ta = input()

_____:

 a = int(ta)

_____:

 print('an error during the 1st number conversion occurred')

 a = 1 # we set some default value so that we don't have to

end the program

tb = input()

_____:

 b = int(tb)

_____:

 print('nan error during the 2nd number conversion occurred')

 b = 1 # we set some default value so that we don't have to

end the program

_____:

Exceptions | FITPED AI

16

 c = a / b

 print("the share is", _____)

_____:

 print('a division error occurred')

• try
• c
• catch
• expect
• try
• try
• expect
• try
• except
• except
• a
• except
• b
• expect
• try

📝 2.2.7

A common standard is to use a function to handle inputs. It should behave as we
need and can interrupt code execution and continue from where it was called.

An effective use of the function to retrieve an integer can take the form:

def secondSquare(ta):

 try:

 a = int(ta)

 return a * a

 except:

 return 'error' # or it returns -1 as an undefined value

x = secondSquare(input())

if x == 'error':

 print('It is pointless to continue.')

else:

 print('I have my x =', x)

📝 2.2.8

Complete the code to calculate the share of two numbers. If division by zero
occurs, return -1:

Exceptions | FITPED AI

17

_____ share(numerator, denominator):

 if denominator _____ 0:

 return _____

 else:

 share = numerator / denominator

 return _____

result = share(20, 0)

if result == -1:

 print("Division by zero.")

else:

 print(_____"The share is {result}")

2.3 Different types of errors

📝 2.3.1

Various types of errors

In programming, it is not uncommon for a several different errors to occur on
several lines. The program must inform the user what error has occurred and
execute different code for each error.

For this purpose, we use except, for which we indicate the error for which its code is
intended. In order to be able to correctly describe what kind of exception it is, we
need to know the types of errors.

A typical example is code that combines the conversion problem and division by
zero:

try:

 a = int(input())

 b = int(input())

 print(a // b, a % b)

 print('done')

except ZeroDivisionError:

 print('we do not devide by zero')

except ValueError:

 print('a non-numerical value was entered')

• the ZeroDivisionError exception occurs in case of division by zero

Exceptions | FITPED AI

18

• a ValueError exception occurs if the input value cannot be converted to an
integer of type int

Depending on the type of exception, only the part of the code in except that is
intended for it will be executed.

📝 2.3.2

Complete the correct definition of an exception:

try:

 a = int(input())

 b = int(input())

 print(a // b, a % b)

 print('done')

except _____:

 print('we do not divide by zero')

except _____:

 print('a non-numeric value was entered')

• ZeroDivisionError
• CoversionError
• ValueError
• ZeroError
• DefaultError
• UniversalError

📝 2.3.3

The most common types of exceptions make it possible to estimate why and what
kind of error occurred:

ValueError - an error occurred while converting or processing the value, e.g.:

• string to number conversion
• using a function that expects a certain type of data and receives another
• attempt to access an index within a string that does not exist
• other unspecified situations

TypeError - an error occurred during an operation for which the combination of data
types is not valid, e.g.:

• mathematical operation between incompatible data types (number and text
addition)

• using operations that are defined only for certain data types (trying to call a
function that is not defined for a given object type)

• incorrect use of arguments when calling a function

Exceptions | FITPED AI

19

• generally unfit combination of data types

NameError - an error occurred due to a used variable or function name that is not
defined or valid, e.g.:

• using a variable or function name that has not been previously defined
• attempt to access variables that are not visible in the current scope
• mistake in the name

ZeroDivisionError - division by zero

IndexError - an error occurred while trying to access an index or list item that does
not exist, eg:

• accessing an index that is larger or smaller than the range of valid indexes
• access index in empty list (strings)

UnboundLocalError - an error occurred while trying to access a variable that has not
yet been defined but "soon" will be, e.g.:

• using a variable in a function before it is assigned a value

def mine():

 print(x)

 x = 100 ...

FileNotFoundError - an error occurred while trying to open or work with a file that
does not exist or is not in the specified path

Examples of error printout with details:

ValueError: substring not found

TypeError: 'int' object is not subscriptable

TypeError: unsupported operand type(s) for +: 'int' and 'str'

NameError: name 'fun' is not defined

ZeroDivisionError: division by zero

IndexError: string index out of range

UnboundLocalError: local variable 'x' referenced before

assignment

FileNotFoundError: [Errno 2] No such file or directory:

'data.txt'

📝 2.3.4

What exception errors can be expected in the following situations?

Exceptions | FITPED AI

20

A program that loads a string from the user, tries to convert it to an integer and
prints the result. If the user enters a string that is not a valid number (such as
"ABC"), _____ is generated.

A program that allows the user to enter two values and tries to sum them. If the
user enters values of different data types (such as string and number), expect a
_____.

A program with a function that uses a variable that is not defined within the
function but should be. Attempting to access this variable before defining it should
throw a _____.

A program that allows the user to enter two numbers and tries to divide one number
by zero. If the user enters zero as the denominator, expect a _____.

A program that works with a list and tries to access items that are not within the
range of valid indexes of the list. If the user specifies an out-of-range index, expect
an _____.

A program with a function that attempts to use a variable that is defined only in
another scope (such as the global context) but is not defined within the function.
This can cause an _____.

A program that attempts to open a file for reading, using a path to a file that does
not exist. Expect _____.

• FileNotFoundError
• UnboundLocalError
• ZeroDivisionError
• NameError
• TypeError
• ValueError
• IndexError

📝 2.3.5

What exception errors can be expected in the following situations?

A program with a function that attempts to use a variable that was not previously
defined within the function. This should throw a _____.

A program that allows the user to enter two numbers and tries to divide them. If the
user enters zero as the denominator, expect a _____.

Create a program that allows the user to enter their name and age. The program
will try to match the string with the number (age). Expect _____.

Exceptions | FITPED AI

21

A program that prompts the user for an index and tries to retrieve an item from the
list. If the user enters a bad index, the program should throw an _____.

A program that has a variable name error. Expect _____when attempting to access a
non-existent variable.

A program that allows a user to enter their age. If the user enters a string that is not
a valid number, expect a _____.

A program that calculates the average value from a list of numbers. If the list is
empty, the program should throw a _____.

A program that allows the user to enter two values and tries to multiply them. If the
user enters values of non-integer data types, expect _____.

• ValueError
• NameError
• TypeError
• UnboundLocalError
• TypeError
• NameError
• ZeroDivisionError
• ValueError
• UnboundLocalError
• ZeroDivisionError
• IndexError
• NameError
• IndexError
• ValueError
• NameError
• TypeError
• FileNotFoundError
• TypeError
• FileNotFoundError

📝 2.3.6

General exception

As we could see, there are quite a few exceptions, and the ones we mentioned
certainly do not represent a complete list. The goal of the programmer is to treat
expected exceptions in a special way, but also to ensure that the program
completes its activity even if there is an exception that we specifically did not
anticipate occurs.

If in our program from the previous task we try, e.g. access a non-existent index,
program execution is aborted:

Exceptions | FITPED AI

22

try:

 aa = input()

 a = int(aa)

 b = int(input())

 print(a // b, a % b)

 print("The second digit of the first number is",aa[1])

 print('done')

except ZeroDivisionError:

 print('we do not divide by zero')

except ValueError:

 print('a non-numeric value has been entered')

print("program continues...")

Program output:
 5 60 5

IndexError

string index out of range

In the example, an exception of a type other than those listed occurred, it was not
handled, and program execution ended.

Thus we will complete the block intended for processing all other exceptions -
which are not listed:

try:

 aa = input()

 a = int(aa)

 b = int(input())

 print(a // b, a % b)

 print("The second number of the first number is",aa[1])

 print('done')

except ZeroDivisionError:

 print('we do not divide by zero')

except ValueError:

 print('a non-numeric value has been entered')

except:

 print('different exception')

print('program continues...')

Program output:
 5 60 5

different exception

program continues...

📝 2.3.7

Complete the program so that it catches each type of exception:

Exceptions | FITPED AI

23

_____:

 a = int(input())

 b = random.randrange(-10,10)

 print(a, b, a // b)

 print("The second digit of the first number is",str(a)[1])

 print('done')

_____:

 print('an error occurred')

print('all proceeds...')

• except ValueError
• except ZeroDivisionError
• try
• except UniversalError
• try-all
• except

📝 2.3.8

Exception detail

Even if we use the general exception, we will not lose detailed information about it.
Each exception that occurs fills a variable with information about the situation,
which we can access through the following notation:

try:

 # some code causing an exception

except Exception as err:

 print(err) # printout of an information about an error

An example of use can be a situation generating already known problems:

try:

 a = int(input())

 b = int(input())

 print(a // b, a % b)

except Exception as err:

 print('error:', err) # the err object can be

printed

 print('type:', type(err)) # we can find its type

 print('details:', err.args) # details about an error

Program output:
 aa: invalid literal for int() with base 10: 'aa'

type:

details: ("invalid literal for int() with base 10: 'aa'",)

Exceptions | FITPED AI

24

In the exception(except) processing entry, we used the Exception type, which
represents a general exception. It is the type from which all other exceptions are
derived and thus provides a universal type, the details of which can be obtained by
inserting it into the err variable by writing as err:

• err - contains all information about the error
• type(err) - returns an error type, e.g. ValueError
• err.args - displays details about an error

📝 2.3.9

Fill in the correct parameters/commands for the error statement:

try:

 a = int(input())

 b = int(input())

 print(a // b, a % b)

except Exception as err:

 print(_____) # prints: ('integer division or modulo by

zero',)

 print(_____) # prints: integer division or modulo by

zero

 print(_____) # prints: <class 'ZeroDivisionError'>

• type(err)
• err.args
• err.type()
• err.detail
• err.args()
• err
• err.detail()

📝 2.3.10

We can catch the situation when no exception occurs in the code with two special
blocks:

• else
• finally

try:

 # commands

except Exception1:

 print('input has to be integer values')

except Exception2:

 print('zero division')

else:

Exceptions | FITPED AI

25

 print('all is ok')

The finally section has a special status, it is intended for commands that are to be
executed regardless of whether or not an exception occurred in the try block. It is
used e.g. to close the file if an error occurred/did not occur while working with it.
However, it is not logically necessary...

try:

 # commands

except Exception1:

 print('input has to be integer values')

except Exception2:

 print('zero division')

else:

 print('all is ok')

finally:

 print('and this will run always') # it has the same

effect after the block try :)

📝 2.3.11

Fill in correct blocks:

_____:

 # commands

_____ Exception1:

 print('there must be integers on the entry')

_____ Exception2:

 print('division by zero')

_____:

 print('everything is ok')

_____:

 print('and this will be executed under all circumstances')

2.4 Exceptions generating

📝 2.4.1

Creating an exception

Exceptions allow management and processing of unexpected situations that may
occur during program execution.

However, it is not always sufficient to just handle exceptions that appear "by
themselves", but in some cases it is necessary to create and generate exceptions,

Exceptions | FITPED AI

26

most often within functions, to inform the main program that a problem has
occurred.

Functions dealing with different tasks can be designed to respond to and deal with
different exceptions in different ways.

We also know such approach in existing functions:

by returning -1 value

ret = 'attention bad dog'

index = ret.find('where')

print(index)

Program output:
-1

generating an exception

ret = 'attention bad dog'

index = ret.index('where')

print(index)

Program output:
ValueError

substring not found

📝 2.4.2

Bypass generating an error and terminating the program so that the program does
not break but returns -1

generating an exception

ret = 'attention bad dog'

index = ret.index('where')

print(index)

It would probably be best to move the "risky" code to a separate function:

def newIndex(celyString, _____):

 _____:

 index = wholeString.index(looked_for)

 return _____

 _____:

 return _____

print(newIndex('attention bad dog','where'))

Exceptions | FITPED AI

27

📝 2.4.3

Raise

We use the raise keyword to create and raise an exception inside a function. It is
used to explicitly announce that an exception has occurred, and then we can handle
it within a function or let it pass to a higher level of the program. To raise an
exception, we use the following syntax:

raise Exception("Exception description")

The exception type can be e.g. one of the known ones (ValueError, TypeError) and
the exception description is any text we can display to the user.

The code in the function will react to the situation when division by zero occurs - we
will not leave the generation of the exception to the system, but check the situation
and create an exception with its own description:

def share(a, b):

 if b == 0:

 raise ZeroDivisionError("It is not possible to divide

by zero")

 return a / b

This exception can then be processed using the try - except construct.

try:

 result = share(10, 0)

except ZeroDivisionError as error:

 print(f"Error: {error}")

else:

 print(f"Result: {result}")

📝 2.4.4

Fill in the code that generates ValueError in case of unsuccessful conversion.

def conversionDoInt(stringg):

 if not(stringg.isdigit()):

 _____ _____("non-numeric input")

 else:

 return int(stringg)

try:

 a = conversionDoInt('aha')

 print(a)

Exceptions | FITPED AI

28

_____ValueError _____ _____:

 print('conversion error: ',error)

• raise
• try
• error
• ValueError
• as
• TypeError
• ValueException
• catch
• except
• to
• Exception

📝 2.4.5

Write a function that truncates a fraction. The input is the numerator and
denominator values. If denominator is 0, throw an exception.

In this case, returning a value of -1 or 0 as the result of fraction truncation would be
inappropriate.

The best way to do this is to generate an exception and, if it is not treated in the
body of the program, interrupt the execution of the program - this is logical,
because wrong values might be used.

Again, we use the raise command in combination with some appropriate existing
error type to create the exception:

def truncate(numerator, denominator):

 if denominator == 0:

 raise ValueError('Denominator is zero')

 a, b = numerator, denominator

 # finding the greatest common denominator

 while a != b:

 if a < b:

 b = b - a

 else:

 a = a - b

 numerator = numerator // a

 denominator = denominator // a

 return str(numerator) + ' / ' + str(denominator)

print(truncate(10,0))

print('end')

Exceptions | FITPED AI

29

Program output:
ValueError

Denominator is zero

The program ends in the event of an error during this entry. We can therefore use
the try - except block to catch and process the exception

try:

 print(truncate(10,0))

except Exception as err:

 print('An error occurred:',err)

print('Program continues...')

Program output:
An error occurred: Denominator is zero

Program continues...

📝 2.4.6

Arrange the lines of the program so that an error is caught if a non-existent string
character is accessed when the following is called from the main program:

searchFrom("mum must prepare mutual food","m", 10, 20)

 for i in range(start, end+1):

 print("the specified range has gone beyond the end of the string")

 if mychar == mystr[i]:

def searchFrom(mystr, mychar, start, end):

 try:

 except:

 print(f"Char {mychar} is at {i}")

📝 2.4.7

Multiple uses of raise

There are situations where it is suitable to generate errors with different text for
different incorrect values. An example can be the reaction of the conversionDoInt()
method, which in the following form can react separately to entering an empty
value and separately to all other errors.

def conversionToInt(mystring):

 if mystring == '':

 raise ValueError("empty string")

 if not(mystring.isdigit()):

 raise ValueError("non-numeric input")

Exceptions | FITPED AI

30

 else:

 return int(mystring)

try:

 a = conversionToInt('a')

 print(a)

except ValueError as error:

 print('conversion error: ',error)

Program output:
conversion error: non-numeric input

In the previous case, we catch the error outside the function.

Alternatively, we have the possibility to capture and process an error directly in a
function - if raise is between try and except, the generated exception will be
captured by the nearest except.

def conversionDoInt(mystring):

 try:

 if mystring == '':

 raise ValueError("empty string")

 if not(mystring.isdigit()):

 raise ValueError("non-numeric input")

 else:

 return int(mystring)

 except Exception as error:

 return "captured in function: " + str(error)

a = conversionDoInt('a')

print("result:", a)

Program output:
result: captured in function: non-numeric input

📝 2.4.8

Which statements are true for the following code?

def process(a, b):

 x = int(a)

 y = int(b)

 try:

 if y == 0:

 raise ValueError("division by zero")

 z = x / y

 print("the share is ", z)

Exceptions | FITPED AI

31

 except Exception as error:

 return error

 else:

 return "ok"

try:

 a = input()

 b = input()

 x = process(a, b)

 print(x)

except:

 print("error")

• the value "ok" is returned if the text "share is " + value z is printed
• it applies that either the text "ok" is printed or the text "share is " + value z is

printed
• if a conversion error occurs, it is caught by an except in the body of the main

program
• if a conversion error occurs, it is caught by an except in the function body
• the part in the else branch in the function is never executed
• if b is '0' the text 'error' is printed
• the text "error" is printed if one of the input values is an empty string

2.5 Exceptions (programs)

⌨ 2.5.1 Numeric values

Write a program that detects whether an integer value was entered correctly by
catching an exception. In case of a correct value, the text "OK" is displayed, in case
of an incorrect value, the text "Exception" is displayed.

Input: -268

Output: OK

Input: i am 5

Output: Exception

⌨ 2.5.2 Age control

Write a program that includes a function that checks the name and age of a future
employee, which will be loaded in the body of the main program. In the body of the
function, if a name shorter than two characters is entered, generate a ValueError
exception with the text "unspecified name", in case of an age under 18, a ValueError
with the text "too young", and in case of an age over 70, a ValueError with the text

Exceptions | FITPED AI

32

"too old". If all data is correct, write "accepted" in the body of the main program. If
there is a non-numeric age on the input, catch the error and ensure the output of the
text "problem with input".

E.g.

input: Johnny 25

output: accepted

input: x 20

output: unspecified name

input: Maria 12

output: too young

⌨ 2.5.3 Grade average

Write a program that calculates the average of a student's grades that are entered
on a single line separated by spaces while the following requirements are met:

• Loading input from the user as a string separated by spaces.
• Splitting the string into individual grades based on spaces, in case of a

problem, aborting the task and generating a ValueError with the text "non-
numeric grade".

• Checking whether each grade falls within the range from 1 to 5 - in case of a
problem, generating an "invalid grade" error.

• In case of an error, let its text be printed in the body of the program.
• In the case of an error-free calculation, the following is printed: average -

value rounded to two decimal places.

E.g.

input: 5 4 3 2 1

output: 3.00

input: 4 3 5 2 1 6

output: invalid grade

input: 5 4 3 2 abc

output: non-numeric grade

Files

Chapter 3

Files | FITPED AI

34

3.1 Files

📝 3.1.1

Files

Working with files is an important part of programming and provides programs with
the ability to store and read data from various sources. Files in general can contain
text, images, sounds or other data in a structured (organized) or general form.

Binary files are the first form of data storage and processing in computers. In
binary files, data is stored in its natural form, which means that the written
characters represent directly encoded numbers or text in the form in which they are
stored in the computer's memory. This form is ideal for storing data that is not
intended for human reading, but for fast and efficient computer processing.

They have e.g. the following form:

Advantages:

• fast processing, the computer works with data in the form in which it is
stored in its memory

Disadvantages:

• loading must always go into the same data structure
• if the file gets corrupted or a character is accidentally overwritten, the file is

unusable.

📝 3.1.2

Match pairs where the file extension matches the content type, for example "jpg"
and "image".

- raster image (lossy compression) - _____

Files | FITPED AI

35

- raster image (lossless compression) - _____

- sound - _____

- compressed sound - _____

- a table with data separated most often by commas or semicolons - _____

- text file - _____

- document, probably MS Word - _____

• xlsx
• html
• png
• vob
• docx
• mp4
• svg
• csv
• txt
• css
• wav
• mp3
• jpg

📝 3.1.3

Text files

Text files represent a form of data organization that is closer to people. Currently,
they are one of the most common ways of storing data. They are files that contain
text in the form of character strings and can be read and edited by both humans
and computers.

With today's fast hardware, it is usually possible to ignore the slowdown that occurs
when text data is transformed from files to computer memory. More important than
speed is readability and the ability to edit this data directly in the files.

It applies that:

• the data is stored in a "human readable" form
• they are often structured through special tags (XML, HTML, etc.)
• an overwritten or deleted random character usually has very little impact and

the damage can be easily repaired
• work with text files is usually not done character by character, but line by line

Files | FITPED AI

36

There is no universal example for a text file, a typical one can be e.g. file with html,
css and javascript commands determining the appearance of the document:

📝 3.1.4

Which file types fall under the text file group?

• csv
• txt
• html
• css
• svg
• png
• bmp
• jpg
• pdf
• rtf

📝 3.1.5

Text file

A text file represents a sequence of characters and special characters, while the
most frequently used special character is probably the end of the line - \n.

The following file based on a user-friendly form:

monday

tuesday

wednesday

thursday

friday

saturday

sunday

... is actually stored in a file in the following form:

monday\ntuesday\nwednesday\nthursday\nfriday\nsaturday\nsunday

📝 3.1.6

In how many lines are the data stored in the following file?

january\nfebruary\nmarch\na\npril

Files | FITPED AI

37

📝 3.1.7

Basic file operations

Working with files usually means working with data stored in them.

In order to be able to read or write data, we first need to prepare the file for these
activities:

• create if it does not exist and we want to insert data into it. Creating a file
means creating a new file on disk. After a file is created, it is given a name
and a location on disk, and can be used to store data.

• open it, if it already contains data and we want to read it, or add new ones.
Opening a file establishes a connection between the program and the file on
disk.

• after finishing the activities, we always need to close the file in order to
release system resources and ensure the correct termination of operations
with the file.

The operations we usually perform in a prepared (opened or created) file are:

• data entry
• reading data

📝 3.1.8

Complete the correct steps to calculate the grade point average of students stored
in an existing file.

1. _____

2. _____

3. _____

• writing into the file
• file creation
• closing the file
• deleting the file
• reading from the file
• file creation

Files | FITPED AI

38

3.2 Reading and writing

📝 3.2.1

Creating file

There is no special command for creating a file in Python. We always only open the
file as such - for reading or writing. If we open the file for writing and it does not
exist yet, it will be created.

Opening a file for notation can take the form of a programming command that
contains the file name and mode specification ("w" for writing):

f = open('data.txt','w')

print(type(f))

Program output:

• the f variable provides a connection to the file - we will use it to call the
appropriate commands

• the open command creates a connection between the variable representing
the file (f) and the data in the file

• the connection will be directed to the 'data.txt' file located in the same folder
as the program

• the second parameter of the open command determines whether we open
the file for writing (w) or reading (r)

📝 3.2.2

Complete the parameters for opening the file:

Opening for writing:

f = open('data.txt','_____')

print(type(f))

Opening for reading:

f = open('data.txt','_____')

print(type(f))

📝 3.2.3

Writing into the file

After opening the file for writing:

Files | FITPED AI

39

f = open('data.txt','w')

print(type(f))

... we can write data to the file, while there are two basic approaches:

• using the print command, where we enter a variable representing the open
file as the file parameter

print('hello', file = f)

• using the write command, which is part of the file variable
• in this case, we also need to enter \n at the end of the line for delineation (in

the case of print, it is inserted automatically)

f.write('hello again\n')

f.write('end')

• after finishing working with the file, we must close it

f.close()

• without closing the file, its contents will not be accessible to another
program

• if we exit the program without closing, it may happen that the written
characters are not actually saved in the file

📝 3.2.4

Complete the program that stores the months of the winter semester (9-12) in
separate lines. Make sure the last line is not empty.

f = open("data.txt", "w")

print("_____", file = f)

f.write("_____")

print("_____", file = f)

f.write("_____")

f._____()

• november
• october
• close
• december
• october\n
• november\n
• september\n
• september
• december\n

Files | FITPED AI

40

📝 3.2.5

Loading data from a file

We store the data in files so that we can read and process them later. Opening a file
for reading is similar to opening a file for writing. By opening a file, we create a
connection between our program and the target file.

When we open a file for reading, it allows us to read data from that file.

For our needs, we first create a file on the virtual computer by running the first code,
and then we can work with it.

writing

f = open('data.txt','w')

print('hello', file = f)

f.write('hello again\n')

f.write('end')

f.close()

opening

f = open('data.txt','r')

line1 = f.readline()

print(line1)

line2 = f.readline()

print(line2)

line3 = f.readline()

print(line3)

f.close()

Program output:
hello

hello again

end

We usually read data from a file line by line using the readline() command. A line in
a file is a list of all characters, including the line terminating character (\n), so lines
are omitted from the printout.

In order not to skip a line unnecessarily, we will not delineate the print command -
we will set the end parameter.

opening

f = open('data.txt','r')

line1 = f.readline()

print(line1, end='')

Files | FITPED AI

41

line2 = f.readline()

print(line2, end='')

line3 = f.readline()

print(line3, end='')

f.close()

Program output:
hello

hello again

end

📝 3.2.6

Complete the program that reads three lines from the file data.txt and prints them
next to each other separated by commas.

f = _____('data.txt','_____')

line1 = _____._____()

print(line1, end=_____)

line2 = _____._____()

print(line2, end=_____)

line3 = _____._____()

print(line3, end=_____)

f._____()

• get
• close
• " "
• " "
• w
• f
• f
• f
• ','
• r
• get
• ""
• read
• " "
• read
• readline
• ','
• readline
• get
• read
• open
• readline

Files | FITPED AI

42

📝 3.2.7

Usually, when we open a file, we have no idea how many lines it contains, and our
goal is to process the entire file, i.e. loading data until we reach the end.

By repeatedly executing the readline() commands, we load each line, but if we don't
know their exact number, we either cause an error or don't read the entire file.

It applies that the moment the readline() command returns an empty string, we
have reached the end of the file.

We can use this fact when loading in a loop:

preparing data

f = open('data.txt','w')

print('hello', file = f)

f.write('hello again\n')

f.write('end')

f.close()

loading

f = open('data.txt','r')

line = f.readline()

while line !='':

 print(line, end='')

 line = f.readline()

f.close()

Program output:
hello

hello again

end

The condition of the while command will ensure that in the case of an empty file,
the body of the loop does not run, and in the case of loading, the loop ends when an
empty string is read.

📝 3.2.8

Order the commands to load and printout the entire file correctly:

• while line !='':
• f.close()
• f = open('data.txt','r')
• line = f.readline()
• line = f.readline()

Files | FITPED AI

43

• print(line, end='')

📝 3.2.9

In Python, if we can use the while loop for something, there is certainly a much
more efficient solution for it through the for loop.

It is not otherwise in this case either. In the same way that we can navigate through
the characters of a word or through a list of words split using split(), we can also
navigate through a file. For the for loop, the elementary unit is a line.

So if we let the for loop go through the file, the loop variable represents the content
of one line

preparing data

f = open('data.txt','w')

print('hello', file = f)

f.write('hello again\n')

f.write('end')

f.close()

f = open('data.txt','r')

for line in f:

 print(line, end='')

f.close()

Program output:
hello

hello again

end

📝 3.2.10

Complete the code to list the contents of the entire file:

_____ = _____('data.txt','r')

for _____ in _____:

 print(line, _____='')

f.close()

Files | FITPED AI

44

3.3 More operations

📝 3.3.1

Exception treatment

Working with exceptions preceded working with files because files are a source of
endless problems and potential errors.

So far we have ignored these risks, but they can easily backfire on us. What are the
most common errors that can occur?

When writing data, we can:

• enter wrong name (file path)
• the file may become unavailable
• may run out of disk space

When opening a file:

• again, the path to the file may be bad
• we do not have reading permission
• access to the file will be lost, etc.

We will ensure the treatment with a try-except block, we will also printout the error:

opening the file for reading will not allow writing

try:

 f = open('data.txt','r')

 print('hello', file = f)

 f.close()

except Exception as err:

 print('error:',err)

Program output:
error: not writable

attempt to open a non-existent file

try:

 f = open('data22.txt','r')

 for line in f:

 print(line, end='')

 f.close()

except Exception as err:

 print('error:',err)

Files | FITPED AI

45

Program output:
error: [Errno 2] No such file or directory: 'data22.txt'

📝 3.3.2

Complete the code to catch exceptions that occur when loading the file:

_____:

 f = open('data.txt','_____')

 for line in _____:

 print(line, end='')

 f._____()

_____ Exception _____ err:

 print('error:',err)

📝 3.3.3

Simplification of handling

Simplifying file handling is one important time and error saver. In general, when
working with files, it is recommended to use the with construct, which allows the
program to open the file, work with it, and automatically close it when finished.
Using the with construct eliminates the need to manually close files and ensures
that the file is properly closed regardless of whether the operation succeeded or
failed.

Of course, in order to prevent the program from being interrupted, it is necessary to
use the try-except construct:

try:

 with open('data33.txt','r') as f:

 for line in f:

 print(line, end='')

 ## the file is automatically closed at this point

except Exception as err:

 print('error:',err)

print('Program continues despite the error')

Program output:
error: [Errno 2] No such file or directory: 'data33.txt'

Program continues despite the error

📝 3.3.4

Complete the code to load and print all lines from the file:

Files | FITPED AI

46

 _____ open('data33.txt','r') _____ f:

 _____ line _____ f:

 print(line, end='')

📝 3.3.5

Loading the entire file

In some situations, we don't need to load the data line by line, but we need the
whole text. We can get it as a string, while the ends of the lines are coded in the
standard way (\n).

The code for loading the entire file is as follows:

preparing data

f = open('data.txt','w')

print('hello', file = f)

f.write('hello again\n')

f.write('end')

f.close()

f = open('data.txt','r')

text = f.read()

print(text)

f.close()

print('lenght:', len(text))

Program output:
hello

hello again

end

lenght: 21

📝 3.3.6

Match the commands to the appropriate situations:

- file opening - _____

- ending working with the file - _____

- loading the line - _____

- loading the whole file - _____

- writing into the file - _____

- line traversal - _____

• open
• writeln
• for

Files | FITPED AI

47

• get
• readline
• fsave
• read
• close
• if
• write
• fopen

📝 3.3.7

Hidden characters

If we take the contents of the file, then the list of the number of characters is not
quite accurate:

entry - prepartion

f = open('data.txt','w')

f.write('10\n')

f.write('20\n')

f.write('30')

f.close()

f = open('data.txt','r')

text = f.read()

print(text)

f.close()

print('length:', len(text))

Program output:
10

20

30

length: 8

If we want to also see hidden characters (e.g. \n), we use the repr() function:

f = open('data.txt','r')

text = f.read()

print(repr(text))

f.close()

print('length:', len(text))

Program output:
'10\n20\n30'

length: 8

\n represents one character - at the end of the third line there is no more.

Files | FITPED AI

48

📝 3.3.8

Adding data to the end of the file

Adding data to the end of a file is a fairly common request. This operation is
performed when we want to extend the contents of an existing file without
overwriting the existing data. The ideal way to do this is to open the file for writing
and set to the end of the content so we can append new data. In Python, we can
use the 'a' parameter when opening a file, which will perform this operation
automatically.

file preparation

with open('data.txt','w') as f:

 print('start', file=f)

 for i in range(5):

 print(i, file=f)

 print('end', file=f)

append

with open('data.txt','a') as f:

 print('post end', file=f)

 for i in range(2):

 print(i, file=f)

control

with open('data.txt','r') as f:

 for i in f:

 print(i, end='')

Program output:
start

0

1

2

3

4

end

post end

0

1

As we can see, the added rows are actually placed after the data that was in the file
originally.

Files | FITPED AI

49

📝 3.3.9

Complete the program so that, after opening, it detects how many lines the input
file has and writes the detected number at the end of it.

with open('data.txt', 'r') as f:

 content = f._____()

print(_____(content)) # let's write the text with hidden

characters

amount = content.count(_____) + _____ # assume there is no \n

after the last line

with open('data.txt', _____) as f:

 f.write(str(n))

3.4 Files (examples and programs)

📝 3.4.1

Write a program that determines the number of words in a file.

The task is quite simple, but it requires a sensible approach. It is apparent that:

• words are separated by spaces
• the problem is that we don't know if there is a space at the end of the line as

well
• we need to read line by line and strip each line of spaces at the beginning

and end of the line
• subsequently, through split, we find out the number of elements in the

created list

let's prepare the content file first

try:

 with open('long_text.txt','w') as f:

 print('Testing line 1 2 3 ',file=f)

 print('Python is a multi-paradigm language much like Perl,

unlike Smalltalk or Haskell. This means that instead of

forcing the programmer to use a certain programming style, it

allows the use of several. Python supports object-oriented,

structured, and functional programming. It is a dynamically

typed language, supports a large number of high-level data

types, and uses garbage collection for memory

management.',file=f)

Files | FITPED AI

50

 print('Although Python is often referred to as a

"scripting language", it is used to develop many large

software projects such as the Zope application server and the

Mnet and BitTorrent file sharing systems. It is also widely

used by Google. Proponents of Python prefer to call it a high-

level dynamic programming language, because the term

"scripting language" is associated with languages that are

only used for simple shell scripts or languages like

JavaScript: simpler and for most purposes less capable than

"real" programming languages like Python .',file=f)

 print('Another important feature of Python is that it is

easily extensible. New built-in modules can be easily written

in C or C++. Python can also be used as an extension language

for existing modules and applications that need a programmable

interface.',file=f)

except Exception as err:

 print('error:',err)

... and solution:

number = 0

try:

 with open('long_text.txt','r') as f:

 for line in f: # reading line by line

 clearing = line.strip() # clearing the line

 number = number + len(clearing.split(' ')) # finding the

number of words separated by a space

except Exception as err:

 print('error:',err)

print(number)

📝 3.4.2

Copy the content from one file to the other, with each line in the second file
starting with the number of characters of the given line in the original file.

This task is typical for presenting the principles of working with files in specific
languages.

We can copy files with a single command, but usually there is also data processing
involved

text preparation

try:

 with open('demo.txt','w') as f:

Files | FITPED AI

51

 print('Testing line 1 2 3 ',file=f)

 print('Python is language.',file=f)

 print('It is widely used by Google.',file=f)

 print('It can be easily expanded.',file=f)

except Exception as err:

 print('error:', err)

copying the entire file

try:

 with open('demo.txt','r') as fr, open('copy1.txt','w') as

fw:

 fw.write(fr.read())

except Exception as err:

 print('error:', err)

solving the task

try:

 with open('demo.txt','r') as fr, open('copy2.txt','w') as

fw:

 for line in fr:

 new_line = str(len(line)) + ' - ' + line

 fw.write(new_line)

except Exception as err:

 print('error:', err)

correctness check

try:

 with open('copy2.txt','r') as f:

 print(f.read())

except Exception as err:

 print('error:', err)

print('end')

Program output:

20 - Testing line 1 2 3

20 - Python is language.

29 - It is widely used by Google.

27 - It can be easily expanded.

end

Files | FITPED AI

52

⌨ 3.4.3 First and last pupil

Write the code that reads the names of the pupils from the specified text file and
prints the names of the first and last pupil of the list. Load the text file at the input.

Input : list.txt

Output:

Peter R.

Mira M.

Input : list2.txt

Output:

Miro V.

Brona A.

Preview of text file list.txt:

Peter R.

Miro V.

George L.

Beata G.

Andrea I.

Tom T.

Alena A.

Brona A.

Mira M.

file1.py
public class JavaApp {

 public static void main(String[] args) {

 // write your code here

 }

}

⌨ 3.4.4 Names on B

Write the code that reads the names of the pupils from the specified text file and
prints the names beginning with the letter B. Read the text file at the input.

Input : zoznam.txt

Output:

Beata G.

Brona A.

Files | FITPED AI

53

Input : zoznam2.txt

Output:

Bibiana A.

Bohus A.

Preview of text file zoznam.txt:

Peter R.

Miro V.

Juro L.

Beata G.

Andrea I.

Tester T.

Alena A.

Brona A.

Mira M.

file1.py
public class JavaApp {

 public static void main(String[] args) {

 // write your code here

 }

}

⌨ 3.4.5 The best students

Write the code that lists students with an average grade of less than 1.5. At the
input, read two text files that contain the students' names and their average grades.
The average is separated by a semicolon in the file, in some numbers, a dot is used
as a decimal separator, in some a comma and some are written as an integer. Print
the names of all honoured students on the console (average <= 1.5). Print only
names, not averages.

Input :

3A.txt

3B.txt

Output:

Peter R.

Miro V.

Andrea I.

Mira M.

Lolo L.

Miso K.

Files | FITPED AI

54

Input :

3A2.txt

3B2.txt

Output:

Miro V.

Andrea I.

Preview of text file 3A.txt:

Peter R.;1.2

Miro V.;1.3

Juro L.;3,3

Andrea I.;1,2

Tester T.;3.0

Alena A.;2.2

Mira M.;1,5

Preview text file 3B.txt:

Lolo L.;1.2

Miso K.;1,3

Juro J.;3.3

file1.py
public class JavaApp {

 public static void main(String[] args) {

 // write your code here

 }

}

⌨ 3.4.6 Number of characters, lines, sentences and words

Write the code that detects how many characters, rows, sentences and words are
contained in the specified text file. The name of the text file is given at the input.
Suppose words do not divide at the end of a line, and no sentence ends with three
dots. Print the following information to the console: "characters: 67 rows: 2
sentences: 9 words: 14".

Input : book.txt

Output: characters: 70 rows: 3 sentences: 5 words: 16

Input : book2.txt

Output: characters: 34 rows: 2 sentences: 2 words: 7

Files | FITPED AI

55

Preview of text file book.txt:

hi how are you I'm fine. And you?

This test is a test.

It tests itself!

file1.py
public class JavaApp {

 public static void main(String[] args) {

 // write your code here

 }

}

⌨ 3.4.7 Maximum absence

Write the code that will find out in the given text file the name of the student with
the most absence. At the input, is entered the file name that contains the student
name in each line and a colon-separated number of absence hours. Read the data
into an array that has 30 elements in size for up to 30 pupils. Print only the name of
the student with the most absence on the console.

Input : data1.txt

Output: Anna

Input : data3.txt

Output: Lavonda

Preview of text file data1.txt:

Anna:55

Galen:10

Gustavo:20

Bethann:25

Rochel:0

Larhonda:15

file1.py
public class JavaApp {

 public static void main(String[] args) {

 // write your code here

 }

}

Files | FITPED AI

56

⌨ 3.4.8 Calculation of absence

Write the code that finds the average number of absences in the specified text file.
At the input, is given the file name that contains the student name in each row and
a colon-separated number of absence hours. Print the number of registered pupils,
the total and the average number of absences on the console. Round the number to
one decimal place.

Input : data1.txt

Output:

10

122

12.2

Preview of text file data1.txt:

Anna:12

Jano:10

Peter:20

Adam:30

Mato:5

Jozo:15

Fero:16

Miro:4

Jana:7

Dana:3

file1.py
public class JavaApp {

 public static void main(String[] args) {

 // write your code here

 }

}

⌨ 3.4.9 First and last alphabetically

Write the code that searches in the specified file and prints the names of the first
and last pupils in alphabetical order. At the input, is given the name of the file
containing the list of students (one name is given in each row). Use an array of
max. size 10. Print the name of the first and last pupil in alphabetical order on the
console.

Input :

list1.txt

Output:

Files | FITPED AI

57

Adam

Zuzana

Preview of text file list1.txt:

Jano

Peter

Anna

Adam

Mato

Jozo

Zuzana

Miro

Jana

Dana

file1.py
public class JavaApp {

 public static void main(String[] args) {

 // write your code here

 }

}

⌨ 3.4.10 The longest name

Type the code that looks for the longest name in the specified file. At the input, is
given the name of the file containing the list of students (one name is given in each
row). Use an array of max. size 10. Print the longest name found on the console.

Input : list1.txt

Output: Kvetoslava

Preview of text file list1.txt:

Jano

Peter

Anna

Adam

Mato

Kvetoslava

Zuzana

Miro

Jana

Dana

Files | FITPED AI

58

file1.py
public class JavaApp {

 public static void main(String[] args) {

 // write your code here

 }

}

Lists

Chapter 4

Lists | FITPED AI

60

4.1 List

🕮 4.1.1

Lists

Lists are all around us, whether in everyday life or in programs. More than 90% of
applications do not work with simple data, but with lists.

Typical lists you have already encountered include people, invoices, web addresses,
measured values, etc.

The simplest list is a string of characters.

📝 4.1.2

Select notations where we use variables as lists:

• a = 42.8
• a = split(input())
• a = 'Warning it bites'
• a = int(input())

📝 4.1.3

With lists, we perform standard operations slightly different from working with
simple variables:

• adding and deleting data
• browsing
• various calculations
• arrangement and so on.

The simplest operation is creating a list. Sometimes we create it by enumerating
the elements.

The list represents a variable into which we insert a group of elements delimited by
compound (square) brackets, while the elements are separated by commas:

temperatures = [36.5, 36.7, 37.1, 37.1, 37.5, 38.5]

students = ['Joseph Poppy', 'Alan Turing', 'Michal Pear',

'Ivan Adam Barn']

years = [1945, 1969, 1971, 1978, 1980, 1984, 2012, 2015, 2019]

Lists | FITPED AI

61

📝 4.1.4

Fill in the characters in the correct place so that the creation and filling of the list is
correct:

authors = _____'Ernest Hemingway'_____ 'Erich Maria

Remarque'_____ 'Lev Nikolajevic Tolstoj'_____ 'Honore de

Balzac'_____

• ,
• .
•)
• .
• ;
• ;
• [
• }
• {
• (
• ,
• ,
•]
• ;
• .

📝 4.1.5

Python also allows you to store elements of different types in a list, for example:

data = [20, 'Joseph', 14.8, True, 5000]

📝 4.1.6

Which entries for creating a list are correct?

• data = [20, 'Joseph', 14.8, True, 5000]
• data = [20, 'Joseph', 14.8 True, 5000]
• students = ['Joseph', 'Alan', 'Michal', 'Ivan']
• scientists = ['Milan', 'Rastislav', 'Joseph, 'Ivan']
• numbers = [1945, 1969, 1971, 1978, 1980, 19.84, 2012, 2015, 2019]
• temperatures= [36.5, 36.7, 37.1, 37.1, 37.5, 38.5

📝 4.1.7

The basic operation is to create an empty list. We often start the program by
loading data into it - from the input, from a file or other sources.

Lists | FITPED AI

62

To create an empty list, we use the entry:

mylist = []

or completely equivalent:

mylist = list()

📝 4.1.8

Complete the commands to create the lists:

my_list = _____()

my_second_list = _____ // use two characters

📝 4.1.9

The print command provides us with a very simple printout of the list:

my_list = ['Adam', 'Eva', 'Apple']

print(my_list)

Program output:
['Adam', 'Eva', 'Apple']

The printout contains elements separated by commas and enclosed in braces
representing a list.

If we want to verify the type of the variable representing the list, we use the
standard type:

a = []

b = list()

print('a is',type(a))

print('b is',type(b))

Program output:
a is

b is

📝 4.1.10

Retyping a list to a string is identical to printing it to the screen. How many
characters does the printout have, or what value does the print command print?

data = ['Joseph','Poppy']

x = str(data)

print(len(x))

Lists | FITPED AI

63

4.2 List elements

📝 4.2.1

Access to list elements is provided through indexes. The same rules apply as for a
string:

• the first element has index 0
• the last element has an index one less than the number of elements

a = ['January', 'February', 'March', 'April', 'May', 'June',

'July', 'August', 'September', 'October', 'November',

'December']

print(a[0])

print(a[11])

print(a[-2])

Program output:
January

December

November

📝 4.2.2

Which days are NOT printed in the following list?

my_list = ['Monday', 'Tuesday', 'Wednesday', 'Thursday',

'Friday', 'Saturday', 'Sunday']

print(my_list[1])

print(my_list[2])

print(my_list[4])

print(my_list[-3])

print(my_list[-5])

• Monday
• Tuesday
• Wednesday
• Thursday
• Friday
• Saturday
• Sunday

📝 4.2.3

The elements in the list can be changed by simply assigning a new value to a
variable with a given index.

Lists | FITPED AI

64

my_list[i] = value

Each element of the list behaves as a separate variable, it is even possible to
change the type of the element at the specified position:

a = ['January', 'February', 'March', 'April', 'May', 'June']

a[0] = 'January'

a[1] = 'II.'

a[2] = 3.0

print(a)

Program output:
['January', 'II.', 3.0, 'April', 'May', 'June']

📝 4.2.4

How many numeric values will the list contain after the following code is executed?

a = ['January', 'February', 'March', 'April', 'May', 'June']

a[0] = 'January'

a[1] = len(a[1])

a[2] = str(a[1])

if (a[1] * a[2]) < 'a':

 a[4] = a[1]

📝 4.2.5

The already known function len returns the number of elements in the list:

months = ['January', 'February', 'March', 'April', 'May',

'June', 'July','August', 'September', 'October', 'November',

'December']

data = [20, 'Joseph', 14.8, True, 5000]

print(len(months))

print(len(data))

Program output:
12

5

It is useful e.g. if we are loading a character-separated list from the input and we
need to know the number of its elements.

We have already solved such a request through the split() function.

Now we can say that the result of the split() function is a list:

Lists | FITPED AI

65

data = input('Enter a comma-separated list').split(',')

print(data)

print('The number of elements in the list is', len(data))

Program output:
Enter a comma-separated list I,am,here,for,a,holiday['I',

'am', 'here', 'for', 'a', 'holiday']

The number of elements in the list is 6

📝 4.2.6

What is the output of the following program?

listt = ['Monday', 'Wednesday', 'Thursday', '', 'Saturday']

listt2 = [1, 2, 7,6, 2.8, 3]

print(len(listt) - len(listt2))

📝 4.2.7

Traversing the list

The operations we perform on a list usually require processing each element. We
use a loop to access each element.

We implement the traversion through a cycle from the first element to the last one
located at position len(list) - 1:

my_list = ['Adam', 'Berta', 'Cecil', 'Dana', 'Ema', 'Fero',

'Gusto', 'Hana']

for i in range(0, len(my_list)):

 print(i, my_list[i])

Program output:
0 Adam

1 Berta

2 Cecil

3 Dana

4 Ema

5 Fero

6 Gusto

7 Hana

A simpler alternative, if we are not interested in the sequence number of the
element, is to traverse the elements of the list:

my_list = ['Adam', 'Berta', 'Cecil', 'Dana', 'Ema', 'Fero',

'Gusto', 'Hana']

for item in my_list:

Lists | FITPED AI

66

 print(item,'with the length of', len(item))

Program output:
Adam with the length of 4

Berta with the length of 5

Cecil with the length of 5

Dana with the length of 4

Ema with the length of 3

Fero with the length of 4

Gusto with the length of 5

Hana with the length of 4

📝 4.2.8

What will be stored in the cnt variable after the program ends?

my_list = ['Augustina', 'Branislava', 'Cecil', 'Dana',

'Emanuela', 'Frantisek', 'Gustav', 'Hana']

cnt = 1

for element in my_list:

 if len(element) > len(my_list):

 cnt += 1

print(cnt)

📝 4.2.9

Enumerate

A special function that modifies the list to ensure its indexing is enumerate(). It
allows us to skip working with range and len, but its purpose is exactly the same.

Using enumerate creates an index and element pair from the original list. We write
this pair after the for command as follows:

people = ['Peter', 'Pavol', 'Michael', 'Juraj', 'Jan']

for index, person in enumerate(people):

 print(index, person)

Program output:
0 Peter

1 Pavol

2 Michael

3 Juraj

4 Jan

The variable that will represent the index is written after the for command as the
first (index) and the variable that will represent the list element as the second
(person).

Lists | FITPED AI

67

We include enumerate in the range of the loop. List represents a variable of type
list.

The advantage of enumerate is that it allows us to set the start of the numbering.
That is, if we want the first element to appear in the loop as an element with index 1
and not 0, we can use the entry:

people = ['Peter', 'Pavol', 'Michael', 'Juraj', 'Jan']

for index, person in enumerate(people, start = 1):

 print(index, person)

Program output:
1 Peter

2 Pavol

3 Michael

4 Juraj

5 Jan

📝 4.2.10

Complete the commands so that the program lists the serial number of the
element, the element and the number of its characters:

students = ['Peter', 'Pavol', 'Michael', 'Juraj', 'Jan']

for index, _____ in _____(students, _____ = 1):

 print(_____(index) + '. ' + person + ' - ' +

_____(_____(person)) + ' characters')

• int
• len
• numeral
• person
• begin
• start
• str
• len
• students
• str
• enumerate
• int

Lists | FITPED AI

68

4.3 List editing

📝 4.3.1

Loading list elements

By far the easiest way to populate a list by the user is by reading the character-
separated elements in the input and then splitting them with split():

data = input('Enter a comma-separated list').split(',')

print(data)

Program output:
Enter a comma-separated list 1,2,3,4,5,6['1', '2', '3', '4',

'5', '6']

However, for various reasons, we need to add new elements to such a list at any
moment of the program's execution.

Adding a new element is ensured by using the append() command, which adds the
element to the end of the list.

data.append('new')

print(data)

Program output:
['1', '2', '3', '4', '5', '6', 'new']

📝 4.3.2

Arrange the variables so that the result of the program is a list with elements:

['one', 'lady', 'said', 2, 'things', 'for', '100', 'percent']

number1 = 100

number2 = 2

string1 = 'percent'

string2 = 'na'

listt = ['warning', '_____', 'dog']

listt = ['_____', 'lady', '_____']

listt.append(_____)

listt.append(_____)

listt.append(_____)

listt.append(_____)

listt.append(_____)

print(listt)

Lists | FITPED AI

69

• 'lady'
• string2
• bad
• number2
• string1
• 'things'
• number1
• said
• one

📝 4.3.3

Already in the case of working with strings, we used commands separated from the
variable by a dot.

my_string = 'Mama has Ema'

new = my_string.upper()

print(new)

Program output:
MAMA HAS EMA

my_string = 'Mama has Ema'

new = my_string.split()

print(new)

Program output:
['Mama', 'has', 'Ema']

Similarly, the list structure is programmed in such a way that makes the functions
that are part of itavailable to the programmer, and these funstions manipulate the
data stored in the given structure. Functions are separated from the specific
variable representing the list by a dot and we refer to them as methods.

So an example for a list is:

my_list.append('new')

📝 4.3.4

Which of the following notations contain methods?

• if my_string.isdigit():
• my_string.strip()
• listt.append('aha')
• x = len(listt)
• range(4,10,2)
• x = listt[3]
• x = list()

Lists | FITPED AI

70

📝 4.3.5

Alternative addition

We can also add an element to the end of the list by creating a one-element list
from it using [] and adding it to the original list using the '+' operation.

my_list = [1, 2, 3, 4, 5]

value = 10

my_list = my_list + [value] + [8] # correct

print(my_list)

Program output:
[1, 2, 3, 4, 5, 10, 8]

Attention, the following notation is incorrect, you cannot combine the list type and
the number type:

my_list = [1, 2, 3, 4, 5]

new = 10

my_list = my_list + new # incorrect

print(my_list)

Program output:
TypeError

can only concatenate list (not "int") to list

📝 4.3.6

Sort the rows to get the list [1, 2, 3, 4, 5, 6, 7, 8]

• b = b + [8]
• a = [3, 4]
• b = a + [5, 6]
• a = b + [7]
• b = [1] + a
• b = [2] + b
• print(b)

📝 4.3.7

Sequential loading of list elements

Elements can be added to the list gradually from the input.

The solution is most often started by creating an empty list.

Lists | FITPED AI

71

If we decide that one input will load one element from the list, we load using the
input() command.

It is also necessary to define the situation when loading should end. Considering
that we usually don't know the number of elements (we could enter them all at once
in a line separated by a suitable character), we need to define a condition when the
loading should stop.

We do so by means of a terminating element, e.g. '0', 'x', '-1' and so on. If we get this
character from the input, we end the loading.

my_list = []

while True:

 element = input()

 if element == '0':

 break

 my_list.append(element)

print(my_list)

Program output:
 10 20 0['10', '20']

📝 4.3.8

Fill in the commands to load the list from the input. Let the 'x' sign ensure the end
of loading:

my_list = _____

while _____:

 element = input()

 if element == '_____':

 my_list._____(element)

print(my_list)

• continue
• -1
• x
• True
• 0
• stop
• ()
• append
• list()
• break
• False
• return

Lists | FITPED AI

72

📝 4.3.9

Element location

If we want to place the element in a specific position, and not at the end of the list,
we use the command:

insert(position, content)

The command inserts the given element at the indicated position and thus moves
the elements located behind the given position:

my_list = [1, 2, 3, 4, 5]

my_list.insert(2, 'new')

print(my_list)

Program output:
[1, 2, 'new', 3, 4, 5]

📝 4.3.10

What will the list look like after executing the following commands?

my_list = [1, 2, 3, 4, 5]

my_list.insert(2, 'white')

my_list.insert(2, 'green')

my_list.insert(4, 'blue')

my_list.insert(1, 'red')

my_list.insert(3, 'yellow')

print(my_list)

Result:

[_____, 'red', _____, _____, _____, _____, _____, _____,

_____, _____]

'yellow'

3

1

4

5

'green'

2

'white'

'blue'

Lists | FITPED AI

73

📝 4.3.11

Deleting an element

We can use two approaches to delete an element from the list:

Using the del() command, which deletes the element at the specified position:

my_list = [1,2,3,4,5,6]

del(my_list[3])

print(my_list)

Program output:
[1, 2, 3, 5, 6]

Using the remove() method, which finds the first occurrence of an element with the
specified content in the list and deletes it.

If the specified element does not exist in the list, it will generate an exception.

my_list = [1,2,0,3,4,0,5,0,6]

my_list.remove(0)

print(my_list)

my_list.remove(0)

print(my_list)

my_list.remove(0)

print(my_list)

my_list.remove(0)

print(my_list)

Program output:
[1, 2, 3, 4, 0, 5, 0, 6]

[1, 2, 3, 4, 5, 0, 6]

[1, 2, 3, 4, 5, 6]

ValueError

list.remove(x): x not in list

📝 4.3.12

Arrange the commands so that the resulting list looks like [1, 2, 3, 4, 5].

my_list = [1,2,0,3,4,0,5,0]

• del(my_list[2])
• del(my_list[5])
• my_list.remove(0)

Lists | FITPED AI

74

4.4 List (programs)

⌨ 4.4.1 First and the last

For the specified list of names separated by semicolons, write the first and last
name below, e.g.:

Input: Ivan;Jan;Michal;Jozef

Output:

first: Ivan

last: Jozef

⌨ 4.4.2 Average grade

The input contains a list of grades separated by spaces. Check the list for invalid
items or items outside the range 1-5 and calculate the average grade rounded to
two decimal places. If there are incorrect values in the list, do not calculate the
average, but print: incorrect input.

Input: 5 4 3 2 1

Output: 3.0

Input: 5 0 3 2 1

Output: incorrect input

Input: 5 accident 3 2 1

Output: incorrect input

⌨ 4.4.3 Number of occurrences

At the input, a list of names separated by commas is entered in one line. The search
name is entered in the second line. Write a program that prints all the positions in
the list where the given name is found and at the end prints their total number.

Input:

Peter,John,Michael,John,Paul,John

John

Output:

2 4 6, number=3

Input:

Peter,John,Michael,John,Paul,John

Ivan

Output:

, number=3

Lists | FITPED AI

75

⌨ 4.4.4 Clearing

The input contains a list of elements, among which are numerical values (even
decimal) and non-numeric, usually text values. They are separated by a comma
followed by a space. Write a program that creates a new list containing only
numeric values and prints it.

input: 2, text, 3.5, 4, hello

output: [2, 3.5, 4]

input: one, two, three, four, five

output: []

⌨ 4.4.5 Dividing the list

Write a program that divides numerical data from the input separated by a comma
and a space into two lists: positive, negative according to the sign of the
corresponding number. Ignore the value 0. At the end of the program, write the lists
elements below one another. For example

input: 2, -5, 0, 7, -3, 0, 10, -8

output:

positive: [2, 7, 10]

negative: [-5, -3, -8]

⌨ 4.4.6 Days and night

Write a program that, for the temperatures of the days during the month entered in
the form of day/night as decimal numbers and separated by a pair of
comma+space characters, finds and prints the following:

• average daily temperature rounded to two decimal places
• average night temperature rounded to two decimal places
• number of tropical days (days where the temperature is above 30 degrees)
• number of tropical nights (nights where the temperature is above 20

degrees)
• the number of arctic days (the temperature during the day and night does not

rise above -10 degrees).

Input: 3.0/-1.0, 2.0/-3.0, 0.0/-5.0, 1.0/-2.0, 0.0/-3.0, -

1.0/-4.0, -2.0/-5.0, -3.0/-6.0, -4.0/-7.0, -5.0/-8.0, -6.0/-

9.0, -7.0/-10.0, -8.0/-11.0, -9.0/-12.0, -10.0/-13.0

Output:

ADT: -3.27

ANT: -6.6

Lists | FITPED AI

76

NTD: 0

NTN: 0

NAD: 1

⌨ 4.4.7 Hiking

At the input, a list of altitudes of places on the hiking trail, separated by commas +
spaces, is entered. Find out how many going up and down there are between
individual points - consider each pair of points separately. Calculate the total height
of climbs and the total height of descents.

Input: 100, 150, 200, 180, 220

output:

Uphill: 3

Downhill: 1

Overall uphill: 140

Overall downhill: 20

⌨ 4.4.8 Too long names

The input contains a list of names separated by spaces in one line. Create two lists:
names, long names. In the first list, put all names with a number of characters less
than or equal to the value given in the input in the second line. Place names longer
than this value in the second list. As the output of the program, write both lists in
the form:

names: [..., ...]

long names: [..., ...]

input:

Adam Eva John Dora Samantha Alexander

6

output:

names: ['Adam', 'Eva', 'John', 'Dora']

long_names: ['Samantha', 'Alexander']

⌨ 4.4.9 Abbreviation of names

The input contains a list of names separated by spaces in one line. The second line
shows the maximum number of accepted characters. Edit the list so that if the
name is longer than the specified number of characters, the program cuts off the
remaining characters and replace them with three dots.

Print the modified names separated by spaces as output.

Lists | FITPED AI

77

names: [..., ...]

long names: [..., ...]

input:

Adam Eva John Dora Samantha Alexander

6

output:

Adam Eva John Dora Samant... Alexan...

⌨ 4.4.10 Progressive loading

Write a program that divides numerical data from the input, read sequentially from
separate lines, into two lists: positive, negative according to the sign of the
corresponding number. The value 0 at the input indicates the end of loading. At the
end of the program, write the average of the positive and the average of the
negative list below each other, rounded to one decimal place. If the list is empty,
write 0.0 as its average. For example:

input:

5

-3

8

-2

0

output:

The average of positive numbers: 6.5

The average of negative numbers: -2.5

List Processing

Chapter 5

List Processing | FITPED AI

79

5.1 Creating a list

📝 5.1.1

List loading - specifics

In many tasks, we need to convert the list obtained from the input to an integer or
decimal number, which we then insert into a new list.

For data loaded from input and separated by commas, the code might look like this:

my_list = input().split(',') # e.g. '10','20','30','40'

numbers = []

for x in my_list:

 numbers.append(int(x))

print(numbers)

Program output:
 1,2,3,8[1, 2, 3, 8]

• or

my_list = input().split(',') # e.g. '10','20','30','40'

numbers = []

for x in my_list:

 numbers += [int(x)]

print(numbers)

Program output:
 1,2,3,8[1, 2, 3, 8]

With a universal solution, we also need to take into account the possibility that the
input can be empty. The result of the split() method is always a list, so in the
condition we check if it is not empty:

my_list = input().split(',') # e.g. '10','20','30','40'

numbers = []

if my_list != ['']:

 for x in my_list:

 numbers.append(int(x))

print(numbers)

Program output:
 1,2,3,8[1, 2, 3, 8]

📝 5.1.2

Complete the foolproof code so that it reads data from the input. Make sure that if
it reads incorrect input, it simply skips it and continues:

List Processing | FITPED AI

80

my_list = input().split(',') # e.g. '10','20','30a','40'

numbers = []

if my_list != _____:

 for x in my_list :

 _____:

 numbers.append(_____)

 _____:

print(numbers)

• try
• continue
• x
• []
• ['']
• int(x)
• break
• ''
• except
• stop

📝 5.1.3

Merging lists

We already know that lists can be joined using '+'.

Merging is a concatenation of lists into a sequence of elements copying the order
in which the lists were added

a = [1,1,1]

b = [2,2]

c = [3,3,3,3]

x = a + b

y = c + a + b

print(x)

print(y)

Program output:
[1, 1, 1, 2, 2]

[3, 3, 3, 3, 1, 1, 1, 2, 2]

Multiplying a list by a numeric constant works similarly to addition:

a = [1, 2]

b = 3 * a

print(b)

List Processing | FITPED AI

81

Program output:
[1, 2, 1, 2, 1, 2]

📝 5.1.4

What will be the result of the following entry?

a = [5, 1]

b = [3, 1]

c = a + 2 * b + a

print(c)

📝 5.1.5

Creating a list

We already know that there are two ways to create an empty list:

a = []

b = list()

If we want to create a list with contents, we can use functions that result in a list.

For integers range() with suitable range and step, e.g.:

a = list(range(1,10,3))

print(a)

Program output:
[1, 4, 7]

For a list of characters transformation of a string using the list() function:

a = list('Aladin')

print(a)

Program output:
['A', 'l', 'a', 'd', 'i', 'n']

If the list is filled with elements of another list, we can create an independent copy
of it:

a = ['mathematics','I.T.', 'physics','chemistry']

b = list(a)

print(b)

Program output:
['mathematics', 'I.T.', 'physics', 'chemistry']

List Processing | FITPED AI

82

📝 5.1.6

Which entries for creating a list are correct:

• a = []
• a = list()
• a = list('Mama has Emma')
• a = split('warning')
• a = 'warning'.split()
• a = {10,20,30}
• a = [10, 20, 30]

📝 5.1.7

Non-iterable objects

Besides the previous entries, where the error was usually in the logic, there are
other reasons why a variable or list cannot be used to create a sequence of
elements. This is because some elements are not iterable:

my_list = list(10)

Program output:
TypeError

'int' object is not iterable

my_list = list(True)

Program output:
TypeError

'bool' object is not iterable

my_list = list(1,3,2)

Program output:
TypeError

list expected at most 1 argument, got 3

📝 5.1.8

Which entries for creating a list are correct:

• a = list('a')
• a = list()
• a = list([10,20,30])
• a = list(10,20,30)
• a = list(4.2)
• a = list(4 <|3)
• a = list('try')

List Processing | FITPED AI

83

📝 5.1.9

Creating a list from a file

When working with a file, we use the for loop to iterate over its individual lines. We
can obtain these lines and directly assign them to a list of type list() by simple
assignment:

try:

 lines = list(open('data.txt', 'r'))

 print(lines)

except Exception as err:

 print('error:', err)

Program output:
['english\n', 'mathematics\n', 'chemistry\n', 'biology\n']

For the code to work, of course, we need to have the corresponding file created:

data preparation

try:

 with open('data.txt','w') as f:

 print('english',file=f)

 print('mathematics',file=f)

 print('chemistry',file=f)

 print('biology',file=f)

except Exception as err:

 print('error:', err)

📝 5.1.10

Complete the code to transform the lines of the file into a list:

_____:

 lines = _____(_____('data.txt', 'r'))

 print(lines)

except Exception _____ err:

 print('error:', err)

List Processing | FITPED AI

84

5.2 Processing elements

📝 5.2.1

Operations above the list

Python provides several functions that work with a list of list elements. It handles
these values in accordance with the data types that the lists contain. As long as all
the elements are of the same type, we can use the sum, min and max operations,
which have different behavior defined for the different data types of the elements in
the list:

• sum (list) returns the sum of the elements stored in the list
• max (list) returns the element with the maximum value
• min (list) returns the element with the minimum value

my_list = [1,2,3,4,5,0,8]

print(sum(my_list))

print(min(my_list))

print(max(my_list))

Program output:
23

0

8

my_list = ['1','2','3','4','5','0','8']

print(sum(my_list))

print(min(my_list))

print(max(my_list))

Program output:
0

8

my_list = ['Peter', 'Pavol', 'Michael', 'Juraj', 'Jan']

print(sum(my_list))

print(min(my_list))

print(max(my_list))

Program output:
Jan

Peter

The sum operation is not defined for text values.

In the case of a list containing a combination of numeric and text values, it is not
possible to implement these operations, because Python does not support data
comparison between different types.

List Processing | FITPED AI

85

my_list = [1, '2', '3', 4, '5', '0', '8']

print(sum(my_list))

print(min(my_list))

print(max(my_list))

Program output:
TypeError

'<' not supported between instances of 'str' and 'int'

📝 5.2.2

What does the following program print?

my_list = ['25','13','24','5.0','110','8']

x = min(my_list)

print(x)

📝 5.2.3

What does the following program print?

my_list = [25, 13, 24, 5, 110, 8]

x = sum(my_list)

print(x)

📝 5.2.4

Searching for a value in a list

To browse the list and e.g. searching for a specific element we can use looping
through the list, but we also have more efficient tools at our disposal.

The easiest way to ask for the existence of an element in the list is to use in:

my_list = ['Peter', 'Pavol', 'Michael', 'Juraj', 'Jan']

boyfriend = 'Juraj'

if boyfriend in my_list:

 print(boyfriend,'is there')

else:

 print(boyfriend,'is not there')

ex = 'Jozef'

if ex in my_list:

 print(ex,'is there')

else:

List Processing | FITPED AI

86

 print(ex,'is not there')

Program output:
Juraj is there

Jozef is not there

📝 5.2.5

What does the program print?

my_list = ['Peter', 'Pavol', 'Michael', 'Juraj', 'Jan']

boyfriend1 = 'Juraj'

boyfriend2 = 'Pavo'

print(boyfriend1 in my_list)

print(boyfriend2 in my_list)

print(boyfriend2 not in my_list)

print('Jan' not in my_list)

• True, False, True, False
• error
• True, True, True, False
• True, True, True, True
• False, True, False, True

📝 5.2.6

Occurrence in the list

If it is not enough for us to find out whether the item is in the list, but we also want
to find out the position or the number of occurrences, we can use the following
functions:

• index - finds the position of the first occurrence of the element in the list
• count - finds the number of occurrences of the elements in the list

my_list = ['Peter', 'Jan', 'Michael', 'Juraj', 'Jan']

boyfriend = 'Juraj'

print(my_list.index(boyfriend))

print(my_list.count('Jan'))

Program output:
3

2

📝 5.2.7

What will be the result of the following code?

List Processing | FITPED AI

87

my_list = list('SAgarmatha')

x = my_list.count('a')

print(x)

📝 5.2.8

If the searched element is not in the list, it generates an exception:

my_list = ['Peter', 'Pavol', 'Michael', 'Juraj', 'Jan']

boyfriend = 'Daniel'

try:

 print(my_list.index(boyfriend))

except:

 print('not found')

Program output:
not found

The index() function also has two additional optional parameters:

i = my_list.index(search, start, end)

• where start is the position from which to start the search
• end is the position before which the search should end

Examples of use are presented in the following code:

my_list = [0,1,2,3,4,5,6,7]

value = 4

try:

 print(my_list.index(value))

except:

 print(value, 'not found')

try:

 print(my_list.index(value,2)) # starts searching from the

index 2

except:

 print(value, 'not found')

try:

 print(my_list.index(value,5)) # starts searching from the

index 5

except:

 print(value, 'not found from 5')

List Processing | FITPED AI

88

try:

 print(my_list.index(value,2,4)) # starts searching from index

2 and ends before 4

except:

 print(value, 'not found 2,4')

Program output:
4

4

4 not found from 5

4 not found 2,4

📝 5.2.9

What value must be put into the variable x to print the value 5?

my_list = [0,1,5,2,3,3,6,3,5]

x = ????

i = my_list.index(3, x+1, 6)

print(i)

📝 5.2.10

Arrangement of elements

A common and useful operation is the arrangement of elements. This will run over
the list if it contains values of the same type.

There are two alternatives:

• the list sorter sort() method sorts the elements of the list it is applied to
• the sorted() function returns a new list as the result of its operation, leaving

the original list unchanged

my_list = [3, 1, 5, 2, 4]

my_list.sort()

print(my_list)

Program output:
[1, 2, 3, 4, 5]

my_list = [3, 1, 5, 2, 4]

new = sorted(my_list)

print(my_list)

print(new)

Program output:
[3, 1, 5, 2, 4]

[1, 2, 3, 4, 5]

List Processing | FITPED AI

89

📝 5.2.11

Arrange the elements as they will be arranged in the list variable after the program
ends:

my_list= ['anna', 'Beata', 'cynthia', 'Daniel', 'eva',

'Filip']

my_list.sort()

print(my_list)

• Daniel
• anna
• Beata
• eva
• cynthia
• Filip

📝 5.2.12

Other list operations

• pop() - removes the last element from the list and returns it as the result of
its operation

my_list = [1,2,0,3,4,0,5,0,6]

last = my_list.pop()

print('last:',last)

print(my_list)

Program output:
last: 6

[1, 2, 0, 3, 4, 0, 5, 0]

• pop(index) - removes the element at the specified position from the list and
returns it as the result of the call

my_list = ['Anna', 'Hana', 'Johanna', 'Klementina',

'Viktoria']

second = my_list.pop(1)

print('second:',second)

print(my_list)

Program output:
second: Hana

['Anna', 'Johanna', 'Klementina', 'Viktoria']

• clear() - clears the entire list

List Processing | FITPED AI

90

my_list = [1,2,0,3,4,0,5,0,6]

second = my_list.clear()

print('second:',second)

print(my_list)

Program output:
second: None

[]

📝 5.2.13

Arrange the elements as they will be stored in the list after the execution of the
following sequence of commands:

my_list = ['Anna', 'Hana', 'Johanna', 'Klementina',

'Viktoria']

x = my_list.pop(1)

y = my_list.pop()

my_list.append('Anna')

x = my_list.pop(3)

my_list.append(x)

my_list.append(y)

print(my_list)

• Anna
• Viktoria
• Johanna
• Anna
• Klementina

5.3 Slices

📝 5.3.1

Slices

The functionality already known from the use of text strings allows you to get a part
or subparts from the list based on their indexing.

The syntax for slices in Python basically consists of using square brackets [] where
we define the range of values we want to retrieve from an existing list.

The range is specified using indexes that include a start and end index separated by
a colon. Sometimes it can be supplemented with a third value expressing the step.

List Processing | FITPED AI

91

new = my_list[start : stop : step]

Examples:

my_list = [0,1,2,3,4,5,6,7]

new = my_list[1:4]

print(new)

Program output:
[1, 2, 3]

my_list = [0,1,2,3,4,5,6,7]

new = my_list[1:6:2]

print(new)

Program output:
[1, 3, 5]

📝 5.3.2

Complete the parameters so that you get the names Peter, Karolína, Mária, Matej.

birth_names = ["Adam", "Eva", "Ján", "Zuzana", "Peter",

"Karolína", "Mária", "Matej", "Laura", "Michal"]

names = birth_names[_____:_____]

print(names)

📝 5.3.3

Complete the parameters so that you get the names Ján, Karolína, Laura.

birth_names = ["Adam", "Eva", "Ján", "Zuzana", "Peter",

"Karolína", "Mária", "Matej", "Laura", "Michal", "Ivan",

"Zdena"]

names = birth_names[_____:_____:_____]

print(names)

📝 5.3.4

We can also use negative indexes. Do not forget that when using them, they are
always first converted to positive indices, and if we want to go from larger to
smaller, it is necessary to set the step to a negative value.

my_list = [0,1,2,3,4,5,6,7]

new = my_list[-1:-3]

print(new)

List Processing | FITPED AI

92

Program output:
[]

my_list = [0,1,2,3,4,5,6,7]

new = my_list[-3:-1]

print(new)

Program output:
[5, 6]

Usually, the purpose of using negative indexes is also to change the order of
elements from the list. In that case, we enter a negative step:

my_list = [0,1,2,3,4,5,6,7]

new = my_list[-1:-3:-1]

print(new)

Program output:
[7, 6]

📝 5.3.5

Complete the parameters so that you get the names Laura, Matej, Mária. Use
negative indexes.

birth_names = ["Adam", "Eva", "Ján", "Zuzana", "Peter",

"Karolína", "Mária", "Matej", "Laura", "Michal", "Ivan",

"Zdena"]

names = birth_names[_____:_____:_____]

print(names)

📝 5.3.6

Complete the parameters so that you get the names Peter, Ján, Adam. Use negative
indexes.

birth_names = ["Adam", "Eva", "Ján", "Zuzana", "Peter",

"Karolína", "Mária", "Matej", "Laura", "Michal", "Ivan",

"Zdena"]

names = birth_names[_____:_____:_____]

print(names)

📝 5.3.7

As in the case of strings, we can also omit some slice parameters when working
with lists. In that case, they are filled in automatically - the smallest possible value
for the first position, the largest for the second.

List Processing | FITPED AI

93

my_list = [0,1,2,3,4,5,6,7]

new = my_list[:5:]

print(new)

Program output:
[0, 1, 2, 3, 4]

my_list = [0,1,2,3,4,5,6,7]

new = my_list[::-1]

print(new)

Program output:
[7, 6, 5, 4, 3, 2, 1, 0]

📝 5.3.8

Which elements will the new list contain, defined as follows:

my_list = [0,1,2,3,4,5,6,7]

new = my_list[:3:]

print(new)

• 0
• 1
• 2
• 3
• 4
• 5
• 6
• 7

📝 5.3.9

Betrayal of the iterator

How are the following programs different?

my_list = [1,1,1,1,1,1]

for x in my_list:

 x += 1

print(my_list)

Program output:
[1, 1, 1, 1, 1, 1]

my_list = [1,1,1,1,1,1]

for i in range(len(my_list)):

 my_list[i] += 1

print(my_list)

List Processing | FITPED AI

94

Program output:
[2, 2, 2, 2, 2, 2]

In both tasks, we change the value of the element in the list, with which we are
currently working within the loop.

• In the first example, we only change the value of the variable that represents
the element of the list - the control of the cycle inserts the value of the
corresponding element in the list into it, but this variable is no longer linked
to the elements of the list. It means that any change of its value will not
affect the elements of the list.

• In the second case, we directly change the content of the i-th element of the
list.

The conclusion that follows from this difference is that if we want to change the
elements of the list in a cycle, we need to access the elements of the list directly
(via the corresponding index).

📝 5.3.10

Complete the code so that all even values of the list are doubled:

my_list = [1, 2, 3, 3, 2, 4]

for index__________ in _____(List):

 if x _____ 2 == 0:

 my_list[_____] = 2 * x

print(my_list)

5.4 List comprehension

📝 5.4.1

List comprehension

List comprehension is a way to create a new list from an existing one using short
entry. It requires specifying the rules for creating new list elements. This notation
makes it possible to create lists more efficiently than when using classic
procedures, such as e.g. using a for loop to incrementally add elements to a list.

It is often used as a filter to select items that meet a condition.

[expression for element in List if condition]

In square brackets we present the expression on the basis of which the new
element a is formed

List Processing | FITPED AI

95

• the creation of a new element is repeated based on the elements iterated in
the for section

• the iteration can be supplemented with a condition

Creating a list based on elements defined by a loop:

put i in the list, which you obtain as an element of the

loop iteration for range(10)

my_list = [i for i in range(10)]

print(my_list)

Program output:
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

#put the triple i in the list, which you get as an element of

the loop iteration for range(10)

my_list = [i*3 for i in range(10)]

print(my_list)

Program output:
[0, 3, 6, 9, 12, 15, 18, 21, 24, 27]

📝 5.4.2

Put together an entry that produces multiples of 4 starting at 12 and ending at 40.

my_list = __________ _____ 4 _____ _____ _____

range(_____,11)_____

print(my_list)

• (
• while
•]
• i
• [
• i
• +
• for
• *
•)
• in
• 3

📝 5.4.3

List iteration

However, more often than creating a list, we process elements of an already
existing one:

List Processing | FITPED AI

96

For the list on the input, create a list containing twice the values of this list.

my_list = [1,5,8,7,2]

new = [i*2 for i in my_list]

print(new)

Program output:
[2, 10, 16, 14, 4]

We get the new list by traversing the elements of the list, which ensures

for i in my_list

Before the iterative part, the form of the new element is defined by calculation or its
modification:

i*2

The fact that these are elements of a list is expressed by placing the created
sequence of created elements in square brackets. This list is inserted into the
variable new.

new = [i*2 for i in my_list]

📝 5.4.4

Complete the code that will create a new list based on the values of the original list
so that it contains the squares of the original elements:

my_list = [1,5,8,7,2]

new = [x * _____ for _____ _____ my_list]

print(new)

📝 5.4.5

Working with text

Just as we work with numeric elements, we can also work with text values. We can
use the functions for working with text as we like.

From an existing list of strings, create a new one in which each element begins
with an uppercase letter.

my_list = ['anna', 'beata', 'cynthia', 'daniel']

new = [name[0].upper()+name[1:] for name in my_list]

print(new)

Program output:
['Anna', 'Beata', 'Cynthia', 'Daniel']

List Processing | FITPED AI

97

We iterate through the list so that the corresponding element appears under the
name variable:

for name in my_list

We define the new element as

name[0].upper()+name[1:]

that is, we change the first character (index 0) of the string to a capital letter and
the rest of the string, i.e. from the first character to the end of the string is added to
this first letter.

📝 5.4.6

Complete a program that creates a new list by taking the first three characters from
each element and adding to them the original number of characters in the string:

my_list = ['anna', 'beata', 'cynthia', 'daniel']

new = [item[_____:_____] + '-' + _____(len(item)) _____ item

in _____]

print(new)

Result:

['ann-4', 'bea-5', 'cyn-7', 'dan-6']

📝 5.4.7

Filter

We often create a new string from an old one by omitting some values. In this case,
we can add a condition to the end of the entry that decides whether the given
element is added to the new list or not:

new = [expression for element in my_list if condition]

From the existing list of numbers, include in the new one only those that are
divisible by 7.

my_list = [10,12,14,21,8,7,31,35]

new = [i for i in my_list if i % 7 == 0]

print(new)

Program output:
[14, 21, 7, 35]

• we iterate trough the list, the iterating element is called i

List Processing | FITPED AI

98

• the element of the new list is also i, we don't change it
• we select only those elements in the new list where the condition i % 7 == 0

is fulfilled

📝 5.4.8

Complete a program that creates a new list by selecting male names (not ending in
'a') from the original list and correcting their first letter to capital:

my_list = ['anna', 'beata', 'cynthia', 'daniel', 'eva',

'filip']

new = [name[_____]._____() + name[1:] for name _____ my_list

if name[_____] _____ 'a']

print(new)

Result:

['Daniel', 'Filip']

📝 5.4.9

Fast transformation of input to numbers

Many times we encountered a situation where we needed to transform a list of
input data obtained, for example, using split, into numbers. We usually followed
each element of the list.

data = input('Numbers divided by spaces').split()

numbers = []

for num in data:

 numbers.append(int(num))

print(numbers)

Program output:
Numbers divided by spaces 1 2 5 8 77 9 1[1, 2, 5, 8, 77, 9, 1]

The map function in Python applies a given function to each item in an iterable (like
a list). When transforming a list of strings to integers, map helps by applying the int
function to each string in the list.

string_numbers = '1 2 5 8 77 9 1'.split()

integer_numbers = list(map(int, string_numbers))

print(integer_numbers)

Program output:
[1, 2, 5, 8, 77, 9, 1]

• Function int() is the function that converts a string to an integer.
• Iterable string_numbers is the list of strings that we want to transform.

List Processing | FITPED AI

99

• map execution: map(int, string_numbers) applies int to each item in
string_numbers: int("10") → 10, int("20") → 20, int("30") → 30, int("40") → 40

• The map function returns a map object, which is an iterator. Converting it to
a list with list() gives: [1, 2, 5, 8, 77, 9, 1]

📝 5.4.10

Complete the code to quickly transform the input into a list of numbers

string_numbers = input()._____()

_____= _____(_____(_____, _____))

print(integer_numbers)

• string_numbers
• int
• map
• list
• split
• integer_numbers

5.5 List (Programs II.)

⌨ 5.5.1 The most common occurrence

The input is a list of names separated by spaces. Write the name that appears the
most times in the list. If there are more such names, list them all in the order in
which they first appeared in the list.

input: Adam Eva Peter Michael Laura Peter Eva

output:

Eva

Peter

⌨ 5.5.2 Unique values

The input is a list of names separated by spaces. Print the names that appear in the
list so that each name is printed only once. List them in the order in which they
appeared in the list. Write them in the form of a list.

input: Ivan Jan Michal Jozef Jozef Jozef

output: [Ivan, Jan, Michal, Jozef]

List Processing | FITPED AI

100

⌨ 5.5.3 Unique values

The input is a list of names separated by spaces. Print the names that appear only
once in the list. Print them in the order in which they appeared in the list. Print them
in the form of a list.

input: Ivan Jan Michal Jozef Jozef Jozef

output: [Ivan, Jan, Michal]

⌨ 5.5.4 Above average values

The input contains a sequence of integer values separated by spaces - both
positive and negative. Calculate and write the average rounded to two decimal
places in the form: average: 1.51.

Then create and print the list of the elements that are above average (i.e. greater
than the average) in the order corresponding to the original order on the input.

input:

5 1 6 3 2 7 8 4

output:

average: 4.00

above average: [5, 6, 7, 8]

⌨ 5.5.5 Merging lists

The input is two lists, each on a separate line, with integer values separated by
spaces. Create a third list so that each value is included only once, and the
elements in the new list are ordered by size.

input:

3 3 2 1 3 3 3

5 8 4 4 4 4 4

output:

1 2 3 4 5 8

⌨ 5.5.6 Name control

The input is a list of names separated by spaces. Make sure to create a new list so
that all names start and end with a capital letter. At the same time, arrange the
elements alphabetically. Print the resulting list in the form of a list. Use the
comprehension sheet.

input: adam EVA peter michael Laura

output: ['AdaM', 'EvA', 'LaurA', 'MichaeL', 'PeteR']

List Processing | FITPED AI

101

⌨ 5.5.7 Absolute values

The input contains a sequence of integer values separated by spaces - both
positive and negative. Use list comprehension to create a list containing the
absolute values of the original numbers, but only include numbers that are not
divisible by three. Then print the resulting list in the form of a list

input:

5 1 6 3 -2 7 -8 4

output:

[5, 1, 2, 7, 8, 4]

Lists and Memory

Chapter 6

Lists and Memory | FITPED AI

103

6.1 List in memory

📝 6.1.1

List in memory

We create a list in memory, e.g. by listing the elements:

a = [100, 200, 300, "car", 50.04]

For each element, the necessary memory space is allocated - in this case 5 spaces,
but in a different range (capacity)

The values of the elements are not stored in the list, but each element of the list is
stored in "random" locations in memory, and the list contains only the addresses of
these random locations.

In a simplified way, the situation can be imagined as follows:

If we make an assignment:

b = a

... it means that the same list in memory is referenced by two variables (as in the
picture)

Overwriting an element at a specific location in a list appears to overwrite that
element in both lists.

It actually gets overwritten in a single place, but by having both lists refer to the
same place it looks like both are changed.

Lists and Memory | FITPED AI

104

b[1] = 0

a[2] = 0

print(a)

print(b)

Program output:
[100, 0, 0, 'car', 50.04]

[100, 0, 0, 'car', 50.04]

Such behavior is typical for lists or more complex data structures.

In the case of simple variables of standard types, assigning values between
variables just copies them.

📝 6.1.2

Which statements are true?

• when creating a list, more space is reserved than its elements take up
individually

• the contents of the list are not stored in a contiguous block of memory
• the contents of the list are stored in a contiguous memory block
• only the memory addresses of the elements are stored in the list
• the list stores the elements, not their memory addresses

📝 6.1.3

What will be stored in list b after the following commands are executed?

a = [100, 200, 300, 400, 500]

a[3] = 10

b = a

b[2] = 7

a[1] = b[4]

b = [_____, _____, _____, _____, _____]

• 10
• 300
• 100
• 10
• 200
• 500
• 500
• 400
• 7
• 17
• 7

Lists and Memory | FITPED AI

105

📝 6.1.4

Adding an element

When adding a new element to a list, we usually take two approaches:

• merging lists

a = [1, 2, 3]

a = a + [4]

print(a)

Program output:
[1, 2, 3, 4]

• adding via the append() command

a = [1, 2, 3]

a.append('new')

print(a)

Program output:
[1, 2, 3, 'new']

📝 6.1.5

Select the correct notations to add elements to the list a:

a = [1, 2, 3]

• a.append(4)
• a.append('4')
• a += [4]
• a = a + [4]
• a += 4
• a = a + 4
• a = a + (4)

📝 6.1.6

Behavior when adding elements

A list at the level of a memory address list is created in memory in a contiguous
block for fast access to elements.

If we add to the existing list in the following way:

a = [1, 2, 3]

b = a

Lists and Memory | FITPED AI

106

b[1] = 'edited'

a.append('new')

print('a:',a)

print('b:',b)

Program output:
a: [1, 'edited', 3, 'new']

b: [1, 'edited', 3, 'new']

Using the append() command maintains a continuous block, meaning that the
content of b is also consistent with a.

If the preallocated memory is exhausted, it creates a new contiguous block and
copies the original elements into it.

The minimum number of elements in a block is around 200 when first used.

📝 6.1.7

Choose the correct statements:

• using the append() command does not break the block contiguity for the
addresses in the list

• using the append() command breaks the block contiguity for the addresses
in the list

• using the append() command does not respect block contiguity for the data
in the list

• using the append() command maintains block contiguity for the data in the
list

📝 6.1.8

In this program:

a = [1, 2, 3]

b = a

a = a + ['new']

print('a:',a)

print('b:',b)

Program output:
a: [1, 2, 3, 'new']

b: [1, 2, 3]

a new variable is created in the 4th line.

This is because the assignment command itself works by creating a new variable.

Lists and Memory | FITPED AI

107

A new variable is created by concatenating the contents of the original list and the
list with one element.

This step breaks the concatenation of lists a and b.

📝 6.1.9

What will lists a and b contain after executing the following commands?

a = [10, 20, 30]

b = a

a = a + [40]

b.append(50)

a: [_____, _____, _____, _____]

b: [_____, _____, _____, _____]

• 20
• 40
• 40
• 10
• 50
• 10
• 20
• 30
• 30
• 50

📝 6.1.10

What will lists a and b contain after executing the following commands?

a = [10, 20, 30, 40, 50]

b = a

a[3] = 10

b[4] = 80

b.append(60)

a = a + [70]

a.append(90)

b = b + [0]

a: [10, 20, _____, _____, _____, _____, _____, _____]

b: [10, 20, _____, _____, _____, _____, _____]

• 0
• 20
• 70

Lists and Memory | FITPED AI

108

• 10
• 0
• 60
• 70
• 90
• 30
• 30
• 20
• 80
• 60
• 90
• 10
• 80

6.2 List elements

📝 6.2.1

Behavior in basic operations

Using slice is based on returning a list as the result of the operation, so it doesn't
change the original list.

a = [1, 2, 3, 4, 5]

b = a[1:3]

print('b:',b)

print('a:',a)

Program output:
b: [2, 3]

a: [1, 2, 3, 4, 5]

📝 6.2.2

Which elements does list b contain?

a = list(range(1,21,3))

b = a[3:8:2]

b: [_____, _____]

• 13
• 19
• 6
• 14
• 4

Lists and Memory | FITPED AI

109

• 9
• 21
• 2
• 20
• 15
• 8
• 17
• 7
• 12
• 11
• 5
• 16
• 1
• 18
• 10
• 3

📝 6.2.3

The list comprehension also returns a new list as a result of its activity:

a = [1, 2, 3, 4, 5]

b = [i for i in a if i % 2 == 0]

print('b:',b)

print('a:',a)

Program output:
b: [2, 4]

a: [1, 2, 3, 4, 5]

📝 6.2.4

What will list b contain after the program ends?

a = [1, 2, 3, 1, 6, 2]

b = [i*i for i in a[1:] if i < 6]

b: [_____, _____, _____, _____]

• 8
• 6
• 3
• 7
• 2
• 1
• 5
• 2
• 5
• 9

Lists and Memory | FITPED AI

110

• 3
• 4
• 8
• 9
• 4
• 7
• 1
• 6

📝 6.2.5

Assignment to slice

In addition to retrieving a slice from a list, we can modify the list by assigning a list
of elements to the slice, e.g.:

my_list = [1, 2, 3, 4, 5]

my_list[1:3] = [11, 13]

print(my_list)

Program output:
[1, 11, 13, 4, 5]

In this case, two elements have been replaced by two new elements.

Especially in the Python language, it is also possible to implement an operation that
replaces some number of elements with a completely different number of
elements. However, such operations are supported, apparently due to the
orientation of the Python language for data processing - such an operation is not
supported in "classic" programming languages.

E.g.:

my_list = [1, 2, 3, 4, 5]

my_list[1:3] = [99] # two elements are replaced by one

print(my_list)

Program output:
[1, 99, 4, 5]

It is even possible to replace a smaller number of elements with a larger one:

my_list = [1, 2, 3, 4, 5]

my_list[1:3] = [0, 0, 0, 0]

print(my_list)

Program output:
[1, 0, 0, 0, 0, 4, 5]

Lists and Memory | FITPED AI

111

📝 6.2.6

What will be the result of the following assignment?

my_list = [1, 2, 3, 4, 5]

my_list[4:5] = [0, 1, 0, 1]

print(my_list)

my_list: [_____, _____, _____, _____, _____, _____, _____,

_____]

• 0
• 1
• 1
• 1
• 1
• 2
• 0
• 4
• 3
• 1
• 0
• 0

📝 6.2.7

Comparing lists

Lists are compared in the same way as strings - it goes through the elements of the
list and when the first difference is found, the elements are compared:

a = [1, 2, 3, 4, 5]

b = [1, 2, 3, 5, 4]

print(a == b)

print(a < b)

Program output:
False

True

If an existing element is compared to a non-existent one, it is logical that the
existing one is larger:

a = [1, 2]

b = [1, 2, 3, 5, 4]

print(a < b)

Program output:
True

Lists and Memory | FITPED AI

112

Similarly for strings:

a = ['alphabet', 'ate', 'grandpa', 'said', 'on', 'bear']

b = ['alphabet', 'ate', 'girl', 'said', 'on', 'bear']

print(a < b)

Program output:
False

However, the problem is the combination of text and numeric value - these cannot
be compared:

a = ['alphabet', 'ate', 'grandpa', 'said', 'on', 'bear']

b = ['alphabet', 1, 2, 3, 5, 4]

print(a < b)

Program output:
TypeError

'<' not supported between instances of 'str' and 'int'

📝 6.2.8

Select the pairs for which the result of the comparison a < b is True:

• a: [1, 2], b: [1, 2, 3]
• a: [1, 2, 3, 1, 2, 3], b: [1, 2, 3, 4]
• a: ['mama', 'has', 'Ema'], b: ['mama', 'has', 'adam']
• a: [1, 2, 3, 4, 5], b: [1, 2, 3, 4]
• a: [0], b: [-1, -2, -3]
• a: ['mama', 'has', 'Dana'], b: ['mama', 'has', 'Adam']

📝 6.2.9

Join

The function that allows us to retrieve and process the elements of a list given as a
text string is split(). The function splits the text based on the specified delimiter -
often a space, comma or comma + space. Its result is the creation of a list:

string = "Mother has very small Ema."

my_list = string.split()

numbers = "1, 2, 3, 6, 99"

my_list2 = numbers.split(', ')

print(my_list)

print(my_list2)

Program output:
['Mother', 'has', 'very', 'small', 'Ema.']

['1', '2', '3', '6', '99']

Lists and Memory | FITPED AI

113

The opposite operation is provided by the join() function, which creates a text string
from the list with the separator we enter.

The join() function is a text string method of the form:

my_list = ['1', '2', '3', '5']

separator = ' '

result = separator.join(my_list)

print(result)

Program output:
1 2 3 5

The condition, of course, is that the elements of the list are in the form of text
strings.

For example for the loaded input, we can easily change its form using separators:

data = input().split()

print(data)

text = ';'.join(data)

print(text)

text = '--'.join(data)

print(text)

Program output:
 1 2 3 4 5 6['1', '2', '3', '4', '5', '6']

1;2;3;4;5;6

1--2--3--4--5--6

📝 6.2.10

Complete the code so that you get even values from the interval a-b connected by
three dots: for example, for 1-10 it will be:

2...4...6...8...10

a = int(input())

b = int(input())

z = [_____(i) for i in _____(a, b+1) if i _____ 2 == _____]

string = _____._____(_____)

print(string)

• str
• join
• ' '
• //
• string
• z

Lists and Memory | FITPED AI

114

• %
• 0
• range
• '...'
• int

6.3 Arrangement

📝 6.3.1

Arrangement

Let's go back to arranging lists once more.

The sorted() method returns a new list containing the result of sorting:

a = ['alphabet', 'ate', 'grandpa', 'said', 'on', 'bear']

print('a before:',a)

b = sorted(a)

print('a sorted:', b)

print('a after:', a)

Program output:
a before: ['alphabet', 'ate', 'grandpa', 'said', 'on', 'bear']

a sorted: ['alphabet', 'ate', 'bear', 'grandpa', 'on', 'said']

a after: ['alphabet', 'ate', 'grandpa', 'said', 'on', 'bear']

The sort() function - rearranges the elements => the list changes:

a = ['alphabet', 'ate', 'grandpa', 'said', 'on', 'bear']

print('a before:',a)

a.sort()

print('a after:', a)

Program output:
a before: ['alphabet', 'ate', 'grandpa', 'said', 'on', 'bear']

a after: ['alphabet', 'ate', 'bear', 'grandpa', 'on', 'said']

Again, operations between incompatible types are not allowed:

a = ['alphabet', 'ate', 'grandpa', 'said', 'on', 'bear', 4]

print('a before:',a)

a.sort()

print('a after:', a)

Program output:
a before: ['alphabet', 'ate', 'grandpa', 'said', 'on', 'bear',

4]

TypeError

Lists and Memory | FITPED AI

115

'<' not supported between instances of 'int' and 'str'

📝 6.3.2

What will be the result of the following operation?

a = ['alphabet', 'ate', 'Grandpa', 'Said', 'on', 'bear']

b = sorted(a)

b: ['_____', '_____', '_____', '_____', '_____', '_____']

• on
• ate
• bear
• Grandpa
• Said
• alphabet

📝 6.3.3

Arrangement parameters

The function sorted() has two optional parameters - reverse and key

• reverse allows you to reverse the sort order

my_list = [1, 2, 8, 4, 5]

my_list2 = sorted(my_list, reverse = True)

print(my_list2)

Program output:
[8, 5, 4, 2, 1]

• key allows you to define rules for ordering through a function

For example to arrange the values based on the absolute value, we use:

my_list = [-1, 2, 8, 4, -5]

my_list2 = sorted(my_list, key = abs)

print(my_list2)

Program output:
[-1, 2, 4, -5, 8]

The values of the list will not change, but this function will be applied to them
before they are compared.

So the comparison step will not have the form of 2 > -5, but abs(2) > abs(-5)

Lists and Memory | FITPED AI

116

📝 6.3.4

How the numbers will be arranged after applying the following setting:

my_list = [1.3, -2.1, -8.05, 4.5, 5.4]

my_list2 = sorted(my_list, key = round, reverse = True)

z2: [_____, _____, _____, _____, _____]

• 5.4
• 4.5
• -8.05
• -2.1
• 1.3

📝 6.3.5

It is also possible to define a custom function as a function for arrangement. The
assumption is that it will have one parameter and return one value.

It can also be operations for which there is no function as such, e.g. the square of a
number, which sorts the numbers by their square:

def square2(a):

 return a * a

my_list = [0, -1, -5, 2, 7]

my_list2 = sorted(my_list, key = square2)

print(my_list)

Program output:
[0, -1, -5, 2, 7]

or ordering by the size of the decimal part:

import math

def des_cast(a):

 return a - math.floor(a)

my_list = [1.3, -2.1, -8.05, 4.5, 5.4]

my_list2 = sorted(my_list, key = des_cast)

print(my_list2)

Program output:
[1.3, 5.4, 4.5, -2.1, -8.05]

In this case, it should be noted that for negative numbers, the decimal part is
calculated to the nearest smaller number, so for -2.3 it is 0.7 to -3.

Lists and Memory | FITPED AI

117

📝 6.3.6

What will be the result of the following program, how will be the l2 arranged?

import math

def des(a):

 return a - math.floor(a)

my_list = [1.3, 2.1, 8.05, 4.5, 5.4]

l2 = sorted(my_list, key = des)

l2: [_____, _____, _____, _____, _____]

• 2.1
• 8.05
• 1.3
• 4.5
• 5.4

📝 6.3.7

When working with strings, it is common to sort strings regardless of character size
by using the lower function from the str package, e.g.:

a = ['alphabet', 'Ate', 'grandpa', 'Said', 'on', 'Bear']

b = sorted(a)

print(b)

c = sorted(a, key = str.lower)

print(c)

Program output:
['Ate', 'Bear', 'Said', 'alphabet', 'grandpa', 'on']

['alphabet', 'Ate', 'Bear', 'grandpa', 'on', 'Said']

📝 6.3.8

Complete the code to arrange the list according to the length of its strings so that
the longer strings are at the beginning:

a = ['alphabet', 'ate', 'grandpa', 'said', 'on', 'bear']

b = _____(a, _____ = _____, _____ = True)

print(b)

• reverse
• reversed
• oposite
• len
• length

Lists and Memory | FITPED AI

118

• value
• sorted
• key
• lenght
• id
• sort

6.4 List as a parameter

📝 6.4.1

Function parameter

We know that:

• the parameter acts as a variable whose task is to "bring" a value to the
function

• by using a variable in a function, we are actually working with the value it
represents

• the value that is inserted into the variable is specified when the function is
called

def my_sum(a, b):

 return a + b

s = my_sum(10, 20)

print(s)

x = 10

y = 5

z = my_sum(x, y)

print(z)

Program output:
30

15

📝 6.4.2

What will be the value of the variable a after the termination of the program?

def my_sum(a, b):

 amount = a + b

 return amount

amount = 30

Lists and Memory | FITPED AI

119

a = 10

b = 5

z = my_sum(a, b)

print(amount)

📝 6.4.3

List as a parameter

We can pass the list to the function just like other parameters of different data
types.

We can search it or process individual elements.

A program for finding the sum of elements in a list can take the form:

def my_sum(z):

 s = sum(z)

 return s

my_list = [1, 2, 3, 4, 5]

z = my_sum(my_list)

print(z)

Program output:
15

📝 6.4.4

Complete the program that finds the number of list elements that contain the
specified character:

def number(character, my_list):

 number = 0

 for i _____ my_list:

 _____:

 if i.index(_____) _____ 0:

 number = number + 1

 _____:

 continue

 _____ poc

my_list = ['mama', 'has', 'very', 'small', 'emil']

z = number('o', my_list)

print(z)

Lists and Memory | FITPED AI

120

📝 6.4.5

Editing list in function

When parameters are changed in a function, the changes are not normally reflected
outside the function.

However, if the content of the variable representing the list is changed, this change
will also be reflected in the original variable.

E.g.:

def my_sum(z):

 s = sum(z)

 z.append(s) # we will also add sum to the end of the list

 return s

my_list = [1, 2, 3, 4, 5]

print('original:', my_list)

z = my_sum(my_list)

print('new:', my_list)

Program output:
original: [1, 2, 3, 4, 5]

new: [1, 2, 3, 4, 5, 15]

This behavior is due to the fact that the list is passed to the function not as a copy
of the value, but as a memory reference.

This is due to the slowness of copying the contents of the list, the potential use of
large amounts of memory, and consistency with the behavior of lists in other
programming languages.

The consequence is that changes to the contents of the list in the function also
change its contents in memory, which remain in the changed form even after the
function is exited.

We can use this behavior very effectively.

Attention, the use of the list as a variable into which the value is inserted in this
case does not mean that it is a local variable that will disappear after the end of the
function. It is true that a change implemented in any way in a variable of type list is
reflected in the memory of the list:

def process(my_llist):

 my_llist.append("second")

 my_llist += ["third word"]

Lists and Memory | FITPED AI

121

my_list = ["first"]

process(my_list)

print(my_list)

Program output:
['first', 'second', 'third word']

📝 6.4.6

What does the following program print?

def process(list1):

 list1.append("word")

 list1.append(max(list1))

 list1.append(len(list1))

 return list1

my_list = input().split()

number = len(my_list)

process(my_list)

print(len(my_list) - number)

📝 6.4.7

What does the following program print?

def process(list1):

 list1.append("word")

 list1+= [max(list1)]

 list1+= [min(list1)]

 list1+= [len(list1)]

 return list1

my_list = input().split()

number = len(my_list)

process(my_list)

print(len(my_list) - number)

📝 6.4.8

We process the list in the method by modifying its values and the changes are
reflected in the original source.

Let's take a program in which we edit names so that they start with an uppercase
letter and other characters are lowercase.

We will not use letter comprehension in this case, even if it is offered:

Lists and Memory | FITPED AI

122

def process(list1):

 for index, item in enumerate(list1):

 list1[index] = item[0].upper() + item[1:].lower()

my_list = ["anna", "beTa", "ceCILIA", "daNA"]

process(my_list)

print(my_list)

Program output:
['Anna', 'Beta', 'Cecilia', 'Dana']

Pitfalls we must face:

• we make changes in the list, not in the item variable
• to manipulate the list we need the index of the item
• enumerate is more elegant than range

📝 6.4.9

What does the following program print:

def process(list1):

 for index, item in enumerate(list1):

 if item % 2 == 0:

 item = -item

my_list = [1, 2, 3, 4, 6]

process(my_list)

print(my_list[1] + my_list[3])

📝 6.4.10

Creating a list

Often we need to create an empty list filled with some initial value. Thanks to direct
access to the list, we can provide this directly in the universal method.

The input to it can be the number of elements and the value set in the list as a
starting point.

def create_list(number, default = 0):

 return [default] * number

l1 = create_list(5, 1)

print(l1)

l2 = create_list(5)

print(l2)

Lists and Memory | FITPED AI

123

l3 = create_list(4, '')

print(l3)

l4 = create_list(5, 'nothing')

print(l4)

Program output:
[1, 1, 1, 1, 1]

[0, 0, 0, 0, 0]

['', '', '', '']

['nothing', 'nothing', 'nothing', 'nothing', 'nothing']

📝 6.4.11

Complete the function activity results:

def create_list(number, default = 0):

 return [default * number]

l1 = create_list(5, 1)

print(l1) # prints [_____]

l2 = create_list(5)

print(l2) # prints [_____]

l3 = create_list(4, '')

print(l3) # prints [_____]

l4 = create_list(3, 'nothing')

print(l4) # prints [_____]

📝 6.4.12

Editing the list

When preparing general methods for data processing, it is necessary to decide
whether the goal is to change the values of the list.

The decision depends on the situation, the scope of the list and the goals of further
processing.

The following pair of functions perform the same operation with different effects
on the original list:

def add1(mylist, element):

 return mylist + [element]

def add2(mylist, element):

 mylist.append(element)

 return mylist

Lists and Memory | FITPED AI

124

original = [1, 3, 8, 5, 6]

new = add1(original, 'x1')

original.append('x2')

print('original:', original)

print('new:', new)

print('-------')

dependent = add2(original, 'y1')

original.append('y2')

print('original:',original)

print('dependent:',dependent)

Program output:
original: [1, 3, 8, 5, 6, 'x2']

new: [1, 3, 8, 5, 6, 'x1']

original: [1, 3, 8, 5, 6, 'x2', 'y1', 'y2']

dependent: [1, 3, 8, 5, 6, 'x2', 'y1', 'y2']

The add1() function does not change the original content, as a result it returns a
new (independent) list.

The add2() function modifies the list (the original list is changed) and at the same
time returns the result (a memory pointer to the changed list).

📝 6.4.13

What elements will the new one contain after performing the following operations?

def o1(my_list):

 return my_list[0:-1]

def o2(my_list):

 my_list.append(1)

 return my_list

def o3(my_list):

 return my_list + [2]

list1 = [1, 3, 8, 5, 6]

a = o1(list1)

a.append(5)

b = o2(list1)

b.append(4)

c = o3(list1)

c.append(6)

Lists and Memory | FITPED AI

125

print(list1)

List: [1, 3, 8, _____, _____, _____, _____]

• 2
• 6
• 4
• 5
• 6
• 1
• 5

6.5 Programs

⌨ 6.5.1 Editing the list

Write a program that reads a space-separated list of integers (both positive and
negative) from input and modifies them by zeroing negative values and doubling
positive ones. Perform the operation in the function.

input:

1 -1 2 3 -5 4

output

2 0 4 6 0 8

⌨ 6.5.2 Generator

Write a function that reads the number of elements and the default value from the
input and returns a list with the specified number of elements filled with the
specified value.

input: 10 a

output: ['a', 'a', 'a', 'a', 'a', 'a', 'a', 'a', 'a', 'a']

input: 10 -1

output: [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1]

file1.py
def prepare(n, value):

main

print(prepare()) # edit line

Lists and Memory | FITPED AI

126

⌨ 6.5.3 Unrepeatable

Write a program that, from an input containing a list of values, discards those that
appear more than once. Thus, only the values that were originally in it only once will
remain in the list. Solve this by using the function in which you edit the list:

input: 1 2 3 5 4 2 1

output: 3 5 4

input: mama has food has food

output: mama

⌨ 6.5.4 Intersection

The input contains two lists of elements separated by spaces. Lists are placed on
separate lines. Select the elements from the first list that also appear in the second
list. Keep the original order of the elements.

input:

1 2 3 4

1 5 8 7 4 3

output:

1 3 4

⌨ 6.5.5 Mutual exchanges

The input is a list of values separated by spaces. On the next lines are the pairs of
elements to be exchanged in the list. The list of pairs ends with the value -1. Write a
program that reads this data, performs element swaps and prints the resulting list.

input:

1 2 3 4 5 6

1 3

0 5

-1

output:

6 4 3 2 5 1

⌨ 6.5.6 Division

The input is a list of values separated by spaces. The next line contains the number
of sublists into which the original list should be divided. If the number of elements
is less than the number of sublists, let the text "cannot be" be printed. If the list can
be divided, divide it so that there is the same number of elements in each sub-list,
only in the last one the number that remained and their number is less than in the
previous ones.

Lists and Memory | FITPED AI

127

input:

1 2 3 4 5 6 7

4

output:

1 2

3 4

5 6

7

⌨ 6.5.7 Rotation

The input is a list of values separated by spaces. On the next line there is a value
determining how many elements the list should be rotated by. It can be positive
(elements rotate to the right) or negative (elements rotate to the left). Write a
rotated list.

input:

1 2 3 4 5 6 7

3

output:

5 6 7 1 2 3 4

input:

1 2 3 4 5 6 7

-2

output:

3 4 5 6 7 1 2

⌨ 6.5.8 Selection from connection

The input is three lists of values separated by spaces. The lists are stored below
each other. The fourth line contains a numerical value. Write a program that creates
a list of unique elements from these three lists but greater than the given value. Let
the list be ordered from the largest to the smallest number.

input:

1 2 3 4 5 6

2 3 4 5 6

8 9 7 4 5 6 1 2 3

4

output:

9 8 7 6 5

Lists and Memory | FITPED AI

128

⌨ 6.5.9 Subsequence

Write a program that finds the longest sequence of identical elements in a list. The
input is a list of values separated by spaces, the output is the repeated value, the
number of repetitions and the starting index.

input: 1 2 2 2 3 3 4 5 6 3 3 3 3 2 3

output: 3, 7, 4

input: 1 2 2 2 3 3 3

output: 2, 3, 1

⌨ 6.5.10 Subsequence II.

Write a program that finds the longest sequence of identical elements in a list. The
input is a list of values separated by spaces, the output is the repeated value, the
number of repetitions and the starting index. If there are several lists of the same
length, print them all in the order of occurrence of the value in the original field.

input: 1 2 2 2 3 3 4 5 6 3 3 3 2 3

output:

2, 3, 1

3, 3, 9

input: 1 2 2 2 3 3 3

output:

2, 3, 1

3, 3, 4

Tuple

Chapter 7

Tuple | FITPED AI

130

7.1 Tuple

📝 7.1.1

Mutable a immutable

Lists, or collections specifically in Python are generally divided into:

• mutable
• immutable

A typical mutable structure is a list, its non-editable version is a tuple. It supports
practically all operations as in a list, just without operations that change the
contents of the list.

What's the point of using another data structure? Wouldn't a list structure be
enough for us? Advantages of tuple over list:

• Speed - a tuple is by default faster than a list because it is immutable and
has a simpler structure.

• Less memory consumption - a tuple does not have as many built-in methods
as a list, which means that it is usually less memory intensive and has less
overhead.

• Simultaneous (parallel) assignment - tuple allows assignment of multiple
values, which is useful, for example, for returning multiple values from a
function at once.

📝 7.1.2

Complete correctly:

list - _____table, _____ memory requirement, _____ speed

tuple - _____table,_____ memory requirement, _____ speed

• bigger
• greater
• smaller
• lower
• immu
• mu

📝 7.1.3

Why do we need immutable elements? After all, they represent lists without the
possibility of changing the content of elements

Tuple | FITPED AI

131

Benefits again:

• faster list iteration, more efficient work with memory, faster copying
• are usually used to store data of different types (name, surname, date of

birth, salary), while lists are for similar/same
• they provide the programmer with the assurance that the data will not be

overwritten - some parts of the values should not be changed: e.g. the name
and surname representing the person should not allow changing only the
first name or only the surname, if a change is made, then the entire record

• there is no need to synchronize them during multi-threaded code
• more advanced programming techniques
• they copy the security standards of other languages

📝 7.1.4

Tuple

A tuple represents a tuple produced from any iterable sequence. As with a list, it is
an ordered collection of elements. We define tuples using parentheses:

point = (100, -75)

print(point)

print(type(point))

Program output:
(100, -75)

Unlike lists, tuples are immutable = once a tuple is created, it cannot be changed in
any way.

In the case of the point mentioned above, it gives some logic - changing some
coordinate represents a completely different point - it should not be possible to
change only one of the coordinates.

If we want to change a point, we delete it and create a new one.

📝 7.1.5

Complete the notation of the three tuples that represent the sides of the triangle:

triangle = _____100, 75, 25_____

📝 7.1.6

Creating a tuple

Creating an empty tuple is a dubious operation, since a tuple variable cannot be
changed, and therefore its contents cannot be set/changed.

Tuple | FITPED AI

132

a = ()

x = tuple()

print(type(a), a)

print(type(x), x)

Program output:
 ()

 ()

It only makes sense to fill the variable with values - for a tuple, we use round
brackets to define the object type:

pointA = (10, 10)

pointB = (10, 10, 10)

A special case is a one-element set, which we write with a comma after the value:

value = (10,)

The reason is that the entry...:

value = (10)

...is evaluated as the mathematical notation of the value in parentheses and thus in
this case as an int

print(type(value))

Program output:

📝 7.1.7

Select notations that represent tuples:

• a = (20,)
• a = (20, 30)
• a = (20, 30, 40)
• a = ()
• a = (20)
• a = (20, 30,)

📝 7.1.8

Elementary operations

• connecting with "+"
• chaining with "*"

Tuple | FITPED AI

133

t1 = (10, 20, 30)

t2 = (1, 2, 3)

t3 = t1 + t2

print(type(t3), t3)

t4 = t1 * 3

print(type(t4), t4)

Program output:
 (10, 20, 30, 1, 2, 3)

 (10, 20, 30, 10, 20, 30, 10, 20, 30)

📝 7.1.9

What is the result of the following operation?

t1 = (10,)

t2 = (1, 2)

t3 = t1 * 3 + 2 * t2 + (t2 + t1)

print(t3)

📝 7.1.10

Operations with tuple

The basic operations correspond to those already learned from strings and lists:

• len() - number of elements
• in - checks whether the element is in the list
• count() - number of occurrences
• index() - position of first occurrence

t = (1, 2, 3, 4, 3, 5, 9, 8, 11, 3, 5)

print(len(t))

Program output:
11

if 2 in t:

 print('i have')

else:

 print('i do not have')

Program output:
i have

print('value 3', t.count(3),'x')

Program output:

Tuple | FITPED AI

134

value 3 3 x

searched_for = 6

try:

 i = t.index(searched_for)

 print(searched_for,'on the position',i)

except:

 print('not found')

Program output:
not found

📝 7.1.11

Add the correct functions to the following operations with tuples:

_____ - number of elements

_____ - checks if the element is in the list

_____ - number of occurrences

_____ - position of first occurrence

• in
• sum()
• exist()
• index()
• len()
• count()
• min()

7.2 Elements manipulation

📝 7.2.1

Access to the element

The tuple element is accessed via index:

t = (1, 2, 3, 4, 3, 5, 9, 8, 11, 3, 5)

print(t[1])

Program output:
2

Attempting to change the content of an element results in an error:

Tuple | FITPED AI

135

t[1] = 7

Program output:
TypeError

'tuple' object does not support item assignment

📝 7.2.2

Fill in the results to the following code:

t = (1, 2, 3, 4, 3, 5, 9, 8, 1, 7, 16, 6)

print(t[3]) # prints: _____

print(t.count(1)) # prints: _____

print(t.count('3')) # prints: _____

print(len(t)) # prints: _____

print(0 in t) # prints: _____

• 3
• False
• 2
• Key Error
• 12
• 5
• 1
• 0
• 4
• True
• Error
• 2
• 0

📝 7.2.3

Support for functions working on a list is identical to functions for a list. But not in
the form of methods, but functions:

• sum() - sum of elements
• min() - minimal element
• max() - maximum element

t = (1, 2, 3, 4, 3, 5, 9, 8, 11, 3, 5)

print(sum(t))

print(min(t))

print(max(t))

Program output:
54

1

11

Tuple | FITPED AI

136

📝 7.2.4

Complete the correct syntax to find the results of the following operations:

t = (1, 2, 3, 4, 3, 5, 9, 8, 11, 3, 5)

print(_____) # sum of elements

print(_____) # minimal element

print(_____) # maximum element

📝 7.2.5

A slice in a tuple works in the standard way, its result is a tuple - it also does not
support editing:

t = (1, 2, 3, 4, 3, 5, 9, 8, 11, 3, 5)

print(t[1:4])

x = t[7:8]

print(x)

Program output:
(2, 3, 4)

(8,)

Attention, when reading the element at the specified position, the result is not a
tuple:

x = t[7]

print(x, type(x))

Program output:
8

📝 7.2.6

The content of which variables obtained from variable t can be edited?

t = (1, 2, 3, 4, 3, 5, 'data', 8.6, 11, 3, 5)

• a = t[0]
• a = t[6]
• a = t[7]
• a = t[2:5]
• a = t[3:4]
• a = t[6:7]

Tuple | FITPED AI

137

📝 7.2.7

Tuple iteration

By default, we iterate through the for cycle, while the element has a type
corresponding to the form in which it was inserted:

t = (1, '2', 3.5, "word", 3, True, 9)

for element in t:

 print(element, type(element))

Program output:
1

2

3.5

word

3

True

9

📝 7.2.8

Complete the program that loops through the list of elements in a tuple and creates
a second tuple list with the string lengths of the first tuple.

t = ('attention', 'bad', 'dog', 'bites', 'even', 'trough',

'mouthpiece')

lengths = _____

for element _____ t:

 lengths = _____ _____ __________(element)__________

print(lengths)

• (
• in
• +
• ()
•)
• lengths
• len
• ,

Tuple | FITPED AI

138

📝 7.2.9

Tuple transformation

Despite the fact that we create and populate the list in order to process it as
efficiently as possible, sometimes it is necessary to change the type from
immutable to mutable during the operation:

t = (1, 2, 3, 4, 3, 5, 9, 8, 11, 3, 5)

l1 = list(t)

print(l1)

l1.remove(2)

print(l1)

Program output:
[1, 2, 3, 4, 3, 5, 9, 8, 11, 3, 5]

[1, 3, 4, 3, 5, 9, 8, 11, 3, 5]

Note that the following notation creates a single tuple element as part of a mutable
list:

l2 = [t]

print(l2)

Program output:
[(1, 2, 3, 4, 3, 5, 9, 8, 11, 3, 5)]

📝 7.2.10

Select the operations that are allowed in a program starting as follows:

tu = (1, 2, 3, 4, 3, 5, 9, 8, 11, 3, 5)

li = list(tu)

• tu = tu + (1,)
• li.remove(8)
• print(tu[2])
• print(li[2])
• li[1:3] = [8, 3]
• tu.append(8,)
• tu = tu + (1)
• tu.remove(8)
• tu[1:3] = (8, 2)

Tuple | FITPED AI

139

7.3 Use of tuple

📝 7.3.1

Conversion to tuple

Again, there are also functions where it is necessary to convert another data type to
a tuple. Similar rules apply to lists:

t = tuple('Python')

print(t)

Program output:
('P', 'y', 't', 'h', 'o', 'n')

t = tuple([2, 3, 5, 7])

print(t)

Program output:
(2, 3, 5, 7)

t = tuple(range(1, 11))

print(t)

Program output:
(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)

📝 7.3.2

Complete the code that creates a tuple from the string:

t = _____('Python')

print(t)

result: ('P', 'y', 't', 'h', 'o', 'n')

📝 7.3.3

Multiple assignment

We can write the simultaneous assignment of several values to several variables in
one line:

a, b, c = 1, 2, 3

print(a, b, c)

Program output:
1 2 3

Tuple | FITPED AI

140

📝 7.3.4

Fill in the correct values for variables a and b:

a, b = 7, 5

a, b = a + b, a - b

a, b = 3 + a - b, a * b

print(a) # prints: _____

print(b) # prints: _____

📝 7.3.5

Returning multiple outputs from a function

Python allows multiple values to be returned from a function thanks to tuples. A
tuple in this case is taken as a single element consisting of practically any number
of other elements.

An example can be e.g. simultaneously returning the contents and circuit of the
rectangle:

def rect_info(a, b):

 ct = a * b

 cc = 2 * a + 2 * b

 return ct, cc

content, circuit = rect_info(5, 6)

print(content, circuit)

Program output:
30 22

If we load the values into one variable, a variable of the type is created in this case,
which is in accordance with the return value of the function, that is, we have an
immutable object of the tuple type available.

With this result, we can perform all operations allowed for tuples:

result = rect_info(2, 4)

print(result)

print(type(result))

Program output:
(8, 12)

📝 7.3.6

Assign the correct data type to the variables:

Tuple | FITPED AI

141

def rect_info(a, b):

 x = a * b

 y = 2 * a + 2 * b

 return x, y

content, circuit = rect_info(5, 6)

result = rect_info(5, 6)

content - type: _____

circuit - type: _____

result - type: _____

x - type: _____

y - type: _____

• float
• float
• list
• float
• list
• int
• tuple
• list
• int
• tuple
• int
• int
• tuple
• list
• tuple
• float

📝 7.3.7

Find all the divisors of the given number and write whether it is a prime number.

• task is a nice example of a combination of getting a tuple and processing it
further

• in the function we first create a list of divisors
• then we write them out and if their number is 2, it is a prime number,

otherwise it is a composite number

def divisors(n):

 d = ()

 for i in range(1, n + 1):

 if n % i == 0:

 d = d + (i,)

 return d

Tuple | FITPED AI

142

x = 7 # int(input())

my_list = divisors(x)

print(my_list)

print(", ".join(my_list))

if len(my_list) == 2:

 print("prime number")

else:

 print("composite number")

Program output:
(1, 7)

prime number

7.4 Variadic function

📝 7.4.1

Variadic function

A variadic function is a function that accepts a variable number of arguments. It
means that this function can be called with different number of input values.

We already know a certain form of a function with a different number of
parameters, it is a function that has some parameters set to initial values.

If we do not specify these parameters when calling the function, the default ones
will be used.

def add(a, b = 0, c = 0, d = 0):

 return a + b + c + d

If we enter one parameter, the result will be the entered value.

If we enter two, they are added and the default values - 0 are used instead of c and
d.

print(add(10))

print(add(20, 30))

Program output:
10

50

We could also use 3 or 4 inputs, but with 5 parameters it is no longer possible to
match the value to the corresponding variable and the result is an error.

Tuple | FITPED AI

143

print(add(1, 2, 3, 4, 5))

Program output:
TypeError

add() takes from 1 to 4 positional arguments but 5 were given

📝 7.4.2

What is the name of a function that accepts a variable number of arguments?

• variadic
• multiconceptual
• multiparametric

📝 7.4.3

Wrapped parameter

If we need to send an unknown and arbitrary number of parameters to the function,
we use the so-called wrapped parameter.

It can be distinguished from other parameters by the fact that it is preceded by the
character *.

This parameter allows any number of parameters to be obtained from the function
call and iterated in the function.

E.g.:

def add(*numbers):

 s = 0

 for i in numbers:

 s = s + i

 return s

sm = add(1,2,3)

print(sm)

Program output:
6

What type is the number variable in the function?

def add(*numbers):

 print(type(numbers))

 s = 0

 for i in numbers:

 s = s + i

Tuple | FITPED AI

144

 return s

sm = add(1,2,3)

print(sm)

Program output:

6

It is a tuple!!!

📝 7.4.4

Complete the variadic function designed to multiply any number of numbers.

def product(_____numbers):

 pro = _____

 for _____ _____ numbers:

 pro = pro _____ i

 return pro

📝 7.4.5

Write a function that, for a given list, returns a given number of random values
from it.

In this case, the first parameter will define the number of elements for the resulting
tuple, followed by an unknown number of elements to choose from.

The wrapped parameter is listed last in order to avoid potentially misidentifying its
values and other values that do not belong to it.

import random

def choose(l, *my_list):

 elements = ()

 for i in range(l):

 elements = elements +

(my_list[random.randrange(len(my_list))],)

 return elements

print(choose(3, 1,2,3,4,5,6,7))

print(choose(3, 'a','b','c','d','e','f','g'))

print(choose(3, 'a','b'))

Program output:
(4, 4, 1)

('e', 'd', 'd')

('a', 'a', 'a')

Tuple | FITPED AI

145

📝 7.4.6

Complete the code that finds the sum of the first n elements of the list. Provide
functionality for both numeric and text types. Note the data type validation method:

def amount(_____, _____my_list):

 if type(my_list[0]) is int:

 sum = _____

 if type(my_list[0]) _____ _____:

 sum = ''

 for i in range(z):

 sum = sum + _____[_____]

 return _____

print(amount(3, 1,2,3,4,5,6))

print(amount(3, 'a','b','c'))

📝 7.4.7

If we choose the list generated by range() as the list of values intended for the
variadic function, a small problem arises:

import random

def choose(n, *my_list):

 elements = ()

 for i in range(n):

 elements = elements +

(my_list[random.randrange(len(my_list))],)

 return elements

print(choose(3, range(8)))

print(type(range(8)))

Program output:
(range(0, 8), range(0, 8), range(0, 8))

Range creates a special element passed to the function as an element of type
range.

In order to send the generated values instead, we have to "unpack" it - again with
"*".

print(choose(3, *range(8)))

Tuple | FITPED AI

146

Program output:
(6, 0, 3)

We can also (and will need to) expand the list before sending it to the variadic
function. We send one element of type list without whitewashing.

print(choose(3, *['Adam','Beta','Cecil','Dana']))

Program output:
('Beta', 'Adam', 'Dana')

📝 7.4.8

Which records send to the select(n, *z) function a list of 7 elements: 0,1,2,3,4,5,6.

• choose(7,0,1,2,3,4,5,6)
• choose(7, *range(7))
• choose(7, range(7))
• choose(0,1,2,3,4,5,6)
• vyber(0,1,2,3,4,5,6,7)

📝 7.4.9

Print?

The print() function is a typical variadic function that allows the output of any
number of elements of virtually any type:

print(range(8))

print(*range(8))

print(['Eva','Fedor','Gusto','Hana'])

print(*['Eva','Fedor','Gusto','Hana'])

Program output:
range(0, 8)

0 1 2 3 4 5 6 7

['Eva', 'Fedor', 'Gusto', 'Hana']

Eva Fedor Gusto Hana

7.5 Programs

⌨ 7.5.1 Powers

The input is a space-separated list of numbers. Create a tuple containing the
squares of the given numbers and print it.

input: 1 2 5 -1

Tuple | FITPED AI

147

output: (1, 4, 25, 1)

⌨ 7.5.2 Filter

The input is a list of numbers separated by spaces. The next line contains an
integer value. Create and print tuples containing a list of numbers from the input
that are greater than the specified value.

input:

5 8 7 2 1 3 5

3

output:

(5, 8, 7, 5)

⌨ 7.5.3 Interval filter

The input is a list of numbers separated by spaces. In the next line there are two
values representing a closed interval. Create and print a tuple containing a list of
numbers from the input that are in the specified interval.

input:

5 8 7 2 1 3 9

3 7

output:

(5, 7, 2, 1, 3)

⌨ 7.5.4 Chain

Write a program that uses the variadic function to combine words separated by
commas on the input. Let the function return one string, which will be the union of
all input strings, while the # character will be used as a separator in the returned
string.

input: mother,father,kid,dog,cat

output: mother#father#kid#dog#cat

input: mother

output: mama

⌨ 7.5.5 Punctuation

For a given input, write a program that prints a list of punctuation marks from the
given input. Let the data be stored in tuple() and arranged in the order in which they
appear in the text, but each character only once.

Tuple | FITPED AI

148

You can get the list of punctuation characters from the string module, where the
constant is available:

string.punctuation = r"""!"#$%&-()*+,-

./:;<=>?@[]^_`{|}~"""

input : Hello world!(1+1=2)

output: ('!','(','+','=',')')

input : Order: 100$ + 10%; teddy@gmail.com

output: (':','$','+','%',';','@','.')

input : priscilla

output: ()

⌨ 7.5.6 Number of characters, lines, sentences and words

Write the code that detects how many characters, rows, sentences and words are
contained in the specified text file. The name of the text file is given at the input.
Suppose words do not divide at the end of a line, and no sentence ends with three
dots. Print the following information to the console: "characters: 67 rows: 2
sentences: 9 words: 14".

Input : book.txt

Output: characters: 70 rows: 3 sentences: 5 words: 16

Input : book2.txt

Output: characters: 34 rows: 2 sentences: 2 words: 7

Preview of text file book.txt:

Hello, how are you? I'm fine. And you?

This test is a test.

It tests itself!

file1.py
public class JavaApp {

 public static void main(String[] args) {

 // write your code here

 }

}

Tuple | FITPED AI

149

⌨ 7.5.7 Median and mode

Write a program that, for numeric values separated by commas at the input,
calculates their median and mode in a separate function, while returning both
values at once.

• The median is the middle value after ordering the values.
• Mode is the most common value.

input: 1,3,1,5,4

output: (3,1)

input: 5,7,1,1,1,2,3,5,5,7,7,7,7,7

output: (5,7)

⌨ 7.5.8 Navigation

Imagine that you are the captain of a ship in a 2D space represented by a Cartesian
coordinate system.

The position of the rocket is defined by two coordinates (x and y). Your mission
always starts at the origin of the coordinate system (where x == 0 and y == 0).

The plan of each mission is coded with signs representing the cardinal points and
numbers representing the number of steps to be taken in that direction. Example of
a mission plan list:

mission_plan = ['S',3,'Z',2,'J',1]

The rocket starts at position 0.0 and then moves 3 times north (to position 0.3).
Next, the rocket moves 2 times to the west (to position -2,3). Finally, the rocket
moves south and reaches the target position -2.2.

Fix the work-in-progress solution to work correctly according to the following
requirements:

• The function must be variadic, i.e. j. able to accept a different number of
parameters (always an even number, according to the examples below).

• The function must return a tuple containing the coordinates of the rocket
after the mission is completed and the direct distance from the starting
position (in this case the result must be written to 2 decimal places).

input : S,3,Z,2,J,1

output: -2, 2, 2.83

input : S,1,Z,1,J,10,V,2

output: 1, -9, 9.06

Tuple | FITPED AI

150

start.py
import math

fix the following solution:

plan must be a wrapped parameter, not a list!

def go_to_mission(plan):

 x = 0

 y = 0

 for i in range(0, len(plan), 2):

 if plan[i] == 'S':

 y += plan([i + 1])

 elif plan[i] == 'J':

 y -= plan[i + 1]

 elif plan[i] == 'V':

 x += plan[i + 1]

 else:

 x -= plan[i + 1]

 d = math.sqrt(x * x + y * y)

load the mission plan

data = input()

call the function, extract the actual parameters from the

data list

pos_x, pos_y, distance = go_to_mission()

list the 3 values of the returned tuple

print(f'{}, {}, {:.2f}')

⌨ 7.5.9 Calculation of absence

Write the code that finds the average number of absences in the specified text file.
At the input, is given the file name that contains the student name in each row and
a colon-separated number of absence hours. Print the number of registered pupils,
the total and the average number of absences on the console. Round the number to
one decimal place.

input : data1.txt

output:

10

122

12.2

Preview of text file data1.txt:

Anna:12

Tuple | FITPED AI

151

Jano:10

Peter:20

Adam:30

Mato:5

Jozo:15

Fero:16

Miro:4

Jana:7

Dana:3

file1.py
public class JavaApp {

 public static void main(String[] args) {

 // write your code here

 }

}

List of Lists

Chapter 8

List of Lists | FITPED AI

153

8.1 Matrix introduction

📝 8.1.1

Imagine you have data about students' scores in three subjects: Math, Science, and
English. You could store this data in three separate lists:

math_scores = [85, 90, 78]

science_scores = [88, 92, 84]

english_scores = [82, 89, 80]

A separate loop is required to find the average from each subject without using
functions:

math_sum = 0

for i in math_scores:

 math_sum += i

print('math', math_sum / len(math_scores))

science_sum = 0

for i in science_scores:

 science_sum += i

print('science', science_sum / len(science_scores))

english_sum = 0

for i in english_scores:

 english_sum += i

print('science', english_sum / len(english_scores))

Program output:
math 84.33333333333333

science 88.0

science 83.66666666666667

If you want to group all this information together for easier access and better
organization, you can use a matrix, which is a list of lists.

scores = [

 [85, 90, 78], # Math scores

 [88, 92, 84], # Science scores

 [82, 89, 80] # English scores

]

print(scores)

Program output:
[[85, 90, 78], [88, 92, 84], [82, 89, 80]]

List of Lists | FITPED AI

154

Now, the scores are stored in a single structure, and you can access or process
them more efficiently.

• A matrix stores related data in rows and columns.
• Each list inside the matrix is like a "row" in a table.

📝 8.1.2

Add the necessary characters to the code

scores = _____[85, 90, 78_____, _____88, 92, 84_____ [82, 89,

80_____ _____

•),
• (
•)
• [
•]
•]
•],
•]
•],
•)
•]
•)
• [
• (

📝 8.1.3

A matrix is a collection of numbers organized into rows and columns, like a table. In
programming, matrices are often represented as lists of lists. Each inner list is a
row, and the elements in the inner lists are the entries in the columns. Here is a 2x3
matrix (2 rows and 3 columns):

matrix = [

 [1, 2, 3],

 [4, 5, 6]

]

• Rows are represented by horizontal lines of numbers (e.g., [1, 2, 3] is the first
row).

• Columns represent vertical lines of numbers (e.g., 1 and 4 are in the first
column).

List of Lists | FITPED AI

155

📝 8.1.4

Create a 3x2 matrix where the first row contains 10, 20, the second row 50, 60, and
the third row 40, 30.

[[_____, _____],

 [_____, _____],

 [_____, _____]]

• 50
• 10
• 30
• 40
• 60
• 20

📝 8.1.5

Accessing elements in a matrix

You can access specific elements in a matrix using two indices:

• the row index.
• the column index.

matrix = [

 [1, 2, 3],

 [4, 5, 6]

]

print(matrix[0][1]) # Output: 2 (first row, second column)

print(matrix[1][2]) # Output: 6 (second row, third column)

Indices start at 0 as usually in Python. To access an element is used
matrix[row][column].

📝 8.1.6

What value is stored in the second row, first column of this matrix:

5 8 9

4 1 3

2 6 7

• 4
• 6
• 3

List of Lists | FITPED AI

156

📝 8.1.7

When working with data, it’s common to have lists inside lists. For example, let's
say we have a list of coordinates:

coordinates = [[1, 2], [3, 4], [5, 6]]

Here, each inner list represents a point in 2D space (x, y). Using this matrix-like
structure, you can organize and process large datasets easily.

So, why use matrices?

• Compact representation - instead of creating multiple lists, you use one
matrix.

• Logical grouping - each row can represent an object, and each column can
store attributes of that object.

coordinates = [

 [1, 2], # Point 1: (1, 2)

 [3, 4], # Point 2: (3, 4)

 [5, 6] # Point 3: (5, 6)

]

for point in coordinates:

 print(f"Point: x = {point[0]}, y = {point[1]}")

Program output:
Point: x = 1, y = 2

Point: x = 3, y = 4

Point: x = 5, y = 6

📝 8.1.8

Create a matrix to store these three points in 3D space: (2, 9, 7), (1, 8, 4), (3, 0, 6)

_____, _____, _____

_____, _____, _____

_____, _____, _____

• 0
• 3
• 2
• 1
• 6
• 9
• 8
• 7
• 4

List of Lists | FITPED AI

157

📝 8.1.9

Searching the matrix

Nested loops are great for working with matrices. The outer loop goes through
rows, and the inner loop goes through columns.

matrix = [

 [1, 2, 3],

 [4, 5, 6]

]

for row in matrix:

 for element in row:

 print(element, end=" ")

 print() # Move to the next line after printing a row

Program output:
1 2 3

4 5 6

This code shows how to iterate through a matrix and access all its elements row by
row.

• The outer loop goes through each row in the matrix. An array is basically a
list of lists, where each inner list represents a row. The loop selects one row
at a time from the matrix.

• The inner loop goes through the elements of the current row, which it
receives as an element (row) from the entire matrix, i.e. one sheet.

📝 8.1.10

Complete the code for listing the elements of the matrix.

matrix = [

 [1, 2, 3],

 [4, 5, 6]

]

for row in _____:

 for _____ in _____:

 print(element_____ _____)

• end=" "
• sep=" "
• ,

List of Lists | FITPED AI

158

• element
• print()
• row
• end
• matrix

8.2 Tables

📝 8.2.1

A matrix is often thought of as a table where rows and columns can hold various
types of data. While numbers are common, Python allows you to create matrices
with mixed data types, such as strings, numbers, and even tuples.

Here’s a matrix with different data types:

table = [

 ["Name", "Age", "Grade"], # Row 1: Strings

 ["Alice", 20, 85.5], # Row 2: String, Integer,

Float

 ["Bob", 21, 92.0], # Row 3: String, Integer,

Float

 ["Charlie", 19, 88.5] # Row 4: String, Integer,

Float

]

Printing the table

for row in table:

 print(row)

Program output:
['Name', 'Age', 'Grade']

['Alice', 20, 85.5]

['Bob', 21, 92.0]

['Charlie', 19, 88.5]

📝 8.2.2

Create a matrix representing three students with their names, ages, and favorite
subjects.

my_table = _____

 ['Name', 'Age', 'Subject'],

 ['_____', 21, _____],

 [_____, _____, 'chemistry'],

List of Lists | FITPED AI

159

 ['Charlie', 19, '_____']

]

• [
• 'math'
• 'Alice'
• history
• 20
• Bob

📝 8.2.3

Thanks to this variability of the list in the matrix, we can also combine different
types of values, e.g. text and number. Thanks to this, the introductory task will be
greatly simplified.

math = [85, 90, 78]

science = [88, 92, 84]

english = [82, 89, 80]

we can describe as

scores = [

 ["math", 85, 90, 78],

 ["science", 88, 92, 84],

 ["english", 82, 89, 80]

]

print(scores)

Program output:
[['math', 85, 90, 78], ['science', 88, 92, 84], ['english',

82, 89, 80]]

To calculate the score, it is enough to go through each line of the matrix and write
the name of the subject listed in the first item.

If we look at the data in the row, the first data is text and the rest are numbers. The
easiest way to calculate the average is to count ken with elements that are
numbers.

After the end of the calculation = finishing the line, we will print the result

for row in scores:

 my_sum = 0

 for element in row:

 if type(element) == int:

 my_sum += element

List of Lists | FITPED AI

160

 print(row[0],'-',my_sum/(len(row) - 1)) # without 0th

element

Program output:
math - 84.33333333333333

science - 88.0

english - 83.66666666666667

A special operation in the code is the expression

if itype(element) == int

which checks if the given element is a number.

📝 8.2.4

Which code to check whether it is a positive whole number is correct?

• if type(element) == int:
• if type(element) == 'int':
• if type(element) == "<|class 'int'>":

📝 8.2.5

As long as we know in which columns what values are stored, we do not need to
check the data type, but we will focus only on the considered columns.

• In that case, we will not go through the elements in the row in a cycle, but we
will consider indexes.

• In the second cycle, we start from the second element (index 1) and end at
the last one.

scores = [

 ["math", 85, 90, 78],

 ["science", 88, 92, 84],

 ["english", 82, 89, 80]

]

for row in scores:

 my_sum = 0

 for ind in range(1,len(row)):

 my_sum += row[ind]

 print(row[0],'-',my_sum/(len(row) - 1)) # without 0th

element

Program output:
math - 84.33333333333333

science - 88.0

english - 83.66666666666667

List of Lists | FITPED AI

161

range(1,len(row)) - generates values for the index, starting from 1 and ending at a
position one less than the number of row elements. This exactly covers our needs -
for 4 elements it will skip the element at the 0th position and generate the values
1,2,3.

📝 8.2.6

How many values will the command range(1,len(row)) generate:

row = [1,4,5,8,7,9,5,4,7,3,5]

• 10
• 9
• 11
• 12

📝 8.2.7

Alternatively, if we also want to transform the first cycle into an index use, we can
modify it:

scores = [

 ["math", 85, 90, 78],

 ["science", 88, 92, 84],

 ["english", 82, 89, 80]

]

for i in range(len(scores)):

 my_sum = 0

 for j in range(1,len(scores[i])):

 my_sum += scores[i][j]

 print(scores[i][0],'-',my_sum/(len(scores[i]) - 1))

• in a cycle with variable i, range() generates a range of 0 and the number of
rows of the matrix

• in the loop with variable j, the range() from 1 to the number of elements in
the i-th row is generated - scores[i]

• and finally, access to the elements is through the element on the i-th row and
j-th column, which we write via scores[i][j]

📝 8.2.8

Complete the code to print the value 10 from the matrix.

matrix = [['Name', 'Age', 'Grade'], ['Alice', 20, 'Fail'],

['Bob', 22, 'Pass'], ['Diana', 10, 'Pass']]

print(___________________________________)

List of Lists | FITPED AI

162

•]
• [
• [
• 2
• matrix
• 5
• 3
• 3
• 3
• 4
• 4
•]
• 1
• 2
• 1

8.3 Operations in a table

📝 8.3.1

We can represent the matrix in several ways. In general, we need to work with a
tuple of tuples or a list of lists. Of course, we can also use their different
combinations.

m1 = [[1,2],[3,4]]

m2 = ((1,2),(3,4))

print(m1)

print(m2)

Program output:
[[1, 2], [3, 4]]

((1, 2), (3, 4))

With a tuple we gain speed, with a list we gain editability. If we work with a list of
lists, it is possible to edit each cell. You can modify a cell in a matrix by accessing it
using its row and column indices.

table = [

 ["Name", "Age", "Grade"],

 ["Alice", 20, 85.5],

 ["Bob", 21, 92.0],

 ["Charlie", 19, 88.5]

]

Updating Bob's age

List of Lists | FITPED AI

163

table[2][1] = 22

Printing updated table

for row in table:

 print(row)

Program output:
['Name', 'Age', 'Grade']

['Alice', 20, 85.5]

['Bob', 22, 92.0]

['Charlie', 19, 88.5]

📝 8.3.2

Update the grade of "Alice" to 90.0.

table = [

 ["Name", "Age", "Grade"],

 ["Alice", 20, 85.5],

 ["Bob", 21, 92.0],

 ["Charlie", 19, 88.5]

]

Updating

table[_____][_____] = 90.0

📝 8.3.3

Replace row

We can also replace an entire row by assigning a new list to the row's index.

table = [

 ["Name", "Age", "Grade"],

 ["Alice", 20, 85.5],

 ["Bob", 21, 92.0],

 ["Charlie", 19, 88.5]

]

print(table)

print('---------------------------')

Replacing Charlie's row

table[3] = ["Charles", 20, 93]

Printing updated table

for row in table:

 print(row)

List of Lists | FITPED AI

164

Program output:
[['Name', 'Age', 'Grade'], ['Alice', 20, 85.5], ['Bob', 21,

92.0], ['Charlie', 19, 88.5]]

['Name', 'Age', 'Grade']

['Alice', 20, 85.5]

['Bob', 21, 92.0]

['Charles', 20, 93, 50]

Similar to the list, we just assign the list to the row index to replace it. It is usually
convenient that the length of the new line matches the others, but in general this is
not a condition.

📝 8.3.4

What is the result stores in list1 after the following code

list1 = [10, 20, 30, 40]

list2 = [50, 60]

list1[2:2] = list2

• [10, 20, 50, 60, 30, 40]
• [10, 20, 30, 40, 50, 60]
• [10, 20, 50, 60, 30]
• [50, 60, 10, 20, 30, 40]

📝 8.3.5

A Matric in Python is usually represented as a list of lists. Each row of the matrix
represents an internal list, so to add a new row, we can use the append() method,
which adds an item (in this case, a row) to the end of the list.

Suppose we have the following matrix (a 3x3 matrix) and we want to add a new
row, [10, 11, 12], to the matrix.

Matrix before adding a new row

matrix = [

 [1, 2, 3],

 [4, 5, 6],

 [7, 8, 9]

]

New row to add

new_row = [10, 11, 12]

Add the new row to the matrix

matrix.append(new_row)

Print the updated matrix

List of Lists | FITPED AI

165

print("Updated Matrix:")

for row in matrix:

 print(row)

Program output:
Updated Matrix:

[1, 2, 3]

[4, 5, 6]

[7, 8, 9]

[10, 11, 12]

• The append() method adds the new row to the end of the matrix.
• Each new row must have the same number of elements as the existing rows

if you're working with a consistent table structure (though technically, Python
lists can hold rows of different lengths).

• You can add as many rows as needed by using append() multiple times.

📝 8.3.6

Create a 5-line matrix where each line contains 3 numbers. You need to build the
matrix by appending rows one at a time, using the append() command.

The final matrix should look like this:

1 8 3

1 5 6

7 2 9

1 2 5

4 5 9

• matrix.append([1, 2, 5])
• matrix.append([1, 8, 3])
• matrix.append([4, 5, 9])
• matrix.append([1, 5, 6])
• matrix.append([7, 2, 9])
• matrix = []

📝 8.3.7

A common operation is to add data to an existing matrix based on user input. If we
have a matrix in the form where the first row contains the names of the columns,
we can use these column names when generating the input question. This makes it
easier for users to understand what kind of data they need to provide.

For example, suppose we have the following matrix representing a simple employee
database:

List of Lists | FITPED AI

166

matrix = [

 ["Name", "Age", "Department"], # Column headers

 ["Alice", 30, "HR"],

 ["Bob", 25, "IT"],

 ["Charlie", 35, "Marketing"]

]

We want to ask the user to input a new employee's data (Name, Age, Department)
and then add that data as a new row to the matrix with following steps:

• extract the column names from the first row.
• use the column names to create clear input prompts for the user.
• ask the user to provide data for each column.
• append the new data as a row to the matrix.

Extract column names from the first row

columns = matrix[0]

Collect user input for each column

new_row = []

for column in columns:

 user_input = input(f"Enter {column}: ")

 new_row.append(user_input)

Add the new row to the matrix

matrix.append(new_row)

Print the updated matrix

print("\nUpdated Matrix:")

for row in matrix:

 print(row)

Program output:
Enter Name: JanEnter Age: 99Enter Department: IT

Updated Matrix:

['Name', 'Age', 'Department']

['Alice', 30, 'HR']

['Bob', 25, 'IT']

['Charlie', 35, 'Marketing']

['Jan', '99', 'IT']

The easiest way is to add a new row to the matrix as a whole.

📝 8.3.8

What is the most often used command to read values from user (console)?

• input
• get
• read

List of Lists | FITPED AI

167

• readln

📝 8.3.9

Combining tables

We can add new data by not only appending rows but also combining two matrices.

table = [

 ["Name", "Age", "Grade"],

 ["Alice", 20, 85.5],

 ["Bob", 21, 92.0],

 ["Charlie", 19, 88.5]

]

Another table of students

new_table = [

 ["Eve", 20, "Pass"],

 ["Frank", 21, "Fail"]

]

Combining the tables

table.extend(new_table)

Printing combined table

for row in table:

 print(row)

Program output:
['Name', 'Age', 'Grade']

['Alice', 20, 85.5]

['Bob', 21, 92.0]

['Charlie', 19, 88.5]

['Eve', 20, 'Pass']

['Frank', 21, 'Fail']

📝 8.3.10

Which command can be used to join values from two tables?

• append
• extend
• extends
• join

List of Lists | FITPED AI

168

8.4 Reading and processing data

📝 8.4.1

We already know how to read the data for one row of the table and fill it, let's now
create the whole table by loading the data from the input.

The easiest way is to load the data item by item, provided that we specify the
number of rows and the number of columns in the input:

• First, we need to know how many rows and columns the table will have.
• We will loop through each row and ask the user to input values for each

column.
• For each row, we will collect the data and add it to the table.

Input number of rows

rows = int(input("Enter the number of rows: ")) # Ask the

user for the number of rows and convert the input to an

integer

columns = int(input("Enter the number of columns: ")) # Ask

the user for the number of columns and convert the input to an

integer

table = [] # Initialize an empty list to hold the table

(matrix)

Input rows

for i in range(rows): # Loop over the number of rows

 new_row = [] # Initialize an empty list to represent a new

row

 for j in range(columns): # Loop over the number of columns

for each row

 # Ask the user to input the element for the specific row

and column (e.g., [1,1], [1,2], etc.)

 element = input(f"Enter [{i + 1},{j+1}]:")

 new_row.append(element) # Add the input element to the

current row

 table.append(new_row) # After all columns for the row are

entered, add the row to the table

Printing the table

for row in table: # Loop through each row in the table

 print(row) # Print the row

Program output:
Enter the number of rows: 2Enter the number of rows: 2Enter

[1,1] 1Enter [1,2] 2Enter [2,1] 3Enter [2,2] 4['1', '2']

['3', '4']

List of Lists | FITPED AI

169

• The user provides data for each column in each row.
• The number of rows and columns is flexible, based on user input.
• The table is stored as a matrix (list of lists) where each row is a list.

📝 8.4.2

Which of the following describes the purpose of the line
new_row.append(element)?

for i in range(rows):

 new_row = []

 for j in range(columns):

 element = input(f"Enter [{i + 1},{j+1}] ")

 new_row.append(element)

 table.append(new_row)

• It adds each individual element to the row as the user input.
• It adds the entire table to the new_row list.
• It adds a new row to the table after collecting all the elements.
• It appends the column number to the row.

📝 8.4.3

Inserting data with value separators

The easiest way for both the user and the code to insert data into a table is to allow
the user to input the entire row at once. To make it easier for the user, we can use a
value separator, such as a space or comma, to separate the individual values in
each row. Once the user inputs the data, the program can split the row based on the
separator and create separate values for each column.

We can either:

• Ask the user to input the number of rows at the start, then read rows one by
one.

• Allow the user to enter rows continuously, stopping when they enter a special
value (e.g., 0 to stop entering rows).

Initialize an empty table

table = []

Ask the user for the number of rows (optional)

rows = int(input("Enter the number of rows (or 0 to enter rows

until stop): "))

Input rows based on the user's number of rows or until '0'

is entered

while rows != 0: # for i in range(rows):

 # Ask the user to enter a row of data separated by space

List of Lists | FITPED AI

170

 row_input = input("Enter a row of data separated by space:

")

 # Split the row into values and add it as a new row in the

table

 table.append(row_input.split()) # Split by spaces

 # Decrement the number of rows left to enter (if rows is

not 0)

 rows -= 1

Print the resulting table

for row in table:

 print(row)

• or do not define the number of rows before loading data

Initialize an empty table

table = []

Alternatively, enter rows until the user types '0'

while True:

 row_input = input("Enter a row of data (or '0' to stop):

")

 if row_input == '0':

 break

 table.append(row_input.split()) # Split by spaces

Print the resulting table

for row in table:

 print(row)

📝 8.4.4

You are creating a program that allows the user to input entire rows of a table using
a separator (e.g., space or comma) between the values. The program will split the
input into separate values and populate the table accordingly.

Which of the following best describes how the program processes a row of data
entered by the user?

• The program splits the row into individual values based on a separator (e.g.,
space or comma) and stores them as separate items in a list.

• The program stores the entire row as a single string without any
modification.

• The program asks the user to input each column individually before storing
the data.

• The program automatically guesses the values for the row if the user doesn’t
enter anything.

List of Lists | FITPED AI

171

📝 8.4.5

We are working with a table that stores students' names and their grades in Math,
English, and Chemistry. Our task is to add two new columns:

• History grade - prompt the user to input the grade for History for each
student.

• Average Grade - calculate the average grade for each student (including
History) and add it as the last column.

• original table:

Name Math English Chemistry

Alice 85 90 80

Bob 75 70 65

Charlie 95 85 90

• final table:

Name Math English Chemistry History Average

Alice 85 90 80 88 85.75

Bob 75 70 65 78 72.00

Charlie 95 85 90 92 90.50

So we start with the given structure of the table (Name, Mathematics, English,
Chemistry).

• In the first step, we read the mark from the history for each registered
student from the user and insert it into the list representing the row.

• Next, we go through the rows and add the calculation of the average from
the saved ratings.

Initial table

table = [

 ["Alice", 85, 90, 80],

 ["Bob", 75, 70, 65],

 ["Charlie", 95, 85, 90]

]

Adding History grades

print("Enter the History grades for each student:")

for row in table:

 history_grade = int(input(f"Enter History grade for

{row[0]}: "))

 row.append(history_grade)

List of Lists | FITPED AI

172

Program output:
Enter the History grades for each student:

Enter History grade for Alice: 80Enter History grade for Bob:

60Enter History grade for Charlie: 98

Calculate and add average grade

for row in table:

 grades = row[1:] # Extract grades only (ignoring the

name)

 average = sum(grades) / len(grades) # Calculate average

 row.append(round(average, 2)) # Add average as the last

column

Print the final table

print("\nFinal Table:")

print(["Name", "Math", "English", "Chemistry", "History",

"Average"])

for row in table:

 print(row)

Program output:
Final Table:

['Name', 'Math', 'English', 'Chemistry', 'History', 'Average']

['Alice', 85, 90, 80, 80, 83.75]

['Bob', 75, 70, 65, 60, 67.5]

['Charlie', 95, 85, 90, 98, 92.0]

📝 8.4.6

What is the correct way to add a new column (e.g., "History") to an existing table in
Python?

• Append the new value to each row in the table.
• Add a new row with the column name at the top of the table.
• Use append() to add the column directly to the table.
• Replace an existing column with the new column.

📝 8.4.7

Delete

We can delete rows or columns using the del statement for rows or list
comprehensions for columns.

• Deleting a row:

table = [['Name', 'Age', 'Grade'],

 ['Alice', 20, 'Fail'],

List of Lists | FITPED AI

173

 ['Bob', 22, 'Pass'],

 ['Charlie', 19, 'Pass']]

Deleting Bob's row

del table[2]

for row in table:

 print(row)

Program output:
['Name', 'Age', 'Grade']

['Alice', 20, 'Fail']

['Charlie', 19, 'Pass']

Deleting a column must again be performed by deleting an item in each row
separately:

table = [['Name', 'Age', 'Grade'],

 ['Alice', 20, 'Fail'],

 ['Bob', 22, 'Pass'],

 ['Charlie', 19, 'Pass']]

Deleting the 'Age' column

for row in table:

 del row[1]

Printing updated table

for row in table:

 print(row)

Program output:
['Name', 'Grade']

['Alice', 'Fail']

['Bob', 'Pass']

['Charlie', 'Pass']

📝 8.4.8

How many rows will remain in the table, or what value is printed after executing the
following commands?

table = [['Name', 'Age', 'Grade'],

 ['Alice', '20', 'Fail'],

 ['Bob', '22', 'Pass'],

 ['Charlie', '19', 'Pass']]

for row in table:

 if row[1] >= '20':

 del(row)

print(len(table))

List of Lists | FITPED AI

174

• 4
• 3
• 2
• 1

📝 8.4.9

Find

Searching the table is quite simple. If we want to calculate or display data matching
the search criteria, it is necessary to identify the correct column and focus on the
comparison. If a value is found, we can print the entire row.

Let's find in our matrix e.g. how many students are 20 years old, and let's name
them.

In this case, we can implement the statement in one cycle with the calculation of
values.

table = [

 ["Name", "Age", "Grade"],

 ["Alice", 20, 85.5],

 ["Bob", 21, 92.0],

 ["Charlie", 19, 88.5],

 ["Daniel", 20, 88.5]

]

Initialize a counter to track rows with Age = 20

cnt = 0

Loop through each row, excluding the header (starting from

table[1:])

for row in table[1:]:

 # Check if the 'Age' column (index 1) equals 20

 if row[1] == 20:

 # Increment the counter for each matching row

 cnt += 1

 # Print the matching row

 print(row)

Program output:
['Alice', 20, 85.5]

['Daniel', 20, 88.5]

📝 8.4.10

What is the result of the following code:

table = [

List of Lists | FITPED AI

175

 ["Name", "Age", "Grade"],

 ["Alice", 20, 85.5],

 ["Bob", 21, 92.0],

 ["Charlie", 19, 88.5],

 ["Daniel", 20, 88.5]

]

cnt = 0

for row in table[1:]:

 if row[1] > 18 or row[1] < 20:

 cnt +=1

print(cnt)

• 4
• 3
• 2
• 1
• 5

📝 8.4.11

Sort

We can sort rows based on specific columns, such as sorting students by age or
grade.

table = [

 ["Name", "Age", "Grade"],

 ["Alice", 20, 85.5],

 ["Bob", 21, 92.0],

 ["Charlie", 19, 88.5]

]

Sorting rows by age (column index 1)

sorted_table = sorted(table[1:], key=lambda row: row[1])

sorted_table.insert(0, table[0]) # Add header back

Printing sorted table

for row in sorted_table:

 print(row)

Program output:
['Name', 'Age', 'Grade']

['Charlie', 19, 88.5]

['Alice', 20, 85.5]

['Bob', 21, 92.0]

• sorted() sorts data and return it as a result, and key=lambda specifies which
column to use.

List of Lists | FITPED AI

176

• headers are often excluded from sorting by table[1:] and added back after by
insert(0,table[0])

📝 8.4.12

In which index of matrix table will Bob's age be stored after arrangement?

table = [

 ["Name", "Age", "Grade"],

 ["Alice", 20, 85.5],

 ["Bob", 21, 92.0],

 ["Charlie", 19, 88.5] ,

 ["Daniel", 22, 88.5] ,

 ["Ester", 17, 88.5] ,

 ["Filip", 16, 88.5] ,

 ["Helen", 18, 88.5]]

sorted_table = sorted(table[1:], key=lambda row: row[1])

sorted_table.insert(0, table[0])

• [2,1]
• [3,1]
• [5,1]
• [6,1]
• [7,1]

📝 8.4.13

Filter

We can extract specific rows or columns based on conditions, like finding students
with grades above 90.

table = [

 ["Name", "Age", "Grade"],

 ["Alice", 20, 85.5],

 ["Bob", 21, 92.0],

 ["Charlie", 19, 88.5]

]

Filtering students with grades above 90

filtered_rows = [row for row in table[1:] if row[2] > 90]

Printing filtered rows

for row in filtered_rows:

 print(row)

Program output:
['Bob', 21, 92.0]

List of Lists | FITPED AI

177

Usual way is to create new filtered list. Common approach is to use list
comprehensions to filter rows an skip the headers.

📝 8.4.14

What is the result of the following code?

table = [

 ["Name", "Age", "Grade"],

 ["Alice", 20, 85.5],

 ["Bob", 21, 92.0],

 ["Charlie", 19, 88.5]

 ["Daniel", 20, 88.5]

]

filtered_rows = [row for row in table if row[1] >= 20]

print(len(filtered_rows))

• error
• 3
• 1
• 2

📝 8.4.15

Adjust for proper program functionality:

table = [

 ["Name", "Age", "Grade"],

 ["Alice", 20, 85.5],

 ["Bob", 21, 92.0],

 ["Charlie", 19, 88.5]

 ["Daniel", 20, 88.5]

]

filtered_rows = [row for row in table[_____] if row[1] >=

_____]

print(filtered_rows)

• 0:1
• '20'
• int()
• 1:
• 20
• 1:1
• :

List of Lists | FITPED AI

178

8.5 Data in files

📝 8.5.1

Writing data to file

Files are a way to store data persistently, allowing programs to read and process
data without requiring it to be hardcoded. This is useful when working with large
tables or matrices.

First, we need to prepare the data files and work together as best we can to store
different types of values.

Table to save

table = [

 ["Name", "Age", "Grade"],

 ["Alice", 20, 85.5],

 ["Bob", 21, 92.0],

 ["Charlie", 19, 88.5]

]

with open("output.txt", "w") as file:

 for row in table:

 # Manually convert each element in the row to a string

 row_as_strings = [str(element) for element in row]

 # Join the elements with commas and write to the file

 file.write(",".join(row_as_strings) + "\n")

The result of this activity is a file with the following content:

with open("output.txt", "r") as file:

 for row in file:

 print(row,end="")

Program output:
Name,Age,Grade

Alice,20,85.5

Bob,21,92.0

Charlie,19,88.5

📝 8.5.2

What does the expression row_as_strings = [str(element) for element in row] do?

• Converts each element in row to a string and stores the result as a new list.
• Joins all elements in row into a single string.
• Converts row into a string without modifying its elements.
• Converts only numeric elements in row to strings, leaving others unchanged.

List of Lists | FITPED AI

179

📝 8.5.3

Read from file

If we don't just want to read data from a file and simply process it, but we need to
save it for more complex processing, we usually transform it into a sheet or a tuple.
Rereading takes place line by line and we store data in the lists in the form required
by the current assignment.

Now let's read the data separated by a comma and store them in a matrix:

Preparing data

table = [

 ["Name", "Age", "Grade"],

 ["Alice", 20, 85.5],

 ["Bob", 21, 92.0],

 ["Charlie", 19, 88.5]

]

with open("data.txt", "w") as file:

 for row in table:

 # Manually convert each element in the row to a string

 row_as_strings = [str(element) for element in row]

 # Join the elements with commas and write to the file

 file.write(",".join(row_as_strings) + "\n")

Reading the file and converting it into a list of lists

table = []

with open("data.txt", "r") as file:

 for line in file:

 row = line.strip().split(",") # Split the line into

elements based on commas

 table.append(row)

Displaying the resulting table

for row in table:

 print(row)

Program output:
['Name', 'Age', 'Grade']

['Alice', '20', '85.5']

['Bob', '21', '92.0']

['Charlie', '19', '88.5']

The strip() command is necessary to remove unnecessary characters, e.g. space
and \n at the end of the line

📝 8.5.4

Fill the code to read data from file to list:

List of Lists | FITPED AI

180

table = []

with open("data.txt", "_____") as file:

 for line in file:

 row = line._____()._____(",")

 table._____(_____)

for row in table:

 print(row)

• w
• row
• add
• ad
• split
• strip
• insert
• a
• r
• append

📝 8.5.5

Selecting data from a file

We can perform operations like filtering rows or calculating values after reading
data from a file.

View information about students who are 20 years old or older.

table = [["Alice", 20, 85.5], ["Bob", 21, 92.0], ["Charlie",

19, 88.5], ["Daniel", 18, 34.5]]

with open("data.txt", "w") as file:

 for row in table:

 row_as_strings = [str(element) for element in row]

 file.write(",".join(row_as_strings) + "\n")

Already during data loading, we can evaluate which data should be displayed and
which should not.

with open("data.txt", "r") as file:

 for line in file:

 row = line.strip().split(",")

 if int(row[1]) >= 20: # Check if Age (2nd column) is

greater than 20

 print(row)

List of Lists | FITPED AI

181

Program output:
['Alice', '20', '85.5']

['Bob', '21', '92.0']

📝 8.5.6

Complete the code for writing data from the table matrix:

with open("data.txt", "w") as file:

 for row in table:

 row_as_strings = [_____(element) for element _____ row]

 file.write(","._____(row_as_strings) + "_____")

• str
• \n
• in
• int
• add
• \t
• ,
• insert
• join

📝 8.5.7

Read, process and write

You can read a file, modify its contents, and save the new data into another file.

The file contains data about students and their results from individual subjects
separated by commas. Read the data, find out the average rating and write a list of
students sorted by average into a new file, which will contain only name and
average.

input:

Adam,3,3,3

John,1,3,4,2

output

Jan,2.5

Adam,3

Let's go to prepare file students.txt.

Preparing data

table = [["Adam", 3, 3, 3],

 ["Bob", 2, 1, 2, 2],

 ["Jan", 1, 3, 4, 4 ,2]]

List of Lists | FITPED AI

182

with open("students.txt", "w") as file:

 for row in table:

 # Manually convert each element in the row to a string

 row_as_strings = [str(element) for element in row]

 # Join the elements with commas and write to the file

 file.write(",".join(row_as_strings) + "\n")

We will read the data line by line, convert the marks from each line into numbers
and then calculate the average from them. We store the obtained value together
with the name of the students in a tuple. After loading all students, we sort the data
according to the second column and write it in a new file.

students = []

Open the input file and read the data

with open("students.txt", "r") as input_file:

 for line in input_file:

 data = line.strip().split(",") # Split the line by commas

 name = data[0] # First element is the student's name

 grades = [int(grade) for grade in data[1:]] # Convert

grades to integers

 average = sum(grades) / len(grades) # Calculate average

 students.append((name, average)) # Add name and average

as a tuple

Sort the list of students by average grade

students.sort(key=lambda x: x[1])

Write the sorted data to the output file

with open("sorted_students.txt", "w") as output_file:

 for name, average in students:

 output_file.write(f"{name}, {average:.1f}\n")

• and check:

with open("sorted_students.txt", "r") as f:

 for line in f:

 print(line,end="")

Program output:
Bob, 1.8

Jan, 2.8

Adam, 3.0

📝 8.5.8

How can you sort a list of student data by their second column (e.g., age or average
grade)?

• students.sort(key=lambda x: x[1])

List of Lists | FITPED AI

183

• students.sort(key=lambda x: x[0])
• students.sort(lambda x: x[1])
• students.sort(by_column=1)

📝 8.5.9

Text processing

Process a text file containing sentences and count how many times each word
appears. Sort the found words according to the number of occurrences, in the case
of the same number of occurrences, according to the alphabet. Do not write words
that appear only once in the text. Clear the words from the characters like,.-

We divide the read line into words and look for them in the list of words. If the word
is in the list, we increase the number of its occurrences, if not, we add it to the list
with the number of occurrences of 1.

table = ["Python is fun.", "Python makes data processing

easy.", "Learning Python is rewarding."]

with open("data.txt", "w") as file:

 for row in table:

 file.write(row + "\n")

Initialize a list to store words and their counts as tuples

word_counts = []

Define a list of characters to remove from words

unwanted_chars = ",.-"

Open and read the text file

with open("data.txt", "r") as file:

 for line in file:

 # Remove unwanted characters manually

 cleaned_line = line

 for char in unwanted_chars:

 cleaned_line = cleaned_line.replace(char, "")

 # Split the cleaned line into words

 words = cleaned_line.lower().split()

 # Process each word

 for word in words:

 # Check if the word is already in the list

 found = False

 for i, (existing_word, count) in

enumerate(word_counts):

 if existing_word == word:

 # If found, increment the count

List of Lists | FITPED AI

184

 word_counts[i] = (existing_word, count +

1)

 found = True

 break

 # If the word is not found, add it with count 1

 if not found:

 word_counts.append((word, 1))

Filter out words that appear only once

filtered_words = [item for item in word_counts if item[1] > 1]

Sort the list by count (descending) and then alphabetically

sorted_words = sorted(filtered_words, key=lambda x: (-x[1],

x[0]))

Write the results to an output file

for word, count in sorted_words:

 print(f"{word}: {count}")

Program output:
python: 3

is: 2

📝 8.5.10

Complete the code so that it cleans up inappropriate characters:

unwanted_chars = ",.-"

with open("data.txt", "_____") as file:

 for line in file:

 for char in _____:

 line = _____._____(_____, _____)

 print(line)

• w
• line
• unwanted_chars
• r
• line
• append
• unwanted_chars
• replace
• char
• ""

List of Lists | FITPED AI

185

8.6 Matrix in math

📝 8.6.1

A matrix in mathematics is a rectangular array of numbers arranged in rows and
columns. It is a powerful tool used to represent and manipulate data, often used in
mathematics, physics, computer science, and engineering.

Typical matrix:

--- ERROR ---

The size of a matrix is defined by the number of rows and columns.

The matrix A above is a 3×2 matrix (3 rows, 2 columns).

We know that matrices are often represented in Python as lists of lists:

A = [

 [1,2],

 [3,4],

 [5,6]

]

📝 8.6.2

What is the size of the following matrix:

A = [[1,2], [3,4], [5,6], [7,8], [9,0]]

• 5 x 2
• 2 x 5
• 2 x 2
• 5 x 5
• 10

📝 8.6.3

In a square matrix (a matrix with the same number of rows and columns), diagonals
are specific sets of elements.

Main diagonal

• The main diagonal consists of the elements where the row and column
indices are the same.

• It runs from the top-left corner to the bottom-right corner of the matrix.
• In a matrix A, the elements of the main diagonal are A[i][i], where i=0,1,…,n−1

List of Lists | FITPED AI

186

--- ERROR ---

The elements of main diagonal are: 1, 5, 9

📝 8.6.4

What is the sum of elements on main diagonal in the following matrix:

A=[[1,2,3,7],[4,0,5,6],[7,1,8,9],[3,2,1,0]]

• 9
• 15
• 16
• 11

📝 8.6.5

Complete the code that lists the elements on the main diagonal:

matrix = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]

n = _____(matrix)

diagonal = []

for i in range(_____):

 diagonal.append(matrix[_____][_____])

print(diagonal)

• i-1
• size
• n
• i+1
• i-1
• i
• i
• n-1
• i+1
• len
• n+1

📝 8.6.6

Other (or secondary) diagonal

• The other diagonal, also known as the secondary diagonal, consists of the
elements where the sum of the row and column indices is equal to n−1.

• It runs from the top-right corner to the bottom-left corner of the matrix.
• In a matrix A, the elements of the other diagonal are A[i][n−1−i], where

i=0,1,…,n−1.

List of Lists | FITPED AI

187

The elements of the secondary diagonal are: 3, 5, 7

📝 8.6.7

What is the product of the elements on the main diagonal in the following matrix:

A=[[1,2,3,7],[4,0,5,6],[7,1,8,9],[3,2,1,0]]

• 105
• 0
• 16
• 21

📝 8.6.8

Adding matrices

You can add two matrices of the same size by adding their corresponding
elements.

matrix1 = [

 [1, 2, 3],

 [4, 5, 6]

]

matrix2 = [

 [7, 8, 9],

 [10, 11, 12]

]

[1 + 7, 2 + 8, 3 + 9]

[4 + 10, 5 + 11, 6 + 12]

result = []

for i in range(len(matrix1)):

 row = []

 for j in range(len(matrix1[0])):

 row.append(matrix1[i][j] + matrix2[i][j])

 result.append(row)

print(result)

Program output:

List of Lists | FITPED AI

188

[[8, 10, 12], [14, 16, 18]]

📝 8.6.9

What is the sum of the elements [0,2] and [1,2] in the matrix you get as the sum of
the following two matrices

matrix1 = [[1, 2, 3], [4, 5, 6]]

matrix2 = [[7, 0, 3], [4, 1, 5]]

• 17
• 20
• 8

📝 8.6.10

Matrix multiplication

Matrix multiplication involves multiplying rows of the first matrix with columns of
the second. It means that for the dimensions of the matrices, the number of rows of
the first must be the same as the number of columns of the second. It is possible
to multiply 2 x 5 and 5 x 4 matrices, but not 5 x 4 and 2 x 5.

In the example, 4x2 and 2x3 matrices are multiplied, while the resulting matrix has a
dimension of 4x3. To find the element in the i-th row and j-th column of the
resulting matrix, we take the sum of the products of the i-th row of the first matrix
and the j-th column of the second matrix.

The code that ensures the matrix product has the form:

A = [[1, 2, 4], [3, 4, 5]]

B = [[5, 6], [7, 8], [1, 2]]

result = [[0, 0], [0, 0]]

for i in range(len(A)): # Row of A

 for j in range(len(B[0])): # Column of B

 for k in range(len(B)): # Column of A / Row of B

List of Lists | FITPED AI

189

 result[i][j] += A[i][k] * B[k][j]

print(result)

Program output:
[[23, 30], [48, 60]]

📝 8.6.11

Complete the matrix multiplication result:

A = [[1, 3], [2, 4]]

B = [[5, 7], [6, 8]]

A * B = [[_____ , _____],

 [_____ , _____]]

8.7 Matrix (programs)

⌨ 8.7.1 Reset values below the main diagonal

Write the code that creates a matrix (3x3 size) from the integer values obtained at
the input and resets all elements below the main diagonal. The given 9 numbers are
separated by a space at the input. Print the modified matrix on the console.
Allocate 4 spaces for each value for the matrix.

input : 44 -2 45 -29 35 14 0 50 -34

output:

 44 -2 45

 0 35 14

 0 0 -34

⌨ 8.7.2 Mirror matrix

Write the code that prints a mirror image flipped along a vertical axis for a matrix of
size n x n containing 0 and 1. At the input, is given n, each array element separated
by a space. Print a mirror image of the matrix on the console.

input : 4 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

output:

1 1 0 0

1 1 0 0

1 1 0 0

1 1 0 0

List of Lists | FITPED AI

190

⌨ 8.7.3 Apartment building

In the block of flats, each floor is divided into apartments. The administrator
records the number of inhabitants for each apartment.

For the specified dimensions of the block of flats - the first represents the number
of floors, the second the number of apartments within the floor, read the number of
inhabitants in the next lines, so that in each line the number of inhabitants of all
apartments on the given floor are separated by spaces.

Determine which apartment has the most residents.

If there are several flats with the same number of inhabitants in the block of flats,
indicate the one that is located highest. If there are several such flats on the given
floor, indicate the one that is furthest to the right.

input: 3 4

1 2 1 0

1 0 0 1

1 1 2 0

output: 0 1

input: 3 5

2 2 1 0 0

2 2 3 3 0

1 2 3 0 0

output: 1 3

⌨ 8.7.4 Random attacks

Users repeatedly log into a system from different IP addresses. Find out the
number of IP addresses from which there was only one access to the system.

The input file contains in separate lines the IP addresses obtained from a server log
file.

Use the set structure in your solution.

input: logfile1.txt

output: 3

logfile1.txt:

62.197.192.174

217.144.26.164

188.167.21.237

178.41.131.165

178.41.131.165

List of Lists | FITPED AI

191

62.197.192.174

91.127.210.43

217.144.26.164

176.101.176.92

88.80.227.82

88.80.227.82

88.80.227.82

8.8 Tables (programs)

⌨ 8.8.1 Mirror

Write the code that loads numbers from the given file and mirrors them. At the
input, is given the name of the file that contains the data in the form of numbers,
and saves in a number array of 10 elements. Print numbers from last to first on the
console.

input : myData1.txt

output:

10

9

8

7

6

5

4

3

2

1

Preview of text file myData1.txt:

1

2

3

4

5

6

7

8

9

10

file1.py

List of Lists | FITPED AI

192

public class JavaApp {

 public static void main(String[] args) {

 // write your code here

 }

}

⌨ 8.8.2 Sum of numbers in the string

Write the code that calculates the sum of integers occurring in the string.

input : We have 12 hens at home, 54 geese and 3 ducks.

output: 69

input : 12.3,8 9

output: 32

⌨ 8.8.3 Ordered sublist

The input is a sequence of numbers separated by spaces with an unknown number
of elements. Find the longest subsequence in which all elements are in ascending
order, print its length and elements as a list. If there are more sequences with the
same number of elements, print the first one in the sequence (the beginning of
which has a smaller index)

input:

10 11 13 21 18 16 17 18 24 27 15

output:

5

[16, 17, 18, 24, 27]

⌨ 8.8.4 The largest average of the subset

The input is a sequence of numbers separated by spaces with an unknown number
of elements. Find the contiguous (elements are next to each other) subset (at least
2 elements) that has the largest average. Print its length, average rounded to one
decimal place, and elements as a list. If there are more sequences with the same
number of elements, list the first one in the sequence (the beginning of which has a
smaller index)

input:

10 11 13 21 18 16 17 18 24 27 15

output:

2

25.5

[24, 27]

List of Lists | FITPED AI

193

⌨ 8.8.5 Palindromes

The input is a sequence of numbers separated by spaces with an unknown number
of elements. Find in it all palindromes with a length of at least 3 elements. A
palindrome is a subset that contains the same elements when written from front to
back. When printing, proceed by ordering the sequences from largest to smallest -
you leave the ordering to Python.

input:

10 11 13 21 18 16 17 16 18 24 27 15

output:

[18, 16, 17, 16, 18]

[16, 17, 16]

⌨ 8.8.6 The smallest subset

The input contains two sequences of numbers separated by spaces with unknown
numbers of elements. Find a contiguous subset of the first list that contains the
smallest possible number of elements such that all elements from the second list
occur in it. If the entered pair does not have a solution, print "error". If there are
more subsequences with the same number of elements, print the first one in the
sequence (the beginning of which has a smaller index).

input:

10 11 13 21 18 16 17 18 24 27 15

18 16 15

output:

[16, 17, 18, 24, 27, 15]

input:

10 11 13 21 18 16 17 18 24 27 15

22 16

output:

error

⌨ 8.8.7 ChemLab

Only three researchers a day are admitted to the chemistry lab visitor list. From
time to time there will be a request to find out if the specified person is in the
laboratory. Usually it is not clear whether it is a first or last name or its code.

Write a program that will have 9 input lines with three data for each of the three
researchers. Put these data into a list of triples.

On the last line there will be a string, which can be just part of the name.

List of Lists | FITPED AI

194

They will list all the data containing the searched string in the form of a tuple.

If the search string is not in the matrix, it prints "No match".

input :

Adam

Mally

1996

Matthew

Great

1987

Joseph

Carrot

1998

Adam

output ('Adam', 'Mally', '1996')

input :

Adam

Mally

1996

Matthew

Great

1987

Joseph

Carrot

1998

John

output:

No match

⌨ 8.8.8 Cardiac surgery

Write a program that finds the average weight of the patients of the cardiac surgery
department in the given text file.

At the input, the name of the file is given, which represents one department and in
each line contains the name of the patient and the weight separated by a colon.

List the number of registered patients in the given department, their total and
average weight. Load the data into an appropriate data structure and round the
average to one decimal place.

input : data1.txt

output:

10

List of Lists | FITPED AI

195

1032

103.2

Preview of text file data1.txt:

Anna:112

Jano:110

Peter:87

Adam:130

Mato:56

Jozo:153

Fero:116

Miro:94

Jana:75

Dana:99

⌨ 8.8.9 Visitors

The input contains the name of the file in which the data on the number of visits to
the respective city is stored.

Write a program that reads data from a file and sorts it according to the column (0-
2) specified in the next line.

It then lists them in the form as shown below:

input:

textfile1.txt

0

output:

Alex,Bratislava,50

Boris,Zilina,10

Francis,Nitra,200

John,Nitra,100

input:

textfile1.txt

2

output: Boris,Zilina,10

Alex,Bratislava,50

John,Nitra,100

Francis,Nitra,200

textfile1.txt:

John,Nitra,100

Francis,Nitra,200

List of Lists | FITPED AI

196

Alex,Bratislava,50

Boris,Zilina,10

Set

Chapter 9

Set | FITPED AI

198

9.1 What is set

📝 9.1.1

A set is a built-in Python data structure used to store unique and unordered items.
Unlike lists or tuples, sets do not allow duplicate values. They are often used when
you need to eliminate duplicates or perform mathematical operations like unions
and intersections.

• sets are defined using curly braces {}.
• sets automatically remove duplicates or does not add them to the list.
• there is no element position in the list - elements are stored in their own

effective structure
• elements must be immutable, e.g. strings, numbers, tuples,
• it is not possible to work with a set of lists because lists are mutable

structures
• adding an element is done using the add() command

Creating a set

fruits = {"apple", "banana", "cherry"}

print(fruits)

Adding

fruits.add("peanut")

Adding a duplicate

fruits.add("apple") # No effect because "apple" is already in

the set

print(fruits)

Program output:
{'banana', 'cherry', 'apple'}

{'banana', 'cherry', 'apple', 'peanut'}

📝 9.1.2

Fill in the code to add elements to the list

fruits = _____"apple", "_____", "cherry"_____

fruits._____("mango")

print(fruits)

• insert
• (
•]
• add
• banana
• }
• [

Set | FITPED AI

199

•)
• {
• append

📝 9.1.3

Sets support several basic operations such as:

• adding elements - add()
• removing elements - discard() - given the absence of an index, we determine

which element to delete
• removing elements - remove() - in the case of an attempt to remove a non-

existent element, it generates an error
• the complete deletion of elements will be ensured by the clear() method
• number of elements - len()
• membership control - in returns True if element is in set

Adding elements to a set

numbers = {1, 2, 3}

numbers.add(4)

print(numbers) # {1, 2, 3, 4}

Removing elements

numbers.remove(2)

print(numbers) # {1, 3, 4}

Checking membership

print(3 in numbers) # True

print(5 in numbers) # False

Program output:
{1, 2, 3, 4}

{1, 3, 4}

True

False

📝 9.1.4

How many elements will remain in the set after performing the following
operations? What number does the code print?

A = set()

A.add(100)

A.add('Peter')

A.add(1000.56)

A.remove("Peter")

A.add(50+50)

Set | FITPED AI

200

A.add("x")

print(len(A))

• 3
• 4
• 5
• error
• 2

📝 9.1.5

Operations with sets

Sets are ideal for performing mathematical operations like union, intersection, and
difference.

The union (|) of two sets combines all the unique elements from both sets into a
single set. No duplicates are allowed; repeated elements appear only once in the
result.

• Group A: {apple, banana, cherry}
• Group B: {banana, cherry, date, fig}
• The union of these groups will include every unique item: {apple, banana,

cherry, date, fig}.

The intersection (&) of two sets contains only the elements that are common to
both sets. If an item is not present in both sets, it will not be included in the
intersection.

• Group A: {apple, banana, cherry}
• Group B: {banana, cherry, date, fig}
• The intersection of these groups includes items found in both groups:

{banana, cherry}.

The difference (-) of two sets contains elements that are in the first set but not in
the second set. The result depends on the order of the sets in the operation.

• Group A: {apple, banana, cherry}
• Group B: {banana, cherry, date, fig}
• The difference of Group A - Group B includes items in Group A only: {apple}.
• Similarly, the difference of Group B - Group A includes items in Group B only:

{date, fig}.

A = {1, 2, 3, 4}

B = {3, 4, 5, 6}

Union: Combine all unique elements

print(A | B) # {1, 2, 3, 4, 5, 6}

Intersection: Common elements

Set | FITPED AI

201

print(A & B) # {3, 4}

Difference: Elements in A but not in B or opposite

print(A - B) # {1, 2}

print(B - A)

Program output:
{1, 2, 3, 4, 5, 6}

{3, 4}

{1, 2}

{5, 6}

📝 9.1.6

What will be the result of the following code:

m1 = {'A', 'B', 'C', 'D'}

m2 = {'A', 'Y', 'C'}

m3 = m1 & m2

print(m3)

• {'C', 'A'}
• {'A', 'B', 'C', 'D'}
• {'A', 'Y', 'C'}
• {'B', 'D', 'C', 'X', 'Y', 'A', 'Z'}

📝 9.1.7

What will be the result of the following code:

m1 = {'A', 'B', 'C', 'D'}

m2 = {'A', 'Y', 'C'}

m3 = m1 | m2

print(m3)

• {'B', 'D', 'C', 'Y', 'A'}
• {'A', 'B', 'C', 'D', 'C', 'Y', 'A'}
• {'A', 'Y', 'C'}
• {'B', 'D', 'C', 'X', 'Y', 'A', 'A'}

📝 9.1.8

What will be the result of the following code:

m1 = {'A', 'B', 'C', 'D'}

m2 = {'A', 'Y', 'C'}

m3 = m1 - m2

print(m3)

Set | FITPED AI

202

• {'B', 'D'}
• {'A', 'Y', 'C'}
• {'A', 'B', 'C', 'D'}
• { 'Y' }

📝 9.1.9

What will be the result of the following code:

m1 = {'A', 'B', 'C', 'D'}

m2 = {'A', 'Y', 'C'}

m3 = m2 - m1

print(m3)

• {'B', 'D'}
• {'A', 'Y', 'C'}
• {'A', 'B', 'C', 'D'}
• { 'Y' }

9.2 Comparison

📝 9.2.1

Set comparisons

Sets can be compared using specific rules that help determine their relationship.

• Equal sets - contain exactly the same elements.
• Subset/superset - smaller or larger sets based on element inclusion.
• No Relationship - if sets have exclusive elements, no comparison is valid.

These comparisons are useful in programming when analyzing groups of unique
items.

Equality of sets

• Two sets are equal if they contain exactly the same elements.
• {1, 2, 3} == {3, 2, 1} - order does not matter in sets

m1 = {'A', 'B', 'C', 'D'}

m2 = {'A', 'Y', 'C'}

m3 = {'A', 'C', 'B', 'D'}

print(m1 == m2)

print(m1 == m3)

Set | FITPED AI

203

Program output:
False

True

📝 9.2.2

Which pairs of sets are equal

m1 = {'A', 'B', 'C', 'D'}

m2 = {'A', 'B', 'C'}

m3 = {'A', 'C', 'C', 'D'}

m4 = {'B', 'A', 'C'}

• m2, m4
• m1, m2
• m1, m3
• m1, m4
• m1, m3
• m3, m4

📝 9.2.3

Subset relationships

• A set is smaller than another set (a subset) if all its elements are also
present in the other set.

• {1, 2} ⊆ {1, 2, 3} - {1, 2} is a subset of {1, 2, 3}

Strict superset relationships

• A set is larger than another set (a strict superset) if it contains all the
elements of the smaller set plus additional elements.

• {1, 2, 3} ⊇ {1, 2} - {1, 2, 3} is a strict superset of {1, 2}

No comparison possible

• If one set has elements not present in the other, and vice versa, then neither
is larger nor smaller.

• {1, 4} and {2, 3} - no subset or superset relationship exists.

m1 = {'A', 'B', 'C', 'D'}

m2 = {'A', 'B', 'C'}

print(m1 > m2)

print(m1 < m2)

Program output:
True

False

Set | FITPED AI

204

m1 = {'A', 'B', 'C', 'D'}

m3 = {'A', 'B', 'Y'}

print(m1 > m3)

print(m1 < m3)

print(m1 == m3)

Program output:
False

False

False

📝 9.2.4

Choose the true statement

m1 = {'A', 'B', 'C', 'D'}

m2 = {'A', 'Y', 'C'}

• neither statement is valid
• m1 <| m2
• m1 > m2
• m1 == m2

📝 9.2.5

Choose the true statement

m1 = {'A', 'B', 'C', 'D'}

m2 = {'A', 'D', 'C'}

• neither statement is valid
• m1 <| m2
• m1 > m2
• m1 == m2

9.3 Working with set

📝 9.3.1

Sets are unordered, so the elements might not be visited in the order they were
added. This is different from lists, which maintain the order of insertion.

If the set is for example {1, 3, 2}, the iteration order might be 1, 2, 3 or another
variation.

Set | FITPED AI

205

Sets in Python are iterable, meaning we can loop through their elements one by one,
just like with lists or tuples. This allows us to perform actions on each item in the
set, such as printing, modifying, or performing calculations.

We can use a for loop to visit each element in a set.

Looping through a set

colors = {"red", "blue", "green"}

for color in colors:

 print(color)

Program output:
blue

green

red

📝 9.3.2

Complete the code that prints the list of words whose number of characters is
greater than 3

my_set = {'Mom', 'had', 'Ema', 'at', 'home', 'for', 'one',

'hour'}

for _____ _____ _____:

 if _____(i) _____ 3:

 print(i)

• my_set
• len
• size
• i
• in
• of
• >
• ==
• length
• <|

📝 9.3.3

Sets in Python are inherently unordered, meaning the sequence of elements is not
guaranteed. If you need a consistent order or want to arrange the elements, you can
convert the set into a list or tuple. This transformation allows you to manipulate the
elements in a predictable sequence.

We can first convert the data and then work with them or order them:

colors = {"red", "blue", "green", "yellow", "magenta"}

Set | FITPED AI

206

for color in colors:

 print(color, end=" ")

print()

l_colors = list(colors)

for i in range(len(l_colors)):

 print(l_colors[i], end=" ")

print()

Converting a list to a sorted list

sorted_colors = sorted(l_colors)

print(sorted_colors)

Program output:
red green yellow magenta blue

red green yellow magenta blue

['blue', 'green', 'magenta', 'red', 'yellow']

• or we can create ordered list directly from set:

colors = {"red", "blue", "green", "yellow", "magenta"}

for color in colors:

 print(color, end=" ")

print()

Converting a list to a sorted list

sorted_colors = sorted(colors)

print(sorted_colors)

Program output:
red green yellow magenta blue

['blue', 'green', 'magenta', 'red', 'yellow']

By converting a set into a list or tuple, we gain control over the order of elements.
Sorting further enhances usability, making it easier to work with data in a structured
and predictable way.

📝 9.3.4

Select correct ways to transform set b to list a:

b = {1, 2, 3, 4}

• a = sorted(b)
• a = list(b)
• a = [] + b
• a = [b]
• a += b

Set | FITPED AI

207

📝 9.3.5

Find out all the different digits that are in the given number.

To determine all the different digits in a given number, we can use a set. Sets
naturally eliminate duplicates, making them ideal for this task.

• we are not interested in how many times they are repeated, only which ones
occur there

• so we will create a set to which we will add elements
• adding a duplicate element does nothing
• after passing the number, we will list ordered digits

Input number

number = input("Enter a number: ")

Create an empty set

ud = set()

Add each digit to the set

for digit in number:

 if digit.isdigit(): # Check if the character is a digit

 ud.add(digit)

Display the unique digits

print("Unique digits in the number:", sorted(ud))

Program output:
Enter a number: 25878444888Unique digits in the number: ['2',

'4', '5', '7', '8']

📝 9.3.6

Complete the code that finds out which letters appear in the entered word,
regardless of their size. The result will be displayed as ordered lowercase letters:

word = input()

vowels = set('aeiouAEIOU')

result = _____()

for char in word:

 if char _____ vowels:

 result.add(char._____())

print(_____(result))

• sort
• upper
• lower

Set | FITPED AI

208

• sorted
• of
• list
• order
• in
• set

9.4 Programs (set)

⌨ 9.4.1 List of participants

Write a program that reads from the input a list of last names of the tour
participants. The number of participants is unknown, but ends with 0 at the input. It
is possible that some participants are duplicated in the list.

Ensure that each participant is in the list only once, and after loading, list the list in
alphabetical order.

input:

Pear

Small

Green

Pear

Cruel

0

output:

[Cruel, Green, Pear, Small]

⌨ 9.4.2 A simple list

Write a program that reads from the input a list of numbers specified in the lines
below. The list is terminated by the value 0.

Let the program load the data into a set-type list and then print it out. Create a
second set in which you put only the odd numbers from the first set. Print the
contents of the new ordered set again. Print both sets in ascending order.

input:

1

5

4

8

7

3

Set | FITPED AI

209

21

0

output:

{1, 3, 4, 5, 7, 8, 21}

{1, 3, 5, 7, 21}

⌨ 9.4.3 Nice or Smart

The university organized the Nice and Smart competition. She created two groups
of contestants, coding them with random numerical values for anonymity. Each
competitor will receive a participation medal and at the same time will take part in a
joint lunch.

At the entrance, in the first row there is a list of contestants registered for the
handsome competition round and in the second row a list of registered competitors
for the smart competition.

Write a program that prints a list of all participants who will receive lunch (that is,
each one only once) and in the next line a list of contestants who participated in
both contests. Arrange the data in both cases (as numbers).

input: 1 8 -3 4

1 8 5

output: -3 1 4 5 8

1 8

input: 1 2 3 4

5

output: 1 2 3 4 5

empty set

⌨ 9.4.4 Persons in the object (ID)

Write a program that will store a list of people who entered and left the building
based on their personal numbers.

If a person who is already registered in the facility enters the facility, they should
not be added to the list, if the person leaves the facility, they should be removed
from the list.

If you try to remove a person from the list who is not on it, let it be written:
"VIOLATION "+ number of the infringer. Use the set data type, with input coded as 1,
output coded as 0.

Finally, print the list in ascending order via set listing.

Entry will be implemented as follows:

Set | FITPED AI

210

• the first value will represent the number of operations to be performed
• it will be followed by entry/exit operations and the person's personal number.

For example for input:

6

0 3

1 2

1 9

1 4

0 2

1 4

the output would be:

VIOLATION 3

{4, 9}

⌨ 9.4.5 Persons in the building (surname)

Write a program that will keep a list of people who have entered and exited the
facility based on their last names.

If a person who is already registered in the building enters the building, he should
not be added to the list.

If the person leaves the facility, let him be removed from the list.

If you try to remove a person from the list who is not on it, let it be written:
"VOILATION " + the person's name.

Use the set data type, with input coded as 1, output coded as 0.

Finally, print alphabetically via set printout.

Entry will be implemented as follows:

• the first value will be the number of operations to perform
• it will be followed by entry/exit operations and the person's personal number.

For example for entry:

6

0 Skalka

1 Hruska

1 Slivka

1 Kapusta

Set | FITPED AI

211

0 Hruska

1 Ceresna

the output would be:

VIOLATION Skalka

{Ceresna, Kapusta, Slivka}

⌨ 9.4.6 Reward of the faithful

Two nightclubs have opened in the university town, which keep records of who
visits them. Many visitors walk from one to the other, always looking for something,
which complicates traffic and disturbs residents living nearby. The city has
therefore decided to reward visitors who do not move at night. At the entrance, the
names are separated by spaces, while the first line contains the visitors of the first
company, the second the visitors of the second. Write a list of those who were
faithful that day - they were only in one business.

Be careful and always print out each set's elements in ascending order!

input: Miranda Priscilla Penelope

Antonia Eugenia Felicia Miranda Octavia Penelope Fabia

Priscilla

output: Antonia Eugenia Fabia Felicia Octavia

input: Flip Flop Flap

Flip Flop Flap FantasticEd

output: FantasticEd

⌨ 9.4.7 Happy string

At the input there is a list of students who came for the exam. Professor has a good
habit of having a text string generated every day, and students whose name starts
with it get the exam automatically.

The second line contains the generated string.

Write a list of the names of students who remain in the exam and arrange it
alphabetically.

input: Peter Paul John Patrick Paula

Pa

output: John Peter

input: Amanda Ashly Aurel Barbara Betty Billy

xzy

output: Amanda Ashly Barbara Aurel Billy Betty

Set | FITPED AI

212

⌨ 9.4.8 Word generator

Write a program that, for a given list of characters, generates all words consisting
of three different CAPITAL letters.

Print the result in alphabetical order.

Assume that the characters in the generator can be repeated and there can also be
numbers in it. For example for entry:

AB/1C112A4

the will be result:

{ABC, ACB, BAC, BCA, CAB, CBA}

Dictionary

Chapter 10

Dictionary | FITPED AI

214

10.1 What is dictionary

📝 10.1.1

A dictionary is a Python data structure that organizes data into key-value pairs. It
works like a real dictionary where you look up a word (key) to find its meaning
(value).

• Keys are unique identifiers used to access values. Keys must be immutable
within the program, they can be strings, numbers or tuples.

• Values are pieces of data associated with each key. Values can be any data
type, such as strings, numbers, lists, or even other dictionaries. We can
change them during the existence of the item.

Create a dictionary

student = {

 "name": "Alice",

 "age": 20,

 "grade": "A"

}

print(student)

Program output:
{'name': 'Alice', 'age': 20, 'grade': 'A'}

We created a dictionary with name student, which stores information about a
student:

• Key: "name", Value: "Alice"
• Key: "age", Value: 20
• Key: "grade", Value: "A"

📝 10.1.2

A dictionary is a data structure that organizes data into key-value pairs, where:

• keys are immutable, values are mutable
• keys are mutable, values are immutable
• both, keys and values are mutable
• both, keys and values are immutable

📝 10.1.3

Data access and modification

The dictionary is dynamic, allowing us to update, add, or remove items as needed.

Dictionary | FITPED AI

215

To retrieve a value, we can use the associated key. For example, if we have a
dictionary with information about a student, we can use the key like "name" to
access their name.

student = {

 "name": "Alice",

 "age": 20,

 "grade": "A"

}

print(student["name"])

Program output:
Alice

To change the value, e.g. name we use assigning a new value to the given key:

student["name"] = 'Alicia'

print(student)

Program output:
{'name': 'Alicia', 'age': 20, 'grade': 'A'}

While assigning a value to an existing key changes the value part, assigning a value
to a key that does not exist yet creates a new pair - a dictionary entry.

Add a new key-value pair

student["subject"] = "Math"

student["grade"] = "A+"

print(student)

Program output:
{'name': 'Alicia', 'age': 20, 'grade': 'A+', 'subject':

'Math'}

It is also possible to delete an existing pair:

del student["age"]

print(student)

Program output:
{'name': 'Alicia', 'grade': 'A+', 'subject': 'Math'}

📝 10.1.4

How can you add a new key-value pair to a dictionary?

• dictionary["key"] = "value"
• dictionary.add("key", "value")
• dictionary.insert("key", "value")

Dictionary | FITPED AI

216

• dictionary.append("key", "value")

📝 10.1.5

We can also use dictionary as a list with named values. Let's create e.g. list of
employees with their salaries.

d = {'Adam':1500, 'Beta':1800, 'Cynthia':1578, 'Damian': 1384}

print(d)

Program output:
{'Adam': 1500, 'Beta': 1800, 'Cynthia': 1578, 'Damian': 1384}

The aim of the dictionary in this case is: creating a list of unique objects and
assigning a value to them and subsequently, getting a pair for the unique value that
corresponds to it For the unique Adam, we get his salary:

print(d['Adam'])

Program output:
1500

📝 10.1.6

How many elements will be in the dictionary after performing the following
operations

d = {'Adam':1500, 'Beta':1800, 'Cynthia':1578, 'Damian': 1384}

d['Beta'] = 2000

del(d['Cynthia'])

d['Milo'] = 1800

d['Bela'] = 1650

d['Cynthia'] = 1700

del(d['Milo'])

d['Charles'] = 1980

print(len(d))

• 6
• 4
• 5
• 7

📝 10.1.7

Basic operations

A simple operation is to find the number of elements - we use the standard function
len():

Dictionary | FITPED AI

217

d = {'Adam':1500, 'Beta':1800, 'Cynthia':1578, 'Damian': 1384}

student = {

 "name": "Alice",

 "age": 20,

 "grade": "A"

}

print(len(d))

print(len(student))

Program output:
4

3

Command clear() is used to clear the entire list.

d.clear()

print(d)

Program output:
{}

Note that the notation for an empty dictionary is the same as for a set - {}.

The difference between an empty dictionary and an empty set is how they are
created:

• Empty dictionary: {} - by default curly braces without any elements define an
empty dictionary in Python.

• Empty set: set() - you must explicitly use the set() function to create an
empty set, because {} is reserved for dictionaries

Curly braces {} are used for both dictionaries and sets, but the context determines
their purpose:

empty_dict = {} # This creates an empty dictionary.

empty_set = set() # This creates an empty set.

📝 10.1.8

How do we distinguish between the creation of an empty dictionary and a set:

• empty_dict = {}, empty_set = set()
• empty_dict = dict(), empty_set = {}
• empty_dict = {}, empty_set = {}
• empty_dict = dict(), empty_set = set()

Dictionary | FITPED AI

218

📝 10.1.9

Various data acquisition options

A dictionary is created by pairing keys with values. We can access the value
corresponding to a key by placing the key inside square brackets:

d = {"name": "Alice", "age": 25}

print(d["name"])

Program output:
Alice

But, if we try to access a key that doesn't exist, we'll encounter an error:

print(d["surname"])

Program output:
KeyError

'surname'

To avoid this, you can use safer alternatives.

The get() method provides a safer way to access values in a dictionary.

• If the key exists, it will return the associated value.
• If the key doesn't exist, it will not raise an error but instead will return a

default value. By default, this value is None, but you can specify a different
value as the second parameter.

print(d.get("name")) # Output: Alice

print(d.get("address")) # Output: None

Using get() with a default value

print(d.get("address", "Unknown")) # Output: Unknown

Program output:
Alice

None

Unknown

Another method to access and remove a dictionary entry is pop(). The pop()
method removes the key-value pair from the dictionary and returns the
corresponding value. If the key doesn't exist, it raises a KeyError, unless you specify
a default value as the second argument.

Using pop() to remove and access an item

name = d.pop("name")

print(name) # Output: Alice

print(d) # Output: {'age': 25}

Dictionary | FITPED AI

219

Using pop() with a default value

address = d.pop("address", "Unknown")

print(address) # Output: Unknown

print(d) # Output: {'age': 25} (No "address" key)

Program output:
Alice

{'age': 25}

Unknown

{'age': 25}

These methods allow us to handle situations where the key may not exist in a safer
and more controlled way.

📝 10.1.10

What is the main advantage of using the get() method when accessing a dictionary
value?

• It returns None when the key does not exist (or a default value if specified).
• It raises a KeyError when the key does not exist.
• It automatically adds the key-value pair to the dictionary if the key does not

exist.
• It removes the key-value pair from the dictionary.

📝 10.1.11

Which of the following are true about the pop() method in a dictionary?

• It removes the key-value pair from the dictionary and returns the value.
• It raises a KeyError if the key is missing and no default value is provided.
• It returns None if the key is not found.
• It adds a default value to the dictionary if the key is missing.

10.2 Dictionary iterating

📝 10.2.1

Typical examples of use

Dictionaries are ideal for storing data where each key is unique and maps to a
corresponding value. Some typical use cases include:

• Identification number → Name of the person: each unique ID number maps
to a specific person’s name.

Dictionary | FITPED AI

220

• Name of the person → Telephone number: we can quickly look up a person’s
phone number using their name as the key.

• Municipality → District: a dictionary can map each municipality to its district
for easy lookup.

• Telephone number → Name of the person: quickly retrieve the name of a
person by their telephone number.

• Town → GPS coordinates of the center: town names can map to the GPS
coordinates of their central location.

• Domain address → IP address: map a domain name (like "example.com") to
its corresponding IP address.

• VRN (Vehicle Registration Number) → Customer: a dictionary can be used
to link a vehicle registration number to the customer’s details.

📝 10.2.2

In the following example:

Town, County

where both town and country are simple variables, what is the key and what is the
value?

• Town is key, Country is value
• Country is key, Town is value
• Town is key, Country is key
• Town is value, Country is value

📝 10.2.3

A dictionary in Python is a collection of key-value pairs, where each key is unique
and is associated with a value. When working with dictionaries, there are often
situations where we need to access or manipulate the data. One common operation
is looping through a dictionary.

When we loop through a dictionary, we are typically interested in either the keys, the
values, or both the keys and values. Python provides simple ways to access each
of these components while iterating.

Iterating through keys

By default, when you loop through a dictionary, you loop through the keys. This
means that for every cycle of the loop, the current element is the key of the
dictionary. If we need to access the corresponding value, we can use the key to
retrieve it.

d = {'Adam':1500, 'Beta':1800, 'Cynthia':1578, 'Damian': 1384}

for i in d.keys():

 print(i, d[i])

Dictionary | FITPED AI

221

Program output:
Adam 1500

Beta 1800

Cynthia 1578

Damian 1384

We can list the keys as an independent list or transform them into a field and use
them separately:

print(d.keys())

my_list = list(d.keys())

print(my_list)

Program output:
dict_keys(['Adam', 'Beta', 'Cynthia', 'Damian'])

['Adam', 'Beta', 'Cynthia', 'Damian']

📝 10.2.4

Which of the following statements is true when looping through a dictionary?

• By default, you loop through the keys of the dictionary.
• You can only loop through the values of the dictionary.
• You must use the .values() method to loop through the keys.
• You can loop through keys and values at the same time, but only by using

.keys().

📝 10.2.5

Iterating through values

If we are interested in only the values (and not the keys), you can use the .values()
method. This will give you an iterator that yields only the values associated with the
keys in the dictionary.

d = {'Adam':1500, 'Beta':1800, 'Cynthia':1578, 'Damian': 1384}

for i in d.values():

 print(i)

Program output:
1500

1800

1578

1384

As in the case of keys, we can also transform values into a field and then use them
independently:

Dictionary | FITPED AI

222

print(d.values())

my_list = list(d.values())

print(my_list)

Program output:
dict_values([1500, 1800, 1578, 1384])

[1500, 1800, 1578, 1384]

📝 10.2.6

What does the .values() method return when used with a dictionary?

• A list of all the values in the dictionary
• The keys of the dictionary
• A list of all the dictionary items (key-value pairs)
• A set of all the values in the dictionary

📝 10.2.7

Looping through both keys and values

This is the most common approach when we need to perform actions that involve
both the key and the value. For instance, when creating a report from a dictionary,
where we display both the item names (keys) and their corresponding quantities
(values).

d = {'Adam':1500, 'Beta':1800, 'Cynthia':1578, 'Damian': 1384}

for i in d.items():

 print(i)

Program output:
('Adam', 1500)

('Beta', 1800)

('Cynthia', 1578)

('Damian', 1384)

Looping through dictionaries allows for flexible, dynamic processing of data stored
in key-value pairs. Since dictionaries are unordered collections, the order of
elements isn't guaranteed, but this doesn't affect the ability to loop through them
and access data efficiently.

This operation is commonly used when we need:

• to search for specific keys or values.
• to modify values based on certain conditions.
• to filter the data in the dictionary.

Dictionary | FITPED AI

223

📝 10.2.8

What does the .items() method return when used with a dictionary?

• A list of tuples, each containing a key and its corresponding value
• A list of all the keys in the dictionary
• A list of all the values in the dictionary
• A set of tuples, each containing a key and its corresponding value

10.3 Typical examples

📝 10.3.1

Searching information I.

Searching in a dictionary is one of the most useful operations in programming. The
idea behind searching a dictionary is to find the correct pair of key and value that
meets our needs.

Consider a dictionary where each key is a word in English, and its corresponding
value is the foreign language equivalent. This is an example where the key is the
word in one language (e.g., English) and the value is the translation of that word in
another language.

Let's consider an example where we have a dictionary mapping English words to
their Spanish equivalents.

English to Spanish dictionary

translations = {

 "apple": "manzana",

 "book": "libro",

 "house": "casa",

 "dog": "perro"

}

If we want to find the Spanish word for apple, we simply access the dictionary with
the key "apple":

en = "apple"

sp = translations[en]

print(f"The Spanish word for '{en}' is '{sp}'.")

Program output:
The Spanish word for 'apple' is 'manzana'.

In this case, the key is "apple", and the value is "manzana".

Dictionary | FITPED AI

224

If we want to find which English word corresponds to the Spanish word "libro", we
need to search through all the dictionary values. Here's an approach to achieve
that:

sp_word = "libro"

for en, sp in translations.items():

 if sp == sp_word:

 print(f"The English word for '{sp_word}' is '{en}'.")

 break

Program output:
The English word for 'libro' is 'book'.

• translation.items() represents a list of pairs (tuples). So we can iterate
through this list using two variables - the first represents the key, the second
the value of the values of the individual elements.

📝 10.3.2

What happens if you try to access a non-existent key in a dictionary using square
brackets?

• It raises a KeyError.
• It returns None.
• It adds the key with a default value.
• It ignores the operation.

📝 10.3.3

Handling missing keys or values

When searching for a key or value in a dictionary, it's important to handle situations
where the desired element is not found. Here’s how to manage situation with
missing key:

English to Spanish dictionary

translations = {

 "apple": "manzana",

 "book": "libro",

 "house": "casa",

 "dog": "perro"

}

en = "juice"

sp = translations.get(en, 'not found')

print(f"The Spanish word for '{en}' is '{sp}'.")

print("The Spanish word for 'home' is

",translations.get('home'),".")

Dictionary | FITPED AI

225

print("The Spanish word for 'apple' is

",translations.get('apple'),".")

Program output:
The Spanish word for 'juice' is 'not found'.

The Spanish word for 'home' is None .

The Spanish word for 'apple' is manzana .

We will use the get() function, which, in its basic form, returns None if the specified
key does not exist. Alternatively, we can provide a second parameter, which will be
returned as the default value if the key is not found.

To find if a specific value exists, you can use the in operator with
dictionary.values():

sp_word = "libero"

if sp_word in translations.values():

 for en, sp in translations.items():

 if sp == sp_word:

 print(f"The English word for '{sp_word}' is '{en}'.")

 break

else:

 print("Value not found.")

Program output:
Value not found.

📝 10.3.4

What happens when you use the get() function with a non-existent key and no
default value is provided?

• It returns None.
• It raises a KeyError.
• It removes the key from the dictionary.
• It creates a new key with a None value.

📝 10.3.5

Which of the following are valid ways to avoid an error when searching for a key
that might not exist?

• Use the get method.
• Provide a default value with the get method.
• Use the pop method without arguments.
• Directly access the key using square brackets.

Dictionary | FITPED AI

226

📝 10.3.6

Searching information II.

A dictionary can be part of a list and describe the properties of the objects in the
list.

Record information about students, find out how many men and women are on the
list.

We will record about students: name, gender, year of birth, residence

• the data will not be placed in the unnamed columns of the table
• each element of the list will have a data description (key) and its value
• entering the key value is also possible in the following way:

s1 = {'name':'Jozef', 'gender':'man', 'year': 1998,

'residence': 'Paris'}

s2 = {'name':'Klement', 'gender':'man', 'year': 1968,

'residence': 'Prague'}

s3 = {'name':'Jana', 'gender':'woman', 'year': 1999,

'residence': 'Bratislava'}

s4 = {'name':'Juan', 'gender':'man', 'year': 1988,

'residence': 'Madrid'}

z = list()

z = z + [s1]

z = z + [s2]

z = z + [s3]

z = z + [s4]

print(z)

Program output:
[{'name': 'Jozef', 'gender': 'man', 'year': 1998, 'residence':

'Paris'}, {'name': 'Klement', 'gender': 'man', 'year': 1968,

'residence': 'Prague'}, {'name': 'Jana', 'gender': 'woman',

'year': 1999, 'residence': 'Bratislava'}, {'name': 'Juan',

'gender': 'man', 'year': 1988, 'residence': 'Madrid'}]

How to count men and women? The easiest way is iterate list and check gender for
every item:

man_count = 0

woman_count = 0

Iterate through the list and check gender

for person in z:

 if person['gender'] == 'man':

Dictionary | FITPED AI

227

 man_count += 1

 elif person['gender'] == 'woman':

 woman_count += 1

print(f"Number of men: {man_count}")

print(f"Number of women: {woman_count}")

Program output:
Number of men: 3

Number of women: 1

📝 10.3.7

Complete the code to find the number of registered persons born before the
specified year:

s1 = {'name':'Jozef', 'gender':'man', 'year': 1998,

'residence': 'Paris'}

s2 = {'name':'Klement', 'gender':'man', 'year': 1968,

'residence': 'Prague'}

s3 = {'name':'Jana', 'gender':'woman', 'year': 1999,

'residence': 'Bratislava'}

s4 = {'name':'Juan', 'gender':'man', 'year': 1988,

'residence': 'Madrid'}

my_list = _____s1,_____,s3,s4_____

border_year = 1980

cnt = 0

for person in _____:

 if person['_____'] _____ border_year:

 cnt __________ 1

print(cnt)

• ==
• =
• +
• [
• s1
• >
• s2
• {
• <
• year
• -
• my_list
•]
• }

Dictionary | FITPED AI

228

📝 10.3.8

Complete the code to increase age of all registered persons:

my_list = [{'name':'Jozef', 'age': 19_____,

_____'name':'Klement', 'age': 20}, {'name':'Jana', 'age':

20_____, {'name':'Juan', 'age': 30}]

print(my_list)

for _____ in _____:

 person['_____'] = person['_____'] _____ 1

print(my_list)

• name
• name
• age
• -
• year
• }
• (
• age
• }
• }
• person
• my_list
• year
• +
• *
• {
•)
•)
• (

📝 10.3.9

Filtering data

Imagine we have a dictionary of students with their names as keys and their grades
as values. We want to filter out only the students who scored above 70.

students = { "Alice": 85, "Bob": 65, "Charlie": 72, "Diana":

90, "Eve": 68 }

filtered_students = {name: grade for name, grade in

students.items() if grade > 70}

print(filtered_students)

Program output:
{'Alice': 85, 'Charlie': 72, 'Diana': 90}

Dictionary | FITPED AI

229

The students dictionary contains names and grades. A dictionary comprehension is
a concise way to create a dictionary based on an existing one while applying a
condition or transformation.

• {} - curly braces indicate that we are creating a dictionary.
• name: grade is the format for a key-value pair in the resulting dictionary.
• for name, grade in students.items() is the iteration over the students

dictionary, where students.items() gives pairs of keys (name) and values
(grade) and each key-value pair is unpacked into the variables name and
grade.

📝 10.3.10

Imagine we have a dictionary where the keys are product names and the values are
their prices. We want to create a new dictionary with only the products that cost
more than $50. Fill in the following code:

products = {"Laptop": 1200, "Mouse": 25, "Keyboard": 45,

"Monitor": 300, "Headphones": 70, "USB Cable": 15}

expensive_products = {__________ _____ for product, price

_____ products._____() if _____ > 50}

print(expensive_products)

• for
• items
• in
• product
• price
• :
• of
• ,
• keys
• product
• price
• values
• ;

10.4 Programs (dictionary)

⌨ 10.4.1 List of residents

Write a program that will register the list of house owners in the settlement. Record
them in the house number (as a number) and name (string) structure. The house
number and the name are entered in the lines below each other.

Dictionary | FITPED AI

230

Make sure the loading continues until the program reads 0 on the input.

If there is a duplicate in the list, update the name to the one entered later. Finally,
print the list.

input:

9

Smith

10

Slivka

8

Sekerka

2

Smith

6

Bulla

10

Slivka

0

output:

{2: 'Smith', 6: 'Bulla', 8: 'Sekerka', 9: 'Smith', 10:

'Slivka'}

⌨ 10.4.2 Dictionary

Write a program providing the functions of a dictionary, which loads pairs of words
and their translation. Pairs are printed in rows below each other. Make sure the
loading continues until the program reads 0 on the input.

Then load the words from the input and print their translation until you hit 0 again. If
you find the given word, write the translation, otherwise print "x"

input:

matka

mother

otec

father

syn

son

0

syn

dcéra

matka

0

Dictionary | FITPED AI

231

output:

son

x

mother

⌨ 10.4.3 Capital cities I.

Create an application that reads state - capital city pairs and prints the capital city
based on the state input. At the input there will be a list of state and capital pairs -
each on a separate line. The list will be terminated with a value of 0.

Subsequently, states will be entered at the input, for which the capital city will be
printed. If the entered state does not exist in the list, x will be written. The list of
queries ends with the value 0 again.

Finally, print the list in a structure organized by states.

input:

Hungary

Budapest

Slovakia

Bratislava

Slovakia

Bratislava

Great Britain

London

Spain

Madrid

Austria

Vienna

Austria

Vienna

Italia

Roma

0

Czechia

Great Britain

Slovakia

0

output:

x

London

Bratislava

Dictionary | FITPED AI

232

{Austria=Vienna, Great Britain=London, Hungary=Budapest,

Italia=Roma, Slovakia=Bratislava, Spain=Madrid}

⌨ 10.4.4 Capital cities II.

Create an application that reads state - capital city pairs and prints the capital city
based on the state input. At the input there will be a list of state and capital pairs -
each on a separate line. The list will be terminated with a value of 0.

Print in a structure organized by states. Create an inverted structure from this
structure so that when a city is entered, it prints the state it belongs to.

Subsequently, cities will be entered at the input, for which the state will be printed.
If the specified city does not exist in the list, x will be displayed. The list of queries
ends with the value 0 again.

Finally, print the list in a structure organized by cities.

input:

Austria

Vienna

Spain

Madrid

Hungary

Budapest

Austria

Vienna

Hungary

Budapest

Poland

Warszava

0

Warszava

Paris

Vienna

Warszava

Vienna

Budapest

0

output:

{Austria=Vienna, Hungary=Budapest, Poland=Warszava,

Spain=Madrid}

Poland

x

Austria

Dictionary | FITPED AI

233

Poland

Austria

Hungary

{Budapest=Hungary, Madrid=Spain, Vienna=Austria,

Warszava=Poland}

⌨ 10.4.5 Car rental

Design a structure that will ensure the tracking of borrowed cars in the car rental
office. The car will be identifiable by VIN and the person by name.

• If the car is rented by a person who already owns a car, it is fine, one person
can rent more than one car.

• If someone wants to borrow the car that is rented, it is not allowed - it will
say "OCCUPIED".

• Make it possible to return the car - then the car-person pair will be removed
from the list.

Borrowing will be coded as 1, return as 0, the question whether the car is rented will
be coded as 2 and the answer to it will be "YES" or "NO".

Entry will be implemented as follows:

• the first value will represent the number of operations to be performed
• it will be followed by input/output/query and VIN operations.

For example for the input:

6

1 NR12234 Skalka

1 NR12345 Hruska

2 NR11111

1 NR12234 Slivka

1 NR00000 Paradajka

2 NR00000

the output will be:

NO

OCCUPIED

YES

⌨ 10.4.6 Dictionary manipulation

Design a structure that will ensure the storage of words in the English-Slovak
dictionary. Make sure to add en/sk pairs.

Dictionary | FITPED AI

234

The addition will be coded as 1, the query for an English word as 2, while the
answer will be either the Slovak translation or x, if the word is not in the dictionary.

Entry will be implemented as follows:

• the first value will represent the operation to be performed
• it will be followed by space-separated input/output/query data
• query will be terminated with a value of 0

For example for the input:

1 mother matka

1 dog pes

2 cat

1 hen sliepka

1 son syn

2 dog

0

the output will be:

x

pes

⌨ 10.4.7 Character sort

Write a program that will compute the number of occurrence characters in a given
string. The input contains the string of characters.

Print each character of the string and the number of its occurrences (separated by
a space) in the descending order of these numbers of occurrences.

input : Java

output: a:2 J:1 v:1

input : The string for character counting

output: :4 r:4 n:3 c:3 t:3 h:2 i:2 a:2 o:2 e:2 g:2 f:1 s:1

T:1 u:1

⌨ 10.4.8 Chemical Calculator

Write a program to calculate the mass of molecules of chemical compounds given
by the formula.

At the input is the formula of the compound. It is true that each element in the
formula can be uniquely identified - the mark has one or two characters and is

Dictionary | FITPED AI

235

followed either by another mark or a numerical value expressing the number of
atoms.

Data on the weights of chemical elements is contained in the text file elements.csv
(we will be interested in the chemical symbol of the element, which is the second
data and the molar mass of its atom, which is the last data in the line). Load the
appropriate part of them into the dictionary.

elements.csv:

Hydrogen,1,H,1.01

Helium,2,He,4.00

Lithium,3,Li,6.94

Beryllium,4,Be,9.01

Boron,5,B,10.81

Carbon,6,C,12.01

Nitrogen,7,N,14.01

Oxygen,8,O,16.00

...

To calculate the mass of sulfuric acid (H2SO4), we must add 2x the mass of a
hydrogen atom (H), 1x the mass of a sulfur atom (S) and 4x the mass of an oxygen
atom (O).

If an element tag that does not exist (not in our table) appears in the parsed
formula, print an error message.

input: H2O

output: 18.02

input: CO2

output: 44.01

input: Hi3

output: error

input: H2SO4

output: 98.08

Dictionary | FITPED AI

236

