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1.1 Definition 

🕮 1.1.1 

The effort to effectively analyse the data associated with the learning process has 
been in the focus for many years, while the individual periods and disciplines that 
covered this issue have always been closely linked to the tools and approaches that 
maturity of the time brought. Currently, we are faced with the term Learning Analytics 
(LA), which represents a research discipline that deals with collecting, measuring and 
analysing available data on different types of users in order to understand and 
optimize not only the learning process, but also the entire environment in which the 
learning process takes place. 

In the decision-making process, LA uses various techniques and methods based on 
artificial intelligence (AI) and machine learning (ML), statistics, data visualization, 
multimodal analysis, or mixed quantitative and qualitative methods.  

🕮 1.1.2 

Analytics generally involves the use of data and quantitative analysis in the decision-
making process. Behind the increase in its popularity, and especially its importance, 
we must see the development of computational methods, the enormous increase in 
the volume of data as well as the availability of computational resources. It is 
therefore logical that interest in deploying analytical approaches in the educational 
context has increased significantly in the last decade. 

We can list three factors that may have led to recent popularity of analytics. The first 
factor is the volumes of data collected in educational institutions, which have 
increased significantly, whether from learning management systems or from student 
and academic information systems. The second factor is the actual use of various 
forms of online and blended learning, which have brought with them several 
problems with learning itself, such as a lack of motivation of students, difficulties for 
educators to obtain direct feedback on the level of interest of students or to verify 
the degree of understanding of the submitted content by students. Finally, the third 
factor was the fear of loss of competitiveness, as several countries are increasingly 
drawing attention to and interested in improving the development of higher 
education, offering better learning opportunities leading to better employability in the 
labour market.  

🕮 1.1.3 

According to Bienkowski, LA emphasizes data collection and analysis, as well as the 
processes that companies engaged in various forms of education continue to 
implement, while LA also seeks to understand the system as a whole and support 
the decision-making process. Unlike related disciplines, it does not deal solely with 
the development of new methods and techniques of data analysis, but instead deals 
with the application of known methods and models in order to answer important 
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questions that affect the systems and organization of education in these societies 
(Bienkowski, Feng and Means 2012). 

🕮 1.1.4 

Bichsel (Bichsel 2012) subsequently defines LA as the use of data, statistical 
analysis, exploratory and predictive models to gain knowledge and research complex 
issues related to the stakeholders of the educational process, the educational 
environment, and the support of decision-making processes necessary for their 
management. 

🕮 1.1.5 

The authors (Pena-Ayala, Cardenas-Robledo, and Sossa 2018) state that LA focuses 
on creating systems capable of customizing content, support levels, and other 
personalized services through data collection, processing, and analysis in a way that 
minimizes delays between data collection and actual use. At the same time, the 
authors provide their own definition, in which LA represents a research line that seeks 
to study, understand, describe, explain and predict the learning process, both from 
an experimental and behavioural point of view, that happens with the help of 
information systems and applications in order to increase teaching effectiveness, 
the resulting skills and the satisfaction of user stakeholders. 

🕮 1.1.6 

However, there are other less formal definitions of LA. For example, Duval (Duval 
2012) states that LA's goal is to collect the digital footprints students leave behind 
and effectively use those clues to improve the learning process, decision-making 
process, as well as the entire environment in which the process takes place.  

🕮 1.1.7 

Another definition sees LA as the process of identifying problems and applying 
statistical models and analysis to solve them using simulated or real data. Barneveld 
et al. (Barneveld, Arnold, and Campbell 2012) propose that LA should be considered 
as a more general concept that covers several more narrowly defined areas of 
research with its themes. They define LA as the use of analytical techniques that 
make targeted use of educational, curricular, and support resources to support 
decision-making and achieve specific educational and management goals.  

🕮 1.1.8 

Finally, the JISC initiative for the LA domain in the UK, defines LA as the process of 
identifying problems, describing them, and then applying statistical models and 
analyses not only to solve them, but also subsequently generalizing the findings to a 
whole set of similar problems in the future (Jordaan and Van der Merwe 2015). 
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The preceding definitions define LA in general. A closer look at the definition of LA 
from the perspective of identifying an appropriate approach to effective adaptation 
or implementation of LA benefits in education societies is characterized by several 
other definitions.  

🕮 1.1.9 

Adejo and Connolly (Adejo and Connolly 2017) narrowed down the definition of LA to 
its use in the context of universities and virtual learning environments. The authors 
understand LA as collecting, storing and analysing data from learning management 
systems and VLE in order to gain various useful insights into users, their behaviour 
and preferences, and thus support decision-making that will have a lasting impact on 
different types of users and the organization itself. In other words, LA's main intent 
is to collect data for the development of models, algorithms, and processes that can 
be further used and generalized to improve the performance of all parties involved in 
the learning process. 

🕮 1.1.10 

Similarly, Siemens and Baker (Siemens and Baker 2012) define LA as the discipline 
that deals with the measurement, collection, analysis, and reporting of data 
generated during the activities of different groups of people in the framework of their 
work in higher education institutions. According to the authors, the goal is to 
understand, optimize or improve the learning process and support decision-making 
at different levels of management. At the same time, LA uses the same approaches 
to optimize the entire learning environment. The authors add that LA focuses on 
evaluating user behaviour in the context of the learning process, analysing it, and 
then interpreting it to understand it more deeply with the help of new models of 
learning, learning, effective organizational management, and decision support.  

🕮 1.1.11 

Johnson et al. add that LA represents a research area that uses data analytics to 
support decision-making at all levels of educational organization (Johnson, Adams 
Becker, Cummins, Estrada, Freeman, and Ludgate 2013). It has been confirmed that 
LA can be beneficial for the management of the organization in terms of better 
allocation of organizational resources, higher number, and quality of knowledge of 
graduating graduates as well as more efficient spending of invested funds (Bichsel 
2012). 

1.2 Objectives and related topics 

🕮 1.2.1 

Learning analytics objectives are very diverse, as they are based on the requirements 
and expectations that individual stakeholders in the educational process must meet. 
Unlike previous approaches focused on education data, LA emphasizes achieving a 
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state that directly results in added value for any of the stakeholders. Therefore, it is 
most often monitoring and analysis of the course of the learning process, prediction 
of results and progress in study, effective feedback, and intervention, or even 
personalization and adaptation of the educational environment. These processes in  
any form are inherently very complex, fully unexplored and provide ample space for 
research.  

More specifically, we can list the most often mentioned objectives of learning 
analytics (Papamitsiou & Economides, 2014): 

• monitor learners’ progress, 
• model learners/learners’ behaviour, 

• detect affects/emotions of learners, 

• predict learning performance/dropout/retention, 

• generate feedback, 

• provide recommendations, 
• guide adaptation, 

• increase self-reflection/ self-awareness, 

• facilitate self-regulation. 

Therefore, the main aim of this course is to introduce the student with this promising 
research discipline, determine learning analytics scope, show examples of methods, 
and point out its contribution to better understanding the stakeholders, who 
participate in the contemporary educational workspace.  

🕮 1.2.2 

At the core of LA are methods that use educational data to support the learning 
process, taking into account that there are many types of educational data with 
different characteristics such as their distribution, scope, size, and degree of privacy. 
In addition, LA is closely related to other research areas, such as Educational Data 
Mining (EDM), which focuses on data collection and the development of specific 
knowledge discovery methods for education, or Academic Analytics (AA), which 
focuses on applying business intelligence practices to analyse academic data to 
support institutional decision-making. 

🕮 1.2.3 

Educational Data Mining 

Educational Data Mining (EDM) is a relatively new scientific field, which arose as a 
natural consequence of the spread of the Internet, modern statistical methods, and 
e-learning itself. Since different virtual learning environments store a lot of data 
about their users, their work and habits, the idea of using advanced statistical 
methods seems completely natural.  
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EDM is then characterized as a research area that deals with the development of new 
techniques and methods, testing new theories of learning, searching for patterns of 
user behaviour in unstructured and structured data created by the interaction of 
different types of users in a certain virtual learning environment, educational 
software, intelligent or adaptive learning system, or specialized testing software 
(Romero, Ventura & Pechenizkiy, 2010). A more recent definition considers EDM to 
be an example of a scientific discipline that deals with developing methods for 
exploring unique types of data that come from a learning environment 
(Bakhshinategh, Zaiane, ElAtia and Ipperciel 2018) and using these methods to better 
understand the behaviour of all user stakeholders, related processes, and features of 
the environment in which learning takes place (Ferguson 2016).  

🕮 1.2.4 

The main objective of EDM is to analyse data coming from virtual learning 
environments and find answers to problem questions about the learning process as 
well as all e-learning. EDM focuses on the development of methods that will allow a 
better understanding of student behaviour and the learning process itself using 
virtual learning environments or using any educational software.  

EDM as a field has laid its foundation on research from other research areas, such 
as educational technology, pedagogy, psychology, e-learning and web log mining. At 
the same time, we must mention that the emergence and development of EDM 
methods is equally significantly influenced by dynamic developments in the field of 
the Internet, systems for learning management, intelligent education systems as well 
as in the field of adaptive educational hypermedia systems (Skalka et al., 2013). 

🕮 1.2.5 

Academic Analytics 

Academic analytics focuses on improving organizational processes, allocating 
resources and tools for measurement, comparing institutions using data about 
students, teachers and institutions. Academic analytics can therefore be understood 
as the application of business intelligence methods in an academic environment that 
highlights analyses at institutional, regional, and international levels. 

Academic analytics is an area that combines big datasets with statistical techniques 
and predictive modelling to improve decision-making, while helping institutions 
manage student success and accountability for their education. In the same work, 
the authors also develop the benefits of an analytical, data- and fact-based approach 
to support decision-making in a higher education institution instead of decision-
making based purely on intuition or accumulated experience. In particular, data 
mining is presented as a promising alternative to extracting knowledge from large 
amounts of data. The potential of this area can be seen for all stakeholders. Thus, 
academic analytics mainly concerns higher levels of education and adult learning, 
while learning analytics, which can currently be considered the overarching and most 
general name for the field exploring educational data, focuses more on transferring 
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the benefits of advanced analysis to learning and its management in any learning 
environment. 

1.3 Stakeholders 

🕮 1.3.1 

Learning analytics combines a wide range of techniques used to collect, store, 
visualize and report data used for administrative or pedagogical purposes. Whether 
it is through statistical techniques and predictive modelling, interactive visualizations 
or taxonomies and frameworks, the ultimate goal is to optimize the performance of 
both students and staff of an educational institution, improve pedagogical strategies, 
streamline institutional costs, improve student interaction with teaching materials, 
target potentially at-risk students, responsibly change pedagogical approaches to 
improve grading systems through real-time analysis and enable teachers to assess 
their own learning effectiveness. Stakeholders and related objectives are 
summarized as follows (Lang et al., 2021). 

🕮 1.3.2 

Student: 

• recommendations for educational activities, 

• different ways of teaching, 
• adaptive advice and recommendations, 

• discussion, 

• guidance in the learning process. 

🕮 1.3.3 

Teacher: 

• interest in course content, 

• analysis of student behaviour, 

• identification of at-risk students, 

• performance prediction, 
• grouping of students according to criteria, 

• search for weak points, 

• improving courses through more effective activities and customization. 

🕮 1.3.4 

Researcher: 

• evaluation of the learning management system, 
• evaluation of course content, 
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• comparison of available analytical models. 

🕮 1.3.5 

Education providers: 

• assistance in decision-making, 
• find effective ways to improve courses, 

• reducing school drop-out rates, 

• guidelines when selecting students. 

🕮 1.3.6 

Administrators: 

• support for the allocation of resources, 

• improvement of educational programs, 

• effective online (distance) learning, 

• evaluation of teachers and study programs. 

1.4 Challenges 

🕮 1.4.1 

As in the whole field of artificial intelligence, learning analytics faces many 
challenges, the fulfilment of which is a prerequisite for fully exploiting the potential 
that learning analytics can bring to education. LA's main challenges relate to: 

• technological aspects, 

• ethical aspects,  
• data integrity,  

• privacy, 

• managerial aspects. 

The purpose of LA is to use the data collected to optimize teaching and the 
environment in which learning takes place. The interventions derived from this can 
serve as a basis for developing measures to support risk groups and provide them 
with better assistance during their studies. Based on this, recommendations are 
proposed to support students in order to encourage them. Personalized learning 
environments come to the fore, providing students with appropriate visual results in 
an appropriate visual form. This could have the effect of motivating the student in 
terms of improving his attitude towards academic achievement.  
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🕮 1.4.2 

Choosing the right environment and the right visualization technique can be a big 
challenge for all parties involved. Because of the amount of data collected and the 
focus on quantitative metrics, interpreting this data can be incredibly difficult. 
Therefore, it may be more profitable not to provide the student with all the 
information related to his results. The educator can discuss the results with the 
student, however, researchers acting as educators need specialized training, focused 
on pedagogical and psychological skills, in order to correctly interpret data on 
student achievement. 

🕮 1.4.3 

Another challenge in the area is the data itself, as universities and colleges constantly 
analyse data from their students for a variety of reasons. LA can therefore be seen 
as an innovative continuation of this principle, applied to take advantage of modern 
technologies and various data sources available today. Data can be examined and 
analysed for their impact in the educational context to improve the quality of learning 
and teaching, as well as to increase students' chances of success.  

Universities, of course, require an individual's permission to collect and evaluate 
sensitive data for these purposes. Students must be aware of the purpose of data 
collection and the process of data analysis and must always be able not to disclose 
their data, of course, within the framework of applicable legislation. Thanks to 
consent, educators are able to monitor and analyse student behaviour during 
interaction with the learning management system. Access to this data must be 
ensured and institutions must adopt policies that deal with data protection and 
access. In addition, to ensure the best support and data quality, students must keep 
their data up to date, while complying with GDPR and data protection laws. 

🕮 1.4.4 

Another challenge in LA is the IT infrastructure in which the data resides. The first 
approach may be that the data is stored and processed at the university. This method 
has the advantage that data access and ownership is located at the university, which 
makes it easier to work with the data. However, it also presents certain 
disadvantages, within which you also need to think about the cost-benefit ratio, since 
such a solution can be quite expensive.  

The second approach concerns cooperation with external service providers. In this 
case, individual solutions can be used, as there are many providers available who can 
meet specific needs. The advantage is that the costs incurred should be somewhat 
easier to estimate and much lower than when providing a private, individual solution. 
The negative aspects of cooperation with an external service provider relate to issues 
of data access and ownership, as well as meeting the necessary security standards 
when working with sensitive data, such as student performance data. 
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Regardless of working with an internal or external service provider, it takes time to 
set up the right infrastructure. Therefore, considerable effort must be made from the 
outset to find possible solutions, saving time and resources when LA implementation 
becomes critically important (Leitner et al., 2017). 

🕮 1.4.5 

Another category of challenges connects the LA development and deployment 
process. It covers a wide range of development of various applications and modules, 
from the design of a simple questionnaire to the development of an enterprise 
software solution. In addition, activities cover research and development, 
modification, reuse, monitoring and maintenance of initiatives or projects. It is 
necessary to take into account the scalability of the implementation. The number of 
students can vary arbitrarily, which can lead to a completely new concept of existing 
infrastructure. In addition, processes that were first created manually must be 
redefined so that they can be executed at least semi-automatically or fully 
automatically. 

🕮 1.4.6 

Although student data is stored, this is usually done through several information 
systems – in different formats, on different servers, and with different data owners. 
The effort required to process all data can be challenging, posing an additional 
challenge in adapting the raw data into a format suitable for further analysis. This is 
a very complicated process that requires careful planning and rigorous final 
implementation.  

All LA implementations must ensure the privacy of stakeholders. Students need to 
trust finite systems, which is why keeping information private is of utmost 
importance. It is necessary to start minimizing the data collected and/or take steps 
to anonymize or pseudonymise the data. Even so, the situation can become very 
complex, e.g., when different data sources are merged, new and surprising results 
can be visualised and therefore new insights can be provided that were never 
intended. Since universities are huge institutions, there is a high risk of unauthorized 
persons accessing these interpretations of data (Leitner et al., 2017). 

Privacy is a fundamental right of every person and must be respected. This means 
that any LA implementation must take this into account from the very beginning. 
However, this is often difficult because merging data can result in complex 
situations. It is therefore recommended to work with the highest possible level of 
transparency. 

🕮 1.4.7 

Various ethical and practical concerns arise in the context of LA challenges, as there 
is potential to collect personalized data and intervene at the individual level (Prinsloo, 
Slade, 2015). Working with sensitive data is a particular challenge. If such 
information were made public, it could cause harm to a particular person. It is 
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therefore necessary to provide for restrictions on who has access to the information 
and for what purpose(s) it is used. 

Transparency is key, as is understanding the different needs of stakeholders. All 
objectives, objectives and benefits for the collection and use of data shall be 
explained in a clear and comprehensible manner.  

The above challenges and approaches that can be used to overcome them will help 
in the implementation of LA. The examples presented cover only a small range of 
problems and other potential problems may still arise. 
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2.1 LA basic elements 

🕮 2.1.1 

Learning Analytics 

Learning analytics is defined by SOLAR as the measurement, collection, analysis, and 
reporting of data about learners and their contexts, for purposes of understanding 
and optimizing learning and the environments in which it occurs” (SOLAR, 2011). We 
can say that learning analytics is an ecosystem of methods and techniques that 
successively gather, process, report and act on machine-readable data on an ongoing 
basis in order to improve the learning environments and experience (learn2analyse, 
2020). 

We will summarise the main characteristics of Learning analytics in this chapter. 

🕮 2.1.2 

Essential Element of Learning Analytics 

We can start with four essential elements involved in all learning analytics processes 
(learn2analyse, 2020): 

• Data, which creates as the primary analytics asset, is the raw material that 
gets transformed into analytical insights. Data in education includes 
information that is gathered in the learning process. Data relates to the 
learners, the learning environment, the learning interactions, and the learning 
outcomes.  

• Analysis is the process of transforming the collected data to obtain actionable 
information from them using a set of mathematical and statistical algorithms 
and techniques. During data is pre-processed, transformed, and modelled with 
the aim to discover hidden knowledge and support decision-making process 
and action. 

• Report is the most frequent form used to summarize what the analysis of the 
collected data can say about learning and to present this information in a 
meaningful manner. It is a set of techniques for organizing and presenting the 
results of the analysis of learners’ and learning data into charts and tables. 
Reports provide insights about the learning process stakeholder’s states 
during learning. Interpreting those insights can guide data-driven decision 
making to action taken. 

• Action is the goal of any learning analytics process. It can have a form of the 
informed decisions and the practical interventions that the educational 
stakeholders will undertake. The results of follow-up actions will determine 
the success or failure of the analytical efforts. Learning analytics is useful only 
if there is action as a result of its implementation. 

🕮 2.1.3 
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Learning Analytics Cycle 

Learning analytics research combines these four elements with the following steps 
to act in favour of all stakeholders, who participate in the learning process:  

• capture, 
• report, 

• predict,  

• act,  

• refine.  

While learning analytics starts with learners, capturing and gathering the raw data is 
the first step of the learning analytics cycle, following by introducing metrics for 
sharing a common understanding of the data in educationally meaningful ways. In 
other words, learner and contextual data are collected and transformed into metrics 
(analytics), according to the learning objective that needs to be addressed. 
Subsequently, the different types of metrics guide human decision-making and 
interventions. Data-driven decision-making requires integrity and quality to be 
ensured.  

🕮 2.1.4 

Subsequently, reports and analysis of the defined metrics can help predicting the 
future states of the learners and gaining insights into the learning processes. The 
cycle is not complete until these metrics are used to drive one or more interventions 
(actions) that have some effect on learners. As was already mentioned, delivering 
personalized learning action to everyone closes the cyclical process of learning 
analytics and generates new data about learners. 

 

We see that the role of the learner is fundamental in this process. Since learning 
analytics actions are extracted from the learners’ and learning data, we need to know 
what is the learner’s data that will be used in learning analytics, and what types of 
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learning analytics can be formed from the learner’s data. These questions will be 
discussed later. 

We will start with explanation what types of learning analytics we can use depending 
on data availability, quality, time for its analysis and expected type of intervention. 

🕮 2.1.5 

Learning Analytics Types  

Depending on the learning analytics objectives, we can obtain different learning 
analytics outcomes from the same or different learner and context data. We can 
select the following levels of the metrics according to their sophistication, the 
complexity of the analysis method employed, and the value the metrics can add to 
human decision-making (Lang, Siemens, Wise & Gasevic, 2017): 

1. Descriptive analytics - we use data aggregation and data mining to provide 
insight into the past and answer: “What has happened?” (e.g., reports and 
descriptions). 

2. Diagnostic analytics – we dissect the data with methods like data discovery, 
data mining and correlations to answer the question “Why did it happen?” (e.g., 
interactive visualizations). 

3. Predictive analytics – we utilize a variety of data to make the prediction and 
apply sophisticated analysis techniques (such as machine learning) to answer 
the question “What is likely to happen?” (e.g., trends and predictions). 

4. Prescriptive analytics – we utilize an understanding of what has happened, 
why it has happened and a variety of “what-might-happen” analysis to help the 
user determine the best action to take and answer the question “What do I 
need to do?” (e.g., alerts, notifications, recommendations). 
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2.2 Learning analytics data 

🕮 2.2.1 

Data Quality 

Data is generally considered high quality if it fit for [its] intended uses in operations, 
decision making and planning and data is deemed of high quality if correctly 
represents the real-world construct to which it refers. However, data often suffer 
from inaccuracies, biases or even manipulations and we should ensure to be as much 
reliable and valid as possible.  

Data quality is critical for educational institutes, as well. There are many aspects to 
data quality, which can be evaluated. We summarised the most frequent data quality 
aspects as follows: 

1. Completeness - There are no gaps in the data from what was expected to be 
collected and what was collected, i.e., there are no missing data. We can state 
the collected dataset is complete. 

2. Consistency - The data types must align and be compatible with the expected 
versions of the data being collected, i.e., there are no contradictions in the data 
types and the data are usable. 

3. Accuracy - Collected data are correct, relevant and accurately represent what 
they should. 

4. Timeliness - The data should be received at the expected time for the 
information to be utilized efficiently. 

5. Validity - A measurement is well-founded and likely corresponds accurately to 
the real world. 

6. Uniqueness - There should be no data duplicates reported. 

Among the 6 dimensions, completeness and validity usually are easy to assess, 
followed by timeliness and uniqueness. Accuracy and consistency are the most 
difficult to assess.  

🕮 2.2.2 

It is important to clarify that raw data quality strongly affects the analytics quality. 
Learning analytics transform of the raw learner and learning data collected, 
according to the objectives set. These metrics will next be treated as “data” 
themselves, and they will be subjected to further processing. Just like with any kind 
of data, quality also matters for learning analytics metrics: what the specific metrics 
can reveal is strongly dependent on their quality. In most cases, limited quality will 
have the direct result of lack of trust in the metrics, and consequently, poor decisions 
and gradual abandonment of the data-driven educational decision-support system. 
Poor quality data is troublesome (The data quality benchmark report, 2015). 
Educators cannot and will not trust insights that are acquired by processing 
corrupted, duplicate, inconsistent, missing, broken, or incomplete data. Learning 
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analytics metrics quality is expected to increase the value of the learner and learning 
data and the opportunities to use them properly (learn2analyze, 2018). 

🕮 2.2.3 

Data-driven Decision Making 

Data analytics refers to methods and tools for analysing large sets of different types 
of data from diverse sources, which aim to support and improve decision-making. 
Data analytics are mature technologies that are currently applied in real-life financial, 
business and health systems. The provision of educational data by itself does not 
automatically lead to improved teaching and learning process. What is most 
important is not the amount of data that we have access to, but what we do with it. 
How will we identify actionable insights from the educational data? 

We can follow the Data-Driven Decision-Making approach (DDDM), which is defined 
as the systematic collection, analysis, examination, and interpretation of data to 
inform practice and policy in educational settings. Data Driven Decision Making 
(DDDM) crosses all levels of the educational system and uses a variety of data from 
which decisions can be made. Therefore, it can be challenging to engage in DDDM 
due to data being siloed in different sources and at different levels. Considering the 
expected results of learning analytics application, we should decide, which fall into 
two categories (Marsh, Pane, & Hamilton, 2006): 

• using data as a diagnostic tool to identify, inform, or clarify issues both at an 
individual (e.g., identifying goals or needs) and at a systematic level (e.g., 
informing the design of courses or curricula), and  

• using data to act (e.g., assessing and acting upon differential outcomes 
among the learners’ population, personalised interventions for at-risk 
students). 

Data is not a static entity and therefore decisions based on data should not be static 
either. As a result, data usage and evaluation should be continuous and integrated 
into existing decision-making processes. 
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3.1 Data 

🕮 3.1.1 

Educational Data 

In the context of education, learners are leaving behind rich digital traces throughout 
the course of their study. Educational data comprises a wide range of datasets about 
learners, their learning and the environments in which they learn, stored in various 
sources.  

Educational data and data analytics technologies can support us in developing a 
better understanding of our learners’ activities, behaviour and preferences, by 
identifying patterns and trends in the data that, in turn, can help us predict possible 
future outcomes and take actions for improving the learners' experience in our 
courses. 

For example, e-learning courses or virtual learning environments like Priscilla, allow: 

• instructional designers to use data to (re)design their courses, 

• tutors to use data to adjust their tutoring and learners' support strategies, 
• school teachers to use data to better plan inside and outside classroom 

activities and assess students' learning. 

On the other hand, data could potentially enable learners to take control of their own 
learning. When appropriately delivered, data can provide learners with better insights 
about their current academic performance in real-time, about their progress (also in 
comparison to their peers) and recommendations about what they need to do for 
meeting their learning goals and help them to make informed, data-driven choices 
about their studying. 

📝 3.1.2 

Learning analytics can: 

• enable schools to decrease drop-out rates, 

• be a powerful tool only for assessing learners’ performance, 

• enable teachers to see what students learn but not how students learn. 

🕮 3.1.3 

Data Resources 

The answer to the questions of where and how we obtain data can seem relatively 
simple, as data and technology currently accompany almost all areas of human 
activity, including education. The reality as usual not so easy. Let dive into this issue 
deeper. 
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Historically, learning analytics research, as well as related areas of research, 
originally focused only on data coming from direct interaction between lecturer and 
student. Typical examples of such data are attendance lists, partial or final grades, 
fulfilment of educational goals, etc. However, these administrative data do not bring 
the desired effect because they do not provide a comprehensive or sufficiently 
detailed picture of how the learning process takes place. 

The situation began to change with the advent of computer-based education (CBE) 
and achieved significant development with the expansion and availability of various 
types of web-based educational systems (WBES), such as  

• LMS (Learning Management System),  

• ITS (Intelligent Tutoring System),  
• AEHS (Adaptive Educational Hypermedia System) or  

• MOOC (Massive Open Online Course).  

🕮 3.1.4 

LMS 

LMS represents the most widespread type of WBES. Although its popularity has 
stagnated recently, it remains the focus of LA research, not only at the individual 
course level, but also at the higher organizational level of organizations. LMS collects 
large amounts of user data, track user activity, and provides simple analytics tools. 
Its problem is often the proprietary nature of logs. 

Recently, we can encounter their successors in the literature called the new 
generation of digital learning environments (NGDLE), whose conceptual model of 
functionalities already directly envisages the use of LA modules for analysing user 
behaviour, assessing their progress and level of acquired knowledge, as well as 
personalizing the environment. In terms of storing user data, these systems can store 
logs in a standard format, e.g., xAPI, in both internal and external storage. 

🕮 3.1.5 

MOOCs 

Another group of WBES, the so-called massive open online courses, MOOCs, can 
rightly be attributed to a considerable share in the development of the LA domain, 
because the massive expansion of the target group of potential users of MOOCs has 
gone beyond traditional educational institutions and brought interest to the 
commercial sector. Moreover, it is in this group of WBES that we can really start 
talking about the connection of the LA area with the area of big data, since thanks to 
their worldwide spread and availability, the numbers of active users and data on their 
activity in the course have acquired dimensions that are not easy to process and 
analyse by conventional means.  
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🕮 3.1.6 

The systems known as ITS and AEHS have been developed in order to adapt to 
changing user demands and behaviour using different approaches to user modelling. 
Both systems, unlike the approach taken in LA, seek to largely automate the 
customization process, while LA seeks to support decision-making at the level of 
representatives of various stakeholders. For this reason, the recent deployment of 
ITS and AEHS is so far limited, rather experimental, and works mainly in narrowly 
oriented domains, such as teaching mathematics or geometry or languages. The 
main idea of these systems is interesting, but very difficult to implement in practice. 

ITS creates an individual model of the behaviour of each user of the system and 
examines the way it interacts with the system. It creates a so-called user model. In 
this process, in addition to the enormous amount of data generated by users, it also 
uses a domain model together with a set of defined domain restrictions, a set of 
decision rules, etc. As a result, ITS provides direct instructions, recommendations or 
feedback to the user and thus helps him choose a more suitable way for him to 
acquire new knowledge. The weak point of these systems is precisely the need to 
describe the domain model in detail and define appropriate constraints.  

A slightly different approach in terms of feedback to the user is provided by the so-
called adaptive educational hypermedia systems (AEHS). AEHS represent one of the 
first and most popular applications of hypermedia systems. The aim is to adapt to 
user requirements through a combination of domain model, user model as well as 
advanced analysis of data resulting from user and system interaction. Unlike ITS, 
they mostly provide semantically richer data. Again, their wider spread in practice is 
hampered by the complexity of the models used. Based on the analysis of current 
review work, it is clear that the original perception of the concept of adaptivity and 
AEHS in general has changed over time and has settled in a broader sense than 
Adaptive Learning, which is part of LA and has also replaced the original 
designations. 

🕮 3.1.7 

We find other more detailed divisions of WBES in the LA area in addition to the above 
types of virtual learning environments that collect user data suitable for further 
analysis, for example: 

• Computer-Based Information Systems (CBIS),  

• Knowledge-Based Systems (KBS), 

• Computer-Based Education Systems (CBES). 

As we have already mentioned, most of these systems store data about users and 
their direct interaction in the form of log file records. These educational systems and 
their successors are also the most common source of data that are analysed from 
different points of view in professional publications using various methods 
knowledge discovery. Data from these systems will also be used in the practical 
examples given in the following chapters.  
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🕮 3.1.8 

Even more complex requirements for data, their sources and technical problems 
associated with their collection, processing and analysis are the subject of research 
in Multimodal Learning Analytics (MMLA), which seeks to understand and optimize 
learning in a real environment that does not necessarily use computers but other 
devices in the learning process. MMLA uses a number of sensors to attempt to 
capture, process and integrate and analyse natural communication patterns such as 
speech, writing and nonverbal interaction (such as movements, gestures, facial 
expressions, gaze, biometrics, etc.) taking place during real learning activities. We 
are increasingly aware that learning is a multimodal process that involves voice, 
gestures, visual attention, and other biological and mental processes that happen 
simultaneously and cannot simply be captured by one device or technology. An open 
question of current research in the field of MMLA remains how to collect this data 
from various systems and devices without affecting the learning process, how to 
transmit, integrate and standardize data from various sensors, as well as further 
analyse. 

We see that in the field of education there is many data sources that we can use in 
the analysis process, provided, of course, compliance with the relevant ethical and 
legislative standards. However, the data rarely meet our requirements and are not 
suitable directly for research. As in other areas of data science, it is also necessary 
to first understand the data and prepare it in the required form. 

Individual activities related to data extraction, transformation and storage in the field 
of education do not differ significantly from established procedures and are 
described in data engineering and to it closely related topics like database systems, 
data warehouses, data lakes and big data. 

3.2 Big data in education 

🕮 3.2.1 

Data is identified as one of the key factors driving change in the 21st century. We use 
the term the “data revolution”, the “era of big data”, or more simply “big data” to 
describe the tremendous increase in the amounts of data we generate in all aspects 
of our lives, including education.  

We often use the 4 V characteristics of Big Data to emphasize, that this data can not 
be processed using conventional tools and approaches. However, big data allow us 
to achieve superior value from analytics on data, which has the following 
characteristics: 

• Volume - The size of available data has been growing at an exponential rate. 
"With higher data volumes, you can take a more holistic view of your subject’s 
past, present and likely future". 
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• Velocity - Data streams are created at an unprecedented speed. "At higher 
data velocities, you can ground your decisions in continuously updated, real-
time data". 

• Variety - Data comes in all types of formats. "With broader varieties of data, 
you can have a more nuanced view of the matter at hand". 

• Veracity - Data veracity is not only how accurate or truthful a data set may be, 
but also how trustworthy the data source, type, and processing of it is. "As 
data veracity improves, you can be confident that you’re working with the 
truest, cleanest, most consistent data". 

📝 3.2.2 

We need to use huge computers to analyse the million pieces of data we generate on 
a daily basis to process big data and elaborate the endless possibilities it offered. 
Please select the right answer. 

• False 

• True 

📝 3.2.3 

Which are the main V characteristics of Big data? Please select the right answers. 

• Velocity 
• Variety 

• Variability 

• Value 

• Viscosity 

• Vagueness 

🕮 3.2.4 

Metadata 

If we talk about data and systems, which generate or store data, we need to also 
mention metadata. In the context of education, metadata can more aptly be defined 
as tags used to describe educational assets.  

Metadata is usually defined as data about data. Johnson, L.R., et al. (2018) 
introduced more precise definition, according to which, metadata is information 
about a data set that is structured (often in machine-readable format) for purposes 
of search and retrieval. Metadata elements may include basic information (e.g., title, 
author, date created) and/or specific elements inherent to data sets (e.g.,  spatial 
coverage, time periods). Therefore, metadata helps: 

• to organize, 

• find, 
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• understand data. 

Simultaneously, metadata answers the following questions about data: 

• Who created it? 

• What is it? 

• When was it created? 

• How was it generated? 
• Where was it created? 

• How may it be used? 

• Are there restrictions on it? 

🕮 3.2.5 

We can divide metadata to the following types: 

• Descriptive metadata, which can describe a learning asset or resource related 
to education — including learning standards, lessons, assessment items, 
books, etc. — for purposes such as identification, search, and discovery. 
Descriptive metadata can be thought of as a keyword or tag on an asset that 
makes it easier to find. Examples include subject, grade level, and related skills 
and concepts. 

• Administrative metadata is used to manage a learning asset. Examples of this 
type of metadata include status, disposition, rights, and licensing. 

• Structural metadata describes how data is organized or formatted and is often 
governed by a widely adopted standard that ensures the data is accurately 
represented when exchanged and presented. Structural metadata enables 
content to be machine readable. 

🕮 3.2.6 

Educational Data Literacy 

We see that all stakeholders, who are involved in learning analytics process should 
have a set of special competences, which are covered by the term educational data 
literacy. Educational data literacy can be defined in several ways as: 

• the ability to collect, manage, evaluate, and apply data, in a critical manner 
(Ridsdale et al., 2015), 

• the ability to accurately observe, analyse and respond to a variety of different 
kinds of data for the purpose of continuously improving teaching and learning 
in the classroom and school (Love, 2012), 

• the ability to understand and use data effectively to inform decisions … 
composed of a specific skill set and knowledge base that enables educators 
to transform data into information and ultimately into actionable knowledge 
(Mandinach & Gummer, 2013), 
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• the ability to continuously, effectively, and ethically access, interpret, act on, 
and communicate multiple types of data from state, local, classroom, and 
other sources in order to improve outcomes for students in a manner 
appropriate to their professional roles and responsibilities” (Data Quality 
Campaign, 2014). 

🕮 3.2.7 

As a result, the Data Literacy Campaign recommends the following set of Data 
Literacy Competences for stakeholders of the learning process: 

1. Locate and Collect Relevant Educational Data. 
2. Synthesise and Analyse Educational Data from Diverse Sources. 
3. Know about Educational Data beyond Grades. 
4. Understand How to Use Educational Data beyond Grades. 
5. Engage in a Data-Driven Continuing Inquiry Process. 
6. Use Data Analysis to Customise Teaching Plans to Diverse Groups. 
7. Use Own Data to Reflect on Practice. 
8. Facilitate Students to Understand their Data. 
9. Communicate Insights from Data Analysis to Diverse Internal and External 

Stakeholders. 
10. Monitor this process in a continuous manner. 

However, emerging advancements related to the use of data-driven design and 
delivery of technology supported learning, exploiting Educational Data Analytics are 
not yet thoroughly addressed by existing competence frameworks for education 
professionals (instructional designers, trainers, educators, teachers). Existing 
professional competence frameworks for instructional designers and trainers 
almost ignore the dimension of Educational Data Literacy. 

🕮 3.2.8 

This gap tries to fulfil the Learn2Analyze project, which developed a comprehensive 
proposal for an Educational Data Literacy Competence Framework to enhance 
existing competence frameworks for instructional designers and e-trainers of online 
courses with new Educational Data Literacy competences. The Learn2Analyze 
Educational Data Literacy Competence Framework comprises of six competence 
dimensions and 17 competence statements, as captured in the above graphic. 
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The competences summarised in the graphics is described in the following: 

1. Data Collection 

1.1. Know - understand - be able to obtain, access and gather the appropriate 
data and/or data sources. 

1.2. Know - understand - be able to apply data limitations and quality measures 
(e.g., validity, reliability, biases in the data, difficulty in collection, accuracy, 
completeness). 

2. Data Management 
2.1. Know - understand - be able to apply data processing and handling methods 

(i.e., methods for cleaning and changing data to make it more organized – 
e.g., duplication, data structuring). 

2.2. Know - understand - be able to apply data description (i.e., metadata). 
2.3. Know - understand - be able to apply data curation processes (i.e., to ensure 

that data is reliably retrievable for future reuse, and to determine what data 
is worth saving and for how long). 

2.4. Know - understand - be able to apply the technologies to preserve data (i.e., 
store, persist, maintain, backup data), e.g., storage mediums/services, tools, 
mechanisms. 

3. Data Analysis 
3.1. Know - understand - be able to apply data analysis and modelling methods 

(e.g., application of descriptive statistics, exploratory data analysis, data 
mining). 

3.2. Know - understand - be able to apply data presentation methods (e.g., 
pictorial visualisation of the data by using graphs, charts, maps, and other 
data forms like textual or tabular representations). 

4. Data Comprehension & Interpretation 
4.1. Know - understand - be able to interpret data properties (e.g., measurement 

error, outliers, discrepancies within data, key take-away points, data 
dependencies). 
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4.2. Know - understand - be able to interpret statistics commonly used with 
educational data (e.g., randomness, central tendencies, mean, standard 
deviation, significance). 

4.3. Know - understand - be able to interpret insights from data analysis (e.g., 
explanations of patterns, identification of hypotheses, connection of 
multiple observations, underlying trends) 

4.4. Be able to elicit potential implications/links of the data analysis insights to 
instruction. 

5. Data Application 
5.1. Know - understand - be able to use data analysis results to make decisions 

to revise instruction. 
5.2. Be able to evaluate the data-driven revision of instruction. 

6. Data Ethics 
6.1. Know - understand - be able to use the informed consent. 
6.2. Know - understand - be able to protect individuals' data privacy, 

confidentiality, integrity, and security. 
6.3. Know - understand - be able to apply authorship, ownership, data access 

(governance), re-negotiation and data-sharing. 

3.3 Data types 

🕮 3.3.1 

Obtaining a suitable dataset on which individual knowledge discovery tasks or 
specific algorithms could be easily trained is quite complicated. The simplest, and at 
the same time the most certain way, is to create a data set from our own available 
data sources. Simultaneously, it is important to emphasize that we have all the 
necessary permissions, and we can guarantee data security throughout the research. 
In this case, we can apply some approaches typical for the data pre-processing phase 
and prepare a set of variables that we want to analyse already in the process of data 
acquisition.  

If we consider a set of data freely available on the Internet, we should pay attention 
to the level of granularity of the data. In other words, this data should meet our 
requirements, the goal of the research as well as the input assumptions of the 
methods we want to apply. For example, we often encounter the following division of 
data levels: 

• national and international level, 

• regional level, 
• institutional level, 

• workplace level, 

• study program level, 

• class, 
• course, 

• student. 
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🕮 3.3.2 

The field of education represents a broad application domain in which the benefits 
and possible links with other disciplines such as data science, computer science, 
artificial intelligence, as well as behavioural, economic, social and ethical aspects are 
intensively explored. As in other application areas of knowledge acquisition, also in 
the field of education, the growing volume of data has an impact on the overall 
development of the area, research, on the infrastructure of the organization and its 
management, return on investment, sustainability, or ultimately competitiveness in 
the given domain.  

The scope of this domain, whether in terms of data quantity, number of companies 
involved, research tasks solved, turnover, diversity of technologies, or social impact, 
are comparable with other application domains of knowledge acquisition. If we focus 
on the sources and process of data collection, we can conclude that LA is moving 
from the original field of education to the field of log mining or even big data analysis, 
although not all characteristics of big data referred to as "4Vs" are currently 
considered to be met in the field of education. LA works with more complex data 
formats to capture user behaviour in the heterogeneous environment of information 
systems and ubiquitous wearable technologies.  

🕮 3.3.3 

Data that come from different systems can be classified into groups based on the 
selected characteristic:  

• relational data 

• transaction data, 

• time series, sequential data, 

• text data, 

• multimedia data, 

• web data.  

🕮 3.3.4 

Another important view emphasizes the sensitivity of data, the importance of data 
origin (provided, observed, derived data) and especially the primary purpose of data 
use, why the type of data is collected in the organization: 

• demographic data – This is a sensitive type of data, but sometimes it can bring 
new insights into different groups of users and the specifics of their learning, 

• academic data – presents partial achievements, scores and grades, 
• data about the student's past performance, 

• student-generated data – often in the form of unstructured data, texts 
(discussion papers, papers, projects, presentations), 
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• data directly related to the learning process – activities, digital footprint of the 
student, stored most often in the form of logs in a known structure directly in 
the systems, 

• metadata illustrating information about the environment in which learning 
takes place, reasons, student preferences. 

🕮 3.3.5 

For effective data-driven decision-making, it is essential that we understand the 
domain being studied, the data and the relationships between them. If we are looking 
for data suitable for analysis using LA methods, we should be able to answer the 
following questions: 

• Why do we need this data? 

• What data do we need? 

• When is a good time to collect data? 

• Where is the necessary data located? 
• How will we collect the necessary data? 

• Who will collect the data and be authorized to work with it? 

Without answering these questions, we cannot fully understand the data and 
correctly estimate the possibilities of their use for the goals pursued, which may be, 
for example, the choice of a suitable strategy for various forms of study, finding out 
the causes and proportion of too early abandonment of studies by students, or 
predicting their final evaluation from the subject or the entire study. 

🕮 3.3.6 

In general, we can further divide the data into: 

1. Static, which remains unchanged for a long time, for example, student, 
teacher, budget, stored at school, university or government registry informing 
about the current state of the sector.  

2. Dynamic, generated in a shorter period, created by the activities of all 
stakeholders in the learning process, for example in the form of logs. 

🕮 3.3.7 

At the same time, according to the time at which the data was created or stored, we 
can divide the data into the following categories: 

• input,  

• context,  

• procedural, and  

• output. 

🕮 3.3.8 
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Moreover, according to the definition, we can distinguish two major categories of 
data, the qualitative and quantitative data. The following figure illustrates differences 
between both categories. 

 

A combination of different types of data is most effective in generating powerful 
evidence to assess learning performance and improve teaching practice. Both 
quantitative and qualitative data is equally important in these processes. 

🕮 3.3.9 

Educational Data is everywhere. We need to collect the necessary data to inform our 
decisions and benefit from them. To do this, we need to answer to the following Four 
Ws and One How:  

• Why is data needed? 

• What data is needed? 

• When will the data be collected? 
• Where is the data located? 

• How will the data be collected? 

We can add another one question: Who will collect or grant access to the needed 
data. This question should be answered, since, obviously, we can only collect data to 
which we have access and which we have been granted permission to use. 

The collected data must meet three basic characteristics: 

• Relevancy: The data must directly relate to the research questions being 
answered. 
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• Reliability: The data must be measured, trustworthy, and consistent. 

• Validity: The data must measure what we intend to measure. 

🕮 3.3.10 

Collecting and analysing educational data are joined with several types of barriers 
like: 

• access to educational data,  

• timely collection and analysis of educational data,  

• quality of educational data, 

• lack of time and support. 

Moreover, we must not to forget the educational data ethics. Open Data Institute 
(ODI) defines Data Ethics as a branch of ethics that evaluates data practices with the 
potential to adversely impact on people and society – in data collection, sharing and 
use. 

Meantime, several frameworks, policies, and guidelines have been developed to 
address data ethics issues, including JISC’s code of practice in 2015 (updated in 
2018), the LACE (Learning Analytics Community Exchange) framework in 2016 and 
the ICDE (International Council for Open and Distance Education) Global guidelines 
in 2019. To help identify potential ethical issues associated with a data project or 
activity and the steps needed to act ethically, Open Data Institute has also designed 
the Data Ethics Canvas in 2018. 
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4.1 Data science process 

🕮 4.1.1 

In the previous chapter, we dealt with the characteristics of data and got acquainted 
with the sources of educational data. Like a software project, a data science project 
follows certain recommendations that can be summarized in several steps. If they 
are generally accepted and proven in practice, we refer to them collectively as 
methodologies or process frameworks. 

The methodology will guide us to perform all steps of data analysis leading to useful 
results, their correct interpretation, or to making the results available in the form of 
an application or service.  

In this chapter, we will briefly introduce some methodologies, indicate current 
developments in the field of data science, machine learning, respectively LA. We will 
then try their use on practical examples. 

🕮 4.1.2 

Data Science Process 

The Data Science Process framework provides a simplified view of the entire 
knowledge discovery process in projects where machine learning algorithms are 
currently used (Blitzstein, 2013; Blitzstein and Pfister, 2015). It lists the following 
phases: 

• Phase 1: Ask the right questions, 

• Phase 2: Get data, 

• Phase 3: Explore the data, 

• Phase 4: Create a model, 

• Phase 5: Interpret the result. 

Although phases are presented sequentially, their actual use takes place in multiple 
iterations. 

🕮 4.1.3 

Enhanced Data Science Process 

This rather intuitive sequence of phases of the Data Science Process framework is 
very brief to know without prior practical experience what activities or tasks we 
should carry out in each phase. Because of this, an extended version of it was 
created. It contains the following 8 steps, which contain tasks leading to solving the 
project (Mayo, 2018): 
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• Phase 1: We formulate the studied problem and look at it from a distance - we 
define goals from the point of view of the issue or domain being studied, 
consider the need to deploy machine learning, compare existing scenarios on 
how the problem can be solved, meet the prerequisites for their deployment 
and the level of knowledge needed. At the same time, we will determine the 
type of knowledge discovery task we want to solve.  

• Phase 2: We obtain data – we determine the amount of data we need, its type 
and source, examine the conditions for obtaining this data, remember to 
anonymize the data and partially transform it into the desired form at the time 
of acquisition, as well as create a training, testing and validation set. 

• Phase 3: Review the data – we take all steps necessary to understand the data 
we will model using exploratory analysis methods, examine whether the data 
meets the necessary prerequisites for the use of algorithms of the selected 
knowledge discovery task, communicate with a domain expert, study input 
variables, create model documentation and record metadata. 

• Phase 4: Prepare the data – we perform all necessary data transformations 
based on the findings of the previous step, clean the data, select the 
appropriate combination of input variables, standardize, and normalize the 
data as needed.  

• Phase 5: Create a list of promising models – we create a set of models that 
we compare with each other with appropriately selected metrics and select 
the most promising ones, which we will tune in the next step by searching for 
suitable input parameter values for each model. 

• Phase 6: Tune the model – we investigate the impact of different model 
parameter settings (hyperparameter tuning). Use not only a training but also a 
test dataset. 

• Phase 7: We present the solution – we visualize the modelling results, focus 
on assessing to what extent the original objectives have been met, whether all 
assumptions and limitations have been met, making sure that the client 
understands the added value that the created model brings. 

• Phase 8: Deploy the solution – we prepare the created model using machine 
learning into production, implement the solution as part of the software 
solution, i.e., in the form of an application or service, retrain the model on new 
or updated data. 

We apply usually these steps to learning analytics tasks. It is important to emphasize 
that these steps serve mainly to understand the complexity of all research based on 
data analysis, to familiarize yourself with procedures. In real analytical projects, data 
is always unique, so each of these steps requires theoretical knowledge and practical 
experience. 
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4.2 Methodologies 

🕮 4.2.1 

CRISP-DM Methodology 

We use the proven CRISP-DM methodology as the basis for the sequence of steps in 
most examples focused on research in the LA domain and knowledge discovery in 
general. The CRISP-DM methodology is a software-independent methodology that 
provides a unified framework for solving various knowledge discovery tasks (Munk, 
2013). 

This methodology is based on the more general KDD process model (KDD process), 
which applies specific mathematical and statistical methods to data in order to 
discover and extract hidden patterns. This process defines five steps (selection, pre-
processing, transformation, data mining, interpretation). 

 

The CRISP-DM methodology assumes that the process of knowledge acquisition and 
data mining consists of six, interrelated, phases (Berka, 2003): 

1. business understanding phase, 
2. data understanding phase, 
3. data preparation phase, 
4. modelling phase, 
5. evaluation phase, 
6. deployment and maintenance phase. 

🕮 4.2.2 

These phases are applicable with minor variations in various application domains, 
including the analysis of educational data. We shortly describe each phase in the 
next chapters.  
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The initial phase focuses on business understanding and refining the objectives as 
well as research requirements in the understanding phase. The next stage consists 
of understanding the data, which is fundamental to familiarize ourselves with the 
collected or obtained data, identifying data quality problems, and also can reveal 
interesting subsets of variables to form hypotheses regarding hidden knowledge. 
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The methodology emphasizes data preparation phase, which often represents the 
most time-consuming part of the whole process. This phase applies the data pre-
processing techniques needed to compile the final dataset. Part of this phase is also 
the use of appropriate methods for extracting properties and defining their 
abstraction, which will enrich the original data with semantics and thus allow a more 
accurate interpretation of the acquired knowledge. Such data can be used to input 
algorithms in the modelling phase. 

In the modelling phase, various modelling techniques and algorithms are selected 
and applied, while optimal values of the model parameters are also sought. Since 
there are many techniques and algorithms for the same type of knowledge discovery 
problem/task, we decided to apply mainly machine learning techniques in the 
presented research. 

The proposed models from the previous phase should be evaluated and evaluated 
for satisfactory implementation in the penultimate phase of the CRISP-DM 
methodology. After finding a suitable model based on selected performance metrics, 
we qualitatively evaluate the benefits of the model with the help of an expert in the 
field of knowledge discovery and education. 

🕮 4.2.3 

Agile Project Methodology 

The CRISP-DM methodology and its variations represent a classic systematic 
approach to solving the problem. Given the success of agile approaches in software 
projects, it is natural to examine the potential benefits of basic ideas of agile process 
frameworks in data science project management. Available sources show that the 
basic principles of agile development and project management have intervened in 
the field of data science. Therefore, we will now summarize their basic 
characteristics.  

As mentioned above, the CRISP-DM methodology can be compared to the classic 
waterfall model of the software development lifecycle in analogy with software 
development. The basic characteristic of the waterfall model is the division of project 
activities into several consecutive phases, while the start of the next phase is 
conditioned by the completion of the previous one. This sequential approach is not 
entirely suitable for managing a software project due to its little flexibility and 
absence of iterations.  

From this point of view, the implementation of an iterative and incremental approach 
to CRISP-DM, typical of agile methodologies, is clearly beneficial. The addition of 
elements of agile process approaches then leads to methodologies, sometimes 
referred to as Agile + CRISP-DM.  

If we compare software and analytics project management, we may encounter an 
effort to adapt the well-known core values and principles of the Agile Manifesto we 
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know from software development to agile analytics projects. This results in the 
following four customized values (Thurber, 2020): 

• We prioritize regular collaboration with stakeholders over processes and tools 
to quickly integrate their feedback into the proposal. 

• We take into account changing project requirements, even later in the 
knowledge discovery process. 

• We try to increase customer satisfaction through customer involvement in the 
project as well as timely and continuous provision of valuable overview of 
project events. 

• We evaluate changes based on feedback and interim results derived from 
ongoing processes and implement them beyond the baseline.  

🕮 4.2.4 

The following basic values can be considered as confirmation of the current 
pragmatic trend:  

• Solving complex problems requires flexibility, responding to change that is 
bound to occur, short iterations, and communicating in a team whose 
members have overlapping knowledge but are aware that the client is a source 
of valuable information about the modelled phenomenon in the domain being 
studied.  

• This creates team-specific process frameworks whose actual deployment 
depends on the task being solved, its complexity and the experience of the 
project team. 

The project managed in this way is then built on trust, flexibility, cooperation, and 
joint responsibility of the team for the result. At the same time, the project is divided 
into several sprints, in which individual phases of the CRISP-DM methodology can be 
represented differently (Thurber, 2020).  

For example, the first sprint can be focused on understanding the issue, data 
availability and consolidation, current practices, and current performance. The next 
sprint may focus on creating a base model. This is followed by one or two sprints 
aimed at finding the best specification of the model by tuning its parameters. The 
last sprint can ensure appropriate deployment of the solution. Each sprint has 
scheduled meetings to explore and collaborate with relevant stakeholders. 

🕮 4.2.5 

Team Data Science Process 

The Team Data Science Process (TDSP) is an example of such an agile iterative 
methodology created for the effective delivery of predictive analytics solutions. Its 
advantage is the sophistication of procedures and documentation, as well as the 
connection with the possibilities of current technologies. At the same time, we must 
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mention that despite its agility, it is quite complex in terms of documentation of 
individual phases. 

🕮 4.2.6 

Guerrilla Analytics 

Guerrilla Analytics is another example of an agile methodology that defines the 
following seven principles to eliminate chaos by introducing dynamics, complexity, 
and constraints into data project management (Ridge, 2014): 

1. Principle 1: Space is cheap, confusion is expensive – saving space costs time if 
we cannot go back to previous versions of data and their origin (data provenance) 
or reproduce previous research steps.   

2. Principle 2: We prefer simple visual structures and conventions – we maintain a 
clear structure of source codes, data throughout the project, so we will orient 
ourselves in the project with the passage of time, just like new team members.  

3. Principle 3: We prefer automation using programming languages and graphics 
tools, avoiding modifications for which there is no record. 

4. Principle 4: We maintain a link between raw data, analytical environment and 
resulting product data – we try to maintain traceability of data from its source, 
storage, through individual stages of analysis to the final product used by the 
client, so that we can trace an error if necessary. 

5. Principle 5: We manage versions of data and analytical code – we can easily 
eliminate problems that arise when changing input data, algorithm parameters. 

6. Principle 6: We consolidate the knowledge of the team and support project 
management by releasing versions - data is developed during the project based 
on client requirements, individual stable versions allow us to return to a stable 
version covered by tests, from which we can bounce back in search of a new 
solution. 

7. Principle 7: We prefer to create analytical code that runs completely – searching 
for a suitable model requires constant changes in the code, so it is more certain 
to constantly verify that it works completely, so we prefer code testing in the 
project, which is analogous to integration tests. 
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5.1 EDA automation 

🕮 5.1.1 

We will summarize in this chapter the techniques we will often use in the data 
understanding phase. By applying them, we can identify potential problems that 
could prevent us from arriving at meaningful and useful findings during the modelling 
phase. We will deal with the elimination of duplicate values, incorrect data types, 
incorrect and missing data and introduce techniques that eliminate these problems.  

However, we should emphasize right away that we cannot apply these techniques 
mechanically, without deeper consideration, because in some cases we are 
interested in these special cases and eliminating them from the data set would 
deprive us of the possibility of their research. In addition, we often cooperate at this 
stage with the client, the originator of the data, who is able to explain to us in detail 
what the individual measured characteristics represent and what the individual 
values, at first glance perhaps erroneous, express. 

Exploratory data analysis (EDA) represents a sequence of methods for analyzing the 
examined data set and summarizing its basic characteristics. Its purpose is to: 

• discover patterns in a data file, 
• understand the relationship between independent and dependent variables, 

• find out how important each independent variable is, 

• identify anomalies, 

• formulate hypotheses, 

• verify assumptions. 

In order to examine the dataset properly, we can gradually re-establish a checklist of 
activities or a process framework that we will adhere to. In this framework, we will 
use techniques to prepare data at the level of rows (add and remove), columns (add 
and remove) as well as individual values (value change). At the same time, we can 
apply techniques leading to a reduction in the number of input independent variables, 
the so-called dimensionality reduction. 

📝 5.1.2 

EDA Automation 

If we are using Python for exploratory data analysis, we often notice, that Exploratory 
data analysis can be boring and time-consuming. Moreover, we are not able to easily 
prepare all the tables, charts, and diagrams, which provide potentially interesting 
view on the dataset. Therefore, we always appreciate an option to automatize some 
repetitive tasks and focus directly on data understanding and pre-processing.  

There are many examples of Python libraries for EDA automation, like Sweetviz, 
Pandas-profiling, D-tale, Autoviz and many others. We can try to shorten the whole 
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process using these libraries and examine to what extent the displayed analysis will 
be sufficient for us and which adjustments to the file we will still have to make.  

The steps required for their use in our project, are almost identical. First, we install 
the mentioned library with the already known command. 

 
pip install sweetviz 

or directly in the Python Notebook environment.  

 
!pip install sweetviz 

Then we import the Pandas library and load the source data file. 

 
import pandas as  pd 

df = pd.read_csv('grades.csv') 

The most important method of the Sweetviz library is the Analyze() method, which 
helps us to analyze the input data frame and display the results in the form of an html 
file. 

import sweetviz as sv 

znamky_report = sv.analyze(df) 

znamky_report.show_html('grades.html') 

The result of the rapid analysis can be as follows (picture). 

We can also use this library to compare multiple data frames using the Compare() 
method. In the case of comparing training and test data, we will use the method 
Comapre_intra(), but it is not yet possible to use the usual method of random division 
of the studied data set. Therefore, we must divide them before comparing them with 
this library.  
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5.2 Data analysis methods 

📝 5.2.1 

Understanding Data 

We will start by importing standard libraries for visualization and work with data. We 
will use a set with partial results of students obtained in a subject that has been used 
for several years. 

#visualization 

import matplotlib.pyplot as plt 

%matplotlib inline 

import seaborn as sns 

import pandas as pd 

file_url = 'https://priscilla.fitped.eu/data/la/results-16-

19.xlsx' 

df = pd.read_excel(file_url) 

The imported file did not require any special modifications. Let's look at the basic 
characteristics of the imported file. 

print(df.columns) 

Program output: 

Index(['pristupy', 'testy', 'testy_znamka', 'skuska', 

'projekt', 

       'projekt_znamka', 'zadania', 'vysledne_body', 

'vysledna_znamka', 

       'absolvoval', 'rok', 'prieb_test_sql', 'prieb_test_db', 

'akad_rok'], 

      dtype='object') 

/usr/lib/python3/dist-packages/ipykernel/ipkernel.py:283: 

DeprecationWarning: `should_run_async` will not call 

`transform_cell` automatically in the future. Please pass the 

result to `transformed_cell` argument and any exception that 

happen during thetransform in `preprocessing_exc_tuple` in 

IPython 7.17 and above. 

  and should_run_async(code) 

df.info() 

Program output: 

RangeIndex: 286 entries, 0 to 285 

Data columns (total 14 columns): 



50 

 #   Column           Non-Null Count  Dtype   

---  ------           --------------  -----   

 0   pristupy         285 non-null    float64 

 1   testy            284 non-null    float64 

 2   testy_znamka     284 non-null    object  

 3   skuska           285 non-null    float64 

 4   projekt          285 non-null    float64 

 5   projekt_znamka   284 non-null    object  

 6   zadania          286 non-null    float64 

 7   vysledne_body    286 non-null    float64 

 8   vysledna_znamka  286 non-null    object  

 9   absolvoval       286 non-null    int64   

 10  rok              286 non-null    int64   

 11  prieb_test_sql   220 non-null    float64 

 12  prieb_test_db    220 non-null    float64 

 13  akad_rok         286 non-null    object  

dtypes: float64(8), int64(2), object(4) 

memory usage: 31.4+ KB 

/usr/lib/python3/dist-packages/ipykernel/ipkernel.py:283: 

DeprecationWarning: `should_run_async` will not call 

`transform_cell` automatically in the future. Please pass the 

result to `transformed_cell` argument and any exception that 

happen during thetransform in `preprocessing_exc_tuple` in 

IPython 7.17 and above. 

  and should_run_async(code) 

print(df.head()) 

Program output: 

   pristupy  testy testy_znamka  skuska  projekt 

projekt_znamka  zadania  \ 

0      79.0   0.00           FX     0.0     0.00             

FX    12.00    

1      79.0   0.00           FX     0.0     0.00             

FX    12.00    

2     792.0  40.60            E     7.0    76.89              

A    13.45    

3    1111.0  42.76            D    10.0    79.29              

A    11.77    

4     487.0  47.20            C     0.0     0.00             

FX    12.58    

 

   vysledne_body vysledna_znamka  absolvoval   rok  

prieb_test_sql  \ 
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0          20.52              FX           0  2016             

NaN    

1          20.52              FX           0  2016             

NaN    

2         140.73               D           1  2016             

NaN    

3         150.36               C           1  2016             

NaN    

4          68.68              FX           0  2016             

NaN    

 

   prieb_test_db   akad_rok   

0            NaN  2016/2017   

1            NaN  2016/2017   

2            NaN  2016/2017   

3            NaN  2016/2017   

4            NaN  2016/2017   

/usr/lib/python3/dist-packages/ipykernel/ipkernel.py:283: 

DeprecationWarning: `should_run_async` will not call 

`transform_cell` automatically in the future. Please pass the 

result to `transformed_cell` argument and any exception that 

happen during thetransform in `preprocessing_exc_tuple` in 

IPython 7.17 and above. 

  and should_run_async(code) 

We can see that there are numeric and text (categorical) variables in the file. Each 
line of the file corresponds to the partial results of the student, which are presented 
mainly in numerical form, supplemented by a grade. In addition, the file contains 
information about the academic year, the number of accesses to the e-learning 
course, which formed the support for teaching. Let's examine columns with numeric 
values. 

 

print(df.describe()) 

Program output: 

          pristupy       testy      skuska     projekt     

zadania  \ 

count   285.000000  284.000000  285.000000  285.000000  

286.000000    

mean    664.985965   35.277782   11.150877   58.954982   

18.001573    

std     365.434942   15.844801    6.700986   32.654879   

10.796514    
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min      13.000000    0.000000    0.000000    0.000000    

0.000000    

25%     440.000000   31.542500    8.000000   57.680000   

11.000000    

50%     598.000000   39.200000   14.000000   73.330000   

14.500000    

75%     837.000000   45.500000   16.000000   81.090000   

24.000000    

max    2392.000000   57.000000   20.000000   90.000000   

40.000000    

 

       vysledne_body  absolvoval          rok  prieb_test_sql  

prieb_test_db   

count     286.000000  286.000000   286.000000      220.000000     

220.000000   

mean      126.108392    0.744755  2017.678322       13.277273      

11.859091   

std        55.605239    0.436763     1.152276        7.073355       

6.500661   

min         0.000000    0.000000  2016.000000        0.000000       

0.000000   

25%       111.517500    0.000000  2017.000000       10.000000       

8.000000   

50%       146.990000    1.000000  2018.000000       15.000000      

14.000000   

75%       165.125000    1.000000  2019.000000       18.000000      

17.000000   

max       201.920000    1.000000  2019.000000       26.000000      

20.000000   

/usr/lib/python3/dist-packages/ipykernel/ipkernel.py:283: 

DeprecationWarning: `should_run_async` will not call 

`transform_cell` automatically in the future. Please pass the 

result to `transformed_cell` argument and any exception that 

happen during thetransform in `preprocessing_exc_tuple` in 

IPython 7.17 and above. 

  and should_run_async(code) 

The most interesting is the distribution of the resulting grades by year. To view them, 
we can directly use the pivot chart available in the Pandas library. 

pd.crosstab(df.rok, df.vysledna_znamka).plot.barh(stacked = 

True) 

Program output: 
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/usr/lib/python3/dist-packages/ipykernel/ipkernel.py:283: 

DeprecationWarning: `should_run_async` will not call 

`transform_cell` automatically in the future. Please pass the 

result to `transformed_cell` argument and any exception that 

happen during thetransform in `preprocessing_exc_tuple` in 

IPython 7.17 and above. 

  and should_run_async(code) 

 

 
 

sns.boxplot(x = 'rok', y = 'vysledne_body', data=df) 

plt.xticks(rotation=90) 

Program output: 

/usr/lib/python3/dist-packages/ipykernel/ipkernel.py:283: 

DeprecationWarning: `should_run_async` will not call 

`transform_cell` automatically in the future. Please pass the 

result to `transformed_cell` argument and any exception that 

happen during thetransform in `preprocessing_exc_tuple` in 

IPython 7.17 and above. 

  and should_run_async(code) 

 

 

More accurate information about the results can be obtained from a numerical 
representation of the resulting points from the subject using a graph of type 
boxplot(). 
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📝 5.2.2 

Duplicate values 

Detecting the proportion, or elimination, of duplicate values is a frequent step in data 
preprocessing. Once again, we will use the pre-made methods of the Pandas 
package. 

# prepared code 

import matplotlib.pyplot as plt 

%matplotlib inline 

import seaborn as sns 

import pandas as pd 

file_url = 'https://priscilla.fitped.eu/data/la/results-16-

19.csv' 

df = pd.read_csv(file_url) 

 

print(df.duplicated().head()) 

Program output: 

0    False 

1     True 

2    False 

3    False 

4    False 

dtype: bool 

/usr/lib/python3/dist-packages/ipykernel/ipkernel.py:283: 

DeprecationWarning: `should_run_async` will not call 

`transform_cell` automatically in the future. Please pass the 

result to `transformed_cell` argument and any exception that 

happen during thetransform in `preprocessing_exc_tuple` in 

IPython 7.17 and above. 

  and should_run_async(code) 

We can see that the following method only indicates whether a record is a duplicate 
or not, treating the first occurrence of the record as the original, the next as its copies. 
Let's get to a more useful look at duplicate records. First, let's count them. There are 
5 duplicate records in the examined file. 

print(df.duplicated().sum()) 

Program output: 

5 
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/usr/lib/python3/dist-packages/ipykernel/ipkernel.py:283: 

DeprecationWarning: `should_run_async` will not call 

`transform_cell` automatically in the future. Please pass the 

result to `transformed_cell` argument and any exception that 

happen during thetransform in `preprocessing_exc_tuple` in 

IPython 7.17 and above. 

  and should_run_async(code) 

We display duplicate records using the fact that we can use duplicate validation as a 
condition. In the statement that appears, we see records that have duplicates in the 
file. We don't see all their occurrences. Note that records 214 and 224 are exactly the 
same, and thus there is also a third identical record in the file. 

print(df[df.duplicated()].head()) 

Program output: 

     pristupy  testy testy_znamka  skuska  projekt 

projekt_znamka  zadania  \ 

1        79.0    0.0           FX     0.0     0.00             

FX     12.0    

151      89.0    0.0            A     0.0     0.00             

FX      2.0    

186     790.0   40.5            E    10.0    84.34              

A     14.0    

214     635.0   28.0           FX    13.0    83.65              

A     12.0    

224     635.0   28.0           FX    13.0    83.65              

A     12.0    

 

     vysledne_body vysledna_znamka  absolvoval   rok  

prieb_test_sql  \ 

1            20.52              FX           0  2016             

NaN    

151           3.60               A           1  2018             

0.0    

186         134.02               D           1  2018            

17.5    

214         114.06              FX           0  2019            

10.0    

224         114.06              FX           0  2019            

10.0    

 

     prieb_test_db   akad_rok  Unnamed: 14  Unnamed: 15   

1              NaN  2016/2017          NaN          NaN   
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151            0.0  2018/2019          NaN          NaN   

186           13.0  2018/2019          NaN          NaN   

214            5.0  2019/2020          NaN          NaN   

224            5.0  2019/2020          NaN          NaN   

/usr/lib/python3/dist-packages/ipykernel/ipkernel.py:283: 

DeprecationWarning: `should_run_async` will not call 

`transform_cell` automatically in the future. Please pass the 

result to `transformed_cell` argument and any exception that 

happen during thetransform in `preprocessing_exc_tuple` in 

IPython 7.17 and above. 

  and should_run_async(code) 

If we are only interested in a certain subset of rows or columns and the occurrence 
of duplicates in them, we can edit our expression further. To do this, we will use the 
already known methods of loc and iloc. If we use them without a list of columns, the 
result will be the same. 

print(df.loc[df.duplicated()].head()) 

Program output: 

     pristupy  testy testy_znamka  skuska  projekt 

projekt_znamka  zadania  \ 

1        79.0    0.0           FX     0.0     0.00             

FX     12.0    

151      89.0    0.0            A     0.0     0.00             

FX      2.0    

186     790.0   40.5            E    10.0    84.34              

A     14.0    

214     635.0   28.0           FX    13.0    83.65              

A     12.0    

224     635.0   28.0           FX    13.0    83.65              

A     12.0    

 

     vysledne_body vysledna_znamka  absolvoval   rok  

prieb_test_sql  \ 

1            20.52              FX           0  2016             

NaN    

151           3.60               A           1  2018             

0.0    

186         134.02               D           1  2018            

17.5    

214         114.06              FX           0  2019            

10.0    
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224         114.06              FX           0  2019            

10.0    

 

     prieb_test_db   akad_rok  Unnamed: 14  Unnamed: 15   

1              NaN  2016/2017          NaN          NaN   

151            0.0  2018/2019          NaN          NaN   

186           13.0  2018/2019          NaN          NaN   

214            5.0  2019/2020          NaN          NaN   

224            5.0  2019/2020          NaN          NaN   

/usr/lib/python3/dist-packages/ipykernel/ipkernel.py:283: 

DeprecationWarning: `should_run_async` will not call 

`transform_cell` automatically in the future. Please pass the 

result to `transformed_cell` argument and any exception that 

happen during thetransform in `preprocessing_exc_tuple` in 

IPython 7.17 and above. 

  and should_run_async(code) 

We are interested in whether there are duplicates based on the equality of the data 
in the following four columns. 

print(df.loc[df.duplicated(), ['pristupy', 'testy', 

'testy_znamka', 'rok']]) 

Program output: 

     pristupy  testy testy_znamka   rok 

1        79.0    0.0           FX  2016 

151      89.0    0.0            A  2018 

186     790.0   40.5            E  2018 

214     635.0   28.0           FX  2019 

224     635.0   28.0           FX  2019 

/usr/lib/python3/dist-packages/ipykernel/ipkernel.py:283: 

DeprecationWarning: `should_run_async` will not call 

`transform_cell` automatically in the future. Please pass the 

result to `transformed_cell` argument and any exception that 

happen during thetransform in `preprocessing_exc_tuple` in 

IPython 7.17 and above. 

  and should_run_async(code) 

If we need to mark as duplicate other than the second and next occurrences of a 
record, we can use the keep parameter. To keep the last record, we use the last value, 
to indicate all duplicate records, we use the value False. Although the records in the 
following list look the same, note a different index for the record. 
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print(df.loc[df.duplicated(keep='last'), ['pristupy', 'testy', 

'testy_znamka', 'rok']].head()) 

Program output: 

     pristupy  testy testy_znamka   rok 

0        79.0    0.0           FX  2016 

150      89.0    0.0            A  2018 

185     790.0   40.5            E  2018 

213     635.0   28.0           FX  2019 

214     635.0   28.0           FX  2019 

/usr/lib/python3/dist-packages/ipykernel/ipkernel.py:283: 

DeprecationWarning: `should_run_async` will not call 

`transform_cell` automatically in the future. Please pass the 

result to `transformed_cell` argument and any exception that 

happen during thetransform in `preprocessing_exc_tuple` in 

IPython 7.17 and above. 

  and should_run_async(code) 

Using the subset parameter of the duplicated() method, we can examine the 
duplication of records only in selected attributes (columns) directly. For example, we 
can find out how many duplicates a data set contains if we examine only the 
following columns. 

print(df.duplicated(subset=['pristupy', 'testy', 

'testy_znamka', 'rok'], keep='first').sum()) 

Program output: 

6 

/usr/lib/python3/dist-packages/ipykernel/ipkernel.py:283: 

DeprecationWarning: `should_run_async` will not call 

`transform_cell` automatically in the future. Please pass the 

result to `transformed_cell` argument and any exception that 

happen during thetransform in `preprocessing_exc_tuple` in 

IPython 7.17 and above. 

  and should_run_async(code) 

At this point, we should find out the reason for the duplication, whether these records 
were created in real conditions or it is an import or manual preprocessing error. In 
this activity, important information is often given to us by a client, programmer or 
collaborator who was directly involved in the preparation of the file. Finally, after 
sufficient consideration of what the found duplicates really mean, we can use the 
drop_duplicates method to remove them from the examined dataset. 

 



59 

df2 = df.drop_duplicates(keep='first').sample(10) 

The resulting df data frame contains only unique records. If this frame is to replace 
the original, we must use the inplace=True parameter. The following commands will 
verify that this is indeed the case. 

print(df2.duplicated().sum()) 

Program output: 

0 

/usr/lib/python3/dist-packages/ipykernel/ipkernel.py:283: 

DeprecationWarning: `should_run_async` will not call 

`transform_cell` automatically in the future. Please pass the 

result to `transformed_cell` argument and any exception that 

happen during thetransform in `preprocessing_exc_tuple` in 

IPython 7.17 and above. 

  and should_run_async(code) 

 

print(df2[df2.duplicated()].head()) 

Program output: 

Empty DataFrame 

Columns: [pristupy, testy, testy_znamka, skuska, projekt, 

projekt_znamka, zadania, vysledne_body, vysledna_znamka, 

absolvoval, rok, prieb_test_sql, prieb_test_db, akad_rok, 

Unnamed: 14, Unnamed: 15] 

Index: [] 

/usr/lib/python3/dist-packages/ipykernel/ipkernel.py:283: 

DeprecationWarning: `should_run_async` will not call 

`transform_cell` automatically in the future. Please pass the 

result to `transformed_cell` argument and any exception that 

happen during thetransform in `preprocessing_exc_tuple` in 

IPython 7.17 and above. 

  and should_run_async(code) 

We can see that the table of duplicates is empty. 

📝 5.2.3 

Change data types 

Another relatively common problem encountered in the data preprocessing phase is 
the problem of incorrect data types of individual attributes of the original data set. In 
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the Pandas package, we have several methods available to help us solve this 
problem. First, let's display the data types for each attribute using the dtypes data 
frame attribute. 

# prepared code 

import matplotlib.pyplot as plt 

%matplotlib inline 

import seaborn as sns 

import pandas as pd 

file_url = 'https://priscilla.fitped.eu/data/la/results-16-

19.csv' 

df = pd.read_csv(file_url) 

 

print(df.dtypes) 

Program output: 

pristupy           float64 

testy              float64 

testy_znamka        object 

skuska             float64 

projekt            float64 

projekt_znamka      object 

zadania            float64 

vysledne_body      float64 

vysledna_znamka     object 

absolvoval           int64 

rok                  int64 

prieb_test_sql     float64 

prieb_test_db      float64 

akad_rok            object 

Unnamed: 14        float64 

Unnamed: 15        float64 

dtype: object 

/usr/lib/python3/dist-packages/ipykernel/ipkernel.py:283: 

DeprecationWarning: `should_run_async` will not call 

`transform_cell` automatically in the future. Please pass the 

result to `transformed_cell` argument and any exception that 

happen during thetransform in `preprocessing_exc_tuple` in 

IPython 7.17 and above. 

  and should_run_async(code) 

We see that most columns have numeric data types, which is beneficial for most 
machine learning algorithms. If we need to change the data type of an attribute, we 
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can define its new type already at the data retrieval stage or retype the attribute later. 
Let's consider both procedures in more detail.  

In the first case, we specify the data type using the dtype parameter, which 
expects the dictionary data type, where the column names represent the key and their 
data type represents the value, for example, {'col1':np.float64, 'col2':np.int32}. 

df = pd.read_csv(file_url, dtype={'vysledna_znamka': 

'category'}) 

print(df.dtypes) 

Program output: 

pristupy            float64 

testy               float64 

testy_znamka         object 

skuska              float64 

projekt             float64 

projekt_znamka       object 

zadania             float64 

vysledne_body       float64 

vysledna_znamka    category 

absolvoval            int64 

rok                   int64 

prieb_test_sql      float64 

prieb_test_db       float64 

akad_rok             object 

Unnamed: 14         float64 

Unnamed: 15         float64 

dtype: object 

/usr/lib/python3/dist-packages/ipykernel/ipkernel.py:283: 

DeprecationWarning: `should_run_async` will not call 

`transform_cell` automatically in the future. Please pass the 

result to `transformed_cell` argument and any exception that 

happen during thetransform in `preprocessing_exc_tuple` in 

IPython 7.17 and above. 

  and should_run_async(code) 

In the latter case, we use the equally intuitive astype() method, which returns a new 
column (of type series). We need to reassign it to the original attribute. The attribute 
vysledna_znamka thus acquires a data type that clearly defines that it is a categorical 
variable. 

df['vysledna_znamka'] = 

df['vysledna_znamka'].astype('category') 

print(df.dtypes) 
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Program output: 

pristupy            float64 

testy               float64 

testy_znamka         object 

skuska              float64 

projekt             float64 

projekt_znamka       object 

zadania             float64 

vysledne_body       float64 

vysledna_znamka    category 

absolvoval            int64 

rok                   int64 

prieb_test_sql      float64 

prieb_test_db       float64 

akad_rok             object 

Unnamed: 14         float64 

Unnamed: 15         float64 

dtype: object 

/usr/lib/python3/dist-packages/ipykernel/ipkernel.py:283: 

DeprecationWarning: `should_run_async` will not call 

`transform_cell` automatically in the future. Please pass the 

result to `transformed_cell` argument and any exception that 

happen during thetransform in `preprocessing_exc_tuple` in 

IPython 7.17 and above. 

  and should_run_async(code) 

Data type category represents effective work with categorical variables, contains a 
finite number of values unlike data type object. If we want to see them, we will use  the 
cat.categories attribute. In the case of the examined attribute vysledna_znamka,  we 
can see that this column contains correct values of marks, always written in the same 
form. If there were typos or another form of grades in this column, we would identify 
the problem in this view. 

print(df['vysledna_znamka'].cat.categories) 

Program output: 

Index(['A', 'B', 'C', 'D', 'E', 'FX'], dtype='object') 

/usr/lib/python3/dist-packages/ipykernel/ipkernel.py:283: 

DeprecationWarning: `should_run_async` will not call 

`transform_cell` automatically in the future. Please pass the 

result to `transformed_cell` argument and any exception that 

happen during thetransform in `preprocessing_exc_tuple` in 

IPython 7.17 and above. 

  and should_run_async(code) 
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Similarly, we can retype all object attributes to data category if they contain a finite 
number of values that we plan to work with further. We select all attributes of this 
data type and display unique values in the cycle. 

obj_df = df.select_dtypes(include='object') 

obj_cols = obj_df.columns 

for col_name in obj_cols: 

  print(col_name) 

  print(df[col_name].unique()) 

Program output: 

testy_znamka 

['FX' 'E' 'D' 'C' 'B' 'A' nan] 

projekt_znamka 

['FX' 'A' 'C' 'B' 'D' 'E' nan] 

akad_rok 

['2016/2017' '2017/2018' '2018/2019' '2018/19' '2019/2020' 

'2019/20020'] 

/usr/lib/python3/dist-packages/ipykernel/ipkernel.py:283: 

DeprecationWarning: `should_run_async` will not call 

`transform_cell` automatically in the future. Please pass the 

result to `transformed_cell` argument and any exception that 

happen during thetransform in `preprocessing_exc_tuple` in 

IPython 7.17 and above. 

  and should_run_async(code) 

There are three columns in the examined dataset with the potential to make them a 
categorical data type. So now we are going to retype them en masse using a simple 
cycle. 

for col_name in obj_cols: 

  df[col_name] = df[col_name].astype('category') 

print(df.dtypes) 

Program output: 

pristupy            float64 

testy               float64 

testy_znamka       category 

skuska              float64 

projekt             float64 

projekt_znamka     category 

zadania             float64 

vysledne_body       float64 

vysledna_znamka    category 
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absolvoval            int64 

rok                   int64 

prieb_test_sql      float64 

prieb_test_db       float64 

akad_rok           category 

Unnamed: 14         float64 

Unnamed: 15         float64 

dtype: object 

/usr/lib/python3/dist-packages/ipykernel/ipkernel.py:283: 

DeprecationWarning: `should_run_async` will not call 

`transform_cell` automatically in the future. Please pass the 

result to `transformed_cell` argument and any exception that 

happen during thetransform in `preprocessing_exc_tuple` in 

IPython 7.17 and above. 

  and should_run_async(code) 

📝 5.2.4 

Edit incorrect values 

Modifying incorrect values, or unifying them into a suitable form, is another common 
problem that we have to solve in the pre-processing phase. Otherwise, we may have, 
for example, multiple categories of values in the input data set that actually express 
the same thing, i.e., one category. For example, if we need to correct an incorrectly 
written value, we proceed as follows: 

• We create a new helper column, which will be a copy of the column where the 
incorrect value is located. 

• We use loc to identify records where the problem occurred. 

• We assign it a new value. 

• To replace a value that is part of a more complex text string, use str.contains() 
to find all occurrences. 

• Then we use the str.replace() method  to replace it with the desired value. 

We have already examined the grade columns in the previous chapter. Let's now 
examine column akad_rok, where there is the greatest assumption that there may be 
an error in the designation of the academic year. 

# prepared code 

import matplotlib.pyplot as plt 

%matplotlib inline 

import seaborn as sns 

import pandas as pd 

file_url = 'https://priscilla.fitped.eu/data/la/results-16-

19.csv' 

df = pd.read_csv(file_url) 
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print(df['akad_rok'].unique()) 

Program output: 

['2016/2017' '2017/2018' '2018/2019' '2018/19' '2019/2020' 

'2019/20020'] 

/usr/lib/python3/dist-packages/ipykernel/ipkernel.py:283: 

DeprecationWarning: `should_run_async` will not call 

`transform_cell` automatically in the future. Please pass the 

result to `transformed_cell` argument and any exception that 

happen during thetransform in `preprocessing_exc_tuple` in 

IPython 7.17 and above. 

  and should_run_async(code) 

In the list of unique values, we discovered two different designations for the 
academic year 2018/2019. At the same time, we found an error in one of the lines 
from the academic year 2019/2020. At first glance, it is obvious that this is a flawed 
year 2019/20020. 

Let's look for records with an abbreviated version of the 2018/2019 academic year. 
In the case of the examined file, we find that it is only one record. 

print(df.loc[df['akad_rok'].str.contains('2018/19', 

na=False),]) 

Program output: 

     pristupy  testy testy_znamka  skuska  projekt 

projekt_znamka  zadania  \ 

166     828.0   38.5            E    10.0    57.68              

E     24.0    

 

     vysledne_body vysledna_znamka  absolvoval   rok  

prieb_test_sql  \ 

166         129.57               D           1  2018            

10.5    

 

     prieb_test_db akad_rok  Unnamed: 14  Unnamed: 15   

166           18.0  2018/19          NaN          NaN   

/usr/lib/python3/dist-packages/ipykernel/ipkernel.py:283: 

DeprecationWarning: `should_run_async` will not call 

`transform_cell` automatically in the future. Please pass the 

result to `transformed_cell` argument and any exception that 

happen during thetransform in `preprocessing_exc_tuple` in 

IPython 7.17 and above. 
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  and should_run_async(code) 

We can simply correct this value with str.replace and check the result. 

df['akad_rok'] = df['akad_rok'].str.replace('2018/19', 

'2018/2019') 

print(df['akad_rok'].unique()) 

Program output: 

['2016/2017' '2017/2018' '2018/2019' '2019/2020' '2019/20020'] 

/usr/lib/python3/dist-packages/ipykernel/ipkernel.py:283: 

DeprecationWarning: `should_run_async` will not call 

`transform_cell` automatically in the future. Please pass the 

result to `transformed_cell` argument and any exception that 

happen during thetransform in `preprocessing_exc_tuple` in 

IPython 7.17 and above. 

  and should_run_async(code) 

We successfully solved the first problem. We can do the same in the latter case. 

df.loc[df['akad_rok'].str.contains('2019/20020', 

na=False),['akad_rok']] 

df['akad_rok'] = df['akad_rok'].str.replace('2019/20020', 

'2019/2020') 

print(df['akad_rok']) 

Program output: 

0      2016/2017 

1      2016/2017 

2      2016/2017 

3      2016/2017 

4      2016/2017 

         ...     

281    2019/2020 

282    2019/2020 

283    2019/2020 

284    2019/2020 

285    2019/2020 

Name: akad_rok, Length: 286, dtype: object 

/usr/lib/python3/dist-packages/ipykernel/ipkernel.py:283: 

DeprecationWarning: `should_run_async` will not call 

`transform_cell` automatically in the future. Please pass the 

result to `transformed_cell` argument and any exception that 



67 

happen during thetransform in `preprocessing_exc_tuple` in 

IPython 7.17 and above. 

  and should_run_async(code) 

📝 5.2.5 

Missing values 

A frequent problem of input data is missing values. In the pre-processing phase, we 
should assess whether their absence means that we delete the entire 
recording/observation or try to preserve the recording and replace the missing value 
with a suitable alternative. Let's look at our practice file to see if it contains missing 
values. 

# prepared code 

import matplotlib.pyplot as plt 

%matplotlib inline 

import seaborn as sns 

import pandas as pd 

file_url = 'https://priscilla.fitped.eu/data/la/results-16-

19.csv' 

df = pd.read_csv(file_url) 

 

print(df.isna().sample(10)) 

Program output: 

     pristupy  testy  testy_znamka  skuska  projekt  

projekt_znamka  zadania  \ 

53      False  False         False   False    False           

False    False    

60      False  False         False   False    False           

False    False    

67      False  False         False   False    False           

False    False    

270     False  False         False   False    False           

False    False    

138     False  False         False   False    False           

False    False    

55      False  False         False   False    False           

False    False    

116     False  False         False   False    False           

False    False    

32      False  False         False   False    False           

False    False    
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232     False  False         False   False    False           

False    False    

41      False  False         False   False    False           

False    False    

 

     vysledne_body  vysledna_znamka  absolvoval    rok  

prieb_test_sql  \ 

53           False            False       False  False            

True    

60           False            False       False  False            

True    

67           False            False       False  False           

False    

270          False            False       False  False           

False    

138          False            False       False  False           

False    

55           False            False       False  False            

True    

116          False            False       False  False           

False    

32           False            False       False  False            

True    

232          False            False       False  False           

False    

41           False            False       False  False            

True    

 

     prieb_test_db  akad_rok  Unnamed: 14  Unnamed: 15   

53            True     False         True         True   

60            True     False         True         True   

67           False     False         True         True   

270          False     False         True         True   

138          False     False         True         True   

55            True     False         True         True   

116          False     False         True         True   

32            True     False         True         True   

232          False     False         True         True   

41            True     False         True         True   

/usr/lib/python3/dist-packages/ipykernel/ipkernel.py:283: 

DeprecationWarning: `should_run_async` will not call 

`transform_cell` automatically in the future. Please pass the 

result to `transformed_cell` argument and any exception that 
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happen during thetransform in `preprocessing_exc_tuple` in 

IPython 7.17 and above. 

  and should_run_async(code) 

To get a better idea, simply count the missing values by column. 

print(df.isna().sum()) 

Program output: 

pristupy             1 

testy                2 

testy_znamka         2 

skuska               1 

projekt              1 

projekt_znamka       2 

zadania              0 

vysledne_body        0 

vysledna_znamka      0 

absolvoval           0 

rok                  0 

prieb_test_sql      66 

prieb_test_db       66 

akad_rok             0 

Unnamed: 14        286 

Unnamed: 15        286 

dtype: int64 

/usr/lib/python3/dist-packages/ipykernel/ipkernel.py:283: 

DeprecationWarning: `should_run_async` will not call 

`transform_cell` automatically in the future. Please pass the 

result to `transformed_cell` argument and any exception that 

happen during thetransform in `preprocessing_exc_tuple` in 

IPython 7.17 and above. 

  and should_run_async(code) 

 

print(df.shape) 

Program output: 

(286, 16) 

Most columns contain a small number of duplicates. The problem is columns 
prieb_test_sql and prieb_test_db. The absence of 66 values in this case means a 
significant interference with the data set, which contains a total of 286 records. We 
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therefore need to find out what eliminating them means, or whether it makes sense 
to replace them with some appropriate value. 

So, let's first look at these two problematic columns. We'll view specific records using 
a condition. 

print(df[df['prieb_test_sql'].isna()].head()) 

Program output: 

   pristupy  testy testy_znamka  skuska  projekt 

projekt_znamka  zadania  \ 

0      79.0   0.00           FX     0.0     0.00             

FX    12.00    

1      79.0   0.00           FX     0.0     0.00             

FX    12.00    

2     792.0  40.60            E     7.0    76.89              

A    13.45    

3    1111.0  42.76            D    10.0    79.29              

A    11.77    

4     487.0  47.20            C     0.0     0.00             

FX    12.58    

 

   vysledne_body vysledna_znamka  absolvoval   rok  

prieb_test_sql  \ 

0          20.52              FX           0  2016             

NaN    

1          20.52              FX           0  2016             

NaN    

2         140.73               D           1  2016             

NaN    

3         150.36               C           1  2016             

NaN    

4          68.68              FX           0  2016             

NaN    

 

   prieb_test_db   akad_rok  Unnamed: 14  Unnamed: 15   

0            NaN  2016/2017          NaN          NaN   

1            NaN  2016/2017          NaN          NaN   

2            NaN  2016/2017          NaN          NaN   

3            NaN  2016/2017          NaN          NaN   

4            NaN  2016/2017          NaN          NaN   

/usr/lib/python3/dist-packages/ipykernel/ipkernel.py:283: 

DeprecationWarning: `should_run_async` will not call 

`transform_cell` automatically in the future. Please pass the 
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result to `transformed_cell` argument and any exception that 

happen during thetransform in `preprocessing_exc_tuple` in 

IPython 7.17 and above. 

  and should_run_async(code) 

The values in columns prieb_test_sql and prieb_test_db cannot be easily added as 
these are test results. Presumably, the tests were not conducted this year or were 
conducted in another form. To delete records with missing values, we can use  the 
dropna() method, which returns a new dataframe without rows that contained the 
missing value somewhere. However, this can have a negative impact on the size of 
the input data file, so we should carefully consider this simple option.  

If we are only interested in a specific attribute, we define it in the subset parameter. 
In addition, if we want to definitively remove these values from the original data 
frame, we add the inplace=True parameter. 

df.dropna(subset=['prieb_test_sql'], inplace=True) 

print(df.isna().sum()) 

Program output: 

pristupy             1 

testy                2 

testy_znamka         2 

skuska               1 

projekt              1 

projekt_znamka       2 

zadania              0 

vysledne_body        0 

vysledna_znamka      0 

absolvoval           0 

rok                  0 

prieb_test_sql       0 

prieb_test_db        0 

akad_rok             0 

Unnamed: 14        220 

Unnamed: 15        220 

dtype: int64 

/usr/lib/python3/dist-packages/ipykernel/ipkernel.py:283: 

DeprecationWarning: `should_run_async` will not call 

`transform_cell` automatically in the future. Please pass the 

result to `transformed_cell` argument and any exception that 

happen during thetransform in `preprocessing_exc_tuple` in 

IPython 7.17 and above. 

  and should_run_async(code) 
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We see a different situation with records of grades. We don't want to remove these 
rows with a missing value, but we want to add a value that better describes why the 
value wasn't entered or their purpose. We will use the fillna() method. 

df['testy_znamka'].fillna('FX', inplace=True) 

df['projekt_znamka'].fillna('FX', inplace=True) 

print(df.isna().sum()) 

Program output: 

pristupy             1 

testy                2 

testy_znamka         0 

skuska               1 

projekt              1 

projekt_znamka       0 

zadania              0 

vysledne_body        0 

vysledna_znamka      0 

absolvoval           0 

rok                  0 

prieb_test_sql       0 

prieb_test_db        0 

akad_rok             0 

Unnamed: 14        220 

Unnamed: 15        220 

dtype: int64 

/usr/lib/python3/dist-packages/ipykernel/ipkernel.py:283: 

DeprecationWarning: `should_run_async` will not call 

`transform_cell` automatically in the future. Please pass the 

result to `transformed_cell` argument and any exception that 

happen during thetransform in `preprocessing_exc_tuple` in 

IPython 7.17 and above. 

  and should_run_async(code) 

If we know that the input file contains a different label for missing values than NaN 
or an empty string that is replaced with NaN, we can assign this label during data 
import using the na_values parameter in the read_csv or read_excel method. 

df = pd.read_csv(file_url, na_values='?') 

In justified cases, we need to keep as many rows in the data set as possible. 
Therefore, we need to replace the missing numerical values with an appropriate value 
that does not affect further data modeling, such as the median. In this case, we 
identify all the necessary attributes of the data frame with numerical values and use 
a combination of methods already known to us. 
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num_df = df.select_dtypes(include='number') 

num_cols = num_df.columns 

print(num_cols) 

Program output: 

Index(['pristupy', 'testy', 'skuska', 'projekt', 'zadania', 

'vysledne_body', 

       'absolvoval', 'rok', 'prieb_test_sql', 'prieb_test_db', 

'Unnamed: 14', 

       'Unnamed: 15'], 

      dtype='object') 

/usr/lib/python3/dist-packages/ipykernel/ipkernel.py:283: 

DeprecationWarning: `should_run_async` will not call 

`transform_cell` automatically in the future. Please pass the 

result to `transformed_cell` argument and any exception that 

happen during thetransform in `preprocessing_exc_tuple` in 

IPython 7.17 and above. 

  and should_run_async(code) 

To inspire how a routinely repetitive process can be speeded up, we adjust individual 
numeric columns in one cycle. 

for col_name in num_cols: 

  col_median = df[col_name].median() 

  df[col_name].fillna(col_median, inplace=True) 

  print(col_name) 

  print(col_median) 

Program output: 

pristupy 

598.0 

testy 

39.2 

skuska 

14.0 

projekt 

73.33 

zadania 

14.5 

vysledne_body 

146.99 

absolvoval 

1.0 
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rok 

2018.0 

prieb_test_sql 

15.0 

prieb_test_db 

14.0 

Unnamed: 14 

nan 

Unnamed: 15 

nan 

/usr/lib/python3/dist-packages/ipykernel/ipkernel.py:283: 

DeprecationWarning: `should_run_async` will not call 

`transform_cell` automatically in the future. Please pass the 

result to `transformed_cell` argument and any exception that 

happen during thetransform in `preprocessing_exc_tuple` in 

IPython 7.17 and above. 

  and should_run_async(code) 

/home/johny/.local/lib/python3.9/site-

packages/numpy/lib/nanfunctions.py:1216: RuntimeWarning: Mean 

of empty slice 

  return np.nanmean(a, axis, out=out, keepdims=keepdims) 

/home/johny/.local/lib/python3.9/site-

packages/numpy/lib/nanfunctions.py:1216: RuntimeWarning: Mean 

of empty slice 

  return np.nanmean(a, axis, out=out, keepdims=keepdims) 

The missing values in each column have been replaced with the following median 
values. 

Finally, we check if we have successfully resolved all missing values. 

print(df.isna().sum()) 

Program output: 

pristupy             0 

testy                0 

testy_znamka         2 

skuska               0 

projekt              0 

projekt_znamka       2 

zadania              0 

vysledne_body        0 

vysledna_znamka      0 

absolvoval           0 
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rok                  0 

prieb_test_sql       0 

prieb_test_db        0 

akad_rok             0 

Unnamed: 14        286 

Unnamed: 15        286 

dtype: int64 

/usr/lib/python3/dist-packages/ipykernel/ipkernel.py:283: 

DeprecationWarning: `should_run_async` will not call 

`transform_cell` automatically in the future. Please pass the 

result to `transformed_cell` argument and any exception that 

happen during thetransform in `preprocessing_exc_tuple` in 

IPython 7.17 and above. 

  and should_run_async(code) 
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6.1 Methods 

🕮 6.1.1 

Data preparation is an important step in any knowledge mining process from data. 
In the educational domain, it is particularly important to obtain suitable, sufficiently 
large, and representative datasets, which often requires extra effort.  

Data preparation is an iterative process involving data cleansing, merging, 
transforming, selecting or reducing variables in order to uncover hidden patterns of 
behavior and structure. This process must exclude unnecessary data without 
impoverishing the data set or introducing an unwanted bias. The output from this 
phase is a pre-processed dataset, which is considered a suitable input to the 
modelling phase (Mubarak et al., 2020).  

🕮 6.1.2 

Data Inconsistency and Data Type Conversions 

We can start with relatively common problem encountered in the data preprocessing 
phase. This problem relates to data inconsistency and incorrect data types of 
individual attributes of the original data set.  

Inconsistent data appears when a dataset or data group differs dramatically from a 
similar dataset (a conflicting dataset) for no apparent reason. Data in a single column 
must have consistent formats. For example, when datasets from multiple sources 
are merged, the same data may have different formats. Dates can often be 
problematic. A column of data cannot have a date format such as mm/dd/yy and 
mm/dd/y. Data must be corrected to have consistent formats.  

In fact, some seemingly incorrect data may also result from inconsistencies in the 
naming conventions used or established data codes, or from the use of inconsistent 
input field formats. For example, duplicate tuples may require data cleaning, e.g., age 
= "42" and birthday = "03/03/1997" indicating discrepancies between duplicate 
entries (Siegel, 2018). 

Many inconsistencies come to the place when we must combine different data 
resources. In this case, data engineering methods and techniques can help us to 
prepare the dataset to the more suitable form required by the next steps of data-
preprocessing.  

🕮 6.1.3 

Missing Values 

When we analyze data, it is important to first determine the pattern of missing data. 
There are three types of patterns:  
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• missing completely randomly (MCAR),  

• randomly missing (MAR), 

• missing not randomly (MNAR).  

Data is missing completely randomly when there is no pattern in the missing data in 
any variable. Random missing occurs when there is a pattern in the missing data that 
can affect the primary dependent variables. An example of MAR would be women's 
propensity not to tell their age. For example, if the study was about weight loss. If 
heavier individuals responded less, it would affect the results. Missing values can 
lead to analysis problems with predictable modeling depending on the type of model 
used (Luna et al., 2017). 

There are two strategies for resolving missing values, namely deleting records or 
deleting a column and deriving the missing values. In the first case, deletion involves 
deleting a row (record) from the dataset. If there are only a few missing values, this 
may be an appropriate approach.  

🕮 6.1.4 

On the other hand, a smaller dataset can weaken the predictive power of a model. 
Deleting a column removes any variables that contain the missing values. Deleting a 
variable that contains only a few missing values is not recommended. The second 
and more advantageous strategy is to derive the missing value from the other 
existing values of the variables. This adjustment changes the missing data value to 
one that represents a logically reasoned value (Siegel, 2018). 

The most used method is to replace the missing value with another constant value. 
Typically, values expressed as Null are replaced by a constant value. However, this 
can be problematic, for example, replacing age with 0 does not make sense. Likewise, 
for categorical variables such as gender, replacing the missing value with a constant 
such as F leads to fundamental changes. This method works well when the missing 
value is completely random (MCAR). 

It is also possible to replace the missing numeric values with a mean or median. 
Replacing missing values with the mean of a variable is a common and simple 
method. Moreover, is unlikely it impairs the predictability of the model since the 
average values should be close to the average. However, if many values are missing 
for a particular variable, replacing it with mean can cause problems because a higher 
average value will cause changes in the variable's distribution and a smaller standard 
deviation. If this is the case, replacing with a median may be a better solution. 

We can replace categorical values with modus (the most common value) because 
there is no mean or median. We could also replace numerical missing values with the 
most common values.  

The last method of replacing missing values is to replace the missing value by 
randomly selecting a value from the missing values, the so-called custom 
distribution. This solution is preferred to using the average, but it is not so simple. 
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For the sake of completeness, let us add that in the case of large data sets, we can 
replace the missing values with values obtained by the application of some machine 
learning method or neural networks. 

🕮 6.1.5 

Outliers 

An extreme value, outlier, is a data value that is scattered from other data values in 
the dataset. The degree of variability tells us how close or distant the values of the 
variables of a set are from each other.  

An example of measures of variability is the interquartile range. The interquartile 
range, also referred to as the Interquartile Range (IQR), represents the difference 
between the third and first quartiles (i.e., between 75. and the 25th percentile). Thus, 
it represents an area of values that has a mean 50% of the values of the variable. This 
degree of variability is not affected by extreme values and can be expressed as 
follows: 

 

We can also use the interquartile range to identify outliers, to create a boundary 
outside q1 and q3. Any values less than 1.5 IQR below q1 or greater than 1.5 IQR 
above q3 are considered outliers. 

Outliers can be visually identified by creating histograms, a box chart, and looking for 
values that are too high or too low.  

There are five common ways to process outliers (Edwards, 2018): 

1. Remove outliers from modelling data. 
2. Separate outliers and create separate models. 
3. transform outliers so that they are no longer outliers. 
4. Group data. 
5. Leave outliers in the data. 

Many knowledge discovery algorithms attempt to minimize the impact of outliers on 
the final model or eliminate them during the preprocessing stages. For example, in 
the case of a one-dimensional value, we can prevent outliers from distorting the 
results by using the median. It is also important to emphasize that although outliers 
can usually be caused by noise, they can often be true observations in educational 
data.  

🕮 6.1.6 

For example, we often meet exceptional students who succeed with little effort or, 
conversely, fail despite all expectations. However, distinguishing between outliers 
that should be taken into account and those that should be eliminated is not always 
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easy. The right decision requires knowledge of the area in which the data was 
collected, and at the same time depends on the objectives of the analysis. In this 
case, a relatively simple technique, based on the visualization of data quartiles, where 
values that do not fall within the identified quartiles can be considered outliers.  

Omitting outliers changes data variability. Before automatically removing outliers, it 
is advisable to investigate the possible causes of outliers and the impact that outliers 
may have on the analysis. If the outlier value is caused by incorrectly entered or 
measured data values, or if the outlier value is outside the interest file, it should be 
removed. If extreme value is unlikely to distort the model, in other words, cause more 
harm than good, the outlier value should equally be eliminated (Siegel, 2018).  

Some analysts remove outliers and create a separate model. Decision trees in this 
case can help determine whether extreme values are good predictors of the target 
variable (Kusner et al., 2017).  

On the other hand, there may be cases where outliers represent the group of data to 
be studied and should remain as they are in the dataset. Thus, there is no universal 
method for manipulating outlier values, we should always consider them in the 
context of the problem under study (Peña-Ayala, 2017). 

6.2 Data transformation and reduction 

🕮 6.2.1 

Data transformation 

Data transformation can facilitate a better interpretation of discovered knowledge by 
allowing variables or data from different sources to be compared. We will now give 
some examples of transformation, such as normalization, standardization, 
discretization, and class inequality.  

Machine learning algorithms are effectively trained when datasets are normalized or 
standardized, resulting in faster processing or training. Normalization is a data 
transformation technique where variable values are scaled within a specified range, 
usually from -1.0 to 1.0 or between 0.0 and 1.0. Within a variable there is often a large 
difference between the maximum and minimum values, e.g., 0.01 and 1,000. For 
example, this difference could significantly affect the performance of some machine 
learning algorithms. Therefore, it is necessary to perform normalization and rescale 
the original values to values from the same defined interval. In this way, 
normalization can improve the accuracy and efficiency of the knowledge discovery 
algorithms used, including distance measurements. 

Normalization also helps prevent variables with initially large ranges from prevailing 
over variables with originally smaller ranges. For example, one of the most important 
steps in data preprocessing for clustering is to standardize or normalize data to avoid 
clusters dominated by variables of great variability (Charitopoulos et al., 2020).  
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🕮 6.2.2 

There are many other ways to normalize data. In education, however, the most used 
method is Min-max normalization, which performs a linear transformation of the 
original data. 

 

Standardization is another data transformation technique where values are centered 
around an average with a unit standard deviation.  

 

It means, the average of the variable becomes zero, and the resulting distribution has 
a unit standard deviation. The most widely used method of standardization in 
education is z-score. When choosing scaling methods, it's a good idea to follow the 
recommendations associated with using a particular machine learning method in the 
modeling process.  

Normalization 

• For scaling, the minimum and maximum values of variables are used. 

• It is used when variables are of different ranges. 

• Variable values are usually adjusted between [0.1] or [-1.1]. 
• It is affected by outlier values. 

• Python provides the Scikit-Learn library with the MinMaxScaler function. 

• The distribution of elements is unknown. 

Standardization 

• Average and standard deviation are used for scaling. 

• It is used when it is necessary to ensure zero mean and unit standard 
deviation. 

• It is not bounded by a specific range. 

• There is much less influence in outlier values. 
• Python provides a Scikit-Learn library with StandarScaler. 

• The distribution of elements has a normal or Gauss distribution. 

Discretization divides numerical data into categorical classes that are more user-
friendly than exact quantities and ranges. This reduces the number of possible 
continuous character values and provides a much clearer view of the data. 
Discretization generally smooths out the impact of noise and allows for simpler 
models that are less prone to overlearning. For example, algorithms for obtaining 
association rules usually work only with categorical data. A special type of 
discretization is the transformation of ordinal to binary representation, that is, from 
numbers indicating position in the sequence to a value of 0 or 1. This type of 
codification is used, for example, in the discovery of patterns.  
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🕮 6.2.3 

A different approach is to use fuzzy intervals, in which fuzzy sets are used instead of 
sharp intervals. Finally, the most extreme but simplest case of discrimination is when 
we use a binary variable (0 or 1). In this case, even if some information is lost, the 
resulting model can yield, for example, a more accurate classification.  

Some other authors suggest making log file files more expressive. This change 
involves changing the representation of events in the log file and enriching the 
recorded expressions with semantics so that further conclusions useful for the field 
of education can be drawn more easily. Another approach is to fully represent each 
event using English words, English grammar, and standard log file forms, such as 
xAPI (Torrance, Houck, 2017). 

An unbalanced dataset is also a common problem with educational data. For 
example, if you create a model that helps identify at-risk students where there are 
1,000 students available, 900 of whom are successful (higher-represented class) and 
another 100 fail (underrepresented class), machine learning algorithms will tend to 
gravitate toward a higher-represented class. The accuracy of the models will reach 
90% in such a case, since 900 successful students were available. However, it will 
not be possible to create a model that would be able to reliably predict at-risk 
students, since they make up only 10% of the input set. In this case, subsampling or 
resampling methods shall be used.  

The purpose of under-sampling is to reduce a class with higher abundance. There 
are two ways. The first method randomly deletes some records of a class with a 
higher representation, which is known as random under-sampling. The second 
method uses statistical methods to remove a class with a higher-class 
representation, known as informed under-sampling. Under-sampling methods are 
generally not preferred because there is a possibility of losing valuable information. 

Oversampling is the opposite of under-sampling. The aim is to increase the number 
of samples of a class with a lower representation so that the classes become 
equivalent. Unlike subsampling, which deletes datasets when you reload, new data 
is added to the dataset. Again, two methods are available: random or synthetic up-
sampling. In case of random up-sampling, data from the under-represented class 
shall be replicated. The synthetic up-sampling technique generates artificial 
samples. New samples are created by adding relevant information to a less 
represented class, while avoiding misclassification. The most widely used 
resampling method is the Synthetic Minority Oversampling Technique (SMOTE), 
which generates synthetic data points for a lower-represented class that tries to track 
as closely as possible the distribution of variables in a dataset (Fernandes et al.,  
2019). 
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🕮 6.2.4 

Data Reduction  

The data reduction step consists of aggregation, selection, extraction of attributes, 
is an activity where a subset of relevant variables is selected from all available 
variables. The main goal of data aggregation is to group it. It is the process of 
applying statistical metrics such as mean, median, and variance that are necessary 
to summarize the data and replace several elementary values with one placeholder 
(Charitopoulos et al., 2020). 

Selecting the right variables is one of the main tasks to perform before applying 
knowledge discovery techniques, since variables can correlate with each other or be 
redundant. As a result, data must be preprocessed to represent an appropriate 
subset of variables and ignore irrelevant and redundant. It is a redundant variable if 
it can be derived from another or more variables.  

The choice of input variables is very important in education, since in many practical 
situations there can be a large number of variables that can lead to a decrease in the 
accuracy of the learning model or a more difficult to meaningfully interpret the 
results. Therefore, when selecting variables, it is necessary to analyze the 
dependencies between the output variable (target class) and the explanatory (input 
variables) through correlation analysis or association rules. Another possible 
approach is to use a machine learning algorithm and experiment with selecting 
appropriate variables in the resulting classifier. One solution to this problem is to 
select only the most important variables using specialized algorithms. For example, 
a decision tree can be used to determine appropriate characteristics. This method is 
used to obtain the most consistent variables by presenting them at different levels 
of the tree (Fernandes et al., 2019).  

🕮 6.2.5 

Learning management systems, such as LMS Moodle, store a huge number of 
variables about courses, students, and activities. Therefore, it is really important to 
select only a useful group of variables to reduce the dimensionality of the data. Then 
these selected variables can all be stored together in a new table containing all 
relevant information related to the students enrolled in the course. For example, in 
the case of predicting the final performance of students in a course based on 
information about the use of the LMS Moodle course, there are many variables 
characterizing the interaction between students and the Moodle LMS. Therefore, it is 
only necessary to select variables closely related to student performance.  

Some data preparation techniques perform extraction and selection of variables at 
the same time. For example, in major component analysis (PCA) and independent 
component analysis (ICA), new variables are created as linear combinations of the 
original ones. At the same time, these algorithms suggest which of the new variables 
best captures the original data. The problem is that the appropriateness of extraction 
and selection of variables cannot be evaluated until the classifier has passed the 
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learning and evaluation stage. Therefore, in the case of a larger number of variables, 
not all options can be verified. For this reason, all methods of extraction and selection 
of functions are heuristic (Lang et al., 2017). 

🕮 6.2.6 

Other preprocessing techniques 

User identification, session identification or path reconstruction are examples of 
data pre-processing techniques required by special learning analytics methods, 
which often take into account also time.  

The user identification is a less demanding problem in the educational domain 
compared with other data mining application domains because the stakeholders can 
be identified by their unique ID. Anonymous logins to the VLE are often forbidden.  

A user session is defined as a sequence of requests made by a particular user over 
a certain navigation period. A user may have one or multiple sessions during this 
period. The session identification is a process of segmenting the logs of each 
stakeholder into disjoint sequences of individual sessions (Drlik, Munk, 2018). A 
more detailed discussion about the different session identification techniques is 
outside the scope of this course.  

Finally, path reconstruction is a technique, which allows adding missing pieces of 
puzzle to the sequence of stakeholder’s activity records in VLE with the aim to better 
understand his or her behaviour. 
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7.1 Problem understanding 

🕮 7.1.1 

Regression analysis 

The goal of predictive modeling is generally to create a model based on historical 
data with which we can predict a certain phenomenon for new data. In predictive 
modeling, we look for the most suitable approximation of a function that maps the 
input variables X to the output variables for y.  

All approximation functions can be divided into classification and regression tasks. 
While the goal of classification is to assign the correct classification class for a given 
input data, the goal of a regression task is to assign a specific quantitative 
(continuous) variable to the input data. 

The regression task is to find an approximation of the function f, which maps the 
input variables X to a continuous output variable y that has a numeric data type.  

 

The success rate of the regression model is the root mean square error (RMSE) value, 
which is expressed in the same units as the output predicted variable.  

🕮 7.1.2 

Problem Understanding 

The use of regression analysis in the LA domain is very common, as it is a very simple 
method. Therefore, we cannot expect groundbreaking findings that we would not 
know about before, rather we can use it in cases where we are interested in the 
influence of individual factors on the result. Still, LA areas are often used, for 
example, to predict student performance in a course, the correlation between 
different student characteristics, their activity, and academic achievement.  

The dataset used in this example contains anonymized results of multiple evaluated 
student activities in a particular course. Since all activities were evaluated by points 
in the range, we will consider them as continuous variables. Although the final 
evaluation of the subject is a mark, in our example we will be interested in the 
achieved number of points.  

The discussion of the legitimacy of classifying it as a machine learning algorithm is 
beyond the scope of this publication. From a practical point of view, it is important 
to know that the use of the linear regression method requires the fulfillment of 
several prerequisites. If these assumptions are not met, the results of the regression 
analysis may be misleading or completely incorrect. Therefore, it is always necessary 
to check that the following prerequisites are not violated: 
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• The relationship between the dependent and independent variables must be 
linear. In the case of multiple linear regression, the weighted sum of 
independent variables shall be able to explain the variability of the dependent 
variable. 

• The residues must have a normal distribution. 

• The residues must have a constant deviation (homoskedasticity). 
• Residues must not be correlated (autocorrelation). 

• There must be no correlation between independent variables. If they correlate, 
we speak of multicollinearity. In such a model, the coefficients depend on the 
existence of another independent variable. 

Since this is the first example, suppose these assumptions are met in our example. 
If they were not, we can transform them to a great extent using Pandas methods. 
This example is more of a demonstration of the procedure than a benefit to LA given 
the quality of the available data.  

📝 7.1.3 

Import of necessary modules and functions 

As usual, we will start by importing the necessary modules. Most modules are 
encountered repeatedly, so there is no need to introduce them further. First, we 
import data visualization functions. 

 

%matplotlib inline 

import matplotlib as mpl 

import seaborn as sns 

import matplotlib.pyplot as plt 

plt.style.use('seaborn') 

And now the functions for their analysis. The patsy library simplifies model 
writing. We imported plot_corr and train_test_split functions 
from  statsmodels.graphics.correlation and sklearn.model_selection.  

import pandas as pd 

import numpy as np  

import statsmodels.formula.api as smf 

import statsmodels.graphics.api as smg 

import patsy 

from statsmodels.graphics.correlation import plot_corr 

from sklearn.model_selection import train_test_split 

As we are used to, we upload the data file to the Pandas dataset. 
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dataset = 

pd.read_csv('https://priscilla.fitped.eu/data/la/course02.csv'

) 

📝 7.1.4 

Data Understanding  

At the beginning, show an example of the dataset. 

# prepared code 

%matplotlib inline 

import matplotlib as mpl 

import seaborn as sns 

import matplotlib.pyplot as plt 

plt.style.use('seaborn') 

 

import pandas as pd 

import numpy as np  

import statsmodels.formula.api as smf 

import statsmodels.graphics.api as smg 

import patsy 

from statsmodels.graphics.correlation import plot_corr 

from sklearn.model_selection import train_test_split 

 

dataset = 

pd.read_csv('https://priscilla.fitped.eu/data/la/course02.csv'

) 

print(dataset.head()) 

Program output: 

   pristupy  testy  skuska  projekt  zadania  vysledne_body 

vysledna_znamka 

0      1354   41.5    14.0    88.40     40.0         162.21               

C 

1       360   24.0     0.0    82.33      7.0          96.40              

FX 

2       849   49.0    16.0    79.79     40.0         169.54               

B 

3       173   41.0    18.0    83.16      0.0         118.23              

FX 

4       478    7.0     0.0     0.00     10.0          21.67              

FX 
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📝 7.1.5 

Data pre-processing 

We will remove any empty and duplicate values from the dataset. 

# prepared code 

%matplotlib inline 

import matplotlib as mpl 

import seaborn as sns 

import matplotlib.pyplot as plt 

plt.style.use('seaborn') 

 

import pandas as pd 

import numpy as np  

import statsmodels.formula.api as smf 

import statsmodels.graphics.api as smg 

import patsy 

from statsmodels.graphics.correlation import plot_corr 

from sklearn.model_selection import train_test_split 

 

dataset = 

pd.read_csv('https://priscilla.fitped.eu/data/la/course02.csv'

) 

dataset2 = dataset.dropna() 

dataset2 = dataset2.drop_duplicates() 

Now we get acquainted in more detail with each column of the dataset. 

print(list(dataset2.columns)) 

Program output: 

['pristupy', 'testy', 'skuska', 'projekt', 'zadania', 

'vysledne_body', 'vysledna_znamka'] 

We rename the columns if necessary to make it easier to interpret the results. We 
will create the second dataset to renamed fields. 

Knowing the data types of individual columns of the dataset is a prerequisite for the 
successful application of any model. Using the info() function, we display the number 
of rows of the dataset. In addition, we can see if any of the columns contain blank 
values (non-null) as well as the data types of each column. 

dataset2.info() 
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Program output: 

Int64Index: 62 entries, 0 to 61 

Data columns (total 7 columns): 

 #   Column           Non-Null Count  Dtype   

---  ------           --------------  -----   

 0   pristupy         62 non-null     int64   

 1   testy            62 non-null     float64 

 2   skuska           62 non-null     float64 

 3   projekt          62 non-null     float64 

 4   zadania          62 non-null     float64 

 5   vysledne_body    62 non-null     float64 

 6   vysledna_znamka  62 non-null     object  

dtypes: float64(5), int64(1), object(1) 

memory usage: 3.9+ KB 

We calculate basic descriptive statistics of a data set to understand the data, using 
the function describe(). The include parameter specifies the data types for which 
descriptive statistics should be displayed. It usually makes sense to use only 
numerical data types. Finally, we transposed the table for a clearer display of data 
using the function . T. 

print(dataset2.describe(include=[np.number]).T) 

Program output: 

               count        mean         std   min       25%     

50%  \ 

pristupy        62.0  985.048387  414.657252  28.0  691.7500  

961.00    

testy           62.0   40.112903   13.015885   0.0   35.2500   

43.50    

skuska          62.0   13.177419    4.880621   0.0   13.0000   

14.00    

projekt         62.0   81.230000   25.512808   0.0   82.1275   

89.58    

zadania         62.0   31.693548   11.148166   0.0   28.5000   

36.00    

vysledne_body   62.0  147.286613   43.066892   0.0  135.9725  

162.07    

 

                     75%      max   

pristupy       1178.5000  2135.00   

testy            49.0000    57.00   

skuska           16.0000    20.00   
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projekt          93.7475    99.48   

zadania          40.0000    40.00   

vysledne_body   175.8125   189.92   

We divide the data from the dataset into training and test sets using the 
train_test_split function. For example, we can allocate 30% of data to test_data_size 
parameters for testing. In order to reproduce the calculation, we set the seed for the 
random number generator, e.g., to 10. 

X = 

dataset2[['projekt','zadania','pristupy','skuska','testy']] 

y = dataset2[['vysledne_body']] 

seed = 10  

test_data_size = 0.3  

X_train, X_test, y_train, y_test = train_test_split(X, y, 

test_size = test_data_size, random_state = seed) 

train_data = pd.concat([X_train, y_train], axis = 1) 

test_data = pd.concat([X_test, y_test], axis = 1) 

As part of this phase, we should examine the assumptions for the use of linear 
regression. To do this, we can use visualization using charts from the Seaborn library.  

Multicollinearity can be investigated using the corr() method. More precisely, we 
calculate a matrix of correlation coefficients for the numeric data columns of the 
training set. The matrix is symmetrical according to the left diagonal. The diagonal 
shows the correlation of the variable with itself, so it is natural that it is equal to 1 
and is not suitable for further analysis. 

corrMatrix = train_data.corr(method = 'pearson') 

print(corrMatrix) 

Program output: 

                projekt   zadania  pristupy    skuska     

testy  vysledne_body 

projekt        1.000000  0.801389  0.467812  0.557367  

0.666989       0.899312 

zadania        0.801389  1.000000  0.648714  0.629827  

0.667937       0.876565 

pristupy       0.467812  0.648714  1.000000  0.528425  

0.492659       0.578795 

skuska         0.557367  0.629827  0.528425  1.000000  

0.863221       0.790099 

testy          0.666989  0.667937  0.492659  0.863221  

1.000000       0.907615 
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vysledne_body  0.899312  0.876565  0.578795  0.790099  

0.907615       1.000000 

The most common method of detecting a correlation between two numerical values 
is the Pearson correlation coefficient. We also used it as a parameter of the corr() 
function. Let's repeat what the individual values of the correlation coefficient (r) 
mean. It takes values from the interval <-1.1>. If r = 1, both variables x and y, ideally 
grow and fall together in the same direction. In the case if r = -1, this direction is the 
opposite, if x grows, y decreases. If r = 0, there is no linear dependence between the 
variables x and y. Under normal conditions, a coefficient r equal to 1 or -1 is not 
common. It is often sufficient if the correlation coefficient is greater than 0.6 to 
consider the relationship between the variables as linear. If there is no linear 
dependence between these variables, this does not mean that there are no other 
types of dependencies between them, but we cannot express them with a simple line. 

We display the result using a heat map of the correlation coefficients (Figure 11). 
Using the color scale, we can immediately see how strong the positive or negative 
relationship between the individual pairs of variables is. 

xnames=list(train_data.columns) 

ynames=list(train_data.columns) 

plot_corr(corrMatrix, xnames=xnames, ynames=ynames,\ 

          title=None, normcolor=False, cmap='RdYlBu_r') 

Program output: 

 

We can see in the displayed map the degree of correlation between individual 
variables. Based on it, we can say between which variables there is a linear 
relationship, and therefore which variables are a suitable adept for further regression 
analysis. 
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In addition to the map of correlation coefficients, we can use a scattering graph in 
which we also display a linear regression line. To do this, we will use the subplots 
functions of the matplotlib module and the regplot function from the seaborn module. 
The function expects the following arguments: 

• independent variable x, 

• dependent variable y, 

• confidence interval of the regression parameter CI from the interval <0.100>, 

• a dataset that contains a training set, 
• Matplotlib chart object, labeled AX,  

• description of the x and y axes, 

• the size of the display of the canvas on which the chart will be rendered, 

• other appearance settings. 

fig, ax = plt.subplots(figsize=(10, 6)) 

sns.regplot(x='testy', y='vysledne_body', ci=95, 

data=train_data, ax=ax, color='k', scatter_kws={"s": 20, 

"color":"royalblue", "alpha":1}) 

ax.set_ylabel('vysledne body', fontsize=15, fontname='DejaVu 

Sans') 

ax.set_xlabel("testy", fontsize=15, fontname='DejaVu Sans') 

ax.set_xlim(left=None, right=None) 

ax.set_ylim(bottom=None, top=None) 

ax.tick_params(axis='both', which='major', labelsize=12) 

fig.tight_layout() 

Program output: 

 

On the graph we see a line that characterizes the relationship between independent 
and dependent variables.  

At the same time, as part of exploratory analysis, we can assess the distribution of 
values of the selected attribute using the hist() method. 

X[['projekt']].hist() 
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Program output: 

 

At the same time, we should examine the skewness and pointiness of the distribution 
of independent variables and make the necessary transformations. 

print("Kurtosis",X_train.kurtosis(axis=0)) 

print("Skew",X_train.skew(axis=0)) 

Program output: 

Kurtosis projekt     5.111897 

zadania     2.191972 

pristupy    0.507143 

skuska      2.325862 

testy       1.897767 

dtype: float64 

Skew projekt    -2.479007 

zadania    -1.723516 

pristupy    0.473184 

skuska     -1.681946 

testy      -1.449243 

dtype: float64 

As well as the dependent variable vysledne_body. 

print("Target Kurtosis",y_train.kurtosis(axis=0)) 

print("Target Skew",y_train.skew(axis=0)) 

Program output: 

Target Kurtosis vysledne_body    3.811987 

dtype: float64 

Target Skew vysledne_body   -1.989368 

dtype: float64 
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We will learn more about exploratory analysis methods, for example, in a professional 
publication (Munk, 2011). 

7.2 Linear regression models 

📝 7.2.1 

Simple linear regression model 

Now we wonder what the equation that would characterize the straight line in 
previous figure looks like. To do this, we will use functions from the Statsmodels 
library. This library, together with the patsy library, will allow us  to easily define 
multiple regression models and experiment with them in search of the most 
appropriate model. 

We define a linear regression model and assign it to the variable linearModel. 

# prepared code 

%matplotlib inline 

import matplotlib as mpl 

import seaborn as sns 

import matplotlib.pyplot as plt 

plt.style.use('seaborn') 

 

import pandas as pd 

import numpy as np  

import statsmodels.formula.api as smf 

import statsmodels.graphics.api as smg 

import patsy 

from statsmodels.graphics.correlation import plot_corr 

from sklearn.model_selection import train_test_split 

 

dataset = 

pd.read_csv('https://priscilla.fitped.eu/data/la/course02.csv'

) 

 

linearModel = smf.ols(formula='vysledne_body ~ projekt', 

data=train_data) 

We will use the OLS function, where as an argument we will use a formula created 
using a special patsy library, which simplifies the writing of relationships between 
independent and dependent variables using the ~ sign. In the data argument,  we will 
indicate where the function finds these variables, in our case it will again be a training 
dataset train_data. 
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Now we can call the fit() method  and assign the result to the variable 
linearModelResult. This method adapts the linear regression model to the data, i.e., it 
tries to estimate the regression coefficients using the method of least squares. 

linearModelResult = linearModel.fit() 

Finally, we can visualize all the important characteristics of the model using the 
summary() method. 

print(linearModelResult.summary()) 

Program output: 

                            OLS Regression Results                             

==============================================================

================ 

Dep. Variable:          vysledne_body   R-squared:                       

0.809 

Model:                            OLS   Adj. R-squared:                  

0.804 

Method:                 Least Squares   F-statistic:                     

173.4 

Date:                Thu, 30 Mar 2023   Prob (F-statistic):           

2.56e-16 

Time:                        12:03:02   Log-Likelihood:                

-188.00 

No. Observations:                  43   AIC:                             

380.0 

Df Residuals:                      41   BIC:                             

383.5 

Df Model:                           1                                          

Covariance Type:            nonrobust                                          

==============================================================

================ 

                 coef    std err          t      P>|t|      

[0.025      0.975] 

--------------------------------------------------------------

---------------- 

Intercept     28.8132      9.413      3.061      0.004       

9.803      47.823 

projekt        1.4650      0.111     13.168      0.000       

1.240       1.690 

==============================================================

================ 
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Omnibus:                        5.880   Durbin-Watson:                   

1.655 

Prob(Omnibus):                  0.053   Jarque-Bera (JB):                

7.323 

Skew:                          -0.242   Prob(JB):                       

0.0257 

Kurtosis:                       4.963   Cond. No.                         

266. 

==============================================================

================ 

 

Notes: 

[1] Standard Errors assume that the covariance matrix of the 

errors is correctly specified. 

The fit() method  provides a number of functions by which we can examine its 
outputs. The most useful function is summary(), which allows you to display model 
parameters, confidence intervals, p-values, and t-values. 

We find information about the dependent variable of the model in the upper left 
corner. On the right there are other characteristics of the model that speak of its 
quality, for example, R-squared - the coefficient of determinance. This statistic 
represents a measure of variability of the dependent variable that the model created 
by us can explain. 

We see on the left that the dependent variable of the Dep. Variable model  is 
vysledne_body. The R-squared statistic takes on a value of 0.809, i.e. 81%. This 
characteristic tells us to what extent we can describe the variability of the dependent 
variable in the proposed model. Thus, our model describes 80% of all values of the 
dependent variable well enough. 

Simultaneously, we see in the coef section just the coefficients that are sought, which 
characterize the linear regression line.  The Intercept coefficient represents the value 
at which the line intersects the y-axis. The second coefficient, together with the sign 
of the independent variable, characterizes the slope of the line. 

The resulting straight line that characterizes the relationship between the 
independent variable project and the dependent variable vysledne_body has the 
following form:  

y = 1,465 * projekt + 28.8132. 

If we look at whether our proposed model models the relationship between variables, 
we examine its statistical significance. We are interested in the result of the F-test, 
which is expressed in the summary table by the value of F-statistic. We consider this 
value good if it is greater than 1. In our case, it is equal to 173.4.  
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At the same time, the probability value Prob (F-statistic) = 2.56e-16 is less than the 
selected significance level value of 0.05. Therefore, we can conclude that the risk 
that we have mistakenly rejected the null hypothesis and the model is not statistically 
significant is less than the specified 5%. In other words, our model is statistically 
significant at the selected 95% confidence level. 

Once we have verified that our model is statistically significant in general, we still 
need to verify the statistical significance of the individual independent variables of 
the model. We will look at the value of p-values in the summary table labeled p>|t|. 
Again, we will compare this value for each independent variable with the chosen 
significance level alpha = 0.05. If the p-value value for a given variable is less than 
0.05, the variable chosen is statistically significant for our model and contributes to 
the expression of variability of the independent variable. Conversely, if it is larger, the 
variable is not statistically significant and should be removed from the model. In our 
model, both independent variables chosen are statistically significant. 

📝 7.2.2 

Multiple linear regression model 

In the previous example of linear regression models, we modeled the relationship 
between the selected independent variable and the dependent variable. In real 
conditions, however, we often encounter that the dependent variable is affected by 
several independent variables, each of which can affect the dependent variable with 
different weights. Therefore, it is necessary to investigate all independent variables 
that may explain the variability of the dependent variable.  

The procedure will be very similar to the previous models, with the difference that in 
the formula used to create the model indicate all independent variables that could 
affect the dependent variable. Using the patsy library, these variables are given as an 
argument to the OLS method, and it is a symbolic notation, the + sign does not mean 
that the variables are arithmetically summed.  

Let's add a second independent variable to the model - tests. Again, we can see the 
result in a clear table. 

# prepared code 

%matplotlib inline 

import matplotlib as mpl 

import seaborn as sns 

import matplotlib.pyplot as plt 

plt.style.use('seaborn') 

 
import pandas as pd 

import numpy as np  

import statsmodels.formula.api as smf 

import statsmodels.graphics.api as smg 



99 

import patsy 

from statsmodels.graphics.correlation import plot_corr 

from sklearn.model_selection import train_test_split 

 

dataset = 

pd.read_csv('https://priscilla.fitped.eu/data/la/course02.csv'

) 

multiLinearModel2 = smf.ols(formula= 'vysledne_body ~ testy + 

projekt', data=train_data) 

The other steps are identical to those we have already described and implemented. 

multiLinearModResult = multiLinearModel2.fit() 

print(multiLinearModResult.summary()) 

Program output: 

                            OLS Regression Results                             

==============================================================

================ 

Dep. Variable:          vysledne_body   R-squared:                       

0.979 

Model:                            OLS   Adj. R-squared:                  

0.978 

Method:                 Least Squares   F-statistic:                     

951.3 

Date:                Thu, 30 Mar 2023   Prob (F-statistic):           

1.88e-34 

Time:                        12:05:33   Log-Likelihood:                

-140.08 

No. Observations:                  43   AIC:                             

286.2 

Df Residuals:                      40   BIC:                             

291.5 

Df Model:                           2                                          

Covariance Type:            nonrobust                                          

==============================================================

================ 

                 coef    std err          t      P>|t|      

[0.025      0.975] 

--------------------------------------------------------------

---------------- 

Intercept      2.8192      3.438      0.820      0.417      -

4.128       9.767 
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testy          1.8704      0.103     18.207      0.000       

1.663       2.078 

projekt        0.8626      0.050     17.389      0.000       

0.762       0.963 

==============================================================

================ 

Omnibus:                       17.223   Durbin-Watson:                   

1.681 

Prob(Omnibus):                  0.000   Jarque-Bera (JB):               

21.503 

Skew:                          -1.332   Prob(JB):                     

2.14e-05 

Kurtosis:                       5.214   Cond. No.                         

325. 

==============================================================

================ 

Notes: 

[1] Standard Errors assume that the covariance matrix of the 

errors is correctly specified. 

The summary of the multiple regression model is above. 

We can see that by adding another independent variable test, the R-sqaured 
coefficient of determinance increased up to 0.979. But since this coefficient naturally 
grows with the number of independent variables, even if this newly added variable 
does not have a strong correlation with the independent variable, it is necessary to 
observe the characteristic of Adj. R-squared. This characteristic only grows if the 
added independent variable actually contributes to explaining the variability of the 
model. Since its value is also high in our model, 0.978, we can say that both 
independent variables explain the variability of the independent variable up to 98%. 
The resulting relationship takes the form: 

 y = 0.8626  * project +  1.8704 * tests + 2.8192. 

7.3 Find the best model 

📝 7.3.1 

Find the most appropriate linear regression model  

We can obtain the model that best explains the variability of the dependent variable 
by combining multiple linear regression and other mathematical adjustments. The 
result may look like the following example. However, we must be aware of the 
increased risk of overfitting. The model will look like this taking into account all 
available independent variables. 
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# prepared code 

%matplotlib inline 

import matplotlib as mpl 

import seaborn as sns 

import matplotlib.pyplot as plt 

plt.style.use('seaborn') 

 

import pandas as pd 

import numpy as np  

import statsmodels.formula.api as smf 

import statsmodels.graphics.api as smg 

import patsy 

from statsmodels.graphics.correlation import plot_corr 

from sklearn.model_selection import train_test_split 

 

dataset = 

pd.read_csv('https://priscilla.fitped.eu/data/la/course02.csv'

) 

Again, we use the summary table to better understand the model metrics. 

multiLinearModel3 = smf.ols(formula= 'vysledne_body ~ testy + 

zadania + projekt + skuska + pristupy', data=train_data) 

multiLogLinModResult = multiLinearModel3.fit() 

print(multiLogLinModResult.summary()) 

Program output: 

                            OLS Regression Results                             

==============================================================

================ 

Dep. Variable:          vysledne_body   R-squared:                       

1.000 

Model:                            OLS   Adj. R-squared:                  

1.000 

Method:                 Least Squares   F-statistic:                 

1.794e+09 

Date:                Thu, 30 Mar 2023   Prob (F-statistic):          

5.07e-154 

Time:                        12:08:09   Log-Likelihood:                 

191.52 

No. Observations:                  43   AIC:                            

-371.0 

Df Residuals:                      37   BIC:                            

-360.5 
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Df Model:                           5                                          

Covariance Type:            nonrobust                                          

==============================================================

================ 

                 coef    std err          t      P>|t|      

[0.025      0.975] 

--------------------------------------------------------------

---------------- 

Intercept      0.0021      0.002      1.283      0.207      -

0.001       0.005 

testy          1.6664   7.88e-05   2.12e+04      0.000       

1.666       1.667 

zadania        1.0000   8.43e-05   1.19e+04      0.000       

1.000       1.000 

projekt        0.6000   3.09e-05   1.94e+04      0.000       

0.600       0.600 

skuska         0.0004      0.000      2.270      0.029    

4.54e-05       0.001 

pristupy     4.38e-07   1.46e-06      0.299      0.766   -

2.53e-06     3.4e-06 

==============================================================

================ 

Omnibus:                        1.443   Durbin-Watson:                   

1.823 

Prob(Omnibus):                  0.486   Jarque-Bera (JB):                

1.205 

Skew:                          -0.402   Prob(JB):                        

0.548 

Kurtosis:                       2.840   Cond. No.                     

3.85e+03 

==============================================================

================ 

 
Notes: 

[1] Standard Errors assume that the covariance matrix of the 

errors is correctly specified. 

[2] The condition number is large, 3.85e+03. This might 

indicate that there are 

strong multicollinearity or other numerical problems. 

We can see that the proposed model is statistically significant (Adj. R-squared = 1.00, 
F-statistic = 1.794e+09 takes on large values, while Prob (F-statistic) approaches 
zero).  
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On the other hand, we see that the independent variable approaches is not 
statistically significant (p>|t| = 0.766) and should be removed from the model. At the 
same time, it should be stressed again that not all preconditions have been 
sufficiently addressed, as evidenced by the warning in note [2] on multicollinearity.  

🕮 7.3.2 

Explanation of the results of the regression analysis 

As we have already highlighted, the objective of the regression analysis is to find the 
model that will best explain the variability of the observed dependent variable. We 
can use the R-squared (R2) statistic to express it quantitatively. What does R2 mean? 
R2 is the quotient of two characteristics: 

• Total Sum of Squares (TSS), which represents the total variance of the 
dependent variable on its average value 

• Regression Sum of Squares (RSS) represents the total variability of the 
dependent variable that our model can explain. 

We will base our explanation on a publication (So et al., 2020). In the case of an ideal 
model without prediction errors, both characteristics will be equal, i.e., the model will 
cover all variability in the data of the dependent variable relative to its average value.  

In fact, RSS is always smaller than TSS. We refer to this difference as Error Sum of 
Square (ESS). ESS represents a certain degree of variability of the dependent variable 
that we cannot explain to our models. If we use simple linear regression with one 
independent variable, R2 expresses with sufficient precision how well the model 
models the data obtained. The situation is different for multiple linear regression 
because R2 reacts sensitively to the addition of another independent variable to the 
model, even if that variable correlate only slightly with the dependent variable. Adding 
an independent variable causes R2 to naturally increase, which may lead to an 
attempt to automatically add more independent variables to the model. In doing so, 
however, we risk overfitting.  

The adjusted Adjusted R2 statistic is a solution to this problem. Its value will only 
increase if the added independent variable contributes to a better explanation of the 
variability of the values of the dependent variable. In our example, naturally, if we 
consider the influence of all independent variables on the final score, we get closer 
to 100%. 

🕮 7.3.3 

Model validation 

Thus, we see that the application of regression analysis represents an iterative 
process of searching for a suitable model, also using the characteristics R-squared 
and Adj. R-squred. Both characteristics provide an estimate of how strong the 
relationship between the model and the dependent variable is. 



104 

However, this is not all, because after we find a suitable model, we must formally 
verify the model statistically. In other words, we want to see if the model only models 
the data in our dataset or actually provides an explanation of the problem being 
studied in general. We can use one of the proven statistical hypothesis tests for this. 
Thus, if any independent variable has a relationship with the dependent variable in 
our model, it must have a non-zero coefficient β (it can be positive or negative). 

At that point, we should verify whether this coefficient will exist even if we use data 
from the same domain but from a different period, or it is valid only for the currently 
used data. Next, we need to find out if we did not find this coefficient only by chance. 
These are the questions that we get answered with the help of hypothesis tests. 
Although hypotheses do not give us one hundred percent guarantee that we did not 
determine the coefficient by chance, thanks to them we can tell at what level of 
significance the coefficient will be true, that the coefficient β is not random. 

So, let's start by agreeing on the amount of risk that we found the coefficient by 
chance. Usually, this amount of risk is referred to as and has a value of 0.05 and 5% 
respectively. If we calculate 1-, we get a measure of the confidence level that we did 
not find a non-zero coefficient in our analysis by chance. Our confidence level is 95% 
to 5% level.βααβα 

Now we can calculate the probability (p-value) corresponding to the coefficient β 
found by us in our model with a specified confidence value of 1- α. If the probability 
is less than the specified value, we reject the hypothesis that the coefficient β was 
determined by chance. In other words, the coefficient β is statistically significant, and 
we reject the null hypothesis. 

F-test 

We will use the F-test to verify the statistical significance between the model and the 
dependent variable. If the p-value in the F-test is less than the selected significance 
level α, we reject the null hypothesis and thus the model is statistically significant.  

In the summary table, we notice the value of F-value, which increases together with 
R2. We are looking for such a model that the F-value is greater than 1. At the same 
time, we see that the characteristic of Prob (F-statistic) is close to zero, which means 
that the risk that we rejected the hypothesis by mistake is less than 5%. In other 
words, in this case, our model is statistically significant at a significance level of 95%. 

T-test 

Once we know that our model is statistically significant in general, we can investigate 
the statistical significance of independent variables in it. We will look at the value of 
the p-values characteristic of each independent variable from the summary table. In 
it we note the column p>|t|. Again, we compare the current p-value with the 
significance level alpha = 0.05. If the independent variable has a p-value value less 
than 0.05, this variable is statistically significant and contributes to explaining the 
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variability of the dependent variable. Conversely, if it is equal to or greater, the 
variable is not statistically significant and can be removed from the model. 

7.4 Prediction by Scikit-learn 

📝 7.4.1 

Prediction of the value of a continuous dependent variable using Scikit-learn 

We can also analyze the linear regression model without using statmodels and patsy 
libraries. In the following example, let's briefly introduce the whole procedure. First, 
we initialize the linear regression module, divide the data into training and test parts. 

# prepared code 

%matplotlib inline 

import matplotlib as mpl 

import seaborn as sns 

import matplotlib.pyplot as plt 

plt.style.use('seaborn') 

 

import pandas as pd 

import numpy as np  

import statsmodels.formula.api as smf 

import statsmodels.graphics.api as smg 

import patsy 

from statsmodels.graphics.correlation import plot_corr 

from sklearn.model_selection import train_test_split 

 

dataset = 

pd.read_csv('https://priscilla.fitped.eu/data/la/course02.csv'

) 

dataset2 = dataset.dropna() 

dataset2 = dataset2.drop_duplicates() 

 

from sklearn.linear_model import LinearRegression 

from sklearn import metrics 

X2 = dataset2[['projekt','zadania','skuska','testy']] 

y = dataset2[['vysledne_body']] 

seed = 10  

test_data_size = 0.3  

X_train, X_test, y_train, y_test = train_test_split(X2, y, 

test_size = test_data_size, random_state = seed) 

This gives us two data frames. 
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train_data = pd.concat([X_train, y_train], axis = 1) 

test_data = pd.concat([X_test, y_test], axis = 1) 

Now we create a regression model and train it on training data.  

regressor = LinearRegression() 

regressor.fit(X_train, y_train) 

print(LinearRegression(copy_X=True, fit_intercept=True, 

n_jobs=1, normalize=False)) 

Program output: 

LinearRegression(n_jobs=1, normalize=False) 

The intercept parameter, that is, the point at which the straight line passes through 
the y-axis, is obtained by the following command. 

print(regressor.intercept_) 

Program output: 

[0.00218585] 

The values of individual coefficients are obtained using the variable slope. 

print(regressor.coef_) 

Program output: 

[[6.00014257e-01 1.00004975e+00 4.32229007e-04 

1.66641881e+00]] 

Regression accuracy on test data is high.  

print(regressor.score(X_train, y_train)) 

Program output: 

0.9999999958651864 

However, if we test our model on test data, we see that some values differ 
significantly from the predicted ones. 

predictions = regressor.predict(X_test) 

plt.scatter(y_test,predictions) 

Program output: 
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This problem is caused by outlier values. Their origin requires a more detailed 
discussion that goes beyond the scope of this publication. Finally, we will show the 
basic characteristics of regression. Their values are not too far from 0, but the 
influence of outliers is also captured in them.  

print('MAE:', metrics.mean_absolute_error(y_test, 

predictions)) 

print('MSE:', metrics.mean_squared_error(y_test, predictions)) 

print('RMSE:', np.sqrt(metrics.mean_squared_error(y_test, 

predictions))) 

Program output: 

MAE: 0.0031487155172219387 

MSE: 1.4846435055662263e-05 

RMSE: 0.0038531071949353115 

However, this does not mean that these are erroneous values, but the phenomenon 
that we are trying to model using linear regression has its own specifics. Simply, for 
example, the teacher in some cases adjusted the assigned points with bonus tasks. 
A more detailed discussion of each metric is available in many publications. 
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8.1 Multiple Classifier Random Forest 

🕮 8.1.1 

The task of the classification algorithm is to approximate the mapping function f, 
which maps input variables (X) to discrete output variables(s), which we call 
categories or classification classes. Input variables must have a numeric data type. 
The condition for using the classification algorithm is the existence of two (binary 
classification) and more classification classes (multi-class classification). 

Classification models seek to predict a continuous value as the probability with 
which a given observation falls into each of the defined classification classes. 
Probability can be interpreted as a measure of the confidence with which a given 
value will belong to a given classification class. The resulting classification class 
then represents the class for which we found the highest probability.  

The measure of classification success is accuracy, which represents the ratio 
between correctly classified and all observations. In addition to accuracy, there are 
other important metrics, some of which we will imagine. 

A binary classifier, such as logistic regression, allows you to classify occurrences 
into only two classes - 0 (no) and 1 (yes). The multiple classifier is an extension of 
the binary classifier. We will introduce its use in the context of educational data in 
this chapter. 

Random Forest is a very common classification algorithm. Its theoretical 
foundations are outside the scope of this publication. Details can be found, for 
example, in James et al. (James et al., 2017) or other scholarly publications.  

📝 8.1.2 

Data Import  

We will again examine partial student achievement and the ability of the Random 
Forest classifier to predict the final grade. However, unlike the previous examples, 
we must modify the original file to a form with which the algorithm can work 
effectively.  

Since the original partial compulsory activities were evaluated by a continuous 
variable – points, we must transform them into a discrete form. Therefore, we 
replaced them with four levels of quality (poor, average, above average, excellent). 
Thus, we encoded the original points from the activity as follows. We assigned it a 
value of 1 in this interval and entered values of 0 in all the others depending on which 
interval the achieved value fell into. 
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These operations could also be performed in the Jupyter Python Notebook 
environment using selected scikit-learn library methods. However, we used MS 
Excel.  

 

We start by importing the usual libraries for working with data. 

import pandas as pd 

import numpy as np 

We import a data file with pre-prepared data.  

file_url = 

'https://priscilla.fitped.eu/data/la/rf_grades.xlsx' 

df = pd.read_excel(file_url) 

📝 8.1.3 

EDA and Data Understanding 

We will examine the basic characteristics of the ensemble.  

import pandas as pd 

import numpy as np 

 

file_url = 

'https://priscilla.fitped.eu/data/la/rf_grades.xlsx' 

df = pd.read_excel(file_url) 

 

print(df.head()) 

Program output: 

   pristup1  pristup2  pristup3  pristup4  testy1  testy2  

testy3  testy4  \ 

0         1         0         0         0       0       1       

0       0    

1         1         0         0         0       1       0       

0       0    
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2         1         0         0         0       1       0       

0       0    

3         0         1         0         0       0       1       

0       0    

4         1         0         0         0       0       0       

1       0    

 

   skuska1  skuska2  ...  ptsql1  ptsql2  ptsql3  ptsql4  ptd1  

ptd2  ptd3  \ 

0        0        0  ...       1       0       0       0     0     

0     0    

1        1        0  ...       1       0       0       0     1     

0     0    

2        1        0  ...       0       0       1       0     1     

0     0    

3        0        0  ...       0       0       0       1     0     

0     0    

4        0        0  ...       0       0       1       0     0     

0     0    

 

   ptd4  kontrolny_sucet  vysledna_znamka   

0     1                7                D   

1     0                7               FX   

2     0                7               FX   

3     1                7                C   

4     1                7                C   

 

[5 rows x 30 columns] 

 

print(df.shape) 

Program output: 

(220, 30) 

We can see that we have processed the original file into a form that contains 29 
columns, mostly numeric data type. 

df.info() 

Program output: 

RangeIndex: 220 entries, 0 to 219 

Data columns (total 30 columns): 

 #   Column           Non-Null Count  Dtype  
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---  ------           --------------  -----  

 0   pristup1         220 non-null    int64  

 1   pristup2         220 non-null    int64  

 2   pristup3         220 non-null    int64  

 3   pristup4         220 non-null    int64  

 4   testy1           220 non-null    int64  

 5   testy2           220 non-null    int64  

 6   testy3           220 non-null    int64  

 7   testy4           220 non-null    int64  

 8   skuska1          220 non-null    int64  

 9   skuska2          220 non-null    int64  

 10  skuska3          220 non-null    int64  

 11  skuska4          220 non-null    int64  

 12  projekt1         220 non-null    int64  

 13  projekt2         220 non-null    int64  

 14  projekt3         220 non-null    int64  

 15  projekt4         220 non-null    int64  

 16  zadania1         220 non-null    int64  

 17  zadania2         220 non-null    int64  

 18  zadania3         220 non-null    int64  

 19  zadania4         220 non-null    int64  

 20  ptsql1           220 non-null    int64  

 21  ptsql2           220 non-null    int64  

 22  ptsql3           220 non-null    int64  

 23  ptsql4           220 non-null    int64  

 24  ptd1             220 non-null    int64  

 25  ptd2             220 non-null    int64  

 26  ptd3             220 non-null    int64  

 27  ptd4             220 non-null    int64  

 28  kontrolny_sucet  220 non-null    int64  

 29  vysledna_znamka  220 non-null    object 

dtypes: int64(29), object(1) 

memory usage: 51.7+ KB 

We need to remove text values from the dataset, as well as unnecessary columns. In 
our case, it is column kontrolny_sucet that served to verify that the transformation to 
discrete values was carried out correctly for all observations. 

df2 = df.drop(['kontrolny_sucet'], axis=1) 

The sklearn library requires that the target variable be separated from the variables 
on the basis of which we will determine the classification class. To remove the target 
variable, we'll use the pop() method and assign it to a new Pandas DataFrame 
variable. 
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y = df2.pop('vysledna_znamka') 

print(df2.head()) 

Program output: 

   pristup1  pristup2  pristup3  pristup4  testy1  testy2  

testy3  testy4  \ 

0         1         0         0         0       0       1       

0       0    

1         1         0         0         0       1       0       

0       0    

2         1         0         0         0       1       0       

0       0    

3         0         1         0         0       0       1       

0       0    

4         1         0         0         0       0       0       

1       0    

 

   skuska1  skuska2  ...  zadania3  zadania4  ptsql1  ptsql2  

ptsql3  ptsql4  \ 

0        0        0  ...         0         0       1       0       

0       0    

1        1        0  ...         0         0       1       0       

0       0    

2        1        0  ...         0         0       0       0       

1       0    

3        0        0  ...         0         0       0       0       

0       1    

4        0        0  ...         0         0       0       0       

1       0    

 

   ptd1  ptd2  ptd3  ptd4   

0     0     0     0     1   

1     1     0     0     0   

2     1     0     0     0   

3     0     0     0     1   

4     0     0     0     1   

 

[5 rows x 28 columns] 

📝 8.1.4 

Create a training and test set 
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We proceed similarly to other models, dividing the data set into a training and test 
set. The model uses a training dataset to learn the relationships between variables, 
based on which it then predicts the resulting classification class. The test dataset is 
then used to verify how exactly we can predict the classification class using the 
model on previously unknown data. If the model appropriately models only data from 
the training set, we speak of overfitting.  

The model is not capable of predicting on test data. Therefore, we are looking for 
such a model setting in terms of its hyperparameters, which will achieve a very 
similar level of model accuracy on both the training and test set.  

Everything essential can be found again in the scikit-learn library. We will use the 
train_test_split() function to divide the data set into a training and test part. 

import pandas as pd 

import numpy as np 

file_url = 

'https://priscilla.fitped.eu/data/la/rf_grades.xlsx' 

df = pd.read_excel(file_url) 

df2 = df.drop(['kontrolny_sucet'], axis=1) 

y = df2.pop('vysledna_znamka') 

 
from sklearn.model_selection import train_test_split 

X_train, X_test, y_train, y_test = train_test_split(df2, y, 

test_size=0.4, random_state=42) 

This function returns four variables containing a given fraction of data: 

• X_train 

• X_test 

• y_train 

• y_test 

8.2 Modeling using Random Forest 

📝 8.2.1 

Modeling using Random Forest 

We import the Random Forest classifier. 

import pandas as pd 

import numpy as np 

file_url = 

'https://priscilla.fitped.eu/data/la/rf_grades.xlsx' 

df = pd.read_excel(file_url) 
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df2 = df.drop(['kontrolny_sucet'], axis=1) 

y = df2.pop('vysledna_znamka') 

from sklearn.model_selection import train_test_split 

X_train, X_test, y_train, y_test = train_test_split(df2, y, 

test_size=0.4, random_state=42) 

 

from sklearn.ensemble import RandomForestClassifier 

This classifier, like other machine learning methods, needs to select the appropriate 
values of hyperparameters. A hyperparameter is a type of parameter that enters the 
model, and the model cannot learn this parameter itself and must therefore be 
explicitly selected based on user experience. 

In our example, we will use predefined parameters for now. We will ensure the 
interpretability of the model by the random_state parameter. 

rf_model = RandomForestClassifier(random_state=42) 

Now we can train the model on training data. The model will attempt to learn the 
relationships between independent and modeled variables. 

print(rf_model.fit(X_train, y_train)) 

Program output: 

RandomForestClassifier(random_state=42) 

Then we have the model ready, and we can predict the values of the classification 
class, so far on the training dataset. 

train_preds = rf_model.predict(X_train) 

print(train_preds) 

Program output: 

['D' 'B' 'A' 'D' 'FX' 'C' 'D' 'A' 'C' 'A' 'A' 'FX' 'C' 'C' 'B' 

'D' 'C' 'A' 

 'B' 'B' 'C' 'B' 'B' 'FX' 'D' 'B' 'FX' 'B' 'C' 'C' 'D' 'B' 'A' 

'FX' 'C' 

 'E' 'C' 'E' 'FX' 'E' 'C' 'FX' 'A' 'FX' 'C' 'D' 'B' 'C' 'C' 

'D' 'FX' 'B' 

 'E' 'B' 'D' 'FX' 'C' 'A' 'C' 'D' 'A' 'FX' 'C' 'D' 'E' 'FX' 

'FX' 'C' 'FX' 

 'B' 'FX' 'C' 'C' 'E' 'D' 'C' 'D' 'A' 'A' 'C' 'B' 'D' 'D' 'FX' 

'C' 'FX' 

 'B' 'D' 'B' 'A' 'A' 'B' 'C' 'E' 'C' 'FX' 'FX' 'FX' 'E' 'D' 

'A' 'C' 'B' 
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 'E' 'FX' 'B' 'FX' 'FX' 'FX' 'C' 'FX' 'FX' 'E' 'D' 'B' 'A' 'C' 

'B' 'C' 'B' 

 'A' 'C' 'C' 'FX' 'C' 'C' 'C' 'E' 'C' 'C' 'E' 'B'] 

 

📝 8.2.2 

Model Evaluation 

We also assess the accuracy of the model in this case by metrics. Metrics such as 
F1 score, precession, recall, ROC AUC are used for classification tasks. We use 
accuracy score, which represents the ratio between correctly predicted classes and 
the total number of predictions made in the model. Accuracy ranges from 0 to 1. 

# prepared code 

import pandas as pd 

import numpy as np 

file_url = 

'https://priscilla.fitped.eu/data/la/rf_grades.xlsx' 

df = pd.read_excel(file_url) 

df2 = df.drop(['kontrolny_sucet'], axis=1) 

y = df2.pop('vysledna_znamka') 

from sklearn.model_selection import train_test_split 

X_train, X_test, y_train, y_test = train_test_split(df2, y, 

test_size=0.4, random_state=42) 

 

from sklearn.ensemble import RandomForestClassifier 

rf_model = RandomForestClassifier(random_state=42) 

print(rf_model.fit(X_train, y_train)) 

train_preds = rf_model.predict(X_train) 

Program output: 

RandomForestClassifier(random_state=42) 

from sklearn.metrics import accuracy_score 

First, we compare the accuracy of the model for the training set. Actual values are 
represented by the variable y_train and predicted by preds. Although the accuracy 
value may be high in this case, we do not win because we have not yet verified the 
model on the test data. Our goal is to achieve comparable model accuracy on both 
sets of data. 

train_acc = accuracy_score(y_train, train_preds) 

print(train_acc) 

Program output: 
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0.9545454545454546 

We can see that we achieve high AUC values on training data. Let's see what it looks 
like on the test data. 

test_preds = rf_model.predict(X_test) 

test_acc = accuracy_score(y_test, test_preds) 

print(test_acc) 

Program output: 

0.6363636363636364 

The difference is significant. If the model achieves much higher accuracy on training 
data than on test data, it is overfitted, and we need to focus on the appropriate 
selection of hyperparameters of the model. 

8.3 Hyperparameters Tuning 

📝 8.3.1 

Hyperparameters Tuning 

As we noted before, the reliability of the model depends very much on the correct 
setting of hyperparameters, that is, the parameters that are set by the user. The 
search for suitable parameters is an iterative process that we can implement 
manually, choosing values based on experience or randomly. It is more effective to 
use again integrated methods that automate the process of finding parameters.  

But as we repeatedly create and train a model, we can shorten writing repetitive code 
with a few custom features. We will prepare a method for training a model with 
several hyperparameters.  

def train_rf(X_train, y_train, random_state=42, 

n_estimators=10, max_depth=None, min_samples_leaf=1, 

max_features='sqrt'): 

  rf_model = RandomForestClassifier(random_state=random_state, 

n_estimators=n_estimators, max_depth=max_depth, 

min_samples_leaf=min_samples_leaf, max_features=max_features) 

  rf_model.fit(X_train, y_train) 

  return rf_model 

We will also prepare a method for prediction. 

def get_preds(rf_model, X_train, X_test): 

  train_preds = rf_model.predict(X_train) 

  test_preds = rf_model.predict(X_test) 
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  return train_preds, test_preds 

Another method is designed to calculate the accuracy of the model. Specifically, 
returns accuracy for both the training and test datasets. 

def print_accuracy(y_train, y_test, train_preds, test_preds): 

  train_acc = accuracy_score(y_train, train_preds) 

  test_acc = accuracy_score(y_test, test_preds) 

  print(train_acc) 

  print(test_acc) 

  return train_acc, test_acc 

The resulting method combines the above partial methods and returns us the 
complete characteristic of the model. 

def fit_predict_rf(X_train, X_test, y_train, y_test, 

random_state=42, n_estimators=10, max_depth=None, 

min_samples_leaf=1, max_features='auto'): 

  rf_model = train_rf(X_train, y_train, 

random_state=random_state, n_estimators=n_estimators, 

max_depth=max_depth, min_samples_leaf=min_samples_leaf, 

max_features=max_features) 

  train_preds, test_preds = get_preds(rf_model, X_train, 

X_test) 

  train_acc, test_acc = print_accuracy(y_train, y_test, 

train_preds, test_preds) 

  return rf_model, train_preds, test_preds, train_acc, 

test_acc 

Once we have the methods ready, we will use them just like in this example. 

# prepared code 

import pandas as pd 

import numpy as np 

file_url = 

'https://priscilla.fitped.eu/data/la/rf_grades.xlsx' 

df = pd.read_excel(file_url) 

df2 = df.drop(['kontrolny_sucet'], axis=1) 

y = df2.pop('vysledna_znamka') 

from sklearn.model_selection import train_test_split 

X_train, X_test, y_train, y_test = train_test_split(df2, y, 

test_size=0.4, random_state=42) 

from sklearn.ensemble import RandomForestClassifier 

from sklearn.metrics import accuracy_score 
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rf_model_1, trn_preds_1, tst_preds_1, trn_acc_1, tst_acc_1 = 

fit_predict_rf(X_train, X_test, y_train, y_test, 

random_state=42, n_estimators=30, max_depth=2, 

min_samples_leaf=7, max_features=0.2) 

Program output: 

0.5378787878787878 

0.5454545454545454 

We can see that the random determination of hyperparameters led to a decrease in 
the accuracy value, and the resulting model is very inaccurate. Therefore, we 
introduce some hyperparameters and their meaning in more detail. 

📝 8.3.2 

Number of Trees Estimator 

A decision tree is an oriented graph that contains nodes and leaves. The node 
contains a condition that can be true (yes, 1) or not true (no, 0). Accordingly, decision-
making is shifted to the next node or letter. The sheet is a special type of node in 
which prediction is realized in the model. 

The Random Forest algorithm runs through an input dataset and creates multiple 
decision trees because it searches for optimal values for dividing data into two 
groups with similar classes. 

The n_estimator parameter defines the number of decision trees that will be trained 
by the Random Forest algorithm. Its starting value is 10, so it creates 10 decision 
trees and assesses their ability to predict the target class. It then calculates the 
average of the above predictions, which we consider to be the resulting prediction. 
Naturally, as the number of trees increases, so does the accuracy of the model. 

# prepared code 

import pandas as pd 

import numpy as np 

file_url = 

'https://priscilla.fitped.eu/data/la/rf_grades.xlsx' 

df = pd.read_excel(file_url) 

df2 = df.drop(['kontrolny_sucet'], axis=1) 

y = df2.pop('vysledna_znamka') 

from sklearn.model_selection import train_test_split 

X_train, X_test, y_train, y_test = train_test_split(df2, y, 

test_size=0.4, random_state=42) 

from sklearn.ensemble import RandomForestClassifier 

from sklearn.metrics import accuracy_score 
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# fit_predict_rf  

################################################## 

def fit_predict_rf(X_train, X_test, y_train, y_test, 

random_state=42, n_estimators=10, max_depth=None, 

min_samples_leaf=1, max_features='auto'): 

  rf_model = train_rf(X_train, y_train, 

random_state=random_state, n_estimators=n_estimators, 

max_depth=max_depth, min_samples_leaf=min_samples_leaf, 

max_features=max_features) 

  train_preds, test_preds = get_preds(rf_model, X_train, 

X_test) 

  train_acc, test_acc = print_accuracy(y_train, y_test, 

train_preds, test_preds) 

  return rf_model, train_preds, test_preds, train_acc, 

test_acc 

 

# train_rf  ################################################## 

def train_rf(X_train, y_train, random_state=42, 

n_estimators=10, max_depth=None, min_samples_leaf=1, 

max_features='sqrt'): 

  rf_model = RandomForestClassifier(random_state=random_state, 

n_estimators=n_estimators, max_depth=max_depth, 

min_samples_leaf=min_samples_leaf, max_features=max_features) 

  rf_model.fit(X_train, y_train) 

  return rf_model 

 

# get_preds  

################################################## 

def get_preds(rf_model, X_train, X_test): 

  train_preds = rf_model.predict(X_train) 

  test_preds = rf_model.predict(X_test) 

  return train_preds, test_preds 

 

# print_accuracy  

################################################## 

def print_accuracy(y_train, y_test, train_preds, test_preds): 

  train_acc = accuracy_score(y_train, train_preds) 

  test_acc = accuracy_score(y_test, test_preds) 

  print(train_acc) 

  print(test_acc) 

  return train_acc, test_acc 

 

rf_model_1, trn_preds_1, tst_preds_1, trn_acc_1, tst_acc_1 = 

fit_predict_rf(X_train, X_test, y_train, y_test, 
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random_state=42, n_estimators=30, max_depth=2, 

min_samples_leaf=7, max_features=0.2) 

Program output: 

0.5378787878787878 

0.5454545454545454 

 

rf_model_1, trn_preds_1, tst_preds_1, trn_acc_1, tst_acc_1 = 

fit_predict_rf(X_train, X_test, y_train, y_test, 

random_state=42, n_estimators=1, max_depth=None, 

min_samples_leaf=1, max_features='auto') 

Program output: 

0.8333333333333334 

0.5795454545454546 

/home/johny/.local/lib/python3.9/site-

packages/sklearn/ensemble/_forest.py:427: FutureWarning: 

`max_features='auto'` has been deprecated in 1.1 and will be 

removed in 1.3. To keep the past behaviour, explicitly set 

`max_features='sqrt'` or remove this parameter as it is also 

the default value for RandomForestClassifiers and 

ExtraTreesClassifiers. 

  warn( 

The accuracy values for the training and test set have approached in the case of a 
value of 5, so we will further consider the parameters n_extimator = 30 and 
max_depth = 5. 

📝 8.3.3 

Minimum Sample per Leaf 

The parameter min_samples_leaf determines the minimum number of observations 
(predictions) that must fall into one of the leaves of the decision tree. For example, 
if it has a value of 5, then the algorithm will create a condition only if at least five 
observations fall into each of the formed leaf nodes of the tree. The default value of 
the parameter is 1. 

We try to change it to 3. 

# prepared code 

import pandas as pd 

import numpy as np 



122 

file_url = 

'https://priscilla.fitped.eu/data/la/rf_grades.xlsx' 

df = pd.read_excel(file_url) 

df2 = df.drop(['kontrolny_sucet'], axis=1) 

y = df2.pop('vysledna_znamka') 

from sklearn.model_selection import train_test_split 

X_train, X_test, y_train, y_test = train_test_split(df2, y, 

test_size=0.4, random_state=42) 

from sklearn.ensemble import RandomForestClassifier 

from sklearn.metrics import accuracy_score 

 

# fit_predict_rf  

################################################## 

def fit_predict_rf(X_train, X_test, y_train, y_test, 

random_state=42, n_estimators=10, max_depth=None, 

min_samples_leaf=1, max_features='auto'): 

  rf_model = train_rf(X_train, y_train, 

random_state=random_state, n_estimators=n_estimators, 

max_depth=max_depth, min_samples_leaf=min_samples_leaf, 

max_features=max_features) 

  train_preds, test_preds = get_preds(rf_model, X_train, 

X_test) 

  train_acc, test_acc = print_accuracy(y_train, y_test, 

train_preds, test_preds) 

  return rf_model, train_preds, test_preds, train_acc, 

test_acc 

 

# train_rf  ################################################## 

def train_rf(X_train, y_train, random_state=42, 

n_estimators=10, max_depth=None, min_samples_leaf=1, 

max_features='sqrt'): 

  rf_model = RandomForestClassifier(random_state=random_state, 

n_estimators=n_estimators, max_depth=max_depth, 

min_samples_leaf=min_samples_leaf, max_features=max_features) 

  rf_model.fit(X_train, y_train) 

  return rf_model 

 

# get_preds  

################################################## 

def get_preds(rf_model, X_train, X_test): 

  train_preds = rf_model.predict(X_train) 

  test_preds = rf_model.predict(X_test) 

  return train_preds, test_preds 
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# print_accuracy  

################################################## 

def print_accuracy(y_train, y_test, train_preds, test_preds): 

  train_acc = accuracy_score(y_train, train_preds) 

  test_acc = accuracy_score(y_test, test_preds) 

  print(train_acc) 

  print(test_acc) 

  return train_acc, test_acc 

 

rf_model_6, trn_preds_6, tst_preds_6, trn_acc_6, tst_acc_6 = 

fit_predict_rf(X_train, X_test, y_train, y_test, 

random_state=42, n_estimators=30, max_depth=2, 

min_samples_leaf=3, max_features='auto') 

Program output: 

0.5303030303030303 

0.5227272727272727 

/home/johny/.local/lib/python3.9/site-

packages/sklearn/ensemble/_forest.py:427: FutureWarning: 

`max_features='auto'` has been deprecated in 1.1 and will be 

removed in 1.3. To keep the past behaviour, explicitly set 

`max_features='sqrt'` or remove this parameter as it is also 

the default value for RandomForestClassifiers and 

ExtraTreesClassifiers. 

  warn( 

In the same way, if we change it to 7, we get a very low prediction accuracy: 

0.553030303030303 
0.4659090909090909 

Therefore, we will not further tune this hyperparameter. 

📝 8.3.4 

Maximum Input Features 

The last of the hyperparameters whose influence on the accuracy of the model we 
examine is the maximum number of input variables max_features. This parameter is 
responsible for the randomness of selection, hence Random Forest.  

The algorithm creates several independent trees using a randomly selected data 
sample (changes the proportion of test and training data). In addition, it randomly 
selects independent variables, i.e., columns whose values it will consider in the 
decision tree. Thus, each of the created trees contains only a subset of all 
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independent variables. A parameter can be defined by a number or percentage of 
variables involved. The square root or natural logarithm, or all variables (None) can 
also be used. 

# prepared code 

import pandas as pd 

import numpy as np 

file_url = 

'https://priscilla.fitped.eu/data/la/rf_grades.xlsx' 

df = pd.read_excel(file_url) 

df2 = df.drop(['kontrolny_sucet'], axis=1) 

y = df2.pop('vysledna_znamka') 

from sklearn.model_selection import train_test_split 

X_train, X_test, y_train, y_test = train_test_split(df2, y, 

test_size=0.4, random_state=42) 

from sklearn.ensemble import RandomForestClassifier 

from sklearn.metrics import accuracy_score 

 

# fit_predict_rf  

################################################## 

def fit_predict_rf(X_train, X_test, y_train, y_test, 

random_state=42, n_estimators=10, max_depth=None, 

min_samples_leaf=1, max_features='auto'): 

  rf_model = train_rf(X_train, y_train, 

random_state=random_state, n_estimators=n_estimators, 

max_depth=max_depth, min_samples_leaf=min_samples_leaf, 

max_features=max_features) 

  train_preds, test_preds = get_preds(rf_model, X_train, 

X_test) 

  train_acc, test_acc = print_accuracy(y_train, y_test, 

train_preds, test_preds) 

  return rf_model, train_preds, test_preds, train_acc, 

test_acc 

 

# train_rf  ################################################## 

def train_rf(X_train, y_train, random_state=42, 

n_estimators=10, max_depth=None, min_samples_leaf=1, 

max_features='sqrt'): 

  rf_model = RandomForestClassifier(random_state=random_state, 

n_estimators=n_estimators, max_depth=max_depth, 

min_samples_leaf=min_samples_leaf, max_features=max_features) 

  rf_model.fit(X_train, y_train) 

  return rf_model 
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# get_preds  

################################################## 

def get_preds(rf_model, X_train, X_test): 

  train_preds = rf_model.predict(X_train) 

  test_preds = rf_model.predict(X_test) 

  return train_preds, test_preds 

 

# print_accuracy  

################################################## 

def print_accuracy(y_train, y_test, train_preds, test_preds): 

  train_acc = accuracy_score(y_train, train_preds) 

  test_acc = accuracy_score(y_test, test_preds) 

  print(train_acc) 

  print(test_acc) 

  return train_acc, test_acc 

 

rf_model_7, trn_preds_7, tst_preds_7, trn_acc_7, tst_acc_7 = 

fit_predict_rf(X_train, X_test, y_train, y_test, 

random_state=42, n_estimators=30, max_depth=2, 

min_samples_leaf=7, max_features=10) 

Program output: 

0.5303030303030303 

0.5340909090909091 

We were not able to improve the prediction ability of the model with different values. 

As a next step, it would be advisable to use the cycle to start calculating the optimal 
characteristics of the model and find the best accuracy values for both the training 
and test dataset. Individual hyperparameters should acquire values that the 
researcher can interpret or that are related to the phenomenon under study. 

However, we can help ourselves with integrated methods that automate manual 
testing of various hyperparameters. These methods either sequentially pass 
individual hyperparameter options (GridSearchCV), which is quite time-consuming, 
or choose a reasonable strategy of random selection of the value of individual 
hyperparameters (RandomizedSearchCV).  

Although their use is again slightly beyond the capabilities of this course, we will give 
an example of their application to our problem without a detailed explanation of each 
step. We initialize the classifier. 

#Initialize the classifier. 

from sklearn import ensemble 
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rfc = ensemble.RandomForestClassifier(n_estimators=100, 

random_state=42) 

We use the method GridSearchCV(), defining the parameters we want to investigate 
in the grid object. 

from sklearn import model_selection 

grid = { 

    'criterion': ['gini', 'entropy'], 

    'max_features': [2, 4, 6, 8, 10, 12, 14] 

} 

gscv = model_selection.GridSearchCV(estimator=rfc, 

param_grid=grid, cv=5, scoring='accuracy') 

We will train the model and store the results in the results variable, sorting them by 
rank_test_score value.  

gscv.fit(X_train,y_train) 

results = pd.DataFrame(gscv.cv_results_) 

results.sort_values('rank_test_score', 

ascending=True).head(10) 

We do the same for the RandomizedSearchCV() method. We have stored 
hyperparameters in the variable param_dist that the algorithm of the method is 
supposed to test. We assign the results to the results variable. 

np.random.seed(100) 

from scipy import stats 

max_features = X_train.shape[1] 

param_dist = { 

    'criterion': ['gini', 'entropy'], 

    'max_features': stats.randint(low=1, high=max_features) 

} 

rscv = model_selection.RandomizedSearchCV(estimator=rfc, 

param_distributions=param_dist, n_iter=50, cv=5, 

scoring='accuracy', random_state=42) 

rscv.fit(X_train,y_train) 

results = pd.DataFrame(rscv.cv_results_) 

results.sort_values('rank_test_score', 

ascending=True).head(10) 

print(results.head(10)) 

Program output: 

   mean_fit_time  std_fit_time  mean_score_time  

std_score_time  \ 



127 

0       0.183534      0.001121         0.015421        

0.000073    

1       0.171203      0.012142         0.014418        

0.001439    

2       0.109450      0.013744         0.009339        

0.001045    

3       0.096634      0.000112         0.008122        

0.000034    

4       0.098379      0.000187         0.008094        

0.000030    

5       0.097435      0.000113         0.008126        

0.000035    

6       0.093040      0.000184         0.008140        

0.000024    

7       0.099423      0.001196         0.008189        

0.000204    

8       0.093051      0.000134         0.008091        

0.000035    

9       0.091166      0.001120         0.008108        

0.000023    

 

  param_criterion param_max_features  \ 

0            gini                 20    

1            gini                 15    

2            gini                  8    

3            gini                 21    

4            gini                 26    

5            gini                 23    

6            gini                 11    

7         entropy                 21    

8         entropy                  8    

9         entropy                  3    

 

                                         params  

split0_test_score  \ 

0     {'criterion': 'gini', 'max_features': 20}           

0.666667    

1     {'criterion': 'gini', 'max_features': 15}           

0.629630    

2      {'criterion': 'gini', 'max_features': 8}           

0.666667    

3     {'criterion': 'gini', 'max_features': 21}           

0.629630    
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4     {'criterion': 'gini', 'max_features': 26}           

0.629630    

5     {'criterion': 'gini', 'max_features': 23}           

0.629630    

6     {'criterion': 'gini', 'max_features': 11}           

0.592593    

7  {'criterion': 'entropy', 'max_features': 21}           

0.666667    

8   {'criterion': 'entropy', 'max_features': 8}           

0.592593    

9   {'criterion': 'entropy', 'max_features': 3}           

0.592593    

 

   split1_test_score  split2_test_score  split3_test_score  

split4_test_score  \ 

0           0.703704           0.615385           0.538462           

0.538462    

1           0.592593           0.576923           0.538462           

0.538462    

2           0.592593           0.576923           0.500000           

0.461538    

3           0.703704           0.615385           0.500000           

0.500000    

4           0.703704           0.615385           0.500000           

0.538462    

5           0.666667           0.615385           0.500000           

0.576923    

6           0.629630           0.615385           0.538462           

0.538462    

7           0.703704           0.615385           0.576923           

0.538462    

8           0.592593           0.615385           0.500000           

0.538462    

9           0.555556           0.576923           0.653846           

0.576923    

 

   mean_test_score  std_test_score  rank_test_score   

0         0.612536        0.066669                4   

1         0.575214        0.034547               38   

2         0.559544        0.072139               48   

3         0.589744        0.079175               24   

4         0.597436        0.071587               14   

5         0.597721        0.056684               13   

6         0.582906        0.038164               30   
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7         0.620228        0.059513                1   

8         0.567806        0.042311               44   

9         0.591168        0.033480               17   

The data in the table show that for the selected hyperparameters, the best results are 
achieved if n_estimator = 9 and criterion is gini. 

rf_model_8, trn_preds_8, tst_preds_8, trn_acc_8, tst_acc_8 = 

fit_predict_rf(X_train, X_test, y_train, y_test, 

random_state=42, n_estimators=9, max_depth=None, 

min_samples_leaf=1, max_features='auto') 

Program output: 

0.9166666666666666 

0.6363636363636364 

/home/johny/.local/lib/python3.9/site-

packages/sklearn/ensemble/_forest.py:427: FutureWarning: 

`max_features='auto'` has been deprecated in 1.1 and will be 

removed in 1.3. To keep the past behaviour, explicitly set 

`max_features='sqrt'` or remove this parameter as it is also 

the default value for RandomForestClassifiers and 

ExtraTreesClassifiers. 

  warn( 

The resulting prediction accuracy for the training or test dataset is as above. 

As already mentioned, the observed characteristic of model accuracy is not 
exceptional, but the example described describes the procedure and importance of 
the ECA phase, as well as the search for suitable hyperparameters of the model. 
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Clustering Using K-means 

Chapter 9 
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9.1 Cluster analysis 

🕮 9.1.1 

Cluster analysis using K-means 

K-means represents one of the most popular and simple algorithms of unsupervised 
machine learning. The aim of the algorithm is to group data (observations) into 
clusters based on a certain pattern or their distance from each other. Theoretical 
background on this topic and examples of algorithms can be found, for example, in 
the publication (Berka, 2003; So et al., 2020).  

Thus, the algorithm tries to identify patterns/clusters based on calculating the 
distance between individual points/data. It uses different approaches to calculate 
the distance. We can get acquainted with it in more detail in the documentation in 
scikit-learn. 

Basic characteristics: 

• Divides a dataset into disjoint clusters, 

• each cluster is represented by the average of the distance between each point 
of the cluster, which is called a centroid, 

• in general, centroids are not the actual values of observations, the data of the 
original data set, but calculated values, 

• the goal of the K-means algorithm is to find centroids that minimize dispersion 
(referred to as inertia), the sum of squares of distance. 

Thus, we must take into account that: 

• we may not find the most optimal global solution, 
• we determine the number of clusters before using K-means, 

• K-means is limited by the linear boundaries of clusters, 

• K-means is computationally intensive in the case of larger data sets. 

📝 9.1.2 

Import libraries 

We import well-known libraries. 

import pandas as pd 

import numpy as np 

import altair as alt 

# alt.renderers.enable('notebook') 

alt.renderers.enable('default') 

from sklearn.cluster import KMeans 
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Data import  

In this example, we will use a dataset that contains the accesses of different types 
of Moodle LMS users to each course. These approaches were created by aggregating 
logs that the system stores in its database as a detailed record of user activities. 
Using the SQL aggregate function, we produced the resulting data set with three 
columns, CourseID, Teachers_logs and Students_logs.  

Using the K-means algorithm, we will investigate whether Teachers_logs and 
Students_logs variables form similar clusters. We will measure the distance between 
them.  

file_url = 'https://priscilla.fitped.eu/data/la/logs_lms.csv' 

We load the file in a standard way. The usecols parameter specifies a subset of the 
columns that we want to import. In our case, we will examine potential clusters 
between two variables. 

df = pd.read_csv(file_url, 

usecols=['CourseID','Teachers_logs','Students_logs']) 

EDA and Data Understanding  

We will explore the basic characteristics of variables. 

print(df.head()) 

Program output: 

   CourseID  Teachers_logs  Students_logs 

0         1           2171          27655 

1         2           3904          28242 

2         3           1840          15749 

3         4           4017          54076 

4         5           3533          32530 

 

print(df.tail()) 

Program output: 

      CourseID  Teachers_logs  Students_logs 

2468      2469           2477          14888 

2469      2470           1318           9117 

2470      2471           2409          16674 

2471      2472           3139          28895 

2472      2473           2291          18241 
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print(df.describe()) 

Program output: 

          CourseID  Teachers_logs  Students_logs 

count  2473.000000    2473.000000    2473.000000 

mean   1237.000000    2782.669632   15957.382936 

std     714.037931    1236.193614    7915.109176 

min       1.000000     729.000000    5979.000000 

25%     619.000000    2220.000000   11415.000000 

50%    1237.000000    2540.000000   13718.000000 

75%    1855.000000    2977.000000   17945.000000 

max    2473.000000   25572.000000   90585.000000 

This statistic is of little importance in the case of the nominal variable CourseID. If we 
visualize the other two variables, we see the relative position of the individual points. 

alt.Chart(df).mark_point().encode( 

    x='Teachers_logs:Q', 

    y='Students_logs:Q', 

    color='Origin:N', 

) 

 

📝 9.1.3 

Data Standardization 

In calculating the distances between individual cases as well as clusters, differences 
in the size of individual variables that enter the algorithm play an important role. 
Different approaches are used to calculate distance, but whenever variables are not 
on the same scale, a variable with large values tends to significantly affect the 
resulting cluster layout. For this reason, it is often necessary to normalize or 
standardize the data before entering the algorithm. 
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There are several ways we can standardize data. In this section, we will introduce 
two basic approaches: 

1. min-max - we subtract the minimum from each value and divide the result by 
the difference between the maximum and minimum values. Given the great 
influence of extreme values, we should have an idea of how the data in the 
normalized variable is distributed. 

2. z-score - we subtract the average value from each value and divide the result 
by the standard deviation. The adjusted data shall have an average equal to 
zero and a standard deviation of 1. 

We initialize min_max in the following way. 

# prepared code 

import pandas as pd 

import numpy as np 

import altair as alt 

# alt.renderers.enable('notebook') 

alt.renderers.enable('default') 

from sklearn.cluster import KMeans 

 

file_url = 'https://priscilla.fitped.eu/data/la/logs_lms.csv' 

df = pd.read_csv(file_url, 

usecols=['CourseID','Teachers_logs','Students_logs']) 

 

from sklearn.preprocessing import MinMaxScaler 

min_max_scaler = MinMaxScaler() 

Similarly, we can initialize a method for data standardization. 

from sklearn.preprocessing import StandardScaler 

standard_scaler = StandardScaler() 

In the next step, we will use them to edit data before entering the k-means algorithm. 

Data modeling 

The k-means algorithm is part of the scikit-learn library. As in the previous chapters, 
in the case of this algorithm, we first create an instance of the algorithm with defined 
hyperparameters, train the model on the training dataset, and then predict the results 
for the test dataset. 

kmeans = KMeans(random_state=42) 

We will only look at random variables with continuous numerical values. There is 
reason in using the CourseID variable as it is a nominal variable. 
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X = df[['Teachers_logs', 'Students_logs']] 

We need to normalize or standardize the data before being used in an algorithm. We 
opted for the second option. Note that the listed methods of normalization differ in 
the sequence of calling the methods fit()  and transform(), 
respectively  fit_transform().  

# min_max_scaler.fit(X) 

# X_min_max = min_max_scaler.transform(X) 

# X_min_max 

X_scaled = standard_scaler.fit_transform(X) 

print(X_scaled) 

Program output: 

[[-0.49490091  1.47818338] 

 [ 0.90726658  1.55236034] 

 [-0.76271247 -0.02633256] 

 ... 

 [-0.30233549  0.09055617] 

 [ 0.28830632  1.63487747] 

 [-0.3978091   0.288572  ]] 

The original values no longer reach the order of thousands, as it was in the original 
file, but are distributed around zero.  

We can proceed to train the model with the default values of hyperparameters. 

kmeans.fit(X_scaled) 

After training the model, we can try to predict the resulting data, still on the training 
set. 

y_preds = kmeans.predict(X_scaled) 

print(y_preds) 

Program output: 

[1 7 0 ... 4 7 1] 

As a result, we see the number of the cluster to which the given record will fall 
according to the algorithm. In accordance with the predefined values of the n_cluster 
parameter, 8 clusters were created. 

df['cluster'] = y_preds 

print(df.head()) 
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Program output: 

   CourseID  Teachers_logs  Students_logs  cluster 

0         1           2171          27655        1 

1         2           3904          28242        7 

2         3           1840          15749        0 

3         4           4017          54076        6 

4         5           3533          32530        7 

📝 9.1.4 

Results 

Now we try to interpret the results in more detail. We should be able to justify the 
causes of the formation of individual clusters and their resulting number. We use a 
pivot table to see cluster centers. In this method, we must specify as parameters: 

• values - expects numerical variables from which aggregation is to be 
calculated, 

• index - specifies the columns for which we want to make individual 
aggregations, 

• aggfunc - specifies the aggregate functions we want to use. 

# prepared code 

import pandas as pd 

import numpy as np 

import altair as alt 

# alt.renderers.enable('notebook') 

alt.renderers.enable('default') 

from sklearn.cluster import KMeans 

 

from sklearn.preprocessing import StandardScaler 

standard_scaler = StandardScaler() 

 

file_url = 'https://priscilla.fitped.eu/data/la/logs_lms.csv' 

df = pd.read_csv(file_url, 

usecols=['CourseID','Teachers_logs','Students_logs']) 

kmeans = KMeans(random_state=42) 

X = df[['Teachers_logs', 'Students_logs']] 

X_scaled = standard_scaler.fit_transform(X) 

kmeans.fit(X_scaled) 

y_preds = kmeans.predict(X_scaled) 

df['cluster'] = y_preds 

 

print(df.pivot_table(values=['Teachers_logs', 

'Students_logs'], index='cluster', aggfunc=np.mean)) 
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Program output: 

         Students_logs  Teachers_logs 

cluster                               

0         11081.360939    2067.358467 

1         20340.758475    2856.269068 

2         15618.445652    4833.369565 

3         68020.583333    9940.500000 

4         13692.201099    2697.378022 

5         67908.000000   22911.000000 

6         42628.936170    5925.808511 

7         31067.328125    3867.765625 

The k-means algorithm created eight clusters. We will be better able to analyze them 
if we visualize individual clusters. Therefore, we assign a different color to each value 
of the cluster variable for better clarity, where :N means that it is a categorical 
variable. 

chart = alt.Chart(df) 

scatter_plot = chart.mark_circle() 

scatter_plot.encode(x='Teachers_logs', y='Students_logs', 

color='cluster:N') 

 

At first glance, we can see that the division of data into clusters happens mainly due 
to a variable on the x-axis and the boundaries between clusters are almost vertical. 
Thus, we suspect that the result will not be very useful, and we should take a closer 
look at the role of individual hyperparameters of the model. 

If we want to see individual values in the chart in the form of a floating label, we 
modify the command as follows. 

scatter_plot.encode(x='Teachers_logs', 

y='Students_logs',color='cluster:N', tooltip=['cluster', 

'Teachers_logs', 'Students_logs']).interactive() 
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9.2 Optimal number of clusters 

🕮 9.2.1 

Find the optimal number of clusters 

The unanswered question is why the algorithm created eight clusters. This brings us 
back to the issue of hyperparameters, i.e., parameters that should be set by a 
researcher based on his experience (So et al., 2020). 

In the case of the K-means algorithm, the predefined number of clusters into which 
the algorithm should try to split the data set is set at eight. Specifically, we set this 
value in the hyperparameter n_cluster. Its final value must be chosen judiciously, 
since too few clusters group many unrelated observations together, and vice versa, 
too many very similar clusters. 

Fortunately, we cannot find a suitable number of clusters only by gradual iteration. 
We can use the following methods that estimate the optimal number of clusters: 

• the Elbow method, 

• the Silhouette method, 

• the MeanShift method, 
• fcluster function from the scipy library, taking as a criterion the distance 

between clusters or simply their number. 

Nevertheless, the final decision on how many clusters makes sense to us remains 
with us. 

 

 

 

https://docs.scipy.org/doc/scipy/reference/generated/scipy.cluster.hierarchy.fcluster.html
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📝 9.2.2 

Elbow method 

The Elbow method estimates the compactness of clusters by looking at the Sums of 
Squared Error (SEE) value as an inertia parameter for different cluster counts. 
Currently, this parameter has the following value. 

# prepared code 

import pandas as pd 

import numpy as np 

import altair as alt 

# alt.renderers.enable('notebook') 

alt.renderers.enable('default') 

from sklearn.cluster import KMeans 

 

print(kmeans.inertia_) 

Program output: 

639.0214149347279 

Let's examine how the value would change based on the different number of clusters 
defined in n_cluser. Assume values 1 through 9. 

clusters = pd.DataFrame() 

clusters['cluster_range'] = range(1, 10) 

inertia = [] 

We use a cycle for the calculation, always storing the value of the variable inertia. 

for k in clusters['cluster_range']: 

  kmeans = KMeans(n_clusters=k, random_state=42).fit(X) 

  inertia.append(kmeans.inertia_) 

We assign the resulting values to other data that characterize clusters and visualize 
the relationship. 

clusters['inertia'] = inertia 

print(clusters) 

Program output: 

   cluster_range       inertia 

0              1  1.586459e+11 

1              2  6.655286e+10 
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2              3  3.708316e+10 

3              4  2.253880e+10 

4              5  1.577041e+10 

5              6  1.151998e+10 

6              7  8.774815e+09 

7              8  7.284518e+09 

8              9  5.999906e+09 

We can notice in the graph below, where the curve begins to descend at an angle of 
about 45°. We can see that this break corresponds to a value of 3 to 4. Therefore, we 
can expect, that the most suitable number of clusters in our case will be three or four. 

alt.Chart(clusters).mark_line().encode(x='cluster_range', 

y='inertia') 

 

📝 9.2.3 

Silhouette Analysis 

A more accurate estimate can be obtained by using Silhouette analysis, which works 
with distances between clusters and uses the following formula: 

 

where, p is the average distance to points of the nearest cluster whose data are not 
part of the cluster being studied, q is the average distance between all points within 
the cluster. 

This parameter takes values from the range -1 to 1. 

• A value close to 1 indicates that the cluster data is very similar. 

• A value close to -1 indicates that the data is not like each other in the cluster. 

 Like many others, this method is available in the Scikit-learn library. 
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# prepared code 

import pandas as pd 

import numpy as np 

import altair as alt 

# alt.renderers.enable('notebook') 

alt.renderers.enable('default') 

from sklearn.cluster import KMeans 

 

from sklearn.metrics import silhouette_score 

We calculate silhouette_score for different k-means values and plot the result in a 
graph. 

sse_ = [] 

sse_.append([0,0]) 

for k in range(2,20): 

    if k>1: 

        kmeans = KMeans(n_clusters=k, random_state=42).fit(X) 

        sse_.append([k-1,silhouette_score(X, kmeans.labels_)]) 

print(sse_) 

Program output: 

[[0, 0], [1, 0.7463511627179947], [2, 0.6119882102963004], [3, 

0.5938317978467145], [4, 0.526336947741042], [5, 

0.5052498105822446], [6, 0.5011951259746238], [7, 

0.4649287296640222], [8, 0.47302950953842215], [9, 

0.4495072599541057], [10, 0.44677786842469064], [11, 

0.44155764870351577], [12, 0.44360631004928125], [13, 

0.4412882648805847], [14, 0.43620287323903556], [15, 

0.3909643947116154], [16, 0.3929404282349496], [17, 

0.3899873583509344], [18, 0.383745190641355]] 

 

df2 = pd.DataFrame(sse_, 

columns=['cluster_range','silhouette_score']) 

print(df2.head()) 

Program output: 

   cluster_range  silhouette_score 

0              0          0.000000 

1              1          0.746351 

2              2          0.611988 

3              3          0.593832 

4              4          0.526337 
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alt.Chart(df2).mark_line().encode(x='cluster_range', 

y='silhouette_score') 

 

Again, we see that the curve begins to converge somewhere around 3-4. Therefore, 
we will try to set the value of the hyperparameter n_clusters to 3 

If we now introduce this hyperparameter into the model, we see three clusters. 

kmeans = KMeans(random_state=42, n_clusters=3) 

kmeans.fit(X_scaled) 

df['cluster2'] = kmeans.predict(X_scaled) 

scatter_plot.encode(x='Teachers_logs', 

y='Students_logs',color='cluster2:N', 

    tooltip=['cluster', 'Teachers_logs', 'Students_logs'] 

).interactive() 

 

📝 9.2.4 

Initialize clusters 

Another interesting hyperparameter that can greatly affect the number and 
distribution of clusters is called init. Its baseline value is k-means++ (So et al., 2020).  
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This parameter determines how the starting center of the cluster, called a centroid, 
is selected. It is obvious that if we selected the center of the cluster incorrectly, the 
resulting distribution of data into clusters would not be optimal. If we keep the default 
value of the init parameter, the algorithm first selects the first cluster and calculates 
the others using the probability spread. In some cases, it is justified to change the 
value of the init parameter to k-means or random. 

Closely related to cluster initialization is another hyperparameter n_init, which 
defines how many times the algorithm tries to initialize the cluster. 

# prepared code 

import pandas as pd 

import numpy as np 

import altair as alt 

# alt.renderers.enable('notebook') 

alt.renderers.enable('default') 

from sklearn.cluster import KMeans 

 

kmeans = KMeans(random_state=42, n_clusters=3, init='random', 

n_init=1) 

print(kmeans.fit(X_scaled)) 

Program output: 

KMeans(init='random', n_clusters=3, n_init=1, random_state=42) 

 

df['cluster3'] = kmeans.predict(X_scaled) 

alt.Chart(df).mark_circle().encode(x='Teachers_logs', 

y='Students_logs',color='cluster3:N',tooltip=['cluster', 

'Teachers_logs', 'Students_logs'] 

).interactive( 

 

The resulting shape of clusters seems like above.  
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kmeans = KMeans(random_state=42, n_clusters=3, init='k-

means++', n_init=5) 

kmeans.fit(X_scaled) 

df['cluster4'] = kmeans.predict(X_scaled) 

chart1 = alt.Chart(df).mark_circle().encode(x='Teachers_logs', 

y='Students_logs',color='cluster4:N', tooltip=['cluster', 

'Teachers_logs', 'Students_logs']) 

chart1 

 

📝 9.2.5 

Calculation of the distance between centroids 

K-means groups data based on their similarity. This is closely related to the distance 
between them. Most often, this distance is determined based on calculating the 
distance of two points. More precisely, it represents the sum of the square of the 
difference of the x and y coordinates of the point in individual dimensions. In the case 
of two variables, we calculate the difference in the distance of two points in the plane.  

The algorithm proceeds in the following steps: 

• Randomly selects the center of clusters (centroids). 

• Assigns each data point to the nearest centroid by calculating the Euclidean 
distance. 

• Updates the coordinates of all centroids to a newly calculated centroid. 
• Repeats steps 2 and 3 until the clusters converge or the maximum iteration 

count is reached. 

We can find out the position of centroids directly from a trained model. 

# prepared code 

import pandas as pd 
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import numpy as np 

import altair as alt 

# alt.renderers.enable('notebook') 

alt.renderers.enable('default') 

from sklearn.cluster import KMeans 

 

kmeans = KMeans(random_state=42, n_clusters=3, init='k-

means++', n_init=5) 

kmeans.fit(X) 

df['cluster5'] = kmeans.predict(X) 

Now we will create a chart1, which will show the identified clusters.  

chart1 = alt.Chart(df).mark_circle().encode(x='Teachers_logs', 

y='Students_logs',color='cluster5:N',  

    tooltip=['cluster', 'Teachers_logs', 'Students_logs']) 

In the second chart2, we show the centroids that we first stored in the variable 
centroids. 

centroids = kmeans.cluster_centers_ 

centroids = pd.DataFrame(centroids, columns=['Teachers_logs', 

'Students_logs']) 

print(centroids) 

Program output: 

   Teachers_logs  Students_logs 

0    2483.760674   12495.607303 

1    3154.901993   21745.622924 

2    6167.000000   45379.802198 

 

chart2 = 

alt.Chart(centroids).mark_circle(size=100).encode(x='Teachers_

logs', y='Students_logs', 

color=alt.value('black'),tooltip=['Teachers_logs', 

'Students_logs']).interactive() 
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Finally, let's combine both charts into one chart. 

chart1 + chart2 

 

We identified three clusters in this example. We must explain their importance and 
usefulness ourselves or in cooperation with a person who knows the background of 
the data we have processed. If we fail to logically explain the identified clusters, we 
can try a different expected number of clusters, the optimal number of which we 
estimated using the above methods.  

At the same time, we compared two variables in our example. However, K-means can 
work with multiple variables, with clusters then arising in n-dimensional space. They 
are more difficult to interpret, which is why approaches are used that try to reduce 
the number of dimensions.  
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10.1 Association Rule Mining 

🕮 10.1.1 

Association Rule Mining 

In the next example, we will get acquainted with the application of selected methods 
of association rule analysis. We can use the results of this analysis in the field of 
education as follows:  

• We can create an agent to recommend activities in the course, 
• automatically guide the student through activities. 
• intelligently generate and recommend study materials, 
• identify attributes that characterize differences between groups of students, 
• discover interesting relationships as the student uses available information 

resources, 
• find relationships between found patterns and student behaviour, 
• find frequently recurring mistakes that occur together, 
• optimize the content of the e-learning portal by determining the most suitable 

content for the student, 
• extract useful patterns of user behaviour to evaluate and interpret online 

activities in the course, 
• personalize e-learning based on aggregation of usage profiles and domain 

ontology. 

🕮 10.1.2 

Problem Understanding 

The association rules are among the best-researched methods of learning analytics 
and data mining research in general, helping teachers and course developers get 
detailed feedback: 

• about the course of educational processes,  
• how the student learns,  
• how to evaluate a student based on navigation patterns,  
• how to classify students into groups with similar behaviour or preferences,  
• or how to personalise course content.  

 

At the same time, they allow students to better interact with LMS, adapt the course 
based on their individual learning progress, recommend a personalized learning path 
to the student based on previous experience with similar students. 

🕮 10.1.3 
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Metrics 

The importance of rules is assessed using several characteristics, metrics: 

Support is a ratio between the records that contain the studied set of items and all 
transactions in the data set. In other words, it represents the probability of the item 
occurring in individual transactions, with A standing for Antecedent and C for 
Consequent. The metric support is used to express the frequency of an item in the 
examined data set. If this frequency is greater than the minimum defined, we speak 
of a frequent item set, while it is true that all subsets of frequent item sets are equally 
frequent. 

 

Confidence represents the conditional probability of a given combination of 
occurrences of items A and C in identified transactions, as opposed to support of a 
rule is oriented, confidence is equal to 1 if rule A -> C always occur together. 

 

Lift can be defined as a correlation, which in other words means how many times a 
combination of items occurs more often together than if the items were statistically 
independent. If the items are independent, the lift will be equal to 1. 

 

Leverage is a less frequently used metric, representing the difference between 
observed frequent items A and C that occur together and the frequent sets that would 
be expected if items A and C were independent. Again, a value of 0 represents item 
independence in this metric. 

 

Conviction, its high values mean that the Consequent is heavily dependent on its 
Antecedent. We consider items to be independent if the conviction value is equal to 
1. 
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📝 10.1.4 

Frequent Itemsets 

Let's show you how easily we can calculate frequent itemsets and from them 
association rules for data that characterize individual user sessions in an e-learning 
course. We will not consider the time characteristics of the session. We are only 
interested in what activities and resources the students completed within each 
session in the course. 

Association analysis is not directly integrated into the scikit-learn library. Therefore, 
we will use another interesting mlxtend library. First, let's import important libraries. 
We assume that we previously installed the mlxtend library in a standard way. 

import pandas as pd 

from mlxtend.preprocessing import TransactionEncoder 

from mlxtend.frequent_patterns import apriori 

Let's have the following transactions. Each line corresponds to one session of the 
student, i.e. a list of activities he visited during it. 

dataset = [['zadanie1', 'test1', 'kniha1', 'zadanie2', 

'kniha2', 'test2'], 

           ['test4', 'test1', 'kniha1', 'zadanie2', 'kniha2', 

'test2'], 

           ['zadanie1', 'kniha3', 'zadanie2', 'kniha2'], 

           ['zadanie1', 'zadanie3', 'test3', 'zadanie2', 

'test2'], 

           ['zadanie3', 'test1', 'test2', 'zadanie2', 

'kniha3', 'kniha2']] 

Using the TransactionEncoder() method, we transform them into a format suitable for 
further association analysis. This transformation creates a column from each unique 
item and transforms each transaction into a vector whose individual items take 
values 0 and 1, depending on whether or not the transaction contains the item that 
became the column name.  

te = TransactionEncoder() 

te_ary = te.fit(dataset).transform(dataset) 

df = pd.DataFrame(te_ary, columns=te.columns_) 

print(df) 

Program output: 

   kniha1  kniha2  kniha3  test1  test2  test3  test4  

zadanie1  zadanie2  \ 
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0    True    True   False   True   True  False  False      

True      True    

1    True    True   False   True   True  False   True     

False      True    

2   False    True    True  False  False  False  False      

True      True    

3   False   False   False  False   True   True  False      

True      True    

4   False    True    True   True   True  False  False     

False      True    

 
   zadanie3   

0     False   

1     False   

2     False   

3      True   

4      True   

We used a combination of fit() and transform() methods and stored the result in a df 
variable   of type Dataframe. The following table describes this transformation in 
more detail.  

Now we will use the most common algorithm for finding frequent item sets, known 
as Apriori. As a parameter, expects the rule minimum support value that is 
characterized by the min_support parameter. For example, if we want to see frequent 
sets with support greater than 60%, we will use this limit as a parameter min_support 
method a priori(). 

from mlxtend.frequent_patterns import apriori 

print(apriori(df, min_support=0.6)) 

Program output: 

    support      itemsets 

0       0.8           (1) 

1       0.6           (3) 

2       0.8           (4) 

3       0.6           (7) 

4       1.0           (8) 

5       0.6        (1, 3) 

6       0.6        (1, 4) 

7       0.8        (8, 1) 

8       0.6        (3, 4) 

9       0.6        (8, 3) 

10      0.8        (8, 4) 

11      0.6        (8, 7) 
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12      0.6     (1, 3, 4) 

13      0.6     (8, 1, 3) 

14      0.6     (8, 1, 4) 

15      0.6     (8, 3, 4) 

16      0.6  (8, 1, 3, 4) 

/usr/lib/python3/dist-packages/ipykernel/ipkernel.py:283: 

DeprecationWarning: `should_run_async` will not call 

`transform_cell` automatically in the future. Please pass the 

result to `transformed_cell` argument and any exception that 

happen during thetransform in `preprocessing_exc_tuple` in 

IPython 7.17 and above. 

  and should_run_async(code) 

If we want to display column names instead of an index, we'll list this as an additional 
attribute. This view is certainly clearer and tells us how much support each frequent 
set has. We see high support for multiple multi-item sets. Support represents the 
probability of the item occurring in each transaction. Since this is a practice example 
with a small number of short transactions, it is not our job to interpret their 
contribution exactly.  

 print(apriori(df, min_support=0.6, use_colnames=True)) 

Program output: 

    support                          itemsets 

0       0.8                          (kniha2) 

1       0.6                           (test1) 

2       0.8                           (test2) 

3       0.6                        (zadanie1) 

4       1.0                        (zadanie2) 

5       0.6                   (test1, kniha2) 

6       0.6                   (test2, kniha2) 

7       0.8                (zadanie2, kniha2) 

8       0.6                    (test2, test1) 

9       0.6                 (zadanie2, test1) 

10      0.8                 (test2, zadanie2) 

11      0.6              (zadanie2, zadanie1) 

12      0.6            (test2, test1, kniha2) 

13      0.6         (zadanie2, test1, kniha2) 

14      0.6         (test2, zadanie2, kniha2) 

15      0.6          (test2, zadanie2, test1) 

16      0.6  (test2, zadanie2, test1, kniha2) 

/usr/lib/python3/dist-packages/ipykernel/ipkernel.py:283: 

DeprecationWarning: `should_run_async` will not call 

`transform_cell` automatically in the future. Please pass the 
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result to `transformed_cell` argument and any exception that 

happen during thetransform in `preprocessing_exc_tuple` in 

IPython 7.17 and above. 

  and should_run_async(code) 

Using filters that are part of the Pandas library, we can adjust the displayed result of 
identifying frequent sets to a more acceptable form. For example, if we want to 
display only two-item sets with support greater than 60%, we first create frequent 
sets using the Apriori algorithm and add a column with information about the number 
of items in the multicomponent set. To do this, we will use the apply() method  and 
the lambda function. Note that the order of items in each frequent set does not 
matter. 

frequent_itemsets = apriori(df, min_support=0.6, 

use_colnames=True) 

frequent_itemsets['length'] = 

frequent_itemsets['itemsets'].apply(lambda x: len(x)) 

print(frequent_itemsets) 

Program output: 

    support                          itemsets  length 

0       0.8                          (kniha2)       1 

1       0.6                           (test1)       1 

2       0.8                           (test2)       1 

3       0.6                        (zadanie1)       1 

4       1.0                        (zadanie2)       1 

5       0.6                   (test1, kniha2)       2 

6       0.6                   (test2, kniha2)       2 

7       0.8                (zadanie2, kniha2)       2 

8       0.6                    (test2, test1)       2 

9       0.6                 (zadanie2, test1)       2 

10      0.8                 (test2, zadanie2)       2 

11      0.6              (zadanie2, zadanie1)       2 

12      0.6            (test2, test1, kniha2)       3 

13      0.6         (zadanie2, test1, kniha2)       3 

14      0.6         (test2, zadanie2, kniha2)       3 

15      0.6          (test2, zadanie2, test1)       3 

16      0.6  (test2, zadanie2, test1, kniha2)       4 

/usr/lib/python3/dist-packages/ipykernel/ipkernel.py:283: 

DeprecationWarning: `should_run_async` will not call 

`transform_cell` automatically in the future. Please pass the 

result to `transformed_cell` argument and any exception that 

happen during thetransform in `preprocessing_exc_tuple` in 

IPython 7.17 and above. 
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  and should_run_async(code) 

In the table we see a list of one-, two-, three- and four-item sets that meet the 
minimum support rule (min_support). These multi-item sets can be found in the 
studied data set.  

Now we can only select those items that meet our requirements, for example, two-
item frequent flyers with a support value of support >=0.75.  

print(frequent_itemsets[ (frequent_itemsets['length'] == 2) & 

(frequent_itemsets['support'] >= 0.75)]) 

Program output: 

    support            itemsets  length 

7       0.8  (zadanie2, kniha2)       2 

10      0.8   (test2, zadanie2)       2 

/usr/lib/python3/dist-packages/ipykernel/ipkernel.py:283: 

DeprecationWarning: `should_run_async` will not call 

`transform_cell` automatically in the future. Please pass the 

result to `transformed_cell` argument and any exception that 

happen during thetransform in `preprocessing_exc_tuple` in 

IPython 7.17 and above. 

  and should_run_async(code) 

We can also do the opposite if we want to find all the frequent sets that contain 
specific items. We simply define the condition that each item stored in the data frame 
must meet. 

print(frequent_itemsets[ frequent_itemsets['itemsets'] == 

{'kniha2', 'test1'} ]) 

Program output: 

   support         itemsets  length 

5      0.6  (test1, kniha2)       2 

/usr/lib/python3/dist-packages/ipykernel/ipkernel.py:283: 

DeprecationWarning: `should_run_async` will not call 

`transform_cell` automatically in the future. Please pass the 

result to `transformed_cell` argument and any exception that 

happen during thetransform in `preprocessing_exc_tuple` in 

IPython 7.17 and above. 

  and should_run_async(code) 

For the sake of completeness, let us add that in order to save computational 
resources in cases where the examined data set contains a large number of different 
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items and especially short transactions, we can adjust the algorithm's progress using 
the parameter sparse = True, which we will use at the stage of preparing a data frame 
containing information about the occurrence of the item in the dataset. 

oht_ary = te.fit(dataset).transform(dataset, sparse=True) 

sparse_df = pd.DataFrame.sparse.from_spmatrix(oht_ary, 

columns=te.columns_) 

print(sparse_df) 

Program output: 

   kniha1  kniha2  kniha3  test1  test2  test3  test4  

zadanie1  zadanie2  \ 

0       1       1       0      1      1      0      0         

1      True    

1       1       1       0      1      1      0      1         

0      True    

2       0       1       1      0      0      0      0         

1      True    

3       0       0       0      0      1      1      0         

1      True    

4       0       1       1      1      1      0      0         

0      True    

 

   zadanie3   

0         0   

1         0   

2         0   

3         1   

4         1   

/usr/lib/python3/dist-packages/ipykernel/ipkernel.py:283: 

DeprecationWarning: `should_run_async` will not call 

`transform_cell` automatically in the future. Please pass the 

result to `transformed_cell` argument and any exception that 

happen during thetransform in `preprocessing_exc_tuple` in 

IPython 7.17 and above. 

  and should_run_async(code) 

Subsequently, we can again display frequent sets that meet a condition defined by 
us, such as minimum min_support support. The verbose parameter specifies whether 
to display the number of iterations. Its actual effect depends on the parameter 
low_memory.  We will read in more detail about the advantages of additional 
parameters in the documentation (http://rasbt.github.io/mlxtend/). 

print(apriori(sparse_df, min_support=0.6, use_colnames=True, 

verbose=1)) 
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Program output: 

Processing 20 combinations | Sampling itemset size 2 

Processing 21 combinations | Sampling itemset size 3 

Processing 4 combinations | Sampling itemset size 4 

    support                          itemsets 

0       0.8                          (kniha2) 

1       0.6                           (test1) 

2       0.8                           (test2) 

3       0.6                        (zadanie1) 

4       1.0                        (zadanie2) 

5       0.6                   (test1, kniha2) 

6       0.6                   (test2, kniha2) 

7       0.8                (zadanie2, kniha2) 

8       0.6                    (test2, test1) 

9       0.6                 (zadanie2, test1) 

10      0.8                 (test2, zadanie2) 

11      0.6              (zadanie2, zadanie1) 

12      0.6            (test2, test1, kniha2) 

13      0.6         (zadanie2, test1, kniha2) 

14      0.6         (test2, zadanie2, kniha2) 

15      0.6          (test2, zadanie2, test1) 

16      0.6  (test2, zadanie2, test1, kniha2) 

/usr/lib/python3/dist-packages/ipykernel/ipkernel.py:283: 

DeprecationWarning: `should_run_async` will not call 

`transform_cell` automatically in the future. Please pass the 

result to `transformed_cell` argument and any exception that 

happen during thetransform in `preprocessing_exc_tuple` in 

IPython 7.17 and above. 

  and should_run_async(code) 

📝 10.1.5 

Association Rules Mining 

We can easily generate association rules from frequent sets. We use support, 
confidence or lift metrics to evaluate them. 

If we want to generate association rules, we take as input the frequented item sets 
that we obtained by applying the Apriori algorithm.  

# prepared code 

dataset = [['zadanie1', 'test1', 'kniha1', 'zadanie2', 

'kniha2', 'test2'], 
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           ['test4', 'test1', 'kniha1', 'zadanie2', 'kniha2', 

'test2'], 

           ['zadanie1', 'kniha3', 'zadanie2', 'kniha2'], 

           ['zadanie1', 'zadanie3', 'test3', 'zadanie2', 

'test2'], 

           ['zadanie3', 'test1', 'test2', 'zadanie2', 

'kniha3', 'kniha2']] 

 

from mlxtend.frequent_patterns import association_rules 

The generate_rules()  method will then allow us to specify the metric we want to use 
and define its threshold minimum value that the rules must meet. Support, 
confidence and lift metrics are currently supported.  For example, we may require 
rules to meet a confidence > 0.7. 

association_rules(frequent_itemsets, metric="confidence", 

min_threshold=0.7) 

By adding another restriction, we get rules that also meet the lift requirement.  In the 
next row, before displaying the rules, we sorted so that the rules with the highest 
value are both confidence and lift. 

rules = association_rules(frequent_itemsets, metric="lift", 

min_threshold=1.5) 

rules = rules.sort_values(['confidence', 'lift'], ascending 

=[False, False])  

print(rules) 

Program output: 

                 antecedents                consequents  

antecedent support  \ 

0            (test2, kniha2)                    (test1)                 

0.6    

1                    (test1)            (test2, kniha2)                 

0.6    

2  (test2, zadanie2, kniha2)                    (test1)                 

0.6    

3            (test2, kniha2)          (zadanie2, test1)                 

0.6    

4          (zadanie2, test1)            (test2, kniha2)                 

0.6    

5                    (test1)  (test2, zadanie2, kniha2)                 

0.6    
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   consequent support  support  confidence      lift  leverage  

conviction   

0                 0.6      0.6         1.0  1.666667      0.24         

inf   

1                 0.6      0.6         1.0  1.666667      0.24         

inf   

2                 0.6      0.6         1.0  1.666667      0.24         

inf   

3                 0.6      0.6         1.0  1.666667      0.24         

inf   

4                 0.6      0.6         1.0  1.666667      0.24         

inf   

5                 0.6      0.6         1.0  1.666667      0.24         

inf   

/usr/lib/python3/dist-packages/ipykernel/ipkernel.py:283: 

DeprecationWarning: `should_run_async` will not call 

`transform_cell` automatically in the future. Please pass the 

result to `transformed_cell` argument and any exception that 

happen during thetransform in `preprocessing_exc_tuple` in 

IPython 7.17 and above. 

  and should_run_async(code) 

The lack of use of association rules in the field of LA is the relatively high 
computational complexity of algorithms, problematic interpretation of acquired rules 
in terms of their division into inexplicable, trivial and useful, the absence of an 
understandable way to visualize them, as well as accessibility for different types of 
users. 
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11.1 Research topics 

🕮 11.1.1 

Among the most common research topics in learning analytics, we can currently 
include the following topics: 

• Performance prediction - the goal is to predict the student's grade and find out 
what variables have the greatest impact on the grade. 

• Predicting early course dropout - the aim is to predict whether a student will 
pass the course and identify students who need help as soon as possible. 

• Course design improvement - creating and developing a course that better 
meets the needs of students and teachers using data. 

• Behavioral analysis - analysis of how students interact with the course. 
• Ethical issues - problems that come with using the data generated by 

students. 

We will summarise some interesting findings in the following parts. 

🕮 11.1.2 

Student’s Performance Prediction 

The researchers conducted various studies to build an appropriate model of student 
academic performance prediction for specific courses or subjects. These studies 
use different types of student data with different parameters to predict grade 
outcomes. 

In general, among machine learning algorithms, logistic regression algorithms are 
the most popular approaches for predicting outcome grades (Baneres et al., 2019), 
followed by decision tree algorithms (Conjin et al., 2017). 

Several studies have compared the performance of regression algorithms with many 
other classification algorithms. The objective of these comparisons was to identify 
the most effective approach for creating grading models of students' academic 
achievements. For example, in a study conducted (Jayaprakash et al., 2014), student 
variables extracted from different data sources were embedded in classification and 
regression algorithms to find students who were exposed to risks associated with 
studying. The results showed 50-75% accuracy of the models. 

In the paper (Baneres et al., 2019), they applied various regression-based algorithms 
using data captured from log files of virtual learning environments. The results 
showed that the use of logistic regression leads to better predictions. 

In addition, the authors (Pardo et al., 2016) used decision tree algorithms to construct 
their regression models. They used models to predict intermediate and final exam 
scores. Each model corresponded to a week of lessons during a thirteen-week 
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course. The models trained based on first-year engineering students' online 
interaction data and internal assessment scores were derived from online learning 
sources. The authors created models with predictions for each week. The paper was 
considered as a case study aimed at processing many numerical variables derived 
from student interactions. The overall classification error of the model varied in the 
range of 15-20%.  

🕮 11.1.3 

The authors (Queiroga et al., 2020) used decision tree, polynomial and logistic 
regression, which they designed to predict students' grades based on their CGPA, 
partial assessments, and attendance records. The results of the model evaluation 
showed that polynomial regression and logistic regression outperform decision tree 
models, where both models provide similar levels of accuracy. 

In the paper (AI-Shehri et al., 2017), researchers sought to predict the final grade in a 
math subject to be able to select the right student for certain assignments using two 
methods, the k-nearest neighbor (KNN) model and the support vector algorithm 
(SVM) prediction model. The process of property selection was carried out by finding 
a correlation between the input variables and the grade. The results showed that both 
classifiers worked very well for this type of problem, but SVM slightly outperformed 
KNN with correlation coefficients of 0.96 and 0.95, respectively. The performance of 
the proposed techniques should also be evaluated regarding classification aspects 
not only regression. The SVM algorithm would not work very well with a larger dataset 
as it requires a long time to train the model. In this case, its good performance was 
due to a small dataset, but in the case of a larger one, it may work poorly. 

The authors examined student achievement and found that the most influential 
factors were achieved points in university admissions and the number of failed 
exams during the first year. Research (Tempelaar et al., 2015) focused on courses in 
a combined form of study, and the results showed that the most significant variables 
in performance prediction are: forum usage, student creation of course content, 
tests, and number of materials viewed. The author (You, 2016) identified that regular 
attendance, late assignment submissions, number of course logins, and proof of 
viewing of learning material are not relevant for predicting student performance in 
online learning. 

Likewise, the authors (Asif et al., 2017) found that students' use of forums or time 
intervals for accessing a course did not have much correlation with students' final 
grades. However, it is important to note that the scope of research and the data used 
have a big impact on which input variables are useful. In summary, active 
participation often leads to better performance, and especially in the online 
environment, separate tasks that demonstrate the student's interest are important. 
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🕮 11.1.4 

Predicting early course dropout 

High failure rates of students in different courses is considered a significant problem 
today. Therefore, this phenomenon is often researched, if it is possible to create a 
prediction model to identify students who are at risk of failure.  

Kalaivani et al. (2019) conducted a comparative analysis between three selected 
classification algorithms: decision tree and naive bayes. The input dataset consisted 
of 497 records over 8 academic years. The data included various aspects of the 
students' records, including family background, previous academic records, and 
other demographic elements. The naive bayes algorithm showed a peak accuracy 
value of 71.3%. The model was intended to enable teachers to take early steps to 
help poor and average students improve their performance. The dataset was 
relatively small due to incomplete and missing values. The study could be extended 
by adding more data to improve overall accuracy. 

In a study (Ma et al., 2019), they proposed a Multi-Instance Multi-Label (MIML) 
algorithm using a KNN technique. The research was conducted on at-risk students 
in a course with a strong correlation with previous courses in which they failed. In the 
research, they used online learning activities, failing to predict student performance. 
This was due to a small input dataset.  

Anusha et al. (2019) used an input dataset containing information about computer 
science students for years 2015-2019, taking into account their academic 
performance. Instead of a classification model, they used a regression model. The 
proposed system predicted the outcome in a numerical way using KNN, decision tree, 
SVM, random forest, linear regression, and multilinear regression. In this case, 
multiple linear regression proved to be the optimal solution. 

🕮 11.1.5 

In the study (Kalaivani et al., 2017), they focused on predicting final grades from a 
semester project. A dataset with 1938 records was used. To increase accuracy, they 
introduced an improved boost algorithm. The results were compared with existing 
algorithms Adaboost (decision stump) and Adaboost (J48). The best accuracy 
achieved was 69% by the Adaboost algorithm(J48), with an unbalanced dataset 
posing the problem.  

Amrieh et al. (2016) used a prediction model on a dataset collected from LMS. In 
addition to academic performance, demographic data were also taken into account. 
The result showed a strong impact of academic performance compared to 
demographic characteristics. Traditional classification algorithms were used, 
namely decision trees, naïve bayes, and a neural network. The algorithm of decision 
trees gave the best results. The model performed very well with 480 records and 
showed 80% accuracy but should be verified with a larger dataset. 
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Almasri et al. (2019) analyzed student performance in a 4-year bachelor's degree. 
The study only considered grades as an input, without considering any other 
characteristics. The dataset used consisted of a sample of 210 students. Naive 
bayes achieved excellent results with an accuracy of 83.63%, followed by neural 
network and random forest. Due to the difficulty of interpreting the results of the 
neural network and random forest, it was not possible to establish the cause of the 
poor prediction.  

In a study (Daud et al., 2017), they examined the impact of input variables on 
predicting the performance of students who have scholarships. The dataset 
consisted of 23 selected variables and 776 records. In addition to academic 
performance, variables were mostly related to personal information, specifically 
family background. However, they did not have a significant influence on predicting 
their performance. But to build the model, the classifiers naive bayes, SVM and CART 
were used. SVM emerged as the best classifier with an f1 score of 0.867 compared 
to others. To improve accuracy, it would be necessary to supplement the input 
variables with others that would have a greater impact on the predicted variable. 

In a study (Marbouti et al., 2018), they tried to identify at-risk students in a selected 
course during the semester. The authors used logistic regression, support vector 
machines (SVM), decision trees (DT), ANN, and the naive bayes classifier. The aim 
of the study was, among other things, to focus on false negatives and false positives. 
This study used input variables such as grades, projects, attendance, tests, weekly 
homework, and exams. The best model for predicting performance was the decision 
tree with 96.1% accuracy. All models studied had low accuracy when it came to 
identifying failed students. Since the research focused on at-risk students, the best 
models were naive bayes with 86.2%, SVM with 72.4 and logistic regression with 
58.6%. The reason for the poor prediction was that the set contained only 10% of 
failed students.  

🕮 11.1.6 

In terms of the most used predictors of success, several basic categories can be 
created. In some studies (Estacio, Raga, 2017; Gašević et al., 2016) used student 
data coming from student information systems (IS) or other systems of an 
administrative rather than educational nature. These were demographic and 
descriptive data (gender, citizenship, residence, semester of study, etc.) or data on 
previous study success (results at secondary school, results of admission procedure, 
results in previous courses at university, etc.). Based on these predictors, it was also 
possible to draw other variables that could be used in the modelling process (e.g., 
attendance for full-time teaching, activity in full-time teaching, frequency of personal 
consultations with the teacher, etc.).  

If we focus our attention only on data coming from LMS, two basic groups of the 
most frequently used predictors can be distinguished in the studies so far. 

The first group consisted of numerous aspects of student activity in specific areas 
of the course. First, it is the sum of records of student activity (logs) within a specific 
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activity in LMS, such as tests, sources of study materials, assignments, etc. (Lu et 
al., 2018). However, a certain disadvantage of predictors of this type is the direct link 
to a specific LMS (e.g. Moodle) and, accordingly, the worse possibilities of 
generalizing such solutions between different LMS. 

The second group consisted of general temporary characteristics of course 
attendance. These are different measures of how much a course is attended, and 
generality in this context means that it is the attendance of the course as a whole 
and does not distinguish, for example, the activity of students in different parts of the 
course in terms of content. Temporality then refers to the fact that these are traffic 
metrics that are in some way tied to the time, e.g. when visits occur, how regularly, 
etc. (AlJarrah et al., 2018). 

There are also other studies that use specific types of predictors, while they do not 
fall into any of the categories defined above. However, they are significantly less 
represented in terms of numbers. Examples include authors Nakayama, Mutsuura, 
and Yamamoto (2017), who used specific measures of how well students write 
continuous study notes throughout the course. Another example might be simple 
numerical characteristics such as the number of discussion posts created, the 
number of replies to other students' posts, and others. (Sclater et al., 2017). 

🕮 11.1.7 

Course design improvement 

Learning analytics can also provide teachers with tools to improve and streamline 
their courses. However, for this to be possible, a contextual framework is needed to 
help teachers better understand the outcomes provided by learning analytics.  

A study (Costa et al., 2017) suggested learning design as a form of documentation. 
Learning design includes resources that students can access, tasks for students to 
complete, support mechanisms for educators to use, and checkpoints where 
analytical methods can be used.  

In the paper (Tomasevic et al., 2020), researchers analyzed the way courses are 
delivered to meet standards and desired outcomes. This study concluded that 
student engagement in technology improved academic performance. The teaching 
material of the online course has played a significant role in student achievement. 
Access to online learning materials was an indicator of good student performance. 
Full-time students were compared with part-time students for two semesters. The 
result showed that students regularly attending online courses achieve better grades 
and grades. It was also found that there is a significant relationship between 
expertise and level of participation. The authors illustrated the results of the 
comparison through a graph, but the overall results are not processed precisely 
enough. There was a group that showed a high level of attitude and involvement in 
the course, but at the same time their achieved results on the exam were the worst. 
It could be possible to focus on the role played by time spent with online materials 
to improve academic performance. 
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In their study, Rientes & Toetenel (2016) looked at course design combined with 
prediction of early graduation and found that the primary predictor is many diverse 
activities. 

In the study (Kizilcec et al., 2017), they developed a strategy for course design. 
Setting clear goals and strategically scheduling content has been found to work best. 
Furthermore, it has been proven that it is appropriate to create activities in which 
students have to evaluate their elaborated assignments themselves. The authors 
(Tabuenca et al., 2015) found that alerting students to track their time spent in a 
course and over individual activities positively affects their ability to manage time 
and leads to students using their time in courses much more effectively. 

🕮 11.1.8 

Behavioral analysis 

Learning analytics can be used to identify learning strategies in online and blended 
forms of teaching. Currently, researchers in these areas are very interested in the 
problem of analyzing specific patterns of stakeholder interaction in LMS. This means 
that research focused on clustering attempts to characterize, for example, the 
current level of behavior of a group of students within a given content being studied.  

Aljohani et al. (2019) used clustering techniques to determine which students in 
online courses had the highest and lowest levels of success. The k-means 
aggregation technique was used to divide students into classes based on variables 
such as their enrollment history and the number of attempts to complete the course. 
However, the aggregated data used in this study were processed incorrectly. During 
the training phase of the model, they consisted of a large number of blanks, and a 
relatively small number of variables were used to create the model. 

Hooshyar et al. (2020) provided a detailed overview of learning context clustering 
algorithms. They designed an evaluation approach that automatically compared 
several clustering methods using multiple internal and external performance 
measurements on nine educational datasets of different sizes. 

Cao et al. (2018) analyzed the records of 98 college students to gain insight into their 
activities when they were engaged in online learning. Results from the k-means 
clustering algorithm pointed to three clusters. Students in clusters 1 and 2 had 
above-average performance and high interaction, while students in cluster 3 showed 
poor interaction and poor performance patterns. 

🕮 11.1.9 

Another study (Bharara et al., 2018) used clustering methods to understand student 
behavior in courses. This research examined input variables that affect the 
performance of most students. An input file from the Moodle LMS was used, which 
contained 489 records with 16 variables. The k-means algorithm in this model was 
used for student interactions along with the involvement of students' parents in 
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tracking students' academic performance. The result showed that clustering works 
well for heterogeneous data type. However, along with other clustering techniques, 
other variables would need to be addressed.  

Students' grades in courses can be predicted from forum data, as suggested by the 
authors (Hussain et al., 2018), who proposed a classification using various 
segmentation techniques combined with association rules. The results were very 
similar compared to standard machine learning algorithms. 

In their study, the authors (Navarro et al., 2018) used a large dataset that contained 
no outliers to see which clustering technique was more effective in finding students 
with low levels of proficiency in LMS. This study used seven different clustering 
models and compared different evaluation metrics to compare their performance, 
such as: Dunn index, Silhouette Score and Davies-Bouldin score. The goal of the 
metrics was to determine which algorithm worked more efficiently. However, a 
particular disadvantage of this research was that missing data in individual variables 
was eliminated. Some of them may have contained useful information to provide 
more information. In this way, one of the potential benefits of the research, as well 
as one of its limitations, has been eliminated. The original data was cleaned up to 
44% of the total (Navarro et al., 2018). 

🕮 11.1.10 

Alternative research has provided a method of clustering students (Gupta et al., 
2020). Three courses with a small number of students (15, 30 and 56 students) were 
used to evaluate the performance of four different clustering algorithms (x-means, k-
means, hierarchical and expectation maximisation). The algorithms identified a 
minimum number of clusters (2 or 3 depending on the algorithm used), and the 
authors did not observe groups with obvious behavioral differences. The main reason 
for this was the relatively small number of students involved. In addition, these 
students tended to group themselves into similar groups based on characteristics 
that did not fit into the model. 

When evaluating student activity data from Moodle LMS log files, the authors of 
Palani et al. (2021) compared three different clustering methods (k-means, 
hierarchical, and louvain) to determine the most effective segmentation method. 
Based on their findings, the louvain algorithm overcame k-means and hierarchical 
clustering. 

Luna et al. (2017) designed an MDM tool integrated into the Moodle LMS that 
supported the entire knowledge discovery process. They did not describe details 
about student clustering methods. 

The authors of the paper (Saiz-Manzanares et al., 2021) developed a desktop 
application that used visualization techniques and cluster analysis modules (k-
means++, fuzzy k-means, and DBSCAN) to monitor students and predict dropout 
rates. They did not use LMS log files as input.  
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12.1 LA architecture 

🕮 12.1.1 

The combination of software, hardware and a specific form of education or 
educational approach has recently been referred to as educational technology. 
Software applications, which are its most tangible part, are referred to as EdTech 
applications. The development of Edtech applications has recently experienced a 
rapid boom, and we place similar requirements and expectations on them as in other 
areas of software deployment: 

• Achieving an acceptable level of quality, 
• support for standardization, 
• implementation of artificial intelligence and machine learning elements, 
• appropriate deployment of augmented and virtual reality, 
• focus on STEM, programming, and gamification. 

From the perspective of the developer of Edtech applications, events in this area 
focus mainly on the development of the following types of applications: 

• virtual learning environments, including new generation learning environment 
(NGLE), 

• digital publishing platforms for open educational resources (OER), 
• implementation of gamification into e-learning solutions, 
• online communication environments, 
• an environment for automated evaluation and evaluation of learning 

outcomes, 
• management and administration of the educational process and support of 

the management of the educational organisation. 

Therefore, in the development of new educational applications we should know the 
theoretical basis of these trends and be able to incorporate them in an appropriate 
way. In this chapter, we will learn about the basic architecture of LA, which allows 
you to collect, store and further provide data related to students and their activities 
in the learning process, as well as exchange this data in a standardized format. 
Subsequently, we will summarize the basic rules that we should follow if we are 
thinking about developing software in the domain of education that will implement 
selected machine learning algorithms.  

🕮 12.1.2 

Learning Analytics Architecture 

Learning analytics is a complex area that connects many different data ecosystems, 
standards, data-intensive applications, processes as well as different types of 
stakeholders. Sclater (Sclater 2017) stated that given the diversity of LA applications, 
the complexity of the issue, and the interests of stakeholders, we cannot expect a 
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simple consensus on what components and processes should be included in the 
conceptual model of LA architecture to provide a framework for its universal 
deployment.  

On the other hand, Siemens et al. (Siemens, Gasevic, Haythornthwaite, Dawson, 
Shum, Ferguson, Duval, Verbert, and Baker 2011a) emphasize that for the 
development and wider adaptation of LA, it is essential to strive to create just such 
an architecture. This can take the form of an integrated toolkit, available as an open 
platform, bringing together the interests of all key user groups:  

• students,  
• educators,  
• administrators, 
• researchers,  
• developers, 
• as well as managers and analysts.  

Recently, several initiatives have emerged that agree on what this LA architecture 
and its core software components might look like and which of the data science 
processes they should cover.  

🕮 12.1.3 

Experience API 

The new lightweight Experience API (xAPI) standard plays an important role in 
standardizing the entire process. It is a communication protocol that connects all 
components of architecture (Martin 2018). The basic concept of xAPI assumes that 
people learn from interactions with other people and with study content. These 
interactions can occur anywhere. Tracking of learning-related events is no longer tied 
to WBES but can occur wherever a student is currently and works with a device that 
he or she decides to use for learning. If this device can store and exchange data using 
xAPI, it becomes part of the ecosystem. In order to combine event data with each 
other, the same event is described in the same way, regardless of what system or 
device the student uses. The interaction is recorded using xAPI in the format "subject, 
predicate, object" to LRS (Silver 2016). 

Experience API (xAPI) is an extended and flexible standard suitable not only for 
educational technologies. It defines the way education systems describe user 
activities and how these systems communicate with each other. Thanks to xAPI, we 
can standardize most of the tasks we perform in an educational organization to 
objectively evaluate the effectiveness of education, for example, we can: 

• better understand the steps leading to experience, 
• learn more about the context in which learning takes place, 
• Improve performance, 
• find a correlation between learning and performance or learning and learning 

outcomes, 
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• personalize training, 
• learn from each other, 
• share experiences with other, 
• compare performance and outcomes across organisations and learners, 
• share learners' activity between multiple platforms and tools supporting the 

learning process in a standard form. 

🕮 12.1.4 

Software clients that implement xAPI can read and write data in the form of JSON 
objects. Activity information is stored in standardized forms. The basic form 
contains information about the actor, verb, and object, but it can also contain other 
metadata such as results, score, language, platform, or GPS coordinates. An example 
of a basic form of writing can be "John read a manual for safe work with chemicals" 
(Delano, Shahrazdat, 2013). 

An actor is a person who performs the activity and is identified within the system. A 
verb defines a type of activity such as reading, accomplished, taught. An object 
represents what the record refers to, such as study material or a test.  

The xAPI itself consists of two parts. The first part consists of an API that can be 
implemented in educational applications, including mobile ones. The second part 
consists of LRS (Learning Record Store) or LRW (Learning Record Warehouse) 
repository. The aim of LRS and LRW is to record user results and activities. If 
someone in an application that uses xAPI completes the task of reaching a higher 
level of play, the interface sends the information to the appropriate LRS in a 
standardized form. In LRS, all information is collected and can be evaluated, for 
example, by an independent analytical or reporting tool (Brdička, 2014). 

📝 12.1.5 

Let's consider the above process in more detail. As mentioned above, xAPI is a JSON-
encoded expression. This means that if we want to write xAPI commands, we should 
know the basics and rules of writing JSON. The xAPI command is a JSON object that 
contains at least three parts: 

• actor, 
• verb, 
• object.  

All three are again JSON objects, so we nest objects into each other.  

{ 

  "actor": { 

  }, 

  "verb": { 

  }, 

  "object": { 
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  }  

} 

The first part of the expression is actor. The value of this object tells us who 
performed the action. It can contain several properties, in a minimal configuration it 
should be the name of the actor and the email (mbox), which performs the role of a 
unique identifier. 

{ 

  "actor": { 

    "name": "Jožko Mrkvička", 

    "mbox": "mailto:jozko.mrkvicka@ukf.sk"  

  }, 

  "verb": { 

  }, 

  "object": { 

  }  

} 

The object verb (verb) defines what kind of action the actor performed. It contains id 
and display properties. The id key is a unique resource identifier (URI), most 
commonly a URL where a dictionary that defines each verb is available. Using a 
common dictionary of verbs that we can use to describe activities will ensure that 
we can combine entries stored as xAPI from different sources if necessary. Thanks 
to this, we can get a better idea of how the student learns using various applications 
and systems supporting the learning process.  

The second key is labeled display. The latter provides a description of the verb in a 
readable form. Often, therefore, it takes the form of another pair in the shape of key : 
value so that we are able to provide multilingual content. 

{ 

  "actor": { 

    "name": "Joe Doe", 

    "mbox": "mailto:joe.doe@ukf.sk"  

  }, 

  "verb": { 

    "id":"https://w3id.org/xapi/dod-isd/verbs/submitted", 

    "display": { "en-EN": "submitted" } 

  }, 

  "object": { 

  }  

} 

The last of the three basic objects of the xAPI expression is the object, which most 
often contains information about the result of the activity that the user performed. At 
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the minimum, it contains the id and definition properties. Again, the first id key is a 
URI meant to point to a unique address with an explanation. We can use our own 
expository dictionary, but we recommend using a standardized dictionary, such as 
Activity Types from the xAPI Vocab Server. 

{ 

  "actor": { 

    "name": "Jožko Mrkvička", 

    "mbox": "mailto:jozko.mrkvicka@ukf.sk"  

  }, 

  "verb": { 

    "id":"https://w3id.org/xapi/dod-isd/verbs/submitted", 

    "display": { "sk-SK": "zaslaný" } 

  }, 

  "object": { 

    "id": " http://id.tincanapi.com/activitytype/school-

assignment", 

   "definition": { 

      "name": { "sk-SK": "Odovzdanie programu Tic-Tac-

Toe" } 

     } 

  } 

} 

The definition key then contains the name property, which performs a similar function 
to the display property, providing a clear description of the subject of the activity. The 
final JSON shape of the xAPI command then takes the following form. 

🕮 12.1.6 

In addition to the mandatory parts of the xAPI command mentioned above, we have 
the option to add other nested JSON objects, for example: 

• result of action, 
• the context in which the action took place (context), 
• existing attachments, 
• statements. 

Each of them contains distinctive features that illustrate the overall semantics of the 
user's activity associated with learning. In order to comply with the currently valid 
rules for creating more advanced xAPI expressions, we can use one of the available 
xAPI editors. 

The resulting xAPI expression can be stored directly in the LMS or, in accordance 
with current trends, written into a common LRS or LRW repository for further analysis 
or needs of other applications.  
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In case the application or system stores records in its own format, we can consider 
the xAPI example as a suggestion how to export these logs for further analysis in a 
standardized form. As an example, we can explore a specific implementation of xAPI 
in the Moodle LMS.  

12.2 Open LA architecture 

🕮 12.2.1 

Open Learning Analytics Architecture 

The Society for Research for Learning Analytics (SoLAR) initiative introduced the 
Open Learning Analytics (OLA) Project, which can be considered the first attempt to 
design the LA architecture. The result of their systematic efforts is the conceptual 
design of an integrated LA system that includes the following modules (Siemens, 
Gasevic, Haythornthwaite, Dawson, Shum, Ferguson, Duval, Verbert and Baker 2011): 

• The Learning Adaptation and Personalization Engine is the basis for 
collecting, identifying, and subsequently processing data by suitable available 
analytical modules. The adaptive part of the module covers the learning 
process, instructional design and educational content. 

• The Analytics Module provides a set of predictive models in PMML format, 
allowing additional modules developed by third parties to be easily added.  

• The Intervention Module monitors the progress of the learning process and 
provides various forms of automated and instructor-driven intervention using 
various predictive models created in the analytical module. 

• Dashboard, reporting tools and visualization tools provide a comprehensible 
interface of the entire system, helping individual stakeholders to make better 
decisions. It provides the perspective of the learner, learner, researcher, and 
institution. 

🕮 12.2.2 

Although it is only a conceptual design of architecture, it provided ample space for 
further research and development of technologies and standards (Griffiths, Hoel and 
Cooper 2016). It also established the idea of a three-layer conceptual model of the 
LA platform, which includes: 

• Activity Providers (APs) - systems and applications in which learning activities 
and events take place create data in xAPI format and send it to LRS. 

• Learning Record Store (LRS) - a robust scalable database system designed 
specifically for storing educational data, which can exist standalone or as part 
of WBES. If a system or application generates data with the Experience API 
specification (xAPI or Tin Can), which we will introduce later, LRS can log 
almost any activity. LRS verifies that the input format conforms to the xAPI 
specification, stores all valid data in that format, and provides it for further 
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processing to activity consumers. In addition, it may share this data with other 
LRS. 

• Activity Consumers (AC) - similar systems to activity providers, usually 
systems and applications that present data in a comprehensible form and 
ensure an appropriate form of intervention. They also work with data in xAPI 
format (Betts and Smith 2018). 

🕮 12.2.3 

The Learning Analytics Initiative (LAI), hosted by the Apereo Foundation, is 
intensively developing an open platform for LA with the following elements (Sclater 
2014): 

• collection - a collection of data built on xAPI, IMS Calipher/Sensor API 
standards, 

• LRS-based repository,  
• analysis - analytical processor enabling creation of reports and deployment of 

advanced analytical methods, 
• action module providing various forms of alerts, interventions, 
• communication – visualization of analytical processor and action module 

outputs. 

🕮 12.2.4 

These examples of good practice have been significantly developed by JISC, which 
represents a positive example of systematic development of national architecture 
for the LA domain. Architecture created primarily on open standards is intended for 
educational institutions in the UK. The JISC maintains a set of standards, models, 
and protocols by which LA's national open architecture is developed (Sclater, Berg, 
and Webb 2015). The architecture consists of three layers and distinguishes the 
following basic and optional elements: 

• The data collection layer collects data about a student and their activity, for 
example from VLE, mobile apps, wearables, etc. Student data is typically 
stored in the Student Record System (SRS) in a standard data format called 
Universal Data Definition (UDD). Subsequently, the data is transferred via a 
standard ETL process to the LRW. 

• The data storage and analytics layer consists of a central data warehouse 
called the Learning Records Warehouse (LRW), which, unlike LRS, allows you 
to store data in both structured and unstructured formats. In addition, 
students can make decisions and enter additional data, e.g. from wearable 
technologies (Betts and Smith 2018).  

• The Learning Analytics processor pulls data from the LRW and runs predictive 
models. On their basis, it coordinates the actions of the warning and 
intervention system of the next layer. The Learning Analytics processor 
includes a library of open predictive models that can be shared across higher 
education institutions, allowing institutions to work together to refine those 
models over time. 
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• The presentation and action layer provides visualization of analyses in the 
form of bulletin boards for all stakeholders (Adams Becker, Cummins, Davis, 
Freeman, Hall Giesinger and Ananthanarayanan 2017).  

• The student app allows students to view their own data and compare it with 
others. A key student consent service helps ensure privacy by allowing 
students to manage access and grant permissions to collect and use data 
(Sclater 2014).  

 

🕮 12.2.5 

The Learning Record Store (LRS) is an important component intensively used in 
monitoring students in the learning process, using the aforementioned xAPI 
standard, allowing systems, including LMS Moodle, to combine and exchange 
records of the activities of all stakeholders. LRS can be implemented in a particular 
LMS, but more often we will encounter it in the form of a separate system. For 
example, a list of available LRS supporting current standards in the LA domain can 
be found on the ADL website. It is the current development that is moving towards 
greater decentralization and personalization, as a reaction to the fact that only part 
of the learning process takes place in LMS. The xAPI-powered ecosystem then 
introduces a NoSQL database that can store and accessing data in xAPI format. If 
we are deciding how to integrate xAPI correctly, we can select any of the following 
variants: 

• LRS is part of the LMS, 
• LMS is an activity provider, 
• LMS a LRS coexist together, 
• sole use LRS, 
• LRS used in combination with a selected data analysis or business intelligence 

tool.  
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12.3 Software development 

🕮 12.3.1 

Software Development Lifecycle EdTech  

However, adding algorithms of artificial intelligence or machine learning significantly 
increases the complexity of the whole process of developing an educational software 
project. 

The classic software development life cycle (SDLC) is a generalization of software 
development process phases, which takes into account examples of good practice. 
In general, SDLC is iterative and incremental in nature, comprising the following 
phases: 

• analysis of requirements, 
• planning 
• design of architecture and subsystems, 
• implementation 
• testing 
• deployment 
• maintenance. 

In the case of agile approaches, those phases are equally present at the scale 
required by the specific state of software development in each iteration or sprint.  

On the other hand, the life cycle of a regular ML project has the following phases: 

• business or problem understanding, 
• data acquisition and preparation, 
• exploratory analysis, 
• model training, 
• selection of suitable models and their evaluation and verification, 
• deployment, 
• maintenance. 

🕮 12.3.2 

If we want to successfully combine both areas and create an application that 
supports machine learning or artificial intelligence, we should thoroughly understand 
the differences and identify the appropriate way to connect both life cycles.  

First of all, we must take into account that at the end of development there should 
be software that meets the expected requirements. Therefore, the software should 
work reliably until they change radically. In an analytically oriented project, we create 
a model based on available data. If the characteristics of this data on which the 
model is trained change, it may cease to provide accurate results. This phenomenon 



177 

is referred to as drift and can, for example, lead to incorrect classification of objects, 
photographs, etc.  

Therefore, in terms of maintenance and monitoring, we regularly monitor the 
availability and reliability of software, eliminate found errors. For a deployed machine 
learning model, we must regularly monitor data integrity, data distribution, updating 
all libraries and their dependencies, metrics describing model performance, and the 
infrastructure that enabled the model to be made available as a service or 
application. 

During the life cycle of the development of the ML model, we need to keep in mind 
the origin of data and their natural changes over time, track and adapt the source 
code, debug hyperparameters and performance metrics. At the same time, we should 
be able to explain, both internally and externally, how the model currently deployed in 
production was created. The last important requirement is that we should be open to 
collaboration and be able to reproduce individual iterations of development, even 
when changing the composition of the project team.  

The task of software engineering is to automate the task using a computer by writing 
the rules that the computer should follow to solve the task reliably. On the other hand, 
the goal of machine learning is to automate the task of writing these rules itself, that 
is, the idea that the computer will find a program that fits the data obtained. How can 
we combine both approaches in one application? 

 

🕮 12.3.3 

Again, we can use a process framework that considers examples of good practice 
and recommendations from developers who have summarized their experiences in 
the following stages (Penn, 2017): 

At the beginning, we will define why we should use artificial intelligence in the 
application at all. Most of the time, artificial intelligence is only one of the possible 
solutions and carries several risks. In addition, it places increased demands on the 
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development team and experience in knowledge transfer between multiple areas of 
expertise.  

We choose which decisions we want to automate in the application in the sense that 
we rely on the solution we arrive at with the help of artificial intelligence algorithms. 
These algorithms are not just a simple set of rules, but they have the ability to learn 
from their own experience. At the same time, we will consider which part of the 
decision to leave to users and what to AI.  

We carefully select data suitable as input to artificial intelligence algorithms. There 
is no simple rule, the more data – the better and more accurate, as we have seen in 
previous chapters, it is rather the opposite. Therefore, we first obtain data from 
primary sources that we can safely store, transform, update and optimize. We will 
provide space for communication between the following members of the 
development team: 

• Data Engineer responsible for establishing the data channel. 
• AI/ML Solution Architect who trains created models to perform a given task. 
• Software Engineer, who helps bridge ML processes with other software 

processes. 
• project manager responsible for the continuity of development and 

communication with the client. 
• We identify which specific AI capabilities we need. The result should be a 

rough estimate of the size of the solution. This is because artificial intelligence 
provides a variety of approaches, among which we should decide: 

o machine learning, 
o natural language processing, 
o expert systems, 
o computer vision, 
o speech processing, 
o robotics, 
o autonomous decision-making.  

• We will agree on a suitable SDLC model with regard to the most 
comprehensive list of requirements. The classic waterfall model in this case 
seems very suitable, at least for the initial stages of development since it 
requires precise outputs of individual phases. Of course, it can be 
appropriately combined with agile project management best practices. 

• When defining a requirement, we rely on the experience of analysts who can 
assess future customer behavior.  

• The design of the architecture and platform of the application means another 
crucial decision that requires experienced developers who transform the 
defined requirements into specific specifications and consider user behavior 
with respect to the specifics of the selected AI development platform.  

• During the creation of the solution, we need a complete development team 
that knows the chosen AI development platform. 

• Also, during the testing phase, we need experienced testers and DevOps in the 
team, because in addition to standard testing approaches, we should take into 
account the volume and complexity of available test data, the incorrect use of 
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which can cause problems with the accuracy of the created model. In addition, 
this team should be able to test AI and ML algorithms so that their desired 
characteristics are maintained. 

• The deployment of the solution assumes that we know the specifics that the 
implementation of the AI/ML solution brings, and we can transfer them to the 
team that will take care of the operation of the created software solution. 

• Finally, the management and further development of the resulting solution 
requires that, if necessary, we have sufficient capacities that we would be able 
to deploy operationally to eliminate the problem, whether at the application or 
AI/ML level. 

12.4 Project management 

🕮 12.4.1 

EdTech Software Development Project Management  

As mentioned above, as in the case of common software product development, in 
the case of software development for the education domain or LA directly, project 
management is iterative and incremental in nature, in which we should take into 
account best practices, often covered by an appropriate process framework. The 
nature and speed of each iteration will depend on the complexity of the problem and 
the "quality" of the data. 

We can use the general CRISP-DM methodology for project management, possibly 
suitably supplemented with elements taken from agile approaches. We described 
both above.  

If we now focus on adapting these software development methodologies for the 
domain of education or LA, we can look for inspiration in approaches aimed at 
developing applications using AI/ML algorithms (Geron, 2017; Tyagi, 2020). These 
approaches are more specific than the CRISP-DM methodology because they define 
the tasks that the development team should address at each stage of development. 
In addition, in some cases, they also contain instructions on which tools to use. 

Therefore, we will first introduce the individual phases based on CRISP-DM in this 
chapter. In the next chapter, we will then concretize them into the form of individual 
tasks.   

🕮 12.4.2 

Business Understanding 

Defining and understanding the problem from a higher, more general perspective will 
allow us to clarify the nature of the problem being studied (supervised or 
unsupervised machine learning), identify the type of task (classification, regression), 
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type of solution, choose a suitable metrics, consider whether machine learning is the 
right approach to solving a given problem, examine assumptions. 

🕮 12.4.3 

Identification of Data Resources and Data Pipeline 

This step can take place in parallel or even precede the stage of understanding the 
problem. In any case, it is worth thinking through the whole procedure of obtaining 
and combining data from different sources. It is often a lengthy process in which if 
we make a mistake or forget something, we can get inconsistent or incomplete data 
and we will have to repeat the whole process.   

If we plan to implement the results of data analysis into a software application, we 
should consider creating a data pipeline (ETL) through which we will add data 
continuously or in batches. 

During this process: 

• we create a list of available data sources, 

• we provide enough space for their storage and processing, 
• we verify whether we have the necessary permissions to the data, 

• we obtain data in a suitable format, 

• we check data types, 

• we set aside some data for model verification. 

🕮 12.4.4 

Data Understanding 

In this phase, we will focus on all data characteristics that may affect the result. 
Using the selected tool, we examine individual variables, find out their type 
(categorical, continuous, ordinal, ...), choose a suitable target variable, verify the 
correlation between independent variables, examine metadata. Often, we do not work 
with the entire data set, but with a representative sample of it. 

🕮 12.4.5 

Exploratory Data Analysis 

During this phase, we will prepare methods with which we will perform individual 
steps of data pre-processing, such as data transformation, removal or replacement 
of missing values, selection of a subset of suitable variables, removal of extreme 
values, scaling and normalization.  

 



181 

🕮 12.4.6 

Base Model  

By creating a simple model, we verify the feasibility of the entire project. At this stage, 
our goal is to: 

• Train several common machine learning models such as linear regression, 
SVM, Bayes classifier using predefined hyperparameters. 

• Compare their performance against the chosen basic simple model and with 
each other. 

• Perform k-fold cross-validation for each of the models created and calculate 
the mean and standard deviation. 

• Examine individual independent variables (features) and see what impact they 
have on the target variable. 

• Analyse the types of model errors. 

• Process, or reduce, the number of independent variables entering the model 
using Principal Component Analysis or Independent Component Analysis. 

• Repeat the above steps to create a final list of models that look promising. 

🕮 12.4.7 

Hyperparameter Tuning 

In this very important step, we will focus on selecting suitable hyperparameters using 
cross-validation, using automated grid search and random search methods of the 
Scikit-learn library. At the same time, we can try to connect several methods as in the 
ensemble learning approach. We should use as much test data as possible at this 
stage. Finally, we will use a test sample of data from another dataset to validate and 
examine whether our proposed model is overfitted or underfitted. 

🕮 12.4.8 

Evaluation 

This stage is often underestimated and not finished, although it brings multiple 
benefits to all stakeholders. We make it easier to return to the model in the future by 
creating documentation for the created code. In addition, it is recommended 
processing the created model into the form of a blog or tutorial, of course, if the 
nature of the data or research allows it. In addition, file sharing in a Github repository 
is a matter of course today. 

🕮 12.4.9 

Model Deployment, Maintenance, Bias, Further Development 
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If our project requires deployment and work with new data, we can create a web 
application or web service using the REST API, ensuring that the model is available 
to other users or clients. In this case, let's not forget: 

• save the latest version of the code as binaries for example using Pickle,  

• provide a model using web services, for example using Flask, 

• connect to the data source by setting up an ETL data channel, 

• manage dependencies using docker/Kubernetes, 
• alternatively, we can use the services of a selected clause (ASW, Azure), 

• continuously monitor data availability and use of the created solution. 
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