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1.1 Introduction to machine translation 

🕮 1.1.1 

What is a machine translation? 

Machine translation is the automatic conversion of text from one natural language 
to another, with the quality produced by systems or machine translation tools 
ranging from very low to very high depending on the internal (linguistic) 
characteristics of the text and the language pair, i.e., from the processing of the 
natural language itself and transfer rules. 

Automatic translations can be divided into three categories. The first category 
requires a quality suitable for publishing, but this is not possible without 
intervention by a translator (either by pre-editing the text input or by post-editing the 
text output). These translations are mainly used for disseminating information in 
multiple languages (e.g. product brochures). Given the complexity of language, this 
goal has only been achieved in some applications such as weather forecasting (the 
Meteo system, which is still in use) or summaries of sports events. The set of 
vocabulary and grammar in these domains is sufficiently limited to allow for 
transfer rules to be written. 

The second category of machine translations consists of "short-term" texts that are 
not translated by professional translators and are only used for assimilation, i.e., 
understanding the content of a given text. For example, online translation services 
are used by users themselves to translate web pages in order to understand what is 
written in a foreign language. If the user understands the information well enough 
to solve their technical problem, then machine translation has proven its 
usefulness. Gisting is the most widespread use of machine translation. 

The last category covers machine translations for fast communication (e.g. email), 
which uses automatic translation for exchanging information. 

Koehn (2010) argues that machine translation does not have to be perfect to be 
usable. He says that even "poor" machine translation has its uses. He identifies 
with the first two categories, but views the application of the last category as being 
used in intercultural communication, which includes online communication in 
synchronous or asynchronous form, as well as in written or spoken form. 

An interesting direction for machine translation is its combination with speech 
technologies (its integration). This opens up wide possibilities for use, such as 
translation of phone conversations or audio broadcasts. Current test applications 
include translations of broadcast messages, parliamentary speeches, and 
interviews in the field of travel. Currently, systems are used that monitor news 
broadcasts in foreign languages and perform real-time speech translation. 
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🕮 1.1.2 

Advantages of machine translation 

Machine translation is an indispensable tool in the translation process. It can be 
used on its own or in combination with human post-editing. 

Machine translation offers three main advantages: 
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1. Saves time - machine translation can save a lot of time because it can 
translate entire text documents within a few seconds. However, keep in mind 
that translators should always edit machine-translated texts afterwards 

2. Reduces costs - machine translation can significantly reduce your costs 
because it requires less human involvement. 

3. It remembers expressions - another advantage of machine translation is its 
ability to remember key terms and use them again wherever they might be 
relevant. 

🕮 1.1.3 

Types of machine translation 

There are four different types of machine translation - statistical machine 
translation (SMT), rule-based machine translation (RBMT), hybrid machine 
translation (HMT), and neural machine translation (NMT) 

Rule-based machine translation (RBMT) 

RBMT - the oldest form of MT - translates content based on grammatical rules. 
Since the advent of RBMT, there has been significant progress in machine 
translation technology, so it has several disadvantages. These disadvantages 
include the need for a large amount of human post-editing and manual language 
addition. Despite this low translation quality, RBMT is useful in basic situations 
where only a quick understanding of the meaning is required. 

Statistical machine translation (SMT) 

SMT works by creating a statistical model of relationships between words, phrases, 
and sentences in the text. Then, this translation model is applied to the second 
language, converting the same elements into the new language. SMT improves 
RBMT to some extent, but still has many of the same problems. 

This method is also one of the simpler ones. It does not use any language-specific 
information, so it can be used for any combination of languages. To create the 
dictionary we use for translation, we need a bilingual aligned corpus. From this 
corpus, we can determine all possible translations of a given word and their 
frequency of occurrence. We then store a pair in the dictionary: the word and its 
most frequent translation. Using this dictionary, we can then translate. For example, 
if we were creating a Czech-Slovak translator and found that the word "hovoriť" can 
be translated as "mluvit" or "říkat," and the word "mluvit" appears more frequently in 
the corpus, we would translate all instances of "hovoriť" to "mluvit." If we want to 
achieve higher accuracy, we count not only the occurrence of individual words but 
also bigrams, trigrams, and so on. This method provides a higher accuracy 
dictionary, but its size begins to grow significantly, which can also affect the 
performance of the translator. However, this method also has many disadvantages. 
For example, it requires the creation of a bilingual aligned corpus from which 



10 

frequency of occurrence is calculated. To obtain sufficiently large and reliable data, 
we need huge corpora, which are not easy or cheap to create. 

Another problem is their creation itself. Often we are not able to align them 
correctly. For example, it often happens that we do not use a single word but a 
whole phrase to translate a word. Another problem is the different stylistic variation 
of the sentence. 

Translation using a third language 

Another way to translate from one language to another is to use a third language. 
This can be useful if we only have two translators available, which are able to 
translate from our language to a third language, and then from that language to the 
language we want. The problem with this method is that it has two weak points, 
which are the two translators. The overall translation may be worse than the quality 
of the weaker of the two. In the worst case scenario, both will make mistakes in 
different places. This method is only applicable if we have two quality translators 
available. 

Another variation of this type of translation can be the use of an "interlanguage" 
(interlingua). The principle is almost identical to the use of a third language. The 
difference is the translation into a specific form of language, which does not have a 
particular communicative form, but only contains the meaning of the sentence and 
the semantics of the individual words. This type of translation has the advantage 
that after translating the text into an interlanguage, it can be translated into any 
language for which we have created rules. 

Hybrid machine translation (HMT) 

HMT is a combination of RBMT and SMT. HMT uses a translation memory, which 
makes it much more efficient in terms of quality. However, HMT also has its 
disadvantages, the biggest of which is the need for human editing. 

Neural machine translation (NMT) 

NMT (Neural Machine Translation) uses artificial intelligence to learn languages 
and continuously improve these skills. In this way, it tries to mimic the neural 
networks in the human brain. NMT is more accurate than other types of AI-based 
translation. With NMT, it is easier to add languages and translate content. As NMT 
provides better translations, it quickly becomes the standard in MT tool 
development. 

NMT works by including training data. Depending on the user's needs, these data 
can be general or custom: 

•        General data: These are a collection of all the data learned from 
translations performed over time by machine translation (MT). These data 
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create a general translation tool for various applications including text, 
speech, and documents. 

•        Custom or specialized data: These are trained data that are supplied to 
the machine translator in order to create specialization in a specific field. 
Subjects include engineering, design, programming, or any discipline with its 
own specialized dictionaries and lexicons. 

 

 

Deep learning is just one of many popular methods for solving machine learning 
problems. 
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Acquiring linguistic data 

Chapter 2 
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2.1 Acquiring linguistic data - intro 

🕮 2.1.1 

Acquiring linguistic data 

The first step is to extract text from its native form (in our case, pdf or html files) 
into text files. 

Many websites are translated into multiple languages and some news 
organizations, such as the BBC, publish their articles for multilingual audiences. 
Extracting parallel texts from the web is sometimes straightforward, but often 
complicated for various reasons. 

Working with a good dataset is crucial for ensuring good performance of a machine 
learning model, so adopting a good data extraction method can bring countless 
benefits for subsequent processes. 

A parallel corpus is a set of texts aligned with translations into another language. 
Currently, there are several parallel corpora available. Some are available on the 
internet, many others are distributed by the Linguistic Data Consortium at the 
University of Pennsylvania, and there is also the Europarl corpus and the national 
corpus for the Slovak language (https://korpus.sk/). 

 

📝 2.1.2 

Does the performance of a machine translation model depend on the quality of the 
language corpus? 

• Yes 
• No 

 

2.2 Acquiring linguistic data from the Internet 

🕮 2.2.1 

Acquiring linguistic data from the Internet 

Web scraping is a technique used to gather content and data from the internet. This 
data is usually stored in a local file to be manipulated and analyzed as needed. Web 
scraping applications (or "bots") are programmed to visit websites, capture relevant 
pages, and extract useful information. By automating this process, these robots can 

https://korpus.sk/
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extract huge amounts of data in a very short amount of time. This has obvious 
advantages in the digital age, where big data - which is constantly updating and 
changing - plays a significant role. 

Information that can be obtained from the web includes: 

• pictures, 
• videos, 
• texts, 
• product information, 
• reviews (eg. TripAdvisor), 
• etc. 

For the purpose of creating a corpus, text data is the most interesting. 

 

🕮 2.2.2 

How web scraper works 

Although the specific method may vary depending on the software or tool used, all 
web scrapers follow three basic principles: 

1. sending an HTTP request to the server, 
2. extraction and parsing (or translation) of the website's code, 
3. saving relevant information to local storage. 

HTTP request 

When you visit a website as an individual through a browser, you send a so-called 
HTTP request. This is essentially the digital equivalent of knocking on the door and 
requesting entry. After your request is approved, you can access the webpage and 
all the information on it. Like a person, a web scraper needs permission to access a 
webpage. Therefore, the first thing a web scraper does is send an HTTP request to 
the website it is targeting. 

Extracting and parsing web site code 

Once the web page grants access to the scraper, the bot can read and extract the 
HTML or XML code of the page. This code determines the structure of the content 
of the web page. The scraper then parses the code (which basically means dividing 
it into individual parts) to identify and extract elements or objects that were 
predefined by the person who launched the bot. They can include specific text, 
ratings, classes, tags, identifiers, or other information. 
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Saving relevant information to local storage 

After accessing, retrieving, and analyzing the HTML or XML, the relevant data is 
stored locally in the web scraper. As mentioned, the extracted data is predefined - 
the bot is instructed on what to gather. The data is usually stored as structured 
data, often in an excel file, such as .csv or .xls format. This process is not 
performed just once, but countless times. This comes with its own set of problems 
that need to be addressed. For example, poorly coded scrapers can send too many 
HTTP requests, which can overwhelm the website. Each website also has different 
rules for what robots can and cannot do. Running the code for web scraping is just 
one part of the process. 

 

🕮 2.2.3 

Web scraping tools 

Knowledge of a programming language is necessary for web data mining. Currently, 
the most commonly used language is Python, which has several libraries 
implemented for web scraping. 

Beautiful Soup 

Beautiful Soup is a Python library for data mining from HTML and XML files. It uses 
a parser and provides idiomatic ways of navigating, searching, and modifying the 
parsed tree. It typically saves programmers hours or days of work. 

Link: https://www.crummy.com/software/BeautifulSoup/bs4/doc/ 

Scrapy 

Scrapy is an application framework based on Python that crawls and extracts 
structured data from the web. It is commonly used for deep data analysis, 
information processing, and historical content archiving. In addition to web 
scraping (for which it was specifically designed), it can also be used as a universal 
web indexing search engine or for data extraction through APIs. 

Link: https://scrapy.org/ 

Pandas 

Pandas is another versatile Python library used for data manipulation and indexing. 
It can be used for web scraping in conjunction with BeautifulSoup. The main 
advantage of using pandas is that analysts can perform the entire data analysis 
process using one language (and avoid the need to switch to other languages, such 
as R). 

https://www.crummy.com/software/BeautifulSoup/bs4/doc/
https://scrapy.org/
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Link: https://pandas.pydata.org/ 

 

2.3 Acquiring linguistic data from the PDF documents 

🕮 2.3.1 

Extracting text data from PDF documents 

Extracting text from PDF documents is a challenging process as it is a "layout-
based" format that does not contain semantic information about the parts of the 
text. 

PDF is one of the most popular formats for electronic documents. Currently, the 
Google search engine indexes more than 3 billion PDF documents, which is more 
than any other document format except for HTML. However, PDF is a "layout-
based" format, which means that it specifies the position and font of each 
character on each page that makes up the text. Page description languages (PDLs) 
are used as a communication between the formatted page or document description 
in a composition system and the output device, such as a monitor or printer. The 
advantage of a document written in Page Description Language (PDL) format is full 
control over the appearance. The disadvantage of these documents is the file size 
and lack of logical structure compared to the markup language HTML. 

Currently, data-driven techniques dominate natural language processing. The 
significant progress in several natural language processing fields can be seen due 
to advances in machine learning and increasing data sets. However, the availability 
of clean data sets is still a persistent problem for most languages in the world. Data 
is commonly obtained by mining the World Wide Web to expand data sets. With the 
growing demand for increasingly large data sets, it is necessary to look for other 
sources of text. The PDF format essentially represents paper in digital form and 
naturally contains a large amount of text. This format is optimized for printing on 
paper and therefore focuses mainly on the visual side of documents. The format is 
not structured and does not distinguish the semantic meaning of objects on the 
page. This means that when extracting information, no distinction is made between 
headings, paragraphs, text in tables, or image captions. 

The PDF Association, which defines the ISO standard for the PDF format, is 
currently focused on making PDF documents accessible. The goal is to provide 
people with disabilities (such as visual impairments) with full access to the 
information in the document. The foundation is the ability to add logical structure to 
the format, which refers to specific parts of the page in the document and adds 
semantic meaning to them. Like in HTML, the semantic meaning of content in PDF 
documents is represented by tags. The tagged PDF document subsequently allows 
for precise extraction of paragraphs, annotations, headings, as well as the correct 
reading order for multi-column documents. Adding logical structure to the PDF 

https://pandas.pydata.org/
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format is not mandatory, so there are few documents with this structure. Some 
programs, such as Apple's office suite, automatically add tags when exporting to 
PDF. 

 

🕮 2.3.2 

Problems with extracting text from PDF documents 

Since PDF displays text based on font and position on a given page for individual 
characters, text extraction tools face several problems. Here are some of them: 

• Word identification 
• Word order 
• Paragraph boundries 
• Ligatures 
• Word boundries 
• Semantical meaning 

 

🕮 2.3.3 

Word identification 

Important for searching for words in the document. If a word is not correctly 
identified, the searched word may not be found. The problem with identifying words 
is that the spaces between letters can vary not only between lines but also within a 
single line. Long words can be separated at the end of a line by a hyphen, visually 
splitting one word into two and appearing twice in the document. 

 

🕮 2.3.4 

Word order 

Determining the order of words is essential for applications such as e-book readers 
or when we want to obtain unformatted text. The order of words can be determined 
based on their position in the PDF. However, in documents with multi-column 
layouts, the order cannot be determined based on position alone. 
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The sample shows a part of the text from a scientific article that is written in two 
columns. Some extraction tools cannot recognize such a layout and the result is 
text extracted by rows. 

 

🕮 2.3.5 

Paragraph boundries 

Determining the beginning and end of a paragraph is again important for 
applications that read documents. This problem is caused, for example, if an image 
or table is inserted in the paragraph. The application may incorrectly evaluate the 
end of the paragraph even if it encounters the end of the page. Despite the fact that 
the paragraph continues on the next page, the application evaluates it as two 
different paragraphs. 
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The image shows an example of a tagged PDF that adds information to the 
document such as paragraph boundaries or reading order. In this case, extracting 
text is unambiguous in terms of paragraphs, but it also solves the problem of word 
order. 

 

🕮 2.3.6 

Ligatures 

Another problem is character recognition. For example, the "fi" character (Unicode 
U+FB01) represents only one character. When extracting the word "fialka", the first 
two letters "f" and "i" may be incorrectly identified and will not appear in the output 
at all. 
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🕮 2.3.7 

Word boundries 

Hyphenation of words poses a problem in cases where we want to reuse the 
extracted text, for example, in natural language processing. Most tools use 
heuristic rules to distinguish the hyphen in terms of word splitting. 

 

The highlighted word "indicating" in the image is divided by a hyphen. When 
extracting text from a PDF, we get the result exactly in this form. Such data is not 
suitable for purposeful training of artificial intelligence because the words "indi" and 
"cating" do not exist. 

 

🕮 2.3.8 

Semantical meaning 

As PDF documents are not structured formats, they do not distinguish whether the 
text is a paragraph, a heading, a footnote, or a page number. PDF addresses this 
deficiency precisely by allowing the structure of the document to be supplemented 
and creating tagged PDF documents. 

 

🕮 2.3.9 

PDF extraction tools 

Pdftotext 

One of the most commonly used tools for extracting data from PDFs. It converts 
PDFs to plain text but does not identify paragraphs or the semantic meaning of 
text. 

Program: https://pypi.org/project/pdftotext/ 
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Pdfix 

This is an SDK for reading, writing, rendering, and manipulating PDF files. Thanks to 
advanced algorithms, it can recognize the logical structure of text, headings, 
images, tables, or headers and footers of the document. All this data is then 
available in formats such as HTML, CSV, JSON, or XML. 

Program: https://pdfix.net/download/ 

PdfMiner 

Tool that can analyze the structure of a PDF file and convert it into textual, XML or 
HTML output. The text is divided into paragraphs, lines, and characters. 

Program: https://pypi.org/project/pdfminer/ 

Pdfbox 

A library from Apache, written in Java. Like the previous tool, it converts PDF to text 
format without distinguishing paragraphs or semantic meaning of texts. 

Program: https://pdfbox.apache.org/download.html 

Pdfforge 

This is a freely available online tool whose output is a text file. 

Program: https://download.pdfforge.org/ 

 

2.4 Task - data extraction 

🕮 2.4.1 

Based on the information obtained in the previous chapters, create a parallel corpus 
consisting of at least 1000 sentences (Slovak and English translations). 

Remove noisy data from the data - headings, page numbers, footnotes, image 
descriptions, graphs, and tables. 

The goal is to obtain only Slovak and English sentences, which will be subsequently 
aligned and preprocessed, resulting in a parallel corpus. 
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2.5 Text preprocessing 

🕮 2.5.1 

The main goal of text preprocessing is to divide the text into a form that machine 
learning algorithms can process. Text data obtained from natural language is 
unstructured and contains noisy data. 

Text preprocessing involves transforming the text into a clean and consistent 
format that can then be inserted into a model for further analysis and learning. 

Preprocessing of text data is generally referred to as obtaining feature descriptions 
for all text documents in the examined corpus. 

Electronic text documents in various formats are assumed as input. The first step 
is to remove redundant formatting characters and convert the document to so-
called "plain text." This text is then divided into elementary text units, called tokens. 
Words, or lexical units, are then identified in the text, for which the corresponding 
base form (lemma) and morphological categories are determined. Finally, non-
semantic words, those that are presumed to contribute little to the overall context 
of the document, are removed. The remaining semantic words, weighted by a 
suitable weight function, then form the desired vector representation of the input 
document. 

Stages of text data preprocessing: 
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2.6 Corpus alignment 

🕮 2.6.1 

Alignment 

Sentence alignment is a task where corresponding documents (original and its 
corresponding translation) are divided into sentences, and a bipartite graph is 
searched for that corresponds to the minimum groups of sentences that are mutual 
translations. 

Bitext (two corresponding texts - original and translation - aligned by sentence) is 
used to train almost all machine translation (MT) systems. It has been found that 
errors in alignment have little impact on the performance of statistical MT (SMT), 
but it has been shown that incorrectly aligned sentences have a much greater 
impact on the performance of neural MT (NMT). 

Rarely is text translated word for word and not always is a sentence translated 
sentence by sentence. Long sentences may be split or short sentences may be 
merged. Good alignment is also crucial for lexicography as it can be used to display 
parallel correspondences and to find translation equivalents, as well as to extract 
terminology. Aligning parallel corpora is also used in digital humanities (DH) for 
various purposes, such as learning historical languages or aligning versions of 
medieval texts. 

 

There are two main approaches to text alignment: 
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1. Statistical approach, 
2. The approach applies linguistic-lexical knowledge. 

 

Based on these approaches, several techniques have been developed, each with its 
own advantages and disadvantages. 

Approaches based on lexical properties of the text rely on existing lexical 
resources, such as extensive bilingual dictionaries and glossaries. These 
techniques are slower than statistical techniques and are language-dependent. The 
main disadvantage of these techniques is that their performance heavily relies on 
the lexical information used in the alignment process. However, many of these 
methods and techniques are still being developed, as they are expected to generate 
better results than statistical methods. 

Approaches based on statistics rely on extralinguistic quantitative characteristics, 
such as sentence length, sentence position, co-occurrence frequency, length ratio 
of sentences in two languages, etc. These techniques speed up the alignment 
process and are generally language-independent. However, the main disadvantage 
of these techniques is that their performance heavily relies on the structural 
similarity between the target and source text (bitext). 
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🕮 2.6.2 

Gale a Church algorithm 

This is one of the first algorithms for automatic text alignment. Although it is not 
one of the best, it is language-independent. 

The algorithm takes advantage of the fact that longer sentences in one language 
tend to be translated into longer sentences in the other language and vice versa. 
Shorter sentences tend to be translated into shorter sentences. Each proposed pair 
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of sentences is assigned a probability score based on the ratio of the lengths of the 
two sentences (in characters) and the variance of this ratio. This probability score 
is used in dynamic programming to find the most likely alignment of sentences. 

Source: https://aclanthology.org/J93-1004.pdf 

Task: Implement Gale and Church alg. based on the given source. 

 

🕮 2.6.3 

Moore algorithm 

This is an algorithm that combines techniques adapted from the previous algorithm 
for aligning sentences and words in a three-step process. First, the corpus is 
aligned using a modified version of the Brown model based on sentence length. 
Then, pruning is used to efficiently find pairs of sentences that will align with the 
highest probability without using anchor points or larger previously aligned units. 
Next, the pair of sentences that was assigned the highest matching probability is 
used to train a modified version of the IBM Model 1 translation model. Finally, the 
corpus is realigned, with the original alignment model extended with IBM Model 1 
to create an alignment based on sentence length and word correspondence. The 
final search is limited only to minimal alignment segments that were assigned a 
non-negligible probability according to the original alignment model, reducing the 
search space to the point where this alignment is actually faster than the original 
alignment, although the model is much more demanding to apply for each segment. 

  

Source: https://link.springer.com/chapter/10.1007/3-540-45820-4_14 

Program: https://www.microsoft.com/en-us/download/details.aspx?id=52608 

Command: ./align-sents-all.pl <source_text> <target_text> 

 

🕮 2.6.4 

Hunalign 

Hunalign aligns bilingual text at the sentence level. Its input is tokenized and 
segmented text in two languages (the original and its translation). In the simplest 
case, its output is a sequence of bilingual sentence pairs (bitext). In the case of a 
dictionary, Hunalign combines it with information about sentence length according 
to the Gale-Church algorithm. If the dictionary does not exist, it first returns to 
information about sentence length and then creates an automatic dictionary based 

https://link.springer.com/chapter/10.1007/3-540-45820-4_14
https://www.microsoft.com/en-us/download/details.aspx?id=52608
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on this alignment. Then, in the second pass through the text, it aligns the text using 
the automatic dictionary. 

Source: http://mokk.bme.hu/resources/hunalign/ 

Dictionary source: https://github.com/coezbek/hunalign-dict-
muse/tree/main/dict[1]  

Program: https://github.com/danielvarga/hunalign 

 

🕮 2.6.5 

BleuAlign 

The basic idea of Bleualigner is to use the output of machine translation (MT) and 
the score of the automatic BLEU metric, which characterizes the similarity of the 
MT output to the reference translation, to find reliable alignments that are used as 
anchor points. Gaps between these anchor points are then filled using a heuristic 
based on the BLEU metric and length. The main alignment algorithm is computed 
for each text segment between two hard delimiters (including the beginning and 
end of the file) and consists of two steps. First, a set of anchor points is identified 
using the BLEU metric. In the second step, sentences between these anchor points 
will be aligned either using a heuristic based on the BLEU metric or an algorithm 
based on length according to Gale and Church. 

 

Source: https://aclanthology.org/2010.amta-papers.14/ 

Program: https://github.com/rsennrich/Bleualign 

Command: ./bleualign.py -s sourcetext.txt -t targettext.txt --srctotarget 
sourcetranslation.txt -o outputfile 

 

🕮 2.6.6 

Vecalign 

Vecalign is a precise sentence alignment algorithm that is fast even for very long 
documents. When used in conjunction with the LASER system, Vecalign works in 
approximately 100 languages (i.e. 100^2 language pairs) without the need for a 
machine translation or lexicon (dictionary) system. 

http://mokk.bme.hu/resources/hunalign/
https://github.com/coezbek/hunalign-dict-muse/tree/main/dict
https://github.com/coezbek/hunalign-dict-muse/tree/main/dict
https://priscilla.fitped.eu/task_edit/92/1916/1/1/1/10928#_msocom_1
https://github.com/danielvarga/hunalign
https://aclanthology.org/2010.amta-papers.14/
https://github.com/rsennrich/Bleualign
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Vecalign uses the similarity of multilingual embeddings and an approximation of 
dynamic programming based on fast dynamic time warping, which is linear in time 
and space with respect to the number of aligned sentences, to assess the similarity 
of sentences. 

 

Source: https://aclanthology.org/D19-1136/ 

Source LASER: https://github.com/facebookresearch/LASER 

Program: https://github.com/thompsonb/vecalign 

Command: ./vecalign.py --alignment_max_size 8 --src bleualign_data/dev.de --tgt 
bleualign_data/dev.fr --src_embed bleualign_data/overlaps.de 
bleualign_data/overlaps.de.emb --tgt_embed bleualign_data/overlaps.fr 
bleualign_data/overlaps.fr.emb 

 

2.7 Task - sentence alignment 

🕮 2.7.1 

To create a parallel corpus from the extracted data obtained in the previous task, 
the task consists of two steps: 

1. The first step is the segmentation of documents into sentences. All 
alignment tools require input in the form of text files, where each line 
corresponds to one sentence. 

2. To create a parallel corpus, the text data needs to be aligned. Choose one of 
the tools mentioned in this chapter and align the text data. 

The result should be two text files with the same number of lines. 

  

https://aclanthology.org/D19-1136/
https://github.com/facebookresearch/LASER
https://github.com/thompsonb/vecalign
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Language models 

Chapter 3 
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3.1 Language models 

🕮 3.1.1 

Language models 

Language modeling is the task of calculating the probability of a sequence of 
words. Language models are crucial for many different applications, such as 
speech recognition, optical character recognition, machine translation, and spell 
checking. There are many words, word combinations, and phrases that are almost 
identical in pronunciation but have completely different meanings. A good language 
model can distinguish which phrase is most likely correct based on context. In this 
chapter, we focus on an overview of word- and character-level language models 
and their creation using a Recurrent Neural Network (RNN). 

 

🕮 3.1.2 

N-grams 

A language model can calculate the probability that a given word will follow a 
sequence of previous words. Determining the probability of a long sequence of 
words w (w1, ..., wm) is usually infeasible. 

The calculation of the continuous probability P(w1, ..., wm) would be performed 
using the following chain rule: 

 

We will only model the joint probabilities of combinations of n consecutive words, 
known as n-grams. For example, in the sentence "This food is good," we have the 
following n-grams: 

●    1-gram (unigram): “This”, “food”, “is” and “good” 

●    2-grams (bigram): “This food”, “food is" and “is good” 

●    3-grams (trigram): “This food is” a “food is good” 

●    4-grams: “This food is good” 

  

If we have a large corpus, we can find all n-grams up to a certain n (usually 2 to 4) 
and count the occurrence of each n-gram in this corpus. Based on these counts, we 
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can estimate the probability of the last word of each n-gram given the preceding n-1 
words: 
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Neural network in machine 
translation 

Chapter 4 
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4.1 Neural networks 

🕮 4.1.1 

Neural networks 

We can describe a neural network as a mathematical model of information 
processing. A neural network is not a fixed program, but rather a model (system) 
that processes information (inputs). 

The characteristics of a neural network are as follows: 

• Information processing occurs in its simplest form, over simple elements 
called neurons. 

• Neurons are interconnected and exchange signals with each other through 
connecting lines. These connections can be stronger or weaker, which 
determines the way information is processed. 

• Each neuron has an internal state that is determined by all incoming 
connections from other neurons. 

• Each neuron has a different activation function, which is computed based on 
its state and determines its output signal. 

The two main characteristics of a neural network are: 

• Architecture of the neural network, which describes the set of connections 
between neurons (feedforward, recurrent, multilayer or single-layer, etc.), as 
well as the number of layers and neurons in each layer. 

• Learning - training. The most common and typical way of training a neural 
network is through gradient descent and backpropagation, although it is not 
the only way. 

 

📝 4.1.2 

Is it true that each neuron has a different activation function that is computed 
based on its state and determines its output signal? 

• Yes 
• No 
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🕮 4.1.3 

Neuron 

A neuron is a mathematical function that takes one or more input values and 
produces a single numerical output value:  

 

To compute a neuron, we follow these steps:  

 

where xi is a numerical value representing input data or outputs from other neurons 
if the neuron is part of a neural network. The weights wi are numerical values 
representing either the strength of the inputs or the strength of the connections 
between individual neurons. The weight b is a special value called the bias, whose 
input is always 1. 

• First, we calculate the sum of inputs xi and weights wi (called the activation 
value). 

• Then, we use the result of the weighted sum as input to the activation 
function f, which is also known as the transfer function. There are many 
types of activation functions, but all must satisfy the requirement of 
nonlinearity. 
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The activation value can be interpreted as the dot product of two vectors w and x:  

y = . 

Vector x will be perpendicular to the weight vector w, where  = 0. 

The perceptron (i.e., neuron) works only with linearly separable classes due to the 
definition of a hyperplane. For this reason, neurons are organized into a neural 
network. 

Perceptron (teda neurón) pracuje len s lineárne oddeliteľnými triedami z dôvodu 
definovania hyperrovinu. Z tohto dôvodu sa neuróny usporiadávajú do neurónovej 
siete. 

 

🕮 4.1.4 

Layers in a neural network 

A neural network can have an unlimited number of neurons arranged into 
interconnected layers. The input layer represents a set of data with initial 
conditions (values). 

For example, if the input is a grayscale image, each neuron's output in the input 
layer represents the intensity of one pixel in the image. 

For this reason, we generally do not count the input layer as part of the other layers. 
When we talk about a single-layer network, we mean that it is a simple network that 
has only one output layer in addition to the input layer. 

The output layer can have more than one neuron. This is especially useful in 
classification, where each output neuron represents one class. 

For example, in the case of the MNIST database (a large database of handwritten 
digits), we will have 10 output neurons, with each neuron corresponding to a digit 
from 0 to 9. In this way, we can use a single-layer network for each image to 
classify the digit. We determine the digit by taking the output neuron with the 
highest activation function value. If it is y7, we will know that the network thinks the 
image shows the number 7. 

In the case of a single-layer feedforward network, the weights w for each 
connection between neurons are shown explicitly, but usually the edges connecting 
neurons represent weights implicitly. The weight wij connects the i-th input neuron 
to the j-th output neuron. The first input 1 is the bias unit, and the weight b1 is the 
bias weight. 
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The neurons on the left represent the input with bias b, the middle column 
represents the weights for each connection, and the neurons on the right represent 
the output with respect to the weights w (fig. ...). 

Neurons in one layer can be connected to neurons in other layers, but not to 
neurons in the same layer. In this case, the input neurons x1,...,xn are only 
connected to output neurons y1,...,yn. 

The reason for arranging neurons into a network is that a neuron can mediate only 
limited information (only one value). However, when we connect neurons into 
layers, their outputs form a vector, and instead of one activation, we can now 
consider the whole vector. In this way, we can mediate much more information, not 
only because the vector has multiple values, but also because the relative ratios 
between them carry additional information. 
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📝 4.1.5 

How many input neurons are needed for a network that recognizes digits 0-9? 

 

🕮 4.1.6 

Multi-layer neural networks 

Single-layer neural networks can only classify linearly separable classes. However, 
nothing stops us from introducing additional layers between the input and output. 
These additional layers are called hidden layers. A three-layer fully connected 
neural network with two hidden layers is shown in the picture. The input has n input 
neurons, the first hidden layer has n hidden neurons, and the second hidden layer 
has m hidden neurons. In this case, there are two classes, y1 and y2, as the output. 
At the top, there is always a bias neuron turned on. A unit from one layer is 
connected to all units from the previous and next layer (thus fully connected). Each 
connection has its own weight w, which is not shown for simplicity. In this case, it is 
a neural network with sequential layers. 

 

A neural network as a composition of neurons is a mathematical function, where 
input data represent the function arguments and network weights w represent its 
parameters. 



38 

 

🕮 4.1.7 

Activation functions 

To turn the network into a non-linear function, we use non-linear activation 
functions for neurons. Usually, all neurons in the same layer have the same 
activation function, but different layers can have different activation functions. The 
most common activation functions are: 

• identity function - this function passes the activation value a. 

 

• threshold activity function - this function activates the neuron. If the 
activation is higher than a certain value a, then it is a threshold activity 
function. 

 

• logistic function or logistic sigmoid - this function is one of the most 
commonly used, as its output is in the range between 0 and 1 and can be 
stochastically interpreted as the probability of neuron activation.  

 

• bipolar sigmoid - it is basically a rescaled and shifted logistic sigmoid to 
have a range of (-1, 1). 

 

• hyperbolic tangent 

 

• rectifier or ReLU (Rectified Linear Unit) - this activation function is probably 
the closest to its biological counterpart. It is a combination of the identity 
function and the threshold activity function. There are various variants of 
the ReLU activation function, such as Noisy ReLU, Leaky ReLU, or ELU 
(Exponential Linear Unit). 
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Identity or threshold activity function were used in the creation of neural networks 
with implementations such as the perceptron or Adaline (adaptive linear neuron), 
but later on, they were not as popular as the logistic sigmoid, hyperbolic tangent, 
ReLU, and its variations. 

 

🕮 4.1.8 

Recurrent Neural Networks 

Recurrent Neural Networks (RNN) work with sequences of variable length and 
define a recurrent relationship over these sequences: 

 

where f is a differentiable function, st is a vector of values called the internal state 
of the network (at time step t), and xt is the input of the network at time step t. 
Unlike regular networks, where the state depends only on the current input (and the 
network weights), here st is a function of both the current input as well as the 
previous state st-1. We can think of the state st-1 as a summary of all previous 
inputs of the network. 

Thanks to their ability to process arbitrary input sequences, recurrent NNs are used 
in natural language processing (NLP) and speech recognition tasks. 

Examples of variable length data include words in a sentence or stock prices at 
different time intervals. Recurrent NNs are named after their ability to repeat the 
same function over a sequence. 

The recurrence relationship is defined by how the state evolves step by step 
through the sequence via feedback through previous states, as shown in the 
following diagram: 
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RNN has three sets of parameters (or weights): 

• U transforms input xt into state st 
• W transforms previous state st-1 into current state st 
• V maps (transforms) the newly computed internal state st into output y 

The parameters U, V, and W apply a linear transformation to their respective inputs. 
The most basic case of transformation is a weighted sum. Now we can define the 
internal state and output of the network as follows: 

 

where f is a nonlinear activation function (e.g., hyperbolic tangent, sigmoid, or 
ReLU). 

In a word-level language model, the input x will be a sequence of words encoded in 
input vectors (x1 ... xt ...). The state s will be a sequence of state vectors (s1 ... st 
...) and the output y will be a sequence of probability vectors (y1 ... yt ...) for the 
following words in the sequence. 

In an RNN, each state depends on all previous computations via the recurrent 
relationship. An important consequence of this is that RNNs have memory over 
time, since the states s contain information based on previous steps. Even RNNs 
can remember information over arbitrarily long periods, but in practice, they are 
limited to remembering only a few steps back. 

As with regular neural networks, we can stack multiple RNNs to create a stacked 
RNN. 

In the following figure, we see an unrolled, stacked RNN: 
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Since RNNs are not limited to processing inputs of fixed size, they significantly 
expand the possibilities of what we can compute with neural networks, such as 
sequences of different lengths or images of different sizes. We provide several 
combinations of processing: 

• One-to-one: It is about sequential processing, such as feedforward neural 
networks and convolutional neural networks. There is not much difference 
between a feedforward network and using an RNN for a single time step. An 
example of one-way processing is image classification.  

• One-to-many: It generates a sequence based on a single input, such as 
generating captions from an image.  

• Many-to-one: The output is a single result based on a sequence, such as 
sentiment classification from text. 

• Many-to-many indirect: The sequence is encoded into a state vector, which 
is then decoded into a new sequence, such as language translation. 

• Many-to-many direct: This approach outputs a result for each input step, 
such as phoneme labeling within speech recognition. 

The following image illustrates the previous combinations of inputs and outputs: 
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📝 4.1.9 

Implementation and training of a recurrent NN 

Task: Teach an RNN to count ones in a sequence. 

We will demonstrate using the Python language and the NumPy library how to teach 
a simple RNN to count the number of ones in the input and display the result at the 
end of the sequence. This is an example of a "many-to-one" relationship. 

The example input and output are as follows: 

 
Vstup: (0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0) 

Výstup: 3 

The network will have only two parameters: the input weight U and the recurrent 
weight W. The output weight V is set to 1, so that we can read only the last state as 
the output y. 

 

The first step is to import the NumPy library, define the training data x and labels y. 
x is a two-dimensional array, as the first dimension represents the sample in our 
small dataset (we will use a small dataset with one sample): 

 
import numpy as np 

# The first dimension represents the mini-batch 
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x = np.array([[0, 0, 0, 0, 1, 0, 1, 0, 1, 0]]) 

y = np.array([3]) 

 

The recurrence relation defined by this network is st = st-1 * W + xt * U. As this is a 
linear model, we implement the recurrence relation as follows: 

 
def step(s, x, U, W): 

  return x * U + s * 

The states st and weights W and U are individual scalar values. We just need to 
obtain the sum of inputs over the entire sequence. If we set U=1, then every input 
received will have its full value. If we set W=1, then the value that we would 
accumulate would never decrease. In this example, we would therefore get the 
desired output: 3. 

Backpropagation Through Time 

Backpropagation through time (BPTT) is a typical algorithm used for training 
recurrent neural networks. 

The difference between standard backpropagation and backpropagation through 
time is that the recurrent NN is unfolded through time for a certain number of time 
steps. After the unfolding process, we obtain a model that is quite similar to a 
standard feedforward NN. One hidden layer of this network represents one time 
step. The only differences are that each layer has multiple inputs: the previous state 
st-1 and the current input xt. The parameters U and W are shared across all hidden 
layers. 

The forward pass unfolds the RNN along the sequence and creates a stack of 
states for each time step. Here is the implementation of the forward pass that 
returns the activations for each recurrent step and each sample in the batch: 

 
def forward(x, U, W): 

  # Number of samples in the mini-batch 

  number_of_samples = len(x) 

    

  # Length of each sample 

  sequence_length = len(x[0]) 

    

  # Initialize the state activation for each sample along the 

sequence 

  s = np.zeros((number_of_samples, sequence_length + 1)) 
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  # Update the states over the sequence 

  for t in range(0, sequence_length): 

  s[:, t + 1] = step(s[:, t], x[:, t], U, W) 

   # step function 

    

  return s 

 

When we have a step forward and a loss function, we can define the backward 
propagation gradient. Since the unfolded RNN is equivalent to a regular 
feedforward network, we can use the chain rule. 

The weights W and U are shared across all the layers, so we will accumulate the 
derivative error for each recurrent step, updating the weights at the end with the 
accumulated value. 

The implementation of the backward pass is as follows: 

1. Gradients for U and W are accumulated in gU and gW: 

 

 
def backward(x, s, y, W): 

  sequence_length = len(x[0]) 

              

  # The network output is just the last activation of sequence 

  s_t = s[:, -1] 

                

  # Compute the gradient of the output w.r.t. MSE cost 

function at final state 

  gS = 2 * (s_t - y) 

                

  # Set the gradient accumulations to 0 

  gU, gW = 0, 0 

                

  # Accumulate gradients backwards 

  for k in range(sequence_length, 0, -1): 

    # Compute the parameter gradients and accumulate the 

results. 

    gU += np.sum(gS * x[:, k - 1]) 

    gW += np.sum(gS * s[:, k - 1]) 

                                 

    # Compute the gradient at the output of the previous layer 

    gS = gS * W 
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  return gU, gW 

We will use gradient descent to optimize our network. We will use the mean 
squared error: 

 
def train(x, y, epochs, learning_rate=0.0005): 

  """Train the network""" 

  # Set initial parameters 

  weights = (-2, 0) # (U, W) 

  # Accumulate the losses and their respective weights 

  losses = list() 

  weights_u = list() 

  weights_w = list() 

  # Perform iterative gradient descent 

  for i in range(epochs): 

    # Perform forward and backward pass to get the gradients 

    s = forward(x, weights[0], weights[1]) 

    # Compute the MSE cost function 

    loss = (y[0] - s[-1, -1]) ** 2 

    # Store the loss and weights values for later display 

    losses.append(loss) 

    weights_u.append(weights[0]) 

    weights_w.append(weights[1]) 

    gradients = backward(x, s, y, weights[1]) 

    # Update each parameter `p` by p = p - (gradient * 

learning_rate). 

    # `gp` is the gradient of parameter `p` 

    weights = tuple((p - gp * learning_rate) for p, gp in 

zip(weights, gradients)) 

    print(weights) 

  return np.array(losses), np.array(weights_u), 

np.array(weights_w) 

Next, we implement the related function plot_training, which displays the weights 
and loss: 

 
def plot_training(losses, weights_u, weights_w): 

           import matplotlib.pyplot as plt 

  

           # remove nan and inf values 

           losses = losses[~np.isnan(losses)][:-1] 

           weights_u = weights_u[~np.isnan(weights_u)][:-1] 
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           weights_w = weights_w[~np.isnan(weights_w)][:-1] 

           # plot the weights U and W 

           fig, ax1 = plt.subplots(figsize=(5, 3.4)) 

           ax1.set_ylim(-3, 2) 

           ax1.set_xlabel("epochs") 

           ax1.plot(weights_w, label="W", color="red", 

linestyle="--") 

           ax1.plot(weights_u, label="U", color="blue", 

linestyle=":") 

           ax1.legend(loc="upper left") 

           # instantiate a second axis that shares the same x-

axis 

           # plot the loss on the second axis 

           ax2 = ax1.twinx() 

           # uncomment to plot exploding gradients 

           ax2.set_ylim(-3, 10) 

           ax2.plot(losses, label="Loss", color="green") 

           ax2.tick_params(axis="y", labelcolor="green") 

           ax2.legend(loc="upper right") 

           fig.tight_layout() 

           plt.show() 

We will run the following code: 

 
losses, weights_u, weights_w = train(x, y, epochs=150) 

plot_training(losses, weights_u, weights_w) 

The result will be the following graph: 
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In the plot_training function, it is necessary to set ax2.set_ylim(-3, 200) from the 
original ax2.set_ylim(-3, 10). 

The output will be a warning: 

rnn_example.py:5: RuntimeWarning: overflow encountered in 

multiply return x * U + s * W 

rnn_example.py:36: RuntimeWarning: invalid value encountered 

in multiply gU += np.sum(gS * x[:, k - 1]) 

rnn_example.py:37: RuntimeWarning: invalid value encountered 

in multiply gW += np.sum(gS * s[:, k - 1]) 
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The weights slowly approach the optimal value and the loss decreases until it 
reaches the value in epoch 23 (although the exact epoch is not important). There 
will be a situation where the cost surface on which we are training is very unstable. 
With small steps, we can move to the stable part of the cost function where the 
gradient is low, and suddenly we encounter a jump in costs and the corresponding 
huge gradient. Since the gradient is increasing so rapidly, it will have a large impact 
on our weights through weight updates - they will become NaN (Not a Number) (as 
illustrated by the jump off the graph). This problem is known as the exploding 
gradient. 

There is also the problem of vanishing gradients (the opposite of exploding 
gradients). The gradient exponentially decays over the course of steps until it 
becomes extremely small in earlier states. Essentially, they are overshadowed by 
larger gradients from more recent time steps, and the network's ability to retain the 
history of these earlier states is lost. This problem is harder to detect because 
training will still proceed, and the network will produce valid outputs (unlike 
exploding gradients). It just won't be able to learn long-term dependencies. 

Although vanishing and exploding gradients are present in common neural 
networks, they are particularly pronounced in RNNs. The reasons are as follows: 

1. Depending on the length of the sequence, an RNN can be much deeper than 
a regular network. 

2. The weights W are common to all steps. This means that the recurrent 
relationship that propagates the gradient back in time forms a geometric 
sequence: 
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In our simple linear RNN, the gradient grows exponentially if |W| > 1 (exploding 
gradient). For example, 50 time steps with W=1.5 is W50 = 1.550 ≈ 6 * 108. The 
gradient decays exponentially if |W| <1 (vanishing gradient). For example, 20 time 
steps with W=0.6 is W20 = 0.620 ≈ 3*10-5. If the weight parameter W is a matrix 
and not a scalar, this exploding or vanishing gradient is related to the largest 
eigenvalue (ρ) of W (also known as the spectral radius). If ρ < 1, the gradients 
disappear, and if ρ>1, the gradients grow rapidly. 
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Neural language models 

Chapter 5 
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5.1 Neural language models 

🕮 5.1.1 

Neural Language Models 

Feedforward Neural Language Models 

Example of a 5-gram neural network language model. Nodes in the network 
representing contextual words are connected to a hidden layer, which is connected 
to the output layer for predicting the next word. 

 

 

 

🕮 5.1.2 

Word Representation 

Nodes in a neural network take on real number values, but words are discrete items 
from a large vocabulary. We cannot use token identifiers because the neural 
network will assume that token 124 is very similar to token 125 - whereas in 
practice, these numbers are completely arbitrary. The same argument applies to the 
use of bit encoding for token identifiers. Words (1,1,1,1,1,0,0,0,0)T and 
(1,1,1,1,0,0,0,1)T may have very similar encoding, but may have nothing in common. 

We will represent each word as a multi-dimensional vector with one dimension for 
each word in the dictionary. A value of 1 for the dimension that corresponds to the 
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given word and 0 for the others. This type of vector is called a one-hot vector. For 
example: 

• dog = (0,0,0,0,1,0,0,0,0,...)T, 
• cat = (0,0,0,0,0,0,0,1,0,...)T, 
• eat = (0,1,0,0,0,0,0,0,0,...)T. 

To gather information between words, we introduce another layer between the input 
and hidden layers. In this layer, each contextual word is individually projected into a 
lower-dimensional space. We use the same weight matrix for each of the 
contextual words, creating a continuous spatial representation for each word 
independent of its position in the conditioning context. This representation is 
commonly referred to as a word embedding. 

 

 

🕮 5.1.3 

Architecture of a neural network 

The previous slide shows the architecture of a full-fledged forward neural network 
language model, which consists of contextual words as the input layer with a single 
hot vector, an embedded layer, a hidden layer, and a layer of predicted output 
words. 

Contextual words are first encoded as one-hot vectors. They then pass through an 
embedding matrix E, creating a vector of floating-point numbers, known as an 
embedded word. This embedded vector usually has 500 or 1,000 nodes, and we use 
the same embedded matrix E for all contextual words. 

Mathematically, not much happens in this case. Since the input to the matrix 
multiplication in E is a one-hot vector, most of the input values for matrix 
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multiplication are zero. Essentially, we select one column of the matrix that 
corresponds to the ID of the input word. Therefore, activation is an unnecessary 
function. In a sense, the embedding matrix is a lookup table E(wj) for word 
embedding, indexed by the ID of the word wj: 

 

Mapping to the hidden layer in the model requires combining all contextual 
embedded words E(wj) as input to a classic forward layer, such as using hyperbolic 
tangent (tanh) as the activation function: 

 

The output layer is interpreted as a probability distribution over words. First, a linear 
combination of wij weights and hidden node values hj is calculated for each node i: 

 

To ensure that it is a correct probability distribution, we use the softmax activation 
function to ensure that all values add up to one: 

 

It is similar to the neural probabilistic language model proposed by Bengio et al. 
(2003). This model had one more problem, adding direct connections of contextual 
word embeddings to word outputs, adding E (wj) word embeddings after a linear 
transformation with weight matrix Uj for each word wj. The equation s = W h is thus 
replaced by: 

 

Their work suggests that such direct connections from contextual words to output 
words speed up training, although ultimately do not improve performance. They are 
also called residual connections, skip connections, or even the main path 
connections. 
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🕮 5.1.4 

Training 

We train the parameters of a neural language model (embedding matrix, weight 
matrices, deviation vectors) by processing all n-grams in the training corpus. For 
each n-gram, we input the context words into the network and compare the output 
with a hot vector of the correct word to be predicted. The weights are updated 
using backpropagation. 

Language models are commonly evaluated using perplexity, which relates to the 
probability assigned to the correct source text. Therefore, the goal of training 
language models is to increase the probability of the trained data. 

During training, given a context x = (wn-4, wn-3, wn-2, wn-1), we have the correct value for 
one hot vector →y. For each training example (x, →y), the training objective is 
defined based on the negative logarithmic probability as: 

 

The only value of yk is equal to 1, and the others are equal to 0. This is the 
probability pk assigned to the correct word k. This definition allows us to update all 
weights, including those leading to incorrect output words. 

 

5.2 Word embeddings 

🕮 5.2.1 

Word Embedding 

In the field of NLP, the term word embedding is used to represent words in text 
analysis, typically in the form of a vector with real values that encodes the meaning 
of the word, so that words that are closer in the vector space are expected to have 
similar meanings. 

Word embedding plays an important role in neural language models. They represent 
contextual words that allow predicting the next word in a sequence. For example: 

• but the friendly dog jumped, 
• but the friendly cat jumped. 
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Since dog and cat occur in similar contexts, their influence on predicting the word 
"jumped" should be similar. It should be different from words like "car" which 
probably do not evoke "jumped". The idea that words occurring in similar contexts 
are semantically similar is a significant idea in lexical semantics. 

Meaning and semantics are relatively complex concepts with mostly unresolved 
lexical semantic distributional definitions. The essence of distributional lexical 
semantics lies in defining words based on their distributional properties, i.e., the 
contexts in which they occur. Words that occur in similar contexts (dog and cat) 
should have similar representations. In vector space models, such as word 
embeddings, similarity can be measured by a distance function, such as cosine 
distance - the angle between vectors. 

If we project multi-dimensional word embeddings into two dimensions, we can 
visualize them as shown in the figure. Words that are similar (drama, theater, 
festival) are grouped together. 

 

 

5.3 Reccurent neural language models 

🕮 5.3.1 

Recurrent Neural Language Models 
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This model uses the same architecture, i.e., words (input and output) are 
represented by a single hot vector, embedded words, and a hidden layer that uses, 
for example, 500 neurons with a real value. We use the tanh activation function on 
the hidden layer and the softmax function on the output layer. One of the inputs to 
the third word w3 in the sequence is the immediately preceding (known) word w2. 
However, the neurons in the network that we used to represent the beginning of the 
sentence are now filled with values from the hidden layer of the preceding 
prediction of the word w2. 

In the previous feedforward NN architecture, the hidden state hi for predicting the i-
th word was calculated from the preceding words E(w i-j), for example, three words. 
This uses a shared embedding matrix E and a weight matrix Hj for each of the 
preceding words, plus a bias term bh: 

 

By modifying it to a recursive definition, we combine one preceding word wi-1 with 
the preceding hidden state hi-1. We add a weight matrix V to parameterize the 
mapping from the preceding hidden state h i-1: 

 

The neurons in the hidden state hi-1 encode the context of the preceding sentence. 
At each step, they are enriched with information about the new input word, and thus 
are conditioned on the entire history of the sentence. So even the last word in the 
sentence is partially conditioned on the first word of the sentence. In addition, the 
model is simpler: it has fewer weights than a 3-gram feedforward neural language 
model. 

 

🕮 5.3.2 

Training with arbitrarily long contexts 

The backpropagation through time procedure develops a recurrent neural network 
in a fixed number of steps, while returning back to, for example, predictions of five 
words. 
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Backpropagation through time can be used for each training example (time step), 
but it is computationally intensive. Computation must be performed at multiple 
steps each time. Instead, we can calculate and apply weight updates in smaller 
pieces. First, we process a larger number of training examples (for example, 10 to 
20 or the entire sentence) and then update the weights. 

 

📝 5.3.3 

What activation function do recurrent neural language models use on the output 
layer? 
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Neural translation models 

Chapter 6 
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6.1 Encoder-decoder 

🕮 6.1.1 

A neural machine translation model is a direct extension of a language model. To 
train such a model, we simply concatenate the input and output sentence and use 
the same method as training a language model. To decode the sentence, we input 
the source sentence and then iterate through the model predictions until it predicts 
an end-of-sentence token (period, question mark, or exclamation mark). 

 

🕮 6.1.2 

Encoding Phase 

When processing reaches the end of the input sentence (after predicting the end-of-
sentence tag </s>), the hidden state encodes its meaning. The vector that acquires 
node values of this last hidden layer is the embedding of the input sentence. This is 
the encoding phase of the model. Then, this hidden state is used to generate the 
translation in the decoder phase. 

 

🕮 6.1.3 

Decoding Phase 

During the encoding phase, the network must incorporate all the information about 
the input sentence. It cannot forget the first words at the end of the sentence. 
During the decoding phase, it is not necessary for the network to have enough 
information to predict each subsequent word. It is necessary to have an overview of 
what part of the input sentence has already been translated and what still needs to 
be translated. 

 

6.2 Alignment model 

🕮 6.2.1 

Alignment model 

The first successful model of neural machine translation was the sequence-to-
sequence (seq2seq) encoder-decoder with attention, which is essentially a model 
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with an explicit alignment mechanism. In the world of deep learning, this alignment 
is called attention. 

 

🕮 6.2.2 

Encoder 

The task of the encoder is to provide a representation of the input sentence. The 
input sentence is a sequence of words, for which we first obtain an embedded 
matrix. Similar to a simple language model, we process these words using a 
recurrent neural network. The result is a set of hidden states that encode each word 
along with its left context, i.e., all the preceding words. To obtain the correct 
context, we also create a recurrent neural network that works from right to left, or 
from the end of the sentence to the beginning. 

 

Two recurrent neural networks working in two directions are called a bidirectional 
recurrent neural network. Mathematically, the encoder consists of an embedded 
lookup for each input word xj and a mapping that goes through the hidden states 
→hj and →hj: 

 

In the equations above, we use the general function f for the cell in the recurrent 
neural network. This function can be a simple layer of a feedforward neural network 
- for example, f(x) = tanh(Wx + b) - or more complex GRU or LSTM cells. 

These models can be trained by adding a step that predicts the next word in the 
sequence, but in reality, we train them in the context of the entire machine 
translation model. 
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🕮 6.2.3 

Decoder 

The decoder is also a recurrent neural network. It takes a certain representation of 
the input context, preceding hidden states, and the prediction of the output word, 
and generates a new hidden state of the decoder and a new prediction of the output 
word. From the hidden state, we predict the output word. This prediction takes the 
form of a probability distribution over the entire output vocabulary. If we have a 
vocabulary of, say, 50,000 words, then the prediction is a 50,000-dimensional 
vector, where each element corresponds to the probability predicted for one word in 
the vocabulary. 

During training, the correct output word y i is known, so training continues with this 
word. The goal of training is to provide the highest possible probability for the 
correct output word. The production function (cost function) that controls training 
is therefore the negative logarithm of the probability given to the correct translation 
of the word: 

 

During the derivation of a new test sentence, we usually select the word y i with the 
highest value in ti, i.e. the most probable translation. We use its embedding Eyi for 
further inference steps. 

 

🕮 6.2.4 

Attention mechanism 

The attention mechanism in deep learning is a technique used to improve the 
performance of neural networks by allowing the model to focus on the most 
important input data when generating predictions. This is achieved by weighting the 
input data so that the model prioritizes certain input features over others. The result 
is that the model can produce more accurate predictions by considering only the 
most significant input variables. 

Currently, we have two open ends. The encoder gave us a sequence of word 
representations hj = (→hj, →hj) and the decoder expects a context c i at each step i. 
Now we describe the attention mechanism that brings these ends together. 

The attention mechanism is difficult to illustrate using our typical neural network, 
but the figure below provides at least an idea of what the input and output 
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relationships are. The attention mechanism is informed by all input word 
representations (→hj, →hj) and the previous decoder hidden state si-1, and creates a 
context state ci. 

The reason is that we want to compute the association between the decoder state 
(which contains information about where we are in the output sentence production) 
and each input word. Based on how strong this link is, or in other words, how 
relevant each specific input word is to the production of the next output word, we 
want to determine its impact on its word representation. 

 

 

6.3 Neural translation model - implementation 

📝 6.3.1 

Prerequisities: 

• python 
• installed libraries Numpy, TensorFlow, SkLearn 

 

Importing libraries 

 
from __future__ import absolute_import, division, 

print_function # Import TensorFlow >= 1.10 and enable eager 

execution 

import tensorflow as tf 
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import matplotlib.pyplot as plt 

from sklearn.model_selection import train_test_split 

 

import unicodedata 

import re 

import numpy as np 

import os 

import time 

 

print(tf.__version__) #tensorflow version 

Dataset preparation 

We will use data (texts) that we obtained during the semester, either by extracting 
from the web or PDF documents. 

The texts should be in tabular format, usually in (tsv - tab separated values). Since 
we are working with sentences, commas or underscores are not suitable 
separators. The easiest way to create such a file is to insert English and Slovak 
texts into a spreadsheet processor (MS Excel, LO Calc) and then export the table as 
*.tsv. 

 

Subsequently, we will load this file: 

 
path_to_file = 'slk.tsv' 

Dataset preprocessing 

Preprocessing consists of several steps: 

1. Converting the Unicode file to ASCII. 
2. Adding a space between a word and punctuation. For example, a period at 

the end of a sentence should be separated from the last word because it is 
considered a token. 

3. Replacing all spaces with a space, except (a-z, A-Z, ".", "?", "!", ","). 
4. Adding a starting (<s>) and ending (</s>) token that precisely delimits the 

sentence so that the model will know when to start or end the prediction. 
5. Cleaning the sentence. 
6. Returning word pairs in the SOURCE:TARGET format. 
7. Creating a word-to-index map. For example: "father" -> 5 and conversely 5 -> 

"father", for each language. 
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def unicode_to_ascii(s): 

    return ''.join(c for c in unicodedata.normalize('NFD', s) 

    if unicodedata.category(c) != 'Mn') 

 

def preprocess_sentence(w): 

    w = unicode_to_ascii(w.lower().strip()) 

    # creating a space between a word and the punctuation 

following it 

    w = re.sub(r'([?.!,¿])', r' \1 ', w) 

    w = re.sub(r'[“ “]+', ' ', w) 

    # replacing everything with space except (a-z, A-Z, ".", 

"?", "!", ",") 

    w = re.sub(r'[^a-zA-Z?.!,¿]+', ' ', w) 

    w = w.rstrip().strip() 

    # adding a start and an end token to the sentence 

    # so that the model knows when to start and stop 

predicting. 

    w = ' ' + w + ' ' 

    return w 

 

# 1. Remove the accents 

# 2. Clean the sentences 

# 3. Return word pairs in the format: [ENGLISH, SLOVAK] 

def create_dataset(path, num_examples): 

    lines = open(path, encoding='UTF-

8').read().strip().split('\n') 

    word_pairs = [[preprocess_sentence(w) for w in 

l.split('\t')] for l in lines[:num_examples]] 

    return word_pairs# This class creates a word -> index 

mapping (e.g,. "dad" -> 5) and vice-versa 

# (e.g., 5 -> "dad") for each language, 

class LanguageIndex(): 

    def __init__(self, lang): 

        self.lang = lang 

        self.word2idx = {} 

        self.idx2word = {} 

        self.vocab = set() 

     

        self.create_index() 

    

    def create_index(self): 

        for phrase in self.lang: 

            self.vocab.update(phrase.split(' ')) 
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        self.vocab = sorted(self.vocab) 

     

        self.word2idx[''] = 0 

        for index, word in enumerate(self.vocab): 

            self.word2idx[word] = index + 1 

     

        for word, index in self.word2idx.items(): 

            self.idx2word[index] = word 

             

def max_length(tensor): 

        return max(len(t) for t in tensor) 

     

def load_dataset(path, num_examples): 

    # creating cleaned input, output pairs 

    pairs = create_dataset(path, num_examples)# index language 

using the class defined above     

    inp_lang = LanguageIndex(sk for en, sk in pairs) 

    targ_lang = LanguageIndex(en for en, sk in pairs) 

    

    # Vectorize the input and target languages 

    

    # slovak sentences 

    input_tensor = [[inp_lang.word2idx[s] for s in sk.split(' 

')] for en, sk in pairs] 

    

    # English sentences 

    target_tensor = [[tarRozdelenie datasetu na trénovaciu 

sadug_lang.word2idx[s] for s in en.split(' ')] for en, sk in 

pairs] 

    

    # Calculate max_length of input and output tensor 

    # Here, we'll set those to the longest sentence in the 

dataset 

    max_length_inp, max_length_tar = max_length(input_tensor), 

max_length(target_tensor) 

    

    # Padding the input and output tensor to the maximum 

length 

    input_tensor = 

tf.keras.preprocessing.sequence.pad_sequences(input_tensor, 

maxlen=max_length_inp,padding='post') 
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    target_tensor = 

tf.keras.preprocessing.sequence.pad_sequences(target_tensor,ma

xlen=max_length_tar,padding='post')                                                            

    

    return input_tensor, target_tensor, inp_lang, targ_lang, 

max_length_inp, max_length_tar 

Získanie vektorov 

 
num_examples = 30000 

input_tensor, target_tensor, inp_lang, targ_lang, 

max_length_inp, max_length_targ = load_dataset(path_to_file, 

num_examples) 

Spliting dataset on test/train sets 

 
input_tensor_train, input_tensor_val, target_tensor_train, 

target_tensor_val = train_test_split(input_tensor, 

target_tensor, test_size=0.2) 

Defining basic values 

BUFFER_SIZE = len(input_tensor_train) BATCH_SIZE = 64 N_BATCH = 
BUFFER_SIZE//BATCH_SIZE embedding_dim = 256 units = 1024 vocab_inp_size = 
len(inp_lang.word2idx) vocab_tar_size = len(targ_lang.word2idx) dataset = 
tf.data.Dataset.from_tensor_slices((input_tensor_train, 
target_tensor_train)).shuffle(BUFFER_SIZE) dataset = dataset.batch(BATCH_SIZE, 
drop_remainder=True) 

Encoder and Decoder model 

In this section, we will implement an encoder-decoder model with an attention 
mechanism. (https://github.com/tensorflow/nmt). 

 
def gru(units): 

 # If you have a GPU, we recommend using CuDNNGRU(provides a 

3x speedup than GRU) 

 # the code automatically does that. 

 if tf.test.is_gpu_available(): 

   return tf.keras.layers.CuDNNGRU(units, 

   return_sequences=True, 

   return_state=True, 

   recurrent_initializer='glorot_uniform') 

https://github.com/tensorflow/nmt
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 else: 

   return tf.keras.layers.GRU(units, 

   return_sequences=True, 

   return_state=True, 

   recurrent_activation='sigmoid', 

   recurrent_initializer='glorot_uniform') 

    

class Encoder(tf.keras.Model): 

    def __init__(self, vocab_size, embedding_dim, enc_units, 

batch_sz): 

        super(Encoder, self).__init__() 

        self.batch_sz = batch_sz 

        self.enc_units = enc_units 

        self.embedding = tf.keras.layers.Embedding(vocab_size,   

embedding_dim) 

        self.gru = gru(self.enc_units) 

     

    def call(self, x, hidden): 

        x = self.embedding(x) 

        output, state = self.gru(x, initial_state = hidden)  

        return output, state 

     

    def initialize_hidden_state(self): 

        return tf.zeros((self.batch_sz, self.enc_units)) 

 

 

class Decoder(tf.keras.Model): 

    def __init__(self, vocab_size, embedding_dim, dec_units, 

batch_sz): 

        super(Decoder, self).__init__() 

        self.batch_sz = batch_sz 

        self.dec_units = dec_units 

        self.embedding = tf.keras.layers.Embedding(vocab_size, 

embedding_dim) 

        self.gru = gru(self.dec_units) 

        self.fc = tf.keras.layers.Dense(vocab_size) 

     

        # used for attention 

        self.W1 = tf.keras.layers.Dense(self.dec_units) 

        self.W2 = tf.keras.layers.Dense(self.dec_units) 

        self.V = tf.keras.layers.Dense(1) 

     

    def call(self, x, hidden, enc_output): 



68 

        # enc_output shape == (batch_size, max_length, 

hidden_size) 

        # hidden shape == (batch_size, hidden size) 

        # hidden_with_time_axis shape == (batch_size, 1, 

hidden size) 

        # we are doing this to perform addition to calculate 

the score 

        hidden_with_time_axis = tf.expand_dims(hidden, 1) 

         

        # score shape == (batch_size, max_length, 1) 

        # we get 1 at the last axis because we are applying 

tanh(FC(EO) + FC(H)) to self.V 

        score = self.V(tf.nn.tanh(self.W1(enc_output) + 

self.W2(hidden_with_time_axis))) 

     

        # attention_weights shape == (batch_size, max_length, 

1) 

        attention_weights = tf.nn.softmax(score, axis=1) 

     

        # context_vector shape after sum == (batch_size, 

hidden_size) 

        context_vector = attention_weights * enc_output 

        context_vector = tf.reduce_sum(context_vector, axis=1) 

     

        # x shape after passing through embedding == 

(batch_size, 1, embedding_dim) 

        x = self.embedding(x) 

     

        # x shape after concatenation == (batch_size, 1, 

embedding_dim + hidden_size) 

        x = tf.concat([tf.expand_dims(context_vector, 1), x], 

axis=-1) 

     

        # passing the concatenated vector to the GRU 

        output, state = self.gru(x) 

     

        # output shape == (batch_size * 1, hidden_size) 

        output = tf.reshape(output, (-1, output.shape[2])) 

     

        # output shape == (batch_size * 1, vocab) 

        x = self.fc(output) 

     

        return x, state, attention_weights 
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    def initialize_hidden_state(self): 

        return tf.zeros((self.batch_sz, self.dec_units)) 

Next, we can create encoder and decoder in main scope 

 
encoder = Encoder(vocab_inp_size, embedding_dim, units, 

BATCH_SIZE) 

decoder = Decoder(vocab_tar_size, embedding_dim, units, 

BATCH_SIZE) 

Defininig optimizier, loss function and checkpoints 

 
optimizer = tf.optimizers.Adam() 

 

def loss_function(real, pred): 

    mask = 1 - np.equal(real, 0) 

    loss_ = 

tf.nn.sparse_softmax_cross_entropy_with_logits(labels=real, 

logits=pred) * mask 

    return tf.reduce_mean(loss_) 

 

checkpoint_dir = './training_checkpoints' 

checkpoint_prefix = os.path.join(checkpoint_dir, 'ckpt') 

checkpoint = tf.train.Checkpoint(optimizer=optimizer, 

encoder=encoder, decoder=decoder) 

Training 

1. The input goes through an encoder, which returns the output of the encoder 
and the hidden state of the encoder. 

2. The output of the encoder, hidden state of the encoder, and input of the 
decoder (which is the start token) are passed to the decoder. 

3. The decoder returns predictions and the hidden state of the decoder. 
4. The hidden state of the decoder is then passed back into the model and the 

predictions are used to calculate the loss. 
5. Teacher forcing is used to decide the next input to the decoder. 
6. Teacher forcing is a technique where the target word is passed as the next 

input to the decoder. 
7. The final step is computing gradients and using them on the optimizer and 

backpropagation. 

 

 
EPOCHS = 5 
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for epoch in range(EPOCHS): 

    start = time.time() 

     

    hidden = encoder.initialize_hidden_state() 

    total_loss = 0 

     

    for (batch, (inp, targ)) in enumerate(dataset): 

        loss = 0 

     

        with tf.GradientTape() as tape: 

            enc_output, enc_hidden = encoder(inp, hidden) 

         

            dec_hidden = enc_hidden 

         

            dec_input = 

tf.expand_dims([targ_lang.word2idx['']] *  BATCH_SIZE, 1)  

     

            # Teacher forcing — feeding the target as the next 

input 

            for t in range(1, targ.shape[1]): 

                # passing enc_output to the decoder 

                predictions, dec_hidden, _ = 

decoder(dec_input, dec_hidden, enc_output) 

             

                loss += loss_function(targ[:, t], predictions) 

             

                # using teacher forcing 

                dec_input = tf.expand_dims(targ[:, t], 1) 

         

        batch_loss = (loss / int(targ.shape[1])) 

         

        total_loss += batch_loss 

         

        variables = encoder.variables + decoder.variables 

         

        gradients = tape.gradient(loss, variables) 

         

        optimizer.apply_gradients(zip(gradients, variables)) 

 

        if batch % 100 == 0: 

            print('Epoch {} Batch {} Loss {:.4f}'.format(epoch 

+ 1, 

            batch, 

            batch_loss.numpy())) 
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    # saving (checkpoint) the model every 2 epochs 

    if (epoch + 1) % 2 == 0: 

        checkpoint.save(file_prefix = checkpoint_prefix) 

 

    print('Epoch {} Loss {:.4f}'.format(epoch + 1, total_loss 

/ N_BATCH)) 

    print('Time taken for 1 epoch {} sec\n'.format(time.time() 

- start)) 

Implementation of the evaluation function 

The evaluation function is similar to the training loop, except we do not use teacher 
forcing here. The input to the decoder at each time step is its previous predictions 
along with the hidden state and output of the encoder. 

 
def evaluate(sentence, encoder, decoder, inp_lang, targ_lang, 

max_length_inp, max_length_targ): 

    attention_plot = np.zeros((max_length_targ, 

max_length_inp)) 

     

    sentence = preprocess_sentence(sentence) 

    inputs = [inp_lang.word2idx[i] for i in sentence.split(' 

')] 

    inputs = 

tf.keras.preprocessing.sequence.pad_sequences([inputs],   

maxlen=max_length_inp, padding='post') 

    inputs = tf.convert_to_tensor(inputs) 

     

    result = '' 

    hidden = [tf.zeros((1, units))] 

    enc_out, enc_hidden = encoder(inputs, hidden) 

     

    dec_hidden = enc_hidden 

    dec_input = tf.expand_dims([targ_lang.word2idx['']], 0) 

     

    for t in range(max_length_targ): 

        predictions, dec_hidden, attention_weights = 

decoder(dec_input, dec_hidden, enc_out) 

     

        # storing the attention weights to plot later on 

        attention_weights = tf.reshape(attention_weights, (-1, 

)) 

        attention_plot[t] = attention_weights.numpy() 



72 

     

    predicted_id = tf.argmax(predictions[0]).numpy() 

     

    result += targ_lang.idx2word[predicted_id] + ' ' 

     

    if targ_lang.idx2word[predicted_id] == '': 

        return result, sentence, attention_plot 

     

    # the predicted ID is fed back into the model 

    dec_input = tf.expand_dims([predicted_id], 0) 

     

    return result, sentence, attention_plot 

Function for printing attention mechanism weights and translation function 

 
def plot_attention(attention, sentence, predicted_sentence): 

    fig = plt.figure(figsize=(10,10)) 

    ax = fig.add_subplot(1, 1, 1) 

    ax.matshow(attention, cmap='viridis') 

     

    fontdict = {'fontsize': 14} 

     

    ax.set_xticklabels([''] + sentence, fontdict=fontdict, 

rotation=90) 

    ax.set_yticklabels([''] + predicted_sentence, 

fontdict=fontdict) 

 

 

plt.show() 

 

 

def translate(sentence, encoder, decoder, inp_lang, targ_lang, 

max_length_inp, max_length_targ): 

    result, sentence, attention_plot = evaluate(sentence, 

encoder, decoder, inp_lang, targ_lang, max_length_inp, 

max_length_targ) 

     

    print('Input: {}'.format(sentence)) 

    print('Predicted translation: {}'.format(result)) 

     

    attention_plot = attention_plot[:len(result.split(' ')), 

:len(sentence.split(' '))] 

    plot_attention(attention_plot, sentence.split(' '), 

result.split(' ')) 



73 

 

Checkpoint restoration and translation - so that we don't have to train the model 
from scratch every time. 

 
# restoring the latest checkpoint in checkpoint_dir 

checkpoint.restore(tf.train.latest_checkpoint(checkpoint_dir)) 

 

translate(u'Tom pije pivo.', encoder, decoder, inp_lang, 

targ_lang, max_length_inp, max_length_targ) 
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Machine Translation 
Evaluation  
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Natural Language 
Processing 

Chapter 1 
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1.1 Introduction to NLP 

📝 1.1.1 

Natural Language Processing (NLP) is an interdisciplinary field of research that 
aims to enable machines to understand and process human languages. NLP-based 
applications are everywhere and chances are we've already encountered an NLP-
enabled app (Alexa, Google Translate, chatbots, etc.). This course aims to provide 
experience to help you build NLP applications by understanding its key concepts of 
it. In the course, we will learn about text preprocessing, an essential part of NLP 
work. The most important part of the course will be an introduction to how machine 
translation works and its practical application. 

📝 1.1.2 

Artificial intelligence is rapidly permeating various areas of our lives from the smart 
home to automated tech support. NLP is closely related to Machine Learning (ML). 
Among the most widely used tools that have emerged in the field of NLP and are 
encountered perhaps on a daily basis are: 

• Chatbot - AI-based software that can hold conversations with people in 
natural languages. Chatbots are widely used as the first contact of customer 
support and are very effective in solving simple user queries. 

• Sentiment analysis - a set of algorithms and techniques used to detect the 
sentiment (positive, negative or neutral) of a given text. Sentiment analysis 
has made it possible to gather opinions from a much wider audience at a 
significantly lower cost. It can also be used to identify fake news. 

• Machine translation - one of the early tasks that NLP focused on. Nowadays, 
it is one of the most widely used online machine translation tools from 
Google. The quality of machine translation is improving with time and new 
approaches are already based on neural networks. 

📝 1.1.3 

For example, if we wanted to create a virtual assistant we would have to train it in a 
human way, we would have to load a language dictionary (the easy part) into its 
memory, find a way to teach it grammar (speech, clause, sentence structure, etc.) 
and logical interpretation. This is a time-consuming task. However, what if we could 
transform the sentence into mathematical objects so that the computer could use 
mathematical or logical operations to make some sense of it? This mathematical 
construct could be a vector, a matrix, and so on. Suppose we had an n-dimensional 
space where each axis corresponded to a word of our language. This allows us to 
represent a given sentence as a vector in this space with its coordinate along each 
axis as the number of words representing that axis. 

However, to avoid having to do the vectorization process manually, we can use the 
Python programming language and the scikit-learn library. Using the 
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CountVectorizer() function, we can vectorize a sentence and get a matrix of vectors 
representing that sentence. 

 
from sklearn.feature_extraction.text import CountVectorizer 

 

document = ["I like computer science","There are many computer 

softwares","I have an computer with various softwares"] 

vectorizer = CountVectorizer() 

vectorizer.fit(document) 

print("Vocabulary: ", vectorizer.vocabulary_) 

vector = vectorizer.transform(document) 

print("Vectorized document:") 

print(vector.toarray()) 

 
Program output: 
Vocabulary:  {'like': 4, 'computer': 2, 'science': 6, 'there': 

8, 'are': 1, 'many': 5, 'softwares': 7, 'have': 3, 'an': 0, 

'with': 10, 'various': 9} 

Vectorized document: 

[[0 0 1 0 1 0 1 0 0 0 0] 

 [0 1 1 0 0 1 0 1 1 0 0] 

 [1 0 1 1 0 0 0 1 0 1 1]] 
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Preparation of texts 

Chapter 2 
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2.1 Tokenization 

📝 2.1.1 

The dictionary is an important part of several tasks in NLP. A lexicon can be 
defined as the vocabulary of a person, language, or discipline. Roughly speaking, a 
lexicon can be thought of as a dictionary of terms called lexemes. For example, the 
terms used by doctors can be thought of as the lexicon of their profession. As an 
example, in an attempt to create an algorithm to convert a physical prescription 
provided by doctors into an electronic form, lexicons would consist primarily of 
medical terms. Lexicons are used for a variety of NLP tasks where they are 
provided as a word list or dictionary. 

Before discussing procedures on how to create a lexicon we need to understand 
phonemes, graphemes and morphemes: 

• Phonemes can be thought of as the sound units that can distinguish one 
word from another in a given language. 

• Graphemes are groups of letters of length one or more that can represent 
these individual sounds or phonemes. 

• A morpheme is the smallest unit of meaning in a language. 

📝 2.1.2 

When creating a dictionary you must first divide documents or sentences into parts 
called tokens. Each token carries a semantic meaning associated with it. 
Tokenization is one of the basic stages to be performed in any text processing 
activity. Tokenization can be thought of as a segmentation technique in which we 
try to divide larger portions of text into smaller meaningful parts. Tokens generally 
contain words and numbers but can also be extended to include punctuation marks, 
symbols, and sometimes comprehensible emoticons. 

The simplest approach to tokenization is certainly a simple division based on 
spaces. We can use the split() function to do this, which splits a text variable based 
on a specified separator. By default, the function splits based on space. However, 
this is a trivial function that may not work properly. 

 
sent = "I like computer science" 

print(sent.split()) 

 
Program output: 
['I', 'like', 'computer', 'science'] 
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📝 2.1.3 

While the split() function can split a sentence into words we may find that in some 
cases the result may not be correct. 

 
sentence = "Slovakia's capital is Bratislava" 

print(sentence.split()) 

 
Program output: 
["Slovakia's", 'capital', 'is', 'Bratislava'] 

 

We can observe that the function does not address the apostrophe and simply 
takes it as part of the word. This can be a problem, especially in the case of English 
phrases like I'm or we'll where it is a contraction of the following word. 

 
sentence = "I'm happy to visit Bratislava" 

print(sentence.split()) 

 
Program output: 
["I'm", 'happy', 'to', 'visit', 'Bratislava'] 

 

Thus, there are a number of issues that can arise if we only use basic functions. 
The dots indicating abbreviations or different characters can be a problem. 
Therefore, in the next section, we will show the different tools that can be used in 
tokenization. 

📝 2.1.4 

Among the popular techniques used for tokenization is the use of regular 
expressions. Regular expressions are sequences of characters that define a search 
pattern. They are one of the first and still one of the most effective tools for 
identifying patterns in text. Imagine that you are searching for an email address in a 
text. These follow the same pattern and are governed by a set of rules no matter 
what domain they are located on. Regular expressions are a way to identify such 
things in textual data instead of trying machine learning-oriented techniques. 

📝 2.1.5 

The Python library nltk provides a regular expression-based tokenization function 
(RegexpTokenizer). We can use it to tokenize or split a sentence based on a given 
regular expression. Consider the following sentence: 
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The average price of computers in the US is between $300 - 

$500. 

We will need expressions denoting money and alphabetic sequences. For this 
purpose, we can define a regular expression and give the expression to the 
corresponding tokenizer object. 

 
from nltk.tokenize import RegexpTokenizer 

s = "The average price of computers in the US is between $300 

- $500." 

tokenizer = RegexpTokenizer('\w+|\$[\d]+|\S+') 

print(tokenizer.tokenize(s)) 

📝 2.1.6 

Use the given regular expression to tokenize the given sentences into tokens. As a 
result, print the output from the tokenize() function. 

Given sentences: 

The wooden spoon couldn’t cut but left emotional scars. She 

finally understood that grief was her love with no place for 

it to go. 

Weather is not trivial - it's especially important when you're 

standing in it. 

For tokenization, use the following regular expression: 

\w+(?:'\w+)?|[^\w\s] 

 
from nltk.tokenize import RegexpTokenizer 

s = "The wooden spoon couldn’t cut but left emotional scars. 

She finally understood that grief was her love with no place 

for it to go. Weather is not trivial - it\'s especially 

important when you\'re standing in it." 

tokenizer = RegexpTokenizer(r"\w+(?:'\w+)?|[^\w\s]") 

print(tokenizer.tokenize(s)) 

📝 2.1.7 

Use the given regular expression to tokenize the given sentences into tokens. As a 
result, print the output from the tokenize() function. 

Given sentences: 
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The wooden spoon couldn’t cut but left emotional scars. She 

finally understood that grief was her love with no place for 

it to go. 

Weather is not trivial - it's especially important when you're 

standing in it. 

For tokenization, use the following regular expression: 

(\w+|#\d|\?|!) 

 
from nltk.tokenize import RegexpTokenizer 

s = "The wooden spoon couldn’t cut but left emotional scars. 

She finally understood that grief was her love with no place 

for it to go. Weather is not trivial - it\'s especially 

important when you\'re standing in it." 

tokenizer = RegexpTokenizer(r"(\w+|#\d|\?|!)") 

print(tokenizer.tokenize(s)) 

📝 2.1.8 

Another option is to use the Treebank tokenizer, which also uses regular 
expressions to tokenize text according to the Penn Treebank database 
(https://catalog.ldc.upenn.edu/docs/LDC95T7/cl93.html). Words are mostly split 
based on punctuation. The Treebank tokenizer does an excellent job of splitting 
abbreviations such as doesn't into does and n't. Further, it identifies periods at the 
ends of lines and removes them. Punctuation marks, such as commas, are split if 
they are followed by spaces. Let's look at the previous sentence and tokenise it 
using the Treebank tokeniser. 

 
from nltk.tokenize import TreebankWordTokenizer 

s = "The average price of computers in the US is between $300 

- $500." 

tokenizer = TreebankWordTokenizer() 

print(tokenizer.tokenize(s)) 

 
Program output: 
['The', 'average', 'price', 'of', 'computers', 'in', 'the', 

'US', 'is', 'between', '$', '300', '-', '$', '500', '.'] 

 

📝 2.1.9 

The development of social media has led to the emergence of an informal language 
in which people tag each other using their social media accounts and use a variety 
of emoticons, hashtags and shortened texts to express themselves. Hence, there is 
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a need for tokenization tools that can parse such text and make it more 
comprehensible. TweetTokenizer strongly suits this use case. So let's try to 
analyze the following tweet: 

@PassedToMessi Whatever happens on Sunday. Whatever God 

decides. Whoever wins. Thank you for everything Leo Messi. You 

are truly the greatest ever. With or without a Worldcup. The 

Worldcup may just be a reward for your hardwork. <3 

 
from nltk.tokenize import TweetTokenizer 

s = "@PassedToMessi Whatever happens on Sunday. Whatever God 

decides. Whoever wins. Thank you for everything Leo Messi. You 

are truly the greatest ever. With or without a Worldcup. The 

Worldcup may just be a reward for your hardwork. <3" 

tokenizer = TweetTokenizer() 

print(tokenizer.tokenize(s)) 

 
Program output: 
['@PassedToMessi', 'Whatever', 'happens', 'on', 'Sunday', '.', 

'Whatever', 'God', 'decides', '.', 'Whoever', 'wins', '.', 

'Thank', 'you', 'for', 'everything', 'Leo', 'Messi', '.', 

'You', 'are', 'truly', 'the', 'greatest', 'ever', '.', 'With', 

'or', 'without', 'a', 'Worldcup', '.', 'The', 'Worldcup', 

'may', 'just', 'be', 'a', 'reward', 'for', 'your', 'hardwork', 

'.', '<3'] 

 

2.2 Stemming 

📝 2.2.1 

Imagine if we combined the words computer, computerization and computerize into 
one word - compute. What is happening here is called stemming. Part of stemming 
is a crude attempt to remove the inflectional forms of a word and convert them to a 
base form called the stem of the word. The severed parts are called affixes. In the 
previous example, the base shape is compute and the affixes are r, rization, and rize. 
It is important to remember that the stem of a word may not be a valid word as we 
know it. 

📝 2.2.2 

The two most common algorithms used for stemming are the Porter stemmer and 
the Snowball stemmer. The Porter stemmer supports English, while the Snowball 
stemmer which is an enhancement of the Porter stemmer, supports multiple 
languages. Porter stemmer works only with strings while Snowball works with 
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strings and also with Unicode data. Snowball stemmer allows you to use a built-in 
function to ignore stop words. 

 
plurals = ['caresses', 'flies', 'dies', 'mules', 'died', 

'agreed', 'owned', 'humbled', 'sized', 'meeting', 'stating', 

'generously'] 

from nltk.stem.porter import PorterStemmer 

stemmer = PorterStemmer() 

singles = [stemmer.stem(plural) for plural in plurals] 

print(' '.join(singles)) 

 
Program output: 
caress fli die mule die agre own humbl size meet state gener 

 

📝 2.2.3 

Use the Porter stemmer tool to create a word stem for the input sentence. 
Remember that sentences must first be tokenized into tokens and thus sent for 
stemming. As a result, output word stems are separated by spaces. 

Given sentences: 

The wooden spoon couldn’t cut but left emotional scars. She 

finally understood that grief was her love with no place for 

it to go. 

Weather is not trivial - it's especially important when you're 

standing in it. 

 
from nltk.stem.porter import PorterStemmer 

from nltk.tokenize import RegexpTokenizer 

stemmer = PorterStemmer() 

sent = "The wooden spoon couldn’t cut but left emotional 

scars. She finally understood that grief was her love with no 

place for it to go. Weather is not trivial - it\'s especially 

important when you\'re standing in it." 

tokenizer = RegexpTokenizer(r"(\w+|#\d|\?|!)") 

tokens = tokenizer.tokenize(sent) 

output = [stemmer.stem(s) for s in tokens] 

print(' '.join(output)) 

📝 2.2.4 

Snowball stemmer, unlike the previous one, requires language as a parameter. In 
most cases, its output is similar to that of the Porter stemmer, except for the word 
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generously, where the Porter stemmer outputs gener and the Snowball stemmer 
outputs generous. The example shows how Snowball stemmer makes minor 
changes to Porter's algorithm, achieving improvements in some cases. 

 
plurals = ['caresses', 'flies', 'dies', 'mules', 'died', 

'agreed', 'owned', 'humbled', 'sized', 'meeting', 'stating', 

'generously'] 

from nltk.stem.snowball import SnowballStemmer 

stemmer = SnowballStemmer(language='english') 

singles = [stemmer.stem(plural) for plural in plurals] 

print(' '.join(singles)) 

 
Program output: 
caress fli die mule die agre own humbl size meet state 

generous 

 

📝 2.2.5 

Use the Snowball stemmer tool to create a word stem for the input sentence. 
Remember that sentences must first be tokenized into tokens and thus sent for 
stemming. As a result, output word stems are separated by spaces. 

Given sentences: 

The wooden spoon couldn’t cut but left emotional scars. She 

finally understood that grief was her love with no place for 

it to go. 

Weather is not trivial - it's especially important when you're 

standing in it. 

 
from nltk.stem.snowball import SnowballStemmer 

from nltk.tokenize import RegexpTokenizer 

stemmer = SnowballStemmer(language='english') 

sent = "The wooden spoon couldn’t cut but left emotional 

scars. She finally understood that grief was her love with no 

place for it to go. Weather is not trivial - it\'s especially 

important when you\'re standing in it." 

tokenizer = RegexpTokenizer(r"(\w+|#\d|\?|!)") 

tokens = tokenizer.tokenize(sent) 

output = [stemmer.stem(s) for s in tokens] 

print(' '.join(output)) 
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2.3 Lematization 

📝 2.3.1 

Unlike stemming in which several features are removed from words using various 
methods, lemmatization is a process in that context is used to convert a word into 
its meaningful base form. It helps in grouping words that share a common basic 
form and therefore can be identified as a single item. The base form is referred to 
as the lemma of the word and is sometimes called the dictionary form. 
Lemmatization algorithms try to identify the lemma form of a word by taking into 
account the context of the word's surroundings, part-of-speech (POS) markers, the 
meaning of the word, etc. The surroundings may include words in the 
neighbourhood, sentences or even documents. 

Also, the same words can have different lemmas depending on the context. The 
lemmatizer should try to identify the POS tags based on the context to determine 
the appropriate lemma. The most commonly used lemmatizer is the WordNet 
lemmatizer. Various other libraries also have integrated lemmatizer features, such 
as Spacy, TextBlob, Gensim, and others. 

📝 2.3.2 

WordNet is an English lexical database that is freely and publicly available. 
WordNet includes nouns, verbs, adjectives and adverbs grouped into sets of 
cognitive synonyms (synsets), each expressing different concepts. These synsets 
are linked to each other by lexical and conceptual semantic relations. It can be 
easily downloaded and the nltk library offers an interface to it that allows to 
perform lemmatization. 

 
import nltk 

nltk.download('wordnet') 

from nltk.stem import WordNetLemmatizer  

lemmatizer = WordNetLemmatizer() 

s = "She was putting efforts to heal her emotionally scarred 

soul" 

token_list = s.split() 

print("The tokens are: ", token_list) 

lemmatized_output = ' '.join([lemmatizer.lemmatize(token) for 

token in token_list]) 

print("The lemmatized output is: ", lemmatized_output) 

 
Program output: 
The tokens are:  ['She', 'was', 'putting', 'efforts', 'to', 

'heal', 'her', 'emotionally', 'scarred', 'soul'] 
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The lemmatized output is:  She wa putting effort to heal her 

emotionally scarred soul 

[nltk_data] Downloading package wordnet to 

/home/johny/nltk_data... 

[nltk_data]   Package wordnet is already up-to-date! 

 

We can observe that the lemmatization was not very successful and most of the 
words were not converted to lemma. 

📝 2.3.3 

The reason why the lemmatizer didn't generate the correct lemmas in the previous 
lesson was that WordNet works better when it also has POS tags for the words in 
the input. The nltk library provides a method to generate POS tags for a list of 
words. We generate POS tags for a sentence in tuple form using the pos_tag() 
function. 

 
import nltk 

nltk.download('averaged_perceptron_tagger') 

s = "She was putting efforts to heal her emotionally scarred 

soul" 

token_list = s.split() 

pos_tags = nltk.pos_tag(token_list) 

print(pos_tags) 

 
Program output: 
[nltk_data] Downloading package averaged_perceptron_tagger to 

[nltk_data]     /home/johny/nltk_data... 

[nltk_data]   Unzipping 

taggers/averaged_perceptron_tagger.zip. 

[('She', 'PRP'), ('was', 'VBD'), ('putting', 'VBG'), 

('efforts', 'NNS'), ('to', 'TO'), ('heal', 'VB'), ('her', 

'PRP$'), ('emotionally', 'RB'), ('scarred', 'JJ'), ('soul', 

'NN')] 

 

📝 2.3.4 

However, in order for WordNet to work with the input we need to convert it to a 
different type of word type notation. Therefore, we can use the frequently used 
get_part_of_speech_tags() function to convert the tags into the form we need. We 
can then send the output of the function as a parameter to the lemmatizer. 
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import nltk 

nltk.download('averaged_perceptron_tagger') 

s = "She was putting efforts to heal her emotionally scarred 

soul" 

token_list = s.split() 

pos_tags = nltk.pos_tag(token_list) 

print(pos_tags) 

 
Program output: 
[('She', 'PRP'), ('was', 'VBD'), ('putting', 'VBG'), 

('efforts', 'NNS'), ('to', 'TO'), ('heal', 'VB'), ('her', 

'PRP$'), ('emotionally', 'RB'), ('scarred', 'JJ'), ('soul', 

'NN')] 

[nltk_data] Downloading package averaged_perceptron_tagger to 

[nltk_data]     /home/johny/nltk_data... 

[nltk_data]   Package averaged_perceptron_tagger is already 

up-to- 

[nltk_data]       date! 

 

from nltk.corpus import wordnet 

def get_part_of_speech_tags(token): 

    tag_dict = {"J": wordnet.ADJ, 

                "N": wordnet.NOUN, 

                "V": wordnet.VERB, 

                "R": wordnet.ADV} 

    tag = nltk.pos_tag([token])[0][1][0].upper() 

    return tag_dict.get(tag, wordnet.NOUN) 

 
from nltk.stem import WordNetLemmatizer  

lemmatizer = WordNetLemmatizer() 

output = [lemmatizer.lemmatize(token, 

get_part_of_speech_tags(token)) for token in token_list] 

print(' '.join(output)) 

 
Program output: 
She be put effort to heal her emotionally scar soul 

 

We can see that the output is much better than in the case of not using POS tags. 

📝 2.3.5 

Generate the lemmatized text for the specified text. Remember that the text needs 
to be tokenized first, followed by POS tags, and then lemmatized. There is a 
function to convert the tags for WordNet needs. 
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You are given the following text: 

Analogous terms were later introduced for use of computers in 

various fields, such as business informatics, forest 

informatics, legal informatics etc. However, these fields have 

more to do with digital literacy than with real informatics. 

Their name is probably the result of a lack of knowledge of 

the true meaning of informatics. Later in the United States, 

next absurd term such as computational informatics were 

developed, while all informatics is computational by its 

nature. 

 
import nltk 

nltk.download('averaged_perceptron_tagger') 

# create pos_tags 

sentence = "Analogous terms were later introduced for use of 

computers in various fields, such as business informatics, 

forest informatics, legal informatics etc. However, these 

fields have more to do with digital literacy than with real 

informatics. Their name is probably the result of a lack of 

knowledge of the true meaning of informatics. Later in the 

United States, next absurd term such as computational 

informatics were developed, while all informatics is 

computational by its nature." 

token_list = sentence.split() 

pos_tags = nltk.pos_tag(token_list) 

print(pos_tags) 

 
# just run this method for tagset transformation 

from nltk.corpus import wordnet 

def get_part_of_speech_tags(token): 

    tag_dict = {"J": wordnet.ADJ, 

                "N": wordnet.NOUN, 

                "V": wordnet.VERB, 

                "R": wordnet.ADV} 

    tag = nltk.pos_tag([token])[0][1][0].upper() 

    return tag_dict.get(tag, wordnet.NOUN) 

 
# create the output of lemmatization 

from nltk.stem import WordNetLemmatizer  

lemmatizer = WordNetLemmatizer() 

output = [lemmatizer.lemmatize(token, 

get_part_of_speech_tags(token)) for token in token_list] 

print(' '.join(output)) 
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📝 2.3.6 

Generate the lemmatized text for the specified text. Remember that the text needs 
to be tokenized first, followed by POS tags, and then lemmatized. There is a 
function to convert the tags for WordNet needs. 

You are given the following text: 

Resources include individual files or an item's data, computer 

programs, computer devices and functionality provided by 

computer applications. Examples of consumers are computer 

users, computer Software and other Hardware on the computer. 

 
import nltk 

nltk.download('averaged_perceptron_tagger') 

# create pos_tags 

sentence = "Resources include individual files or an item's 

data, computer programs, computer devices and functionality 

provided by computer applications. Examples of consumers are 

computer users, computer Software and other Hardware on the 

computer." 

token_list = sentence.split() 

pos_tags = nltk.pos_tag(token_list) 

print(pos_tags) 

 
# just run this method for tagset transformation 

from nltk.corpus import wordnet 

def get_part_of_speech_tags(token): 

    tag_dict = {"J": wordnet.ADJ, 

                "N": wordnet.NOUN, 

                "V": wordnet.VERB, 

                "R": wordnet.ADV} 

    tag = nltk.pos_tag([token])[0][1][0].upper() 

    return tag_dict.get(tag, wordnet.NOUN) 

 
# create the output of lemmatization 

from nltk.stem import WordNetLemmatizer  

lemmatizer = WordNetLemmatizer() 

output = [lemmatizer.lemmatize(token, 

get_part_of_speech_tags(token)) for token in token_list] 

print(' '.join(output)) 
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📝 2.3.7 

Generate the lemmatized text for the specified text. Remember that the text needs 
to be tokenized first, followed by POS tags, and then lemmatized. There is a 
function to convert the tags for WordNet needs. 

You are given the following text: 

An automated online assistant providing customer service on a 

web page, an example of an application where natural language 

processing is a major component. Natural language processing 

(NLP) is a subfield of linguistics, computer science, and 

artificial intelligence concerned with the interactions 

between computers and human language, in particular how to 

program computers to process and analyze large amounts of 

natural language data. Challenges in natural language 

processing frequently involve speech recognition, natural 

language understanding, and natural-language generation. 

 
import nltk 

nltk.download('averaged_perceptron_tagger') 

# create pos_tags 

sentence = "An automated online assistant providing customer 

service on a web page, an example of an application where 

natural language processing is a major component. Natural 

language processing (NLP) is a subfield of linguistics, 

computer science, and artificial intelligence concerned with 

the interactions between computers and human language, in 

particular how to program computers to process and analyze 

large amounts of natural language data. Challenges in natural 

language processing frequently involve speech recognition, 

natural language understanding, and natural-language 

generation." 

token_list = sentence.split() 

pos_tags = nltk.pos_tag(token_list) 

print(pos_tags) 

 
# just run this method for tagset transformation 

from nltk.corpus import wordnet 

def get_part_of_speech_tags(token): 

    tag_dict = {"J": wordnet.ADJ, 

                "N": wordnet.NOUN, 

                "V": wordnet.VERB, 

                "R": wordnet.ADV} 

    tag = nltk.pos_tag([token])[0][1][0].upper() 
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    return tag_dict.get(tag, wordnet.NOUN) 

 
# create the output of lemmatization 

from nltk.stem import WordNetLemmatizer  

lemmatizer = WordNetLemmatizer() 

output = [lemmatizer.lemmatize(token, 

get_part_of_speech_tags(token)) for token in token_list] 

print(' '.join(output)) 

2.4 Additional features 

📝 2.4.1 

Stop words in English are words like a, an, the, in, at, and so on, which occur 
frequently in text corpora and don't carry much information in most contexts. These 
words are generally needed to complete sentences and make them grammatically 
correct. They are often the most common words in the language and can be filtered 
out in most NLP tasks, consequently, helping in reducing the vocabulary or search 
space. There is no single list of stop words available universally and they vary 
mostly based on use cases. However, a certain list of words is maintained for 
languages that can be considered language-specific stop words but should be 
modified based on the problem being solved. 

For the use of stop words, there is a stopwords module in the nltk library that 
provides a list of English stop words that can be filtered out of the text under study. 

 
import nltk 

nltk.download('stopwords') 

from nltk.corpus import stopwords 

stop = set(stopwords.words('english')) 

s = "She was putting efforts to heal her emotionally scarred 

soul" 

token_list = s.split() 

output = [token for token in token_list if token not in stop] 

print(" ".join(output)) 

 
Program output: 
She putting efforts heal emotionally scarred soul 

[nltk_data] Downloading package stopwords to 

/home/johny/nltk_data... 

[nltk_data]   Unzipping corpora/stopwords.zip. 
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📝 2.4.2 

For the specified text, remove stop words from it. Then print the text without stop 
words. 

Given text: 

An automated online assistant providing customer service on a 

web page, an example of an application where natural language 

processing is a major component. Natural language processing 

(NLP) is a subfield of linguistics, computer science, and 

artificial intelligence concerned with the interactions 

between computers and human language, in particular how to 

program computers to process and analyze large amounts of 

natural language data. Challenges in natural language 

processing frequently involve speech recognition, natural 

language understanding, and natural-language generation. 

 
import nltk 

nltk.download('stopwords') 

from nltk.corpus import stopwords 

stop = set(stopwords.words('english')) 

s = "An automated online assistant providing customer service 

on a web page, an example of an application where natural 

language processing is a major component. Natural language 

processing (NLP) is a subfield of linguistics, computer 

science, and artificial intelligence concerned with the 

interactions between computers and human language, in 

particular how to program computers to process and analyze 

large amounts of natural language data. Challenges in natural 

language processing frequently involve speech recognition, 

natural language understanding, and natural-language 

generation." 

token_list = s.split() 

output = [token for token in token_list if token not in stop] 

print(" ".join(output)) 

📝 2.4.3 

For the specified text, remove stop words from it. Then print the text without stop 
words. 

Given text: 
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Members of the public have certain rights of access. These 

include the right to access documents about the operation of 

government departments and documents that are in the 

possession of government Ministers or agencies (Freedom of 

Information Act 1982). Certain documents are exempt from this, 

including (but not limited to) documents detailing Cabinet 

deliberations or decisions; Cabinet documents. documents 

disclosing trade secrets; Documents disclosing trade secrets 

or commercially valuable information. 

 
import nltk 

nltk.download('stopwords') 

from nltk.corpus import stopwords 

stop = set(stopwords.words('english')) 

s = "Members of the public have certain rights of access. 

These include the right to access documents about the 

operation of government departments and documents that are in 

the possession of government Ministers or agencies (Freedom of 

Information Act 1982). Certain documents are exempt from this, 

including (but not limited to) documents detailing Cabinet 

deliberations or decisions; Cabinet documents. documents 

disclosing trade secrets; Documents disclosing trade secrets 

or commercially valuable information." 

token_list = s.split() 

output = [token for token in token_list if token not in stop] 

print(" ".join(output)) 

📝 2.4.4 

Another strategy that helps in normalizing the text is called Case folding. It is the 
unification of uppercase and lowercase with all the letters in the text corpus made 
lowercase. In several cases, the size of the letters plays a role and hence it is better 
to have all the words of the same size. This technique helps systems that deal with 
information retrieval, such as web search engines. 

However, in situations where proper nouns are derived from common nouns, the 
unification of uppercase and lowercase letters becomes a hindrance because case 
distinction becomes an important feature here. Another problem is when 
abbreviations are converted to lowercase. There is a high probability that they will 
map to generic nouns. 

A potential solution to this problem is to create machine learning models that can 
use features from the sentence to determine which words or tokens in the sentence 
should be lowercase and which should not. However, this approach is not always 
helpful when users mostly write in lowercase. As a result, writing everything in 
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lowercase becomes the appropriate solution. Therefore, the strings-to-lowercase 
conversion function lower() can be used. 

 
s = "She was putting efforts to heal her emotionally scarred 

soul" 

print(s.lower()) 

 
Program output: 
she was putting efforts to heal her emotionally scarred soul 

 

📝 2.4.5 

For the text you have entered, change the case of the letters to lowercase. Then 
print the text. 

Given text: 

Members of the public have certain rights of access. These 

include the right to access documents about the operation of 

government departments and documents that are in the 

possession of government Ministers or agencies (Freedom of 

Information Act 1982). Certain documents are exempt from this, 

including (but not limited to) documents detailing Cabinet 

deliberations or decisions; Cabinet documents. documents 

disclosing trade secrets; Documents disclosing trade secrets 

or commercially valuable information. 

 
s = "Members of the public have certain rights of access. 

These include the right to access documents about the 

operation of government departments and documents that are in 

the possession of government Ministers or agencies (Freedom of 

Information Act 1982). Certain documents are exempt from this, 

including (but not limited to) documents detailing Cabinet 

deliberations or decisions; Cabinet documents. documents 

disclosing trade secrets; Documents disclosing trade secrets 

or commercially valuable information." 

print(s.lower()) 

📝 2.4.6 

Sentences usually contain names of people and places and other open compound 
expressions, such as living room or coffee mug. These expressions convey a 
specific meaning when two or more words are used together. When used alone 
they carry a completely different meaning and the meaning of compound 
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expressions is somehow lost. Using multiple tokens to represent such meaning can 
be very beneficial for NLP tasks performed. Although such occurrences are rare 
they still yield a lot of information. For this reason, we use techniques to preserve 
the meaning of compound expressions. 

In general, these techniques fall under the term n-grams. If n is equal to 1, they are 
referred to as unigrams. Bigrams or 2-grams refer to pairs of words, such as living 
room. Phrases such as United Arab Emirates, which consist of three words are 
referred to as trigrams or 3-grams. This naming system can be extended to larger 
n-grams but in most NLP tasks only trigrams or lower are used. 

📝 2.4.7 

Let's try working with n-grams in practice. Let's have a sentence to describe what 
natural language processing is: 

Natural language processing is an interdisciplinary subfield 

of linguistics, computer science, and artificial intelligence 

concerned with the interactions between computers and human 

language, in particular how to program computers to process 

and analyze large amounts of natural language data. 

Since we know that natural language processing is a domain and processing these 
three words individually could cause a loss of meaning, we may prefer to use 
trigrams and preserve the meaning of the words. We can use the nltk library 
module called ngrams to create n-grams. The parameters for the function are the 
tokens of the sentence and the number of n-grams we want to generate. 

 
from nltk.util import ngrams 

sent = "Natural language processing is an interdisciplinary 

subfield of linguistics, computer science, and artificial 

intelligence concerned with the interactions between computers 

and human language, in particular how to program computers to 

process and analyze large amounts of natural language data." 

tokens = sent.split() 

trigrams = list(ngrams(tokens, 3)) 

print([" ".join(token) for token in trigrams]) 

 
Program output: 
['Natural language processing', 'language processing is', 

'processing is an', 'is an interdisciplinary', 'an 

interdisciplinary subfield', 'interdisciplinary subfield of', 

'subfield of linguistics,', 'of linguistics, computer', 

'linguistics, computer science,', 'computer science, and', 

'science, and artificial', 'and artificial intelligence', 
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'artificial intelligence concerned', 'intelligence concerned 

with', 'concerned with the', 'with the interactions', 'the 

interactions between', 'interactions between computers', 

'between computers and', 'computers and human', 'and human 

language,', 'human language, in', 'language, in particular', 

'in particular how', 'particular how to', 'how to program', 

'to program computers', 'program computers to', 'computers to 

process', 'to process and', 'process and analyze', 'and 

analyze large', 'analyze large amounts', 'large amounts of', 

'amounts of natural', 'of natural language', 'natural language 

data.'] 

 

📝 2.4.8 

For the given text, generate its unigrams. Print the unigrams. 

Given text: 

Members of the public have certain rights of access. These 

include the right to access documents about the operation of 

government departments and documents that are in the 

possession of government Ministers or agencies (Freedom of 

Information Act 1982). Certain documents are exempt from this, 

including (but not limited to) documents detailing Cabinet 

deliberations or decisions; Cabinet documents. documents 

disclosing trade secrets; Documents disclosing trade secrets 

or commercially valuable information. 

 
from nltk.util import ngrams 

sent = "Members of the public have certain rights of access. 

These include the right to access documents about the 

operation of government departments and documents that are in 

the possession of government Ministers or agencies (Freedom of 

Information Act 1982). Certain documents are exempt from this, 

including (but not limited to) documents detailing Cabinet 

deliberations or decisions; Cabinet documents. documents 

disclosing trade secrets; Documents disclosing trade secrets 

or commercially valuable information." 

tokens = sent.split() 

unigrams = list(ngrams(tokens, 1)) 

print([" ".join(token) for token in unigrams]) 
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📝 2.4.9 

For the given text, generate its bigrams. Print the bigrams. 

Given text: 

Documents are also distinguished from "realia", which are 

three-dimensional objects that would otherwise satisfy the 

definition of "document" because they memorialize or represent 

thought; documents are considered more as 2-dimensional 

representations. While documents can have large varieties of 

customization, all documents can be shared freely and have the 

right to do so, creativity can be represented by documents, 

also. History, events, examples, opinions, etc. all can be 

expressed in documents. 

 
from nltk.util import ngrams 

sent = 'Documents are also distinguished from "realia", which 

are three-dimensional objects that would otherwise satisfy the 

definition of "document" because they memorialize or represent 

thought; documents are considered more as 2-dimensional 

representations. While documents can have large varieties of 

customization, all documents can be shared freely and have the 

right to do so, creativity can be represented by documents, 

also. History, events, examples, opinions, etc. all can be 

expressed in documents.' 

tokens = sent.split() 

bigrams = list(ngrams(tokens, 2)) 

print([" ".join(token) for token in bigrams]) 

📝 2.4.10 

For the given text, generate its trigrams. Print the trigrams. 

Given text: 

The Philip R. Lee Institute for Health Policy Studies is a 

partner in this consortium. UCSF is home to the Industry 

Documents Library (IDL), a digital library of previously 

secret internal industry documents, including over 14 million 

documents in the internationally known Truth Tobacco Industry 

Documents, the Food Industry Documents Archive, Chemical 

Industry Documents Archive and the Drug Industry Documents 

Archive. The IDL contains millions of documents created by 
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major companies related to their advertising, manufacturing, 

marketing, sales, and scientific research activities. 

 
from nltk.util import ngrams 

sent = 'The Philip R. Lee Institute for Health Policy Studies 

is a partner in this consortium. UCSF is home to the Industry 

Documents Library (IDL), a digital library of previously 

secret internal industry documents, including over 14 million 

documents in the internationally known Truth Tobacco Industry 

Documents, the Food Industry Documents Archive, Chemical 

Industry Documents Archive and the Drug Industry Documents 

Archive. The IDL contains millions of documents created by 

major companies related to their advertising, manufacturing, 

marketing, sales, and scientific research activities.' 

tokens = sent.split() 

trigrams = list(ngrams(tokens, 3)) 

print([" ".join(token) for token in trigrams]) 
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3.1 Introduction 

📝 3.1.1 

In this chapter, we will introduce the Sequence-to-Sequence model (Seq2Seq) and 
familiarize ourselves with encoders and decoders in the process. We will use this 
new knowledge to build our own machine translator using Seq2Seq modelling. 

When we try to build a machine translation system we are essentially trying to 
convert a text sequence of arbitrary length into another text sequence of unknown 
length. The result is not always the text of the same length. English sentence how 
are you doing? is translated into Slovak as ako sa máš? The two sentences are of 
different lengths. Let's imagine another example: can we do this? is represented in 
Slovak as môžeme ísť na to? Although both English sentences contain four words, 
their Slovak counterparts are of different lengths. When building such systems we 
try to map an input sequence to an output sequence, which can be of different 
lengths. We use two essential things to do this: an encoder and a decoder. 

📝 3.1.2 

The encoder is the first component in the encoder-decoder architecture. Input data 
is fed into the encoder and the encoder creates a representation of the input data. 
This low-dimensional representation of the input data is referred to as a context 
vector. The context vector attempts to capture the meaning of the input data. In 
essence, it tries to create an embedding of the input data, called embedding. 

The encoder can be created using among other things different types of neural 
networks. For example, architectures based on recurrent neural networks store the 
context of the inputs they have seen in a hidden state. Therefore, the last hidden 
state will store the context of the entire sentence. The hidden state from the last 
time step is what we want. It is our context vector because it has seen all the inputs 
and preserved the context of all the input words. 

The output of the encoder is a context vector that contains two parts: 

• the hidden state from the last time step of the encoder, 
• the neural network memory state for the input sentence. 

📝 3.1.3 

Once we have obtained the context vector the next step is to insert it into the 
decoder and generate a translation of the input sentence. The initial hidden state 
for any recurrent neural network-based architecture is a randomly initialized vector. 
However, for decoders, the input is the context vector that we received as output 
from the encoder. So the initial hidden state should not be a randomly initialized 
vector but a context vector. The input to the decoder at the first time step is the 
token that marks the beginning of the sentence, <start>. Using this <start> token the 
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decoder now has the task of learning to predict the first token of the target 
sentence. However, the decoder's job is slightly different for the learning and 
inference phases which are explained next.  

📝 3.1.4 

During the training phase, the decoder received the target sequence along with the 
context vector as input. The input to the decoder at time step 0 is the <start> token. 
In time step 1, the input to the decoder is the predicted token or the first token of 
the target sequence, and so on. The task of the decoder is to learn that when it 
receives the context vector and the initial token <start>, it should be able to produce 
a set of tokens. 

During the inference phase, we don't know what the target sequence should be and 
the decoder's job is to predict that target sequence. The decoder is given a context 
vector and an initial token, with which it should be able to predict the first token. It 
should then be able to predict the second token using the first predicted token and 
the hidden state from the first time step and continue in this way. The input at time 
step t is the predicted output from the previous time step t-1. The same pattern is 
followed for the rest of the decoder's work. 

📝 3.1.5 

We already know roughly how the decoder learns, so now I just need to know how 
to stop sending outputs the moment a prediction occurs. Whenever the output from 
the decoder state is a token indicating the end of the <end> sentence, or we've 
reached a predefined maximum length for the output or target sequence, we get a 
signal that the decoder has finished its job of creating the output sequence and we 
need to stop here. 

Simple LSTM neural networks at both ends allowed us to convert one data 
sequence to another using only the context vector. This approach for generating 
Seq2Seq can be used to create chatbots, speech recognition systems, natural 
language translation systems, and so on. 

3.2 Machine translation - text preparation 

📝 3.2.1 

In the following sections, we will describe how to create a machine translation 
using Seq2Seq modelling. We will focus on translation from the Slovak language to 
the English language. We will use a dataset from http://www.manythings.org/anki/, 
which contains about 11 000 sentences and their translations into English. In 
addition to the nltk library, we will also need the tensorflow and keras libraries to 
help us train our model. Next, we will need the pandas and re libraries to help us 
prepare the dataset. In the following microlessons, we'll go through the step-by-step 
process of how to build the model using mainly custom functions. 

http://www.manythings.org/anki/
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import pandas as pd 

import string 

import re 

from urllib.request import urlopen 

import numpy as np 

from unicodedata import normalize 

import keras, tensorflow 

from keras.models import Model 

from keras.layers import Input, LSTM, Dense 

📝 3.2.2 

The first step will be to load an input file to help us train our model. We load the 
input file line by line into a DataFrame structure using the pandas library that acts 
like a table and will help us to access the individual data in the file. Once the file is 
loaded, we can examine the created DataFrame to have a better idea of what it 
contains. 

 
import pandas as pd 

from urllib.request import urlopen 

import urllib 

 
def input_file(file_name): 

  data = [] 

  file = urllib.request.urlopen(file_name) 

  for row in file: 

    row = row.decode("utf-8") 

    row = row.strip() 

    data.append(row) 

  return data 

 

data = 

input_file('https://priscilla.fitped.eu/data/nlp/slk.txt') 

print(data[1500:1510]) 

print(len(data)) 

data = data[:10000] 

 
Program output: 
["I've heard that.\tPočul som to.\tCC-BY 2.0 (France) 

Attribution: tatoeba.org #2248400 (CK) & #9846917 

(Dominika7)", "I've heard that.\tPočula som to.\tCC-BY 2.0 

(France) Attribution: tatoeba.org #2248400 (CK) & #9846918 

(Dominika7)", 'Is he breathing?\tDýcha?\tCC-BY 2.0 (France) 
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Attribution: tatoeba.org #239892 (CK) & #8957974 (Dominika7)', 

'Is it poisonous?\tJe to jedovaté?\tCC-BY 2.0 (France) 

Attribution: tatoeba.org #2248466 (CK) & #10033911 

(Dominika7)', 'Is it poisonous?\tJe jedovatý?\tCC-BY 2.0 

(France) Attribution: tatoeba.org #2248466 (CK) & #10033914 

(Dominika7)', 'Is it poisonous?\tJe jedovatá?\tCC-BY 2.0 

(France) Attribution: tatoeba.org #2248466 (CK) & #10033916 

(Dominika7)', 'Is she a doctor?\tJe lekárka?\tCC-BY 2.0 

(France) Attribution: tatoeba.org #312527 (CK) & #9734240 

(Dominika7)', 'Is this a river?\tJe toto rieka?\tCC-BY 2.0 

(France) Attribution: tatoeba.org #56259 (CK) & #4642167 

(Sim)', 'Is this my wine?\tTo je moje víno?\tCC-BY 2.0 

(France) Attribution: tatoeba.org #1764491 (CK) & #10086221 

(Dominika7)', 'Is today Monday?\tDnes je pondelok?\tCC-BY 2.0 

(France) Attribution: tatoeba.org #2248648 (CK) & #9948296 

(Dominika7)'] 

11550 

 

We can see that the dataset contained more than 11 thousand sentences. So let's 
take the first 10 000 sentences from the dataset, which will be used for training, 
and keep the rest as a test set on which we will then test our model. 

📝 3.2.3 

With the input file, we saw that the sentences are separated by a tab (\t), so we can 
very easily use the split() function to split the sentences into Slovak and English. 

 
def create_english_slovak_sentences(data): 

  EN_sentences = [] 

  SK_sentences = [] 

  for data_point in data: 

    EN_sentences.append(data_point.split("\t")[0]) 

    SK_sentences.append(data_point.split("\t")[1]) 

  return EN_sentences, SK_sentences 

   

EN_sentences, SK_sentences = 

create_english_slovak_sentences(data) 

📝 3.2.4 

Once we have the sentences divided, we can proceed to the essential part namely 
the preprocessing of the texts. The goal of this feature is to remove unnecessary 
characters from sentences, such as punctuation or special characters. The next 



105 

step is to unify the case of the letters with all words starting with a lowercase letter. 
The result will be a preprocessed sentence cleaned of unnecessary characters. 

 
def preprocess_sentences(sentence):  

  re_print = re.compile('[^%s]' % re.escape(string.printable)) 

  table = str.maketrans('', '', string.punctuation) 

  cleaned_sent = normalize('NFD', sentence).encode('ascii', 

'ignore') 

  cleaned_sent = cleaned_sent.decode('UTF-8') 

  cleaned_sent = cleaned_sent.split() 

  cleaned_sent = [word.lower() for word in cleaned_sent] 

  cleaned_sent = [word.translate(table) for word in 

cleaned_sent] 

  cleaned_sent = [re_print.sub('', w) for w in cleaned_sent] 

  cleaned_sent = [word for word in cleaned_sent if 

word.isalpha()] 

  return ' '.join(cleaned_sent) 

📝 3.2.5 

Once we have prepared the sentence preprocessing function we can apply it to our 
English and Slovak sentences. 

 
def preprocess_EN_SK_sentences(EN_sentences, SK_sentences): 

  SK_sentences_cleaned = [] 

  EN_sentences_cleaned = [] 

  for sent in SK_sentences: 

    SK_sentences_cleaned.append(preprocess_sentences(sent)) 

  for sent in EN_sentences: 

    EN_sentences_cleaned.append(preprocess_sentences(sent)) 

  return EN_sentences_cleaned, SK_sentences_cleaned 

 

EN_sentences_cleaned, SK_sentences_cleaned = 

preprocess_EN_SK_sentences(EN_sentences, SK_sentences) 

📝 3.2.6 

The next phase is important because it's where we'll be creating our own dictionary. 
The goal will also be to obtain tokens that mark the beginning and end of the 
sequence, as required by the decoder. When we covered dictionary creation in 
previous lessons we dealt with it at the word level. In this case, we'll go one level 
lower and work at the character level. We'll place a tab at the beginning of our 
sequence and a newline label at the end. We'll also prepare a list of unique input 
and output characters. Our model will then attempt to predict at the character level. 
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def build_data(EN_sentences_cleaned, SK_sentences_cleaned): 

  input_dataset = [] 

  target_dataset = [] 

  input_characters = set() 

  target_characters = set() 

     

  for SK_sentence in SK_sentences_cleaned: 

    input_datapoint = SK_sentence 

    input_dataset.append(input_datapoint) 

    for char in input_datapoint: 

      input_characters.add(char) 

         

  for EN_sentence in EN_sentences_cleaned: 

    target_datapoint = "\t" + EN_sentence + "\n" 

    target_dataset.append(target_datapoint) 

    for char in target_datapoint: 

      target_characters.add(char) 

             

  return input_dataset, target_dataset, 

sorted(list(input_characters)), 

sorted(list(target_characters))  

 

input_dataset, target_dataset, input_characters, 

target_characters = build_data(EN_sentences_cleaned, 

SK_sentences_cleaned) 

📝 3.2.7 

The following code will serve as a revision of the functions already created. So let's 
take a look at what the dictionary we generated looks like. Run the individual code 
blocks in order. Your task is to print what the input character list looks like. 

 
import pandas as pd 

import string 

import re 

from urllib.request import urlopen 

import numpy as np 

from unicodedata import normalize 

import urllib 

 
def input_file(file_name): 

  data = [] 

  file = urllib.request.urlopen(file_name) 
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  for row in file: 

    row = row.decode("utf-8") 

    row = row.strip() 

    data.append(row) 

  return data 

 

data = 

input_file('https://priscilla.fitped.eu/data/nlp/slk.txt') 

print(data[1500]) 

print(len(data)) 

data = data[:10000] 

 
def create_english_slovak_sentences(data): 

  EN_sentences = [] 

  SK_sentences = [] 

  for data_point in data: 

    EN_sentences.append(data_point.split("\t")[0]) 

    SK_sentences.append(data_point.split("\t")[1]) 

  return EN_sentences, SK_sentences 

   

EN_sentences, SK_sentences = 

create_english_slovak_sentences(data) 

 
def preprocess_sentences(sentence):  

  re_print = re.compile('[^%s]' % re.escape(string.printable)) 

  table = str.maketrans('', '', string.punctuation) 

  cleaned_sent = normalize('NFD', sentence).encode('ascii', 

'ignore') 

  cleaned_sent = cleaned_sent.decode('UTF-8') 

  cleaned_sent = cleaned_sent.split() 

  cleaned_sent = [word.lower() for word in cleaned_sent] 

  cleaned_sent = [word.translate(table) for word in 

cleaned_sent] 

  cleaned_sent = [re_print.sub('', w) for w in cleaned_sent] 

  cleaned_sent = [word for word in cleaned_sent if 

word.isalpha()] 

  return ' '.join(cleaned_sent) 

 
def preprocess_EN_SK_sentences(EN_sentences, SK_sentences): 

  SK_sentences_cleaned = [] 

  EN_sentences_cleaned = [] 

  for sent in SK_sentences: 

    SK_sentences_cleaned.append(preprocess_sentences(sent)) 

  for sent in EN_sentences: 

    EN_sentences_cleaned.append(preprocess_sentences(sent)) 
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  return EN_sentences_cleaned, SK_sentences_cleaned 

 

EN_sentences_cleaned, SK_sentences_cleaned = 

preprocess_EN_SK_sentences(EN_sentences, SK_sentences) 

 
def build_data(EN_sentences_cleaned, SK_sentences_cleaned): 

  input_dataset = [] 

  target_dataset = [] 

  input_characters = set() 

  target_characters = set() 

     

  for SK_sentence in SK_sentences_cleaned: 

    input_datapoint = SK_sentence 

    input_dataset.append(input_datapoint) 

    for char in input_datapoint: 

      input_characters.add(char) 

         

  for EN_sentence in EN_sentences_cleaned: 

    target_datapoint = "\t" + EN_sentence + "\n" 

    target_dataset.append(target_datapoint) 

    for char in target_datapoint: 

      target_characters.add(char) 

             

  return input_dataset, target_dataset, 

sorted(list(input_characters)), 

sorted(list(target_characters))  

 

input_dataset, target_dataset, input_characters, 

target_characters = build_data(EN_sentences_cleaned, 

SK_sentences_cleaned) 

 
# write your code here 

print(input_characters) 

📝 3.2.8 

The following code will serve as a revision of the functions already created. So let's 
take a look at what the dictionary we generated looks like. Run the individual code 
blocks in order. Your task is to write out what the list of output characters looks 
like. 

 
import pandas as pd 

import string 

import re 
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from urllib.request import urlopen 

import numpy as np 

from unicodedata import normalize 

import urllib 

 
def input_file(file_name): 

  data = [] 

  file = urllib.request.urlopen(file_name) 

  for row in file: 

    row = row.decode("utf-8") 

    row = row.strip() 

    data.append(row) 

  return data 

 

data = 

input_file('https://priscilla.fitped.eu/data/nlp/slk.txt') 

print(data[1500]) 

print(len(data)) 

data = data[:10000] 

 
def create_english_slovak_sentences(data): 

  EN_sentences = [] 

  SK_sentences = [] 

  for data_point in data: 

    EN_sentences.append(data_point.split("\t")[0]) 

    SK_sentences.append(data_point.split("\t")[1]) 

  return EN_sentences, SK_sentences 

   

EN_sentences, SK_sentences = 

create_english_slovak_sentences(data) 

 
def preprocess_sentences(sentence):  

  re_print = re.compile('[^%s]' % re.escape(string.printable)) 

  table = str.maketrans('', '', string.punctuation) 

  cleaned_sent = normalize('NFD', sentence).encode('ascii', 

'ignore') 

  cleaned_sent = cleaned_sent.decode('UTF-8') 

  cleaned_sent = cleaned_sent.split() 

  cleaned_sent = [word.lower() for word in cleaned_sent] 

  cleaned_sent = [word.translate(table) for word in 

cleaned_sent] 

  cleaned_sent = [re_print.sub('', w) for w in cleaned_sent] 

  cleaned_sent = [word for word in cleaned_sent if 

word.isalpha()] 

  return ' '.join(cleaned_sent) 
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def preprocess_EN_SK_sentences(EN_sentences, SK_sentences): 

  SK_sentences_cleaned = [] 

  EN_sentences_cleaned = [] 

  for sent in SK_sentences: 

    SK_sentences_cleaned.append(preprocess_sentences(sent)) 

  for sent in EN_sentences: 

    EN_sentences_cleaned.append(preprocess_sentences(sent)) 

  return EN_sentences_cleaned, SK_sentences_cleaned 

 

EN_sentences_cleaned, SK_sentences_cleaned = 

preprocess_EN_SK_sentences(EN_sentences, SK_sentences) 

 
def build_data(EN_sentences_cleaned, SK_sentences_cleaned): 

  input_dataset = [] 

  target_dataset = [] 

  input_characters = set() 

  target_characters = set() 

     

  for SK_sentence in SK_sentences_cleaned: 

    input_datapoint = SK_sentence 

    input_dataset.append(input_datapoint) 

    for char in input_datapoint: 

      input_characters.add(char) 

         

  for EN_sentence in EN_sentences_cleaned: 

    target_datapoint = "\t" + EN_sentence + "\n" 

    target_dataset.append(target_datapoint) 

    for char in target_datapoint: 

      target_characters.add(char) 

             

  return input_dataset, target_dataset, 

sorted(list(input_characters)), 

sorted(list(target_characters))  

 

input_dataset, target_dataset, input_characters, 

target_characters = build_data(EN_sentences_cleaned, 

SK_sentences_cleaned) 

 
# write your code here 

print(target_characters) 
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3.3 Machine translation - model creation 

📝 3.3.1 

The results of the previous assignments show us the difference in that we have 
added escape sequences to the output characters indicating the beginning and end 
of our sequence, so the \t and \n tokens are also there. These are used for the 
decoder to better understand the beginning and end of the sequence. Our input and 
output dictionaries need not be the same for tasks such as natural language 
translation. In fact, sometimes even our character set may not be the same. For 
example, we may be trying to translate between English and Arabic, which have 
completely different character sets. In addition to the differences in vocabulary, we 
should also be aware that our input sequence and the target sequence may not be 
the same size. Not only the number of words in two parallel sentences may be 
different but also the number of characters in each word. Therefore, we need to get 
information about the metadata of our sentences: 

• the size of the input and output vocabulary, 
• the maximum length of the input and output character set. 

 
def get_metadata(input_dataset, target_dataset, 

input_characters, target_characters): 

  num_Encoder_tokens = len(input_characters) 

  num_Decoder_tokens = len(target_characters) 

  max_Encoder_seq_length = max([len(data_point) for data_point 

in input_dataset])  

  max_Decoder_seq_length = max([len(data_point) for data_point 

in target_dataset]) 

  print('Number of data points:', len(input_dataset)) 

  print('Number of unique input tokens:', num_Encoder_tokens) 

  print('Number of unique output tokens:', num_Decoder_tokens) 

  print('Maximum sequence length for inputs:', 

max_Encoder_seq_length) 

  print('Maximum sequence length for outputs:', 

max_Decoder_seq_length) 

  return num_Encoder_tokens, num_Decoder_tokens, 

max_Encoder_seq_length, max_Decoder_seq_length 

 

num_Encoder_tokens, num_Decoder_tokens, 

max_Encoder_seq_length, max_Decoder_seq_length = 

get_metadata(input_dataset, target_dataset, input_characters, 

target_characters) 

Number of data points: 10000  
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Number of unique input tokens: 26  

Number of unique output tokens: 29  

Maximum sequence length for inputs: 50  

Maximum sequence length for outputs: 38 

📝 3.3.2 

Number of data points: 10000  

Number of unique input tokens: 26  

Number of unique output tokens: 29  

Maximum sequence length for inputs: 50  

Maximum sequence length for outputs: 38 

In the previous microlesson, we got information about our metadata. We 
discovered the following: 

• there are 10 000 unique English-Slovak sentence pairs in our dataset, 
• the number of unique input tokens (characters) is 26, 
• the number of unique output tokens (characters) that we try to extract and 

predict is 29, 
• our longest input sequence is 50 characters long, 
• our longest output sequence is 38 characters long. 

📝 3.3.3 

A very important step is to create a mapping from characters to indexes and vice 
versa. This will help us in the following activities: 

• represent our input characters using the appropriate indices, 
• convert our predicted indices to their corresponding characters when 

predicting. 

 
def create_indices(input_characters, target_characters): 

  input_char_to_idx = {} 

  input_idx_to_char = {} 

  target_char_to_idx = {} 

  target_idx_to_char = {} 

  for i, char in enumerate(input_characters): 

    input_char_to_idx[char] = i 

    input_idx_to_char[i] = char 
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  for i, char in enumerate(target_characters): 

    target_char_to_idx[char] = i 

    target_idx_to_char[i] = char 

  return input_char_to_idx, input_idx_to_char, 

target_char_to_idx, target_idx_to_char 

 

input_char_to_idx, input_idx_to_char, target_char_to_idx, 

target_idx_to_char = create_indices(input_characters, 

target_characters) 

📝 3.3.4 

We can then build our data structure based on the extracted metadata from the 
previous microlessons. 

 
def build_data_structures(length_input_dataset, 

max_Encoder_seq_length, max_Decoder_seq_length, 

num_Encoder_tokens, num_Decoder_tokens): 

  Encoder_input_data = np.zeros((length_input_dataset, 

max_Encoder_seq_length, num_Encoder_tokens), dtype='float32') 

  Decoder_input_data = np.zeros((length_input_dataset, 

max_Decoder_seq_length, num_Decoder_tokens), dtype='float32') 

  Decoder_target_data = np.zeros((length_input_dataset, 

max_Decoder_seq_length, num_Decoder_tokens), dtype='float32') 

  print("Dimensionality of Encoder input data is : ", 

Encoder_input_data.shape) 

  print("Dimensionality of Decoder input data is : ", 

Decoder_input_data.shape) 

  print("Dimensionality of Decoder target data is : ", 

Decoder_target_data.shape) 

  return Encoder_input_data, Decoder_input_data, 

Decoder_target_data 

 

Encoder_input_data, Decoder_input_data, Decoder_target_data = 

build_data_structures(len(input_dataset), 

max_Encoder_seq_length, max_Decoder_seq_length, 

num_Encoder_tokens, num_Decoder_tokens) 

Dimensionality of Encoder input data is : (10000, 50, 26)  

Dimensionality of Decoder input data is : (10000, 38, 29)  

Dimensionality of Decoder target data is : (10000, 38, 29) 
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📝 3.3.5 

Dimensionality of Encoder input data is : (10000, 50, 26)  

Dimensionality of Decoder input data is : (10000, 38, 29)  

Dimensionality of Decoder target data is : (10000, 38, 29) 

Let's look at the properties of the data structure we have created: 

• the dimension of the input data is (10000, 50, 26), 
• the first dimension represents the number of data points: 10 000, 
• the second dimension represents the maximum length of our input 

sequence: 50, 
• the third dimension represents the size of our input character set: 26, 
• the dimension of the decoder input and output data is (10000, 38, 29), 
• the first dimension represents the number of data points: 10 000, 
• the second dimension represents the maximum length of our output 

sequence: 38, 
• the third dimension represents the size of our output character set: 29, 

Once we have created the data structure we add data to it. 

 
def add_data_to_data_structures(input_dataset, target_dataset, 

Encoder_input_data, Decoder_input_data, Decoder_target_data): 

  for i, (input_data_point, target_data_point) in 

enumerate(zip(input_dataset, target_dataset)): 

    for t, char in enumerate(input_data_point): 

      Encoder_input_data[i, t, input_char_to_idx[char]] = 1. 

    for t, char in enumerate(target_data_point): 

      Decoder_input_data[i, t, target_char_to_idx[char]] = 1. 

      if t > 0: 

        Decoder_target_data[i, t - 1, 

target_char_to_idx[char]] = 1. 

  return Encoder_input_data, Decoder_input_data,  

Decoder_target_data 

 

Encoder_input_data, Decoder_input_data, Decoder_target_data = 

add_data_to_data_structures(input_dataset, target_dataset, 

Encoder_input_data, Decoder_input_data, Decoder_target_data) 

📝 3.3.6 

We used a character-to-index mapping and converted some of the entries in our 
data structure to 1, indicating the presence of a particular character at a particular 
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position in each of the sentences. As a result of the mapping, the last dimension 
(26 in the encoder input data structure and 29 in the decoder input or target data 
structure) is a vector of 1's indicating which item is present at a given position in 
our data. We do not insert anything for the <start> token when building the decoder 
target data and it is also prefixed by a one-time step for the same reasons we 
mentioned in the section on decoders. Our decoder target data is the same as the 
decoder input data, it's just shifted by one-time step. We are now ready to set the 
hyperparameters of our model. 

 
batch_size = 256 

epochs = 100 

latent_dim = 256 

📝 3.3.7 

The next step is to create our coder. We set the return_state property to True so that 
the decoder will return the last hidden state and memory that will create the context 
vector. The states state_h and state_c represent our last hidden state and memory 
information. The role of the encoder is to provide a context vector that captures the 
context of the input sentence. However, we have no explicit target context vector 
defined against which we can compare the performance of the encoder. The 
encoder learns from the performance of the decoder, which we will describe later. 
The decoder error is fed back and this is how backpropagation works in the 
encoder and the encoder learns based on this. 

 
Encoder_inputs = Input(shape=(None, num_Encoder_tokens)) 

Encoder = LSTM(latent_dim, return_state=True) 

Encoder_outputs, state_h, state_c = Encoder(Encoder_inputs) 

Encoder_states = [state_h, state_c] 

📝 3.3.8 

Let's focus on the second part, the decoder. During training, both input and output 
data are provided to the decoder and the decoder is asked to predict the input data 
with an offset of 1. This helps the decoder understand what it should predict if it 
receives a context vector from the encoder. This learning method is referred to as 
teacher forcing. The initial state of the decoder is in the Encoder_states variable, 
which is our context vector obtained from the encoder. The neural network layer is 
part of the decoder, where the number of neurons is equal to the number of tokens 
(in our case, characters) present in the output character set of the decoder. This 
layer is associated with the output of the softmax function, which helps us obtain 
normalized probabilities for each output character. Also, this function predicts the 
target character with the highest probability. 
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The return_sequences parameter in the neural network decoder helps us to get the 
entire output sequence from the decoder. We want the output from the decoder at 
each time step and hence we set this parameter to True. Since we have used a layer 
along with the output of the softmax function, we get the probability distribution 
over our output features for each time step, selecting the feature with the highest 
probability. We judge the performance of our decoder by comparing its output 
produced at each time step. 

 
Decoder_inputs = Input(shape=(None, num_Decoder_tokens)) 

Decoder_lstm = LSTM(latent_dim, return_sequences=True, 

return_state=True) 

Decoder_outputs, _, _ = Decoder_lstm(Decoder_inputs, 

initial_state=Encoder_states) 

Decoder_dense = Dense(num_Decoder_tokens, 

activation='softmax') 

Decoder_outputs = Decoder_dense(Decoder_outputs) 

📝 3.3.9 

We have defined our encoder and decoder and now we will combine them into a 
model. We'll use the Keras Model API to define the different inputs and outputs that 
we'll use at different stages. The Model API provides Encoder_input_data; 
Decoder_input_data is the input to our model that will be used as the encoder and 
decoder inputs; Decoder_target_data is used as the decoder output. The model will 
try to convert Encoder_input_data and Decoder_input_data to Decoder_target_data. 

 
model = Model(inputs=[Encoder_inputs, Decoder_inputs], 

outputs=Decoder_outputs) 

model.compile(optimizer='rmsprop', 

loss='categorical_crossentropy') 

model.summary() 

📝 3.3.10 

The following code will serve as a reiteration of the already created functions and 
deployment of the encoder and decoder. So let's take a look at what the summary 
of our model looks like. Run the individual code blocks in order. Your task is to list 
what is the number of parameters in the LSTM. 

 
import pandas as pd 

import string 

import re 

from urllib.request import urlopen 
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import numpy as np 

from unicodedata import normalize 

import urllib 

 
def input_file(file_name): 

  data = [] 

  file = urllib.request.urlopen(file_name) 

  for row in file: 

    row = row.decode("utf-8") 

    row = row.strip() 

    data.append(row) 

  return data 

 

data = 

input_file('https://priscilla.fitped.eu/data/nlp/slk.txt') 

print(data[1500]) 

print(len(data)) 

data = data[:10000] 

 
def create_english_slovak_sentences(data): 

  EN_sentences = [] 

  SK_sentences = [] 

  for data_point in data: 

    EN_sentences.append(data_point.split("\t")[0]) 

    SK_sentences.append(data_point.split("\t")[1]) 

  return EN_sentences, SK_sentences 

   

EN_sentences, SK_sentences = 

create_english_slovak_sentences(data) 

 

def preprocess_sentences(sentence):  

  re_print = re.compile('[^%s]' % re.escape(string.printable)) 

  table = str.maketrans('', '', string.punctuation) 

  cleaned_sent = normalize('NFD', sentence).encode('ascii', 

'ignore') 

  cleaned_sent = cleaned_sent.decode('UTF-8') 

  cleaned_sent = cleaned_sent.split() 

  cleaned_sent = [word.lower() for word in cleaned_sent] 

  cleaned_sent = [word.translate(table) for word in 

cleaned_sent] 

  cleaned_sent = [re_print.sub('', w) for w in cleaned_sent] 

  cleaned_sent = [word for word in cleaned_sent if 

word.isalpha()] 

  return ' '.join(cleaned_sent) 
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def preprocess_EN_SK_sentences(EN_sentences, SK_sentences): 

  SK_sentences_cleaned = [] 

  EN_sentences_cleaned = [] 

  for sent in SK_sentences: 

    SK_sentences_cleaned.append(preprocess_sentences(sent)) 

  for sent in EN_sentences: 

    EN_sentences_cleaned.append(preprocess_sentences(sent)) 

  return EN_sentences_cleaned, SK_sentences_cleaned 

 

EN_sentences_cleaned, SK_sentences_cleaned = 

preprocess_EN_SK_sentences(EN_sentences, SK_sentences) 

 

def build_data(EN_sentences_cleaned, SK_sentences_cleaned): 

  input_dataset = [] 

  target_dataset = [] 

  input_characters = set() 

  target_characters = set() 

     

  for SK_sentence in SK_sentences_cleaned: 

    input_datapoint = SK_sentence 

    input_dataset.append(input_datapoint) 

    for char in input_datapoint: 

      input_characters.add(char) 

         

  for EN_sentence in EN_sentences_cleaned: 

    target_datapoint = "\t" + EN_sentence + "\n" 

    target_dataset.append(target_datapoint) 

    for char in target_datapoint: 

      target_characters.add(char) 

             

  return input_dataset, target_dataset, 

sorted(list(input_characters)), 

sorted(list(target_characters))  

 

input_dataset, target_dataset, input_characters, 

target_characters = build_data(EN_sentences_cleaned, 

SK_sentences_cleaned) 

 
def get_metadata(input_dataset, target_dataset, 

input_characters, target_characters): 

  num_Encoder_tokens = len(input_characters) 

  num_Decoder_tokens = len(target_characters) 

  max_Encoder_seq_length = max([len(data_point) for data_point 

in input_dataset])  
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  max_Decoder_seq_length = max([len(data_point) for data_point 

in target_dataset]) 

  print('Number of data points:', len(input_dataset)) 

  print('Number of unique input tokens:', num_Encoder_tokens) 

  print('Number of unique output tokens:', num_Decoder_tokens) 

  print('Maximum sequence length for inputs:', 

max_Encoder_seq_length) 

  print('Maximum sequence length for outputs:', 

max_Decoder_seq_length) 

  return num_Encoder_tokens, num_Decoder_tokens, 

max_Encoder_seq_length, max_Decoder_seq_length 

 

num_Encoder_tokens, num_Decoder_tokens, 

max_Encoder_seq_length, max_Decoder_seq_length = 

get_metadata(input_dataset, target_dataset, input_characters, 

target_characters) 

 
def create_indices(input_characters, target_characters): 

  input_char_to_idx = {} 

  input_idx_to_char = {} 

  target_char_to_idx = {} 

  target_idx_to_char = {} 

  for i, char in enumerate(input_characters): 

    input_char_to_idx[char] = i 

    input_idx_to_char[i] = char 

  for i, char in enumerate(target_characters): 

    target_char_to_idx[char] = i 

    target_idx_to_char[i] = char 

  return input_char_to_idx, input_idx_to_char, 

target_char_to_idx, target_idx_to_char 

 

input_char_to_idx, input_idx_to_char, target_char_to_idx, 

target_idx_to_char = create_indices(input_characters, 

target_characters) 

 
def build_data_structures(length_input_dataset, 

max_Encoder_seq_length, max_Decoder_seq_length, 

num_Encoder_tokens, num_Decoder_tokens): 

  Encoder_input_data = np.zeros((length_input_dataset, 

max_Encoder_seq_length, num_Encoder_tokens), dtype='float32') 

  Decoder_input_data = np.zeros((length_input_dataset, 

max_Decoder_seq_length, num_Decoder_tokens), dtype='float32') 

  Decoder_target_data = np.zeros((length_input_dataset, 

max_Decoder_seq_length, num_Decoder_tokens), dtype='float32') 
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  print("Dimensionality of Encoder input data is : ", 

Encoder_input_data.shape) 

  print("Dimensionality of Decoder input data is : ", 

Decoder_input_data.shape) 

  print("Dimensionality of Decoder target data is : ", 

Decoder_target_data.shape) 

  return Encoder_input_data, Decoder_input_data, 

Decoder_target_data 

 

Encoder_input_data, Decoder_input_data, Decoder_target_data = 

build_data_structures(len(input_dataset), 

max_Encoder_seq_length, max_Decoder_seq_length, 

num_Encoder_tokens, num_Decoder_tokens) 

 
def add_data_to_data_structures(input_dataset, target_dataset, 

Encoder_input_data, Decoder_input_data, Decoder_target_data): 

  for i, (input_data_point, target_data_point) in 

enumerate(zip(input_dataset, target_dataset)): 

    for t, char in enumerate(input_data_point): 

      Encoder_input_data[i, t, input_char_to_idx[char]] = 1. 

    for t, char in enumerate(target_data_point): 

      Decoder_input_data[i, t, target_char_to_idx[char]] = 1. 

      if t > 0: 

        Decoder_target_data[i, t - 1, 

target_char_to_idx[char]] = 1. 

  return Encoder_input_data, Decoder_input_data,  

Decoder_target_data 

 

Encoder_input_data, Decoder_input_data, Decoder_target_data = 

add_data_to_data_structures(input_dataset, target_dataset, 

Encoder_input_data, Decoder_input_data, Decoder_target_data) 

 
import tensorflow 

from tensorflow import keras 

 

#from keras.models import Model 

#from keras.layers import Input, LSTM, Dense 

print('done') 

 
batch_size = 256 

epochs = 100 

latent_dim = 256 

 

Encoder_inputs = keras.layers.Input(shape=(None, 

num_Encoder_tokens)) 
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Encoder = keras.layers.LSTM(latent_dim, return_state=True) 

Encoder_outputs, state_h, state_c = Encoder(Encoder_inputs) 

Encoder_states = [state_h, state_c] 

 

Decoder_inputs = keras.layers.Input(shape=(None, 

num_Decoder_tokens)) 

Decoder_lstm = keras.layers.LSTM(latent_dim, 

return_sequences=True, return_state=True) 

Decoder_outputs, _, _ = Decoder_lstm(Decoder_inputs, 

initial_state=Encoder_states) 

Decoder_dense = keras.layers.Dense(num_Decoder_tokens, 

activation='softmax') 

Decoder_outputs = Decoder_dense(Decoder_outputs) 

 
model = keras.Model(inputs=[Encoder_inputs, Decoder_inputs], 

outputs=Decoder_outputs) 

model.compile(optimizer='rmsprop', 

loss='categorical_crossentropy') 

print(model.summary()) 

📝 3.3.11 

The last step in this phase is to train the model. We will train on 80% of the data and 
the remaining 20% will be used to evaluate the model. We can then save the created 
model using the save() function. 

 
model.fit([Encoder_input_data, Decoder_input_data], 

Decoder_target_data, batch_size=batch_size, epochs=epochs, 

validation_split=0.2) 

model.save('translation_slovak_to_english.h5') 

3.4 Machine translation - model deployment 

📝 3.4.1 

Once we have created our model we need to test and deploy it. To do this we need 
to create a few more functions to ensure that we can send the input sequence to 
the encoder and retrieve the initial state of the decoder. We then send the start 
token and initial state to the decoder to get the next output character. Then we add 
the predicted output character to the sequence and repeat this process until we 
receive the end token or reach the maximum number of predicted characters. 
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Encoder_model = Model(Encoder_inputs, Encoder_states) 

 

Decoder_state_input_c = Input(shape=(latent_dim,)) 

Decoder_state_input_h = Input(shape=(latent_dim,)) 

Decoder_states_inputs = [Decoder_state_input_h, 

Decoder_state_input_c] 

 

Decoder_outputs, state_h, state_c = 

Decoder_lstm(Decoder_inputs, 

initial_state=Decoder_states_inputs) 

Decoder_states = [state_h, state_c] 

Decoder_outputs = Decoder_dense(Decoder_outputs) 

 

Decoder_model = Model([Decoder_inputs] + 

Decoder_states_inputs, [Decoder_outputs] + Decoder_states) 

📝 3.4.2 

In the next step let's create a decode_sequence() function that will use the encoder-
decoder model we created. 

 
def decode_sequence(input_seq): 

  states_value = Encoder_model.predict(input_seq) 

  target_seq = np.zeros((1, 1, num_Decoder_tokens)) 

  target_seq[0, 0, target_char_to_idx['\t']] = 1. 

  stop_condition = False 

  decoded_sentence = '' 

  while not stop_condition: 

    output_tokens, h, c = Decoder_model.predict([target_seq]+ 

states_value) 

    sampled_token_index = np.argmax(output_tokens[0, -1, :]) 

    sampled_char = target_idx_to_char[sampled_token_index] 

    decoded_sentence += sampled_char 

    if (sampled_char == '\n' or len(decoded_sentence) > 

max_Decoder_seq_length): 

      stop_condition = True 

    target_seq = np.zeros((1, 1, num_Decoder_tokens)) 

    target_seq[0, 0, sampled_token_index] = 1. 

    states_value = [h, c]   

  return decoded_sentence 
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📝 3.4.3 

Finally, we can create a decode() function whose parameter is the index of a 
sentence from the data file. 

 
def decode(seq_index): 

  input_seq = Encoder_input_data[seq_index: seq_index + 1] 

  decoded_sentence = decode_sequence(input_seq) 

  print('-') 

  print('Input sentence:', input_dataset[seq_index]) 

  print('Decoded sentence:', decoded_sentence) 
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Machine Translation 
Evaluation 

Chapter 4 
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4.1 Basics of evaluation 

📝 4.1.1 

Language plays an essential role in how we interact with the world around us. Yet 
few people understand what good translation requires. The sign of a good 
translation is the expression of ideas and emotions in the target language as they 
were expressed in the source and in such a way that the target text is not a 
simplistic imitation of the source text. Common terms we encounter or have 
encountered include the following: 

• source text - the text to be translated, 
• the target text - the text translated into the desired language, 
• hypothesis - a machine-generated translation, 
• reference - human translation, 
• MT (Machine Translation) - machine translation. 

📝 4.1.2 

When evaluating a translation (machine or human) we may be interested in, for 
example, only the comprehension of the text without previous error analysis or on 
the contrary an in-depth analysis of the errors detected. In most cases, a detailed 
error analysis is carried out for the purpose of identifying the weaknesses and 
strengths of machine translation systems or of the translators themselves. The 
quality of a translation depends on various factors. It may be influenced by the 
subjective view of the translation by the human translator or by his/her experience 
and the area from which the source text originates. The relationship between the 
source text, the target text and their respective textual forms may also play a role. 

📝 4.1.3 

Evaluating the quality of a translation is very difficult. There are different 
conceptions of quality and different perspectives on the neatness of a translation, 
opinions on what is acceptable and what is not, as well as a wide range of 
translation approaches, resulting in ambiguity in defining criteria for evaluating a 
translation. 

Models and methods for evaluating the quality of translation, human or machine, 
require the inclusion of human assessors in the evaluation, either to identify errors 
or to determine different kinds of linguistic or functional equivalence. This requires 
the unconditional inclusion of the understanding of the translation as well as the 
assessment of its correspondence with the original which actually reflects the 
clarity and fidelity of the translation. Both attributes are also very important for the 
evaluation of machine translation. 
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📝 4.1.4 

The quality of machine translation can be evaluated either manually or 
automatically. Manual evaluation is mainly based on two factors: accuracy and 
precision of the translation. The disadvantage of manual evaluation is that it 
requires an expert (ideally a professional translator) to evaluate the translation. The 
aim is to assess how far the translation expresses the same things as the source 
text and how far the context of the original text is preserved. Both categories have a 
scale of 5 points. The disadvantage of manual evaluation is the time-consuming 
nature of the process and also the possible subjectivity of the evaluator. For this 
reason, automatic evaluation metrics are nowadays mainly used to evaluate the 
quality of a translation. 

📝 4.1.5 

Machine translation automatic evaluation metrics have the advantage of being non-
subjective and less time-consuming. However, they have the disadvantage that they 
need one or more reference translations to work with which determines how good 
the translation is. The more reference translations available, the more accurate the 
assessment but in practice, it is often the case that only one reference translation 
is available. Nowadays there are a large number of automatic metrics that are 
based on different approaches. We will present the most relevant ones. 

4.2 Automatic evaluation metrics 

📝 4.2.1 

The basic metrics of automatic evaluation include: 

• precision, 
• recall, 
• F-measure. 

The above metrics are applied to the results of binary classification which 
classifies the input data into two classes (positivity, and negativity) with the 
classification result taking the value 1 (true) or 0 (false). All other automatic 
evaluation metrics are based on these metrics. 

📝 4.2.2 

The precision determines the ratio of true (TP) and false positives (FP) which is 
calculated as: 
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def my_precision(ref, hyp): 

  correct = 0 

  lengthO = len(hyp) 

  my_ref = ref.copy() 

  for i in range(0,len(hyp)): 

    for j in range(0,len(my_ref)): 

      if hyp[i]==my_ref[j]: 

        correct += 1 

        my_ref.remove(my_ref[j]) 

        break 

  return float(correct/lengthO) 

📝 4.2.3 

Recall focuses on identifying true positive cases. It determines the ratio of true 
positives (TP) and false negatives (FN) results, i.e. all relevant cases in the dataset. 
Recall closely relates to precision, if precision increases, recall decreases and vice 
versa. 

We calculate the recall metric as: 

 

 
def my_recall(ref, hyp): 

  correct = 0 

  lengthR = len(ref) 

  my_ref = ref.copy() 

  for i in range(0,len(hyp)): 

    for j in range(0,len(my_ref)): 

      if hyp[i]==my_ref[j]: 

        correct += 1 

        my_ref.remove(my_ref[j]) 
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        break 

  return float(correct/lengthR) 

📝 4.2.4 

The F-measure (F-score) combines the metrics of precision and recall and 
determines their harmonic mean. Unlike the simple average, the harmonic average 
penalizes outliers ensuring equal weight for both metrics. 

The F-measure metric is calculated as: 

 

 
def my_f_measure(ref, hyp): 

  prec = float(my_precision(ref, hyp)) 

  rec = float(my_recall(ref, hyp)) 

  try: 

    res = (prec*rec)/((prec+rec)/2) 

  except: 

    res = NaN 

  return res 

📝 4.2.5 

The most well-known metric for automatic machine translation evaluation is the 
BLEU (Bilingual Evaluation Understudy) metric, which measures precision, i.e., how 
many words (and/or n-grams) in the machine-generated translations appeared in 
the human reference translations. In other words, it claims that the closer a 
machine translation is to a professional human translation the better it is. 

The issue can be that every translator has a different vocabulary and a different 
way of composing a sentence, so it is almost impossible to get identical 
translations. One way of comparing translations is at the level of so-called n-grams. 
This is a sequence of 1, 2, ..., n words, i.e. unigrams, bigrams,..., n-grams. The 
correspondence of these n-grams in translations is characterized by the so-called 
n-gram precision, which can be calculated for individual n-grams or even for the 
whole text. 

Ideally, the length of the candidate translation would be equal to the length of the 
reference translation. Otherwise: 
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• if a candidate translation is created that is too long, we penalize it using the 
modified n-gram precision, 

• if too short a translation is produced, a brevity penalty (BP) is applied. 

📝 4.2.6 

We can use the most popular natural language processing library, nltk, to compute 
the BLEU metric score. However, before we can compute the BLEU score we need 
to tokenize the reference text and the hypothesis. This means breaking the 
sentence into tokens, i.e. word units. We will also use a function from the nltk 
library to do this, namely word_tokenize(). We can then call the sentence_bleu() 
function, which will return the score for the BLEU metric. By setting the weights 
parameters, we can tell the function for which n-gram we want to calculate the 
BLEU. The closer the BLEU score is to 1, the better, and more correct the 
translation. Conversely, a value closer to 0 indicates a poor translation. 

 
from nltk.translate.bleu_score import sentence_bleu 

from nltk import word_tokenize 

 

ref = "Computer science spans theoretical disciplines (such as 

algorithms, theory of computation, information theory, and 

automation) to practical disciplines (including the design and 

implementation of hardware and software)." 

hyp = "Computer science includes theoretical disciplines (such 

as algorithms, theory of computing, theoretical computer 

science and automation) and practical disciplines (including 

hardware and software design and implementation)." 

 

ref = word_tokenize(ref) 

hyp = word_tokenize(hyp) 

 

print('BLEU-1:',sentence_bleu([ref], hyp, weights=(1,0,0,0))) 

print('BLEU-2:',sentence_bleu([ref], hyp, 

weights=(0.5,0.5,0,0))) 

print('BLEU-3:',sentence_bleu([ref], hyp, 

weights=(0.33,0.33,0.33,0))) 

print('BLEU-4:',sentence_bleu([ref], hyp, 

weights=(0.25,0.25,0.25,0.25))) 

 
Program output: 
BLEU-1: 0.7700677691930449 

BLEU-2: 0.656003030651081 

BLEU-3: 0.5422370790508815 

BLEU-4: 0.43076614970957955 
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