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1.1 Introduction to neural networks 

🕮 1.1.1 

Neural networks are currently considered by many to be one of the best machine 
learning algorithms. Why do we need machine learning algorithms? 

It is necessary to realize that there are areas where the "classic" programming 
approach is insufficient. 

For example, it is very difficult to write programs that solve problems such as 
recognizing a three-dimensional object from multiple perspectives in different 
lighting and in a “crowded scene.” Why? Because we don't know how to write such a 
program at all. Because we don't know how it is "done" even in our brain. Even if we 
had a good idea of how to do it, the program would be very complicated. 

Also, for example, it is very difficult to write a program to calculate the probability 
that a certain credit card transaction is fraudulent. There are probably no rules that 
are simple and reliable. It is necessary to combine a very large number of weak rules. 

Scammers are changing "tactics". The program must be constantly changing. 

These are the tasks for machine learning and neural networks. Instead of writing a 
program by hand for each specific task, we collect many examples that determine 
the correct output for a given input. A machine learning algorithm then takes these 
examples and creates a program that does the work. 

A program created by a learning algorithm can look very different from a typical 
handwritten program. If we do it right, the program works correctly for new cases as 
well as for those cases we haven't trained. If the situation changes, the program can 
also be changed by training to new data. The cost of "huge calculations" is often 
cheaper than the cost of a team of programmers to create a "classic" program for a 
given task. 

 

🕮 1.1.2 

The reasons for studying neural networks are as follows: 

1. Understanding the real functioning of the brain 
2. Understand the style of parallel computing inspired by neurons and their 

adaptive connections. 

This calculation is a very different style from the sequential calculation. Such an 
approach should be good for tasks where the brain excels (such as vision). It should 
be unsuitable for tasks where the brain lags behind (for example, calculate 23 * 71). 
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This new approach to information processing is represented by the theory of artificial 
neural networks. It is not only an effective IT tool for the creation and design of new 
parallel approaches to solving artificial intelligence problems, but it is also an integral 
part of modern neuroscience, which is used to access computer simulations of 
processes taking place in the brain. 

3. Solve practical problems using new brain-inspired machine learning 
algorithms 

Such algorithms are very useful, even if they are not a real (real) demonstration of 
how the brain works. 

📝 1.1.3 

Which of the listed tasks is more suitable for solving using neural networks? 

• Recognition of persons 

• Calculate 1014 * 1024 

🕮 1.1.4 

The NN theory is based on neurophysiological knowledge about the human brain. It 
tries to explain behavior based on the principle of information processing in nerve 
cells. The size of a human neuron is 20 µm. The human brain contains 20-100 billion 
neurons, with each neuron interconnected with 1,000-10,000 other neurons. The 
speed of propagation of impulses in the brain is approximately 400 km/h. 

Thus, a neuron can receive signals from the surroundings from other neurons 
(dendrites), the neuron processes (integrates) the received signals, the neuron (axon) 
sends the processed input signals to other neurons from its surroundings. 

We can even simulate one neuron (with complex processes). It is even much faster 
than the real thing. However, the power of the human brain is that: 

• uses a large number of slow neurons, 
• they are grouped into a very complex network, the size, typology and geometry 

of which is inimitable, 
• they are very small and very "low-power". 

Neurons are connected to each other in a complex network structure (called a neural 
network), while individual connections have either an excitatory (increase in activity) 
or an inhibitory (decrease in activity) character. 

The system of connections and their excitation or the inhibitory character forms the  
architecture of the neural network, which alone determines the properties of the 
neural network. 
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🕮 1.1.5 

Neuron models are largely an abstraction of the mechanism of how neuron cells 
process information. It is impossible to create an exact analogy of the 
"computational" capabilities of a real neuron. 

The simplest types of neural networks were proposed by McCulloch and Pitts in 
1943. Their neuron model is an important landmark in the development of the theory 
of neural networks. The elementary unit of the McCulloch and Pitts neural network is 
the logical neuron (computational unit), and the state of the neuron is binary (ie, it 
has two possible states, 1 and 0). 

The logic neuron system contains both excitatory inputs (described by binary 
variables x1, x2, ..., xn, which amplify the response) and inhibitory inputs (described by 
binary variables xn+1, xn+2, ..., xm, which weaken response). 

Logical neurons and neural networks were first studied in the publication of Warren 
McCulloch and Walter Pitts "A logical calculus of the ideas immanent to nervous 
activity" from 1943, which is a landmark in the development of the metaphor of 
connectionism in artificial intelligence and cognitive science. It has been shown that 
neural networks are an effective computational tool in the domain of Boolean 
functions. 

It is interesting that the work of McCulloch and Pitts is very difficult to read, the 
mathematical-logical part of the work was probably written by Walter Pitts, who was 
self-taught both in logic and mathematics. Only thanks to American scientists, the 
logician S.C. Kleene and the computer scientist N. Minsky, this important work was 
"translated" in the second half of the 1950s into the standard language of 
contemporary logic and mathematics, thus making the ideas contained in it generally 
accessible and accepted. 

🕮 1.1.6 

A logical neuron is an elementary unit of NN. 
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The logic neuron system contains excitatory inputs (binary variables x 1, x2, ..., xn, 
which amplify the response) and inhibitory inputs (binary variables xn+1, xn+2, ..., xm, 
which weaken the response). 

The state of a neuron is binary (i. e. it has two possible output states, 1 and 0). 

The rule applies: 

• the activity is one if the internal potential of the neuron defined as the 
difference between the sum of the excitatory input activities and the inhibitory 
input activities is greater than or equal to the threshold b, 

• otherwise it is zero. 

 

🕮 1.1.7 

Let's take a closer look at the previous rule. 

 

Transferring b to the other side of the inequality, we get 

 

We can also rewrite the function y in the following form: 

 

when: 

 

The function 𝜑(𝑣) represents the well-known signum function in mathematics (the 
so-called "step function" or sign function). 

The graph of this function is as follows: 
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🕮 1.1.8 

We already know that the output of an artificial neuron is defined as a signed (step) 
function. 

 

while v represents the sum of inputs and bias b. 

 

Furthermore, we can implement simple modifications where each input xi is 
multiplied by +1 or -1 depending on whether it is an inhibitory or an excitatory input. 
Subsequently, we generally replace +1 or -1 with a weight wi 

 

whereas: 

 

We can write the resulting activity of the neuron as: 

 

🕮 1.1.9 

An artificial neuron model is defined as follows: 
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while y_in represents the so-called internal potential of the neuron. 

For example, for four inputs, we can imagine the neuron as follows: 

 

The neuron model consists of a set of synapses characterized by their thickness or 
weight. 

A neuron can also be expressed as: 

 

while the internal potential is defined as follows: 

 

In practice, bias is often not singled out separately (mainly due to simpler computer 
calculation). Bias is an external parameter of the artificial neuron and can be included 
directly in the summation. 
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1.2 Implementation of Boolean binary functions 

🕮 1.2.1 

At the beginning of the era of neural networks, it was assumed that they would be 
able to simulate Boolean binary functions. Although of course it is not a priority of 
NN to simulate them, we can show several interesting properties of a logic neuron 
on this problem. 

Let us therefore assume one logic neuron with two inputs, two weights and a bias. 
The activation function is a simple staircase function. 

In our neuron, the weights are set as follows w1 = 1; w2 = 1 and bias w0 = -1.5. 

 

If we input the numbers x1 = 0 and x2 = 1, then we calculate the result of the neuron 
as follows: 

 

After inputting 0 and 1, we get the result 0. The artificial neuron probably implements 
the AND logical function. 

The value tables of the logical AND function are known:  

 

For correctly set weights of a neuron implementing the AND function, it is therefore 
necessary that: 
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This inequality expresses the first row of the logic function table. The left side of the 
inequality must be less than zero, because only in this case the activation step 
function will give us a result equal to 0. 

In this way, we create inequalities for each row of this table. To set the correct 
weights, it is necessary to solve a system of inequalities (inequalities for all 4 rows 
of the table) 

 

The solution to this system of inequalities is, for example, the values: 

 w1 = 1, w2 = 1 and w0 = -1,5. 

 

In this way, we found the weights of the artificial neuron. (w1 = 1, w2 = 1 a w0 = -1,5), 
for which it will implement a logical function AND. 

🕮 1.2.2 

Similarly, it is possible to find the weights of the neuron for the implementation of 
other Boolean functions. For example, for the OR function it can be scales: w1 = 1, w2 
= 1 and w0 = -0,5), 
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🕮 1.2.3 

However, there are also Boolean functions that cannot be simulated by a logic 
neuron. An example of such a function is, for example, a function XOR. 

 

 

In the case of this function, it is necessary to solve the following inequalities: 

 

if we mark 

 

we get: 
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However, this system of equations has no solution. Since h is a positive number, w2 
and w1 are greater than h. Therefore, their sum cannot be less than h. 

 

It means that the Logical XOR function can NOT be implemented by a single neuron. 

🕮 1.2.4 

The logical function XOR belongs to the so-called linear non-separable functions. 

Definition: 

The Boolean function f(x1, x2,..., xn) is linearly separable if there is such a plane w1x1 + 
w2x2 + ...+ wnxn - J = 0, that separates the space of input activities such that there are 
vertices in one part of the space rated 0, while in the other part of the space the 
vertices are rated 1. 

Theorem: 

A logic neuron is able to simulate only those Boolean functions that are linearly 
separable. 

🕮 1.2.5 

The question remains how to solve the XOR problem. In the case of Boolean 
functions, Boolean algebra tells us that a Boolean function can be rewritten in 
conjunctive clauses. Conjunctive clauses can be expressed by one logical neuron. 
We combine the outputs from these neurons into a disjunction using a neuron. 

 

We can attribute the XOR function as follows: 
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Only AND, OR and NOT functions are used in its transcription. All can be expressed 
by a single neuron. We can thus create the following network: 

 

This is how any Boolean function can be accessed. The sentence applies: 

• Any Boolean function f is simulated using a 3-layer neural network. 

• 3-layer neural networks containing logic neurons are universal computing 
devices for the domain of Boolean functions. 
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2.1 Perceptron 

🕮 2.1.1 

The main objection to an artificial neuron (as defined by McCulloch and Pitts) is that 
it is not capable of learning, its parameters (weights and threshold coefficients) are 
fixed so that the neuron performs the required Boolean function (logical conjunction 
or conjunctive clause). Neural networks constructed from these neurons are 
designed to also perform a Boolean function of general form. 

However, the neuron can also be taught. During active dynamics, the neuron 
performs the transformation of the input vectors to the output value. The parameters 
of the neuron are constant at this moment. On the other hand, adaptive dynamics is 
a process whose task is to set these parameters of the neuron so that the neuron 
performs the required transformation. The parameters that are adapted during the 
neuron's learning are usually only the weights of the input synapses of the neuron, 
including the synapse representing the threshold. 

Frank Rosemblatt (1928 - 1969) included learning in the construction of the 
McCulloch and Pitts-type neuron. Weight coefficients and threshold coefficients 
were considered variable parameters of the "model", which are set by the learning 
process. 

🕮 2.1.2 

Frank Rosemblatt's neuron was named Perceptron. It was inspired by the human eye. 
He modeled perception - perception, sensation, ability to perceive. 

Its task was to recognize individual recorded characters using optical sensors 
arranged in a 20x20 array of elements. The basic goal of the adaptation process of 
the perceptron is to set the weighting coefficients of the connections so that the 
activities of neurons from the third layer (response area) correctly classify the image 
falling on the retina. Regardless of the original meaning, the term perceptron is used 
for all feedforward neural networks, i.e. networks with a layered arrangement of 
neurons and one-way signal propagation from input to output. 
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🕮 2.1.3 

The scales therefore represent the memory of the neuron. The learning of the neuron 
is provided by an adaptation algorithm that sets the value of the neuron's weights. 
This process usually takes place iteratively based on the presented examples, when 
the adaptation algorithm has at its disposal a set of pairs of input values and their 
corresponding outputs. 

Thus, adaptation algorithms proceed similarly to a human when they search for 
solutions based on analogy with known examples. Setting the neuron's weights thus 
corresponds to finding the most accurate transformation of input vectors into output 
vectors based on known input values, with the assumption that the found 
transformation will be sufficiently general for other unknown examples of the given 
area. 

NN can find transformations even in those tasks that are analytically difficult to solve 
or unsolvable. They need enough examples. The disadvantage is that the resulting 
transformation is hidden in the network structure, it cannot be used to explain the 
solution of the task. 

🕮 2.1.4 

We can divide adaptation algorithms into two basic areas: 

• Unsupervised Learning, 

• Supervised learning. 

In supervised learning, a countable finite set M of pairs x and yd is available, which 
represent the inputs and the corresponding correct outputs of the solved task. 
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So we have at our disposal examples of correct behavior, correct transformation of 
input vectors into output vectors. Direct transformation of input values to output 
values is unknown. 

The set of all available values thus represents a known part of the system's behavior. 
This set is then used by the adaptive algorithm to train the network and also to verify 
its function. The set M of all available data is divided into two parts: 

• training set 

• test set. 

The ratio of the number of elements in the training and testing set is not fixed. 

🕮 2.1.5 

The training of a neuron (and, after generalization, also of feedforward networks) 
usually takes place iteratively. The algorithm presents individual elements of the 
training set successively to the neuron, determines its response to the presented 
input and, based on the output, performs the correction of the neuron's weights. The 
interval in which all patterns of the training set are presented at least once is called 
the learning epoch. 

Stopping adaptation is most often achieved: 

• achieving the desired small error of the transformation 

• by stopping the transformation error from falling 

• by reaching the maximum number of epochs. 

In order to evaluate the moment when it is appropriate to end the adaptation (the 
transformation found is sufficiently accurate, but at the same time does not lose its 
generality), we set aside a test set. During the adaptation, the performance of the 
found transformation is periodically tested on it. 

🕮 2.1.6 

Iterative learning of a neuron with a teacher takes place in the following typical steps: 

1. Preprocessing of input data 
2. Definition of training and testing set 
3. Definition of network structure / neuron parameters 
4. Initialize neuron weights, usually random numbers 
5. n=0; learning epoch counter 
6. THE LEARNING EPOCH 
7. Evaluation of the success of the network on the test set, if it is insufficient, go 

to point 4, ev. 3. Alternatively, terminate the algorithm with failure. 
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While the following steps are implemented in the LEARNING EPOCH: 

• set the learning epoch to n = n+1 and verify that the number of epochs is not 
greater than max 

• n-th learning epoch: 
o select one input vector from the training set (deterministically, 

randomly), 
o obtaining the response of the neuron, evaluating the classification error 

based on the comparison of the actual and planned output, 
o correction of neuron weights based on error, 
o if the learning epoch is not complete (not all inputs from the training set 

have been tested), go to select the next input vector, 
o t the end of the epoch, it evaluates the classification error over the 

entire training set. If the error is less than the desired error, stop 
learning. 

2.2 Hebbian Learning 

🕮 2.2.1 

Hebbian learning represents the oldest intuitive rule for a neuron with binary inputs 
and outputs. It was defined in 1949 by Canadian psychologist Donald Hebb while 
studying conditioned reflexes. Hebb hypothesized that: 

• conditioned reflexes are established on the basis of strengthening or 
weakening of connections between individual neurons, 

• if two connected neighboring neurons are active at the same time, the 
coupling between them is strengthened, while discordant activations weaken 
it. 

Therefore, if the neuron is excited by its inputs correctly, the inputs (their weights) 
are strengthened, otherwise, incorrect excitations are weakened. Thus, Hebb's rule is 
based on a neurophysiological analogy. 

🕮 2.2.2 

If two neurons are active at the same time, they should have a greater degree of 
mutual interaction than neurons whose activity does not show correlation. In such a 
case, their interaction should be either zero or very small. 

This means in practice that the synapses (weights) between neurons are 
strengthened if the activity of the input neuron leads to the activity of the neuron on 
the output side of the synapses. 

For a neuron with binary input x, weights w, output y and predicted output yd,the Hebb 
rule can be written as: 
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• If the neuron is activated correctly (y = 1; yd = 1), then in the next step n + 1 the 
wi connections that caused this activation will be strengthened by the value ∆: 

 

• If the neuron is not activated correctly (y = 1; yd = 0), the connections that 
caused this activation are weakened by the value ∆:  

 

• If the neuron is not activated (y = 0), the weights s do not change (nothing 
happens) 

🕮 2.2.3 

Another originally heuristic rule that is also applicable to general real inputs and 
outputs of a neuron is the Delta rule: 

 

where μ is a suitably chosen constant from the interval (0,1) affecting the adaptation 
speed. 

The delta rule applies exactly to linear neurons, i.e. neurons with a linear activation 
transfer function, but after modification it is also applicable to neurons with a 
nonlinear activation transfer function. 

🕮 2.2.4 

We will use Hebbian learning in perceptron training. It is intended for dichotomous 
classification, i. e. splitting into two classes, where the classes are assumed to be 
linearly separable in the example space. There is a possibility to separate objects in 
the example space using a hyperplane, for example: a straight line in 2-dimensional 
or a plane in 3-dimensional space. 
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A neural network is a dynamic system, that is, a time-dependent system. We will talk 
about the state of the neuron in time t or in time t+1. 

 

The separating hyperplane is given by the equation: 

 

🕮 2.2.5 

 

The learning process is a search for appropriate synaptic weights. From a practical 
point of view, let's note: 

 

where n is the number of neurons of the associative layer. 

In the case of zero input, it holds that: 
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Assume a training sample of vectors: 

 

🕮 2.2.6 

Perceptron learning algorithm: 

1. initialzation of weights, 
2. if the input vector x(t) is correctly classified by w(t), then the weights do not 

change. 

 

If the input vector x(t) is not correctly classified by w(t), then the weights change. 

 

Where 𝛾 is the learning parameter and can represent any positive variable that is 
constant during the learning period or can also change 𝛾 → 𝛾(𝑡). 

Alternatively, perceptron learning can also be expressed by the formula: 

 

whereas: 
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🕮 2.2.7 

In neural networks, the perceptron convergence theorem holds: 

Let us have a training set of vectors X that can only belong to two different classes 
CL1 and CL2, which are linearly separable. After realizing "k" mistakes, the perceptron 
will definitely reach a state where it will not change its synaptic weights, when it 
converges. This means that it will reliably classify the vectors into the appropriate 
classes. 

2.3 Example 

🕮 2.3.1 

In a practical example, we will create a perceptron for fruit classification into two 
classes C1 and C2. We will adjust the weights of the perceptron using Hebb learning 
based on examples from the training set. This contains two examples (121; 16.8), 
(114; 15.2) from the first class C1 and two examples (210; 9.4), (195; 8.1) from the 
second class C2. The first value in each training example represents the weight of 
the fruit (in grams), the second its length (in cm). 

 

We can visualize the training set. 

 

If we knew the correct setting of the weights, then it is obvious that I will also be able 
to correctly classify any fruit. Assume that we know the correct setting of the scales. 
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For this setting of weights, we can even determine a separating hyperplane that 
separates examples of one class from another. 

 

With the correct setting of the scales, it is then easy to classify new unknown fruits. 
For example, I classify fruit with a weight of 140g and a length of 17.9 cm. By simply 
transferring the vector (140; 17.9) to the input of the perceptron, we can perform the 
calculation. 
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The perceptron result classified our input example (unknown fruit) into class C1. 

🕮 2.3.2 

The question remains how to correctly set the weights and bias value for the 
perceptron. In the step element, we set the weight values as follows w1 = -30; w2 = 
300 and bias w0 = -1230 

Subsequently, I will go through all examples of the training set and implement 
Hebbian learning. 

 

Let's take the first example of the training set (121; 16.8), find out the response 
(result) of the neuron and compare the result with the value +1 to find out if it is 
necessary to adjust the weights. Comparing the result with the value +1 is important 
because the first example is to be classified in class C1, i. e. the result must be +1. 

 

The result of the perceptron is +1, the example belongs to C1, i.e. the actual result 
should have been +1 as well. For this reason, there is no need to adjust the weight. 

In the case of the second example, however, we find that it is necessary to adjust the 
weights. 
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We adjust the weights by applying the following formulas. 

 

🕮 2.3.3 

During perceptron learning, we used four examples of the training set to adjust the 
weights by successively feeding them to the input of the perceptron, and in case of 
a wrong result, we adjusted the weights using Hebbian learning. If we fed all the 
examples to the input of the perceptron and adjusted the weights if necessary, we 
realized one epoch of learning. 

For the following four training examples: 

 

In the second epoch, we can implement the following steps: 

1.  
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2.  

 

3.  
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4.  

 

Note that we have not changed any weights in this epoch. It is obvious that if we were 
to implement other epochs, nothing would change. So, we found the right balance 
setting. 

We can define a separating hyperplane for this weight setting. 

 

📝 2.3.4 

For the previous example, we will create a simple source code. The only library we 
will need is numpy. 

from numpy import array 

We will work with known training data. 
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We will copy these into the array training_data 

from numpy import array 

training_data = [ 

    (array([121,16.8]), 1), 

    (array([114,15.2]), 1), 

    (array([210,9.4]), -1), 

    (array([195,8.1]), -1), 

] 

print(training_data) 

 

Program output: 

[(array([121. ,  16.8]), 1), (array([114. ,  15.2]), 1), 

(array([210. ,   9.4]), -1), (array([195. ,   8.1]), -1)] 

We define a signed (step) function. 

def aktivacna_fn(x): 

    if x>=0: 

        return 1 

    else: 

        return -1 

In the general solution, we set the initial values of weights and bias randomly. In our 
example, we will set these values directly, according to the previous settings. 

#nastavíme váhy 

w = array([-30,300]) 

b = -1230 

eta = 0.01 

In our example, for the sake of clarity, we will create only one epoch, i.e. we 
recalculate the training set only once. 

print('aktualne vahy: ' , w) 

print('bias: ', b) 

 

for i in range(0, 4): 

    print('---') 

    x, y = training_data[i] 
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    print('trenovacie data: ' , x , ', vysledok: ', y) 

    vnutorna_energia = ((x * w).sum()) + b 

    print('vnutorna energia: ',vnutorna_energia) 

    predikcia = aktivacna_fn(vnutorna_energia) 

    print('predikcia: ',predikcia) 

    chyba = y - predikcia 

    if (chyba != 0): 

        print('potrebne je upravit vahy') 

        w = w + (eta * chyba * x) 

        b = b + (eta * chyba * 1) 

    print('aktualne vahy: ' , w) 

    print('bias: ', b) 

 
Program output: 
aktualne vahy:  [-30 300] 

bias:  -1230 

--- 

trenovacie data:  [121.   16.8] , vysledok:  1 

vnutorna energia:  180.0 

predikcia:  1 

aktualne vahy:  [-30 300] 

bias:  -1230 

--- 

trenovacie data:  [114.   15.2] , vysledok:  1 

vnutorna energia:  -90.0 

predikcia:  -1 

potrebne je upravit vahy 

aktualne vahy:  [-27.72  300.304] 

bias:  -1229.98 

--- 

trenovacie data:  [210.    9.4] , vysledok:  -1 

vnutorna energia:  -4228.3224 

predikcia:  -1 

aktualne vahy:  [-27.72  300.304] 

bias:  -1229.98 

--- 

trenovacie data:  [195.    8.1] , vysledok:  -1 

vnutorna energia:  -4202.9176 

predikcia:  -1 

aktualne vahy:  [-27.72  300.304] 

bias:  -1229.98 

For completeness, we also calculate a straight line as a separating hyperplane 
given by the correct setting of weights and bias. 
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def priamka(x): 

    y = (w[0]*x + b)/(w[1]*(-1)) 

    return y 

We draw the separating hyperplane graphically. 

%matplotlib inline 

import matplotlib.pyplot as plt 

from matplotlib.colors import ListedColormap 

cm = plt.cm.RdBu 

cm_bright = ListedColormap(['#FF0000', '#0000FF']) 

ax = plt.subplot()   

ax.set_title("Result") 

# Plot the training points 

#ax.scatter(x[:, 0], x[:, 1], c=q, cmap=cm_bright) 

 

 

for x, expected in training_data: 

    if expected==1: 

        vzor='r' 

    else: 

 

        vzor='b' 

    print(x[0]) 

    ax.scatter(x[0], x[1], color=vzor) 

 

plt.plot([110,220],[priamka(110),priamka(220)]) 

#plt.plot([25,200],[50,200]) 

 

plt.show() 

print(priamka(110)) 

print(priamka(220)) 

 
Program output: 
121.0 

114.0 

210.0 

195.0 
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14.249493846235817 

24.40320475251745 

 

The last step will be to use the trained values to predict the unknown fruit: 

def odhad(vektor): 

    vnutorna_energia = ((vektor * w).sum()) + b 

    predikcia = aktivacna_fn(vnutorna_energia) 

    return predikcia 

In the case of a fruit that is 180 g and 10 cm, we can find out that it belongs to the 
second class C2: 

vektor = array([180,10]) 

print(odhad(vektor)) 

 
Program output: 
-1 

 

I the case of a fruit that is 140 g and 20 cm, we can find that it belongs to the first 
class C1: 

vektor = array([140,20]) 

print(odhad(vektor)) 

 

Program output: 

1 
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🕮 2.3.5 

Literature: 

 

• Hinton, G.: Neural Networks for Machine Learning, University of Toronto. 
https://www.coursera.org/learn/neural-networks/home/welcome 

• Becker, D.: Deep Learning in Python, 
https://www.datacamp.com/courses/deep-learning-in-python 

• Artificial Neural Networks (Part 1) - Classification Using Single Layer 
Perceptron Model - http://scholastictutors.webs.com/ 

• Blaha, M.: Umělá inteligence. 
http://portal.matematickabiologie.cz/index.php?pg=analyza-a-hodnoceni-
biologickych-dat--umela-inteligence 

• Sinčák, P., Andrejková, G.: Neurónové siete - Inžiniersky prístup (1. diel) 
http://neuron-
ai.tuke.sk/cig/source/publications/books/NS1/html/index.html 

• Kvasnička, V.: Neurónové siete 
http://www2.fiit.stuba.sk/~kvasnicka/NeuralNetworks/index.html 
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Chapter 3 
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3.1 Single layer perceptron 

🕮 3.1.1 

The activation function of a neuron is a function of the input to the neuron ini(t). Thus, 
the state of neuron i is defined by the variable yi in the form yi = f(ini). 

We call the function f( ) the activation function of the neuron. So far, we have only 
used a signed (step) function for the activation function. 

 

However, as well as the signed function, we can also use other functions, e.g. linear 
function. 

 

We can visualize the graphs of both functions. 

 

🕮 3.1.2 

Among other activation functions, the following functions are also often used: 

A piecewise linear function 

 

Sigmodial function 
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where 𝛼 is the sigmoid steepness parameter 

This function is very often used in feedforward neural networks. The function is 
"smooth", this feature is very important for setting the weights in the learning 
process. A smooth function is differentiable. 

🕮 3.1.3 

We already know that a learning neuron alone can solve linearly separable problems. 
We also know that for other types of problems, neurons can be connected into neural 
networks. 

Conceptually, the simplest network is the Single Layer Perceptron. These are M 
independent, parallel working neurons. Thus, each of these neurons realizes the 
transformation of the input vector to the output value independently of the other 
neurons. 

From the point of view of organizational dynamics, the network consists of N neurons 
of the input layer and a layer of M output neurons. Both layers are fully connected to 
each other when every j-th output neuron is connected to all input neurons. 

 

In the course of active dynamics, the network generally realizes the display from 
Rn→Rm,which was set during the adaptation dynamics. The specific values of the 
output values are given by the activation transfer functions of the output neurons, 
that is, for example, in the case of sigmoidal activation functions approximating a 
sharp nonlinearity, it is the realization of the display from Rn→(0,1)m 

🕮 3.1.4 

Let's consider the classification possibilities of a single-layer perceptron. If we 
consider the mapping Rn→{0,1}m, .e. the classification mapping into two classes, we 
can find m separating hyperplanes in space, one for each neuron of the output layer.  

However, the mere multiplication of neurons in the output layer does not bring any 
change in classification possibilities compared to a simple perceptron, because the 
neural network lacks the possibility to further combine the outputs of individual 
neurons and thus enable classification into several classes. 
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For illustration, we present a graphic representation of the classification of the 
perceptron into the mentioned four classes. 

 

 

🕮 3.1.5 

Most real problems are non-linear in nature. This means that they cannot be solved 
by adding linear bounds. 

The problem with the limited computing power of perceptrons was solved only in 
1986, when Rumelhart, Hinton and Williams (1986) introduced a training rule called 
the error backpropagation method for feedforward neural networks with hidden 
neurons. 

Multilayer feed-forward artificial neural networks (multilayer feed-forward ANN), 
which are trained by the rule of back propagation of errors, are also capable of solving 
non-linear problems. Feedforward neural networks are characterized by the fact that 
there are only feedforward connections between neurons. 

Each neuron of one layer sends signals to each neuron of the next layer. There are 
no connections to the previous layer or within one layer. 

🕮 3.1.6 

The first typical feedforward multilayer neural network is the Multilayer Perceptron. 

For this type of neural network, adjacent layers are fully connected. It is also true that 
there are no links within one layer. 

The number of neurons in the hidden layers can be different, it is chosen according 
to the nature of the solved task, usually in the range between the number of input and 
output neurons. 



41 

 

A multi-layer perceptron realizes the mapping Rn→Rm 

The activity takes place in steps k, while the outputs of the j-th neurons in layer k are 
calculated in parallel according to the known relationship: 

 

where n expresses the dimension of the input vector as well as the number of 
neurons in the k-th layer 

🕮 3.1.7 

The first typical feedforward multilayer neural network is the Multilayer Perceptron. 

For this type of neural network, adjacent layers are fully connected. It is also true that 
there are no links within one layer. 

The number of neurons in the hidden layers can be different, it is chosen according 
to the nature of the solved task, usually in the range between the number of input and 
output neurons. 

 

A multi-layer perceptron realizes the mapping Rn→Rm 
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The activity takes place in steps k, while the outputs of the jth neurons in layer k are 
calculated in parallel according to the known relationship: 

 

where n expresses the dimension of the input vector as well as the number of 
neurons in the k-th layer 

3.2 Adaline and Madaline  

🕮 3.2.1 

In practice, instead of a simple perceptron, a continuous perceptron is often used, 
the so-called Adaline (Adaptive Linear Neuron). 

Adaline and Simple Perceptron have the same topology, but different learning 
method as well as the overall focus of the NN. It was described by Widrow and Hoff 
in 1960. Similar to the perceptron, it is used for linear classification into two classes. 

 

Perceptron uses class labels to learn weight values. Adaline uses continuous values 
(based on the input) to figure out the weight values, which is "stronger" because it 
tells us "by how much" we classified correctly or incorrectly. Adaline's learning 
algorithm is different. It uses the so-called gradient learning method. The 
requirement is that the learning behavior is as similar as possible to the overall 
behavior of the teacher. 
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🕮 3.2.2 

Among the simplest feedforward neural networks is the  Madaline neural network 
(Many Adaptive Linear Neurons). 

Its basic element is the Adaline neuron. The output signal Y is equal to 1, if at least 
one value of the signal coming from the hidden neurons (i.e.Z1, Z2 or both at the same 
time) 

The output neuron Y actually performs the logic function "OR" on the signals from 
neurons Z1 and Z2  

 

Madaline uses the MRI Adaptation Algorithm (1960) to adapt only the input weights 
to the hidden layer. The weight values to the output neuron Y are fixed. 

The output neuron Y performs the logical OR function. The weights v1, v2 and b3 are 
fixed, that is: 

, 

the activation function for Z1, Z2 and Y is a classic step function (sign function). We 
will consider the training patterns [s,t], where s is the input vector and t is the output 
signal 

The program: 

1. Initialization of v1, v2 and b3. Initialization of remaining weights - random. 
Setting the learning coefficient α 

2. For each training pair s:t 

• Activate input neurons xi=si 
• Calculate the input values of the hidden layers and the actual output value 

of Madaline: 
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3. Update weight coefficients - network learning: 

• If y = t (i.e. the output of the network is equal to the output of the training 
pattern), then the weights and biases do not change 

• For y ≠ t and t = 1, so for weight values on connections to ZJ (J=1,2): 

 

• For y ≠ t and t = -1, so for weight values on connections to ZJ (J=1,2): 

 

🕮 3.2.3 

Literature: 

• Kvasnička, V.: Neurónové siete - 
http://www2.fiit.stuba.sk/~kvasnicka/NeuralNetworks/index.html  

• Volná, E.: Neuronové sítě 1 - 
https://www1.osu.cz/~volna/Neuronove_site_skripta.pdf  

• Hinton, G.: Neural Networks for Machine Learning, University of Toronto - 
https://www.coursera.org/learn/neural-networks/home/welcome  

• Blaha, M.: Umělá inteligence - 
http://portal.matematickabiologie.cz/index.php?pg=analyza-a-hodnoceni-
biologickych-dat--umela-inteligence 

• Sinčák, P., Andrejková, G.: Neurónové siete - Inžiniersky prístup (1. diel) - 
http://neuron-ai.tuke.sk/cig/source/publications/books/NS1/html/index.html  

  

http://www2.fiit.stuba.sk/~kvasnicka/NeuralNetworks/index.html
https://www1.osu.cz/~volna/Neuronove_site_skripta.pdf
https://www.coursera.org/learn/neural-networks/home/welcome
http://portal.matematickabiologie.cz/index.php?pg=analyza-a-hodnoceni-biologickych-dat--umela-inteligence
http://portal.matematickabiologie.cz/index.php?pg=analyza-a-hodnoceni-biologickych-dat--umela-inteligence
http://neuron-ai.tuke.sk/cig/source/publications/books/NS1/html/index.html
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Moving from shallow 
learning to Deep Learning 

Chapter 4 
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4.1 Definition of Deep Learning 

🕮 4.1.1 

Simple kinds of networks were discussed in previous sections. Structures such as 
multi-layer perceptron can be called shallow neural networks (SNNs). ANNs that 
have many hidden layers containing weights are called deep neural networks, and the 
process of training them is called deep learning. By increasing the number of layers 
and making the ANN deeper, the model becomes more flexible and will be able to 
model more complex functions. However, to gain this increase in flexibility, you need 
more training data and more computation power to train the model. 

The term "deep" refers to the depth of the network, which is the number of layers it 
contains. 

In traditional machine learning models, the input data is processed through a small 
number of layers, typically no more than a few dozen. However, deep learning models 
can have hundreds or even thousands of layers, which allows them to learn much 
more complex representations of the input data. 

The use of deep neural networks allows for the automatic extraction of features at 
multiple levels of abstraction, which is critical for processing complex data such as 
images, audio, and text. By stacking multiple layers on top of each other, each layer 
can learn to transform the input data to make it easier for the next layer to learn a 
more abstract representation. This process can continue for many layers, allowing 
the network to learn highly complex representations of the input data. 

Overall, the term "deep" in deep learning refers to the depth of the neural network, 
and the ability of deep neural networks to learn highly complex representations of 
the input data. 

🕮 4.1.2 

Both deep neural networks (DNNs) and shallow neural networks (SNNs) are types of 
artificial neural networks (ANNs) used for machine learning tasks. They share several 
similarities, including: 

1. Activation functions: Both DNNs and SNNs use activation functions to 
introduce nonlinearity into the network, allowing it to model complex 
relationships between the input and output. 

2. Backpropagation: Both DNNs and SNNs use a backpropagation algorithm to 
update the network weights based on the error between the predicted output 
and the actual output during training. 

3. Gradient descent: Both DNNs and SNNs use gradient descent optimization 
algorithms to minimize the error between the predicted output and the actual 
output during training. 
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4. Similar architecture: SNNs and DNNs can have similar architectures, such as 
a series of fully connected layers or convolutional layers, followed by a final 
output layer. 

However, the main difference between DNNs and SNNs is the number of layers they 
have. While SNNs typically have only one or two layers, DNNs have many layers, 
allowing them to learn more complex and abstract representations of the input data. 
Additionally, DNNs require more computational resources and can be more difficult 
to train compared to SNNs, due to the larger number of parameters and potential 
issues such as vanishing gradients. 

📝 4.1.3 

Deep neural networks have: 

• long training times, 
• small number of hidden layers, 
• generally worse performance than MLP and are used for simple tasks. 

🕮 4.1.4 

Misconceptions about deep learning 

1. Deep learning can solve any problem: While deep learning has shown 
impressive results in many areas, it is not a panacea for all problems. It works 
well for problems with large amounts of labeled data, but it may not be suitable 
for smaller datasets or problems where data labeling is difficult. 

2. Deep learning is a magic bullet: Deep learning requires significant expertise in 
data preparation, model architecture design, and hyperparameter tuning. It is 
not a magic bullet that can be easily applied to any problem without careful 
consideration and experimentation. 

3. Deep learning models always outperform other methods: While deep learning 
models have shown state-of-the-art performance on many benchmarks, they 
are not always the best choice for a particular problem. In some cases, simpler 
models or other machine learning techniques may be more effective. 

4. Deep learning requires massive amounts of data: While deep learning models 
generally perform better with more data, they can also be effective with 
smaller datasets or with techniques such as transfer learning or data 
augmentation. 

5. Deep learning is only for computer science experts: While deep learning does 
require a certain level of technical expertise, there are many tools and libraries 
available that make it more accessible to researchers and practitioners 
without a background in computer science. 

It's important to have a clear understanding of the capabilities and limitations of deep 
learning to avoid unrealistic expectations and to use it effectively in solving real-
world problems. 



48 

🕮 4.1.5 

Hyperparameters 

In deep learning, a hyperparameter is a parameter that is set before the training 
process begins and is not learned by the model during training. Hyperparameters 
control the behavior and performance of the model and are usually set by the user 
based on prior knowledge or trial and error. Unlike the weights and biases of the 
model, which are learned during training, hyperparameters are fixed values that 
determine the architecture, optimization method, and training parameters of the 
model. Examples of hyperparameters in deep learning include: 

• Learning rate: The learning rate determines the step size at which the 
optimizer updates the weights of the model during training. 

• Number of epochs: The number of epochs determines the number of times 
the entire training dataset is passed through the model during training. 

• Batch size: The batch size determines the number of samples that are 
processed by the model in each iteration during training. 

• Network architecture: The network architecture determines the structure and 
depth of the neural network used for the task. 

• Regularization parameters: Regularization parameters such as L1 and L2 
regularization control the degree of regularization applied to the weights of 
the model during training. 

• Dropout rate: The dropout rate determines the percentage of neurons that are 
randomly dropped out during training to prevent overfitting. 

Hyperparameter tuning is the process of finding the optimal values of 
hyperparameters for a given task and dataset, usually through a combination of 
manual tuning and automated methods such as grid search and random 
search. They are usually determined through trial and error, experimentation, or using 
heuristics. 

During the training process, the hyperparameters remain fixed, and only the weights 
of the neural network are updated through backpropagation. The hyperparameters 
define the structure of the neural network and the learning process, and changing 
them would require retraining the network from scratch. 

4.2 Tensors 

🕮 4.2.1 

In deep learning, a tensor is a multi-dimensional array of numerical data that can be 
represented as a sequence of numbers arranged in a specific shape, such as a vector, 
matrix, or higher-dimensional array. 

Tensors are used as the fundamental data structure for representing inputs, outputs, 
and intermediate activations in deep learning models. They allow for efficient 
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computation and manipulation of large volumes of data, such as images, audio, and 
text. 

In other words, you can think of a tensor as a container that can hold a lot of numbers 
arranged in a specific way, and that can be manipulated mathematically to perform 
various operations in a deep learning model. 

Tensors can be considered as the basic components of ANNs – input data, output 
predictions, and weights that are learned during the training process are all tensors. 
The information is transmitted through a series of linear and non-linear 
transformations to transform input data into predictions. 

🕮 4.2.2 

Tensors can be represented as multidimensional arrays. The number of dimensions 
of the tensor spans is known as the tensor range. Tensors with 0, 1, and 2 ranks are 
often used and have their own names, scalars, vectors, and matrices, but the term 
tensors can be used to describe each of them. 

 

• Scalar: A scalar consists of a single number, which makes it a zero-
dimensional array. It is an example of a zero order tensor. Scalars have no 
axes. For example, the width of an object is scalar. 

• Vector: Vectors are one-dimensional arrays and are an example of the first 
order tensor. They can be considered lists of values. Vectors have an axis. The 
size of a given object by width, height and depth is an example of a vector 
field. 

• Matrix: The matrices are two-dimensional tables with two axes. They are an 
example of second-order tensors. The matrix can be used to store the size of 
several objects. Each dimension of the matrix includes the size of each object 
(width, height, depth) and the other dimension of the matrix is used to 
distinguish between objects. 

• Tensor: Tensors are the general entities that contain scalars, vectors, and 
matrices, although the name is generally reserved for tensors of level 3 or 
higher. Tensors can be used to store the size and location of many objects 
over time. The first dimension of the matrix includes the size of each object 
(width, height, depth), the second dimension is used to distinguish the object, 
and the third dimension describes the position of these objects over time. 
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📝 4.2.3 

Tensor definition 

Tensors can be created using the Variable class present in the TensorFlow library 
and passing in a value representing the tensor. 

 
import tensorflow as tf 

tensor1 = tf.Variable([1,2,3], dtype=tf.int32, 

name='my_tensor', trainable=True) 

print(tensor1) 

• dtype: The datatype of the Variable object (for the tensor defined above, the 
datatype is tf.int32). The default value for this attribute is determined from the 
values passed. 

• shape: The number of dimensions and length of each dimension of the 
Variable object (for the tensor defined above, the shape is [3]). The default 
value for this attribute is also determined from the values passed. 

• name: The name of the Variable object (for the tensor defined above, the name 
of the tensor is defined as 'my_tensor'). The default for this attribute 
is Variable. 

• trainable: This attribute indicates whether the Variable object can be updated 
during model training (for the tensor defined above, the trainable parameter is 
set to true). The default for this attribute is true. 

# returns shape of the tensor 

print(tensor1.shape) 

 

# returns rank of the tensor 

print(tf.rank(tensor1)) 

text 

import tensorflow as tf 

int_variable = tf.Variable(4113, tf.int16) 

int_variable 

tf.rank(int_variable) 

tf.rank(int_variable).numpy() 

int_variable.shape 

int_variable.shape.as_list() 

vector_variable = tf.Variable([0.23, 0.42, 0.35], tf.float32) 

tf.rank(vector_variable).numpy() 

vector_variable.shape.as_list() 

matrix_variable = tf.Variable([[4113, 7511, 6259], [3870, 

6725, 6962]], tf.int32) 
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tf.rank(matrix_variable).numpy() 

 

matrix_variable.shape.as_list() 

tensor_variable = tf.Variable([[[4113, 7511, 6259], \ 

                                [3870, 6725, 6962]], \ 

                               [[5102, 7038, 6591], \ 

                                [3661, 5901, 6235]], \ 

                               [[951, 1208, 1098], \ 

                                [870, 645, 948]]]) 

tf.rank(tensor_variable).numpy() 

print(tensor_variable.shape.as_list()) 

 

4.3 Simple and more complex network example in 
TensorFlow 

📝 4.3.1 

Example of simple neural network with one hidden layer 

Our neural network will have five nodes in the hidden layer. We are feeding in three 
values: the sepal length (S.L.), the sepal width (S.W.), and the petal length (P.L.). The 
target will be the petal width. In total, there will be 26 total variables in the model. 

import matplotlib.pyplot as plt 

import numpy as np 

import tensorflow as tf 

from sklearn import datasets 

Load Iris dataset. It contains data about different  types of iris plant and their 
attributes: 

iris = datasets.load_iris() 

# Get Sepal length, Sepal width, Petal length 

x_vals = np.array([x[0:3] for x in iris.data]) 

# Get Petal Width 

y_vals = np.array([x[3] for x in iris.data]) 

Use predefined seed to make results reproducible: 

# make results reproducible 

seed = 3 

np.random.seed(seed)   

tf.random.set_seed(seed) 

 



52 

# Split data into train/test = 80%/20% 

train_indices = np.random.choice(len(x_vals), 

round(len(x_vals)*0.8), replace=False) 

test_indices = np.array(list(set(range(len(x_vals))) - 

set(train_indices))) 

x_vals_train = x_vals[train_indices] 

x_vals_test = x_vals[test_indices] 

y_vals_train = y_vals[train_indices] 

y_vals_test = y_vals[test_indices] 

 

# Normalize by column (min-max norm) 

def normalize_cols(m): 

  col_max = m.max(axis=0) 

  col_min = m.min(axis=0) 

  return (m-col_min) / (col_max - col_min) 

 

x_vals_train = np.nan_to_num(normalize_cols(x_vals_train)) 

x_vals_test = np.nan_to_num(normalize_cols(x_vals_test)) 

 

# Declare batch size 

batch_size = 50 

 

# Initialize input data 

x_data = tf.keras.Input(dtype=tf.float32, shape=(3,)) 

Declare the network: 

# Create variables for both NN layers 

hidden_layer_nodes = 5 

a1 = 

tf.Variable(tf.random.normal(shape=[3,hidden_layer_nodes], 

seed=seed)) # inputs -> hidden nodes 

b1 = tf.Variable(tf.random.normal(shape=[hidden_layer_nodes], 

seed=seed))   # one biases for each hidden node 

a2 = 

tf.Variable(tf.random.normal(shape=[hidden_layer_nodes,1], 

seed=seed)) # hidden inputs -> 1 output 

b2 = tf.Variable(tf.random.normal(shape=[1], seed=seed))   # 1 

bias for the output 

 

# Declare model operations 

hidden_output = tf.keras.layers.Lambda(lambda x: 

tf.nn.relu(tf.add(tf.matmul(x, a1), b1))) 

final_output = tf.keras.layers.Lambda(lambda x: 

tf.nn.relu(tf.add(tf.matmul(x, a2), b2))) 
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hidden_layer = hidden_output(x_data) 

output = final_output(hidden_layer) 

 

# Build the model 

model = tf.keras.Model(inputs=x_data, outputs=output, 

name="1layer_neural_network") 

 

# Print model summary 

model.summary() 

 

# Declare optimizer 

optimizer = tf.keras.optimizers.SGD(0.005) 

Since this is a regression problem, we will use mean squared error (MSE) as the loss 
function: 

# Training loop 

loss_vec = [] 

test_loss = [] 

for i in range(500): 

  rand_index = np.random.choice(len(x_vals_train), 

size=batch_size) 

  rand_x = x_vals_train[rand_index] 

  rand_y = np.transpose([y_vals_train[rand_index]]) 

 

  # Open a GradientTape. 

  with tf.GradientTape(persistent=True) as tape: 

    # Forward pass. 

    output = model(rand_x) 

     

    # Apply loss function (MSE) 

    loss = tf.reduce_mean(tf.square(rand_y - output)) 

    loss_vec.append(np.sqrt(loss)) 

     

    # Get gradients of loss with reference to the variables 

"a1", "b1", "a2" and "b2" to adjust. 

    gradients_a1 = tape.gradient(loss, a1) 

    gradients_b1 = tape.gradient(loss, b1) 

    gradients_a2 = tape.gradient(loss, a2) 

    gradients_b2 = tape.gradient(loss, b2) 

     

    # Update the variables "a1", "b1", "a2" and "b2" of the 

model. 
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    optimizer.apply_gradients(zip([gradients_a1, gradients_b1, 

gradients_a2, gradients_b2], [a1, b1, a2, b2])) 

     

    # Forward pass. 

    output_test = model(x_vals_test) 

    # Apply loss function (MSE) on test 

    loss_test = 

tf.reduce_mean(tf.square(np.transpose([y_vals_test]) - 

output_test)) 

    test_loss.append(np.sqrt(loss_test)) 

     

    if (i+1)%50==0: 

      print('Generation: ' + str(i+1) + '. Loss = ' + 

str(np.mean(loss))) 

Plot the result of training: 

# Plot loss (MSE) over time 

plt.ylim([0, 1.0]) 

plt.plot(loss_vec, 'k-', label='Train Loss') 

plt.plot(test_loss, 'r--', label='Test Loss') 

plt.title('Loss (MSE) per Generation') 

plt.legend(loc='upper right') 

plt.xlabel('Generation') 

plt.ylabel('Loss') 

plt.show() 

📝 4.3.2 

More complex network with 3 hidden layers 

This example is predicting birth weights in a low birth weight database. We will create 
a neural network with three hidden layers. The low birth weight data set includes 
actual birth weights and a variable indicating whether the given birth weight is over 
or below 2,500 grams. In this example, we will make the target the actual birth weight 
(regression) and then see what is the accuracy of the classification at the end. Finally, 
our model should be able to identify whether the birth weight is 2500 grams. 

import tensorflow as tf 

import matplotlib.pyplot as plt 

import csv 

import random 

import numpy as np 

import requests 
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# Data file 

birth_weight_file = 'birth_weight.csv' 

 

# download data and create data file 

birthdata_url = 

'https://github.com/nfmcclure/tensorflow_cookbook/raw/master/0

1_Introduction/07_Working_with_Data_Sources/birthweight_data/b

irthweight.dat' 

birth_file = requests.get(birthdata_url) 

birth_data = birth_file.text.split('\r\n') 

birth_header = birth_data[0].split('\t') 

birth_data = [[float(x) for x in y.split('\t') if len(x)>=1] 

for y in birth_data[1:] if len(y)>=1] 

with open(birth_weight_file, "w") as f: 

  writer = csv.writer(f) 

  writer.writerows([birth_header]) 

  writer.writerows(birth_data) 

  f.close() 

 

# read birth weight data into memory 

birth_data = [] 

with open(birth_weight_file, newline='') as csvfile: 

  csv_reader = csv.reader(csvfile) 

  birth_header = next(csv_reader) 

  for row in csv_reader: 

    birth_data.append(row) 

 

birth_data = [[float(x) for x in row] for row in birth_data] 

 

# Extract y-target (birth weight) 

y_vals = np.array([x[8] for x in birth_data]) 

 

# Filter for features of interest 

cols_of_interest = ['AGE', 'LWT', 'RACE', 'SMOKE', 'PTL', 

'HT', 'UI'] 

x_vals = np.array([[x[ix] for ix, feature in 

enumerate(birth_header) if feature in cols_of_interest] for x 

in birth_data]) 

 

# set batch size for training 

batch_size = 150 

 

# make results reproducible 

seed = 3 
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np.random.seed(seed) 

tf.random.set_seed(seed) 

 

# Split data into train/test = 80%/20% 

train_indices = np.random.choice(len(x_vals), 

round(len(x_vals)*0.8), replace=False) 

test_indices = np.array(list(set(range(len(x_vals))) - 

set(train_indices))) 

x_vals_train = x_vals[train_indices] 

x_vals_test = x_vals[test_indices] 

y_vals_train = y_vals[train_indices] 

y_vals_test = y_vals[test_indices] 

 

# Record training column max and min for scaling of non-

training data 

train_max = np.max(x_vals_train, axis=0) 

train_min = np.min(x_vals_train, axis=0) 

 

# Normalize by column (min-max norm to be between 0 and 1) 

def normalize_cols(mat, max_vals, min_vals): 

  return (mat - min_vals) / (max_vals - min_vals) 

 

x_vals_train = np.nan_to_num(normalize_cols(x_vals_train, 

train_max, train_min)) 

x_vals_test = np.nan_to_num(normalize_cols(x_vals_test, 

train_max, train_min)) 

 

# Define Variable Functions (weights and bias) 

def init_weight(shape, st_dev): 

  weight = tf.Variable(tf.random.normal(shape, stddev=st_dev)) 

  return(weight) 

     

 

def init_bias(shape, st_dev): 

  bias = tf.Variable(tf.random.normal(shape, stddev=st_dev)) 

  return(bias) 

     

# Initialize input data 

x_data = tf.keras.Input(dtype=tf.float32, shape=(7,)) 

 

# Create a fully connected layer: 

def fully_connected(input_layer, weights, biases): 
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  return tf.keras.layers.Lambda(lambda x: 

tf.nn.relu(tf.add(tf.matmul(x, weights), 

biases)))(input_layer) 

 

#--------Create the first layer (25 hidden nodes)-------- 

weight_1 = init_weight(shape=[7,25], st_dev=5.0) 

bias_1 = init_bias(shape=[25], st_dev=10.0) 

layer_1 = fully_connected(x_data, weight_1, bias_1) 

 

#--------Create second layer (10 hidden nodes)-------- 

weight_2 = init_weight(shape=[25, 10], st_dev=5.0) 

bias_2 = init_bias(shape=[10], st_dev=10.0) 

layer_2 = fully_connected(layer_1, weight_2, bias_2) 

 

#--------Create third layer (3 hidden nodes)-------- 

weight_3 = init_weight(shape=[10, 3], st_dev=5.0) 

bias_3 = init_bias(shape=[3], st_dev=10.0) 

layer_3 = fully_connected(layer_2, weight_3, bias_3) 

 

#--------Create output layer (1 output value)-------- 

weight_4 = init_weight(shape=[3, 1], st_dev=5.0) 

bias_4 = init_bias(shape=[1], st_dev=10.0) 

final_output = fully_connected(layer_3, weight_4, bias_4) 

 

# Build the model 

model = tf.keras.Model(inputs=x_data, outputs=final_output, 

name="multiple_layers_neural_network") 

 

# Print model summary 

model.summary() 

 
# Declare Adam optimizer 

optimizer = tf.keras.optimizers.Adam(0.025) 

 

# Training loop 

loss_vec = [] 

test_loss = [] 

for i in range(200): 

  rand_index = np.random.choice(len(x_vals_train), 

size=batch_size) 

  rand_x = x_vals_train[rand_index] 

  rand_y = np.transpose([y_vals_train[rand_index]]) 

   

  # Open a GradientTape. 
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  with tf.GradientTape(persistent=True) as tape: 

    # Forward pass. 

    output = model(rand_x) 

     

    # Apply loss function (MSE) 

    loss = tf.reduce_mean(tf.abs(rand_y - output)) 

    loss_vec.append(loss)        

         

  # Get gradients of loss with reference to the weights and 

bias variables to adjust. 

  gradients_w1 = tape.gradient(loss, weight_1) 

  gradients_b1 = tape.gradient(loss, bias_1) 

  gradients_w2 = tape.gradient(loss, weight_2) 

  gradients_b2 = tape.gradient(loss, bias_2) 

  gradients_w3 = tape.gradient(loss, weight_3) 

  gradients_b3 = tape.gradient(loss, bias_3) 

  gradients_w4 = tape.gradient(loss, weight_4) 

  gradients_b4 = tape.gradient(loss, bias_4) 

 

  # Update the weights and bias variables of the model. 

  optimizer.apply_gradients(zip([gradients_w1, gradients_b1, 

gradients_w2, gradients_b2, gradients_w3, gradients_b3, 

gradients_w4, gradients_b4], [weight_1, bias_1, weight_2, 

bias_2, weight_3, bias_3, weight_4, bias_4])) 

   

  # Forward pass. 

  output_test = model(x_vals_test) 

  # Apply loss function (MSE) on test 

  temp_loss = 

tf.reduce_mean(tf.abs(np.transpose([y_vals_test]) - 

output_test)) 

  test_loss.append(temp_loss) 

   

  if (i+1) % 25 == 0: 

    print('Generation: ' + str(i+1) + '. Loss = ' + 

str(loss.numpy())) 

 

# Plot loss (MSE) over time 

plt.plot(loss_vec, 'k-', label='Train Loss') 

plt.plot(test_loss, 'r--', label='Test Loss') 

plt.title('Loss (MSE) per Generation') 

plt.legend(loc='upper right') 

plt.xlabel('Generation') 

plt.ylabel('Loss') 
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plt.show() 

 

# Model Accuracy 

actuals = np.array([x[0] for x in birth_data]) 

test_actuals = actuals[test_indices] 

train_actuals = actuals[train_indices] 

test_preds = model(x_vals_test) 

train_preds = model(x_vals_train) 

test_preds = np.array([1.0 if x < 2500.0 else 0.0 for x in 

test_preds]) 

train_preds = np.array([1.0 if x < 2500.0 else 0.0 for x in 

train_preds]) 

# Print out accuracies 

test_acc = np.mean([x == y for x, y in zip(test_preds, 

test_actuals)]) 

train_acc = np.mean([x == y for x, y in zip(train_preds, 

train_actuals)]) 

print('On predicting the category of low birthweight from 

regression output (<2500g):') 

print('Test Accuracy: {}'.format(test_acc)) 

print('Train Accuracy: {}'.format(train_acc)) 

Example of prediction for new data: 

# Need new vectors of 'AGE', 'LWT', 'RACE', 'SMOKE', 'PTL', 

'HT', 'UI' 

new_data = np.array([[35, 185, 1., 0., 0., 0., 1.], 

                     [18, 160, 0., 1., 0., 0., 1.]]) 

new_data_scaled = np.nan_to_num(normalize_cols(new_data, 

train_max, train_min)) 

new_logits = model(new_data_scaled) 

new_preds = np.array([1.0 if x < 2500.0 else 0.0 for x in 

new_logits]) 

 

print('New Data Predictions: {}'.format(new_preds)) 
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5.1 CNN description 

🕮 5.1.1 

Basic description of CNN 

A Convolutional Neural Network (CNN) is a type of deep neural network commonly 
used in image and video recognition tasks. 

The key feature of a CNN is its ability to learn hierarchical representations of input 
data through a series of convolutional layers. These layers apply a set of learnable 
filters to the input data, extracting local features such as edges and textures. The 
output of each convolutional layer is then passed through a non-linear activation 
function to introduce non-linearity and create more complex features. 

After several convolutional layers, the output is passed through a pooling layer which 
reduces the spatial resolution of the feature maps while retaining the most important 
features. Finally, the output of the last pooling layer is passed through one or more 
fully connected layers to produce a final output, typically a probability distribution 
over the possible classes. 

CNNs have been shown to be highly effective in a wide range of image recognition 
tasks, including object detection, image segmentation, and facial recognition. They 
have also been applied to other types of data such as audio and natural language 
processing. 

🕮 5.1.2 

What is convolution? 

In a Convolutional Neural Network (CNN), convolution refers to the process of 
applying a set of filters to the input data in order to extract local features. 

In the context of image processing, the input data is typically a 3D array representing 
an image, with dimensions for width, height, and color channels. The filters, also 
known as kernels or feature detectors, are smaller 3D arrays that slide over the input 
data, computing a dot product between the filter and the input at each location, and 
producing an output in the form of a 2D activation map. 

The filters are learned through backpropagation during training, and each filter is 
optimized to detect a particular feature of the input data, such as edges or corners. 
Multiple filters are used in each convolutional layer, and the output of each filter is 
combined to produce a set of activation maps, which are then passed through a non-
linear activation function such as ReLU. 
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Convolutional layers are typically followed by pooling layers, which reduce the spatial 
resolution of the activation maps while retaining the most important features, and 
then by additional convolutional layers to extract higher-level features. 

The use of convolutional layers in CNNs has been shown to be highly effective in 
image recognition tasks, and has also been applied to other types of data such as 
audio and natural language processing. 

5.2 Layers in CNNs and architectures 

🕮 5.2.1 

Layer types 

There are several types of layers commonly used in Convolutional Neural Networks 
(CNNs), including: 

1. Convolutional Layers: These layers apply a set of learnable filters to the input 
data, extracting local features such as edges and textures. 

2. Pooling Layers: These layers reduce the spatial resolution of the feature maps 
while retaining the most important features, typically by taking the maximum 
or average value within a small region. 

3. Fully Connected Layers: These layers connect every neuron in the layer to 
every neuron in the previous layer, and are typically used in the final layers of 
the network for classification or regression tasks. 

4. Activation Layers: These layers introduce non-linearity to the output of the 
previous layer, typically through an activation function such as ReLU, sigmoid, 
or tanh. 

5. Normalization Layers: These layers normalize the output of the previous layer 
to improve performance and reduce overfitting, typically through techniques 
such as batch normalization. 

6. Dropout Layers: These layers randomly drop out some of the neurons in the 
previous layer during training to reduce overfitting and improve generalization. 

7. Upsampling Layers: These layers increase the spatial resolution of the feature 
maps, typically by repeating the values within a small region. 

The specific architecture of a CNN will depend on the particular task and the 
structure of the input data, but most CNNs will include some combination of these 
layers. 

🕮 5.2.2 

Convolution layer 

The convolutional layer is a fundamental building block of a Convolutional Neural 
Network (CNN). It applies a set of filters to the input image to extract features, by 
performing a convolution operation between the input image and a set of learnable 
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filters. Each filter slides over the entire input image, computing a dot product between 
the filter weights and the pixel values at each position. The result of this operation is 
a feature map that highlights the presence of certain features in the input image. 

The learnable filters in the convolutional layer represent different characteristics of 
the input image, such as edges, textures, or colors. By stacking multiple 
convolutional layers on top of each other, the CNN can learn increasingly complex 
and abstract features from the input image. 

Each convolutional layer typically has a number of hyperparameters, such as the 
number of filters, the size of the filters (kernel size), and the stride (the amount the 
filter shifts between each computation). The size of the output feature map is 
determined by the size of the input image, the size of the filter, and the stride, with 
smaller strides resulting in larger output feature maps. 

Convolutional layers are important in CNNs because they enable the network to 
extract useful features from the input image in a hierarchical manner, allowing it to 
identify complex patterns and structures that are relevant to the task at hand. They 
are widely used in computer vision tasks such as image classification, object 
detection, and semantic segmentation. 

Application of a 2x2 convolutional filter across a 5x5 input matrix producing a new 
4x4 feature layer 

 

🕮 5.2.3 

Pooling layer 

The pooling layer is a type of layer in a Convolutional Neural Network (CNN) that 
performs a downsampling operation on the input feature map. The pooling layer 
reduces the spatial dimensions (width and height) of the input feature map while 
preserving the depth dimension (number of channels) by combining the outputs of 
adjacent neurons in the feature map. 

The most commonly used type of pooling layer is max pooling, where the maximum 
value in each local region of the feature map is taken as the output. For example, a 
max pooling layer with a 2x2 kernel and stride of 2 would divide the input feature map 
into non-overlapping 2x2 regions and take the maximum value in each region as the 
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output. This operation reduces the spatial dimensions of the feature map by a factor 
of two. 

Another type of pooling layer is average pooling, where the average value in each 
local region of the feature map is taken as the output. Average pooling can also be 
used to reduce the spatial dimensions of the feature map. 

The pooling layer is used in CNNs to reduce the spatial dimensions of the feature 
map, which can help to reduce the computational cost of the network and prevent 
overfitting by reducing the number of parameters in the model. Additionally, the 
pooling layer can help to extract invariant features from the input by taking the 
maximum or average value in each local region, which can improve the robustness 
of the model to variations in the input data. 

 

🕮 5.2.4 

Fully connected layer 

A fully connected layer, also called a dense layer, is a type of layer in a neural network 
where every neuron in the layer is connected to every neuron in the previous layer. 

In a fully connected layer, the input is a vector and the output is another vector of a 
specified size, which represents the activations of the layer. Each neuron in the fully 
connected layer applies a weighted sum of the activations from the previous layer, 
followed by a non-linear activation function, to produce its output. 

Fully connected layers are commonly used in the final layers of a neural network, 
where they can be used for classification or regression tasks. They are also used in 
certain types of networks such as Multi-Layer Perceptrons (MLPs), where all layers 
are fully connected. However, in some types of networks such as Convolutional 
Neural Networks (CNNs) or Recurrent Neural Networks (RNNs), fully connected 
layers are used only in the final layers of the network, after convolutional or recurrent 
layers have been used to extract features from the input data. 
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🕮 5.2.5 

Activation layer 

An activation layer, also known as an activation function or nonlinearity, is a type of 
layer in a neural network that introduces nonlinearity into the network's output. 

The purpose of an activation layer is to apply a mathematical function to the output 
of the previous layer in order to introduce nonlinearity. Without an activation layer, 
the neural network would simply be a linear function, which would not be able to 
model complex relationships between the input and output data. 

There are several different types of activation functions used in deep learning, 
including: 

• Sigmoid function: maps the input to a value between 0 and 1, and is commonly 
used in binary classification problems. 

 

• Rectified Linear Unit (ReLU): sets all negative values in the input to zero, and 
is commonly used in image classification problems. 

 

• Leaky ReLU 

 

• Hyperbolic tangent (tanh): maps the input to a value between -1 and 1, and is 
commonly used in recurrent neural networks. 

 

Activation layers are typically placed after each convolutional or dense layer in a 
neural network, except for the output layer, which often uses a different activation 
function depending on the problem being solved. 

🕮 5.2.6 

Normalization layer 

A normalization layer, also known as a batch normalization layer, is a type of layer in 
a neural network that is used to normalize the input data before passing it to the next 
layer. The purpose of normalization is to ensure that the input data has a mean of 0 
and a standard deviation of 1, which can improve the performance and stability of 
the network. 
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The normalization process involves subtracting the mean of the input data from each 
data point, and then dividing the result by the standard deviation of the input data. 
This makes the input data have a zero mean and a standard deviation of 1, which can 
help prevent the input from causing the activation functions to saturate, which can 
cause the network to stop learning. 

Normalization layers are commonly used in deep learning architectures, particularly 
in convolutional neural networks (CNNs) and recurrent neural networks (RNNs). They 
are typically placed after the convolutional or recurrent layers, but before the 
activation function. 

🕮 5.2.7 

Dropout layer 

Dropout is a regularization technique used in deep neural networks to prevent 
overfitting. A dropout layer is a type of layer in a neural network that randomly drops 
out, or "turns off," a certain percentage of the neurons during training. The neurons 
that are dropped out change with each training iteration, which makes the network 
more robust and less likely to overfit to the training data. 

The purpose of the dropout layer is to prevent the network from relying too heavily 
on any one feature or neuron, and to encourage the network to learn more robust 
features that are useful across multiple inputs. Dropout can also help prevent the 
network from memorizing noise or outliers in the training data. 

During training, a dropout layer randomly selects a percentage of the neurons to drop 
out, based on a specified dropout rate. The remaining neurons are then scaled by a 
factor equal to 1 / (1 - dropout rate), in order to compensate for the dropped out 
neurons. During testing, all of the neurons are used, and their output is scaled by the 
same factor as during training. 

Dropout layers are commonly used in deep learning architectures, particularly in 
convolutional neural networks (CNNs) and fully connected neural networks. They are 
typically placed after each dense layer in the network. 

Example of dropout 
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🕮 5.2.8 

Upsampling layer 

An upsampling layer, also known as a deconvolutional layer or a transposed 
convolutional layer, is a type of layer in a neural network that is used for upsampling 
or increasing the spatial resolution of the input. 

The purpose of an upsampling layer is to increase the resolution of feature maps 
while preserving their spatial information. This is useful in tasks such as image 
segmentation, where the goal is to classify each pixel in an image into different 
classes. 

An upsampling layer works by reversing the process of a convolutional layer. In a 
convolutional layer, a filter is applied to the input feature map to produce an output 
feature map with reduced spatial resolution. In an upsampling layer, a filter is applied 
to the output feature map to produce an upsampled feature map with increased 
spatial resolution. 

There are several types of upsampling layers used in deep learning, including: 

1. Nearest neighbor upsampling: This method simply duplicates the values in the 
input feature map to create a larger output feature map. 

2. Bilinear upsampling: This method uses a weighted average of the four nearest 
pixels in the input feature map to generate each pixel in the output feature 
map. 

3. Transposed convolutional upsampling: This method uses a learnable filter to 
map each pixel in the output feature map to a patch of pixels in the input 
feature map, and then applies a convolution to generate the output feature 
map. 

Upsampling layers are commonly used in architectures such as fully convolutional 
networks (FCNs) and U-Net architectures for tasks such as semantic segmentation, 
image super-resolution, and generative modeling. 

🕮 5.2.9 

Architectures 

There are several popular architectures of Convolutional Neural Networks (CNNs),  
each with its own unique structure and purpose. Here are some of the most well-
known ones: 

1. LeNet: One of the earliest CNNs developed by Yann LeCun in the 1990s for 
handwritten digit recognition. 

2. AlexNet: Developed by Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton in 
2012, this was the first CNN to achieve state-of-the-art performance on the 
ImageNet dataset. 
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3. VGG: A CNN developed by the Visual Geometry Group at Oxford in 2014, which 
consists of a series of convolutional layers followed by fully connected layers. 

4. GoogLeNet/Inception: Developed by researchers at Google in 2014, this 
architecture uses a novel "Inception module" that combines multiple different 
convolutional operations in parallel. 

5. ResNet: Developed by Microsoft researchers in 2015, this architecture 
introduces the concept of residual connections, which allow information to 
flow more easily through the network and enable the training of much deeper 
networks. 

6. DenseNet: Developed by researchers at Facebook AI Research in 2017, this 
architecture uses dense connections between layers, allowing for better 
feature reuse and reducing the number of parameters. 

7. MobileNet: A family of lightweight CNN architectures developed by Google in 
2017, designed for mobile and embedded devices with limited computational 
resources. 

These are just a few examples of the many different CNN architectures that have 
been developed over the years, each with its own strengths and weaknesses 
depending on the specific task and dataset. 

LeNet-5 architecture visualization 

 

AlexNet architecture visulazation 
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5.3 Practical applications 

🕮 5.3.1 

Types of practical applications of CNNs 

Convolutional Neural Networks (CNNs) have become a popular tool for a variety of 
image and video-related tasks, including: 

1. Image Classification: CNNs are widely used for image classification tasks, 
where the goal is to assign a label to an input image from a set of predefined 
categories. This can be applied to tasks such as object recognition, facial 
recognition, and scene classification. 

2. Object Detection: CNNs can also be used for object detection tasks, where the 
goal is to locate and classify objects within an image or video. This is useful 
for tasks such as self-driving cars, security cameras, and robotics. 

3. Semantic Segmentation: CNNs can be used for semantic segmentation tasks, 
where the goal is to assign a label to every pixel in an image, allowing for more 
precise object detection and analysis. 

4. Image Generation: CNNs can also be used for image generation tasks, such 
as generating realistic images from a given set of parameters or styles. 

5. Style Transfer: CNNs can be used for style transfer tasks, where the goal is to 
apply the style of one image to another image, creating a new image that 
combines the content of one image with the style of another. 

6. Medical Imaging: CNNs can be used in medical imaging applications, such as 
diagnosing diseases from medical images, identifying tumors, and analyzing 
scans. 

7. Video Analysis: CNNs can be used for video analysis tasks, such as action 
recognition, video tracking, and video captioning. 

8. Natural Language Processing: While CNNs are primarily used for image and 
video-related tasks, they can also be applied to natural language processing 
tasks such as sentiment analysis, text classification, and language 
translation. 

9. Recommendation Systems: CNNs can be used to build recommendation 
systems that suggest products, movies, or other items based on user behavior 
and preferences. 

10. Autonomous Vehicles: CNNs are being used in the development of self-driving 
cars, where they are used to detect and classify objects on the road such as 
pedestrians, other vehicles, and traffic signs. 

11. Agriculture: CNNs can be used to analyze satellite imagery and other data to 
help farmers monitor crops, predict yields, and detect pests and diseases. 

12. Robotics: CNNs can be used in robotics applications such as object 
recognition, grasping and manipulation, and navigation. 

13. Art and Music: CNNs can be used to generate or classify art and music, such 
as creating original pieces based on certain styles or identifying the genre of 
a particular song. 
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14. Gaming: CNNs can be used in the development of video games, such as 
character recognition and animation. 

15. Finance: CNNs can be used in finance for fraud detection, stock market 
prediction, and risk assessment. 

5.4 Image augmentation 

🕮 5.4.1 

Image augmentation 

Image augmentation is a technique used in deep learning to increase the size and 
diversity of the training set by applying transformations to the original images. This 
technique helps to reduce overfitting and improve the performance of the model. 

There are various image augmentation techniques used in deep learning, such as: 

1. Rotation: Rotating the image by a certain angle to create new training 
examples. 

2. Flipping: Flipping the image horizontally or vertically to create a mirrored 
version of the original image. 

3. Translation: Shifting the image horizontally or vertically to create a new 
training example. 

4. Scaling: Rescaling the image to create a smaller or larger version of the 
original image. 

5. Shearing: Shearing the image to create a slanted version of the original image. 
6. Zooming: Zooming into or out of the image to create a new training example. 

These techniques can be used individually or in combination to generate a large and 
diverse set of training data. Image augmentation is particularly useful when the size 
of the original dataset is small, as it allows the model to generalize better and avoid 
overfitting to the training data. 

A bad example of image augmentation in CNN would be applying random 
transformations that are not relevant to the problem being solved. For instance, if the 
task is to recognize handwritten digits, applying random rotations or flipping the 
images horizontally or vertically may not help improve the performance of the model, 
and may even introduce noise and confuse the model. Another bad example would 
be applying excessive transformations that distort the original image beyond 
recognition. For example, scaling an image to a very small size or shearing it to a very 
high degree may create a new training example, but the resulting image may be so 
distorted that it does not resemble the original image, making it difficult for the model 
to learn from it. 

In general, image augmentation techniques should be carefully chosen based on the 
problem being solved, and should aim to create new training examples that are 
relevant and diverse, without introducing noise or distorting the original images too 
much. 
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5.5 CNN examples 

📝 5.5.1 

LeNET-5 example - character recognition 

This example downloads the MNIST handwritten digits and creates a simple CNN 
network based on LeNet-5 to predict the digit category (0-9). 

LeNet-5 is a classic convolutional neural network architecture designed for 
handwritten digit recognition, and was introduced by Yann LeCun, Leon Bottou, 
Yoshua Bengio, and Patrick Haffner in 1998. It was one of the earliest successful 
attempts to apply deep learning techniques to image recognition tasks. 

The LeNet-5 architecture consists of seven layers, including three convolutional 
layers and two fully connected layers. It takes as input a grayscale image of size 
32x32 pixels, and outputs a probability distribution over the ten possible digit 
classes. 

The first layer is a convolutional layer with six 5x5 filters, followed by a max-pooling 
layer with a 2x2 window. The second convolutional layer has 16 5x5 filters, again 
followed by a max-pooling layer with a 2x2 window. The third convolutional layer has 
120 5x5 filters, and is followed by two fully connected layers, with 84 and 10 neurons 
respectively. The final layer uses a softmax activation function to produce the 
probability distribution over the ten digit classes. 

LeNet-5 was a groundbreaking model in the field of deep learning, and its architecture 
has been used as a starting point for many subsequent models in image recognition 
and other fields. 

Network visualization 

 

Dataset 

MNIST (Modified National Institute of Standards and Technology) is a widely-used 
dataset in the field of machine learning, specifically in the area of computer vision. It 
consists of 70,000 grayscale images of handwritten digits, with a resolution of 28x28 
pixels. The dataset is split into a training set of 60,000 images and a test set of 10,000 
images. MNIST is often used as a benchmark dataset for image classification tasks, 
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particularly for testing and comparing different machine learning algorithms, 
including convolutional neural networks (CNNs). The task is to correctly classify the 
images into their corresponding digit class, from 0 to 9. MNIST has been used 
extensively for teaching purposes in machine learning and computer vision, as it is 
relatively small and easy to work with compared to many other datasets in the field. 
It has also been used as a baseline for evaluating the performance of more complex 
datasets and models. 

import matplotlib.pyplot as plt 

import numpy as np 

import tensorflow as tf 

 

# Load data from dataset 

(x_train, y_train), (x_test, y_test) = 

tf.keras.datasets.mnist.load_data() 

# Reshape 

x_train = x_train.reshape(-1, 28, 28, 1) 

x_test = x_test.reshape(-1, 28, 28, 1) 

#Padding the images by 2 pixels 

x_train = np.pad(x_train, ((0,0),(2,2),(2,2),(0,0)), 

'constant') 

x_test = np.pad(x_test, ((0,0),(2,2),(2,2),(0,0)), 'constant') 

Depth of the image (number of channels) is 1 because these images are grayscale. 
We'll also set up a seed to have reproducible results: 

image_width = x_train[0].shape[0] 

image_height = x_train[0].shape[1] 

num_channels = 1 # grayscale = 1 channel 

 

seed = 98 

np.random.seed(seed) 

tf.random.set_seed(seed) 

Parameters used for model training: 

batch_size = 100 

evaluation_size = 500 

epochs = 300 

eval_every = 5 

Normalize our images to change the values of all pixels to a common scale: 

x_train = x_train / 255 

x_test = x_test/ 255 



73 

Declare model layers: 

input_data = tf.keras.Input(dtype=tf.float32, 

shape=(image_width,image_height, num_channels), name="INPUT") 

 

# First Conv-ReLU-MaxPool Layer 

conv1 = tf.keras.layers.Conv2D(filters=6, kernel_size=5, 

padding='VALID', activation="relu", name="C1")(input_data) 

max_pool1 = tf.keras.layers.MaxPool2D(pool_size=2, strides=2, 

padding='SAME', name="S1")(conv1) 

# Second Conv-ReLU-MaxPool Layer 

conv2 = tf.keras.layers.Conv2D(filters=16, kernel_size=5, 

padding='VALID', strides=1, activation="relu", 

name="C3")(max_pool1) 

max_pool2 = tf.keras.layers.MaxPool2D(pool_size=2, strides=2, 

padding='SAME', name="S4")(conv2) 

# Flatten Layer 

flatten = tf.keras.layers.Flatten(name="FLATTEN")(max_pool2) 

# First Fully Connected Layer 

fully_connected1 = tf.keras.layers.Dense(units=120, 

activation="relu", name="F5")(flatten) 

# Second Fully Connected Layer 

fully_connected2 = tf.keras.layers.Dense(units=84, 

activation="relu", name="F6")(fully_connected1) 

# Final Fully Connected Layer 

final_model_output = tf.keras.layers.Dense(units=10, 

activation="softmax", name="OUTPUT")(fully_connected2) 

model = tf.keras.Model(inputs= input_data, 

outputs=final_model_output) 

Compile the model with the sparse categorical cross-entropy loss and the ADAM 
optimizer. 

model.compile(optimizer="adam", 

loss="sparse_categorical_crossentropy", metrics=["accuracy"] ) 

Show model summary: 

model.summary() 

 

train_loss = [] 

train_acc = [] 

test_acc = [] 

for i in range(epochs): 

  rand_index = np.random.choice(len(x_train), size=batch_size) 
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  rand_x = x_train[rand_index] 

  rand_y = y_train[rand_index] 

  history_train = model.train_on_batch(rand_x, rand_y) 

 

  if (i+1) % eval_every == 0: 

    eval_index = np.random.choice(len(x_test), 

size=evaluation_size) 

    eval_x = x_test[eval_index] 

    eval_y = y_test[eval_index]     

    history_eval = model.evaluate(eval_x,eval_y) 

    # Record and print results 

    train_loss.append(history_train[0]) 

    train_acc.append(history_train[1]) 

    test_acc.append(history_eval[1]) 

    acc_and_loss = [(i+1), history_train[0], history_train[1], 

history_eval[1]] 

    acc_and_loss = [np.round(x,2) for x in acc_and_loss] 

    print('Epoch # {}. Train Loss: {:.2f}. Train Acc (Test 

Acc): {:.2f} ({:.2f})'.format(*acc_and_loss)) 

 

print(history_train[0]) 

Plot the loss and accuracy: 

# Matlotlib code to plot the loss and accuracy 

eval_indices = range(0, epochs, eval_every) 

# Plot loss over time 

plt.plot(eval_indices, train_loss, 'k-') 

plt.title('Loss per Epoch') 

plt.xlabel('Epoch') 

plt.ylabel('Loss') 

plt.show() 

 

# Plot train and test accuracy 

plt.plot(eval_indices, train_acc, 'k-', label='Train Set 

Accuracy') 

plt.plot(eval_indices, test_acc, 'r--', label='Test Set 

Accuracy') 

plt.title('Train and Test Accuracy') 

plt.xlabel('Epoch') 

plt.ylabel('Accuracy') 

plt.legend(loc='lower right') 

plt.show() 

Results for six examples: 
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# Plot some samples and their predictions 

actuals = y_test[30:36] 

preds = model.predict(x_test[30:36]) 

predictions = np.argmax(preds,axis=1) 

images = np.squeeze(x_test[30:36]) 

Nrows = 2 

Ncols = 3 

for i in range(6): 

  plt.subplot(Nrows, Ncols, i+1) 

  plt.imshow(np.reshape(images[i], [32,32]), cmap='Greys_r') 

  plt.title('Actual: ' + str(actuals[i]) + ' Pred: ' + 

str(predictions[i]), fontsize=10) 

  frame = plt.gca() 

  frame.axes.get_xaxis().set_visible(False) 

  frame.axes.get_yaxis().set_visible(False) 

 

plt.show() 

📝 5.5.2 

Advanced - more complex CNN 

This example shows more complex CNN model with dropout Extending the depth of 
CNN networks is done in a standard fashion: we just repeat the convolution, max 
pooling, and ReLU in series until we are satisfied with the depth. Many of the more 
accurate image recognition networks operate in this fashion. 

Dataset 

CIFAR-10 is a popular image classification dataset used in machine learning and 
computer vision research. It consists of 60,000 32x32 color images in 10 classes, 
with 6,000 images per class. The classes are airplane, automobile, bird, cat, deer, 
dog, frog, horse, ship, and truck. 

The dataset is divided into 50,000 training images and 10,000 test images, and is 
often used as a benchmark for image classification models. The small size of the 
images and the diversity of the classes make it a challenging dataset for machine 
learning models to accurately classify. It has been widely used to evaluate the 
performance of deep learning models such as convolutional neural networks (CNNs). 

import matplotlib.pyplot as plt 

import numpy as np 

import tensorflow as tf 

from tensorflow import keras 
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Parameters. Using 20 epochs takes a lot of time in training. It can be lowered but at 
a cost of accuracy. 

# Set dataset and model parameters 

batch_size = 128 

buffer_size= 128 

epochs=20 

 

#Set transformation parameters 

crop_height = 24 

crop_width = 24 

 

cifar_classes = ['airplane', 'automobile', 'bird', 'cat', 

'deer', 'dog', 'frog', 'horse', 'ship', 'truck'] 

Load CIFAR dataset: 

# Get data 

print('Getting/Transforming Data.') 

(x_train, y_train), (x_test, y_test) = 

tf.keras.datasets.cifar10.load_data() 

Program output: 

Getting/Transforming Data. 

print(x_train.shape) 

Program output: 

(50000, 32, 32, 3) 

define a reading function that will load and distort the images slightly for training: 

# Define CIFAR reader 

def read_cifar_files(image, label): 

  final_image = tf.image.resize_with_crop_or_pad(image, 

crop_width, crop_height) 

  final_image = image / 255 

   

  # Randomly flip the image horizontally, change the 

brightness and contrast 

  final_image = tf.image.random_flip_left_right(final_image) 

  final_image = 

tf.image.random_brightness(final_image,max_delta=0.1) 

  final_image = 

tf.image.random_contrast(final_image,lower=0.5, upper=0.8) 
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  return final_image, label 

 

dataset_train = tf.data.Dataset.from_tensor_slices((x_train, 

y_train)) 

dataset_test = tf.data.Dataset.from_tensor_slices((x_test, 

y_test)) 

 

def show(image, label): 

  plt.figure() 

  plt.imshow(image) 

  plt.title(cifar_classes[label.numpy()[0]]) 

  plt.axis('off') 

 

for image, label in dataset_train.take(2): 

  show(image, label) 

  image, label = read_cifar_files(image, label) 

  show(image, label) 

 

dataset_train_processed = 

dataset_train.shuffle(buffer_size).batch(batch_size).map(read_

cifar_files) 

dataset_test_processed = 

dataset_test.batch(batch_size).map(read_cifar_files) 

Model definition: 

model = keras.Sequential( 

    [# First Conv-ReLU-Conv-ReLU-MaxPool Layer 

     tf.keras.layers.Conv2D(input_shape=[32,32,3], 

                            filters=32, 

                            kernel_size=3, 

                            padding='SAME', 

                            activation="relu", 

                            kernel_initializer='he_uniform', 

                            name="C1"), 

    tf.keras.layers.Conv2D(filters=32, 

                           kernel_size=3, 

                           padding='SAME', 

                           activation="relu", 

                           kernel_initializer='he_uniform', 

                           name="C2"), 

     tf.keras.layers.MaxPool2D((2,2), 

                               name="P1"), 

     tf.keras.layers.Dropout(0.2), 
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    # Second Conv-ReLU-Conv-ReLU-MaxPool Layer 

     tf.keras.layers.Conv2D(filters=64, 

                            kernel_size=3, 

                            padding='SAME', 

                            activation="relu", 

                            kernel_initializer='he_uniform', 

                            name="C3"), 

    tf.keras.layers.Conv2D(filters=64, 

                           kernel_size=3, 

                           padding='SAME', 

                           activation="relu", 

                           kernel_initializer='he_uniform', 

                           name="C4"), 

     tf.keras.layers.MaxPool2D((2,2), 

                               name="P2"), 

     tf.keras.layers.Dropout(0.2), 

    # Third Conv-ReLU-Conv-ReLU-MaxPool Layer 

     tf.keras.layers.Conv2D(filters=128, 

                            kernel_size=3, 

                            padding='SAME', 

                            activation="relu", 

                            kernel_initializer='he_uniform', 

                            name="C5"), 

    tf.keras.layers.Conv2D(filters=128, 

                           kernel_size=3, 

                           padding='SAME', 

                           activation="relu", 

                           kernel_initializer='he_uniform', 

                           name="C6"), 

     tf.keras.layers.MaxPool2D((2,2), 

                               name="P3"), 

     tf.keras.layers.Dropout(0.2), 

     # Flatten Layer 

     tf.keras.layers.Flatten(name="FLATTEN"), 

     # Fully Connected Layer 

     tf.keras.layers.Dense(units=128, 

                           activation="relu", 

                           name="D1"), 

    tf.keras.layers.Dropout(0.2), 

    # Final Fully Connected Layer 

    tf.keras.layers.Dense(units=10, 

                          activation="softmax", 

                          name="OUTPUT") 

    ]) 
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from keras.optimizers import SGD 

model.compile( 

   # optimizer="adam",  

    loss="sparse_categorical_crossentropy", 

    metrics=["accuracy"] 

) 

model.summary() 

Start training: 

history = model.fit(dataset_train_processed,  

                    validation_data=dataset_test_processed,  

                    epochs=epochs) 

 

# Print loss and accuracy 

# Matlotlib code to plot the loss and accuracy 

epochs_indices = range(0, epochs, 1) 

 

# Plot loss over time 

plt.plot(epochs_indices, history.history["loss"], 'k-') 

plt.title('Softmax Loss per Epoch') 

plt.xlabel('Epoch') 

plt.ylabel('Softmax Loss') 

plt.show() 

 

# Plot accuracy over time 

plt.plot(epochs_indices, history.history["val_accuracy"], 'k-

') 

plt.title('Test Accuracy per Epoch') 

plt.xlabel('Epoch') 

plt.ylabel('Accuracy') 

plt.show() 

5.6 Pre-trained networks 

🕮 5.6.1 

Retraining existing CNN models 

Retraining existing CNN models refers to the process of taking a pre-trained 
convolutional neural network (CNN) and fine-tuning it on a new task or dataset. This 
approach is often used in transfer learning, where a pre-trained CNN is used as a 
starting point for a new task, instead of training a CNN from scratch. 
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In retraining, the pre-trained CNN is typically modified by removing the last few layers 
that were designed for the original task, and replacing them with new layers that are 
suitable for the new task. The remaining layers of the pre-trained CNN are frozen, 
meaning that their weights are not updated during training. The new layers added to 
the CNN are then trained using the new dataset, and the weights of the frozen layers 
are fine-tuned to improve the performance on the new task. 

Retraining existing CNN models can save time and resources compared to training a 
CNN from scratch, as the pre-trained CNN has already learned useful features that 
can be leveraged for the new task. It also allows for transfer of knowledge from one 
task to another, which can improve the performance on the new task, especially when 
the new dataset is small or similar to the original dataset used to train the pre-trained 
CNN. 

📝 5.6.2 

Retraining example 

We will use transfer learning from a pre-trained network for CIFAR-10. The idea is to 
reuse the weights and structure of the prior model from the convolutional layers and 
retrain the fully connected layers at the top of the network. This method is called 
fine-tuning. 

Inception model 

Inception-v3 is a convolutional neural network architecture designed for image 
recognition and classification, and was introduced by Google researchers in 2015. It 
is an improvement over the earlier Inception-v1 and Inception-v2 models, and 
features a number of innovations to improve both accuracy and efficiency. The 
Inception-v3 architecture consists of many layers, including multiple convolutional 
and pooling layers, as well as a number of "inception" modules. These modules use 
a combination of 1x1, 3x3, and 5x5 convolutions to extract features from the input 
image at different scales and resolutions. In addition to these standard layers, 
Inception-v3 also includes a number of specialized layers, such as batch 
normalization layers, which help to improve the training process, and a global 
average pooling layer, which helps to reduce the number of parameters in the model. 
Inception-v3 has achieved state-of-the-art results on a number of image recognition 
benchmarks, and its architecture has been used as a starting point for many 
subsequent models in the field of computer vision. 

Dataset 

CIFAR-10 is a popular image classification dataset used in machine learning and 
computer vision research. It consists of 60,000 32x32 color images in 10 classes, 
with 6,000 images per class. The classes are airplane, automobile, bird, cat, deer, 
dog, frog, horse, ship, and truck. 



81 

The dataset is divided into 50,000 training images and 10,000 test images, and is 
often used as a benchmark for image classification models. The small size of the 
images and the diversity of the classes make it a challenging dataset for machine 
learning models to accurately classify. It has been widely used to evaluate the 
performance of deep learning models such as convolutional neural networks (CNNs). 

import tensorflow as tf 

from tensorflow import keras 

from tensorflow.keras.applications.inception_v3 import 

InceptionV3 

from tensorflow.keras.applications.inception_v3 import 

preprocess_input, decode_predictions 

 

# Set dataset parameters 

batch_size = 32 

buffer_size= 1000 

Download the dataset and declare the 10 categories to reference when saving the 
images later on: 

(x_train, y_train), (x_test, y_test) = 

tf.keras.datasets.cifar10.load_data() 

 

objects = ['airplane', 'automobile', 'bird', 'cat', 'deer', 

           'dog', 'frog', 'horse', 'ship', 'truck'] 

initialize the data pipeline. 

Inception v3 is pretrained on the ImageNet dataset, so our CIFAR-10 images must 
match the format of these images. The width and height expected should be no 
smaller than 75, so we will resize our images to 75x75 spatial size. Then, the images 
should be normalized, so we will apply the inception preprocessing task (the 
preprocess_input method) on each image. 

dataset_train = tf.data.Dataset.from_tensor_slices((x_train, 

y_train)) 

dataset_test = tf.data.Dataset.from_tensor_slices((x_test, 

y_test)) 

 

def preprocess_cifar10(img, label): 

    img = tf.cast(img, tf.float32) 

    img = tf.image.resize(img, (75, 75)) 

    return 

tf.keras.applications.inception_v3.preprocess_input(img) , 

label 
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dataset_train_processed = 

dataset_train.shuffle(buffer_size).batch(batch_size).map(prepr

ocess_cifar10) 

dataset_test_processed = 

dataset_test.batch(batch_size).map(preprocess_cifar10) 

We want to load the weights without the classification head. 

inception_model = InceptionV3( 

    include_top=False, 

    weights="imagenet", 

    input_shape=(75,75,3) 

) 

We build our own model on top of the InceptionV3 model by adding a classifier with 
three fully connected layers. 

x = inception_model.output 

x= keras.layers.GlobalAveragePooling2D()(x) 

x = keras.layers.Dense(1024, activation="relu")(x) 

x = keras.layers.Dense(128, activation="relu")(x) 

output = keras.layers.Dense(10, activation="softmax")(x) 

 

model=keras.Model(inputs=inception_model.input, outputs = 

output) 

We'll set the base layers in Inception as not trainable. Only the classifier weights will 
be updated during the back-propagation phase (not the Inception weights): 

for inception_layer in inception_model.layers: 

    inception_layer.trainable= False 

     

# Compile the model 

 model.compile(optimizer="adam", 

loss="sparse_categorical_crossentropy", metrics=["accuracy"]) 

Show model architecture: 

model.summary() 

 

# Start training 

model.fit(x=dataset_train_processed ,  

          validation_data=dataset_test_processed) 

Accuracy at the end is over 60%. 
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Remember that we are fine-tuning the model and retraining the fully connected layers 
at the top to fit our 10-category data. 

5.7 Object detection 

🕮 5.7.1 

Image classification - Binary classification 

Binary classification is the simplest approach for classification models, since it 
classifies images into only two categories. In this chapter, we began with 
convolutional operation and discussed how to use it as an image transformer. Then 
you learned what a pool layer does and the differences between maximum and 
average pooling. Then we also studied how a flattening layer turns a pooled feature 
map into a single column. Then you learned how and why to use image augmentation 
and how to use batch normalization. These are the main components that distinguish 
CNN from other ANNs. Like other binary classifiers, binary image classifiers end with 
a dense layer with a unit and a sigmoid activation function. To provide more 
convenience, image classifiers can be equipped to classify more than two objects. 
These classifications are generally known as object classifications.  

Object classification 

The three different types of models for object classification are: 

• Image classification: the goal is to classify the entire image into one of several 
predefined categories. The output is a single label that represents the most 
likely class for the entire image. For these problems, you'll use a traditional 
CNN. 

• Classification with localization: the goal is to classify the entire image into one 
of several predefined categories, but also to locate the object within the 
image. The output is a bounding box that represents the location of the object 
within the image, as well as a label that represents the most likely class for 
the object. For this, you can use model such as simplified You Only Look Once 
(YOLO) or R-CNN. 

• Detection: In object detection, the goal is to detect and localize all instances 
of objects of interest within the image, as well as classify them. The output is 
a set of bounding boxes that represent the locations of all the objects of 
interest in the image, as well as a label for each bounding box that represents 
the most likely class for the object. For this, you use YOLO model or an R-CNN. 

Therefore, image classification is the simplest and most coarse-grained task, while 
object detection is the most complex and fine-grained task, requiring the 
localization and classification of multiple objects in an image. 
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🕮 5.7.2 

Well known object detection algorithms 

R-CNN 

R-CNN stands for Region-based Convolutional Neural Network. It is a popular object 
detection algorithm that uses a combination of region proposals and convolutional 
neural networks to localize and classify objects in an image. 

The R-CNN algorithm works in three steps. First, it generates a set of region 
proposals using a selective search algorithm. These regions are then passed through 
a convolutional neural network to extract features that are used to classify the 
objects within each region. Finally, a bounding box regression algorithm is used to 
refine the location of the object within the region. 

R-CNN was introduced in 2014 by Ross Girshick, et al. as an improvement over 
previous object detection algorithms that used hand-crafted features and sliding 
windows to classify objects. R-CNN was one of the first object detection algorithms 
to use deep learning and has since been improved upon with faster variants, such as 
Fast R-CNN and Faster R-CNN, which use a single network for region proposal and 
classification, leading to faster and more accurate object detection. There are 
improved version Fast R-CNN and Faster R-CNN. 

YOLO 

YOLO (You Only Look Once) is a deep learning object detection model that can detect 
objects in real-time images and videos with high accuracy. It was developed by 
Joseph Redmon, and it stands out from other object detection models because of its 
speed and efficiency. 

YOLO uses a single neural network that can directly predict the bounding boxes and 
class probabilities for multiple objects in an image in one shot. This means that the 
network only needs to look at the image once to detect objects, as opposed to the 
traditional two-stage methods where the image is first segmented into regions of 
interest, and then those regions are classified. YOLO's single-stage approach makes 
it significantly faster than other object detection models while maintaining high 
accuracy. 

YOLO has been updated with several versions, including YOLOv2, YOLOv3, and 
YOLOv4, each with its own improvements and optimizations to increase speed and 
accuracy. YOLO is widely used in various applications, including self-driving cars, 
surveillance systems, and object recognition in social media. 

SSD - single shot detector 

Single Shot Detector (SSD) is an object detection algorithm that belongs to the family 
of one-stage detectors, meaning that it performs object detection in a single forward 
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pass of the neural network. SSD is based on a fully convolutional neural network that 
predicts the class scores and the bounding box coordinates of multiple objects in an 
image. 

The key idea behind SSD is to use a set of default bounding boxes with different 
aspect ratios and scales at each spatial location in the feature map of the last 
convolutional layer. These default bounding boxes act as templates to detect objects 
of different sizes and shapes. The network predicts the offsets and scales of these 
default bounding boxes to obtain the final predicted bounding boxes. 

Compared to other object detection algorithms, SSD has the advantage of being 
faster and more accurate, especially for detecting small objects. It has been used in 
various applications, such as autonomous driving, robotics, and surveillance 
systems. 

🕮 5.7.3 

Object detection performance evaluation 

Object detection performance evaluations typically involve measuring the accuracy 
of a model in detecting and localizing objects within an image. Some common 
metrics used for evaluation include: 

1. Precision: the proportion of true positive detections (correctly identified 
objects) over the total number of detections made by the model. 

2. Recall: the proportion of true positive detections over the total number of 
objects present in the image. 

3. Intersection over Union (IoU): a measure of the overlap between the ground 
truth bounding box and the predicted bounding box. IoU is typically used to 
determine whether a detection is a true positive or a false positive. 

4. Average Precision (AP): a metric that combines both precision and recall, by 
computing the area under the precision-recall curve. 

5. Mean Average Precision (mAP): the average AP across all object categories 
in the dataset. 

6. F1 score: the harmonic mean of precision and recall, which provides a 
balanced measure of the model's accuracy. 

These metrics are used to evaluate the performance of different object detection 
models and to compare them against each other on various datasets. 
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6.1 RNN overview 

🕮 6.1.1 

Description of RNNs 

Recurrent Neural Networks (RNNs) are a type of neural network that are commonly 
used for processing sequential data. Unlike traditional neural networks that process 
fixed-length inputs, RNNs can handle inputs of variable lengths by maintaining a 
"memory" of the previous inputs that they have processed. RNNs use this memory to 
make predictions based on the current input and the context provided by the previous 
inputs. 

RNNs consist of a series of repeating units that take an input and produce an output 
while maintaining an internal state that captures the "memory" of previous inputs. 
This internal state is passed on to the next unit in the sequence, allowing the network 
to maintain a context across multiple inputs. The output of the final unit in the 
sequence is typically fed into a fully connected layer to produce the final output of 
the network. 

RNNs are particularly well-suited for tasks such as language modeling, speech 
recognition, and natural language processing, where the input data is inherently 
sequential and the context of previous inputs is important for making accurate 
predictions. 

 

🕮 6.1.2 

Sequential data and deep learning models 

Sequential data refers to data sets in which each data point depends on previous 
data. Consider it a sentence, which consists of a series of words that are related to 
each other. A verb is linked to a subject and an adverb is linked to a verb. Another 
example is a stock price, where the price on a particular day is related to the price of 
the previous days. Traditional neural networks are not suitable for processing this 
type of data. There is a specific type of architecture that can ingest data sequences. 
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A RNN model is a specific type of deep learning architecture in which the output of 
the model is returned to the input. This type of model has its own challenges (known 
as disappearing and exploding gradients).In many ways, a RNN is a representation 
of how the brain can work. RNN uses memory to help them learn. But how can they 
do this if the information flows only in one direction? To understand this, you first 
need to examine sequential data. This is a type of data that requires work memory 
to process data effectively. Until now, you have only investigated non-sequence 
models, such as perceptron or CNN. 

Typical examples of sequential data: 

1. Time series data: This includes data that is collected over time, such as stock 
prices, weather data, or sensor data. 

2. Natural Language Processing (NLP) data: This includes text data, such as 
words or sentences, that have a specific sequence. 

3. Music data: This includes audio data that has a temporal order, such as music 
notes or beats. 

4. Video data: This includes data that is captured from a sequence of images, 
such as videos or motion capture data. 

🕮 6.1.3 

Difference between RNN and CNN 

Recurrent Neural Networks (RNNs) and Convolutional Neural Networks (CNNs) are 
both types of deep learning models, but they are designed for different types of input 
data and tasks. 

RNNs are typically used for sequential data, where the order of the data matters, such 
as time series or natural language processing. They use feedback connections 
between neurons to maintain a memory of previous inputs, allowing them to model 
temporal dependencies in the data. 

CNNs, on the other hand, are typically used for data that has a grid-like structure, 
such as images, audio spectrograms, or even text in the form of 2D word 
embeddings. They use convolutional layers to extract local features from the data, 
and pooling layers to reduce the spatial resolution while retaining the most important 
features. 

In terms of architecture, RNNs typically have a single recurrent layer or multiple 
stacked recurrent layers, while CNNs can have multiple convolutional layers, followed 
by pooling layers and then fully connected layers for classification. RNNs are trained 
using backpropagation through time (BPTT), while CNNs are trained using 
backpropagation through the convolutional layers. 

In summary, the main difference between RNNs and CNNs is that RNNs are designed 
for sequential data, while CNNs are designed for grid-like data such as images. 
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📝 6.1.4 

RNNs can be typically used for: 

• Sequential data 
• Image data 
• Grid structured data 

🕮 6.1.5 

Typical applications of RNNs 

1. Natural Language Processing: RNNs can be used to model the temporal 
structure of language, making them well-suited for tasks such as language 
modeling, machine translation, sentiment analysis, and speech recognition. 

2. Time Series Analysis: RNNs can be used to analyze time series data, such as 
stock prices, weather data, or sensor data, to make predictions or detect 
anomalies. 

3. Image and Video Captioning: RNNs can be used to generate captions or 
descriptions of images or videos by processing the visual information in a 
sequential manner. 

4. Music Generation: RNNs can be used to generate new music by learning 
patterns and structures from existing music and then generating new 
sequences of notes. 

5. Handwriting Recognition: RNNs can be used to recognize and classify 
handwritten text by processing the temporal sequence of strokes. 

6. Speech Recognition: RNNs can be used for speech recognition tasks, such as 
converting spoken words to text. 

Overall, RNNs are useful for tasks that involve sequential data, where the context and 
temporal dependencies between elements are important for the task. 

6.2 Layers and architectures in RNNs 

🕮 6.2.1 

RNN building blocks 

The first formulation of a recurrent-like neural network was created by John Hopfield 
in 1982. 

The information is transformed into a vector that can be processed by a machine. 
The RNN then processes the vector sequence one at a time. When processing each 
vector, it passes through the previous hidden state. The hidden state stores 
information from the previous step, acting as a memory type. This is done by 
combining the input and the previous hidden state with a tanh function that 
compresses values between -1 and 1. 
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🕮 6.2.2 

In feed-forward neural networks, data propagates in one direction only, that is, from 
input to output. This is good approach for single input you need to process (such as 
image data seen in CNNs previously) but it does not work well for a sequence of data. 
RNNs are particularly suitable to handle cases where you have an input sequence 
instead of a single input. These are important for problems in which data sequences 
are transmitted to give a single output. 

Simply put, RNNs are networks that offer a mechanism to persist previously 
processed data over time and use it to make future predictions. It provides 
information about the previous step to the next one. This mechanism is called 
recurrent because information is being passed from one time step to the next within 
the network. 

 RNN maintains the inner state Ht, combine it with the next input data Xt+1, make a 
prediction, Yt+1, and store the new inner state Ht+1.The key idea is that state update is 
a combination of the previous state time step and the current input received by the 
network. 

Given an example: 

1. At the start RNN is initialized altogether with the hidden state of that network. 
You can indicate a sentence in which you are interested in predicting the next 
word. The RNN calculation consists simply of them moving through the words 
in this sentence. 

2. At each time step, you include both the current word you're considering, and 
the previous hidden state of your RNN in the network. This can then generate 
a prediction for the next word in the sequence and use this information to 
update its hidden state. 

3. Finally, after you have passed through all the words of the sentence, your 
prediction for this missing word is simply the output of the RNN at this last 
step of time.  
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As can be seen in the previous image the non-linear activation function is applied to 
get new state ht and the output yt. 

 

🕮 6.2.3 

The vanishing gradient problem 

The vanishing gradient problem in RNNs refers to the issue where the gradient used 
for updating the weights of the network becomes extremely small during 
backpropagation, making it difficult for the network to learn and optimize long-term 
dependencies. This happens because the gradients of the loss function with respect 
to the weights in the earlier time steps of the RNN are multiplied by the weight matrix 
in each time step during backpropagation, and if this matrix has eigenvalues less 
than 1, the gradients can quickly vanish as they are propagated backward in time. As 
a result, the network may have difficulty learning long-term dependencies, which can 
be problematic for tasks such as speech recognition or natural language processing, 
where the meaning of a word or sentence may depend on information from several 
earlier time steps. 

🕮 6.2.4 

LSTM 

LSTM stands for Long Short-Term Memory, and it is a type of recurrent neural 
network (RNN) cell that is designed to better handle the vanishing gradient problem 
in traditional RNNs. 

The key difference between LSTM cells and traditional RNN cells is that LSTM cells 
have an internal memory state that can selectively store or discard information at 
each time step. This allows LSTM cells to more effectively remember long-term 
dependencies in sequential data. 
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At each time step, an LSTM cell takes three inputs: the current input to the cell, the 
previous hidden state, and the previous memory state. It then uses a series of gates 
to control the flow of information into and out of the cell. 

The forget gate determines how much of the previous memory state to forget, the 
input gate determines how much of the current input to use to update the memory 
state, and the output gate determines how much of the memory state to output to 
the next time step. 

LSTM cells have become a popular building block in deep learning models for 
sequential data, including natural language processing, speech recognition, and time 
series analysis. 

 

LSTM processing steps 

1. Forget 
2. Store 
3. Update 
4. Generate 

 

🕮 6.2.5 

Architectures 

Recurrent Neural Networks (RNNs) have several known architectures that are 
commonly used for various tasks. Here are some of the most well-known 
architectures: 

1. Simple RNN: This architecture is the simplest form of RNN and consists of a 
single layer of recurrent neurons. It is used for simple sequential tasks, such 
as language modeling and stock price prediction. 
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2. LSTM (Long Short-Term Memory): This architecture was developed to address 
the vanishing gradient problem in simple RNNs. It has an internal memory cell 
and three gates (input, forget, and output) that control the flow of information 
through the network. LSTMs are commonly used for tasks such as speech 
recognition and text classification. 

3. GRU (Gated Recurrent Unit): This architecture is similar to the LSTM but has 
fewer parameters. It has two gates (reset and update) that control the flow of 
information through the network. GRUs are commonly used for tasks such as 
language modeling and machine translation. 

4. Bidirectional RNN: This architecture processes the input sequence in both 
forward and backward directions and combines the outputs to produce a final 
output. It is commonly used for tasks such as speech recognition and 
sentiment analysis. 

5. Encoder-Decoder: This architecture consists of two RNNs: an encoder 
network that processes the input sequence and a decoder network that 
generates the output sequence. It is commonly used for tasks such as 
machine translation and image captioning. 

6. Attention-based RNN: This architecture uses an attention mechanism to 
selectively focus on parts of the input sequence that are relevant to the current 
output. It is commonly used for tasks such as machine translation and text 
summarization. 

Overall, the choice of architecture depends on the specific task and the properties of 
the input and output sequences. 

6.3 Examples with RNNs 

📝 6.3.1 

ANN on sequential data - Nvidia stock price prediction 

This is example of regular ANN used for sequential data: 

import numpy as np 

import matplotlib.pyplot as plt 

import pandas as pd 

from sklearn.preprocessing import StandardScaler, MinMaxScaler 

Load data from csv file: 

import io 

import requests 

url="https://raw.githubusercontent.com/PacktWorkshops/The-

TensorFlow-Workshop/master/Chapter09/Exercise9.01/NVDA.csv" 

data = pd.read_csv(url) 

Show data head and tail: 
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print(data.head()) 

 

print(data.tail()) 

 

# Split Training data 

data_training = data[data['Date']<'2019-01-01'].copy() 

 

# Split Testing data 

data_test = data[data['Date']>='2019-01-01'].copy() 

 

training_data = data_training.drop\ 

                (['Date', 'Adj Close'], axis = 1) 

print(training_data.head()) 

 

scaler = MinMaxScaler() 

training_data = scaler.fit_transform(training_data) 

 

X_train = [] 

y_train = [] 

 

print(training_data.shape[0]) 

 

for i in range(60, training_data.shape[0]): 

  X_train.append(training_data[i-60:i]) 

  y_train.append(training_data[i, 0]) 

 

X_train, y_train = np.array(X_train), np.array(y_train) 

 

X_train.shape, y_train.shape 

 

print(X_train.shape) 

print(y_train.shape) 

 

X_old_shape = X_train.shape 

X_train = X_train.reshape(X_old_shape[0], 

X_old_shape[1]*X_old_shape[2])  

print(X_train.shape) 

 

from tensorflow.keras import Sequential 

from tensorflow.keras.layers import Input, Dense, Dropout 

 

# Model definition 

regressor_ann = Sequential() 
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regressor_ann.add(Input(shape = (300,))) 

regressor_ann.add(Dense(units = 512, activation = 'relu')) 

regressor_ann.add(Dropout(0.2)) 

  

regressor_ann.add(Dense(units = 128, activation = 'relu')) 

regressor_ann.add(Dropout(0.3)) 

  

regressor_ann.add(Dense(units = 64, activation = 'relu')) 

regressor_ann.add(Dropout(0.4)) 

  

regressor_ann.add(Dense(units = 16, activation = 'relu')) 

regressor_ann.add(Dropout(0.5)) 

  

regressor_ann.add(Dense(units = 1)) 

 

regressor_ann.summary() 

 

regressor_ann.compile(optimizer='adam', \ 

                      loss = 'mean_squared_error') 

Start training: 

regressor_ann.fit(X_train, y_train, epochs=10, batch_size=32) 

 

## Test and predict stock price 

## Prepare test dataset 

print(data_test.head()) 

 

print(data_training.tail(60)) 

 

past_60_days = data_training.tail(60) 

 

df = past_60_days.append(data_test, ignore_index = True) 

df = df.drop(['Date', 'Adj Close'], axis = 1) 

df.head() 

 

inputs = scaler.transform(df) 

 
X_test = [] 

y_test = [] 

 

for i in range(60, inputs.shape[0]): 

  X_test.append(inputs[i-60:i]) 

  y_test.append(inputs[i, 0]) 
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X_test, y_test = np.array(X_test), np.array(y_test) 

  

X_old_shape = X_test.shape 

X_test = X_test.reshape(X_old_shape[0], \ 

                        X_old_shape[1] * X_old_shape[2]) 

  

X_test.shape, y_test.shape 

 

y_pred = regressor_ann.predict(X_test) 

 

print(scaler.scale_) 

Scale with the maximum value: 

scale = 1/3.70274364e-03 

print(scale) 

 

y_pred = y_pred*scale 

y_test = y_test*scale 

Show the result of the predicted stock price. This result is not as good as using the 
RNN network in the next example. 

plt.figure(figsize=(14,5)) 

plt.plot(y_test, color = 'black', label = "Real NVDA Stock 

Price") 

plt.plot(y_pred, color = 'gray', label = 'Predicted NVDA Stock 

Price') 

plt.title('NVDA Stock Price Prediction') 

plt.xlabel('time') 

plt.ylabel('NVDA Stock Price') 

plt.legend() 

plt.show() 

📝 6.3.2 

RNN with LSTM Layer Nvidia Stock Prediction 

This example demonstrates using of RNN with LSTM layer for prediction of Nvidia 
Stock value. 

import numpy as np 

import matplotlib.pyplot as plt 

import pandas as pd 
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from sklearn.preprocessing import StandardScaler, MinMaxScaler 

Read data from the source: 

import io 

import requests 

url="https://raw.githubusercontent.com/PacktWorkshops/The-

TensorFlow-Workshop/master/Chapter09/Exercise9.01/NVDA.csv" 

data = pd.read_csv(url) 

Show the head of the data: 

print(data.head()) 

Show the tail of the data: 

print(data.tail()) 

 

# Split Training data 

data_training = data[data['Date']<'2019-01-01'].copy() 

print(data_training) 

 

# Split Testing data 

data_test = data[data['Date']>='2019-01-01'].copy() 

print(data_test) 

 

training_data = data_training.drop(['Date', 'Adj Close'], axis 

= 1) 

print(training_data.head()) 

 

scaler = MinMaxScaler() 

training_data = scaler.fit_transform(training_data) 

print(training_data) 

 

X_train = [] 

y_train = [] 

training_data.shape[0] 

 

for i in range(60, training_data.shape[0]): 

  X_train.append(training_data[i-60:i]) 

  y_train.append(training_data[i, 0]) 

 

X_train, y_train = np.array(X_train), np.array(y_train) 

print(X_train.shape) 

print(y_train.shape) 
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Program output: 

(808, 60, 5) 

(808,) 

 

from tensorflow.keras import Sequential 

from tensorflow.keras.layers import Dense, LSTM, Dropout 

Definition of a model: 

regressor = Sequential() 

 

regressor.add(LSTM(units= 50, activation = 'relu', \ 

                   return_sequences = True, \ 

                   input_shape = (X_train.shape[1], 5))) 

regressor.add(Dropout(0.2)) 

 

regressor.add(LSTM(units= 60, activation = 'relu', \ 

                   return_sequences = True)) 

regressor.add(Dropout(0.3)) 

 

regressor.add(LSTM(units= 80, activation = 'relu', \ 

                   return_sequences = True)) 

regressor.add(Dropout(0.4)) 

 

regressor.add(LSTM(units= 120, activation = 'relu'))  

regressor.add(Dropout(0.5)) 

 

regressor.add(Dense(units = 1)) 

Print model layers: 

regressor.summary() 

 

regressor.compile(optimizer='adam', loss = 

'mean_squared_error') 

Start training: 

regressor.fit(X_train, y_train, epochs=10, batch_size=32) 

 

past_60_days = data_training.tail(60) 

 

df = past_60_days.append(data_test, ignore_index = True) 

df = df.drop(['Date', 'Adj Close'], axis = 1) 
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print(df.head()) 

 

inputs = scaler.transform(df) 

print(inputs) 

 

X_test = [] 

y_test = [] 

 

for i in range(60, inputs.shape[0]): 

  X_test.append(inputs[i-60:i]) 

  y_test.append(inputs[i, 0]) 

 

X_test, y_test = np.array(X_test), np.array(y_test) 

X_test.shape, y_test.shape 

Predict prices using the trained network: 

y_pred = regressor.predict(X_test) 

 

print(scaler.scale_) 

 
Program output: 

[3.70274364e-03 3.65992009e-03 3.75248621e-03 3.70301815e-03 

 1.09875621e-08] 

Get the scaling factor: 

scale = 1/3.70274364e-03 

print(scale) 

Program output: 

270.0700067909643 

 

# scale the data 

y_pred = y_pred*scale 

y_test = y_test*scale 

Print predicted data values: 

print(y_pred) 

Plot the prediction together with actual data: 
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plt.figure(figsize=(14,5)) 

plt.plot(y_test, color = 'black', label = "Real NVDA Stock 

Price") 

plt.plot(y_pred, color = 'gray', label = 'Predicted NVDA Stock 

Price') 

plt.title('NVDA Stock Price Prediction') 

plt.xlabel('time') 

plt.ylabel('NVDA Stock Price') 

plt.legend() 

plt.show() 

  



101 

 

 

 

 

 

 

 

 

 

Generative models 

Chapter 7 
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7.1 Generative models overview 

🕮 7.1.1 

Introduction 

Generative models differ from predictive models because they aim to generate new 
samples from the same distribution of training data. Although the purpose of these 
models may differ greatly from that of previous sections, many concepts learned in 
previously can and will be used, including loading and preprocessing various data 
files, hyperparameter adjustment, and the usage of CNNs and RNNs. 

🕮 7.1.2 

Typical applications of generative models in deep learning 

1. Image generation: Generative models can be used to generate realistic images 
of faces, animals, objects, and scenes. 

2. Text generation: Generative models can generate natural language text for 
applications such as chatbots, text summarization, and dialogue systems. 

3. Music generation: Generative models can create new music pieces based on 
existing songs or styles. 

4. Video generation: Generative models can create video sequences with 
realistic motions and actions. 

5. Data augmentation: Generative models can be used to generate synthetic data 
for training deep learning models and improving their performance. 

6. Anomaly detection: Generative models can detect anomalies in datasets by 
learning the distribution of normal data and identifying samples that do not 
conform to it. 

7. Style transfer: Generative models can transform images or videos to different 
styles while preserving their content. 

8. Simulation: Generative models can simulate complex physical or biological 
systems, such as weather patterns, traffic flow, or protein folding. 

🕮 7.1.3 

Text generation 

Natural Language Processing (NLP) is a subfield of computer science and artificial 
intelligence that deals with the interactions between computers and human 
languages. It involves the ability of machines to read, understand, and interpret 
human language in the form of text or speech, and to generate natural language 
responses in turn. NLP technologies are used in a variety of applications, such as 
language translation, sentiment analysis, chatbots, speech recognition, and text 
summarization or text generation 
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 Some common steps of pre-processing data for training model include data 
cleaning, transformation, and data reduction. 

• Dataset cleaning encompasses the conversion of the case to lowercase, 
removing punctuation. 

• Tokenization in natural language processing (NLP) is the process of breaking 
down text into smaller units called tokens. The tokens are essentially words 
or phrases, which can be further used for analysis, processing, or generating 
new text. Tokenization can be performed at different levels such as word level, 
subword level, or character level, depending on the requirements of the NLP 
task. In practice, tokenization involves various steps such as splitting text into 
sentences, removing punctuation, converting text to lowercase, and splitting 
words into individual tokens. Tokenization is a fundamental step in many NLP 
tasks such as text classification, named entity recognition, and machine 
translation. 

• In NLP, padding is a technique used to make all the text sequences of the 
same length. It is done by adding a special token (usually a zero or a PAD 
token) at the end of the shorter sentences, so that all the sequences have the 
same length. Padding is necessary for training neural networks on text data 
because the networks require fixed-size inputs, and if the inputs are of 
different lengths, it can cause issues during training. Once the padding is done, 
the padded sequences can be fed to the neural network for further processing. 

• Stemming is a technique used in Natural Language Processing (NLP) to 
reduce a word to its root form, called a stem. This is done by removing the 
suffixes (endings) of words, which may be different forms of the same root 
word. For example, "running," "ran," and "runner" all have the same root word 
"run," and stemming would reduce all of these words to the same stem "run." 
The goal of stemming is to reduce the complexity of text data and to group 
together similar words so that they can be treated as a single entity during text 
analysis. Stemming is often used as a pre-processing step before other NLP 
tasks, such as text classification or sentiment analysis. 

🕮 7.1.4 

Generative Adversarial Networks (GANs) 

GANs, or Generative Adversarial Networks, are a type of deep learning model that 
involves two neural networks: a generator and a discriminator. The generator takes 
in random noise as input and generates fake data, such as images or text. The 
discriminator is trained to distinguish between the generated fake data and real data. 

During training, the generator tries to generate data that is realistic enough to fool 
the discriminator, while the discriminator tries to correctly classify the real and fake 
data. Over time, both networks improve, with the generator getting better at 
generating realistic data and the discriminator getting better at distinguishing 
between real and fake data. 
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GANs have been used for a variety of tasks, such as generating realistic images, 
synthesizing audio, and creating new text. 

🕮 7.1.5 

Deep Convolutional Generative Adversarial Networks (DCGANs) 

Deep Convolutional Generative Adversarial Networks (DCGANs) are a type of 
Generative Adversarial Networks (GANs) that use deep convolutional neural 
networks (CNNs) as the generator and the discriminator networks. 

DCGANs were proposed in 2015 as an extension of GANs to address the challenge 
of generating high-quality images. The generator in a DCGAN is a deep CNN that 
maps a random noise vector to an image, and the discriminator is also a deep CNN 
that maps an image to a probability of being real or fake. 

The use of convolutional layers in the generator and discriminator helps to capture 
the spatial dependencies in images and produce more realistic and sharp images. 
DCGANs have been successfully used for tasks such as image synthesis, image 
inpainting, and style transfer. 

🕮 7.1.6 

Deepfake 

Deepfake is a technique used to create synthetic media, such as videos, images, or 
audio recordings, that are either entirely fake or manipulated to be false. Specifically, 
deepfake algorithms use artificial intelligence and deep learning techniques to 
generate or modify visual or audio content in a way that is convincing to humans. 
This has raised concerns about the potential misuse of the technology for malicious 
purposes, such as creating fake news, impersonating individuals, or creating non-
consensual pornography. However, deepfake technology can also be used for 
positive applications, such as in film and entertainment or for creating more realistic 
simulations for training and education. 

DCGAN can be used as a part of a pipeline to generate deepfake images or videos, 
but it is not specifically designed for this task.  

7.2 Examples of generative models 

📝 7.2.1 

Generating a text using RNN 

This example shows text generator using RNN 

from keras.utils import pad_sequences 
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from keras.models import Sequential 

from keras.layers import Embedding, LSTM, Dense, Dropout 

import tensorflow.keras.utils as ku  

from keras.preprocessing.text import Tokenizer 

import pandas as pd 

import numpy as np 

from keras.callbacks import EarlyStopping 

import string, os  

import warnings 

warnings.filterwarnings("ignore") 

warnings.simplefilter(action='ignore', category=FutureWarning) 

 

import io 

import requests 

url="https://raw.githubusercontent.com/PacktWorkshops/The-

TensorFlow-Workshop/master/Chapter09/Datasets/Articles.csv" 

data = pd.read_csv(url) 

 

our_headlines = [] 

our_headlines.extend(list(data.headline.values)) 

 

our_headlines = [h for h in our_headlines if h != "Unknown"] 

print(len(our_headlines)) 

 
Program output: 

831 

 

def clean_text(txt): 

    txt = "".join(v for v in txt if v not in 

string.punctuation).lower() 

    txt = txt.encode("utf8").decode("ascii",'ignore') 

    return txt  

 

corpus = [clean_text(x) for x in our_headlines] 

print(corpus[60:80]) 

 
Program output: 

['lets go for a win on opioids', 'floridas vengeful governor', 

'how to end the politicization of the courts', 'when dr king 

came out against vietnam', 'britains trains dont run on time 
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blame capitalism', 'questions for no license plates here using 

art to transcend prison walls', 'dry spell', 'are there 

subjects that should be offlimits to artists or to certain 

artists in particular', 'that is great television', 'thinking 

in code', 'how gorsuchs influence could be greater than his 

vote', 'new york today how to ease a hangover', 'trumps gifts 

to china', 'at penn station rail mishap spurs large and 

lasting headache', 'chemical attack on syrians ignites worlds 

outrage', 'adventure is still on babbos menu', 'swimming in 

the fast lane', 'a national civics exam', 'obama adviser is 

back in the political cross hairs', 'the hippies have won'] 

 

tokenizer = Tokenizer() 

 

def get_seq_of_tokens(corpus): 

    ## tokenization 

    tokenizer.fit_on_texts(corpus) 

    all_words = len(tokenizer.word_index) + 1 

     

    ## convert data to sequence of tokens  

    input_seq = [] 

    for line in corpus: 

        token_list = tokenizer.texts_to_sequences([line])[0] 

        for i in range(1, len(token_list)): 

            n_gram_sequence = token_list[:i+1] 

            input_seq.append(n_gram_sequence) 

    return input_seq, all_words 

 

our_sequences, all_words = get_seq_of_tokens(corpus) 

print(our_sequences[:20]) 

 
Program output: 

[[169, 17], [169, 17, 665], [169, 17, 665, 367], [169, 17, 

665, 367, 4], [169, 17, 665, 367, 4, 2], [169, 17, 665, 367, 

4, 2, 666], [169, 17, 665, 367, 4, 2, 666, 170], [169, 17, 

665, 367, 4, 2, 666, 170, 5], [169, 17, 665, 367, 4, 2, 666, 

170, 5, 667], [6, 80], [6, 80, 1], [6, 80, 1, 668], [6, 80, 1, 

668, 10], [6, 80, 1, 668, 10, 669], [670, 671], [670, 671, 

129], [670, 671, 129, 672], [673, 674], [673, 674, 368], [673, 

674, 368, 675]] 
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def generate_padded_sequences(input_seq): 

    max_sequence_len = max([len(x) for x in input_seq]) 

    input_seq = np.array(pad_sequences\ 

                         (input_seq, maxlen=max_sequence_len, 

\ 

                          padding='pre')) 

     

    predictors, label = input_seq[:,:-1],input_seq[:,-1] 

    label = ku.to_categorical(label, num_classes=all_words) 

    return predictors, label, max_sequence_len 

 

predictors, label, max_sequence_len = 

generate_padded_sequences(our_sequences) 

 

def create_model(max_sequence_len, all_words): 

    input_len = max_sequence_len - 1 

    model = Sequential() 

     

    # Add Input Embedding Layer 

    model.add(Embedding(all_words, 10, 

input_length=input_len)) 

     

    # Add Hidden Layer 1 - LSTM Layer 

    model.add(LSTM(100)) 

    model.add(Dropout(0.1)) 

     

    # Add Output Layer 

    model.add(Dense(all_words, activation='softmax')) 

 

    model.compile(loss='categorical_crossentropy', 

optimizer='adam') 

     

    return model 

 

model = create_model(max_sequence_len, all_words) 

model.summary() 

 

model.fit(predictors, label, epochs=200, verbose=5) 

 
Program output: 

Epoch 1/200 

Epoch 2/200 

Epoch 3/200 
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Epoch 4/200 

Epoch 5/200 

Epoch 6/200 

Epoch 7/200 

 

def generate_text(seed_text, next_words, model, 

max_sequence_len): 

    for _ in range(next_words): 

        token_list = 

tokenizer.texts_to_sequences([seed_text])[0] 

        token_list = pad_sequences([token_list], \ 

                                   maxlen=max_sequence_len-1, 

\ 

                                   padding='pre') 

        predicted = model.predict(token_list, verbose=0) 

         

        output_word = "" 

        for word,index in tokenizer.word_index.items(): 

            if index == predicted.any(): 

                output_word = word 

                break 

        seed_text += " "+output_word 

    return seed_text.title() 

 

print (generate_text("10 Ways", 11, model, max_sequence_len)) 

print (generate_text("europe looks to", 8, model, 

max_sequence_len)) 

print (generate_text("best way", 10, model, max_sequence_len)) 

print (generate_text("homeless in", 10, model, 

max_sequence_len)) 

print (generate_text("Unexpected results", 10, model, \ 

                     max_sequence_len)) 

print (generate_text("critics warn", 10, model, 

max_sequence_len)) 

📝 7.2.2 

Generating pictures using DCGAN 

NOT WORKING needs data store 

try: 

    from google.colab import drive 

    drive.mount('/content/drive', force_remount=True) 
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    COLAB = True 

    print("Note: using Google CoLab") 

    %tensorflow_version 2.x 

except: 

    print("Note: not using Google CoLab") 

    COLAB = False 

 
Program output: 

Note: not using Google CoLab 

 

import tensorflow as tf 

from tensorflow.keras.models import Sequential, Model, 

load_model 

from tensorflow.keras.layers import Input, Reshape, Dropout, 

Dense  

from tensorflow.keras.layers import Flatten, 

BatchNormalization 

from tensorflow.keras.layers import UpSampling2D, Conv2D 

from tensorflow.keras.layers import Activation, ZeroPadding2D 

from tensorflow.keras.optimizers import Adam 

from tensorflow.keras.layers import LeakyReLU 

import zipfile 

import matplotlib.pyplot as plt 

import numpy as np 

from PIL import Image 

from tqdm import tqdm 

import os  

import time 

from skimage.io import imread 

 
Program output: 

ModuleNotFoundError 

No module named 'skimage' 

 

def time_string(sec_elapsed): 

    hour = int(sec_elapsed / (60 * 60)) 

    minute = int((sec_elapsed % (60 * 60)) / 60) 

    second = sec_elapsed % 60 

    return "{}:{:>02}:{:>05.2f}".format(hour, minute, second) 

 

gen_res = 3 
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img_chan = 3 

gen_square = 32 * gen_res 

img_rows = 5 

img_cols = 5 

img_margin = 16 

seed_vector = 200 

data_path = 

"https://raw.githubusercontent.com/PacktWorkshops/The-

TensorFlow-Workshop/master/Chapter11/Exercise11.03/apple-or-

tomato/training_set/" 

epochs = 1000 

num_batch = 32 

num_buffer = 60000 

 

print(f"Will generate a resolution of {gen_res}.") 

print(f"Will generate {gen_square}px square images.") 

print(f"Will generate {img_chan} image channels.") 

print(f"Will generate {img_rows} preview rows.") 

print(f"Will generate {img_cols} preview columns.") 

print(f"Our preview margin equals {img_margin}.") 

print(f"Our data path is: {data_path}.") 

print(f"Our number of epochs are: {epochs}.") 

print(f"Will generate a batch size of {num_batch}.") 

print(f"Will generate a buffer size of {num_buffer}.") 

 
Program output: 

Will generate a resolution of 3. 

Will generate 96px square images. 

Will generate 3 image channels. 

Will generate 5 preview rows. 

Will generate 5 preview columns. 

Our preview margin equals 16. 

Our data path is: 

https://raw.githubusercontent.com/PacktWorkshops/The-

TensorFlow-Workshop/master/Chapter11/Exercise11.03/apple-or-

tomato/training_set/. 

Our number of epochs are: 1000. 

Will generate a batch size of 32. 

Will generate a buffer size of 60000. 

 

training_binary_path = os.path.join(data_path,\ 
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f'training_data_{gen_square}_{gen_square}.npy') 

 

print(f"Looking for file: {training_binary_path}") 

 

if not os.path.isfile(training_binary_path): 

    start = time.time() 

    print("Loading images...") 

 

    train_data = [] 

    images_path = os.path.join(data_path,'tomato') 

    for filename in tqdm(os.listdir(images_path)): 

        path = os.path.join(images_path,filename) 

        images = Image.open(path).resize((gen_square, 

            gen_square),Image.ANTIALIAS) 

        train_data.append(np.asarray(images)) 

    train_data = np.reshape(train_data,(-1,gen_square, 

            gen_square,img_chan)) 

    train_data = train_data.astype(np.float32) 

    train_data = train_data / 127.5 - 1. 

 

 

    print("Saving training images...") 

    np.save(training_binary_path,train_data) 

    elapsed = time.time()-start 

    print (f'Image preprocessing time: 

{time_string(elapsed)}') 

else: 

    print("Loading the training data...") 

    train_data = np.load(training_binary_path) 

Program output: 

Looking for file: 

https://raw.githubusercontent.com/PacktWorkshops/The-

TensorFlow-Workshop/master/Chapter11/Exercise11.03/apple-or-

tomato/training_set/training_data_96_96.npy 

Loading images... 

FileNotFoundError 

[Errno 2] No such file or directory: 

'https://raw.githubusercontent.com/PacktWorkshops/The-

TensorFlow-Workshop/master/Chapter11/Exercise11.03/apple-or-

tomato/training_set/tomato' 
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train_dataset = tf.data.Dataset.from_tensor_slices(train_data) 

\ 

                  .shuffle(num_buffer).batch(num_batch) 

Generator and Discriminator 

def create_generator(seed_size, channels): 

    model = Sequential() 

 

    

model.add(Dense(4*4*256,activation="relu",input_dim=seed_size)

) 

    model.add(Reshape((4,4,256))) 

 

    model.add(UpSampling2D()) 

    model.add(Conv2D(256,kernel_size=3,padding="same")) 

    model.add(BatchNormalization(momentum=0.8)) 

    model.add(Activation("relu")) 

 

    model.add(UpSampling2D()) 

    model.add(Conv2D(256,kernel_size=3,padding="same")) 

    model.add(BatchNormalization(momentum=0.8)) 

    model.add(Activation("relu")) 

    

    # Output resolution, additional upsampling 

    model.add(UpSampling2D()) 

    model.add(Conv2D(128,kernel_size=3,padding="same")) 

    model.add(BatchNormalization(momentum=0.8)) 

    model.add(Activation("relu")) 

 

    if gen_res>1: 

        model.add(UpSampling2D(size=(gen_res,gen_res))) 

        model.add(Conv2D(128,kernel_size=3,padding="same")) 

        model.add(BatchNormalization(momentum=0.8)) 

        model.add(Activation("relu")) 

 

    # Final CNN layer 

    model.add(Conv2D(channels,kernel_size=3,padding="same")) 

    model.add(Activation("tanh")) 

 

    return model 

 

 

def create_discriminator(image_shape): 

    model = Sequential() 
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    model.add(Conv2D(32, kernel_size=3, strides=2, 

input_shape=image_shape,  

                     padding="same")) 

    model.add(LeakyReLU(alpha=0.2)) 

 

    model.add(Dropout(0.25)) 

    model.add(Conv2D(64, kernel_size=3, strides=2, 

padding="same")) 

    model.add(ZeroPadding2D(padding=((0,1),(0,1)))) 

    model.add(BatchNormalization(momentum=0.8)) 

    model.add(LeakyReLU(alpha=0.2)) 

 

    model.add(Dropout(0.25)) 

    model.add(Conv2D(128, kernel_size=3, strides=2, 

padding="same")) 

    model.add(BatchNormalization(momentum=0.8)) 

    model.add(LeakyReLU(alpha=0.2)) 

 

    model.add(Dropout(0.25)) 

    model.add(Conv2D(256, kernel_size=3, strides=1, 

padding="same")) 

    model.add(BatchNormalization(momentum=0.8)) 

    model.add(LeakyReLU(alpha=0.2)) 

 

    model.add(Dropout(0.25)) 

    model.add(Conv2D(512, kernel_size=3, strides=1, 

padding="same")) 

    model.add(BatchNormalization(momentum=0.8)) 

    model.add(LeakyReLU(alpha=0.2)) 

 

    model.add(Dropout(0.25)) 

    model.add(Flatten()) 

    model.add(Dense(1, activation='sigmoid')) 

 

    return model 

 

def save_images(cnt,noise): 

    img_array = np.full((  

        img_margin + (img_rows * (gen_square+img_margin)),  

        img_margin + (img_cols * (gen_square+img_margin)), 3),  

        255, dtype=np.uint8) 

   

    gen_imgs = generator.predict(noise) 
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    gen_imgs = 0.5 * gen_imgs + 0.5 

 

    img_count = 0 

    for row in range(img_rows): 

        for col in range(img_cols): 

            r = row * (gen_square+16) + img_margin 

            c = col * (gen_square+16) + img_margin 

            img_array[r:r+gen_square,c:c+gen_square] \ 

                = gen_imgs[img_count] * 255 

            img_count += 1 

 

           

    output_path = os.path.join(data_path,'output') 

    if not os.path.exists(output_path): 

        os.makedirs(output_path) 

   

    filename = os.path.join(output_path,f"train-{cnt}.png") 

    im = Image.fromarray(img_array) 

    im.save(filename) 

 

generator = create_generator(seed_vector, img_chan) 

 

noise = tf.random.normal([1, seed_vector]) 

gen_img = generator(noise, training=False) 

 

plt.imshow(gen_img[0, :, :, 0]) 

 

img_shape = (gen_square,gen_square,img_chan) 

 

discriminator = create_discriminator(img_shape) 

decision = discriminator(gen_img) 

print (decision) 

 

cross_entropy = tf.keras.losses.BinaryCrossentropy() 

 

def discrim_loss(real_output, fake_output): 

    real_loss = cross_entropy(tf.ones_like(real_output), 

real_output) 

    fake_loss = cross_entropy(tf.zeros_like(fake_output), 

fake_output) 

    total_loss = real_loss + fake_loss 

    return total_loss 
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def gen_loss(fake_output): 

    return cross_entropy(tf.ones_like(fake_output), 

fake_output) 

 

gen_optimizer = tf.keras.optimizers.Adam(1.5e-4,0.5) 

disc_optimizer = tf.keras.optimizers.Adam(1.5e-4,0.5) 

 

@tf.function 

def train_step(images): 

    seed = tf.random.normal([num_batch, seed_vector]) 

 

    with tf.GradientTape() as gen_tape, tf.GradientTape() as 

disc_tape: 

        gen_imgs = generator(seed, training=True) 

 

        real_output = discriminator(images, training=True) 

        fake_output = discriminator(gen_imgs, training=True) 

 

        g_loss = gen_loss(fake_output) 

        d_loss = discrim_loss(real_output, fake_output) 

 

 

        gradients_of_generator = gen_tape.gradient(\ 

            g_loss, generator.trainable_variables) 

        gradients_of_discriminator = disc_tape.gradient(\ 

            d_loss, discriminator.trainable_variables) 

 

        gen_optimizer.apply_gradients(zip( 

            gradients_of_generator, 

generator.trainable_variables)) 

        disc_optimizer.apply_gradients(zip( 

            gradients_of_discriminator,  

            discriminator.trainable_variables)) 

    return g_loss,d_loss 

 

def train(dataset, epochs): 

    fixed_seed = np.random.normal(0, 1, (img_rows * img_cols,  

                                       seed_vector)) 

    start = time.time() 

 

    for epoch in range(epochs): 

        epoch_start = time.time() 

 

        g_loss_list = [] 
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        d_loss_list = [] 

 

        for image_batch in dataset: 

            t = train_step(image_batch) 

            g_loss_list.append(t[0]) 

            d_loss_list.append(t[1]) 

 

        generator_loss = sum(g_loss_list) / len(g_loss_list) 

        discriminator_loss = sum(d_loss_list) / 

len(d_loss_list) 

 

        epoch_elapsed = time.time()-epoch_start 

        print (f'Epoch {epoch+1}, gen 

loss={generator_loss},disc loss={discriminator_loss},'\ 

           f' {time_string(epoch_elapsed)}') 

        save_images(epoch,fixed_seed) 

 

    elapsed = time.time()-start 

    print (f'Training time: {time_string(elapsed)}') 

 

train(train_dataset, epochs) 

 

a = imread('/content/drive/MyDrive/Datasets'\ 

           '/apple-or-tomato/training_set/output/train-0.png') 

plt.imshow(a) 

 

a = imread('/content/drive/MyDrive/Datasets'\ 

           '/apple-or-tomato/training_set/output/train-1.png') 

plt.imshow(a) 

 

a = imread('/content/drive/MyDrive/Datasets'\ 

           '/apple-or-tomato/training_set/output/train-

25.png') 

plt.imshow(a) 

 

a = imread('/content/drive/MyDrive/Datasets/apple-or-tomato'\ 

           '/training_set/output/train-999.png') 

plt.imshow(a) 
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