

Machine Learning

Published on

Work in progress version

Erasmus+ FITPED-AI

Future IT Professionals Education in Artificial Intelligence

Project 2021-1-SK01-KA220-HED-000032095

The European Commission support for the production of this publication does not
constitute an endorsement of the contents which reflects the views only of the authors,
and the Commission cannot be held responsible for any use which may be made of
the information contained therein.

Licence (licence type: Attribution-Non-commercial-No Derivative Works) and may be
used by third parties as long as licensing conditions are observed. Any materials
published under the terms of a CC Licence are clearly identified as such.

All trademarks and brand names mentioned in this publication and all trademarks and
brand names mentioned that may be the intellectual property of third parties are
unconditionally subject to the provisions contained within the relevant law governing
trademarks and other related signs. The mere mention of a trademark or brand name
does not imply that such a trademark or brand name is not protected by the rights of
third parties.

© 2023 Constantine the Philosopher University in Nitra

TABLE OF CONTENTS
1 Introduction to machine learning ...5

1.1 Introduction ..6

1.2 Types of machine learning .. 14

1.3 Evaluating machine learning models ... 20

1.4 Practical exercise .. 22

2 Tree-Based Learning ... 31

2.1 Decision Trees .. 32

2.2 A greedy algorithm for decision tree ... 38

2.3 Choosing the best property for the distribution and stopping conditions of the algorithm

 ... 46

2.4 Performance metrics for machine learning models .. 52

2.5 Decision Trees - Practical Example 1 .. 64

2.6 Practical Tasks .. 72

3 Tree-Based Learning II. (Relearning in a decision tree) ... 81

3.1 Relearning in a decision tree ... 82

3.2 Tree pruning ... 93

3.3 Missing (incomplete) data ... 102

3.4 Practical tasks ... 105

4 Tree-Based Learning III. (Entropy, GINI index, numerical values) 114

4.1 GINI index .. 115

4.2 Entropy ... 120

4.3 Information Gain .. 124

4.4 How to use numeral values? .. 127

4.5 Practical tasks ... 135

5 Ensemble Learning Methods - Random Forest ... 153

5.1 Random Forest .. 154

5.2 Other ensemble learning methods ... 162

5.3 Practical tasks ... 165

5

Introduction to machine
learning

Chapter 1

6

1.1 Introduction

🕮 1.1.1

Can a machine learn new knowledge?

The objection to artificial intelligence is that machines can hardly be considered
intelligent unless they can learn new knowledge and adapt to new situations. The
fact that systems act as they are prescribed does not help either.

Machine learning can be defined as follows:

"Learning is any process by which a system improves performance based on
experience."

or "Learning is changes in a system that are adaptive in the sense that they allow
the system to accomplish the same task or tasks from the same class of tasks a
second time more efficiently and effectively." (Simon, 1983)

This learning includes:

• Skill refinement - improvement in solving many tasks just by doing them
more times.

• Knowledge acquisition - knowledge is generally acquired through
experience.

🕮 1.1.2

Machine learning algorithms can solve the following groups of problems:

• A group of problems for which there are no human experts.

For example, in modern manufacturing facilities, it is necessary to predict machine
failures before they actually occur based on sensor analysis. Because the
machines are new, there is no expert to give the programmer in question all the
knowledge needed to create a computer system. A system built on machine
learning can study the recorded data and infer prediction rules for subsequent
machine failures.

7

• A group of problems where experts exist, but are unable to explain their
expertise.

This is the case for many recognition tasks, such as speech recognition,
handwriting recognition, and natural language understanding. In fact, all humans
demonstrate expert ability to solve these tasks, but none of them are able to
describe in detail the steps they apply in solving them. Fortunately, humans can
provide machines with examples of inputs and correct outputs for these tasks, so
machine learning algorithms can learn to map inputs to correct outputs.

• A group of problems where circumstances change rapidly.

In finance, for example, people would like to predict future stock market
developments, consumer purchases or currency exchange rates. This data changes
quite rapidly, so even if a programmer could create a good prediction program, it
would have to be rewritten frequently. A learning program can relieve the
programmer from constant modification and debugging by creating a set of
prediction rules learned by learning.

• A group of applications that must be configured for each user separately.

Consider, for example, a program for filtering unwanted e-mail. Each user will need
different filters. It is unreasonable to expect each user to define their own rules, and
it is also unfeasible to have a software engineer available to each user to update
their rules. A system using machine learning is able to learn which emails a user
rejects and thus maintain filtering rules automatically.

🕮 1.1.3

What is learning?

To illustrate where the main advantages, but also the issues of machine learning lie,
we give an example, the so-called The Badges Game. The example was invented by
Haym Hirsh, who at a machine learning conference in 1994 assigned a "+" or "-" to
each registered participant. The label was assigned by some unknown function
known only to the creator of the example. The designation depended only on the
first and last name of the participant.

The task for the participants was to identify the unknown function used to generate
the +/- sign.

The list looked something like this:

8

+ Naoki Abe - Myriam Abramson + David W.

Aha

+ Kamal M. Ali - Eric Allender

 + Dana Angluin

- Chidanand Apte + Minoru Asada +

Lars Asker

+ Javed Aslam + Haralabos Athanassiou +

Jose L. Balcazar

+ Timothy P. Barber + Michael W. Barley

 - Cristina Baroglio

+ Peter Bartlett - Eric Baum + Welton

Becket

- Shai Ben-David + George Berg +

Neil Berkman

+ Malini Bhandaru + Bir Bhanu + Reinhard

Blasig

- Avrim Blum - Anselm Blumer +

Justin Boyan

+ Carla E. Brodley + Nader Bshouty -

Wray Buntine

- Andrey Burago + Tom Bylander

 + Bill Byrne

- Claire Cardie + Richard A. Caruana

 + John Case

+ Jason Catlett + Nicolo Cesa-Bianchi

 - Philip Chan

+ Mark Changizi + Pang-Chieh Chen -

Zhixiang Chen

+ Wan P. Chiang - Steve A. Chien +

Jeffery Clouse

+ William Cohen + David Cohn -

Clare Bates Congdon

For a full list, see:

https://www.seas.upenn.edu/~cis5190/fall2018/assets/lectures/lecture-
0/game.html

We do not need to build a machine learning model to solve this problem. However,
it is important to think about how we would formalize this problem as a learning
problem and what are the difficulties that arise in doing so.

https://www.seas.upenn.edu/~cis5190/fall2018/assets/lectures/lecture-0/game.
https://www.seas.upenn.edu/~cis5190/fall2018/assets/lectures/lecture-0/game.

9

When solving, it is important to remember that only the first and last names of the
participants will not be enough even for a machine learning algorithm. New
variables need to be generated from those names, e.g., the length of the full name,
the length, i.e., the number of characters of the first name and the last name, the
first character of the first name and its numbered code, the last character of the
last name and its numbered code, the number of consonants, the number of
vowels, and so on.

If we subsequently have the above mentioned variables - properties/attributes -
calculated, we can deploy a machine learning algorithm that learns to add +/- tags
for each name.

It is important to note that we do not need to know the exact function that Mr. Hirch
created. We only try to estimate it, i.e. we try to copy the results of this feature as
closely as possible. Mathematicians call this "good estimation" of the behaviour of
a function as approximation. The algorithm of machine learning will therefore seek
to approximate the function of Mr. Hirsh.

📝 1.1.4

What is a function for approximating values?

• It is the replacement of given values with appropriate close numbers based
on a function that is not entirely accurate, but it is still good to be usable.

• It is the replacement of given values with appropriate close numbers based
on a function that exactly corresponds to the substituted values.

🕮 1.1.5

In the previous example, we stated that machine learning only tries to approximate
the real function. We still don't know the original Hirsh function. For some names
from an existing dataset, it is possible to approximate the +/- marks using rules
such as:

• if the length (number of characters) of the name is less than or equal to 5
yes + otherwise -

10

or

• if the numerical code of the last letter of the name is smaller than the
numerical code of the last letter of the surname yes + otherwise -

11

🕮 1.1.6

The purpose of The Badges Game example was not to solve the problem with the
unknown function for adding +/- badges to conference participants. With an
example, we wanted to show that machine learning algorithms only try to
approximate the real function. At the same time, we wanted to show that working to
solve a problem using machine learning is not about "headlessly" deploying a
randomly selected algorithm and expecting excellent results. Most of the work
consists in preparing the dataset, adding new features, i.e. attributes, in carefully
selecting a machine learning algorithm, evaluating the algorithm, and
understanding the results.

For the application of machine learning, it is necessary to implement the following
steps in most cases:

Data preprocessing

Extracting symptoms

12

Creating a model

Making a prediction

Model testing and modification

Typical questions when applying machine learning are:

How to represent input data?

What deep background knowledge do we need?

How does learning take place?

🕮 1.1.7

So what is the difference between traditional programming and machine learning?

In traditional programming, we know the problem, we know the rules to solve it, and
if we apply these rules to the input data, we get the result.

In machine learning, we know the input data and we also know what the result
should be. We are looking for a model, i.e. for example rules, which can generally
calculate the result from the input data.

13

In the following text, we present examples of how machine learning can improve a
task based on experience (training data) with respect to a measure (metric) of
performance.

Task: Checkers game

Performance metric: Percentage of games won against any opponent

Data: Playing practice games against each other

-- ----------------------------

Task: Recognizing handwritten words

Performance metric: Percentage of correctly classified words

Data: Database of annotated images of handwritten words

-- ----------------------------

Task: Categorizing email messages as spam or ham.

Performance metric: Percentage of email messages correctly classified.

Data: A database of emails that have been manually annotated

-- ----------------------------

Task: Driving on highways using sensors

Performance metric: Average distance traveled before human-judged error

Data: A sequence of images and steering commands recorded while observing a
human driver.

14

📝 1.1.8

If we want to use machine learning to categorize which news belongs to fake news,
the so-called fake news, what input (data) and output (output) data do we need to
build such a classifier?

• A database of messages, along with information from manual annotators
(people judging the messages) about which message is fake and which is
genuine.

• Rules written by the state government by which institutions determine which
message is fake.

• 67 / 5 000 Výsledky prekladov Výsledok prekladu A list of people compiled
by the state government who spread false information.

• Database of politicians who lie.

1.2 Types of machine learning

🕮 1.2.1

Perhaps the easiest way to acquire knowledge is to memorize data about how to
accomplish a task. It is information that will make it possible to accomplish a
similar task better in the future. We call this method swotting.

For example, Samuel (1963) used the swotting method in a program that played
checkers. He used a mini-max search of the space of the checkers game. The time
complexity allowed only a few levels of depth to be searched each time, then a
static evaluation function was used. Based on it, a move evaluation is made and the
root evaluation is remembered at the same time.

Sometimes in the future, when browsing the game space, the situation arises that
at the last level of the search, among the generated nodes, there is a node for which
we have memorized the evaluation, which is the result of searching the space under
the node. If this information did not exist, we would have to consider only the
evaluation according to the static evaluation function. By remembering the previous
evaluation, we seem to increase the depth of the search, i.e., we improve the quality
of the search.

🕮 1.2.2

The evaluation function is often constructed by combining information from
multiple sources. The programs take into account several factors, e.g., the
advantage in the number of stones, or the mobility of the stones when playing
checkers.

15

Based on these, a single number is calculated to evaluate the desirability of the
position. In the game of checkers, for example, Samuel used an evaluation function
in the form of a polynomial

in and +in1122 +... and+in andnn

Similarly, pattern recognition programs classify input data into appropriate
categories. When creating such programs, it is often difficult to know in advance
what weight to assign to each feature. One possibility is to start with some
estimate of the weights, and then let the program adjust this estimate according to
the experience it will gain. Qualities that appear to be good predictors of a
successful solution of the project will increase the weights, the unsuccessful ones
will decrease or not be taken into account.

Learning understood in this way is also called learning by adapting parameters.

🕮 1.2.3

To design a learning method by adapting parameters, it is necessary to know:

• which weight is to be increased or decreased,
• when the weight is to be changed,
• how much the weight should be changed.

If information is available on whether the rating function has estimated the
configuration well, then the weights of those attributes that predicted the final
result will increase and the weights of those that were wrong will decrease. For
example, when classifying patterns, the program receives information about the
correct classification.

This is more complicated with gaming programs. At most, the program gets
information at the end about who won. However, many moves contributed to the
final result, of which several could have been erroneous. For example, Samuel took
an approach where the evaluation function generates its own feedback. It was
based on the consideration that the sequences of steps that lead to better
positions can be considered good. The weights of the attributes that recommended
them will increase.

Samuel's program was also taught by playing against itself, i.e. one copy of it
played with unchanging weights and the other copy had the weights changed. At
the end of the game, the attributes of the program that won were taken. The
process of learning by adapting parameters is limited in nature, since it does not
make any use of knowledge about the structure of the problem.

16

🕮 1.2.4

The basic division of machine learning is into individual types of learning. Types of
learning depend on feedback when learning. The following types of learning have
settled in the literature:

• Supervised learning – immediate availability of sensations about both inputs
and outputs.

• Learning by reward and punishment (enhanced learning / reinforcement
learning) – the agent receives information about the evaluation of the action,
but not about what the correct action should have been.

• Learning without a teacher (unsupervised learning) – the agent does not
receive any information about what the correct actions should be.

📝 1.2.5

Assign the correct name of the learning type to the characteristics of learning.

the algorithm receives information about the evaluation of the action, but not about
what the correct action should have been - _____

the algorithm has immediate availability of sensations about both inputs and
outputs - _____

the algorithm does not receive any information about what the correct actions
should be - _____

• Supervised learning
• Unsupervised learning
• Reinforcement learning

🕮 1.2.6

Learning with a teacher

Consider systems that apply the function f() to input x and return output y = f(x).

When learning with a teacher, f(x) is learned from examples.

17

We usually use machine learning when we do not know the f(x) function that we
want the system to apply and we cannot "invent" it. In fact, the function can be
simple.

For Mr. Hirsh's problem, the entry into office is the name of the conference
participant, and the output of the f(x) function is the + sign or -

When learning with the teacher, the algorithm searches for the best function that
approximates the true values according to the data. The space of all functions that
the algorithm "takes into account" is called the hypothesis space.

🕮 1.2.7

As a result of machine learning, a model (mostly a formula) is created that
approximates the data. This model is created by a machine learning algorithm from
historical data. For example, we consider a banking application that advises the
bank whether or not to give a loan according to the characteristics of the customer.
To create the model, historical data on previous loans will be used. In these
historical data, the bank has the characteristics of its previous customers, including
information on whether the customer in question repaid the loan provided. This
historical data is called examples and is traditionally used to create a model. The
example set is an input dataset.

Thus, the machine learning model created is a generalization of the examples with
which the system was initially familiar. If we create a model, we need to answer the
following questions:

18

• Is the model which we have created good?
• How good is it?

🕮 1.2.8

To answer questions about the quality of the model, it is necessary to simulate an
estimate of our model as follows:

1. Remove some examples from a dataset
2. Create a model on remaining examples
3. Predict (estimate) deleted examples

This means that we provide the machine learning algorithm with only a fraction of
the examples we have and we use them to train and build the model. We will call
these examples the training examples or the training set.

We use the remaining examples to test our model. These are examples that were
not used when creating the model. We will call these examples test examples or a
test set.

It should be noted that even in the remaining examples, we also have the
corresponding outputs for individual inputs. For example, for a banking application,
we also have information in the test set whether the client has repaid the loan or
not. Therefore, if we bring examples of the test set to the input of our model, we
can find out the predicted result by the model and compare it with the real historical
result.

🕮 1.2.9

When learning with a teacher, the learning algorithm receives the correct function
value for the relevant inputs. Thus, the ordered pair (x,f(x)) represents an "example",
where x is the input and f(x) is the output of the function for x. If we have a given
collection of examples of the function f, the function h should be returned so that it
is an estimate of the function f. The function h is called the hypothesis.

The number of classes is fixed and is determined by the user. The systems do not
use any other domain-specific information other than training examples. Despite
the fact that the structure of the model is simple, the operations they perform
(generalization, compression, and organization of data) are the basis of learning.

19

Many problems that at first glance do not look like classification problems can be
transformed into classification problems. In the following examples, we show what
constitutes the input x and the output f (x), i.e., what constitutes an example for
each classification task:

Diagnosis of the disease

x: Patient characteristics (symptoms, laboratory tests)

f(x) : Disease (or maybe: recommended treatment)

Part-of-speech tagging

x: English/Slovak sentence

f(x) : Parts of speech in a sentence

Face recognition

x: Bitmap image of a person's face

f(x) : Name and surname of the person (or maybe: property)

Automatic control

x: Bitmap image of the road surface in front of the car

f(x) : Degrees of steering wheel rotation

📝 1.2.10

In a min-max search, Samuel (1963) proposed a method for memorizing the
valuation of a newly-developed node/root. If at some point in the future, when
browsing the space, a situation arises that at the last level of the search there is
also a node among the generated nodes for which we have memorized the
valuation, this rating can be used.

This method of machine learning is called:

• bickering

20

• learning without a teacher
• logit regression
• linear regression

📝 1.2.11

Choose which claims apply to Learning with a teacher - Supervised learning

• For classification tasks, the number of classes is fixed and is determined by
the user.

• The method does not use any other domain-specific information except for
training examples.

• To evaluate the success of the method, the predicted values are compared
with the actual values of the test set.

• Not suitable for regression types of tasks.

1.3 Evaluating machine learning models

🕮 1.3.1

The machine learning process itself consists of the following steps:

1. Understanding the domain, taking into account prior knowledge and
objectives

2. Data integration, selection, cleansing, pre-processing
3. Creating models
4. Interpretation of results
5. Deployment of discovered knowledge/models

📝 1.3.2

List the individual steps/phases of machine learning in the correct order.

• <|span style="color: rgb(0, 0, 0);">Data integration, selection, cleansing, pre-
processing<|/span>

• <|span style="color: black;">Deployment of discovered
knowledge/models<|/span>

21

• <|span style="color: black;">Interpretation of results<|/span>
• <|span style="color: rgb(0, 0, 0);">Creating models<|/span>
• <|span style="color: rgb(0, 0, 0);">Understanding the domain, taking into

account prior knowledge and objectives<|/span>

🕮 1.3.3

When creating models and interpreting the results, it is necessary to assess the
suitability of the model, its correctness and accuracy. In the case of several models,
it is necessary to choose a better model.

This brings us to the problem of How to measure accuracy? Which model is better?
There is no clear answer to these questions.

For example, if we wanted to create a model for diagnosing a certain disease, and
we know that 10 out of 10,000 samples are positive.

We would create multiple models. At first glance, the following statements about
the models we have created seem correct:

A: "the classification model has a success rate of 80% "

B: "classification model is 400% better than random selection "

C: "the classification model perfectly captures all positive cases "

However, if we look at these claims in more detail, we find the following potential
issues.

A: "the classification model has a success rate of 80% "

This model looks very promising. However, if we create a model that labels all
samples as negative, then with 10 positives out of 10,000 samples we will achieve
a success rate of 99.9%. So if we do nothing and say that all samples are negative,
we have a 99.9% success rate.

B: "classification model is 400% better than random selection "

Such a model would also look very promising at first glance. However, with 10
positives out of 10 000 samples, one positive out of 1000 samples will be randomly

22

selected. If the algorithm is 400% better, then it can identify 4 positives out of 1000
samples. But is this estimate enough for us?

C: "the classification model perfectly captures all positive cases "

Of the above, perhaps the best-looking claim for a potential model, However, if we
create a classifier with only one rule that each sample is positive, then we will also
perfectly capture all positive cases. But would such a model be necessary?

It is clear from the above statements that we have to assess the suitability of a
model from different perspectives and that numerical representations of suitability
alone are not always sufficient.

🕮 1.3.4

Literature used:

• Eric Eaton: Introduction to Machine Learning (CIS 419/519) -
https://www.seas.upenn.edu/~cis5190/fall2017/lectures/01_introduction.p
df

• Dan Roth: Applied Machine Learning (CIS 519/419) -
https://www.seas.upenn.edu/~cis5190/fall2020/assets/lectures/lecture-
1/Lecture1-intro.pptx

• Emily Fox, Carlos Guestrin: Machine Learning Specialization, University of
Washington https://www.coursera.org/specializations/machine-learning

• Pavol Návrat et al: Artificial Intelligence. STU in Bratislava, 2002, Bratislava,
393 pages, ISBN 80-227-1645-6.

1.4 Practical exercise

📝 1.4.1

In this object-lesson, we will learn the basics of Python, especially the so-called
DataFrame, which precompiles tables of data. The latter is precisely the most
commonly used data structure, which consists of labelled axes (rows and
columns).

To load the data file into the DataFrame, we will use the pandas library, which we
will import using the following command.

23

import pandas as pd

In this demonstration, we will work with Titanic passenger data stored at the URL
priscilla.fitped.eu/data/pandas/titanic.csv.

Use the following command to read and write the data file.

data =

pd.read_csv('https://priscilla.fitped.eu/data/pandas/titanic.c

sv')

print(data)

Program output:
 PassengerId Survived Pclass \

0 1 0 3

1 2 1 1

2 3 1 3

3 4 1 1

4 5 0 3

..

886 887 0 2

887 888 1 1

888 889 0 3

889 890 1 1

890 891 0 3

 Name Sex

Age SibSp \

0 Braund, Mr. Owen Harris male

22.0 1

1 Cumings, Mrs. John Bradley (Florence Briggs Th... female

38.0 1

2 Heikkinen, Miss. Laina female

26.0 0

3 Futrelle, Mrs. Jacques Heath (Lily May Peel) female

35.0 1

4 Allen, Mr. William Henry male

35.0 0

..

... ...

886 Montvila, Rev. Juozas male

27.0 0

24

887 Graham, Miss. Margaret Edith female

19.0 0

888 Johnston, Miss. Catherine Helen "Carrie" female

NaN 1

889 Behr, Mr. Karl Howell male

26.0 0

890 Dooley, Mr. Patrick male

32.0 0

 Parch Ticket Fare Cabin Embarked

0 0 A/5 21171 7.2500 NaN S

1 0 PC 17599 71.2833 C85 C

2 0 STON/O2. 3101282 7.9250 NaN S

3 0 113803 53.1000 C123 S

4 0 373450 8.0500 NaN S

..

886 0 211536 13.0000 NaN S

887 0 112053 30.0000 B42 S

888 2 W./C. 6607 23.4500 NaN S

889 0 111369 30.0000 C148 C

890 0 370376 7.7500 NaN Q

[891 rows x 12 columns]

We will list the contents of only one specific column according to the following
command:

dataAge = data['Age']

print(dataAge)

Program output:
0 22.0

1 38.0

2 26.0

3 35.0

4 35.0

 ...

886 27.0

887 19.0

888 NaN

889 26.0

890 32.0

Name: Age, Length: 891, dtype: float64

25

Sometimes it is necessary to find out the i-th record in the data file. This can be
viewed using .iloc

zaznam = data.iloc[0]

print(zaznam)

Program output:
PassengerId 1

Survived 0

Pclass 3

Name Braund, Mr. Owen Harris

Sex male

Age 22.0

SibSp 1

Parch 0

Ticket A/5 21171

Fare 7.25

Cabin NaN

Embarked S

Name: 0, dtype: object

To find out the data file types, use the following command:

typy = data.dtypes

print(typy)

Program output:
PassengerId int64

Survived int64

Pclass int64

Name object

Sex object

Age float64

SibSp int64

Parch int64

Ticket object

Fare float64

Cabin object

Embarked object

dtype: object

26

and the length of the data file by using the len() function.

dlzka = len(data)

print(dlzka)

Program output:
891

When working in python in machine learning tasks, we often need to know the
shape of our data (number of rows and columns).

Using the following command, we find that our data file contains 891 columns and
12 rows.

tvar = data.shape

print(tvar)

Program output:
(891, 12)

The basic descriptive statistics of the dataset are returned by the describe()
function.

print(data.describe())

Program output:
 PassengerId Survived Pclass Age

SibSp \

count 891.000000 891.000000 891.000000 714.000000

891.000000

mean 446.000000 0.383838 2.308642 29.699118

0.523008

std 257.353842 0.486592 0.836071 14.526497

1.102743

min 1.000000 0.000000 1.000000 0.420000

0.000000

25% 223.500000 0.000000 2.000000 20.125000

0.000000

50% 446.000000 0.000000 3.000000 28.000000

0.000000

27

75% 668.500000 1.000000 3.000000 38.000000

1.000000

max 891.000000 1.000000 3.000000 80.000000

8.000000

 Parch Fare

count 891.000000 891.000000

mean 0.381594 32.204208

std 0.806057 49.693429

min 0.000000 0.000000

25% 0.000000 7.910400

50% 0.000000 14.454200

75% 0.000000 31.000000

max 6.000000 512.329200

⌨ 1.4.2

Loading to DataFrame

Check what you have learned in the previous task.

Load the file from https://priscilla.fitped.eu/data/pandas/banking.csv into the
DataFrame. Find out the number of rows and columns of data.

📝 1.4.3

Which solution correctly displays the Name column?

import pandas as pd

data =

pd.read_csv('https://priscilla.fitped.eu/data/pandas/titanic.c

sv')

print(data['Name'])

data =

pd.read_csv('https://priscilla.fitped.eu/data/pandas/titanic.c

sv')

print(data.'Name')

data = titanic

data['Name']()

https://priscilla.fitped.eu/data/pandas/banking.csv

28

📝 1.4.4

Next, we will explore some of the features of the sklearn library, which is one of the
most widely used libraries for machine learning.

First, we need to determine our features (features, or x-data) that will be the input to
the machine learning model and the end value (target, or y) that will be the output of
the machine learning model.

The following code sample loads the Titanic passenger data into a DataFrame data
structure and divides it into features and target, where features are all values
except the last column Embarked and target is embarked.

import pandas as pd

data =

pd.read_csv('https://priscilla.fitped.eu/data/pandas/titanic.c

sv')

X, y = data.iloc[:, :-1], data.iloc[:, [-1]]

print(X)

print(y)

Program output:
 PassengerId Survived Pclass \

0 1 0 3

1 2 1 1

2 3 1 3

3 4 1 1

4 5 0 3

..

886 887 0 2

887 888 1 1

888 889 0 3

889 890 1 1

890 891 0 3

 Name Sex

Age SibSp \

0 Braund, Mr. Owen Harris male

22.0 1

1 Cumings, Mrs. John Bradley (Florence Briggs Th... female

38.0 1

2 Heikkinen, Miss. Laina female

26.0 0

29

3 Futrelle, Mrs. Jacques Heath (Lily May Peel) female

35.0 1

4 Allen, Mr. William Henry male

35.0 0

..

... ...

886 Montvila, Rev. Juozas male

27.0 0

887 Graham, Miss. Margaret Edith female

19.0 0

888 Johnston, Miss. Catherine Helen "Carrie" female

NaN 1

889 Behr, Mr. Karl Howell male

26.0 0

890 Dooley, Mr. Patrick male

32.0 0

 Parch Ticket Fare Cabin

0 0 A/5 21171 7.2500 NaN

1 0 PC 17599 71.2833 C85

2 0 STON/O2. 3101282 7.9250 NaN

3 0 113803 53.1000 C123

4 0 373450 8.0500 NaN

..

886 0 211536 13.0000 NaN

887 0 112053 30.0000 B42

888 2 W./C. 6607 23.4500 NaN

889 0 111369 30.0000 C148

890 0 370376 7.7500 NaN

[891 rows x 11 columns]

 Embarked

0 S

1 C

2 S

3 S

4 S

.. ...

886 S

887 S

888 S

889 C

890 Q

30

[891 rows x 1 columns]

When solving machine learning tasks, we divide the data into training and testing
data.

Using the training data, we train the machine learning model and then validate it on
the test data.

The sklearn library provides a function train_test_split that splits the data into two
variables, where the first variable (usually referred to as X_train) contains the data
that will be used later for training, and the second variable (usually referred to as
X_test) contains the data that will be used to validate the model.

We further divided our features and target data into training and test data in the
ratio of 80:20 using the following commands.

from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X, y,

test_size=0.2)

⌨ 1.4.5

Division of data into training data and test data

Verify that you can correctly split the data into features and target, as well as
training and test data.

Write code to retrieve data from
https://priscilla.fitped.eu/data/pandas/banking.csv, set the second to fifth columns
as properties, and set the sixth column as the target value.

Split the data into training and test data in a 70:30 ratio. Find the shape in the
X_test variable.

31

Tree-Based Learning

Chapter 2

32

2.1 Decision Trees

🕮 2.1.1

Decision trees (DTs) are a nonparametric method of learning with a teacher used
for classification and regression. The goal is to build a model that predicts the
value of a target variable by learning simple decision rules derived from data
functions.

The advantages of decision trees include:

● They are simple to understand and interpret.

● Trees can be visualized.

● It does not require additional data preparation (e.g. data normalization, removal
of blanks).

● It can handle both numeric and categorical data (however, the scikit-learn
library does not yet support categorical variables).

● They handle the problem of classification into multiple classes.

● They belong to the so-called white box models. They are easy to explain and
interpret.

● The model can be validated using statistical tests. This allows to be taken into
account the reliability of the model.

The disadvantages of decision trees are as follows:

● Decision trees can produce overly complex trees that undergeneralize the data
(overfitting).

● Decision trees can be unstable because small deviations in the data can lead to
the generation of a completely different tree.

● Decision tree predictions are neither smooth nor continuous. They are
piecewise constant approximations.

● If some classes dominate, the wrong trees may be generated.

33

🕮 2.1.2

We will demonstrate the creation of decision trees using a credit application as an
example. The goal will be to create an application that, after inputting the monitored
characteristics of a bank customer, decides whether or not the bank recommends
granting credit to that customer. The main part of the application will be a
classification model created by us, whose output will be a "Yes" or "No"
recommendation.

🕮 2.1.3

For example, we can imagine a decision tree classification model as follows:

34

The decision tree represents a visualized set of rules for classification. In our
example, a client who has a fair credit score and wants a 5-year loan may apply for
a loan at a bank. The created decision tree model finds that if credit = fair, then the
length of the loan Term still needs to be checked. This is 5 years in the case of our
client. The tree then shows that the client is marked as safe and the model
recommends giving him credit.

📝 2.1.4

According to the following decision tree model, determine the recommendation for
the following client:

Client1 - (Term=5 years; Credit=poor; Income=high)

35

• Recommendation: Safe
• Recommendation: Risky

🕮 2.1.5

The question remains how to build such a decision tree model. Like all other
machine learning models, decision trees will be created from historical data. Based
on the historical data of previous clients, and their loans repayment or default, a
decision tree will be created from this data.

36

Our goal will be not only to build a decision tree, but to find the best possible
decision tree that will predict future credits with the smallest possible error.

37

🕮 2.1.6

A large number of trees can be generated for the selected dataset. The
exponentially large number of possible trees makes learning a decision tree
difficult!

When generating a decision tree, it is important to evaluate each tree (the models
created) and decide which one is better. Therefore, quantification of the quality of
the tree is necessary. This mark can be determined in a number of ways, which we
refer to as performance metrics.

Of these, the simplest metric appears to be: classification error.

This is calculated as follows:

According to the formula, it can be seen that the classification error reaches values
from 0 to 1. The closer to zero, the better classification. The best value is 0 of
misclassified samples out of n samples. Therefore, the result will be 0.

The worst value is n errors out of n samples, it means. n/n=1

📝 2.1.7

I am thinking with a decision tree. Out of 28 examples in the test set, 14 can
classify correctly.

What is his classification error?

• 14 / 28 = 0,5
• 1
• 0
• 28/14 = 2
• 14 / (28 + 14) = 0,33333

38

2.2 A greedy algorithm for decision tree

🕮 2.2.1

We describe the steps of the greesy algorithm for building the decision tree. We will
consider the following training set.

The training set contains historical records of the ability to repay the loan in the
past. The set contains records of 12 loans, of which 8 were able to be repaid and 4
were not.

📝 2.2.2

From the table on the bank's past clients and their ability to repay the loan, find out
how many high-income women (income = high, gender = female) have repaid their
loan. Enter the number as the answer for this question.

39

🕮 2.2.3

The first step of the greedy algorithm is:

1. Start with an empty tree and calculate the classification error of the empty
tree

In the case of our dataset, where 8 clients have repaid the loan and 4 clients have
not, the classification error will be 4/(4+8) = 0.3333

The frequency of distribution of clients to one of the two classes is visualized in the
histogram.

40

The empty tree shows that if we do nothing further and say that all clients will be
labelled "Yes", it means, they will be safe clients, then we make a classifier with a
classification error of 0.3333.

🕮 2.2.4

The second step of the greedy algorithm will be:

Split the data by features/attributes.

According to our training set:

41

we can split the data according to the Account(Konto) property as follows:

42

For each subset, according to the splitting property of the account, we created
historgrams of the representation of the target variable in each subset.

📝 2.2.5

According to the histograms, determine how many "Yes" and "No" loan repayment
values were in the group with the medium account, it means for the property
Account = Medium.

43

• Yes = 3; No = 2
• Yes = 1; No = 2
• Yes = 4; No = 0

🕮 2.2.6

We just created a depth-1 tree with one splitting property - Account. The third step
of the greedy algorithm is:

Make a prediction if possible

44

Note that for the condition Account = High, all examples are in the class "Yes". This
means that in the past, all clients who had a high account have repaid the loan. In
this case, we can make a prediction because there is no data from any other class
already in this branch of the tree.

In the case of medium and low accounts, there is no clear class. Nevertheless, we
can also make a prediction here if necessary. We could make a prediction
according to the majority of the class, i.e. for the medium account the prediction
would be Yes and for the low account it would be No. However, this would only
create a tree of depth 1. Therefore, a better option is to continue recursively
creating a tree from each subset of the data.

45

📝 2.2.7

We can now summarize the whole greedy algorithm. It looks like this:

Step 1: start with empty trees

Step 2: select a property for data splitting

Step 3: create a distribution according to the selected

property

For each distribution of the tree:

 Step 4: If you cannot go any further, make

a prediction

46

 Step 5: Otherwise go to Step 2 & continue

with recursion of this distribution

In the given algorithm we find 2 questionable parts. The first is Step 2. It is a
problem of feature selection, i.e. Feature split selection.

The second questionable part is Step 4, which deals with the problem of stopping
the tree creation, i.e. stopping condition.

We discuss both of these issues in the next chapter.

2.3 Choosing the best property for the distribution and
stopping conditions of the algorithm

🕮 2.3.1

The first problem in the construction of decision trees is the selection of the best
feature for distribution. This problem takes advantage of the "computational power
of machine learning algorithms". In our example, the algorithm will proceed by
creating a simple tree of depth 1 for each feature considered. In such a tree, it must
always decide for prediction. Therefore, it will perform the prediction according to
the most represented class in the data subset.

47

Let us now consider all the trees of depth 1 constructed in this way. To find the
most appropriate feature, we use the classification error. For example, we can
compare a tree for a distribution according to Account and a tree according to
Receipt.

48

We perform the comparison according to the classification error. Thus, we select
the feature whose tree has the smallest classification error. We also compare this
with the empty tree.

49

It remains for us to compare the results of the classification errors.

50

The lowest classification error is obtained by dividing by ACCOUNT.

📝 2.3.2

Correctly complete the formula for calculating the classification error and the best
and worst possible value of the classification error

classification error = __

The best possible value of the classification error is _____.

The worst possible value of the classification error is _____.

• 0
• number of incorrect predictions
• number of all examples
• 1

🕮 2.3.3

Feature split selection algorithm consists of the following steps:

1.Given a subset of data M (a node in the tree)

2. For each features hi(x) do:

• Partition the M data according to the function hi(x) to form a single-level tree
• Calculate the classification error of the following tree

3.Select function h*(x) with the smallest mistake in classification

🕮 2.3.4

The second problem of the greedy algorithm is the stopping condition

There can be more than one of these conditions, but most often the algorithm
terminates if:

51

1. If there is nothing left in the nodes to split.

2. If we used all of the features

3. If further division does not achieve a lower classification error.

🕮 2.3.5

The goal of the preceding example was to present the algorithm for tree creation as
simply as possible. For this reason, we chose a classification error for feature
selection. However, this is not used in real tasks. For selecting the best feature, the
Gini Index or Information Gain is used in real examples. Also, the classification error
is usually not sufficient even when evaluating the success of the developed model.
In this case, so-called performance measures are used. There are several of these
measures. For example, the fastest and most frequently calculated one is accuracy

Also for the sake of simplicity, we have so far dealt with tree formation from
categorical variables only.

The formation of a decision tree requires a number of non-trivial steps. Fortunately,
there are several libraries and ready-made methods in well-known programming
languages. In these methods, then, e.g., the stopping condition or the measure for
selecting a features are only given as method parameters.

52

📝 2.3.6

In a simple dataset, the features (rich, handsome) of the last four suitors of
Gertrude B are recorded. The relationship feature tells whether Gertrude B. stayed
with a suitor for more than 1 month, i.e. it records long-term relationships.

We want to create a decision tree model that will predict whether Gertrude will stay
with her partner for more than a month, i.e. we will model the relationship feature.
Which feature (rich or handsome) will be selected as the first feature to create such
a decision tree? I.e. which of the two features will be selected as more appropriate
for data- feature split selection?

• both features can be selected as appropriate, i.e. likely to be selected at
random

• rich
• handsome

2.4 Performance metrics for machine learning models

🕮 2.4.1

Currently, we are already able to create the first machine learning model - a
decision tree - based on a greedy algorithm. We can "measure" its success or
performance by two basic metrics, classification error and classification accuracy.

For these metrics, the following relationships hold:

At the same time, the relationship is as follows:

53

🕮 2.4.2

However, a number of other metrics are used to evaluate the performance of the
model. Why are metrics important?

• Metrics help to capture the quality of the model into a quantitative
expression (not all errors are the same).

• They help to refine ML generation effort. In terms of expressing
improvements of models, methods, datasets, etc..

· They are useful to quantify differences between:

· actual performance and initial expectations,

· desired performance and actual performance.

· They measure progress over time.

• They are useful for lower-level tasks and pruning. Ideally, the goal of training
a model should be a metric, but this is not always possible.

• Metrics are useful and important for evaluation.

🕮 2.4.3

In classification tasks, we recognize two types of errors.

Error of the first type, i.e. false positive or false positivity. The error occurs when a
negative example labels the classification model as positive.

Error of the second type, i.e. false negative, or false negativity, it is an error when
the model labels a positive example as negative.

54

According to these two types of errors, we can calculate the performance metrics
of the model-classifier.

55

🕮 2.4.4

In addition to the two types of errors, there are also two types of classification
success. It is the case if a positive example is correctly labeled as positive by the
classifier or a negative example is correctly labeled as negative by the classifier

We can clearly show both types of success and also the two types of errors in the
so-called confusion matrix.

.

This records the number of examples evaluated correctly or incorrectly by the
classifier.

56

🕮 2.4.5

One of the few metrics that we already know is Accuracy.

If we have the following confusion matrix,

then the Accuracy can be calculated as follows:

For the above mentioned confusion matrix, Accuracy is calculated by substituting
into the formula:

🕮 2.4.6

However, is accuracy a good metric? In the previous example, we used the
following confusion matrix:

57

We calculated:

If we build no classifier and just say that all examples are negative, we get the
following confusion matrix:

58

Based on matrix, we can now calculate the accuracy:

Note that despite the weak classifier, we computed a higher Accuracy.

Accuracy is not a good metric when the dataset is unbalanced.

Using Accuracy in such scenarios, it can lead to misleading interpretation of the
results.

🕮 2.4.7

In addition to the other metrics, there is a dataset balance metric. It is called
Prevalence and it is calculated as the number of positive samples to all samples.

59

It is clear from the formula that the ideal balance of the dataset is closed to 0.5.

Also note the different notation of the confusion matrix. In the following two
examples we give examples of different notations.

60

It is always necessary to check the column and row headers in confusion matrix

🕮 2.4.8

Another metric is Precision.

We can calculate it as follows:

61

Accuracy should ideally achieve 1 (high) for a good classifier. Accuracy only
becomes 1 when the numerator and denominator are equal, i.e. TP = TP + FP, which
also means that FP is zero.

In binary classification, classes do not have to be divided into positive/negative, but
can be divided into e.g. spam/ham, fake/real, obese/not obese, etc. For this reason,
partial accuracies can also be computed.

🕮 2.4.9

Recall is also known as sensitivity or as true positive rate.

62

For a good classifier, the value should ideally achieve 1 (high), which means that
the FN is zero.

Similarly, to precision, a partial recall can be computed.

🕮 2.4.10

Review:

63

📝 2.4.11

Complete the formula for calculating the accuracy

As an aid, we provide a confusion matrix

64

Precision = __

• TN + FP
• TP
• TN
• FP
• TP + FP
• TP + TN

🕮 2.4.12

The last metric is a F1 score.

Ideally, in a good classifier, we want both, precision and recall to be 1.

Which also means that FP and FN are 0.

The F1 score metric takes both precision and recall into account.

F1 score is the harmonic mean of precision and recall and is a better measure than
precision.

2.5 Decision Trees - Practical Example 1

📝 2.5.1

We will demonstrate the creation of decision trees with a practical example in
Python. In the practical example, we will try to create a decision tree model for loan
prediction. We load the data for our model from the file uvery.csv using the Pandas
library.

65

import pandas

loans =

pandas.read_csv('http://priscilla.fitped.eu/data/machine_learn

ing/uvery.csv', sep=';')

With simple head() and tail() commands we can check our data. We can also use
the discribe() method to display the basic statistics for our file. Since the file
contains only categorical variables, the basic statistics will be very simple.

print("---------------------------")

print(loans.head())

print("---------------------------")

print(loans.tail())

print("---------------------------")

print(loans.describe())

Program output:

 Klient Prijem Konto Pohlavie Nezamestnany Uver

0 K1 Vysoky Vysoke Zena Nie Ano

1 K2 Vysoky Vysoke Muz Nie Ano

2 K3 Nizky Nizke Muz Nie Nie

3 K4 Nizky Vysoke Zena Ano Ano

4 K5 Nizky Vysoke Muz Ano Ano

 Klient Prijem Konto Pohlavie Nezamestnany Uver

7 K8 Vysoky Nizke Zena Ano Ano

8 K9 Nizky Stredne Muz Ano Nie

9 K10 Vysoky Stredne Zena Nie Ano

10 K11 Nizky Stredne Zena Ano Nie

11 K12 Nizky Stredne Muz Nie Ano

 Klient Prijem Konto Pohlavie Nezamestnany Uver

count 12 12 12 12 12 12

unique 12 2 3 2 2 2

top K1 Nizky Vysoke Zena Nie Ano

freq 1 7 4 6 6 8

From the above results, it is easy to see that our set contains 12 examples. The
target variable that our model will predict is the variable Loan with possible values
Yes and No.

66

We will create the decision tree model using the scikit-learn library. It is one of the
most widely used libraries for machine learning. However, in the case of decision
tree models, this library cannot handle categorical variables. For this reason, we
need to convert the categorical variables to numerical variables in our dataset.

By quick reasoning, a function can be created to convert categorical variables. In
our example, we convert a categorical variable feature (i.e., a column in pandas)
Income.

loans["Prijem_int"] = loans["Prijem"]

def cat2int(column):

 vals = list(set(column))

 for i, string in enumerate(column):

 column[i] = vals.index(string)

 return column

cat2int(loans['Prijem_int'])

print(loans.head())

Program output:
 Klient Prijem Konto Pohlavie Nezamestnany Uver Prijem_int

0 K1 Vysoky Vysoke Zena Nie Ano 1

1 K2 Vysoky Vysoke Muz Nie Ano 1

2 K3 Nizky Nizke Muz Nie Nie 0

3 K4 Nizky Vysoke Zena Ano Ano 0

4 K5 Nizky Vysoke Muz Ano Ano 0

Note the new feature Income_int. Its interpretation is easy as long as we also have
the Income feature. However, we need to be aware of several shortcomings of this
approach. The first shortcoming is that this conversion does not always set low
income to 0, high income to 1. If we already consider multiple categorical values,
e.g. slightly higher, medium, very low, etc. the clarity of the numerical values may be
unclear. Especially, if we do not see the original Income column.

For these reasons, so-called dummies are used to convert categorical variables into
numerical variables. Dummies create a new feature (column) for each value of a
categorical variable. For the Income feature, the dummies will look as follows:

67

In Python, we can create dummies by simply calling the appropriate method.

loans =

pandas.get_dummies(loans,columns=["Prijem"],drop_first=False)

print(loans.head())

Program output:
 Klient Uver Prijem_int Prijem_Nizky Prijem_Vysoky

Konto_Nizke \

0 K1 Ano 1 0 1

0

1 K2 Ano 1 0 1

0

2 K3 Nie 0 1 0

1

68

3 K4 Ano 0 1 0

0

4 K5 Ano 0 1 0

0

 Konto_Stredne Konto_Vysoke Pohlavie_Muz Pohlavie_Zena

Nezamestnany_Ano \

0 0 1 0 1

0

1 0 1 1 0

0

2 0 0 1 0

0

3 0 1 0 1

1

4 0 1 1 0

1

 Nezamestnany_Nie

0 1

1 1

2 1

3 0

4 0

📝 2.5.2

We can now use the previous information about categorical variables and dummies
to create sample code where we load our dataset and transfer all the necessary
features using dummies.

import pandas

loans =

pandas.read_csv('http://priscilla.fitped.eu/data/machine_learn

ing/uvery.csv', sep=';')

print("---------------------------")

print(loans.head())

loans =

pandas.get_dummies(loans,columns=["Prijem"],drop_first=False)

loans=

pandas.get_dummies(loans,columns=["Konto"],drop_first=False)

69

loans=

pandas.get_dummies(loans,columns=["Pohlavie"],drop_first=False

)

loans=

pandas.get_dummies(loans,columns=["Nezamestnany"],drop_first=F

alse)

print("---------------------------")

print("Dataset po dummies:")

print("---------------------------")

print(loans.head())

Program output:

 Klient Prijem Konto Pohlavie Nezamestnany Uver

0 K1 Vysoky Vysoke Zena Nie Ano

1 K2 Vysoky Vysoke Muz Nie Ano

2 K3 Nizky Nizke Muz Nie Nie

3 K4 Nizky Vysoke Zena Ano Ano

4 K5 Nizky Vysoke Muz Ano Ano

Dataset po dummies:

 Klient Uver Prijem_Nizky Prijem_Vysoky Konto_Nizke

Konto_Stredne \

0 K1 Ano 0 1 0

0

1 K2 Ano 0 1 0

0

2 K3 Nie 1 0 1

0

3 K4 Ano 1 0 0

0

4 K5 Ano 1 0 0

0

 Konto_Vysoke Pohlavie_Muz Pohlavie_Zena Nezamestnany_Ano

\

0 1 0 1 0

1 1 1 0 0

2 0 1 0 0

3 1 0 1 1

4 1 1 0 1

 Nezamestnany_Nie

0 1

70

1 1

2 1

3 0

4 0

Note, that after applying dummies, we not only created new features, but we also
deleted the original features.

An interesting and often used method is the Counters method. This gives us a
quick look at the distribution of values in each feature. For example, if we want to
know the number of 0 and 1 values for the variable Income_High, we can use
Counters.

from collections import Counter

print(Counter(loans.Prijem_Vysoky))

Program output:
Counter({0: 7, 1: 5})

Use the Counters function to see how many Yes and No values are in the Loan
feature.

from collections import Counter

print(Counter(___))

Program output:
Counter()

• 8 values Yes and 4 values No
• 4 values Yes and 8 values No
• 0 values Yes and 1 values No

📝 2.5.3

Example

import pandas

from collections import Counter

71

from sklearn.tree import DecisionTreeClassifier # Import

Decision Tree Classifier

from sklearn.model_selection import train_test_split # Import

train_test_split function

from sklearn import metrics #Import scikit-learn metrics

module for accuracy calculation

golf =

pandas.read_csv('http://priscilla.fitped.eu/data/machine_learn

ing/golf_nominal.csv', sep=';')

golf=

pandas.get_dummies(golf,columns=["Outlook"],drop_first=False)

golf=

pandas.get_dummies(golf,columns=["Temperature"],drop_first=Fal

se)

golf=

pandas.get_dummies(golf,columns=["Humidity"],drop_first=False)

golf=

pandas.get_dummies(golf,columns=["Windy"],drop_first=False)

X = golf[golf.columns.difference(['Play'])]

y = golf.Play

X_train, X_test, y_train, y_test = train_test_split(X, y,

test_size=0.5) # 70% training and 30% test

Create Decision Tree classifer object

clf = DecisionTreeClassifier()

Train Decision Tree Classifer

clf = clf.fit(X_train, y_train)

#Predict the response for test dataset

y_pred = clf.predict(X_test)

Grafika

from sklearn.tree import export_graphviz

from six import StringIO

from IPython.display import Image

import pydotplus

72

print("Accuracy:",metrics.accuracy_score(y_test, y_pred))

print(Counter(y_test))

cols = X_train.columns

dot_data = StringIO()

export_graphviz(clf, out_file=dot_data,

 filled=True, rounded=False,

 special_characters=True,feature_names =

cols,class_names=['0','1'])

graph = pydotplus.graph_from_dot_data(dot_data.getvalue())

graph.write_png('graf.png')

Image(graph.create_png())

Program output:
Accuracy: 0.42857142857142855

Counter({'yes': 4, 'no': 3})

2.6 Practical Tasks

📝 2.6.1

In these practical examples, we will guide you through the creation of a simple
decision tree.

The example shows a decision on whether or not a person will survive on the
Titanic, based on that person's features (characteristics).

We will use the same Titanic dataset as in the previous exercise.

A description of the individual columns is available at
https://data.world/nrippner/titanic-disaster-dataset

import pandas as pd

data =

pd.read_csv('https://priscilla.fitped.eu/data/pandas/titanic.c

sv')

print(data)

Program output:
 PassengerId Survived Pclass \

0 1 0 3

1 2 1 1

2 3 1 3

3 4 1 1

https://data.world/nrippner/titanic-disaster-dataset

73

4 5 0 3

..

886 887 0 2

887 888 1 1

888 889 0 3

889 890 1 1

890 891 0 3

 Name Sex

Age SibSp \

0 Braund, Mr. Owen Harris male

22.0 1

1 Cumings, Mrs. John Bradley (Florence Briggs Th... female

38.0 1

2 Heikkinen, Miss. Laina female

26.0 0

3 Futrelle, Mrs. Jacques Heath (Lily May Peel) female

35.0 1

4 Allen, Mr. William Henry male

35.0 0

..

... ...

886 Montvila, Rev. Juozas male

27.0 0

887 Graham, Miss. Margaret Edith female

19.0 0

888 Johnston, Miss. Catherine Helen "Carrie" female

NaN 1

889 Behr, Mr. Karl Howell male

26.0 0

890 Dooley, Mr. Patrick male

32.0 0

 Parch Ticket Fare Cabin Embarked

0 0 A/5 21171 7.2500 NaN S

1 0 PC 17599 71.2833 C85 C

2 0 STON/O2. 3101282 7.9250 NaN S

3 0 113803 53.1000 C123 S

4 0 373450 8.0500 NaN S

..

886 0 211536 13.0000 NaN S

887 0 112053 30.0000 B42 S

888 2 W./C. 6607 23.4500 NaN S

889 0 111369 30.0000 C148 C

74

890 0 370376 7.7500 NaN Q

[891 rows x 12 columns]

We choose what data from the dataset we want to use to classify whether or not a
given person would have survived on the Titanic.

After analyzing the available data, we choose the following:

1. class Pclass
2. Sex
3. Age
4. number of siblings/spouses of the person who are travelling with SibSp
5. number of parents/children of a person, who are travelling with Parch
6. place of boarding Embarkment

Our target value will be whether or not the person survived the Titanic, i.e. the
Survived column.

data = data[['Survived', 'Pclass', 'Sex', 'Age', 'SibSp',

'Parch', 'Embarked']]

print(data)

Program output:
 Survived Pclass Sex Age SibSp Parch Embarked

0 0 3 male 22.0 1 0 S

1 1 1 female 38.0 1 0 C

2 1 3 female 26.0 0 0 S

3 1 1 female 35.0 1 0 S

4 0 3 male 35.0 0 0 S

..

886 0 2 male 27.0 0 0 S

887 1 1 female 19.0 0 0 S

888 0 3 female NaN 1 2 S

889 1 1 male 26.0 0 0 C

890 0 3 male 32.0 0 0 Q

[891 rows x 7 columns]

This dataset has several null values (they are marked as NaN), which we first delete
by removing those rows that contain such values.

data = data.dropna()

75

print(data)

Program output:
 Survived Pclass Sex Age SibSp Parch Embarked

0 0 3 male 22.0 1 0 S

1 1 1 female 38.0 1 0 C

2 1 3 female 26.0 0 0 S

3 1 1 female 35.0 1 0 S

4 0 3 male 35.0 0 0 S

..

885 0 3 female 39.0 0 5 Q

886 0 2 male 27.0 0 0 S

887 1 1 female 19.0 0 0 S

889 1 1 male 26.0 0 0 C

890 0 3 male 32.0 0 0 Q

[712 rows x 7 columns]

Note, that after removing the null values out of the original 891 records, only 712
records left.

If we want to preserve the number of records, we can apply other methods to deal
with null values, e.g. replace them with (substitution).

The Embarked column should be binarized. This is done using the get_dummies
function.

We also change the gender values male to 0 and female to 1.

data =

pd.get_dummies(data,columns=["Embarked"],drop_first=False)

data['Sex'] = data['Sex'].replace({'male': 0, 'female': 1})

print(data)

Program output:
 Survived Pclass Sex Age SibSp Parch Embarked_C

Embarked_Q \

0 0 3 0 22.0 1 0 0

0

76

1 1 1 1 38.0 1 0 1

0

2 1 3 1 26.0 0 0 0

0

3 1 1 1 35.0 1 0 0

0

4 0 3 0 35.0 0 0 0

0

..

...

885 0 3 1 39.0 0 5 0

1

886 0 2 0 27.0 0 0 0

0

887 1 1 1 19.0 0 0 0

0

889 1 1 0 26.0 0 0 1

0

890 0 3 0 32.0 0 0 0

1

 Embarked_S

0 1

1 0

2 1

3 1

4 1

.. ...

885 0

886 1

887 1

889 0

890 0

[712 rows x 9 columns]

Data are prepared, now we can proceed to split it into features and target, and also
into training and testing in a ratio of 80:20.

We have added randomization to the train_test_split function, which will always
guarantee a deterministic distribution.

X = data[data.columns.difference(['Survived'])]

77

y = data['Survived']

from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X, y,

test_size=0.2, random_state=42)

Program output:
SyntaxError

unmatched ')' (, line 5)

The data is prepared; we can create a decision tree model that will be trained.

We will also use randomization, to achieve always the same tree.

from sklearn.tree import DecisionTreeClassifier

clf = DecisionTreeClassifier(random_state=42)

clf = clf.fit(X_train, y_train)

We have a decision tree model stored in the variable clf. Using the following line of
code, we obtain a prediction for the test data, which we also display.

y_pred = clf.predict(X_test)

print(y_pred)

Program output:
[0 0 0 1 1 0 0 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 1 0 1 1 0 0 0 0 1

1 0 1 0 0 1

 0 0 1 1 0 1 1 1 1 1 0 1 0 0 0 0 1 1 1 0 0 1 0 1 1 0 0 0 0 0 1

1 0 1 0 1 0

 0 0 1 1 0 0 0 1 0 0 0 1 0 1 0 0 0 1 0 1 1 1 0 0 0 0 0 0 0 0 1

1 0 0 0 0 0

 0 1 1 0 0 0 0 1 0 1 1 1 0 0 0 0 1 1 0 0 1 1 0 0 0 0 1 0 1 0 0

1]

It remains to find out the classification metrics. First, we find out the accuracy – i.e.
we compare the predicted values and the actual survival values attributed to the
test data.

from sklearn import metrics

acc = metrics.accuracy_score(y_test, y_pred)

78

print("Accuracy:", acc)

Program output:
Accuracy: 0.7202797202797203

Precision, recall a f1 score will be calculated similarly.

from sklearn import metrics

prec = metrics.precision_score(y_test, y_pred)

print("Precision:", prec)

from sklearn import metrics

rec = metrics.recall_score(y_test, y_pred)

print("Recall:", rec)

from sklearn import metrics

f1 = metrics.f1_score(y_test, y_pred)

print("F1 score:", f1)

Program output:
Precision: 0.7916666666666666

Recall: 0.6195652173913043

F1 score: 0.6951219512195123

📝 2.6.2

What is the correct code to create and train a decision tree?

from sklearn.tree import DecisionTreeClassifier

clf = DecisionTree()

clf = clf.train(X_train, y_train)

from sklearn.tree import DecisionTreeClassifier

clf = DecisionTree()

clf = clf.fit(X_train, y_train)

from sklearn.tree import DecisionTreeClassifier

clf = DecisionTreeClassifier()

clf = clf.fit(X_train, y_train)

from sklearn.tree import DecisionTreeClassifier

clf = DecisionTreeClassifier()

79

clf = clf.train(X_train, y_train)

⌨ 2.6.3

Predicted values

Complete the code to find out what values the model returns for test data that
represents 30% of the total available data.

file1.py
import pandas as pd

from sklearn.model_selection import train_test_split

from sklearn.tree import DecisionTreeClassifier

data =

pd.read_csv('https://priscilla.fitped.eu/data/pandas/titanic.c

sv')

data = data[['Survived', 'Pclass', 'Sex', 'Age', 'SibSp',

'Parch', 'Embarked']]

data = data.dropna()

data =

pd.get_dummies(data,columns=["Embarked"],drop_first=False)

data['Sex'] = data['Sex'].replace({'male': 0, 'female': 1})

X = data[data.columns.difference(['Survived'])]

y = data['Survived']

X_train, X_test, y_train, y_test = train_test_split(X, y,

test_size=0.3, random_state=42)

clf = clf.fit(X_train, y_train)

80

📝 2.6.4

How do we calculate accuracy?

acc = accuracy(y_true, y_pred)

acc = accuracy_score(y_true, y_pred)

acc = acc(y_true, y_pred)

acc = acc_score(y_true, y_pred)

📝 2.6.5

Complete the calculation and listing of recall.

_____ sklearn import _____

rec = metrics. _____ (y_test, _____)

print("Recall:", _____)

• y_pred
• recall_score
• from
• rec
• metrics

81

Tree-Based Learning II.

Chapter 3

82

3.1 Relearning in a decision tree

🕮 3.1.1

When creating the decision tree, we select individual features and sort the
examples one by one according to the features. In this way, we reduce the so-called
training error. Recall that the training error is computed as:

By selecting a feature for the distribution, we reduce this error. Consider only two
possible features x[1] and x[2] , two classes + and - splitting as on the following
picture.

By selecting the x[1] feature and choosing the threshold correctly, we can divide the
examples as follows:

83

If we continued to build the tree further, we would actually increase its depth. For
example, we would select x[2] feature for the next division. The question remains
whether we could select x[1] and x[2] features again. In the case of numerical
values, we can, but with a different threshold value. By adding more depths, we
would be able to create a tree with an error equal to 0 in this example.

84

However, it is questionable whether such a deep tree, even with a classification
error equal to 0, is really a good machine learning model.

From the above example, it is clear that the classification error, in our case the
training error, decreases with the depth of the tree, i.e., deeper tree = lower training
error.

85

🕮 3.1.2

In the previous example, we found that the classification error decreases during
training.

86

But we know that the model we have created always needs to be evaluated. This
validation is done using examples that were not included in the creation of the
model. In the previous chapters, we talked about the training set and the test set,
whereby a model is built on the data from the training set and this model is
validated using examples from the test set. If we validate the generated trees of
available depths using test examples, we find that the error on the test examples
will initially decrease, but at a certain model complexity this test error will increase.

87

We call this phenomenon overfitting. You will also find terms such as adaptation,
exact copying or remodelling in the literature. Overfitting means that the model
estimates the training examples perfectly, but it can no longer generalize and it
estimates very poorly the examples other than the training ones.

🕮 3.1.3

If the training error of the model is equal to 0, the model is unlikely to be good and
suitable. Therefore, the goal in creating a model is to find a model that will have the
lowest testing error. At the same time, we probably intuitively suspect that a
simpler decision tree model will be easier to understand and interpret.

The principle of Occam's Razor is applied in the creation of decision trees.

William Occam (Ockham) (1290-1349) was an English Franciscan philosopher and
a prominent logician of the Middle Ages. He paid attention to particulars, and thus
he is a forerunner of the inductive method.

The most famous is his claim that "Among competing hypotheses, the one with the
fewest assumptions should be chosen."

The term Occam's razor first appeared in 1852 in the works of Sir William Rowan
Hamilton (1805-1865), a long time after Occam's death.

88

Occam's razor can be interpreted in two slightly different ways:

• If there are several explanations for a phenomenon, it is better to prefer the
least complicated one

• If any part of the theory is not necessary to achieve the results, the theory
does not include it

If we apply Occam's razor to the construction of decision trees, we can apply the
following principle:

"If two trees have similar classification error in validation, the simpler one should be
selected"

🕮 3.1.4

The question remains how to find out which tree is the simplest.

For the trees shown in the figure, the task of finding the simpler tree is relatively
easy. However, it is important to note that such a visual evaluation is complicated
for the algorithm. The algorithm needs a numerical representation of the
complexity of the tree. Also, most of the time the trees we are comparing are
visually very similar. In this case also the complexity of the tree needs to be
expressed numerically.

89

🕮 3.1.5

There are several methods available for constructing an ideal tree, i.e., a tree with
an acceptable error that is simple enough. These can be categorized into one of the
following two groups:

1. Early Stopping - this is stopping the learning algorithm before it creates too
complex tree

2. Pruning - this is the simplification of the tree after its creation

📝 3.1.6

If we want to simplify the tree after its creation, this method calls:

• Pruning
• Early Stopping

🕮 3.1.7

We can apply several early stopping conditions when stopping the tree building
algorithm. The simplest is to set the maximum depth of the tree.

90

This simple condition is often used to build easily interpretable trees. Its problem,
of course, is determining the appropriate depth.

📝 3.1.8

What is the depth of the tree in the picture?

• tree depth = 3
• tree depth = 6
• tree depth = 1

🕮 3.1.9

The problem of building a maximum depth tree is the depth setting itself. This is
sometimes very difficult to estimate. Therefore, the second option is to detect the
classification error of the generated decision tree at each possible node expansion.
If the classification error does not decrease, or decreases very little, we may end up
generating a decision tree.

91

In the example in the figure we have a tree with depth 1. Its classification error is (1
+ 15 + 2) / 40 = 0.45

If we were to split the tree according to the Credit feature, the classification error
would be 18 / (22 + 18) = 0.45

Under the early stopping condition, we would no longer continue generating the tree
because the classification error would not decrease.

🕮 3.1.10

The third condition for stopping tree generation early is to stop the tree if the
number of instances, contained in a node is very small.

For nodes with a small number of examples, their trustworthiness is questionable.
However, it is important to note that what is and what is not a very small number of
nodes depends on the task and the dataset used for training. Sometimes, 100
nodes is a small number, some other time it is not. Therefore, the minimum number
of nodes can be set in several available programming methods for tree generation.

92

🕮 3.1.11

To review, we present approaches to early termination of tree generation:

1. Setting the maximum tree depth
2. Stop tree generation if classification error is not reduced sufficiently (or at

all)
3. Stop tree generation if the node contains too few examples

📝 3.1.12

What is overlearning or overfitting?

• A phenomenon where test error increases with model complexity.
• A phenomenon where test error decreases with model complexity.
• A phenomenon where the training error decreases with model complexity.
• A phenomenon where the training error increases with model complexity.

📝 3.1.13

"Among competing hypotheses, the one with the fewest assumptions should be
selected",

93

This statement is also called:

• The principle of Occam's Razor
• Simple existence principle
• Regression rule
• The principle of selection of assumptions

📝 3.1.14

Select the rules that can be applied to stop the generation of the decision tree, i.e.
the stopping condition.

• If all the features from the dataset have already been used
• If the classification error is not reduced by further development
• If there are only leaves in the tree that contain a number of examples less

than the set minimum of leaf for unfolding - min_samples_leaf
• If the GINI index of the whole tree is less than -1

3.2 Tree pruning

🕮 3.2.1

The early stopping conditions mentioned in the previous section belong among the
quick and easy approaches to prevent overlearning in decision trees.

For example, stopping tree generation, if the classification error does not decrease
appears to be a successful approach. Of course, this approach also has its limits.
We can demonstrate one concerning the XOR problem.

Consider four training examples that classify a target variable y for
features/attributes x[1] and x[2].

94

If we consider only these four training examples, the classification error of a
classifier that classifies all examples as True (or even False) will be 2 / (2 +2) = 0.5

Generating the tree and dividing by the attribute x[1], we get the following tree.

The classification error of this tree will be (1 + 1) / (2 +2) = 0.5

This means that the classification error has not decreased. If we stopped the tree
generation early, we would not continue with the tree generation in this case. The
final tree would look as follows:

Practically, we would not create any classifier.

However, if we further partition the tree according to the attribute x[2] we get the
following tree with zero classification error.

95

The example above illustrates the problem of the early stopping approach.

Another approach that eliminates this problem is pruning the tree.

📝 3.2.2

Consider two decision trees

Tree A:

96

Tree B:

Which one of the above trees is simpler?

• Tree B
• Tree A

97

🕮 3.2.3

The main idea of pruning a tree is to train a complex tree that will be simplified
later. An important fact in pruning is to express the simplicity of the tree - the so-
called complexity.

In the case of different tree depths, it is not difficult to determine which of two trees
is simpler. In the case of trees with the same depth, it is a more serious problem.

There are several metrics to determine the complexity of a tree. In our examples,
we will consider the number of leaves.

For example, consider the following trees.

We express the number of nodes of the tree using the L variable.

The number of nodes of the first tree S1 will be L(S1) = 5

98

The number of nodes of the second tree S2 will be L(S2) = 2

By simple comparison, we find that the second tree is simpler, i.e., the first tree is
more complex. Importantly, while it is obvious to a human observer which of the
two trees is more complex, by expressing the node count metric, it is possible for
the algorithm to detect the complexity of the tree as well.

🕮 3.2.4

In the tree pruning method, complexity alone is not enough.

A "good" tree must balance two perspectives:

• How well it predicts data.
• The complexity of the tree.

Therefore, in the tree pruning method, we will consider the total cost function.

We calculate it as follows:

pas a measure of fit, we use a tree performance metric, e.g., classification error,
and as a measure of complexity, the number of leaves in the tree.

Therefore, the formula can also be understood as follows:

or more appropriately, it can be expressed as follows:

99

The constant lambda , which is found in the formula, is of great importance. It is
important to note that while the classification error takes values with the interval
<0, 1>, the number of leaves is a positive integer. The constant ensures that this
number is transformed to <0, 1>, i.e. it ensures comparable values for the error as
well as the number of leaves.

🕮 3.2.5

The tree pruning algorithm is as follows:

Step1 - Create a complete decision tree

Step 2 - Find a candidate node for removing and consider removing

100

Step 3 - Calculate the total cost - total cost tree with the candidate for removal

and without candidate for removal according to the formula:

The total costs in our case look as follows:

Step 4 - Compare the total cost and if it decreases after removing the candidate,
then remove the candidate node.

101

Obviously, after removing the candidate, the value of the total cost will decrease in
our example. Therefore, we can remove the candidate node.

Step 5 - Repeat steps 2 - 4 for each node in the tree

102

🕮 3.2.6

At the end of this section we present a more elaborate Decision tree pruning
algorithm

· Start at the bottom of the tree T and move up, apply the prune_split function to
each decision node M

• prune_split(T,M):

1. Calculate the total cost for tree T using the formula C(T) = error(T) + λ L(T)
2. Let Tsmaller be the tree after pruning the subtree from the tree M
3. Calculate the complexity of the total cost of Tsmaller by the formula

C(Tsmaller) = error (Tsmaller) + λ L (Tsmaller)
4. If C(Tsmaller) < C(T), then prune the tree T to the tree Tsmaller

📝 3.2.7

How the so-called Total cost is calculated for the decision tree

• as the sum of the classification accuracy metric and the model complexity
metric

• as the difference of the classification accuracy metric and the model
complexity metric

• as a proportion of the classification accuracy metric and the model
complexity metric

• as the sum of the classification accuracy metric and the dataset balance
metric

• as the difference of the classification accuracy metric and the dataset
balance metric

• as a proportion of the classification accuracy metric and the dataset balance
metric

3.3 Missing (incomplete) data

🕮 3.3.1

In real-world machine learning tasks, incomplete datasets are a common problem.

For example, a bank's dataset of its customers. For example, the bank offered
some customers a loan, while others maintained an account. Obviously, for

103

example, the maturity date column will not be registered for all clients. On the other
hand, the bank also has information about clients who have not used credit
services that it can use.

🕮 3.3.2

Approach 1:

The first approach to missing data is to disregard examples with missing data.
This is possible if there are not very many such examples. But what if, for
example, 50% of the records/examples do not have an attribute listed. Removing
these examples would not only impoverish our dataset too much, but would even
bias the machine learning model we have created. Therefore, the above approach
needs to be considered responsibly.

The advantages of removing examples or attributes include:

• Easy to understand and implement
• It can be applied to any model (decision trees, logistic regression, linear

regression,...)

Disadvantages include:

• Removing data points and features can remove important information from
the data

104

• It is not clear when it is better to remove examples (rows) or when it is better
to remove features/attributes (columns)

• It does not help if in the case of a model update, i.e. a model prediction, we
are missing input data

🕮 3.3.3

Approach 2:

Another option is to fill in the missing data. This is mostly applied for missing data
in features/columns.

There are several approaches to data completion. These include, for example,
supplementing with the most frequent value, supplementing with the average value,
etc. The approaches depend on the distribution of values.

🕮 3.3.4

Approach 3:

A third approach is to reason with the missing data. The easiest one is to add, for
example, the value "unknown".

105

This approach is particularly appropriate if we assume that even in the case of
model application we will not know all the input data.

🕮 3.3.5

Literature used:

• Emily Fox, Carlos Guestrin: Machine Learning Specialization, University of
Washington https://www.coursera.org/specializations/machine-learning

• Harikrishnan N B: Confusion Matrix, Accuracy, Precision, Recall, F1 Score -
https://medium.com/analytics-vidhya/confusion-matrix-accuracy-precision-
recall-f1-score-ade299cf63cd

• Rotem Dror: Evaluation -
https://www.seas.upenn.edu/~cis5190/fall2018/assets/lectures/lecture-
3/03-eval.pptx

3.4 Practical tasks

📝 3.4.1

Create a decision tree using Titanic data without setting the depth of the tree.

import pandas as pd

from sklearn.model_selection import train_test_split

from sklearn.tree import DecisionTreeClassifier

106

data =

pd.read_csv('https://priscilla.fitped.eu/data/pandas/titanic.c

sv')

data = data[['Survived', 'Pclass', 'Sex', 'Age', 'SibSp',

'Parch', 'Embarked']]

data = data.dropna()

data =

pd.get_dummies(data,columns=["Embarked"],drop_first=False)

data['Sex'] = data['Sex'].replace({'male': 0, 'female': 1})

X = data[data.columns.difference(['Survived'])]

y = data['Survived']

X_train, X_test, y_train, y_test = train_test_split(X, y,

test_size=0.2, random_state=42)

clf = DecisionTreeClassifier(random_state=42)

clf = clf.fit(X_train, y_train)

y_pred = clf.predict(X_test)

from sklearn import metrics

acc = metrics.accuracy_score(y_test, y_pred)

print("Accuracy:", acc)

Program output:
Accuracy: 0.7342657342657343

Find the depth of the generated tree.

print(clf.get_depth())

Program output:
17

The original tree has a depth of 17. Next, we find out how many leaves the tree has.

107

print(clf.get_n_leaves())

Program output:
151

The tree has up to 151 leaves. Based on the depth and number of leaves, we can
conclude that this tree is complex given the number of data from which it is trained.

To confirm the reasoning, let us list all the accuracies of the tree using depths from
1 to 17.

for i in range(1,18):

 dtree = DecisionTreeClassifier(max_depth=i,

random_state=42)

 dtree.fit(X_train,y_train)

 y_pred = dtree.predict(X_test)

 print('Depth: ',i, ' accuracy:',

metrics.accuracy_score(y_test,y_pred))

Program output:
Hlbka: 1 presnost: 0.7482517482517482

Hlbka: 2 presnost: 0.7482517482517482

Hlbka: 3 presnost: 0.7272727272727273

Hlbka: 4 presnost: 0.7482517482517482

Hlbka: 5 presnost: 0.7832167832167832

Hlbka: 6 presnost: 0.7342657342657343

Hlbka: 7 presnost: 0.7762237762237763

Hlbka: 8 presnost: 0.7342657342657343

Hlbka: 9 presnost: 0.7412587412587412

Hlbka: 10 presnost: 0.7272727272727273

Hlbka: 11 presnost: 0.7132867132867133

Hlbka: 12 presnost: 0.7342657342657343

Hlbka: 13 presnost: 0.7412587412587412

Hlbka: 14 presnost: 0.7342657342657343

Hlbka: 15 presnost: 0.7482517482517482

Hlbka: 16 presnost: 0.7412587412587412

Hlbka: 17 presnost: 0.7342657342657343

At depth 5, the tree is 4% more accurate on the test data than at the original depth
of 17. We pruned the tree, it is less complex and yet more accurate. We have
prevented the tree from overtraining.

108

Such a tree also has a smaller number of leaves, only 22.

dtree = DecisionTreeClassifier(max_depth=5, random_state=42)

dtree.fit(X_train,y_train)

print(dtree.get_n_leaves())

Program output:
22

Another way to prevent overtraining is by using total impurity sheets and the so-
called effective alpha tree (https://scikit-
learn.org/stable/auto_examples/tree/plot_cost_complexity_pruning.html).

So-called minimal cost complexity pruning recursively finds the weakest node. This
is characterized by the effective alpha, and the nodes with the smallest effective
alpha are pruned first.

The sklearn library provides a cost_complexity_pruning_path function whose return
value is the effective alpha and the corresponding total leaf impurity.

As the alpha value increases, more of the tree is pruned, increasing the total
impurity of leaves.

import matplotlib.pyplot as plt

from sklearn.model_selection import train_test_split

from sklearn.datasets import load_breast_cancer

from sklearn.tree import DecisionTreeClassifier

X, y = load_breast_cancer(return_X_y=True)

X_train, X_test, y_train, y_test = train_test_split(X, y,

random_state=0)

clf = DecisionTreeClassifier(random_state=0)

path = clf.cost_complexity_pruning_path(X_train, y_train)

ccp_alphas, impurities = path.ccp_alphas, path.impurities

fig, ax = plt.subplots()

ax.plot(ccp_alphas[:-1], impurities[:-1], marker="o",

drawstyle="steps-post")

ax.set_xlabel("effective alpha")

ax.set_ylabel("total impurity of leaves")

https://scikit-learn.org/stable/auto_examples/tree/plot_cost_complexity_pruning.html
https://scikit-learn.org/stable/auto_examples/tree/plot_cost_complexity_pruning.html

109

ax.set_title("Total Impurity vs effective alpha for training

set")

Program output:

We train a decision tree using the effective alpha. The last value in ccp_alpha is the
value that prunes the whole tree, clfs[-1] is the tree with one node.

clfs = []

for ccp_alpha in ccp_alphas:

 clf = DecisionTreeClassifier(random_state=0,

ccp_alpha=ccp_alpha)

 clf.fit(X_train, y_train)

 clfs.append(clf)

print(

 "Number of nodes in the last tree is: {} with ccp_alpha:

{}".format(

 clfs[-1].tree_.node_count, ccp_alphas[-1]

)

)

Program output:
Number of nodes in the last tree is: 1 with ccp_alpha:

0.3272984419327777

110

Remove the last element clfs and ccp_alha.

The following graphs show how the number of nodes and the depth of the tree
decreases with increasing alpha.

clfs = clfs[:-1]

ccp_alphas = ccp_alphas[:-1]

node_counts = [clf.tree_.node_count for clf in clfs]

depth = [clf.tree_.max_depth for clf in clfs]

fig, ax = plt.subplots(2, 1)

ax[0].plot(ccp_alphas, node_counts, marker="o",

drawstyle="steps-post")

ax[0].set_xlabel("alpha")

ax[0].set_ylabel("number of nodes")

ax[0].set_title("Number of nodes vs alpha")

ax[1].plot(ccp_alphas, depth, marker="o", drawstyle="steps-

post")

ax[1].set_xlabel("alpha")

ax[1].set_ylabel("depth of tree")

ax[1].set_title("Depth vs alpha")

fig.tight_layout()

Program output:

111

When ccp_alpha is set to zero and the other parameters are default, the tree is
retrained, resulting in 100% training accuracy and 88% testing accuracy.

As alpha increases, more of the tree is pruned, leading to better generalization. In
the following example, alpha is set to 0.015 to maximize testing accuracy.

train_scores = [clf.score(X_train, y_train) for clf in clfs]

test_scores = [clf.score(X_test, y_test) for clf in clfs]

fig, ax = plt.subplots()

ax.set_xlabel("alpha")

ax.set_ylabel("accuracy")

ax.set_title("Accuracy vs alpha for training and testing

sets")

ax.plot(ccp_alphas, train_scores, marker="o", label="train",

drawstyle="steps-post")

ax.plot(ccp_alphas, test_scores, marker="o", label="test",

drawstyle="steps-post")

ax.legend()

plt.show()

Program output:

112

📝 3.4.2

Complete the code so that it correctly calculates tree complexity and alpha.

_____ = DecisionTreeClassifier(random_state=0)

_____ = clf. _____ (X_train, y_train)

ccp_alphas, _____ = path. _____ , _____ .impurities

📝 3.4.3

Assign the correct functions.

To obtain the depth of the decision tree, the following is used: _____

To obtain the number of leaves in the decision tree, the following is used: _____

To create a decision tree, the following is used: _____

To train the decision tree, the following is used: _____

• .fit()
• .get_depth()
• DecisionTreeClassifier()
• .get_n_leaves()

⌨ 3.4.4

Maximum depth and number of leaves

Complete the code so that the tree has a maximum depth of 5 and list the number
of leaves of the tree.

file1.py
import pandas as pd

from sklearn.model_selection import train_test_split

from sklearn.tree import DecisionTreeClassifier

113

data =

pd.read_csv('https://priscilla.fitped.eu/data/pandas/titanic.c

sv')

data = data[['Survived', 'Pclass', 'Sex', 'Age', 'SibSp',

'Parch', 'Embarked']]

data = data.dropna()

data =

pd.get_dummies(data,columns=["Embarked"],drop_first=False)

data['Sex'] = data['Sex'].replace({'male': 0, 'female': 1})

X = data[data.columns.difference(['Survived'])]

y = data['Survived']

X_train, X_test, y_train, y_test = train_test_split(X, y,

test_size=0.2, random_state=42)

clf = DecisionTreeClassifier(random_state=42)

114

Tree-Based Learning III.

Chapter 4

115

4.1 GINI index

🕮 4.1.1

An important step of the algorithm for decision tree formation is to select the best
feature for the distribution. The algorithm considers all potential trees of depth 1.

In the previous examples, we used classification error to find the most appropriate

feature.

The algorithm selects the feature whose tree has the smallest classification error.

In this case, the classification error tells us about the disorder of the subsets after
distribution according to the selected feature. The ideal state is, if the subsets
created contain only examples of one class, then the classification error is zero.

116

Thus, in decision trees, it is necessary to express the disorderedness of the subsets
formed after distribution according to the selected feature.

🕮 4.1.2

There are several ways to quantify impure (disorder, impurity) in sets. The problem
of classification error is that it is linear. For this reason, methods for constructing
decision trees use the information gain or the GINI index.

The GINI index measures the rate or probability of misclassification of a particular
variable when it is randomly selected. If all the elements belong to one class, it
can be called pure.

The degree of the Gini index oscillates between 0 and 1, where 0 indicates that all
elements belong to a certain class or if there is only one class, and 1 indicates that
the elements are randomly distributed into different classes. A Gini index of 0.5
indicates equally distributed elements in some classes.

We calculate the Gini index according to the formula:

- where pi je is the probability of an object being assigned to a particular class.

117

🕮 4.1.3

We will show the calculation of the Gini index with a practical example.

Consider 12 dataset examples and two properties, Account and Income.

We first compute the Gini index for the distribution under the Account features. The
Gini index will be the weighted average of the Gini indexes of each subset.

For each subset, we will calculate the Gini index according to the formula above

- where pi je is the probability of an object being assigned to a particular class.

In the case of High, Medium and Low classes, the formulas will be as follows:

118

In the case of the Gini for the class High, where the examples are divided into 4
from the value of the target variable Yes and 0 from the value of No, we calculate
the Gini as follows:

Similarly, we calculate the Gini for the Medium and Low classes

We calculate the final Gini for the Account trait as a weighted average

Similarly, we proceed for the Income feature

119

Finally, we need to compare the two calculated Gini values. After the comparison,
we find that the best feature for the distribution will be the Account feature.

120

4.2 Entropy

🕮 4.2.1

Another, often used way to quantify impure in sets is entropy. It is a measure taken
from physics and it expresses the degree of disorder in a system, or otherwise,
characterizes the (dis)purity in an arbitrary set of examples.

Given a set S, containing only positive and negative examples of some target
concept. Then the entropy of the set S, corresponding to this simple example of
binary classification, is defined as:

Entropy(S) = - pplog2 pp - pnlog2 pn

where pp is the proportion of positive examples in S and pn is the proportion of
negative examples in S.

In all entropy calculations, we define 0log0 equal to 0.

Entropy is equal to 0 if all members of S belong to the same class.

For example, if all members are positive (pp= 1),

then pn is 0,

and Entropy(S) = -1*log2(1) - 0*log20 = -1*0 - 0*log20 = 0.

Entropy reaches its maximum value, i.e. 1, if the set of examples contains the same
number of positive and negative examples.

If the set contains different numbers of positive and negative examples, the entropy
ranges from 0 to 1.

🕮 4.2.2

The entropy defined in the previous section was the so-called binary entropy.

Entropy(S) = - pplog2 pp - pnlog2 pn

where pp is the proportion of positive examples in S and pn is the proportion of
negative examples in S.

In general, entropy is defined by this relationship:

121

where pt is the proportion of examples of class t out of all classes T in set H.

We refer this entropy as non-binary entropy. The logarithm is still with base 2
because the entropy is a measure of the expected length of the encoding in bits.

🕮 4.2.3

Consider a binary entropy defined by the relation:

If we have a set R1 containing 6 elements "a" and 2 elements "b".

We calculate the entropy for this set as follows:

Next, consider the set R2, which has the same ratio of elements, but more elements
of "b"

122

Note that the entropy rate is the same. Thus, for entropy, it is not important which
elements are more, what is important is the ratio of the number of elements in the
set.

Next, we can consider the sets R3 and R4 and their entropies.

Note that the set R3 is more ordered, i.e. it contains most of the elements from "b"
and only one element from "a". Its entropy is therefore lower. Also note that the sets
R1 and R2 have two elements different, therefore their entropy is greater than the
entropy of R2 set, but less than the entropy of R4 set.

For completeness, we still present the calculation of the ideally ordered R5 set, i.e.,
the set with no impurity.

For comparison, we also present the most disordered set for 8 elements, the R6
set.

123

🕮 4.2.4

Practical example:

Calculate the entropy rate for the target variable Edible from the given dataset.

The target variable Edible contains 9 positive examples (+) and 7 negative
examples (-). There are 16 examples in total.

We calculate the entropy for the Edible variable as follows:

The result of 0.9836 is a number very close to 1. Thus, it means that the set has a
high degree of disorder.

124

4.3 Information Gain

🕮 4.3.1

We use the entropy measure in the decision tree generation algorithm to calculate
the appropriateness of an attribute. However, we do not use entropy there directly
but as part of the so-called information gain measure.

Information gain is the expected reduction in entropy caused by the distribution of
examples related to a given attribute.

The Information Gain (S, A) of attribute A corresponding to a set of examples S is
defined as:

where Values(A) is a set of all values for the attribute A, Sv is a subset of S for which
the attribute has the value of v.

🕮 4.3.2

We will show the calculation and use of information gain with a practical example.

In the previous section, we worked with the following dataset. The task is to
calculate the information gain for the attribute Size.

125

In the previous section, we calculated the entropy for the target variable Edible:

If we divide the dataset by the Size attribute, we get the following subsets:

126

We calculate the entropy for each subset:

then we calculate the entropy for the Size attribute by weighted averages.

Finally, we compute the information gain (or entropy reduction) of selecting the
Size attribute, which we compute as the reduction of the entropy of the original
dataset by the entropy of the Size attribute.

127

So, we obtained 0.1008 bits of information about the dataset by selecting "size" as
the first branch of our decision tree.

📝 4.3.3

Let be the probability of an object being assigned to a particular class.

We calculate it using the following formula:

• Gini index
• Entropy
• Information gain
• Precision
• Accuracy

4.4 How to use numeral values?

🕮 4.4.1

All previous examples have focused on categorical data. Decision trees can also
handle numeric data, i.e. continuous variables. Here we need to distinguish whether
the numeral data is in the target variable or in the individual attributes.

In the case of the target variable, we speak of so-called regression trees. These do
not model a nominal variable (flu, cold, hypochondria), but model a continuous
variable, e.g. blood pressure (BP).

The value of the continuous variable is usually the average of the corresponding
cases in the class. As node selection metric, e.g., standard deviation reduction is
used.

128

📝 4.4.2

What value do the regression trees model?

• continuous
• nominal
• categorical
• absent

🕮 4.4.3

We will show the use of continuous values in attributes by an example. Consider
the following dataset of loan applicants.

129

The Account variable is continuous. It is possible to calculate the degree of
disorder for this attribute. In this example, we will use the Gini index as the measure
of disorder. Therefore, we will calculate the Gini index of the Account attribute.

The first step will be to sort the dataset according to the values of the attribute
Account.

130

131

In the second step, we calculate the average values of the individual data

Next, we will calculate GINI for each distribution

132

Final Gini index for the column Account = 0.343. It is the lower Gini index of all
distributions of the dataset according to average values.

133

🕮 4.4.4

We review the process of calculating Gini index for integer values of attributes:

1. Ordering of the values

2. Calculation of average values for each pair of consecutive values

3. Next, only the calculated average values are considered

4. Calculate GINI index for every average value

134

🕮 4.4.5

At the end of the section on decision trees, we present their strengths and
weaknesses.

Strengths:

• Decision trees can generate understandable rules.
• Decision trees achieve classification without the need for too much

computing.
• Decision trees can work with both continual and categorical variables.
• Decision trees offer clear indication which areas are the most important for

prediction or classification.

Weaknesses:

• Decision trees are prone to classification errors for problems with many
classes and relatively few training examples.

• Decision trees can be computationally demanding to train. The process of
growing a decision tree is computationally demanding. At each node, each
split candidate must be sorted before its best distribution is found. In some
algorithms, combinations of fields are used and a search must be made for
the optimal combination of weights. The pruning algorithm can also be
challenging because many candidate subtrees must be formed and
compared.

🕮 4.4.6

References:

• Emily Fox, Carlos Guestrin: Machine Learning Specialization, University of
Washington - https://www.coursera.org/specializations/machine-learning

• S. Tahsildar - Gini Index For Decision Trees -
https://blog.quantinsti.com/gini-index/

• StatQuest: Decision and Classification Trees, Clearly Explained!! -
https://www.youtube.com/watch?v=_L39rN6gz7Y

https://www.coursera.org/specializations/machine-learning
https://blog.quantinsti.com/gini-index/
https://www.youtube.com/watch?v=_L39rN6gz7Y

135

4.5 Practical tasks

📝 4.5.1

We will create a decision tree that predicts whether or not a person would survive
the Titanic just like in the previous sections of this course.

Let's calculate the accuracy of this model.

import pandas as pd

from sklearn.model_selection import train_test_split

from sklearn.tree import DecisionTreeClassifier

data =

pd.read_csv('https://priscilla.fitped.eu/data/pandas/titanic.c

sv')

data = data[['Survived', 'Pclass', 'Sex', 'Age', 'SibSp',

'Parch']]

data = data.dropna()

data['Sex'] = data['Sex'].replace({'male': 0, 'female': 1})

X = data[data.columns.difference(['Survived'])]

y = data['Survived']

X_train, X_test, y_train, y_test = train_test_split(X, y,

test_size=0.3, random_state=42)

clf = DecisionTreeClassifier(random_state=42)

clf = clf.fit(X_train, y_train)

y_pred = clf.predict(X_test)

from sklearn.metrics import accuracy_score

print(accuracy_score(y_test, y_pred))

Program output:
0.7767441860465116

We found out that 77.67 % of cases are classified correctly.

136

With the following code, we can visualize the tree.

import matplotlib.pyplot as plt

from sklearn import tree

fig = plt.figure(figsize=(20,6))

_ = tree.plot_tree(clf,

 feature_names = ['Pclass', 'Sex', 'Age',

'SibSp', 'Parch'],

 class_names=['0','1'],

 filled=True)

Program output:

We can see that the tree is complex. Let's change the default criterion for building
the tree from gini to entropy and show the accuracy of the model.

dtree = DecisionTreeClassifier(criterion='gini',

random_state=42)

dtree.fit(X_train, y_train)

pred = dtree.predict(X_test)

print('Criterion=gini', accuracy_score(y_test, pred))

dtree = DecisionTreeClassifier(criterion='entropy',

random_state=42)

dtree.fit(X_train, y_train)

pred = dtree.predict(X_test)

print('Criterion=entropy', accuracy_score(y_test, pred))

Program output:
Criterion=gini 0.7767441860465116

Criterion=entropy 0.7767441860465116

137

With gini (the default criterion for generating the tree) the accuracy is 77.67 %, and
with entropy the accuracy is also 77.67 %.

Let's see whether pruning the tree by changing the maximum depth of the tree
gives us better results in any scenario.

Let's create trees sequentially from depth 1 to 15 and visualize the results.

max_depth = []

acc_gini = []

acc_entropy = []

for i in range(1,15):

 dtree = DecisionTreeClassifier(criterion='gini',

max_depth=i, random_state = 42)

 dtree.fit(X_train, y_train)

 pred = dtree.predict(X_test)

 acc_gini.append(accuracy_score(y_test, pred))

 ####

 dtree = DecisionTreeClassifier(criterion='entropy',

max_depth=i, random_state = 42)

 dtree.fit(X_train, y_train)

 pred = dtree.predict(X_test)

 acc_entropy.append(accuracy_score(y_test, pred))

 ####

 max_depth.append(i)

d = pd.DataFrame({'acc_gini':pd.Series(acc_gini),

 'acc_entropy':pd.Series(acc_entropy),

 'max_depth':pd.Series(max_depth)})

visualizing changes in parameters

plt.plot('max_depth','acc_gini', data=d, label='gini')

plt.plot('max_depth','acc_entropy', data=d, label='entropy')

plt.xlabel('max_depth')

plt.ylabel('accuracy')

plt.legend()

138

Program output:

On this graph we can see that by choosing entropy and tree depth of 7, we get the
best accuracy of the model. Let's calculate the accuracy of the mentioned model.

clf = DecisionTreeClassifier(criterion = 'entropy', max_depth

= 8, random_state=42)

clf = clf.fit(X_train, y_train)

y_pred = clf.predict(X_test)

from sklearn.metrics import accuracy_score

print(accuracy_score(y_test, y_pred))

Program output:
0.7906976744186046

The accuracy of a decision tree with a depth of 8 and built by entropy has reached
79.07%. We increased the accuracy of the model by 1.4 % just by setting the
function to create tree branches and limiting the depth of the tree. The built tree is
less complex.

import matplotlib.pyplot as plt

from sklearn import tree

fig = plt.figure(figsize=(20,6))

139

_ = tree.plot_tree(clf,

 feature_names = ['Pclass', 'Sex', 'Age',

'SibSp', 'Parch'],

 class_names=['0','1'],

 filled=True)

Program output:

⌨ 4.5.2

Number of leaves after pruning

Find the number of leaves before and after pruning the tree and print it. Use the
creation of a decision tree:

DecisionTreeClassifier(criterion = 'entropy', max_depth = 8,

random_state=42)

Print 2 values divided with a space

Create the trees with parameter of random_state=42

file1.py
import pandas as pd

from sklearn.model_selection import train_test_split

from sklearn.tree import DecisionTreeClassifier

140

data =

pd.read_csv('https://priscilla.fitped.eu/data/pandas/titanic.c

sv')

data = data[['Survived', 'Pclass', 'Sex', 'Age', 'SibSp',

'Parch']]

data = data.dropna()

data['Sex'] = data['Sex'].replace({'male': 0, 'female': 1})

X = data[data.columns.difference(['Survived'])]

y = data['Survived']

X_train, X_test, y_train, y_test = train_test_split(X, y,

test_size=0.3, random_state=42)

141

📝 4.5.3

What setting of the decision tree would you use based on the following graph?

clf = DecisionTreeClassifier(criterion='gini', max_depth=10,

random_state = 42)

clf = DecisionTreeClassifier(criterion='gini', max_depth=8,

random_state = 42)

clf = DecisionTreeClassifier(criterion='entropy',

max_depth=10, random_state = 42)

clf = DecisionTreeClassifier(criterion='entropy', max_depth=8,

random_state = 42)

142

📝 4.5.4

Regression decision tree

We will create a decision tree that predicts whether or not a person would survive
the Titanic just like in the previous sections of this course.

Let's calculate the accuracy of this model.

import pandas as pd

from sklearn.model_selection import train_test_split

from sklearn.tree import DecisionTreeClassifier

data =

pd.read_csv('https://priscilla.fitped.eu/data/pandas/titanic.c

sv')

data = data[['Survived', 'Pclass', 'Sex', 'Age', 'SibSp',

'Parch']]

data = data.dropna()

data['Sex'] = data['Sex'].replace({'male': 0, 'female': 1})

X = data[data.columns.difference(['Survived'])]

y = data['Survived']

X_train, X_test, y_train, y_test = train_test_split(X, y,

test_size=0.3, random_state=42)

clf = DecisionTreeClassifier(random_state=42)

clf = clf.fit(X_train, y_train)

y_pred = clf.predict(X_test)

from sklearn.metrics import accuracy_score

print(accuracy_score(y_test, y_pred))

Program output:
0.7767441860465116

We found out that 77.67 % of cases are classified correctly.

143

With the following code, we can visualize the tree.

import matplotlib.pyplot as plt

from sklearn import tree

fig = plt.figure(figsize=(20,6))

_ = tree.plot_tree(clf,

 feature_names = ['Pclass', 'Sex', 'Age',

'SibSp', 'Parch'],

 class_names=['0','1'],

 filled=True)

Program output:

We can see that the tree is complex. Let's change the default criterion for building
the tree from gini to entropy and show the accuracy of the model.

dtree = DecisionTreeClassifier(criterion='gini',

random_state=42)

dtree.fit(X_train, y_train)

pred = dtree.predict(X_test)

print('Criterion=gini', accuracy_score(y_test, pred))

dtree = DecisionTreeClassifier(criterion='entropy',

random_state=42)

dtree.fit(X_train, y_train)

pred = dtree.predict(X_test)

print('Criterion=entropy', accuracy_score(y_test, pred))

Program output:
Criterion=gini 0.7767441860465116

Criterion=entropy 0.7767441860465116

144

With gini (the default criterion for generating the tree) the accuracy is 77.67 %, and
with entropy the accuracy is also 77.67 %.

Let's see whether pruning the tree by changing the maximum depth of the tree
gives us better results in any scenario.

Let's create trees sequentially from depth 1 to 15 and visualize the results.

max_depth = []

acc_gini = []

acc_entropy = []

for i in range(1,15):

 dtree = DecisionTreeClassifier(criterion='gini',

max_depth=i, random_state = 42)

 dtree.fit(X_train, y_train)

 pred = dtree.predict(X_test)

 acc_gini.append(accuracy_score(y_test, pred))

 ####

 dtree = DecisionTreeClassifier(criterion='entropy',

max_depth=i, random_state = 42)

 dtree.fit(X_train, y_train)

 pred = dtree.predict(X_test)

 acc_entropy.append(accuracy_score(y_test, pred))

 ####

 max_depth.append(i)

d = pd.DataFrame({'acc_gini':pd.Series(acc_gini),

 'acc_entropy':pd.Series(acc_entropy),

 'max_depth':pd.Series(max_depth)})

visualizing changes in parameters

plt.plot('max_depth','acc_gini', data=d, label='gini')

plt.plot('max_depth','acc_entropy', data=d, label='entropy')

plt.xlabel('max_depth')

plt.ylabel('accuracy')

plt.legend()

145

Program output:

On this graph we can see that by choosing entropy and tree depth of 7, we get the
best accuracy of the model. Let's calculate the accuracy of the mentioned model.

clf = DecisionTreeClassifier(criterion = 'entropy', max_depth

= 8, random_state=42)

clf = clf.fit(X_train, y_train)

y_pred = clf.predict(X_test)

from sklearn.metrics import accuracy_score

print(accuracy_score(y_test, y_pred))

Program output:
0.7906976744186046

The accuracy of a decision tree with a depth of 8 and built by entropy has reached
79.07%. We increased the accuracy of the model by 1.4 % just by setting the
function to create tree branches and limiting the depth of the tree. The built tree is
less complex.

import matplotlib.pyplot as plt

from sklearn import tree

fig = plt.figure(figsize=(20,6))

146

_ = tree.plot_tree(clf,

 feature_names = ['Pclass', 'Sex', 'Age',

'SibSp', 'Parch'],

 class_names=['0','1'],

 filled=True)

Program output:

A regression decision tree predicts a numeral value.

In the following example, we will predict the age of an opossum based on the
features (characteristics) of the animal.

Import the required libraries and load the data file from:
https://priscilla.fitped.eu/data/machine_learning/possum.csv

Data file from: Lindenmayer, D. B., Viggers, K. L., Cunningham, R. B., and Donnelly, C.
F. 1995. Morphological variation among columns of the mountain brushtail possum,
Trichosurus caninus Ogilby (Phalangeridae: Marsupialia). Australian Journal of
Zoology 43: 449-458.”

import pandas as pd

import matplotlib.pyplot as plt

df =

pd.read_csv('https://priscilla.fitped.eu/data/machine_learning

/possum.csv')

print(df)

print(df.info())

Program output:
 case site Pop sex age hdlngth skullw totlngth

taill footlgth \

https://priscilla.fitped.eu/data/machine_learning/possum.csv

147

0 1 1 Vic m 8.0 94.1 60.4 89.0

36.0 74.5

1 2 1 Vic f 6.0 92.5 57.6 91.5

36.5 72.5

2 3 1 Vic f 6.0 94.0 60.0 95.5

39.0 75.4

3 4 1 Vic f 6.0 93.2 57.1 92.0

38.0 76.1

4 5 1 Vic f 2.0 91.5 56.3 85.5

36.0 71.0

..

... ...

99 100 7 other m 1.0 89.5 56.0 81.5

36.5 66.0

100 101 7 other m 1.0 88.6 54.7 82.5

39.0 64.4

101 102 7 other f 6.0 92.4 55.0 89.0

38.0 63.5

102 103 7 other m 4.0 91.5 55.2 82.5

36.5 62.9

103 104 7 other f 3.0 93.6 59.9 89.0

40.0 67.6

 earconch eye chest belly

0 54.5 15.2 28.0 36.0

1 51.2 16.0 28.5 33.0

2 51.9 15.5 30.0 34.0

3 52.2 15.2 28.0 34.0

4 53.2 15.1 28.5 33.0

..

99 46.8 14.8 23.0 27.0

100 48.0 14.0 25.0 33.0

101 45.4 13.0 25.0 30.0

102 45.9 15.4 25.0 29.0

103 46.0 14.8 28.5 33.5

[104 rows x 14 columns]

RangeIndex: 104 entries, 0 to 103

Data columns (total 14 columns):

 # Column Non-Null Count Dtype

--- ------ -------------- -----

 0 case 104 non-null int64

 1 site 104 non-null int64

148

 2 Pop 104 non-null object

 3 sex 104 non-null object

 4 age 102 non-null float64

 5 hdlngth 104 non-null float64

 6 skullw 104 non-null float64

 7 totlngth 104 non-null float64

 8 taill 104 non-null float64

 9 footlgth 103 non-null float64

 10 earconch 104 non-null float64

 11 eye 104 non-null float64

 12 chest 104 non-null float64

 13 belly 104 non-null float64

dtypes: float64(10), int64(2), object(2)

memory usage: 11.5+ KB

None

The data file contains records about 104 opossums. The records contain the age of
the opossum, sex, length of the head, legs, etc.

For age feature, 2 data are missing and for footlgth feature one data is missing, we
will remove these records.

df = df.dropna()

print(df.info())

Program output:

Int64Index: 101 entries, 0 to 103

Data columns (total 14 columns):

 # Column Non-Null Count Dtype

--- ------ -------------- -----

 0 case 101 non-null int64

 1 site 101 non-null int64

 2 Pop 101 non-null object

 3 sex 101 non-null object

 4 age 101 non-null float64

 5 hdlngth 101 non-null float64

 6 skullw 101 non-null float64

 7 totlngth 101 non-null float64

 8 taill 101 non-null float64

 9 footlgth 101 non-null float64

 10 earconch 101 non-null float64

 11 eye 101 non-null float64

149

 12 chest 101 non-null float64

 13 belly 101 non-null float64

dtypes: float64(10), int64(2), object(2)

memory usage: 11.8+ KB

None

We have 101 records left to work with. We will prepare our features and target
value.

Features are all numeral characteristics of the animal; the target value is the age of
the opossum.

X = df.drop(["case", "site", "Pop", "sex", "age"], axis=1)

y = df["age"]

print(X)

print(y)

Program output:
 hdlngth skullw totlngth taill footlgth earconch

eye chest belly

0 94.1 60.4 89.0 36.0 74.5 54.5

15.2 28.0 36.0

1 92.5 57.6 91.5 36.5 72.5 51.2

16.0 28.5 33.0

2 94.0 60.0 95.5 39.0 75.4 51.9

15.5 30.0 34.0

3 93.2 57.1 92.0 38.0 76.1 52.2

15.2 28.0 34.0

4 91.5 56.3 85.5 36.0 71.0 53.2

15.1 28.5 33.0

..

...

99 89.5 56.0 81.5 36.5 66.0 46.8

14.8 23.0 27.0

100 88.6 54.7 82.5 39.0 64.4 48.0

14.0 25.0 33.0

101 92.4 55.0 89.0 38.0 63.5 45.4

13.0 25.0 30.0

102 91.5 55.2 82.5 36.5 62.9 45.9

15.4 25.0 29.0

150

103 93.6 59.9 89.0 40.0 67.6 46.0

14.8 28.5 33.5

[101 rows x 9 columns]

0 8.0

1 6.0

2 6.0

3 6.0

4 2.0

 ...

99 1.0

100 1.0

101 6.0

102 4.0

103 3.0

Name: age, Length: 101, dtype: float64

We will divide the data into training and testing, similar to the standard decision
tree.

We will use an 80:20 distribution

from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X, y,

test_size=0.2, random_state=42)

All that remains is to build a regression decision tree model

from sklearn.tree import DecisionTreeRegressor

model = DecisionTreeRegressor(random_state=42)

model.fit(X_train, y_train)

y_pred = model.predict(X_test)

print('realny vek')

print(y_test.to_numpy())

print('-----')

print('predikovany vek')

print(y_pred)

Program output:
realny vek

151

[2. 2. 7. 6. 4. 3. 4. 5. 9. 8. 5. 3. 1. 2. 3. 2. 3. 4. 5. 4.

1.]

predikovany vek

[3. 3. 6. 6. 4. 2. 7. 2. 6. 6. 2. 3. 2. 3. 3. 4. 3. 1. 3. 4.

1.]

With the regression tree, we calculate the prediction accuracy using Root mean
square error (RMSE).

The value represents the standard deviation of the residuals (prediction error).

from sklearn.metrics import mean_squared_error

rmse = mean_squared_error(y_test, y_pred, squared=False)

print(rmse)

Program output:
1.7698260500276368

Similar to standard decision trees, we can plot the generated tree.

import matplotlib.pyplot as plt

from sklearn import tree

fig = plt.figure(figsize=(20,6))

_ = tree.plot_tree(model,

 feature_names = ['hdlngth', 'skullw',

'totlngth', 'taill', 'footlgth', 'earconch', 'eye', 'chest',

'belly'],

 filled=True)

Program output:

152

📝 4.5.5

Choose the correct statement.

• A regression decision tree predicts a numeral value.
• A regression decision tree predicts a categorical value.

📝 4.5.6

Complete the correct code to create a regression decision tree model with a
generation depth of maximum 4.

from sklearn.tree import _____

model = _____(random_state=42, _____=4)

_____._____(X_train, y_train)

Ensemble Learning
Methods - Random Forest

Chapter 5

154

5.1 Random Forest

🕮 5.1.1

Decision trees are easy to build, easy to use and easy to interpret. Despite their
many advantages, they are not very successful in practice.

In practice, a combination of a large number of decision trees or other
classification methods is quite successful. These methods are referred to as
ensemble machine learning methods.

Why the combination of several methods is successful can be easily illustrated by
the following example.

Assume a game where we roll a die:

- If number 1 or 2 is rolled, our opponent wins,

- if 3, 4, 5, or 6 is rolled, we win.

It is obvious that the chance of our winning is 4:2 or 2:1

Consider the following options:

- Game 1 - let's play 100 times, with a bet per game of 1 EURO

- Game 2 - let's play 10 times with a bet of 10 EUR

- Game 3 - let's play once, the bet is EUR 100.

The expected value of the win is the same for all three games

· Game1 = (P(4/6) * 1)*100 = 0.6666 * 1 * 100 = EUR 66.66

· Game2 = (P(4/6) * 10)*10 = 0.6666 * 10 * 10 = EUR 66.66

· Game3 = (P(4/6) * 100)*1 = 0.6666 * 100 * 1 = EUR 66.66

The difference lies in the independent measurements. Although the expected
values are the same, the distributions of the results are significantly different!

When are we the most sure that we will definitely earn money?

155

These are still random rolls of the dice. In the graph we show the observed results
(% of our winnings) when simulating the game.

From this simple example, it is clear that a single tree, with a large weight of its
classification, can be successful, but also very unsuccessful in classification. We
minimize the risk (i.e. we increase the success), if we use multiple trees with small
classification weight.

🕮 5.1.2

Approach when we learn and create multiple models and combine them:

· Can lead to higher accuracy

· The variance of the results can be reduced by averaging, if the predicted
measurements are mutually independent

· Individual models may be re-learned, but the combination may be resistant to
relearning

156

Ensemble learning methods are also referred to as ensemble methods, i.e.
connection or harmony of several models. Thus, to make predictions an ensemble
of models as an individual model is used.

There are three basic approaches:

• bagging,
• boosting,
• stacking.

🕮 5.1.3

Bagging - in this approach we create different subsets of the training set, the final
output is based on majority voting.

Bagging is also referred to as Bootstrap Aggregation. This ensemble technique is
also used by Random forest.

In Random forest, a number of decision trees are generated. The question remains
how to create different decision tree models when one dataset is used. Bagging
selects a random sample from the dataset. Thus, each model is generated from
different samples from the original dataset. Subsequently, each model is trained
independently.

157

Thus, in Bagging, a sample of the original dataset is created by randomly
duplicating its rows, or by randomly removing some rows. Similarly, randomness is
applied not only to examples/rows, but also to features/attributes i.e. columns.
This technique leads to reduce the influence of specific data (variance reduction).

🕮 5.1.4

Using Bagging in the Random Forest method, we create a number of decision trees.

158

The output of the classification is then based on the majority voting after linking the
results of all models. This step, which involves combining all the results and
generating an output based on the majority voting, is known as aggregation.

🕮 5.1.5

The bootstrap sample is taken from the real training dataset data. There is a high
probability that each sample will not contain a unique data.

Each model is obtained from a different bootstrap sample and trained
independently. Each model generates results. At the end, a majority voting takes
place.

159

🕮 5.1.6

Random Forest Algorithm:

· Step 1: In random forest, n number of random records are selected from a
dataset that has a k number of records.

· Step 2: Individual decision trees are built for each sample.

· Step 3: Each decision tree generates an output.

· Step 4: The final output is produced by majority voting or averaging for
regression.

Important features of Random forest include:

· Diversity- not all attributes/variables/features are considered when creating an
individual tree, each tree is different.

· Immune to multidimensionality- since each tree does not take all features into
account, the space is reduced.

· Parallelization - each tree is created independently from different data and
attributes. Thus, we can fully used the CPU to create trees.

· Split-Train-Test - in the random forest, in principle, we do not need to separate
the data for training and testing, because there will always be data that the tree
canot see.

• · Stability -occurs because the result is based on majority
voting/averaging.

🕮 5.1.7

If we compare Random Forest to decision trees so,

Decision Trees:

· have a problem with overfitting,

· build faster,

· takes all dataset examples as an input.

160

Random Forest:

• · Trees are built from subsets of the data and the final output is based on
average or majority ordering, thus no overfitting occurs.

• · They are much slower to build.
• · It randomly selects observations, builds a decision tree, and takes the

average result.

🕮 5.1.8

If we use the scikit-learn library to create a Random Forest, we can set the
following parameters:

• · n_estimators - the number of trees that the algorithm creates before
averaging the predictions.

• · max_features- the maximum number of elements that the Random
Forest considers to be a node distribution.

• · mini_sample_leaf- specifies the minimum number of leaves needed to
distribute the inner node.

• · n_jobs - information about the number of processors that can be used. If
the value is 1, only one processor can be used, but if the value is -1, there is
no limit.

• · random_state - checks the randomness of the sample. The model will
always produce the same results if it has a certain value of random state

• · oob_score - OOB stand for Out Of the Bag. This is a random forest cross-
validation method. A portion of the sample is not used to train the data, but it
is used to evaluate its performance

🕮 5.1.9

As in all methods, we conclude this section with the advantages and disadvantages
of Random Forest.

Advantages:

· It can be used in classification and regression problems.

· It solves the problem of overfitting.

· It works fine even if the data contains null/missing values.

· It exhibits the property of parallelization.

161

· It is highly stable because it takes the average responses provided by a large
number of trees.

· It preserves diversity because not all attributes are considered during the
building of each decision tree.

Disadvantages

· It is very complex compared to decision trees where decisions can be made by
following the path of the tree.

· Training time is the most demanding compared to other models.

· Whenever it has to make a prediction, each decision tree has to generate an
output for the given input data.

· You cannot see into the forest!

162

📝 5.1.10

What are the benefits of Random forest?

• It solves the problem of overfitting
• It works well even if the data contains null/missing values
• It exhibits the features of parallelization
• It combines GINI index and Entropy within a single tree
• It also works at higher degrees of polynomial

5.2 Other ensemble learning methods

🕮 5.2.1

There are three basic techniques in ensemble machine learning methods:

· bagging,

· boosting,

· stacking.

We introduced the bagging technique within Random Forest. The second technique
is boosting. This technique combines "weak learners" into a strong sequential
model for the highest possible accuracy.

A comparison of the this technique with bagging is shown in the picture.

163

Bagging runs parallel, boosting runs sequential. In Boosting, each input pattern has
its own weight. At the beginning all have the same, for misclassified ones the
weight has increased. Patterns are combined by weighted voting.

Within the Boosting technique, it is possible to solve the hyperparameter
configuration problem.

🕮 5.2.2

The last technique is Voting.

In this technique, by combining different methods, we select several basic
classifiers. In prediction, we do not use only the average voting or the most
frequent voting, but the classifiers voting is the input to the final classifier.

The estimates (reliability) of the classes are used at the next level of the meta-
classifier, which determines the final prediction.

164

🕮 5.2.3

Literature used:

· Emily Fox, Carlos Guestrin: Machine Learning Specialization, University of
Washington https://www.coursera.org/specializations/machine-learning

· Sruthi E R: Understanding Random Forest -
https://www.analyticsvidhya.com/blog/2021/06/understanding-random-forest/

· StatQuest: Random Forests Part 1 - Building, Using and Evaluating -
https://www.youtube.com/watch?v=J4Wdy0Wc_xQ

· StatQuest: Random Forests Part 2: Missing data and clustering -
https://www.youtube.com/watch?v=sQ870aTKqiM

https://www.coursera.org/specializations/machine-learning
https://www.analyticsvidhya.com/blog/2021/06/understanding-random-forest/

165

📝 5.2.4

What is Bagging?

• a technique that creates different subsets of the training set
• a technique that combines "weak learners" into a strong sequential model for

the highest possible accuracy
• a technique that compares all the metrics of success of a single decision

tree
• a metric of the equilibrium representation of classes in the dataset

5.3 Practical tasks

📝 5.3.1

Building a random forest is a very similar process to building a decision tree. A
random forest is actually a model that consists of several individual decision trees.
The final predicted value of the random forest is most often the most frequent
resulting value from the individual decision trees.

The following example shows a solution to the Titanic survival prediction using a
random forest.

We load the dataset and prepare a suitable training and test set as in the previous
sections.

import pandas as pd

from sklearn.model_selection import train_test_split

data =

pd.read_csv('https://priscilla.fitped.eu/data/pandas/titanic.c

sv')

data = data[['Survived', 'Pclass', 'Sex', 'Age', 'SibSp',

'Parch']]

data = data.dropna()

data['Sex'] = data['Sex'].replace({'male': 0, 'female': 1})

X = data[data.columns.difference(['Survived'])]

y = data['Survived']

166

X_train, X_test, y_train, y_test = train_test_split(X, y,

test_size=0.3, random_state=42)

We will build a Random Forest model using the sklearn library:

https://scikit-
learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.ht
ml

from sklearn.ensemble import RandomForestClassifier

rf_model = RandomForestClassifier(random_state=42)

We will train the created model and make predictions using the test set.

rf_model.fit(X_train, y_train)

y_pred = rf_model.predict(X_test)

print(y_pred)

Program output:
[1 1 1 1 0 1 0 1 1 1 1 1 0 0 1 0 0 1 0 1 0 1 1 1 0 0 0 0 1 0 0

0 1 0 0 0 0

 0 0 0 0 0 1 0 0 1 1 0 1 1 1 1 0 0 0 1 1 0 0 0 1 0 1 0 0 0 1 1

0 1 0 1 0 0

 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 1 0 1 1 1 1 0 0 1 1 0 0 1

0 0 1 0 1 0

 0 0 1 0 0 0 1 1 0 1 0 0 0 1 0 0 1 1 1 0 0 0 1 0 0 0 0 0 0 0 1

1 0 0 0 0 0

 1 0 0 0 0 1 0 0 0 0 1 1 0 0 0 1 0 1 1 0 1 0 0 1 0 1 1 1 0 0 0

0 1 0 1 1 0

 0 1 0 1 0 0 1 1 0 1 0 0 0 1 0 0 1 0 1 0 0 1 1 0 1 0 0 1 0 0]

We compare the values with the real y_test values.

print(y_test.to_numpy())

Program output:
[0 1 1 1 0 1 1 1 0 0 1 1 1 0 1 0 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0

0 1 0 0 1 0

 1 0 0 1 0 1 0 0 1 1 0 0 1 0 0 1 0 0 0 0 1 0 1 1 0 1 0 1 0 1 1

1 0 0 1 0 0

https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html

167

 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 1 1 0 0 0 1 1 0 0 1

0 0 0 1 1 0

 0 0 1 0 1 0 1 0 0 1 0 0 0 0 0 0 1 0 1 1 0 1 1 0 0 0 0 0 0 0 1

1 1 0 0 0 0

 0 0 0 1 0 1 0 0 1 0 1 1 0 0 0 1 1 1 1 1 1 0 0 1 0 1 1 1 0 0 0

0 1 0 1 1 0

 0 1 1 1 0 1 0 1 1 1 0 0 0 1 0 0 1 1 1 0 0 1 0 0 1 0 0 1 0 0]

We compute the prediction accuracy in the same way as for

decision trees.

from sklearn import metrics

print("Accuracy:",metrics.accuracy_score(y_test, y_pred))

Program output:
Accuracy: 0.786046511627907

We compare the results with the default decision tree model.

from sklearn.tree import DecisionTreeClassifier

clf = DecisionTreeClassifier(random_state=42)

clf.fit(X_train, y_train)

y_pred_DT = clf.predict(X_test)

print("Accuracy:",metrics.accuracy_score(y_test, y_pred_DT))

Program output:
Accuracy: 0.7767441860465116

The accuracy of the random forest model compared to the decision tree is 0.93%
higher.

The random forest, like the decision tree, can be fitted with parameters.

The following example shows how the prediction accuracy of a random forest
varies based on the number of trees built of.

We create the forest sequentially from 1 to 30 trees and wefind the prediction
accuracy.

168

import matplotlib.pyplot as plt

n_estimators = []

acc = []

for i in range(1, 30):

 rf = RandomForestClassifier(n_estimators=i, random_state =

42)

 rf.fit(X_train, y_train)

 pred = rf.predict(X_test)

 acc.append(metrics.accuracy_score(y_test, pred))

 ####

 n_estimators.append(i)

d = pd.DataFrame({'acc':pd.Series(acc),

 'n_estimators':pd.Series(n_estimators)})

visualizing changes in parameters

plt.plot('n_estimators','acc', data=d, label='acc')

plt.xlabel('n_estimators')

plt.ylabel('accuracy')

plt.legend()

Program output:

The forest with 10 trees has the highest accuracy.

169

rf_model = RandomForestClassifier(random_state=42,

n_estimators = 10)

rf_model.fit(X_train, y_train)

pred = rf_model.predict(X_test)

print(metrics.accuracy_score(y_test, pred))

Program output:
0.8046511627906977

A forest with 10 trees has an accuracy of 80.47%, which is 1.87% higher than the
accuracy of the random forest model with default settings.

📝 5.3.2

A random forest is a model, which consists of several individual decision trees.

• True
• False

170

⌨ 5.3.3

RandomForest with six trees

Complete the code to build a random forest with six trees. Use the parameter
random_state=42 to preserve the randomization.

Set the size of the test set to 20%.

As a result, write the model accuracy.

file1.py
import pandas as pd

from sklearn.model_selection import train_test_split

data =

pd.read_csv('https://priscilla.fitped.eu/data/pandas/titanic.c

sv')

data = data[['Survived', 'Pclass', 'Sex', 'Age', 'SibSp',

'Parch']]

data = data.dropna()

data['Sex'] = data['Sex'].replace({'male': 0, 'female': 1})

X = data[data.columns.difference(['Survived'])]

y = data['Survived']

X_train, X_test, y_train, y_test = train_test_split(X, y,

test_size=0.2, random_state=42)

📝 5.3.4

How many decision trees would you use in a random forest model based on the
following graph?

171

