

Knowledge Discovery

Published on

Work in progress version

Erasmus+ FITPED-AI

Future IT Professionals Education in Artificial Intelligence

Project 2021-1-SK01-KA220-HED-000032095

The European Commission support for the production of this publication does not
constitute an endorsement of the contents which reflects the views only of the authors,
and the Commission cannot be held responsible for any use which may be made of
the information contained therein.

Licence (licence type: Attribution-Non-commercial-No Derivative Works) and may be
used by third parties as long as licensing conditions are observed. Any materials
published under the terms of a CC Licence are clearly identified as such.

All trademarks and brand names mentioned in this publication and all trademarks and
brand names mentioned that may be the intellectual property of third parties are
unconditionally subject to the provisions contained within the relevant law governing
trademarks and other related signs. The mere mention of a trademark or brand name
does not imply that such a trademark or brand name is not protected by the rights of
third parties.

© 2023 Constantine the Philosopher University in Nitra

TABLE OF CONTENTS
1 Basic features ..6

1.1 Introduction ..7

1.2 Data description .. 10

2 Exploratory analysis .. 22

2.1 Descriptive statistics ... 23

2.2 Data visualisation.. 35

2.3 Data summarization .. 49

3 Data Analysis .. 59

3.1 Univariate analysis .. 60

3.2 Bivariance analysis ... 74

3.3 Multivariate analysis ... 84

4 Project - data analysis .. 102

4.1 Data analysis ... 103

5 Analysis of Titanic data ... 120

5.1 Analysis of Titanic data .. 121

Summarisation .. 138

1 Summarisation ... 139

1.1 The introduction into summarization ... 140

1.2 The approaches to summarization ... 141

1.3 Koncepts used in text summarization .. 145

2 Keyword Extraction ... 151

2.1 The introduction into keyword extraction .. 152

Preprocessing of texts ... 152

2.2 Statistical Approaches ... 153

2.3 Graph based approaches .. 159

2.4 Machine learning based approaches .. 162

2.5 Hybrid Approaches ... 164

2.6 Evaluation... 164

Classification ... 168

1 Introduction to classification .. 169

1.1 Introduction .. 170

2 Symbolical classification models ... 172

2.1 Decision Tree.. 173

2.2 K-nearest neighbors classifier ... 177

3 Logistic regression ... 180

3.1 Logistic regression .. 181

Logistic regression .. 181

3.2 Naive Bayes Classifier .. 183

4 Subsymbolical classification models .. 185

4.1 SVM classifier .. 186

5 Evaluation of classification models .. 190

5.1 Accuracy... 191

5.2 Accuracy, coverage and their harmonic mean ... 191

5.3 Confusion matrix .. 193

Confusion matrix .. 193

5.4 AUC-ROC .. 193

5.5 Log loss .. 194

6 Implementation of classification models in Python .. 196

6.1 Classification models .. 197

7 Ensemble learning ... 204

7.1 The introduction into ensemble learning.. 205

6

Basic features

Chapter 1

7

1.1 Introduction

📝 1.1.1

The Knowledge Discovery - Introduction course focuses on the process of
transforming data into information and knowledge. We will introduce the field of
knowledge discovery and practically demonstrate how to extract relevant
information from data. The course will consist of a theoretical and a practical part
that complements each other. We will work in the Python programming language
and will use mainly the Pandas library.

📝 1.1.2

As more and more data accumulates in today's world, whether on the web or other
physical storage, the concept of Knowledge Discovery has emerged. By knowledge
we mean information that is of value to us. Knowledge discovery can be
understood as a process that consists of the following tasks:

• data selection,
• data preprocessing,
• data transformation,
• data analysis,
• results interpretation.

We can discover knowledge from a variety of sources, whether from databases,
texts, or the web.

📝 1.1.3

The CRISP-DM methodology is one of the most widely used and versatile
techniques for solving various knowledge discovery tasks. The methodology
consists of the following steps:

• business understanding,
• data understanding,
• data preparation,
• modeling,
• evaluation,
• deployment.

The order of the phases is not fixed and the process is cyclical. It was primarily
developed for project management in the area of knowledge discovery from
databases, but is applicable to other areas as well.

8

📝 1.1.4

First, let's recall the work with data files. In our course, we will mainly use the
pandas library for working with data. Pandas contains a function for importing data
from different data files and writing back the output in different formats. Most
often we will encounter files saved in CSV format. Reading a CSV file and then
transforming it into a tabular structure (DataFrame) is built into the pandas library
using the read_csv() function. The first parameter of the function is the path to the
file and the second parameter is sep, which we can use to define a separator. The
default value in the case of the separator is a comma but we will often encounter a
semicolon.

import pandas as pd

df = pd.read_csv('dataset.csv', sep=';')

📝 1.1.5

Another option is to use datasets provided by other libraries such as Sklearn. This
library is designed to work with machine learning and provides multiple datasets for
different tasks. Using the import function, we can import different data files. Then
we just need to create an instance of that data file and load it into the pandas
DataFrame structure. In the final result, the result is similar to if we loaded a CSV
file from disk.

import pandas as pd

from sklearn.datasets import load_wine

wine = load_wine()

df = pd.DataFrame(data=wine.data, columns= wine.feature_names)

print(df)

Program output:
 alcohol malic_acid ash alcalinity_of_ash magnesium

total_phenols \

0 14.23 1.71 2.43 15.6 127.0

2.80

1 13.20 1.78 2.14 11.2 100.0

2.65

2 13.16 2.36 2.67 18.6 101.0

2.80

3 14.37 1.95 2.50 16.8 113.0

3.85

9

4 13.24 2.59 2.87 21.0 118.0

2.80

..

...

173 13.71 5.65 2.45 20.5 95.0

1.68

174 13.40 3.91 2.48 23.0 102.0

1.80

175 13.27 4.28 2.26 20.0 120.0

1.59

176 13.17 2.59 2.37 20.0 120.0

1.65

177 14.13 4.10 2.74 24.5 96.0

2.05

 flavanoids nonflavanoid_phenols proanthocyanins

color_intensity hue \

0 3.06 0.28 2.29

5.64 1.04

1 2.76 0.26 1.28

4.38 1.05

2 3.24 0.30 2.81

5.68 1.03

3 3.49 0.24 2.18

7.80 0.86

4 2.69 0.39 1.82

4.32 1.04

..

... ...

173 0.61 0.52 1.06

7.70 0.64

174 0.75 0.43 1.41

7.30 0.70

175 0.69 0.43 1.35

10.20 0.59

176 0.68 0.53 1.46

9.30 0.60

177 0.76 0.56 1.35

9.20 0.61

 od280/od315_of_diluted_wines proline

0 3.92 1065.0

1 3.40 1050.0

2 3.17 1185.0

10

3 3.45 1480.0

4 2.93 735.0

..

173 1.74 740.0

174 1.56 750.0

175 1.56 835.0

176 1.62 840.0

177 1.60 560.0

[178 rows x 13 columns]

📝 1.1.6

Load from the sklearn library the dataset california_housing, which contains
records of homes in California. You fetch the dataset into an object using the
fetch_california_housing() function. List the names of the columns that the dataset
contains, separated by commas.

import pandas as pd

from sklearn.datasets import fetch_california_housing

1.2 Data description

📝 1.2.1

In the first part, we focus on the fact that it needs to understand what data we've
actually retrieved. However, we don't go in-depth yet because we are trying to first
understand the problem we want to solve in the context of the whole dataset and
the meaning of the variables. So let's look first at how much and what type of data
is in the data set. This is what the shape() and info() functions that describe the
data set are there to do. Shape returns information about the number of rows and
columns. Info also provides more detailed information about the individual
variables and especially their data type.

import pandas as pd

from sklearn.datasets import load_wine

wine = load_wine()

df = pd.DataFrame(data=wine.data, columns= wine.feature_names)

print(df.info())

Program output:

11

RangeIndex: 178 entries, 0 to 177

Data columns (total 13 columns):

 # Column Non-Null Count Dtype

--- ------ -------------- -----

 0 alcohol 178 non-null float64

 1 malic_acid 178 non-null float64

 2 ash 178 non-null float64

 3 alcalinity_of_ash 178 non-null float64

 4 magnesium 178 non-null float64

 5 total_phenols 178 non-null float64

 6 flavanoids 178 non-null float64

 7 nonflavanoid_phenols 178 non-null float64

 8 proanthocyanins 178 non-null float64

 9 color_intensity 178 non-null float64

 10 hue 178 non-null float64

 11 od280/od315_of_diluted_wines 178 non-null float64

 12 proline 178 non-null float64

dtypes: float64(13)

memory usage: 18.2 KB

None

The dataset contains 178 rows and 13 columns. All variables are in decimal format.
We can also see that the dataset does not contain any missing values.

📝 1.2.2

Load from the sklearn library the dataset california_housing that contains records
of homes in California. You fetch the dataset into an object using the
fetch_california_housing() function. Examine the dataset and select the correct
assertions about the retrieved data.

import pandas as pd

from sklearn.datasets import fetch_california_housing

cali = fetch_california_housing()

df = pd.DataFrame(data=cali.data, columns=cali.feature_names)

print(df.info())

Program output:

RangeIndex: 20640 entries, 0 to 20639

Data columns (total 8 columns):

12

 # Column Non-Null Count Dtype

--- ------ -------------- -----

 0 MedInc 20640 non-null float64

 1 HouseAge 20640 non-null float64

 2 AveRooms 20640 non-null float64

 3 AveBedrms 20640 non-null float64

 4 Population 20640 non-null float64

 5 AveOccup 20640 non-null float64

 6 Latitude 20640 non-null float64

 7 Longitude 20640 non-null float64

dtypes: float64(8)

memory usage: 1.3 MB

None

• the dataset consists of 20640 rows and 8 columns
• all variables are in decimal format
• the dataset consists of 8 rows and 20640 columns
• all variables are in integer format
• the dataset also contains missing values
• the dataset does not contain missing values

📝 1.2.3

Most often, the first functions used when loading a data file are the pandas head()
and tail() library functions. These functions display the first and last 5 records of
the dataset. In this way, we are able to quickly explore a small portion of the data
file.

import pandas as pd

from sklearn.datasets import load_wine

wine = load_wine()

df = pd.DataFrame(data=wine.data, columns= wine.feature_names)

print('Head:')

print(df.head())

print('Tail:')

print(df.tail())

Program output:
Head:

 alcohol malic_acid ash alcalinity_of_ash magnesium

total_phenols \

0 14.23 1.71 2.43 15.6 127.0

2.80

13

1 13.20 1.78 2.14 11.2 100.0

2.65

2 13.16 2.36 2.67 18.6 101.0

2.80

3 14.37 1.95 2.50 16.8 113.0

3.85

4 13.24 2.59 2.87 21.0 118.0

2.80

 flavanoids nonflavanoid_phenols proanthocyanins

color_intensity hue \

0 3.06 0.28 2.29

5.64 1.04

1 2.76 0.26 1.28

4.38 1.05

2 3.24 0.30 2.81

5.68 1.03

3 3.49 0.24 2.18

7.80 0.86

4 2.69 0.39 1.82

4.32 1.04

 od280/od315_of_diluted_wines proline

0 3.92 1065.0

1 3.40 1050.0

2 3.17 1185.0

3 3.45 1480.0

4 2.93 735.0

Tail:

 alcohol malic_acid ash alcalinity_of_ash magnesium

total_phenols \

173 13.71 5.65 2.45 20.5 95.0

1.68

174 13.40 3.91 2.48 23.0 102.0

1.80

175 13.27 4.28 2.26 20.0 120.0

1.59

176 13.17 2.59 2.37 20.0 120.0

1.65

177 14.13 4.10 2.74 24.5 96.0

2.05

 flavanoids nonflavanoid_phenols proanthocyanins

color_intensity hue \

14

173 0.61 0.52 1.06

7.7 0.64

174 0.75 0.43 1.41

7.3 0.70

175 0.69 0.43 1.35

10.2 0.59

176 0.68 0.53 1.46

9.3 0.60

177 0.76 0.56 1.35

9.2 0.61

 od280/od315_of_diluted_wines proline

173 1.74 740.0

174 1.56 750.0

175 1.56 835.0

176 1.62 840.0

177 1.60 560.0

📝 1.2.4

Load from the sklearn library the dataset california_housing, which contains records
of homes in California. You fetch the dataset into an object using the
fetch_california_housing() function. The dataset consists of the following
variables:

• MedInc - the median income of homes in the block
• HouseAge - the median age of houses in the block
• AveRooms - the average number of rooms per household
• AveBedrms - the average number of bedrooms per household
• Population - population
• AveOccup - the average number of household members
• Latitude - latitude of the block
• Longitude - longitude of the block

Examine the dataset and list the median age of the houses of the first block. Round
the result to a whole number.

import pandas as pd

from sklearn.datasets import fetch_california_housing

cali = fetch_california_housing()

df = pd.DataFrame(data=cali.data, columns=cali.feature_names)

print(df.head())

15

Program output:
 MedInc HouseAge AveRooms AveBedrms Population AveOccup

Latitude \

0 8.3252 41.0 6.984127 1.023810 322.0 2.555556

37.88

1 8.3014 21.0 6.238137 0.971880 2401.0 2.109842

37.86

2 7.2574 52.0 8.288136 1.073446 496.0 2.802260

37.85

3 5.6431 52.0 5.817352 1.073059 558.0 2.547945

37.85

4 3.8462 52.0 6.281853 1.081081 565.0 2.181467

37.85

 Longitude

0 -122.23

1 -122.22

2 -122.24

3 -122.25

4 -122.25

📝 1.2.5

The describe() function provides purely descriptive information about the dataset.
This information includes statistics that summarize the variables, their variance, the
presence of missing values, and their shape. The basic statistics displayed by the
function are as follows:

• count - number of elements,
• mean - average value,
• std - standard deviation of observations
• min - minimum value
• 25% - lower quartile
• 50% - median
• 75% - upper quartile
• max - maximum value

import pandas as pd

from sklearn.datasets import load_wine

wine = load_wine()

df = pd.DataFrame(data=wine.data, columns= wine.feature_names)

print(df.describe())

16

Program output:
 alcohol malic_acid ash alcalinity_of_ash

magnesium \

count 178.000000 178.000000 178.000000 178.000000

178.000000

mean 13.000618 2.336348 2.366517 19.494944

99.741573

std 0.811827 1.117146 0.274344 3.339564

14.282484

min 11.030000 0.740000 1.360000 10.600000

70.000000

25% 12.362500 1.602500 2.210000 17.200000

88.000000

50% 13.050000 1.865000 2.360000 19.500000

98.000000

75% 13.677500 3.082500 2.557500 21.500000

107.000000

max 14.830000 5.800000 3.230000 30.000000

162.000000

 total_phenols flavanoids nonflavanoid_phenols

proanthocyanins \

count 178.000000 178.000000 178.000000

178.000000

mean 2.295112 2.029270 0.361854

1.590899

std 0.625851 0.998859 0.124453

0.572359

min 0.980000 0.340000 0.130000

0.410000

25% 1.742500 1.205000 0.270000

1.250000

50% 2.355000 2.135000 0.340000

1.555000

75% 2.800000 2.875000 0.437500

1.950000

max 3.880000 5.080000 0.660000

3.580000

 color_intensity hue

od280/od315_of_diluted_wines proline

count 178.000000 178.000000

178.000000 178.000000

17

mean 5.058090 0.957449

2.611685 746.893258

std 2.318286 0.228572

0.709990 314.907474

min 1.280000 0.480000

1.270000 278.000000

25% 3.220000 0.782500

1.937500 500.500000

50% 4.690000 0.965000

2.780000 673.500000

75% 6.200000 1.120000

3.170000 985.000000

max 13.000000 1.710000

4.000000 1680.000000

📝 1.2.6

Load from the sklearn library the dataset california_housing, which contains
records of homes in California. You fetch the dataset into an object using the
fetch_california_housing() function. What is the average value of the average
population per block?

import pandas as pd

from sklearn.datasets import fetch_california_housing

cali = fetch_california_housing()

df = pd.DataFrame(data=cali.data, columns=cali.feature_names)

print(df.describe())

Program output:
 MedInc HouseAge AveRooms AveBedrms

Population \

count 20640.000000 20640.000000 20640.000000 20640.000000

20640.000000

mean 3.870671 28.639486 5.429000 1.096675

1425.476744

std 1.899822 12.585558 2.474173 0.473911

1132.462122

min 0.499900 1.000000 0.846154 0.333333

3.000000

25% 2.563400 18.000000 4.440716 1.006079

787.000000

18

50% 3.534800 29.000000 5.229129 1.048780

1166.000000

75% 4.743250 37.000000 6.052381 1.099526

1725.000000

max 15.000100 52.000000 141.909091 34.066667

35682.000000

 AveOccup Latitude Longitude

count 20640.000000 20640.000000 20640.000000

mean 3.070655 35.631861 -119.569704

std 10.386050 2.135952 2.003532

min 0.692308 32.540000 -124.350000

25% 2.429741 33.930000 -121.800000

50% 2.818116 34.260000 -118.490000

75% 3.282261 37.710000 -118.010000

max 1243.333333 41.950000 -114.310000

📝 1.2.7

Load from the sklearn library the dataset california_housing, which contains
records of homes in California. You fetch the dataset into an object using the
fetch_california_housing() function. What is the median age of the houses in the
block? Print the result as an integer.

import pandas as pd

from sklearn.datasets import fetch_california_housing

cali = fetch_california_housing()

df = pd.DataFrame(data=cali.data, columns=cali.feature_names)

print(df.describe())

Program output:
 MedInc HouseAge AveRooms AveBedrms

Population \

count 20640.000000 20640.000000 20640.000000 20640.000000

20640.000000

mean 3.870671 28.639486 5.429000 1.096675

1425.476744

std 1.899822 12.585558 2.474173 0.473911

1132.462122

min 0.499900 1.000000 0.846154 0.333333

3.000000

19

25% 2.563400 18.000000 4.440716 1.006079

787.000000

50% 3.534800 29.000000 5.229129 1.048780

1166.000000

75% 4.743250 37.000000 6.052381 1.099526

1725.000000

max 15.000100 52.000000 141.909091 34.066667

35682.000000

 AveOccup Latitude Longitude

count 20640.000000 20640.000000 20640.000000

mean 3.070655 35.631861 -119.569704

std 10.386050 2.135952 2.003532

min 0.692308 32.540000 -124.350000

25% 2.429741 33.930000 -121.800000

50% 2.818116 34.260000 -118.490000

75% 3.282261 37.710000 -118.010000

max 1243.333333 41.950000 -114.310000

📝 1.2.8

Another way to get to know a data file is to use the info() function. This function
gives us more concise information than describe() but we get information about
the data type of the variables. We can also use the info() function to find out if the
data file contains missing values.

import pandas as pd

from sklearn.datasets import load_wine

wine = load_wine()

df = pd.DataFrame(data=wine.data, columns= wine.feature_names)

print(df.info())

Program output:

RangeIndex: 178 entries, 0 to 177

Data columns (total 13 columns):

 # Column Non-Null Count Dtype

--- ------ -------------- -----

 0 alcohol 178 non-null float64

 1 malic_acid 178 non-null float64

 2 ash 178 non-null float64

 3 alcalinity_of_ash 178 non-null float64

20

 4 magnesium 178 non-null float64

 5 total_phenols 178 non-null float64

 6 flavanoids 178 non-null float64

 7 nonflavanoid_phenols 178 non-null float64

 8 proanthocyanins 178 non-null float64

 9 color_intensity 178 non-null float64

 10 hue 178 non-null float64

 11 od280/od315_of_diluted_wines 178 non-null float64

 12 proline 178 non-null float64

dtypes: float64(13)

memory usage: 18.2 KB

None

📝 1.2.9

Load from the sklearn library the dataset california_housing, which contains
records of homes in California. You fetch the dataset into an object using the
fetch_california_housing() function. What data type are most of the variables in the
dataset?

import pandas as pd

from sklearn.datasets import fetch_california_housing

cali = fetch_california_housing()

df = pd.DataFrame(data=cali.data, columns=cali.feature_names)

print(df.info())

Program output:

RangeIndex: 20640 entries, 0 to 20639

Data columns (total 8 columns):

 # Column Non-Null Count Dtype

--- ------ -------------- -----

 0 MedInc 20640 non-null float64

 1 HouseAge 20640 non-null float64

 2 AveRooms 20640 non-null float64

 3 AveBedrms 20640 non-null float64

 4 Population 20640 non-null float64

 5 AveOccup 20640 non-null float64

 6 Latitude 20640 non-null float64

 7 Longitude 20640 non-null float64

dtypes: float64(8)

21

memory usage: 1.3 MB

None

22

Exploratory analysis

Chapter 2

23

2.1 Descriptive statistics

📝 2.1.1

Exploratory analysis methods are used to discover patterns, generate hypotheses,
recognize specificities, and illustrate phenomena. The starting point of any data
analysis is the data itself. The data do not have to satisfy certain conditions (e.g.
the data must have been obtained by random sampling). The main point is to
represent the data in different ways and to recognise regularities and irregularities,
structures, patterns and peculiarities. In the exploratory process, we look for
interesting configurations and relationships in the data. If we want to compare two
or more variables, we need appropriate quantities that will numerically characterize
the basic properties of the frequency distribution. Such amounts are called
numerical characteristics and can be divided into three categories:

• position characteristics - represent a certain level or position of the character
around which the residuals are concentrated. This position is measured by
different kinds of mean values such as arithmetic, harmonic and geometric
mean, modus, median and quantiles.

• variability characteristics - they express the differences (variability,
dispersion) of the values and are an important factor when comparing
variables in which the position characteristics are identical. The best known
are quantile, quartile and variation range, quartile deviation, mean deviation,
proportional mean deviation, variance, standard deviation and coefficient of
variation.

• characteristics of skewness and peakedness measures - moment
characteristics are required for their calculation. The best known are the
skewness coefficient, the kurtosis coefficient and the Pearson skewness
measure.

📝 2.1.2

Most descriptive statistics include Python functions. However, in order to
understand what is behind the called function, we need to understand at least the
mathematical notation of the statistics. Let's first introduce different averages.

Arithmetic mean - is the sum of all given values divided by their number. In Python,
we can use the mean() function of the statistics library to calculate it.

24

Harmonic mean - is the inverse of the arithmetic mean of the inverted values. In
Python, we can use the harmonic_mean() function of the statistics library to
calculate it.

Geometric mean - is the product of the positive numbers is the product of the
values squared to the number of values. The similarity to the arithmetic mean is in
the substitution of the sum of the operation by product and division by the n-th root.
In Python, we can use the geometric_mean() function of the statistics library to do
the calculation.

import pandas as pd

import statistics as stat

from sklearn.datasets import load_wine

wine = load_wine()

df = pd.DataFrame(data=wine.data, columns= wine.feature_names)

print('Arithmetic mean:',stat.mean(df['magnesium']))

print('Harmonic mean:',stat.harmonic_mean(df['magnesium']))

print('Geometric mean:',stat.geometric_mean(df['magnesium']))

Program output:
Arithmetic mean: 99.74157303370787

Harmonic mean: 97.9056614747819

Geometric mean: 98.79450755406194

📝 2.1.3

Load from the sklearn library the dataset california_housing, which contains
records of homes in California. You fetch the dataset into an object using the

25

fetch_california_housing() function. What is the value of the harmonic mean of the
age of the houses in the block? Round the result to two decimal places.

import pandas as pd

from scipy import stats

from sklearn.datasets import fetch_california_housing

cali = fetch_california_housing()

df = pd.DataFrame(data=cali.data, columns=cali.feature_names)

print(round(stats.hmean(df['HouseAge']),2))

Program output:
20.38

📝 2.1.4

Other statistics used include the modus and median.

Modus - represents the most frequent value occurring in the variable under study. In
Python, we can use the mode() function of the statistics library to calculate it.

Median - this is the mean value of the variable under study, with the requirement
that the values must be arranged in a non-decreasing sequence. We have defined n
as the number of values and xi as the value at the i-th position. Then for an even
number of elements we calculate the median as follows:

For an odd number of elements, we proceed as follows:

In Python, we can use the median() function of the statistics library to calculate.

26

We distinguish three cases depending on what is the relative position of the modus,

median and arithmetic mean of the examined variable. If , then we speak

about symmetric frequency distribution. If , then we speak about negative

skewness. In the case of , we speak about positive skewness.

import pandas as pd

import statistics as stat

from sklearn.datasets import load_wine

wine = load_wine()

df = pd.DataFrame(data=wine.data, columns= wine.feature_names)

print('Modus:',stat.mode(df['magnesium']))

print('Median:',stat.median(df['magnesium']))

Program output:
Modus: 88.0

Median: 98.0

📝 2.1.5

Use of individual position characteristics:

• We use the mean mainly for metric variables in the case of symmetric
distributions and the use of parametric tests.

• We use the median for intensive variables in the case we want to know the
centre of the data distribution, in the case of outliers and skewed
distribution.

• We use the modus for variables when the distribution has multiple peaks.
• In the case of a symmetric distribution, all these characteristics are

approximately the same.

📝 2.1.6

Load from the sklearn library the dataset california_housing, which contains
records of homes in California. You fetch the dataset into an object using the
fetch_california_housing() function. What is the most common value for the age of
the houses in the block? Print the result as an integer.

import pandas as pd

import statistics as stat

from sklearn.datasets import fetch_california_housing

27

cali = fetch_california_housing()

df = pd.DataFrame(data=cali.data, columns=cali.feature_names)

print(round(stat.mode(df['HouseAge']),2))

Program output:
52.0

📝 2.1.7

Load from the sklearn library the dataset california_housing, which contains
records of homes in California. You fetch the dataset into an object using the
fetch_california_housing() function. Examine the variable age of the houses in the
block and identify the frequency distribution of the variable being examined. List the
values of the mean, median, and mode rounded to two decimal places in the
following form:

positive skewness, mean: 42.53, median: 22.36, modus: 30.00

import pandas as pd

import statistics as stat

from sklearn.datasets import fetch_california_housing

cali = fetch_california_housing()

df = pd.DataFrame(data=cali.data, columns=cali.feature_names)

print(round(stat.mode(df['HouseAge']),2))

print(round(stat.mean(df['HouseAge']),2))

print(round(stat.median(df['HouseAge']),2))

Program output:
52.0

28.64

29.0

📝 2.1.8

Quantiles are numerical values that divide the sorted values of the variable under
study in non-decreasing order into k equal parts. The best-known are the median
(k=2), quartiles (k=4), deciles (k=10) and percentiles (k=100).

Quartiles represent percentiles with levels of 25%, 50% and 75%. Quartiles divide
the set into 4 parts.

28

• QI is the first/lower quartile and the 25th percentile or x0,25.
• QII is the second quartile or 50th percentile or median x0,5.
• QIII is the third/upper quartile or 75th percentile or x0,75.

In Python, we have two options to get the upper and lower quartile. The first option
is the describe() function of the pandas library. The second option is to use the
numpy library, which contains a quantile() function whose second parameter is the
percentile. So if we specify 0.25 as a parameter the function will result in a lower
quartile and 0.75 will result in an upper quartile.

Using the upper and lower quartiles, we can calculate the quartile range which
represents the region of the middle 50% of the values of the variable. This measure
of variability is not affected by extreme values of the variable. In Python, we can use
the iqr() function of the scipy library to calculate this or substitute the upper and
lower quartiles into the formula:

import pandas as pd

import numpy as np

from scipy import stats

from sklearn.datasets import load_wine

wine = load_wine()

df = pd.DataFrame(data=wine.data, columns= wine.feature_names)

print(df['magnesium'].describe())

print('Upper quartile:',np.quantile(df['magnesium'],0.75))

print('Lower quartile:',np.quantile(df['magnesium'],0.25))

print('Quartile range:',stats.iqr(df['magnesium']))

Program output:

29

count 178.000000

mean 99.741573

std 14.282484

min 70.000000

25% 88.000000

50% 98.000000

75% 107.000000

max 162.000000

Name: magnesium, dtype: float64

Upper quartile: 107.0

Lower quartile: 88.0

Quartile range: 19.0

📝 2.1.9

Load from the sklearn library the dataset california_housing, which contains
records of homes in California. You fetch the dataset into an object using the
fetch_california_housing() function. Examine the variable age of houses in the
block and calculate the quartile range of the variable being examined. Round the
result to integers.

import pandas as pd

from scipy import stats

from sklearn.datasets import fetch_california_housing

cali = fetch_california_housing()

df = pd.DataFrame(data=cali.data, columns=cali.feature_names)

print('Quartile range:',stats.iqr(df['HouseAge']))

Program output:
Kvartilove rozpatie: 19.0

📝 2.1.10

Data with the same mean can have different scatter. The amount of variability in
the data can be determined by a suitably chosen variability characteristic or
measure of dispersion. One of these is the quartile range introduced earlier. Others
are:

The variance - the most commonly used characteristic of variability, referred to as
s2, which is the root mean square deviation of the measurement from the arithmetic
mean. The larger the variance the more the data deviate from the mean. In Python,

30

we can use the var() function of the numpy library or the pvariance() function of the
statistics library to calculate this.

Standard deviation - this is the positive square root of the variance, denoted as s.
The greater the difference in the values of the examined variable the greater the
value of the standard deviation. In Python, we can use the std() function of the
numpy library or the pstdev() function of the statistics library to do the calculation.

Coefficient of variation - used for comparing variability and represents a relative
measure of variability. It does not depend on the units in which the values of the
variable are expressed, unlike the variance and standard deviation. If the value of
the coefficient of variation is greater than 50%, the arithmetic mean loses its
meaning because the statistical population is heterogeneous and the arithmetic
mean cannot represent it. In this case, we use the median instead of the arithmetic
mean as mean. In Python, we have to calculate the given coefficient using the
following formula:

import pandas as pd

import statistics as stat

import numpy as np

from sklearn.datasets import load_wine

wine = load_wine()

df = pd.DataFrame(data=wine.data, columns= wine.feature_names)

print('The variance

Statistics:',stat.pvariance(df['magnesium']))

print('The variance Numpy:',np.var(df['magnesium']))

print('Standard deviation

Statistics:',stat.pstdev(df['magnesium']))

print('Standard deviation Numpy:',np.std(df['magnesium']))

31

print('Coefficient of variation

Statistics:',stat.pstdev(df['magnesium'])/stat.mean(df['magnes

ium'])*100)

print('Coefficient of variation

Numpy:',np.std(df['magnesium'])/np.mean(df['magnesium'])*100)

Program output:
Rozptyl Statistics: 202.8433278626436

Rozptyl Numpy: 202.8433278626436

Smerodajna odchylka Statistics: 14.242307673359806

Smerodajna odchylka Numpy: 14.242307673359806

Variacny koeficient Statistics: 14.27920899998899

Variacny koeficient Numpy: 14.27920899998899

📝 2.1.11

Use of individual variability characteristics:

• Standard deviation and variance measure the dispersion around the mean
and are used when the mean is appropriate as a measure of the mean.

• Standard deviation and dispersion are strongly affected by outliers, so in this
case, we prefer the quartile range, median absolute deviation, and mean
absolute deviation from the median, respectively.

• In the case of a strongly skewed distribution, the standard deviation and
variance do not provide good information about the dispersion of the data.

• In case we want to assess the relative magnitude of the dispersion of the
data from the mean we use the coefficient of variation.

📝 2.1.12

Load from the sklearn library the dataset california_housing, which contains
records of homes in California. You fetch the dataset into an object using the
fetch_california_housing() function. Examine the variable age of the houses in the
block to see if the coefficient of variation is greater than 50%. List the yes/no
values and write the result as a percentage rounded to two decimal places. For
example:

yes, 58.56%

import pandas as pd

import numpy as np

from sklearn.datasets import fetch_california_housing

cali = fetch_california_housing()

32

df = pd.DataFrame(data=cali.data, columns=cali.feature_names)

print('Variacny

koeficient:',round(np.std(df['HouseAge'])/np.mean(df['HouseAge

'])*100,2))

Program output:
Variacny koeficient: 43.94

📝 2.1.13

A final option in descriptive statistics is to look at the shape of the data distribution
using skewness and kurtosis.

The skewness a3 measures the degree of asymmetry in the distribution of a
variable. A positive value means that the mean is greater than the median, so most
of the values are less than the mean. In this case, the distribution is skewed to the
left. A negative value means that the median is greater than the mean and hence
most values are greater than the mean. In this case, the distribution is skewed to
the right. Values close to 0 indicate a symmetric distribution, which means that the
mean and median are equal. In Python, we can use the skew() function of the scipy
library to calculate this. It is calculated as follows:

where

33

Kurtosis a4 measures the degree of steepness of the distribution of a variable. A
positive value means that the distribution is more skewed. A negative value means
that the distribution is flatter. In Python, we can use the kurtosis() function of the
scipy library to calculate this. It is given by the relation

import pandas as pd

from scipy import stats

from sklearn.datasets import load_wine

wine = load_wine()

df = pd.DataFrame(data=wine.data, columns= wine.feature_names)

print('Skewness:',stats.skew(df['magnesium']))

print('Kurtosis:',stats.kurtosis(df['magnesium'],

fisher=True))

34

Program output:
Skewness: 1.088914887210701

Kurtosis: 2.0128060084773907

📝 2.1.14

If we have non-zero values for the result of skewness and skewness, then it is
obvious that the data under study do not have a normal distribution. However, it
may be that the values are close enough, but not quite equal to 0. We can use the
Shapiro-Wilk test to estimate the probability that the data under study have a
normal distribution. The null hypothesis of the Shapiro-Wilk test is that the data
have a normal distribution. If the resulting p-value is less than or equal to 0.05, we
reject the null hypothesis and assume that the data under study do not have a
normal distribution. In Python, we can use the shapiro() function of the scipy library
to perform the calculation.

Using individual shape characteristics:

• We use skewness if we want to see if lower values are more frequent than
higher values or vice versa.

• We use kurtosis if we want to see how the values of a variable actually
cluster around the mean.

import pandas as pd

from scipy import stats

from sklearn.datasets import load_wine

wine = load_wine()

df = pd.DataFrame(data=wine.data, columns= wine.feature_names)

p_value = round(stats.shapiro(df['magnesium'])[1],4)

if p_value<=0.05:

 print('p =',p_value, 'the null hypothesis is rejected')

else:

 print('p =',p_value, 'the null hypothesis is not rejected')

Program output:
p = 0.0 the null hypothesis is rejected

35

📝 2.1.15

Load from the sklearn library the dataset california_housing, which contains
records of homes in California. You fetch the dataset into an object using the
fetch_california_housing() function. Examine the variable age of the houses in the
block to see if the variable has a normal distribution. Print if it does/does not have a
normal distribution and also list the associated skewness, and kurtosis statistics
and verify the p-value. Round the results to two decimal places. Notation:

does not have a normal distribution, p = 0.02, skew = 0.12,

kurtosis = -0.25

import pandas as pd

from scipy import stats

from sklearn.datasets import fetch_california_housing

cali = fetch_california_housing()

df = pd.DataFrame(data=cali.data, columns=cali.feature_names)

print('Sikmost:',round(stats.skew(df['HouseAge']),2))

print('Spicatost:',round(stats.kurtosis(df['HouseAge'],

fisher=True),2))

p_value = round(stats.shapiro(df['HouseAge'])[1],4)

if p_value<=0.05:

 print('p =',p_value, 'nulová hypotéza sa zamieta')

else:

 print('p =',p_value, 'nulová hypotéza sa nezamieta')

Program output:
Sikmost: 0.06

Spicatost: -0.8

p = 0.0 nulová hypotéza sa zamieta

/home/johny/.local/lib/python3.9/site-

packages/scipy/stats/_morestats.py:1800: UserWarning: p-value

may not be accurate for N > 5000.

 warnings.warn("p-value may not be accurate for N > 5000.")

2.2 Data visualisation

📝 2.2.1

Data visualization can tell us much more about the data than just the numbers.
With visualization, we can more easily uncover configurations and data structures.
We use graphical methods to look for outliers, recognize clusters in data, check

36

data distributions and assumptions, explore relationships between variables,
compare measures of mean and variance, or examine time-dependent data.
Graphical methods are useful for showing broader properties of data. If we want to
present the selected data in a precise form it is better to show it in tables. When
analyzing a graph we evaluate densities, clusters, gaps, outliers, and the shape of
the distribution.

Graphs can be grouped according to different criteria. In our case, we will divide
them by usage. However, we will by no means cover all possibilities but we will try
to present the most important ones. Some graphs are so specific that they are only
part of specific analyses. An example of such a graph is the dendrogram that is
part of cluster analysis and is used to visualize clusters in the data space.

📝 2.2.2

We can examine the abundance of the data in each variable in different ways. One
possibility is by using the value_counts() function of the pandas library. The result
is a listing of the unique values and the number of repetitions in the data set. If we
set the normalize parameter in the function to True, the resulting counts are output
in percentage notation. The last option is to visualize the frequencies using the
plot() function, where we can choose a bar chart type by setting the kind parameter
to bar.

We have also added a target column to our data file. This column is used for the
classification task, where based on the other variables we can classify the wine into
the given three categories. In our case, for the moment, it will mainly serve us to
better understand the data.

import pandas as pd

from sklearn.datasets import load_wine

wine = load_wine()

df = pd.DataFrame(data=wine.data, columns= wine.feature_names)

df["target"] = wine.target

print('Frequencies:',df['target'].value_counts(),sep='\n')

print('Percentages:',df['target'].value_counts(normalize=True)

,sep='\n')

df['target'].value_counts().plot(kind='bar')

Program output:
Pocetnosti:

1 71

0 59

2 48

Name: target, dtype: int64

Pocetnosti percentualne:

37

1 0.398876

0 0.331461

2 0.269663

Name: target, dtype: float64

📝 2.2.3

Load from the sklearn library the dataset california_housing, which contains
records of homes in California. You fetch the dataset into an object using the
fetch_california_housing() function. What is the number of oldest houses by the
average age of the houses in the block? List the average age and the number of
records for it.

24: 875

import pandas as pd

from scipy import stats

from sklearn.datasets import fetch_california_housing

cali = fetch_california_housing()

df = pd.DataFrame(data=cali.data, columns=cali.feature_names)

df['HouseAge'].value_counts().plot(kind='bar')

print(df.HouseAge.value_counts())

Program output:
52.0 1273

36.0 862

38

35.0 824

16.0 771

17.0 698

34.0 689

26.0 619

33.0 615

18.0 570

25.0 566

32.0 565

37.0 537

15.0 512

19.0 502

27.0 488

24.0 478

30.0 476

28.0 471

20.0 465

29.0 461

31.0 458

23.0 448

21.0 446

14.0 412

22.0 399

38.0 394

39.0 369

42.0 368

44.0 356

43.0 353

40.0 304

13.0 302

41.0 296

45.0 294

10.0 264

11.0 254

46.0 245

5.0 244

12.0 238

8.0 206

9.0 205

47.0 198

4.0 191

48.0 177

7.0 175

6.0 160

39

50.0 136

49.0 134

3.0 62

2.0 58

51.0 48

1.0 4

Name: HouseAge, dtype: int64

📝 2.2.4

If we want to look at the distribution of the data or the distribution of the data, we
can use a histogram. The histogram works with intervals where the intervals are
represented by the width of the bar (x-axis) and the number of cases that fall within
the interval is represented by the height of the bar (y-axis). Visualization of the
histogram is possible using the plot() function, where we can choose the type of
the plot by setting the kind parameter to hist.

import pandas as pd

from sklearn.datasets import load_wine

wine = load_wine()

df = pd.DataFrame(data=wine.data, columns= wine.feature_names)

df['magnesium'].plot(kind='hist', title='magnesium')

Program output:

40

📝 2.2.5

Load from the sklearn library the dataset california_housing, which contains
records of homes in California. You fetch the dataset into an object using the
fetch_california_housing() function. Visualize a histogram of each variable in the
dataset. Which of the histograms visualize information about the rooms in the
houses?

import pandas as pd

from scipy import stats

from sklearn.datasets import fetch_california_housing

cali = fetch_california_housing()

df = pd.DataFrame(data=cali.data, columns=cali.feature_names)

print(df.info())

#df['MedInc'].plot(kind='hist')

#df['HouseAge'].plot(kind='hist')

#df['AveRooms'].plot(kind='hist')

#df['AveBedrms'].plot(kind='hist')

#df['Population'].plot(kind='hist')

#df['AveOccup'].plot(kind='hist')

#df['Latitude'].plot(kind='hist')

#df['Longitude'].plot(kind='hist')

41

Program output:

RangeIndex: 20640 entries, 0 to 20639

Data columns (total 8 columns):

 # Column Non-Null Count Dtype

--- ------ -------------- -----

 0 MedInc 20640 non-null float64

 1 HouseAge 20640 non-null float64

 2 AveRooms 20640 non-null float64

 3 AveBedrms 20640 non-null float64

 4 Population 20640 non-null float64

 5 AveOccup 20640 non-null float64

 6 Latitude 20640 non-null float64

 7 Longitude 20640 non-null float64

dtypes: float64(8)

memory usage: 1.3 MB

None

42

•

•

43

•

•

44

•

•

45

•

•

📝 2.2.6

We covered descriptive statistics in the previous lesson. In addition to numerical
characteristics, we can also visualize descriptive statistics using a box plot. Thus,
we can assess and compare measures of the location and dispersion of values in
their neighbourhood. Visualization of the histogram is possible using the boxplot()
function, which is found in the matplotlib library. As the first parameter, we specify
the variable we want to visualize. The showmeans parameter adds visual
information about the mean value to our graph, which is represented by the green
triangle. The red line tells us the mean value. The rectangle, in turn, gives us the
upper-to-lower quartile boundary. The maximum and minimum are bounded by lines
from the rectangle upwards and downwards.

46

import pandas as pd

from sklearn.datasets import load_wine

import matplotlib.pyplot as plt

wine = load_wine()

df = pd.DataFrame(data=wine.data, columns= wine.feature_names)

plt.boxplot(df['magnesium'], showmeans=True)

Program output:

📝 2.2.7

Using the matplotlib library, we can also visualize multiple box plots at the same
time. As a first parameter, we send not a single variable but a list of variables to be
examined. We can then color-code the variables using various settings, which you
can see in the following code. In our case, we have combined variables whose
range of values is approximately similar. However, it is more transparent to observe
the individual variables separately so that we are not affected by the different
scales of values.

import pandas as pd

from sklearn.datasets import load_wine

import matplotlib.pyplot as plt

wine = load_wine()

df = pd.DataFrame(data=wine.data, columns= wine.feature_names)

47

box =

plt.boxplot([df['total_phenols'],df['flavanoids'],df['proantho

cyanins']], showmeans=True)

#boxes customization

plt.setp(box['boxes'][0], color='green')

plt.setp(box['caps'][0], color='green')

plt.setp(box['caps'][1], color='green')

plt.setp(box['whiskers'][0], color='green')

plt.setp(box['whiskers'][1], color='green')

plt.setp(box['boxes'][1], color='red')

plt.setp(box['caps'][2], color='red')

plt.setp(box['caps'][3], color='red')

plt.setp(box['whiskers'][2], color='red')

plt.setp(box['whiskers'][3], color='red')

plt.title('Distribution of wine attributes')

plt.xticks([1,2,3], ['total

phenols','flavanoids','proanthocyanins'])

plt.show()

Program output:

48

📝 2.2.8

Load from the sklearn library the dataset california_housing, which contains
records of homes in California. You fetch the dataset into an object using the
fetch_california_housing() function. Use the box plot to examine each attribute of
the dataset and select the correct assertions.

We will add one more column to our data file, target. This column is used for the
classification task where based on the other variables we can classify the median
California home price value, expressed in hundreds of thousands of dollars. In our
case, it will mainly serve us to better understand the data.

import pandas as pd

import matplotlib.pyplot as plt

from scipy import stats

from sklearn.datasets import fetch_california_housing

cali = fetch_california_housing()

df = pd.DataFrame(data=cali.data, columns=cali.feature_names)

#print(df.info())

#plt.boxplot(df['HouseAge'], showmeans=True)

#plt.boxplot(df['AveRooms'], showmeans=True)

#plt.boxplot(df['AveBedrms'], showmeans=True)

plt.boxplot(df['AveOccup'], showmeans=True)

#plt.boxplot(df['Population'], showmeans=True)

Program output:

49

• the average age of the houses is close to the median age of the houses in
the block

• descriptive statistics of the average number of rooms and bedrooms are
similar

• the age of houses has a normal distribution
• the average age of the houses is similar to the average number of rooms

📝 2.2.9

There is no standard that specifies which chart we should use to visualize the data.
However, there are a few guidelines that can help us choose:

• It is important to understand what type of data we are examining. If you have
continuous variables, then a histogram would be a good choice. Similarly, if
we want to display a ranking, an ordered bar chart would be a good choice.

• Let's choose a graph that effectively conveys the correct and relevant
meaning of the data without actually misrepresenting the facts.

• Simplicity is best. It is considered better to draw a simple graph that is easy
to understand than to draw complex graphs that require several reports and
texts to understand.

• Let's choose a diagram that does not overwhelm the audience with
information. Our goal should be to illustrate abstract information clearly.

2.3 Data summarization

📝 2.3.1

During data analysis, it is often necessary to group data based on certain criteria.
The concepts of clustering occur in several parts of data analysis. The pandas
library contains a groupby() function that groups our dataset into different classes
over which we can perform aggregation. The groupby() function performs two basic
functions: it divides the data into groups based on certain criteria and applies the
function to each group separately. The result of groupby() is a structure that
provides us with several aggregation functions such as sum(), mean(), median(),
min(), max(), and so on.

import pandas as pd

from sklearn.datasets import load_wine

wine = load_wine()

df = pd.DataFrame(data=wine.data, columns= wine.feature_names)

df["target"] = wine.target

print(df.groupby('target').mean())

50

Program output:
 alcohol malic_acid ash alcalinity_of_ash

magnesium \

target

0 13.744746 2.010678 2.455593 17.037288

106.338983

1 12.278732 1.932676 2.244789 20.238028

94.549296

2 13.153750 3.333750 2.437083 21.416667

99.312500

 total_phenols flavanoids nonflavanoid_phenols

proanthocyanins \

target

0 2.840169 2.982373 0.290000

1.899322

1 2.258873 2.080845 0.363662

1.630282

2 1.678750 0.781458 0.447500

1.153542

 color_intensity hue

od280/od315_of_diluted_wines proline

target

0 5.528305 1.062034

3.157797 1115.711864

1 3.086620 1.056282

2.785352 519.507042

2 7.396250 0.682708

1.683542 629.895833

📝 2.3.2

Load from the sklearn library the dataset california_housing, which contains
records of homes in California. You fetch the dataset into an object using the
fetch_california_housing() function.

We'll also add a target column to our dataset. This column is used for the
classification task, where based on the other variables we can classify the median
price value of California homes, expressed in hundreds of thousands of dollars. In
our case, for the moment, it will mainly serve us to better understand the data.

Using clustering based on the target variable, find the median value of the age of
homes in the block for a target value of 5. Round the result to a whole number.

51

import pandas as pd

import matplotlib.pyplot as plt

from sklearn.datasets import fetch_california_housing

cali = fetch_california_housing()

df = pd.DataFrame(data=cali.data, columns=cali.feature_names)

df['target'] = cali.target

print(df.groupby('target').mean())

Program output:
 MedInc HouseAge AveRooms AveBedrms Population

AveOccup \

target

0.14999 2.122475 30.750000 6.575951 2.016259 305.25000

2.566440

0.17500 2.366700 39.000000 3.572464 1.217391 259.00000

1.876812

0.22500 1.818075 36.250000 3.975628 1.265805 2112.00000

3.652335

0.25000 0.857100 21.000000 1.629630 1.222222 64.00000

2.370370

0.26600 2.301300 34.000000 4.897959 1.051020 808.00000

2.748299

...

...

4.98800 8.248000 29.000000 7.072727 0.978182 826.00000

3.003636

4.99000 8.148900 18.000000 6.600817 1.001362 1634.00000

2.226158

4.99100 6.786100 28.000000 7.386861 1.083942 617.00000

2.251825

5.00000 3.899581 38.000000 4.773400 1.094456 1036.00000

2.097639

5.00001 7.825123 33.802073 6.817436 1.097833 1112.80829

2.570442

 Latitude Longitude

target

0.14999 37.665000 -120.197500

0.17500 34.150000 -118.330000

0.22500 36.005000 -119.335000

0.25000 32.790000 -114.650000

0.26600 35.130000 -119.450000

52

...

4.98800 37.330000 -122.060000

4.99000 37.890000 -122.180000

4.99100 33.550000 -117.770000

5.00000 35.584444 -120.155556

5.00001 35.225751 -119.702477

[3842 rows x 8 columns]

📝 2.3.3

Aggregation is the process of performing any mathematical operation on a set of
data or a subset of it. Aggregation is one of the many techniques in the pandas
library that is used to manipulate data in data analysis.

The aggregate() function is used to apply aggregation to one or more columns.
Some of the most commonly used aggregations are as follows:

• sum: returns the sum of the values
• min: returns the minimum of the values
• max: returns the maximum of the values

It is important to note that we can only perform aggregations over numeric values.

import pandas as pd

from sklearn.datasets import load_wine

wine = load_wine()

df = pd.DataFrame(data=wine.data, columns= wine.feature_names)

df["target"] = wine.target

print(df.aggregate('max'))

Program output:
alcohol 14.83

malic_acid 5.80

ash 3.23

alcalinity_of_ash 30.00

magnesium 162.00

total_phenols 3.88

flavanoids 5.08

nonflavanoid_phenols 0.66

proanthocyanins 3.58

color_intensity 13.00

hue 1.71

53

od280/od315_of_diluted_wines 4.00

proline 1680.00

target 2.00

dtype: float64

📝 2.3.4

Load from the sklearn library the dataset california_housing, which contains
records of homes in California. You fetch the dataset into an object using the
fetch_california_housing() function.

Use aggregation to find the lowest value in the MedInc column. Round the result to
two decimal places.

import pandas as pd

import matplotlib.pyplot as plt

from sklearn.datasets import fetch_california_housing

cali = fetch_california_housing()

df = pd.DataFrame(data=cali.data, columns=cali.feature_names)

print(round(df.aggregate(min),2))

Program output:
MedInc 0.50

HouseAge 1.00

AveRooms 0.85

AveBedrms 0.33

Population 3.00

AveOccup 0.69

Latitude 32.54

Longitude -124.35

dtype: float64

📝 2.3.5

The most important operations implemented by groupby() are aggregation, filter,
transform, and apply. An efficient way to implement aggregation functions in a data
file is to execute them after grouping the required columns. The aggregation
function returns one aggregated value for each group. After creating these groups,
we can apply several aggregation operations to the data grouped in this way.

54

The advantage of aggregation is that we can also work with functions from other
libraries, such as numpy, in the call to get the value of standard deviation and so on.
The following notation will allow us to create different views of the variables we are
examining, with the addition that we can also create their naming and thus make
the table in question clearer.

import pandas as pd

import numpy as np

from sklearn.datasets import load_wine

wine = load_wine()

df = pd.DataFrame(data=wine.data, columns= wine.feature_names)

df["target"] = wine.target

df_group = df.groupby('target').aggregate(

 mean_alcohol=('alcohol', np.mean),

 max_ash=('ash', np.max),

 std_magnesium=('magnesium', np.std)

)

print(df_group)

Program output:
 mean_alcohol max_ash std_magnesium

target

0 13.744746 3.22 10.498949

1 12.278732 3.23 16.753497

2 13.153750 2.86 10.890473

📝 2.3.6

Load from the sklearn library the dataset california_housing, which contains
records of homes in California. You fetch the dataset into an object using the
fetch_california_housing() function.

Combine different aggregation methods for different variables. Aggregate the data
based on the variable target. Then output a value of 5 for the target:

• the minimum of the AveRooms variable
• the median of the variable AveOccup
• the maximum of the variable AveBedrms

Round the result to two decimal places and output in the following format:

AveRooms: 3.52 AveOccup: 2.98 AveBedrms: 1.25

55

import pandas as pd

import matplotlib.pyplot as plt

import numpy as np

from sklearn.datasets import fetch_california_housing

cali = fetch_california_housing()

df = pd.DataFrame(data=cali.data, columns=cali.feature_names)

df['target']=cali.target

df_group = df.groupby('target').aggregate(

 min_rooms=('AveRooms', np.min),

 med_occup=('AveOccup', np.median),

 max_bedrms=('AveBedrms', np.max)

).round(2)

print(df_group)

Program output:
 min_rooms med_occup max_bedrms

target

0.14999 3.57 2.52 3.50

0.17500 3.57 1.88 1.22

0.22500 2.02 3.35 1.49

0.25000 1.63 2.37 1.22

0.26600 4.90 2.75 1.05

...

4.98800 7.07 3.00 0.98

4.99000 6.60 2.23 1.00

4.99100 7.39 2.25 1.08

5.00000 2.83 1.90 1.36

5.00001 1.82 2.52 25.64

[3842 rows x 3 columns]

📝 2.3.7

An essential part of data summarization is the use of a contingency table. A
contingency table is a table that is used to clearly summarize the relationship
between two (or more) variables. The rows of the contingency table correspond to
the possible values of the first variable, and the columns to the possible values of
the second. The corresponding cell of the contingency table usually contains the
number of cases where at the same time the first variable had a value
corresponding to the corresponding row and the second variable had a value
corresponding to the corresponding column. The pandas library provides two

56

options for creating a contingency table, the pivot_table() and crosstab() functions.
Since both functions generate the same output but the pivot_table() function offers
more options, we will only work with it. Using the aggfunc parameter, we can again
specify the aggregation function. If we don't specify this parameter, the
contingency table generates average values by default. The parameter
margins=True allows us to turn on aggregation for all rows in the table.

import pandas as pd

import numpy as np

from sklearn.datasets import load_wine

wine = load_wine()

df = pd.DataFrame(data=wine.data, columns= wine.feature_names)

df["target"] = wine.target

table = pd.pivot_table(df, index =["target"], aggfunc=np.mean,

margins=True)

print(table)

Program output:
 alcalinity_of_ash alcohol ash

color_intensity flavanoids \

target

0 17.037288 13.744746 2.455593

5.528305 2.982373

1 20.238028 12.278732 2.244789

3.086620 2.080845

2 21.416667 13.153750 2.437083

7.396250 0.781458

All 19.494944 13.000618 2.366517

5.058090 2.029270

 hue magnesium malic_acid nonflavanoid_phenols

\

target

0 1.062034 106.338983 2.010678 0.290000

1 1.056282 94.549296 1.932676 0.363662

2 0.682708 99.312500 3.333750 0.447500

All 0.957449 99.741573 2.336348 0.361854

 od280/od315_of_diluted_wines proanthocyanins

proline \

target

57

0 3.157797 1.899322

1115.711864

1 2.785352 1.630282

519.507042

2 1.683542 1.153542

629.895833

All 2.611685 1.590899

746.893258

 total_phenols

target

0 2.840169

1 2.258873

2 1.678750

All 2.295112

📝 2.3.8

Load from the sklearn library the dataset california_housing, which contains
records of homes in California. You fetch the dataset into an object using the
fetch_california_housing() function.

Group the data based on the target variable. Use the contingency table to find the
standard deviation value for the entire table for the Population column. Round the
result to two decimal places.

import pandas as pd

import matplotlib.pyplot as plt

import numpy as np

from sklearn.datasets import fetch_california_housing

cali = fetch_california_housing()

df = pd.DataFrame(data=cali.data, columns=cali.feature_names)

df['target']=cali.target

table = pd.pivot_table(df, index =["target"], aggfunc=np.std,

margins=True).round(2)

print(table)

Program output:
 AveBedrms AveOccup AveRooms HouseAge Latitude

Longitude MedInc \

58

target

0.14999 1.03 0.38 4.05 16.68 2.86

3.21 1.53

0.225 0.15 0.74 2.31 20.85 2.50

2.89 1.02

0.3 1.01 0.68 2.27 15.56 1.22

2.63 1.01

0.325 0.67 0.32 3.49 16.58 2.71

2.98 1.13

0.375 0.47 3.22 1.56 13.95 2.73

1.79 0.56

...

... ...

4.956 0.01 0.21 1.43 1.41 0.01

0.06 3.13

4.964 0.11 0.13 0.64 8.49 3.20

3.34 0.93

5.0 0.09 0.58 1.54 12.73 1.98

2.21 1.31

5.00001 0.80 1.49 4.67 13.03 1.78

1.95 3.25

All 0.47 10.39 2.47 12.59 2.14

2.00 1.90

 Population

target

0.14999 299.62

0.225 3186.56

0.3 114.55

0.325 415.47

0.375 2745.95

... ...

4.956 272.94

4.964 160.51

5.0 671.25

5.00001 813.32

All 1132.43

[3117 rows x 8 columns]

59

Data Analysis

Chapter 3

60

3.1 Univariate analysis

📝 3.1.1

Each data set we want to analyze will have different fields (i.e., columns) of
multiple observations (i.e., variables) that represent different facts. The columns of
the dataset are most likely related to each other because they are collected from
the same event. One field of a record may or may not affect the value of another
field. To examine the type of relationships that these columns have, and to analyze
the cause and effect between them, we need to work our way to identifying the
dependencies that exist between the variables. The strength of such a relationship
between two fields of a data set is called correlation, which is represented by a
numerical value between -1 and 1.

For example, height and weight are correlated, so it can be assumed that taller
people are usually heavier than shorter ones. If we have a new person who is taller
than the average height we observed before, then they are more likely to weigh
more than the average weight we observed.

Correlation tells us how variables change together, in the same or opposite
direction, and in the strength of the relationship. We calculate the Pearson
correlation coefficient to find the correlation. If the correlation is +1, then it can be
said to be a perfect positive/linear correlation (variable A is directly proportional to
variable B), while a correlation of -1 is a perfect negative correlation (variable A is
inversely proportional to variable B). Values closer to 0 are not correlated. If the
correlation coefficients are close to 1 in absolute value, the variables are said to
have a strong correlation; in comparison, those close to 0.5 have a weak
correlation.

📝 3.1.2

In the previous chapter, we focused on descriptive statistics. We had a variable that
contained numerical values and we calculated the mean, median, and mode and
analyzed the distribution of the values. We then grouped the data based on the
target variable and then calculated the mean, median, modus, and standard
deviation for each option. Analysis of one type of data is called univariate analysis.

Univariate analysis is the simplest form of data analysis. It means that our data has
only one type of variable and that we perform the analysis over it. The main goal of
the univariate analysis is to take the data, summarize it, and find patterns among
the values. It does not deal with causes or relationships between values. A few
techniques that describe ways found in univariate data include central tendency
(i.e., mean, mode, and median) and dispersion (i.e., range, variance, maximum and
minimum quartiles (including interquartile range), and standard deviation).

Let us recap the whole process over the new data matrix. The data matrix contains
information on the sales of games in recent years. Using the info() function, we can

61

find out what variables are in the dataset and possibly how much missing data
each variable contains. Then, using the describe() function we can find the mean,
median, maximum, minimum and standard deviation.

import pandas as pd

df =

pd.read_csv('https://priscilla.fitped.eu/data/pandas/games_sal

es.csv', sep=',')

print(df.info())

print(df.describe())

Program output:

RangeIndex: 55792 entries, 0 to 55791

Data columns (total 16 columns):

 # Column Non-Null Count Dtype

--- ------ -------------- -----

 0 Rank 55792 non-null int64

 1 Name 55792 non-null object

 2 Genre 55792 non-null object

 3 ESRB_Rating 23623 non-null object

 4 Platform 55792 non-null object

 5 Publisher 55792 non-null object

 6 Developer 55775 non-null object

 7 Critic_Score 6536 non-null float64

 8 User_Score 335 non-null float64

 9 Total_Shipped 1827 non-null float64

 10 Global_Sales 19415 non-null float64

 11 NA_Sales 12964 non-null float64

 12 PAL_Sales 13189 non-null float64

 13 JP_Sales 7043 non-null float64

 14 Other_Sales 15522 non-null float64

 15 Year 54813 non-null float64

dtypes: float64(9), int64(1), object(6)

memory usage: 6.8+ MB

None

 Rank Critic_Score User_Score Total_Shipped

Global_Sales \

count 55792.000000 6536.000000 335.000000 1827.000000

19415.000000

62

mean 27896.500000 7.213709 8.253433 1.887258

0.365503

std 16105.907446 1.454079 1.401489 4.195693

0.833022

min 1.000000 1.000000 2.000000 0.030000

0.000000

25% 13948.750000 6.400000 7.800000 0.200000

0.030000

50% 27896.500000 7.500000 8.500000 0.590000

0.120000

75% 41844.250000 8.300000 9.100000 1.800000

0.360000

max 55792.000000 10.000000 10.000000 82.860000

20.320000

 NA_Sales PAL_Sales JP_Sales Other_Sales

Year

count 12964.000000 13189.000000 7043.000000 15522.000000

54813.000000

mean 0.275541 0.155263 0.110402 0.044719

2005.659095

std 0.512809 0.399257 0.184673 0.129554

8.355585

min 0.000000 0.000000 0.000000 0.000000

1970.000000

25% 0.050000 0.010000 0.020000 0.000000

2000.000000

50% 0.120000 0.040000 0.050000 0.010000

2008.000000

75% 0.290000 0.140000 0.120000 0.040000

2011.000000

max 9.760000 9.850000 2.690000 3.120000

2020.000000

📝 3.1.3

Read data from the banking.csv file, which contains information about the bank's
customers. There are several variables in the file, which can be clearly divided into
3 categories:

Customer demographic information:

• customer_id - customer identifier

63

• vintage - how long the customer has been with the bank in the number of
days

• age - age of the customer
• gender - gender of the customer
• occupation - occupation of the customer
• city - city of the customer (anonymised)

Information related to the bank for customers:

• customer_nw_category - customer value (3:low 2:medium 1:high)
• branch_code - branch code for the customer's account
• days_since_last_transaction - number of days since the last payment in the

last 1 year

Transaction information:

• current_balance - balance as of the current day
• previous_month_end_balance - month-end balance in the previous month
• average_monthly_balance_prevQ - average monthly balances in the previous

quarter
• average_monthly_balance_prevQ2 - average monthly balances two quarters

back
• percent_change_credits - percentage change in credits between the last two

quarters
• current_month_credit - the total amount of credits in the current month
• previous_month_credit - the total amount of credit in the previous month
• current_month_debit - the total amount of debt in the current month
• previous_month_debit - the total amount of debt in the previous month
• current_month_balance - average balance in the current month
• previous_month_balance - average balance in the previous month
• churn - client at risk - client's average balance falls below the minimum

balance in the following quarter (1/0)

After loading the data file, examine the variables and print the average value of the
current balance across all accounts (current_balance).

import pandas as pd

df =

pd.read_csv('https://priscilla.fitped.eu/data/pandas/banking.c

sv', sep=',', decimal='.')

pd.set_option('display.float_format', lambda x: f'{x:.3f}')

print(df.info())

print(df.describe())

64

Program output:

RangeIndex: 28382 entries, 0 to 28381

Data columns (total 21 columns):

 # Column Non-Null Count Dtype

--- ------ -------------- -----

 0 customer_id 28382 non-null int64

 1 vintage 28382 non-null int64

 2 age 28382 non-null int64

 3 gender 27857 non-null object

 4 dependents 25919 non-null float64

 5 occupation 28302 non-null object

 6 city 27579 non-null float64

 7 customer_nw_category 28382 non-null int64

 8 branch_code 28382 non-null int64

 9 current_balance 28382 non-null float64

 10 previous_month_end_balance 28382 non-null float64

 11 average_monthly_balance_prevQ 28382 non-null float64

 12 average_monthly_balance_prevQ2 28382 non-null float64

 13 current_month_credit 28382 non-null float64

 14 previous_month_credit 28382 non-null float64

 15 current_month_debit 28382 non-null float64

 16 previous_month_debit 28382 non-null float64

 17 current_month_balance 28382 non-null float64

 18 previous_month_balance 28382 non-null float64

 19 churn 28382 non-null int64

 20 last_transaction 28382 non-null object

dtypes: float64(12), int64(6), object(3)

memory usage: 4.5+ MB

None

 customer_id vintage age dependents city

\

count 28382.000 28382.000 28382.000 25919.000 27579.000

mean 15143.509 2091.144 48.208 0.347 796.110

std 8746.454 272.677 17.807 0.998 432.872

min 1.000 73.000 1.000 0.000 0.000

25% 7557.250 1958.000 36.000 0.000 409.000

50% 15150.500 2154.000 46.000 0.000 834.000

75% 22706.750 2292.000 60.000 0.000 1096.000

max 30301.000 2476.000 90.000 52.000 1649.000

 customer_nw_category branch_code current_balance \

count 28382.000 28382.000 28382.000

mean 2.226 925.975 7380.552

65

std 0.660 937.799 42598.712

min 1.000 1.000 -5503.960

25% 2.000 176.000 1784.470

50% 2.000 572.000 3281.255

75% 3.000 1440.000 6635.820

max 3.000 4782.000 5905904.030

 previous_month_end_balance

average_monthly_balance_prevQ \

count 28382.000

28382.000

mean 7495.771

7496.780

std 42529.345

41726.219

min -3149.570

1428.690

25% 1906.000

2180.945

50% 3379.915

3542.865

75% 6656.535

6666.887

max 5740438.630

5700289.570

 average_monthly_balance_prevQ2 current_month_credit \

count 28382.000 28382.000

mean 7124.209 3433.252

std 44575.810 77071.452

min -16506.100 0.010

25% 1832.507 0.310

50% 3359.600 0.610

75% 6517.960 707.272

max 5010170.100 12269845.390

 previous_month_credit current_month_debit

previous_month_debit \

count 28382.000 28382.000

28382.000

mean 3261.694 3658.745

3339.761

std 29688.889 51985.424

24301.112

66

min 0.010 0.010

0.010

25% 0.330 0.410

0.410

50% 0.630 91.930

109.960

75% 749.235 1360.435

1357.553

max 2361808.290 7637857.360

1414168.060

 current_month_balance previous_month_balance churn

count 28382.000 28382.000 28382.000

mean 7451.133 7495.177 0.185

std 42033.939 42431.979 0.389

min -3374.180 -5171.920 0.000

25% 1996.765 2074.407 0.000

50% 3447.995 3465.235 0.000

75% 6667.958 6654.693 0.000

max 5778184.770 5720144.500 1.000

📝 3.1.4

The next step is to use visualization to examine the distribution of the selected
variables. Let's look at the distribution of the Year variable that we can examine
using a histogram. Before we visualize the histogram, we can see how many years
are actually in our dataset. We can get the number of unique years by using the
unique() function, which returns the unique elements of the variable under study.
We can then use this value to partition the histogram into exactly a unique number
of years, giving us an accurate representation of the counts for those years. From
the graph, we can observe that from around 2008 onwards, the production of
games started to decline.

import pandas as pd

df =

pd.read_csv('https://priscilla.fitped.eu/data/pandas/games_sal

es.csv', sep=',')

y_bins = len(df['Year'].unique())

df['Year'].plot(kind='hist', bins=y_bins)

67

Program output:

📝 3.1.5

Next, we can take a look at the ratings of games by critics and users. On closer
inspection of the records, we find that the User_Score variable contains a
significant number of missing values. While we are left with few records after
removing them we can observe through visualization that users tend to rate games
more positively, as a higher value means a better score. This can also be seen by
comparing the average values, which have a difference of about 1 point.

import pandas as pd

df =

pd.read_csv('https://priscilla.fitped.eu/data/pandas/games_sal

es.csv', sep=',')

print(df['Critic_Score'].describe())

df['Critic_Score'].dropna().plot(kind='hist')

print(df['User_Score'].describe())

df['User_Score'].dropna().plot(kind='hist')

Program output:
count 6536.000000

mean 7.213709

68

std 1.454079

min 1.000000

25% 6.400000

50% 7.500000

75% 8.300000

max 10.000000

Name: Critic_Score, dtype: float64

count 335.000000

mean 8.253433

std 1.401489

min 2.000000

25% 7.800000

50% 8.500000

75% 9.100000

max 10.000000

Name: User_Score, dtype: float64

📝 3.1.6

The next step is to examine the categorical variables. We start by looking at which
platform most games have been produced for. However, since the frequency graph
is rather opaque, we will only select the top 30 most numerous platforms. The
describe() function doesn't give us information about the basic statistics in the
case of a categorical variable but we can find out the number of elements, the
number of categories, and the most numerous category in this way.

69

import pandas as pd

df =

pd.read_csv('https://priscilla.fitped.eu/data/pandas/games_sal

es.csv', sep=',')

print(df['Platform'].describe())

df['Platform'].dropna().value_counts().iloc[:30].plot(kind='ba

r')

Program output:
count 55792

unique 74

top PC

freq 10978

Name: Platform, dtype: object

📝 3.1.7

The genre of games gave us interesting results, where the most numerous games
were from the miscellaneous genre, which can probably mean an increase in Indie
games. The second most numerous games were action games, followed by
adventure and sports games. On the other hand, strategy games were not as
abundant despite often being a popular game type.

We can follow a similar approach when examining other categorical variables such
as publisher (Developer).

70

import pandas as pd

df =

pd.read_csv('https://priscilla.fitped.eu/data/pandas/games_sal

es.csv', sep=',')

print(df['Genre'].describe())

df['Genre'].dropna().value_counts().plot(kind='bar')

Program output:
count 55792

unique 20

top Misc

freq 9476

Name: Genre, dtype: object

📝 3.1.8

Load the data from the banking.csv file, which contains information about the
bank's customers. After loading the data file, find out what is the ratio of males and
females among the bank's customers (gender). We recommend using the

71

visualization and writing out both genders and the percentages rounded to two
decimal places in the result.

male: 54.25% female: 45.75%

import pandas as pd

df =

pd.read_csv('https://priscilla.fitped.eu/data/pandas/banking.c

sv', sep=',', decimal='.')

df['gender'] = df['gender'].astype('category') # set

occupation as categorical variable

df['gender'].value_counts(normalize=True).mul(100).plot(kind='

bar')

print(df['gender'].value_counts(normalize=True).mul(100).round

(2))

Program output:
Male 59.4

Female 40.6

Name: gender, dtype: float64

72

📝 3.1.9

Load data from the banking.csv file, which contains information about the bank's
customers. After loading the data file find out what is the most common
occupation of the bank's customers (occupation). We recommend using the
visualization and printing the occupation and the percentage rounded to two
decimal places in the result.

import pandas as pd

df =

pd.read_csv('https://priscilla.fitped.eu/data/pandas/banking.c

sv', sep=',', decimal='.')

df['occupation'] = df['occupation'].astype('category') # set

occupation as categorical variable

df['occupation'].value_counts(normalize=True).mul(100).plot(ki

nd='bar')

print(df['occupation'].value_counts(normalize=True).mul(100).r

ound(2))

Program output:
self_employed 61.750

salaried 23.690

student 7.270

retired 7.150

company 0.140

Name: occupation, dtype: float64

73

📝 3.1.10

Load the data from the banking.csv file, which contains information about the
bank's customers. After loading the data file find out what is the most common
rating of the bank's customers (customer_nw_category). We recommend using the
visualization and writing out the rating number and percentage rounded to two
decimal places in the result.

import pandas as pd

df =

pd.read_csv('https://priscilla.fitped.eu/data/pandas/banking.c

sv', sep=',', decimal='.')

df['customer_nw_category'] =

df['customer_nw_category'].astype('category') # set occupation

as categorical variable

df['customer_nw_category'].value_counts(normalize=True).mul(10

0).plot(kind='bar')

74

print(df['customer_nw_category'].value_counts(normalize=True).

mul(100).round(2))

Program output:
2 51.30

3 35.63

1 13.08

Name: customer_nw_category, dtype: float64

3.2 Bivariance analysis

📝 3.2.1

This is an analysis of more than one (exactly two) type of variables. Bivariate
analysis is used to see if there is a relationship between two different variables.
When we create a scatter plot by plotting one variable against the other in the
Cartesian plane (think of the x and y axes), we get a picture of what the data is
trying to tell us. If the data points appear to correspond to a straight line or curve,
then there is a relationship or correlation between the two variables. In general,
bivariate analysis helps us predict the value of one variable (i.e., the dependent
variable) if we know the value of the independent variable.

Let's look at our dataset of games. Using a scatter plot we can compare and see if
critics' ratings have an impact on the worldwide sales of the games in question.
From the graph, we can observe that sales increase as critics' ratings increase, so
we can assume that ratings have an effect on the marketability of games. We can
use either the plot() function of the pandas library. Or we can use the more
advanced seaborn library, which offers a much larger number of functions when
creating plots. The lmplot() function adds a regression line to the scatter plot,

75

which tells us whether two variables are dependent on each other. If the values are
close to the line, then we can say that there is a dependency between the two
variables.

import pandas as pd

import seaborn as sns

from matplotlib import pyplot as plt

df =

pd.read_csv('https://priscilla.fitped.eu/data/pandas/games_sal

es.csv', sep=',')

print(df.info())

#df.plot(x='Critic_Score',y='Global_Sales',kind='scatter') #

using pandas

sns.lmplot(x='Critic_Score',y='Global_Sales',data=df) # using

seaborn with line

Program output:

RangeIndex: 55792 entries, 0 to 55791

Data columns (total 16 columns):

 # Column Non-Null Count Dtype

--- ------ -------------- -----

 0 Rank 55792 non-null int64

 1 Name 55792 non-null object

 2 Genre 55792 non-null object

 3 ESRB_Rating 23623 non-null object

 4 Platform 55792 non-null object

 5 Publisher 55792 non-null object

 6 Developer 55775 non-null object

 7 Critic_Score 6536 non-null float64

 8 User_Score 335 non-null float64

 9 Total_Shipped 1827 non-null float64

 10 Global_Sales 19415 non-null float64

 11 NA_Sales 12964 non-null float64

 12 PAL_Sales 13189 non-null float64

 13 JP_Sales 7043 non-null float64

 14 Other_Sales 15522 non-null float64

 15 Year 54813 non-null float64

dtypes: float64(9), int64(1), object(6)

memory usage: 6.8+ MB

None

76

📝 3.2.2

Another way to find out the dependency between two variables is to use boxplot().
Again, we have the option to use both the pandas and seaborn libraries and the
notation is similar. This time we look at the effect of game genre on the
marketability of games. Since worldwide sales contain too much data, let's focus
on just one market, e.g. Japan. As we can see from the graph, the number of genres
can overwhelm the x-axis, so we need to rotate the labels 90 degrees to increase
the clarity of the graph.

We can observe that the yield from the Role-playing and Sports genres is higher
than that from the Racing and Shooter genres. Most genres contain outliers that
represent high returns.

import pandas as pd

import seaborn as sns

from matplotlib import pyplot as plt

77

df =

pd.read_csv('https://priscilla.fitped.eu/data/pandas/games_sal

es.csv', sep=',')

print(df.info())

#df.boxplot(by='Genre',column='JP_Sales')

gr = sns.boxplot(x='Genre',y='JP_Sales',data=df)

gr.set_xticklabels(gr.get_xticklabels(), rotation=90)

Program output:

RangeIndex: 55792 entries, 0 to 55791

Data columns (total 16 columns):

 # Column Non-Null Count Dtype

--- ------ -------------- -----

 0 Rank 55792 non-null int64

 1 Name 55792 non-null object

 2 Genre 55792 non-null object

 3 ESRB_Rating 23623 non-null object

 4 Platform 55792 non-null object

 5 Publisher 55792 non-null object

 6 Developer 55775 non-null object

 7 Critic_Score 6536 non-null float64

 8 User_Score 335 non-null float64

 9 Total_Shipped 1827 non-null float64

 10 Global_Sales 19415 non-null float64

 11 NA_Sales 12964 non-null float64

 12 PAL_Sales 13189 non-null float64

 13 JP_Sales 7043 non-null float64

 14 Other_Sales 15522 non-null float64

 15 Year 54813 non-null float64

dtypes: float64(9), int64(1), object(6)

memory usage: 6.8+ MB

None

78

📝 3.2.3

In the next section, we can look at the impact of the game platform on
marketability. However, we have too many platforms in the dataset to make sense
of the visualization. Therefore, we will only choose the TOP10 most numerous
platforms and visualize only their profit using boxplot().

A surprising result from the graph is that the revenue of the most used platform
(PC) is lower than for example the different PlayStation types.

import pandas as pd

import seaborn as sns

from matplotlib import pyplot as plt

df =

pd.read_csv('https://priscilla.fitped.eu/data/pandas/games_sal

es.csv', sep=',')

#print(df.info())

print(df['Platform'].dropna().value_counts().iloc[:10])

platforms =

['PC','PS2','DS','PS','XBL','PSN','PS3','PSP','PS4','X360']

79

df_plat = df[df['Platform'].isin(platforms)]

#df_plat.boxplot(by='Genre',column='Global_Sales')

gr = sns.boxplot(x='Platform',y='Global_Sales',data=df_plat)

gr.set_xticklabels(gr.get_xticklabels(), rotation=90)

Program output:
PC 10978

PS2 3564

DS 3292

PS 2703

XBL 2115

PSN 2004

PS3 1870

PSP 1804

PS4 1755

X360 1701

Name: Platform, dtype: int64

📝 3.2.4

Load the data from the banking.csv file, which contains information about the
bank's customers. After loading the data file, determine does the length of the
customer's relationship with the bank have an impact on customer exposure (churn
and vintage). We recommend using visualization in the form of a boxplot.

80

import pandas as pd

import seaborn as sns

df =

pd.read_csv('https://priscilla.fitped.eu/data/pandas/banking.c

sv', sep=',', decimal='.')

gr = sns.boxplot(x='churn',y='vintage',data=df)

Program output:

• the length of the contract has no effect
• the length of the contract has an impact
• the distribution of the variable is similar
• the distribution of the variable is significantly different

📝 3.2.5

Load the data from the banking.csv file, which contains information about the
bank's customers. After loading the data file, find out what is the ratio of male and
female customers at risk among the bank's customers (churn and gender). We
recommend using a visualization, listing both genders and the percentage rounded
to two decimal places in the result. We recommend the use of a bar chart.

male churn: 54.25% female churn: 45.75%

import pandas as pd

import seaborn as sns

81

df =

pd.read_csv('https://priscilla.fitped.eu/data/pandas/banking.c

sv', sep=',', decimal='.')

df['gender'] = df['gender'].astype('category') # set as

categorical variable

dfd = df[['gender','churn']][:]

sns.countplot(x='gender', hue='churn', data=dfd)

print(dfd['churn'].loc[dfd['gender']=='Male'].value_counts(nor

malize=True).mul(100).round(2))

print(dfd['churn'].loc[dfd['gender']=='Female'].value_counts(n

ormalize=True).mul(100).round(2))

Program output:
0 80.85

1 19.15

Name: churn, dtype: float64

0 82.45

1 17.55

Name: churn, dtype: float64

📝 3.2.6

Load the data from the banking.csv file, which contains information about the
bank's customers. After loading the data file, find out what is the ratio of customers

82

at risk based on age among the bank's customers (churn and age). Create a new
categorical variable to classify the following age categories:

• young - age<18
• adult - 18<=age<60
• senior - age>=60

We recommend using visualization and printing all age categories and percentages
rounded to two decimal places in the result. We recommend the use of a bar chart.

young: 50.24% adult: 27.75% senior: 22.01%

import pandas as pd

import seaborn as sns

df =

pd.read_csv('https://priscilla.fitped.eu/data/pandas/banking.c

sv', sep=',', decimal='.')

dfd = df[['churn','age']][:]

dfd['age_group'] = 'str'

dfd['age_group'][dfd['age']>=60] = 'senior'

dfd['age_group'][(dfd['age']<60) & (dfd['age']>=18)] = 'adult'

dfd['age_group'][dfd['age']<18] = 'young'

sns.countplot(x='age_group', hue='churn', data=dfd)

print(dfd['churn'].loc[dfd['age_group']=='senior'].value_count

s(normalize=True).mul(100).round(2))

print(dfd['churn'].loc[dfd['age_group']=='adult'].value_counts

(normalize=True).mul(100).round(2))

print(dfd['churn'].loc[dfd['age_group']=='young'].value_counts

(normalize=True).mul(100).round(2))

Program output:
:8: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a

DataFrame

See the caveats in the documentation:

https://pandas.pydata.org/pandas-

docs/stable/user_guide/indexing.html#returning-a-view-versus-

a-copy

 dfd['age_group'][dfd['age']>=60] = 'senior'

:9: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a

DataFrame

83

See the caveats in the documentation:

https://pandas.pydata.org/pandas-

docs/stable/user_guide/indexing.html#returning-a-view-versus-

a-copy

 dfd['age_group'][(dfd['age']<60) & (dfd['age']>=18)] =

'adult'

:10: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a

DataFrame

See the caveats in the documentation:

https://pandas.pydata.org/pandas-

docs/stable/user_guide/indexing.html#returning-a-view-versus-

a-copy

 dfd['age_group'][dfd['age']<18] = 'young'

0 83.17

1 16.83

Name: churn, dtype: float64

0 80.61

1 19.39

Name: churn, dtype: float64

0 87.1

1 12.9

Name: churn, dtype: float64

84

3.3 Multivariate analysis

📝 3.3.1

Multivariate analysis is the analysis of three or more variables. This allows us to
examine correlations (i.e. how one variable changes relative to another) and
attempt to make more accurate predictions of future behaviour than a bivariate
analysis. Initially, we explored the visualization of univariate analysis and bivariate
analysis; we will follow a similar approach for multivariate analysis.

One common way to visualize multivariate data is to create a matrix scatter plot,
also known as a pairwise plot. A pairwise plot shows each pair of variables in
contrast to each other. The pairwise plot allows us to see both the distribution of
each variable and the relationships between the two variables.

import pandas as pd

import seaborn as sns

from matplotlib import pyplot as plt

df =

pd.read_csv('https://priscilla.fitped.eu/data/pandas/games_sal

es.csv', sep=',')

#print(df.info())

sns.pairplot(data=df,

vars=['Global_Sales','Critic_Score','User_Score'], kind='reg')

Program output:

85

We obtained a 3x3 matrix graph for the Global_Sales, Critics_Score and User_Score
columns. The histogram on the diagonal allows us to show the distribution of one
variable. The regression plots on the upper and lower triangles show the
relationship between the two variables. The left graph in the third row shows a
regression plot representing that there is no correlation between global sales and
user score. In comparison, the middle regression plot in the bottom row shows that
there is a correlation between critic scores and user scores.

📝 3.3.2

We can augment the pairwise graph with additional information by inserting a color
into the graph based on a categorical variable. Therefore, let's insert information
about different genres into the graph. Density plots on the diagonal allow us to see
the distribution of one variable, while scatter plots on the upper and lower triangles

86

show the relationship (or correlation) between two variables. The hue parameter is
the name of the variable that is used to label the data points, which in our case is
the thesis genre. The downside of our view is that we have too many different
genres and therefore the visualization is a bit messy.

import pandas as pd

import seaborn as sns

from matplotlib import pyplot as plt

df =

pd.read_csv('https://priscilla.fitped.eu/data/pandas/games_sal

es.csv', sep=',')

#print(df.info())

sns.set(style='ticks', color_codes=True)

sns.pairplot(data=df,

vars=['Global_Sales','Critic_Score','User_Score'],

hue='Genre')

Program output:

87

📝 3.3.3

Correlation analysis is an effective technique for determining whether there is a
correlation or dependence (relationship) between variables. The calculation of the
linear (Pearson) correlation coefficient for a pair of variables can be done using the
corr() function of the pandas library or the pearsonr() function of the scipy library
for a particular pair of variables. In this case, we can observe that there is a small
dependence between critics' ratings and worldwide sales but it is statistically
significant since the p-value is less than 0.05.

import pandas as pd

from scipy import stats

df =

pd.read_csv('https://priscilla.fitped.eu/data/pandas/games_sal

es.csv', sep=',')

dfd = df[['Global_Sales','Critic_Score']].dropna()

corr = stats.pearsonr(dfd['Global_Sales'],

dfd['Critic_Score'])

print("p-value:\t", corr[1])

print("cor:\t\t", corr[0])

Program output:
p-value: 3.7086715030237096e-87

cor: 0.2959412674530926

📝 3.3.4

Load the data from the banking.csv file, which contains information about the
bank's customers. After loading the data file, see if there is a correlation between
the variables age and current_balance. In this way, we want to see if there is a
correlation between the age of the customers and their current account balance.
Print whether there is a statistically significant relationship between the variables
(yes/no) and the correlation value rounded to 2 decimal places and the p-value.

no, p-value: 0.12, cor: 0.45

import pandas as pd

from scipy import stats

88

df =

pd.read_csv('https://priscilla.fitped.eu/data/pandas/banking.c

sv', sep=',', decimal='.')

dfd =

df[['age','current_balance']].dropna()#df[['churn','gender']][

:]

corr = stats.pearsonr(dfd['age'], dfd['current_balance'])

print("p-value:\t", round(corr[1],2))

print("cor:\t\t", round(corr[0],2))

Program output:
p-value: 0.0

cor: 0.05

📝 3.3.5

Load the data from the banking.csv file, which contains information about the
bank's customers. After loading the data file, see if there is a correlation between
the previous_month_end_balance and current_balance variables. In this way, we
want to see if there is a correlation between the previous month's account balance
and the current account balance. List whether there is a statistically significant
relationship between the variables (yes/no) and the correlation value rounded to 2
decimal places and the p-value.

no, p-value: 0.12, cor: 0.45

import pandas as pd

from scipy import stats

df =

pd.read_csv('https://priscilla.fitped.eu/data/pandas/banking.c

sv', sep=',', decimal='.')

dfd =

df[['previous_month_end_balance','current_balance']].dropna()

corr = stats.pearsonr(dfd['previous_month_end_balance'],

dfd['current_balance'])

print("p-value:\t", round(corr[1],2))

print("cor:\t\t", round(corr[0],2))

Program output:
p-value: 0.0

89

cor: 0.95

📝 3.3.6

Using the corr() function of the pandas library, we can generate a table of
correlations of all variables in the dataset. A correlation coefficient approaching 1
indicates a very strong positive correlation between two variables. We can observe
this on the diagonal, which actually compares a given variable to itself, so it will be
1.

import pandas as pd

df =

pd.read_csv('https://priscilla.fitped.eu/data/pandas/games_sal

es.csv', sep=',')

dfd = df[['Global_Sales','Critic_Score']].dropna()

correlation = df.corr(method='pearson')

print(correlation)

Program output:
 Rank Critic_Score User_Score

Total_Shipped \

Rank 1.000000 -0.137650 -0.293034 -

0.441132

Critic_Score -0.137650 1.000000 0.582673

0.203425

User_Score -0.293034 0.582673 1.000000 -

0.025732

Total_Shipped -0.441132 0.203425 -0.025732

1.000000

Global_Sales -0.554659 0.295941 0.241650

NaN

NA_Sales -0.550922 0.314285 0.234039

NaN

PAL_Sales -0.438841 0.253431 0.190490

NaN

JP_Sales -0.443212 0.174933 0.108721

NaN

Other_Sales -0.427737 0.254755 0.224679

NaN

90

Year -0.097345 0.015670 -0.116728 -

0.169701

 Global_Sales NA_Sales PAL_Sales JP_Sales

Other_Sales \

Rank -0.554659 -0.550922 -0.438841 -0.443212

-0.427737

Critic_Score 0.295941 0.314285 0.253431 0.174933

0.254755

User_Score 0.241650 0.234039 0.190490 0.108721

0.224679

Total_Shipped NaN NaN NaN NaN

NaN

Global_Sales 1.000000 0.914964 0.904582 0.228782

0.856798

NA_Sales 0.914964 1.000000 0.683959 0.075239

0.687831

PAL_Sales 0.904582 0.683959 1.000000 0.123954

0.814068

JP_Sales 0.228782 0.075239 0.123954 1.000000

0.082254

Other_Sales 0.856798 0.687831 0.814068 0.082254

1.000000

Year -0.041354 -0.059352 0.082548 -0.351626

0.089282

 Year

Rank -0.097345

Critic_Score 0.015670

User_Score -0.116728

Total_Shipped -0.169701

Global_Sales -0.041354

NA_Sales -0.059352

PAL_Sales 0.082548

JP_Sales -0.351626

Other_Sales 0.089282

Year 1.000000

📝 3.3.7

We can also visualize the correlation between variables using a heatmap. This way
we can immediately see which variables have a high correlation and vice versa. We
will use the heatmap() function of the seaborn library.

91

import pandas as pd

import seaborn as sns

from matplotlib import pyplot as plt

df =

pd.read_csv('https://priscilla.fitped.eu/data/pandas/games_sal

es.csv', sep=',')

correlation = df.corr(method='pearson')

sns.heatmap(correlation, xticklabels=correlation.columns,

yticklabels=correlation.columns)

Program output:

📝 3.3.8

Load the data from the banking.csv file, which contains information about the
bank's customers. After loading the data file, find out the correlation between all
the variables. We recommend using a heatmap() type chart. Based on the
visualization, select the true statements.

import pandas as pd

from scipy import stats

92

import seaborn as sns

df =

pd.read_csv('https://priscilla.fitped.eu/data/pandas/banking.c

sv', sep=',', decimal='.')

correlation = df.corr(method='pearson')

sns.heatmap(correlation, xticklabels=correlation.columns,

yticklabels=correlation.columns)

print(correlation)

Program output:
 customer_id vintage

age dependents \

customer_id 1.000000 -0.007750 -

0.000442 -0.008616

vintage -0.007750 1.000000

0.006220 0.005192

age -0.000442 0.006220

1.000000 -0.000612

dependents -0.008616 0.005192 -

0.000612 1.000000

city 0.000743 0.007616

0.015439 0.001892

customer_nw_category 0.009618 -0.001154 -

0.076532 0.013134

branch_code -0.000286 0.003512 -

0.058990 0.020141

current_balance 0.006589 0.000031

0.054346 -0.003070

previous_month_end_balance 0.005819 -0.000669

0.058342 0.000216

average_monthly_balance_prevQ 0.004485 -0.002054

0.061708 0.001213

average_monthly_balance_prevQ2 -0.002532 -0.001759

0.059607 0.002949

current_month_credit 0.002494 -0.004617

0.023840 0.003260

previous_month_credit -0.006414 -0.000169

0.029961 0.025054

current_month_debit 0.002603 -0.004978

0.027702 0.008207

previous_month_debit -0.008760 -0.006760

0.033296 0.032021

93

current_month_balance 0.005140 -0.000550

0.057662 -0.000652

previous_month_balance 0.004553 -0.002208

0.060297 0.001239

churn -0.002723 -0.004769 -

0.020012 0.033487

 city customer_nw_category

branch_code \

customer_id 0.000743 0.009618

-0.000286

vintage 0.007616 -0.001154

0.003512

age 0.015439 -0.076532

-0.058990

dependents 0.001892 0.013134

0.020141

city 1.000000 0.006613

-0.061234

customer_nw_category 0.006613 1.000000

0.235059

branch_code -0.061234 0.235059

1.000000

current_balance -0.005654 -0.058314

0.000181

previous_month_end_balance -0.004089 -0.059854

0.000214

average_monthly_balance_prevQ -0.006298 -0.059535

0.001955

average_monthly_balance_prevQ2 -0.007891 -0.047010

0.001310

current_month_credit 0.004118 -0.025254

-0.013988

previous_month_credit 0.008087 -0.072374

-0.023849

current_month_debit 0.001465 -0.035917

-0.016944

previous_month_debit 0.005995 -0.071721

-0.017584

current_month_balance -0.005796 -0.058648

0.001031

previous_month_balance -0.005839 -0.059113

0.002080

94

churn -0.001585 0.006551

0.035469

 current_balance

previous_month_end_balance \

customer_id 0.006589

0.005819

vintage 0.000031

-0.000669

age 0.054346

0.058342

dependents -0.003070

0.000216

city -0.005654

-0.004089

customer_nw_category -0.058314

-0.059854

branch_code 0.000181

0.000214

current_balance 1.000000

0.947276

previous_month_end_balance 0.947276

1.000000

average_monthly_balance_prevQ 0.958307

0.970530

average_monthly_balance_prevQ2 0.714600

0.722998

current_month_credit 0.030371

0.032493

previous_month_credit 0.061754

0.114222

current_month_debit 0.044412

0.066329

previous_month_debit 0.081247

0.109606

current_month_balance 0.983412

0.974714

previous_month_balance 0.942207

0.969605

churn -0.024181

0.006886

 average_monthly_balance_prevQ

\

95

customer_id 0.004485

vintage -0.002054

age 0.061708

dependents 0.001213

city -0.006298

customer_nw_category -0.059535

branch_code 0.001955

current_balance 0.958307

previous_month_end_balance 0.970530

average_monthly_balance_prevQ 1.000000

average_monthly_balance_prevQ2 0.763495

current_month_credit 0.033639

previous_month_credit 0.085699

current_month_debit 0.060579

previous_month_debit 0.121272

current_month_balance 0.976290

previous_month_balance 0.994038

churn 0.011960

 average_monthly_balance_prevQ2

\

customer_id -0.002532

vintage -0.001759

age 0.059607

dependents 0.002949

city -0.007891

customer_nw_category -0.047010

branch_code 0.001310

current_balance 0.714600

previous_month_end_balance 0.722998

average_monthly_balance_prevQ 0.763495

average_monthly_balance_prevQ2 1.000000

current_month_credit 0.036271

previous_month_credit 0.062264

current_month_debit 0.045239

previous_month_debit 0.102519

current_month_balance 0.725826

previous_month_balance 0.736635

churn 0.018376

 current_month_credit

previous_month_credit \

customer_id 0.002494

-0.006414

96

vintage -0.004617

-0.000169

age 0.023840

0.029961

dependents 0.003260

0.025054

city 0.004118

0.008087

customer_nw_category -0.025254

-0.072374

branch_code -0.013988

-0.023849

current_balance 0.030371

0.061754

previous_month_end_balance 0.032493

0.114222

average_monthly_balance_prevQ 0.033639

0.085699

average_monthly_balance_prevQ2 0.036271

0.062264

current_month_credit 1.000000

0.168561

previous_month_credit 0.168561

1.000000

current_month_debit 0.937021

0.165092

previous_month_debit 0.135729

0.733953

current_month_balance 0.034182

0.085320

previous_month_balance 0.038254

0.108496

churn 0.020755

0.042179

 current_month_debit

previous_month_debit \

customer_id 0.002603

-0.008760

vintage -0.004978

-0.006760

age 0.027702

0.033296

97

dependents 0.008207

0.032021

city 0.001465

0.005995

customer_nw_category -0.035917

-0.071721

branch_code -0.016944

-0.017584

current_balance 0.044412

0.081247

previous_month_end_balance 0.066329

0.109606

average_monthly_balance_prevQ 0.060579

0.121272

average_monthly_balance_prevQ2 0.045239

0.102519

current_month_credit 0.937021

0.135729

previous_month_credit 0.165092

0.733953

current_month_debit 1.000000

0.191755

previous_month_debit 0.191755

1.000000

current_month_balance 0.069720

0.102010

previous_month_balance 0.063375

0.139723

churn 0.048041

0.073058

 current_month_balance

previous_month_balance \

customer_id 0.005140

0.004553

vintage -0.000550

-0.002208

age 0.057662

0.060297

dependents -0.000652

0.001239

city -0.005796

-0.005839

98

customer_nw_category -0.058648

-0.059113

branch_code 0.001031

0.002080

current_balance 0.983412

0.942207

previous_month_end_balance 0.974714

0.969605

average_monthly_balance_prevQ 0.976290

0.994038

average_monthly_balance_prevQ2 0.725826

0.736635

current_month_credit 0.034182

0.038254

previous_month_credit 0.085320

0.108496

current_month_debit 0.069720

0.063375

previous_month_debit 0.102010

0.139723

current_month_balance 1.000000

0.963276

previous_month_balance 0.963276

1.000000

churn -0.006391

0.014593

 churn

customer_id -0.002723

vintage -0.004769

age -0.020012

dependents 0.033487

city -0.001585

customer_nw_category 0.006551

branch_code 0.035469

current_balance -0.024181

previous_month_end_balance 0.006886

average_monthly_balance_prevQ 0.011960

average_monthly_balance_prevQ2 0.018376

current_month_credit 0.020755

previous_month_credit 0.042179

current_month_debit 0.048041

previous_month_debit 0.073058

current_month_balance -0.006391

99

previous_month_balance 0.014593

churn 1.000000

• there is no relationship between demographic variables
• there is a relationship between demographic variables
• there is a relationship between customer variables
• there is no relationship between customer variables
• there is a relationship between variables on transactions
• there is no relationship between transaction variables

📝 3.3.9

Load the data from the banking.csv file, which contains information about the
bank's customers. After loading the data file, find the correlation between the
variables from the category of transaction information. We recommend using a
heatmap() type chart. Based on the visualization, select the true statements.

import pandas as pd

from scipy import stats

import seaborn as sns

100

df =

pd.read_csv('https://priscilla.fitped.eu/data/pandas/banking.c

sv', sep=',', decimal='.')

print(df.info())

dfd =

df[['current_balance','previous_month_end_balance','average_mo

nthly_balance_prevQ','average_monthly_balance_prevQ2','current

_month_credit','previous_month_credit','current_month_debit','

previous_month_debit','current_month_balance','previous_month_

balance','churn']][:]

correlation = dfd.corr(method='pearson')

sns.heatmap(correlation, xticklabels=correlation.columns,

yticklabels=correlation.columns)

#print(correlation)

Program output:

RangeIndex: 28382 entries, 0 to 28381

Data columns (total 21 columns):

 # Column Non-Null Count Dtype

--- ------ -------------- -----

 0 customer_id 28382 non-null int64

 1 vintage 28382 non-null int64

 2 age 28382 non-null int64

 3 gender 27857 non-null object

 4 dependents 25919 non-null float64

 5 occupation 28302 non-null object

 6 city 27579 non-null float64

 7 customer_nw_category 28382 non-null int64

 8 branch_code 28382 non-null int64

 9 current_balance 28382 non-null float64

 10 previous_month_end_balance 28382 non-null float64

 11 average_monthly_balance_prevQ 28382 non-null float64

 12 average_monthly_balance_prevQ2 28382 non-null float64

 13 current_month_credit 28382 non-null float64

 14 previous_month_credit 28382 non-null float64

 15 current_month_debit 28382 non-null float64

 16 previous_month_debit 28382 non-null float64

 17 current_month_balance 28382 non-null float64

 18 previous_month_balance 28382 non-null float64

 19 churn 28382 non-null int64

 20 last_transaction 28382 non-null object

dtypes: float64(12), int64(6), object(3)

101

memory usage: 4.5+ MB

None

• there is a relationship between the current balance and balances from
previous months

• there is no relationship between the current balance and balances from
previous months

• the transaction variables debit/credit are mainly correlated with each other
• the transaction variables debit/credit are correlated with all variables
• the transaction variables debit/credit do not correlate with the balance

variables
• the transaction variables debit/credit are correlated with the balance

variables

102

Project - data analysis

Chapter 4

103

4.1 Data analysis

📝 4.1.1

The project focuses on the analysis of the company's employees. The dataset
contains information about employees. The most important data and variables
used in the analysis are:

• Age - age of the employee
• Department - department
• DistanceFromHome - the distance of the employee's home from the place of

work
• Education - level of education
• EducationField - the area in which the employee has studied
• MonthlyIncome - monthly income
• JobLevel - job position level (values from 1 to 5)
• YearsAtCompany - the number of years he has worked in the company
• TotalWorkingYears - total number of years of employment

import library

import pandas as pd

read csv https://priscilla.fitped.eu/data/nlp/employees.csv

df =

pd.read_csv('https://priscilla.fitped.eu/data/nlp/employees.cs

v', sep=',')

explore dataset

print(df.info())

Program output:

RangeIndex: 1470 entries, 0 to 1469

Data columns (total 35 columns):

 # Column Non-Null Count Dtype

--- ------ -------------- -----

 0 Age 1470 non-null int64

 1 Attrition 1470 non-null object

 2 BusinessTravel 1470 non-null object

 3 DailyRate 1470 non-null int64

 4 Department 1470 non-null object

 5 DistanceFromHome 1470 non-null int64

 6 Education 1470 non-null int64

 7 EducationField 1470 non-null object

 8 EmployeeCount 1470 non-null int64

 9 EmployeeNumber 1470 non-null int64

 10 EnvironmentSatisfaction 1470 non-null int64

104

 11 Gender 1470 non-null object

 12 HourlyRate 1470 non-null int64

 13 JobInvolvement 1470 non-null int64

 14 JobLevel 1470 non-null int64

 15 JobRole 1470 non-null object

 16 JobSatisfaction 1470 non-null int64

 17 MaritalStatus 1470 non-null object

 18 MonthlyIncome 1470 non-null int64

 19 MonthlyRate 1470 non-null int64

 20 NumCompaniesWorked 1470 non-null int64

 21 Over18 1470 non-null object

 22 OverTime 1470 non-null object

 23 PercentSalaryHike 1470 non-null int64

 24 PerformanceRating 1470 non-null int64

 25 RelationshipSatisfaction 1470 non-null int64

 26 StandardHours 1470 non-null int64

 27 StockOptionLevel 1470 non-null int64

 28 TotalWorkingYears 1470 non-null int64

 29 TrainingTimesLastYear 1470 non-null int64

 30 WorkLifeBalance 1470 non-null int64

 31 YearsAtCompany 1470 non-null int64

 32 YearsInCurrentRole 1470 non-null int64

 33 YearsSinceLastPromotion 1470 non-null int64

 34 YearsWithCurrManager 1470 non-null int64

dtypes: int64(26), object(9)

memory usage: 402.1+ KB

None

📝 4.1.2

Calculate the absolute frequencies of employees for all departments (Department).
How many employees does the Sales Department have?

import library

import pandas as pd

read csv

df =

pd.read_csv('https://priscilla.fitped.eu/data/nlp/employees.cs

v', sep=',')

calculate counts of employess in departments

105

📝 4.1.3

You can already calculate the number of employees in each department. Complete
the code in one line to calculate the average of these numbers. The result should
be 490.

import library

import pandas as pd

read csv

df =

pd.read_csv('https://priscilla.fitped.eu/data/nlp/employees.cs

v', sep=',')

calculate mean of counts of employess in departments

📝 4.1.4

What command do we use to plot the histogram for sorting the DailyRate variable?

import library

import pandas as pd

read csv

df =

pd.read_csv('https://raw.githubusercontent.com/sasu4/pris_data

/main/employees.csv', sep=',')

df["DailyRate"].plot.hist()

df["DailyRate"].plot.bar()

•
• df["DailyRate"].value_counts().plot.bar()
• df["DailyRate"].value_counts().plot.hist()

📝 4.1.5

Calculate the frequencies of employees according to the level of education they
have attained. However, calculate these numbers only for employees from the
Sales Department.

How many employees in the sales department have a level of education higher than
3?

import library

import pandas as pd

read csv

106

df =

pd.read_csv('https://priscilla.fitped.eu/data/nlp/employees.cs

v', sep=',')

filter only the sales department and list the numbers for

education

📝 4.1.6

How do we calculate the variation range of the DailyRate variable?

import library

import pandas as pd

read csv

df =

pd.read_csv('https://priscilla.fitped.eu/data/nlp/employees.cs

v', sep=',')

df["DailyRate"].max()-df["DailyRate"].min()

df["DailyRate"].max()+df["DailyRate"].min()

df["DailyRate"].sum()-df["DailyRate"].count()

df["DailyRate"].min()-df["DailyRate"].max()

df["DailyRate"].sum()-df["DailyRate"].avg()

📝 4.1.7

What does it mean if the standard deviation is high?

• The values are more scattered within the variation range.
• Most of the values are around the average.
• Most values are around the median.
• Values are scattered well outside the range of variation too.

📝 4.1.8

What is the standard deviation of the age of employees? (round the result to 2
decimal places)

import library

import pandas as pd

read csv

df =

pd.read_csv('https://priscilla.fitped.eu/data/nlp/employees.cs

v', sep=',')

calculate the standard deviation of the variable Age using

the pandas library

107

📝 4.1.9

Use the Matplotlib library to plot a box plot for the distance of the employee's home
from the work location. Which of the following box plots visualizes the distribution
of this variable?

import library

import pandas as pd

import matplotlib.pyplot as plt

read csv

df =

pd.read_csv('https://priscilla.fitped.eu/data/nlp/employees.cs

v', sep=',')

display a boxplot for distance from home using the

matplotlib library

•

108

•

•

109

•

•

110

•

📝 4.1.10

Plot a box plot of the distribution of the age of employees who have graduated with
a degree in human resources.

Which of the following plots shows this?

import library

import pandas as pd

import matplotlib.pyplot as plt

read csv

df =

pd.read_csv('https://priscilla.fitped.eu/data/nlp/employees.cs

v', sep=',')

display a box plot for the age of employees who have a

degree in human resources

111

•

•

112

•

•

113

•

•

📝 4.1.11

If a variable has a positive skewness, it means that:

• Most values are close to the measure of central tendency
• The values are relatively homogenously distributed over the variation range
• Most values are greater than average
• Most values are less than the average

114

📝 4.1.12

Plot a histogram that describes the distribution of a variable that represents the
total number of years of employment of an employee. Use 8 intervals.

Which of the following statements can be read from the plot?

import library

import pandas as pd

read csv

df =

pd.read_csv('https://priscilla.fitped.eu/data/nlp/employees.cs

v', sep=',')

draw a histogram of the variable total number of years the

employee has worked

df["TotalWorkingYears"].plot.hist(bins = 8)

• The kurtosis is probably positive
• The kurtosis is probably negative
• The kurtosis is probably close to zero
• The skewness is probably positive
• The skewness is probably negative
• The skewness is probably close to zero
• Probably does not have a normal distribution
• Probably has a normal distribution
• The mode is 7.5
• The median is less than 15
• The mode is in the interval of 5 to 10
• The median is greater than 15

📝 4.1.13

Show the pivot table to find the frequencies for the combinations of what
department the employee works in and what level of education they have attained.

Select from the options, combining which will give the resulting number of such
employees 128.

import library

import pandas as pd

import numpy as np

read csv

df =

pd.read_csv('https://priscilla.fitped.eu/data/nlp/employees.cs

v', sep=',')

115

draw a pivot table for department and level of education

• Sales
• Research & Development
• Human Resources
• 4
• 1
• 2
• 3
• 5

📝 4.1.14

Use the Seaborn library to show box plots for monthly employee income
(MonthlyIncome). Plot a box plot for each group by education (Education).

After the plots are drawn, identify the group (level of education attained) that has
the highest income. What color is the box plot for this group with the default
Seaborn setting?

import libraries

import pandas as pd

import seaborn as sns

read csv

df =

pd.read_csv('https://priscilla.fitped.eu/data/nlp/employees.cs

v', sep=',')

• purple
• blue
• yellow
• orange
• red

📝 4.1.15

Draw box plots for the variable age using the Seaborn library. However, the output
should contain two box plots, one for the group with JobLevel equal to 1 and the
other with JobLevel equal to 5.

What can be clearly deduced from this visualization?

import libraries

import pandas as pd

116

import seaborn as sns

import matplotlib.pyplot as plt

read csv

df =

pd.read_csv('https://priscilla.fitped.eu/data/nlp/employees.cs

v', sep=',')

dark design setting

plot = sns.set(style="darkgrid")

draw boxplots for the age variable for the group with

JobLevel equal to 1 and the other with JobLevel equal to 2.

plot =

show chart

plt.show()

• No employee at level 5 is less than 35 years of age.
• Every employee of the company is less than 60 years old.
• The youngest employee at Level 5 is older than 75% of all employees at Level

1.
• That a Level 1 employee would be over 53 years old is exceptional.
• The range of variation in the age of employees at level 1 is approximately 18

to 52 years.
• All employees at level 5 are between 39 and 60 years of age.
• The majority of Level 1 employees are between the ages of 27 and 37.
• The average age of employees at Level 1 is 32.

📝 4.1.16

Which of the following tests are used to test the normality of a variable?

• Lilliefors' test
• Kolmogorov-Smirnov test
• Shapiro-Wilk W test
• T-test
• Cochran-Cox test
• Mann-Whitney U test

📝 4.1.17

Use the Shapiro-Wilk test to check the normality of the variable age. Show the
result. Copy the entire output of the test into the answer sheet.

import library

import pandas as pd

from scipy import stats

read csv

117

df =

pd.read_csv('https://priscilla.fitped.eu/data/nlp/employees.cs

v', sep=',')

use the Shapiro-Wilk test to verify the normality of the age

variable

📝 4.1.18

Verify that the variable age has a normal distribution.

import library

import pandas as pd

from scipy import stats

read csv

df =

pd.read_csv('https://priscilla.fitped.eu/data/nlp/employees.cs

v', sep=',')

• It does not have a normal distribution.
• It has a normal distribution.

📝 4.1.19

Draw a jointplot from the Seaborn library for the variable monthly income and total
number of years of employment (not just at this company).

Which of the following statements can be read from the plot?

import libraries

import pandas as pd

import seaborn as sns

import matplotlib.pyplot as plt

read csv

df =

pd.read_csv('https://priscilla.fitped.eu/data/nlp/employees.cs

v', sep=',')

draw a jointplot from the Seaborn library for the variable

monthly income and total years worked

• Monthly income depends significantly on the number of years of
employment.

• Monthly income does not depend significantly on the number of years of
employment.

118

• The variable MonthlyIncome does not have a normal distribution.
• The variable MonthlyIncome has a normal distribution.
• The TotalWorkingYears variable does not have a normal distribution.
• The TotalWorkingYears variable has a normal distribution.
• If an employee has a higher income, he or she also has more years of

employment.
• If an employee has less income, he or she has less years of employment.

📝 4.1.20

Using the Scipy library, calculate Pearson's R with the corresponding p-value.
Evaluate the correlation between the variable monthly income and the number of
years worked in the company.

Copy the entire output into your answer.

import library

import pandas as pd

from scipy import stats

read csv

df =

pd.read_csv('https://priscilla.fitped.eu/data/nlp/employees.cs

v', sep=',')

evaluate the correlation between the variable monthly income

and the number of years worked in the company

📝 4.1.21

Calculate the correlation coefficients between the variables Age, DailyRate,
JobLevel, MonthlyIncome, TotalWorkingYears, YearsAtCompany.

On which variable does the employee's monthly income depend most?

import libraries

import pandas as pd

import seaborn as sns

import matplotlib.pyplot as plt

read csv

df =

pd.read_csv('https://priscilla.fitped.eu/data/nlp/employees.cs

v', sep=',')

calculate the correlation coefficients between the variables

Age, DailyRate, JobLevel, MonthlyIncome, TotalWorkingYears,

YearsAtCompany

119

• JobLevel
• Age
• DailyRate
• TotalWorkingYears
• YearsAtCompany

120

Analysis of Titanic data

Chapter 5

121

5.1 Analysis of Titanic data

📝 5.1.1

The data analysis project focuses on a very popular dataset related to the sinking
of the Titanic. In this tragedy, 1502 of the 2224 passengers and crew died. The
dataset contains information on 887 actual Titanic passengers. Each line
represents one passenger. The columns contain the following information about
the passengers:

• PassenderID - unique passenger identifier
• Survived - information on whether the passenger survived (1) or not (0)
• Pclass - passenger class (1,2,3)
• Name - name of the passenger
• Sex - passenger's gender
• Age - age of the passenger
• SibSp - number of siblings or spouses on board
• Parch - number of parents or children on board
• Ticket - ticket number
• Fare - fare of the ticket
• Cabin - cabin number
• Embarked - the city where the passenger boarded (C - Cherbourg, S -

Southampton, Q - Queenstown)

In the following micro-lectures, we will look at which characteristics had the highest
correlation with passengers' chances of survival.

import library

import pandas as pd

read csv from

https://priscilla.fitped.eu/data/pandas/titanic.csv

df =

pd.read_csv('https://priscilla.fitped.eu/data/pandas/titanic.c

sv', sep=',')

explore dataset

print(df.info())

Program output:

RangeIndex: 891 entries, 0 to 890

Data columns (total 12 columns):

 # Column Non-Null Count Dtype

--- ------ -------------- -----

 0 PassengerId 891 non-null int64

 1 Survived 891 non-null int64

122

 2 Pclass 891 non-null int64

 3 Name 891 non-null object

 4 Sex 891 non-null object

 5 Age 714 non-null float64

 6 SibSp 891 non-null int64

 7 Parch 891 non-null int64

 8 Ticket 891 non-null object

 9 Fare 891 non-null float64

 10 Cabin 204 non-null object

 11 Embarked 889 non-null object

dtypes: float64(2), int64(5), object(5)

memory usage: 83.7+ KB

None

📝 5.1.2

Load the data from the dataset titanic.csv (the file is located at
https://priscilla.fitped.eu/data/pandas/titanic.csv). Examine the data in the dataset
and see if the dataset contains any missing data. If so, list the variable with the
largest number and its count. Print the result in the following form:

PassengerID: 235

import library

import pandas as pd

read csv from

https://priscilla.fitped.eu/data/pandas/titanic.csv

df =

pd.read_csv('https://priscilla.fitped.eu/data/pandas/titanic.c

sv', sep=',')

explore dataset

total = df.isnull().sum().sort_values(ascending=False)

print(total)

Program output:
Cabin 687

Age 177

Embarked 2

PassengerId 0

Survived 0

Pclass 0

Name 0

Sex 0

SibSp 0

123

Parch 0

Ticket 0

Fare 0

dtype: int64

📝 5.1.3

After reviewing the missing data, decide which statements are true.

• except for the variables Cabin, Age and Cabin, the other variables are fine
• the Cabin variable contains too many missing values
• we need to delete all rows that contain missing values
• we need to complete all rows of the Cabin variable that contain missing

values
• we will not consider the Cabin variable because it contains too many missing

values
• the Age variable will not be considered because it contains too many missing

values

📝 5.1.4

Load the data from the dataset titanic.csv (the file is located at
https://priscilla.fitped.eu/data/pandas/titanic.csv). Examine the data in the dataset
to determine the ratio of male to female survivors. Write out the result as a
percentage rounded to two decimal places and in the following format:

Male: 23.50%, Female: 33.42%

import library

import pandas as pd

read csv from

https://priscilla.fitped.eu/data/pandas/titanic.csv

df =

pd.read_csv('https://priscilla.fitped.eu/data/pandas/titanic.c

sv', sep=',')

explore dataset

#percentage of women survived

women = df.loc[df.Sex == 'female']["Survived"]

rate_women = round(sum(women)/len(women)*100,2)

#percentage of men survived

men = df.loc[df.Sex == 'male']["Survived"]

rate_men = round(sum(men)/len(men)*100,2)

print(str(rate_women) +" % of women who survived.")

124

print(str(rate_men) + " % of men who survived.")

Program output:
74.2 % of women who survived.

18.89 % of men who survived.

📝 5.1.5

Based on an examination of the ratio of male to female survivors of the disaster
decide which statements are true. You can help by visualizing using a bar graph.
Also, visualise the proportion of men and women on the boat.

import library

import pandas as pd

import seaborn as sns

import matplotlib.pyplot as plt

read csv from

https://priscilla.fitped.eu/data/pandas/titanic.csv

df =

pd.read_csv('https://priscilla.fitped.eu/data/pandas/titanic.c

sv', sep=',')

explore dataset

df['SurvivedCat'] = df['Survived'].map({0:"not_survived",

1:"survived"})

fig, ax = plt.subplots(1, 2, figsize = (10, 8))

df["Sex"].value_counts().plot.bar(color = "skyblue", ax =

ax[0])

ax[0].set_title("Number Of Passengers By Sex")

ax[0].set_ylabel("Population")

sns.countplot(x="Sex", hue = "SurvivedCat", data = df)

ax[1].set_title("Sex: Survived vs Dead")

plt.show()

Program output:

125

• the percentage of female survivors is high
• the percentage of male survivors is high
• the percentage of male survivors is low
• the percentage of female survivors is low
• gender can affect the chance of survival
• gender does not affect the chance of survival
• there were more men than women on the ship
• there were more women than men on the ship
• there were approximately the same number of men as women on the ship

📝 5.1.6

Load the data from the dataset titanic.csv (the file is located at
https://priscilla.fitped.eu/data/pandas/titanic.csv). Examine the data in the dataset
and find out the distribution of the number of passengers in each class. Write the
result in numbers and in the following format:

Class 1: 459, Class 2: 232, Class 3: 120

import library

126

import pandas as pd

read csv from

https://priscilla.fitped.eu/data/pandas/titanic.csv

df =

pd.read_csv('https://priscilla.fitped.eu/data/pandas/titanic.c

sv', sep=',')

explore dataset

fig, ax = plt.subplots(1, 2, figsize = (10, 8))

df["Pclass"].value_counts().plot.bar(color = "skyblue", ax =

ax[0])

ax[0].set_title("Number Of Passengers By Pclass")

ax[0].set_ylabel("Population")

sns.countplot(x="Pclass", hue = "Survived", data = df, ax =

ax[1])

ax[1].set_title("Pclass: Survived vs Dead")

plt.show()

print(df['Pclass'].value_counts())

Program output:

3 491

127

1 216

2 184

Name: Pclass, dtype: int64

📝 5.1.7

Based on a review of the distribution of passengers by class, review the distribution
of passengers who survived the disaster by class. Decide which statements are
true. You can help by visualizing using a bar graph.

import library

import pandas as pd

read csv from

https://priscilla.fitped.eu/data/pandas/titanic.csv

df =

pd.read_csv('https://priscilla.fitped.eu/data/pandas/titanic.c

sv', sep=',')

explore dataset

fig, ax = plt.subplots(1, 2, figsize = (10, 8))

df["Pclass"].value_counts().plot.bar(color = "skyblue", ax =

ax[0])

ax[0].set_title("Number Of Passengers By Pclass")

ax[0].set_ylabel("Population")

sns.countplot(x="Pclass", hue = "Survived", data = df, ax =

ax[1])

ax[1].set_title("Pclass: Survived vs Dead")

plt.show()

print(df['Pclass'].value_counts())

Program output:

128

3 491

1 216

2 184

Name: Pclass, dtype: int64

• most passengers were in 3rd class
• most passengers were in 2nd class
• most passengers were in 1st class
• fewest passengers were in 2nd class
• fewest passengers were in 1st class
• fewest passengers were in 3rd class
• most of the 3rd class passengers did not survive the crash
• most of the 3rd class passengers survived the crash
• most of the 1st class passengers did not survive the disaster

📝 5.1.8

Load the data from the dataset titanic.csv (the file is located at
https://priscilla.fitped.eu/data/pandas/titanic.csv). Examine the data in the dataset
and find the distribution of the number of passengers by embarkation point. Write
the result in numbers and in the following format:

129

S: 459, C: 232, Q: 120

import library

import pandas as pd

import matplotlib.pyplot as plt

import seaborn as sns

read csv from

https://priscilla.fitped.eu/data/pandas/titanic.csv

df =

pd.read_csv('https://priscilla.fitped.eu/data/pandas/titanic.c

sv', sep=',')

explore dataset

fig, ax = plt.subplots(1, 2, figsize = (10, 8))

df["Embarked"].value_counts().plot.bar(color = "skyblue", ax =

ax[0])

ax[0].set_title("Number Of Passengers By Embarked")

ax[0].set_ylabel("Number")

sns.countplot(x="Embarked", hue = "Survived", data = df, ax =

ax[1])

ax[1].set_title("Embarked: Survived vs Unsurvived")

plt.show()

print(df['Embarked'].value_counts())

Program output:

130

S 644

C 168

Q 77

Name: Embarked, dtype: int64

📝 5.1.9

Based on a review of passenger class distribution, examine the distribution of
survivors by embarkation location. Decide which statements are true. You can help
by visualizing using a bar graph.

import library

import pandas as pd

import matplotlib.pyplot as plt

import seaborn as sns

read csv from

https://priscilla.fitped.eu/data/pandas/titanic.csv

131

df =

pd.read_csv('https://priscilla.fitped.eu/data/pandas/titanic.c

sv', sep=',')

explore dataset

fig, ax = plt.subplots(1, 2, figsize = (10, 8))

df["Embarked"].value_counts().plot.bar(color = "skyblue", ax =

ax[0])

ax[0].set_title("Number Of Passengers By Embarked")

ax[0].set_ylabel("Number")

sns.countplot(x="Embarked", hue = "Survived", data = df, ax =

ax[1])

ax[1].set_title("Embarked: Survived vs Unsurvived")

plt.show()

Program output:

• most passengers boarded at Southampton
• more than half of the passengers boarded at Southampton did not survive

the crash
• only the passengers who embarked at Cherbourg survived more than died

132

• fewest passengers boarded in Queenstown
• most passengers boarded in Queenstown
• fewest passengers boarded in Cherbourg
• most passengers embarked in Cherbourg
• more than half of the passengers embarked at Cherbourg did not survive the

disaster

📝 5.1.10

Load the data from the dataset titanic.csv (the file is located at
https://priscilla.fitped.eu/data/pandas/titanic.csv). Examine the data in the dataset
and find out the age distribution of the passengers. Write the most numerous age
category in the following format (we recommend visualizing it as a histogram):

40-45

import library

import pandas as pd

import matplotlib.pyplot as plt

import seaborn as sns

read csv from

https://priscilla.fitped.eu/data/pandas/titanic.csv

df =

pd.read_csv('https://priscilla.fitped.eu/data/pandas/titanic.c

sv', sep=',')

explore dataset

sns.histplot(df['Age'].dropna())

Program output:
24.00 30

22.00 27

18.00 26

19.00 25

28.00 25

 ..

36.50 1

55.50 1

0.92 1

23.50 1

74.00 1

Name: Age, Length: 88, dtype: int64

133

📝 5.1.11

Load the data from the dataset titanic.csv (the file is located at
https://priscilla.fitped.eu/data/pandas/titanic.csv). Examine the data in the dataset
and see if there is a correlation between age and whether or not the passenger
survived the crash. Write whether there is a statistically significant relationship
between the variables (yes/no) and the correlation value rounded to 2 decimal
places and the p-value.

no, p-value: 0.12, cor: 0.45

import library

import pandas as pd

from scipy import stats

read csv from

https://priscilla.fitped.eu/data/pandas/titanic.csv

df =

pd.read_csv('https://priscilla.fitped.eu/data/pandas/titanic.c

sv', sep=',')

dfd = df[['Age','Survived']].dropna()

explore dataset

corr = stats.pearsonr(dfd['Age'], dfd['Survived'])

print("p-value:\t", round(corr[1],2))

print("cor:\t\t", round(corr[0],2))

134

Program output:
p-value: 0.04

cor: -0.08

📝 5.1.12

Load the data from the dataset titanic.csv (the file is located at
https://priscilla.fitped.eu/data/pandas/titanic.csv). Examine the data in the dataset
to see if there is a correlation between class and whether or not the passenger
survived the crash. Write whether there is a statistically significant relationship
between the variables (yes/no) and the correlation value rounded to 2 decimal
places and the p-value.

no, p-value: 0.12, cor: 0.45

import library

import pandas as pd

from scipy import stats

read csv from

https://priscilla.fitped.eu/data/pandas/titanic.csv

df =

pd.read_csv('https://priscilla.fitped.eu/data/pandas/titanic.c

sv', sep=',')

dfd = df[['Pclass','Survived']].dropna()

explore dataset

corr = stats.pearsonr(dfd['Pclass'], dfd['Survived'])

print("p-value:\t", round(corr[1],2))

print("cor:\t\t", round(corr[0],2))

Program output:
p-value: 0.0

cor: -0.34

📝 5.1.13

Load the data from the dataset titanic.csv (the file is located at
https://priscilla.fitped.eu/data/pandas/titanic.csv). Examine the data in the dataset
and see if there is a correlation between the number of siblings (Sibsp) and whether
or not the passenger survived the crash. Write whether there is a statistically
significant relationship between the variables (yes/no) and the correlation value
rounded to 2 decimal places and the p-value.

135

no, p-value: 0.12, cor: 0.45

import library

import pandas as pd

from scipy import stats

read csv from

https://priscilla.fitped.eu/data/pandas/titanic.csv

df =

pd.read_csv('https://priscilla.fitped.eu/data/pandas/titanic.c

sv', sep=',')

dfd = df[['SibSp','Survived']].dropna()

explore dataset

corr = stats.pearsonr(dfd['SibSp'], dfd['Survived'])

print("p-value:\t", round(corr[1],2))

print("cor:\t\t", round(corr[0],2))

Program output:
p-value: 0.29

cor: -0.04

📝 5.1.14

Load the data from the dataset titanic.csv (the file is located at
https://priscilla.fitped.eu/data/pandas/titanic.csv). Examine the data in the dataset
and see if there is a correlation between the number of children (Parch) and
whether or not the passenger survived the crash. Write whether there is a
statistically significant relationship between the variables (yes/no) and the
correlation value rounded to 2 decimal places and the p-value.

no, p-value: 0.12, cor: 0.45

import library

import pandas as pd

from scipy import stats

read csv from

https://priscilla.fitped.eu/data/pandas/titanic.csv

df =

pd.read_csv('https://priscilla.fitped.eu/data/pandas/titanic.c

sv', sep=',')

dfd = df[['Parch','Survived']].dropna()

explore dataset

corr = stats.pearsonr(dfd['Parch'], dfd['Survived'])

print("p-value:\t", round(corr[1],2))

print("cor:\t\t", round(corr[0],2))

136

Program output:
p-value: 0.01

cor: 0.08

📝 5.1.15

Load the data from the dataset titanic.csv (the file is located at
https://priscilla.fitped.eu/data/pandas/titanic.csv). Examine the data in the dataset
and see if there is a correlation between the ticket price and whether or not the
passenger survived the disaster. Write whether there is a statistically significant
relationship between the variables (yes/no) and the correlation value rounded to 2
decimal places and the p-value.

no, p-value: 0.12, cor: 0.45

import library

import pandas as pd

from scipy import stats

read csv from

https://priscilla.fitped.eu/data/pandas/titanic.csv

df =

pd.read_csv('https://priscilla.fitped.eu/data/pandas/titanic.c

sv', sep=',')

dfd = df[['Fare','Survived']].dropna()

explore dataset

corr = stats.pearsonr(dfd['Fare'], dfd['Survived'])

print("p-value:\t", round(corr[1],2))

print("cor:\t\t", round(corr[0],2))

Program output:
p-value: 0.0

cor: 0.26

📝 5.1.16

Load the data from the dataset titanic.csv (the file is located at
https://priscilla.fitped.eu/data/pandas/titanic.csv). Examine the data in the dataset
and see if there is a correlation between the embarkation point and whether or not
the passenger survived the disaster. The embarkation variable must be
transformed into numerical values before analysis. Write whether there is a
statistically significant relationship between the variables (yes/no) and the
correlation value rounded to 2 decimal places and the p-value.

137

no, p-value: 0.12, cor: 0.45

import library

import pandas as pd

from scipy import stats

read csv from

https://priscilla.fitped.eu/data/pandas/titanic.csv

df =

pd.read_csv('https://priscilla.fitped.eu/data/pandas/titanic.c

sv', sep=',')

dfd = df[['Embarked','Survived']].dropna()

dfd['Embarked'] = dfd['Embarked'].map({"S":1,

"C":2,"Q":2,"NaN":0})

explore dataset

corr = stats.pearsonr(dfd['Embarked'], dfd['Survived'])

print("p-value:\t", round(corr[1],2))

print("cor:\t\t", round(corr[0],2))

Program output:
p-value: 0.0

cor: 0.15

📝 5.1.17

Based on the results obtained from the data analysis, select the passenger
characteristics that have an impact on disaster survival.

• Age
• Pclass
• Sibsp
• Parch
• Fare
• Embarked

138

Summarisation

139

Summarisation

Chapter 1

140

1.1 The introduction into summarization

🕮 1.1.1

INTRODUCTION TO SUMMARIZATION

There are more and more electronic documents on the Internet, and the text
contained in them can be too long and difficult to understand. With the
development of the field of artificial intelligence, which is called natural language
processing, algorithms were developed with the help of which the text can be
shortened, i.e. summarized. Natural Language Processing is characterized by
algorithms that can understand human language. Typical tasks with which natural
language is processed are, for example, determining the morphological properties
of texts (e.g. determining the parts of speech), translating documents,
supplementing texts (e.g. whisperer in Google search) but also algorithms that can
simplify a lot of long text into a coherent and fluent summary . The subfield of
language processing that is simplified by text is called summarization.

📝 1.1.2

Select tasks typical of natural language processing

• determining the parts of speech in the text
• machine translation of documents
• summarization of the text
• image processing

🕮 1.1.3

With the help of text summarization, a long text can be simplified into paragraphs,
sentences or capture key phrases. In this way, we can reduce the time needed to
understand long materials such as research papers without missing important
information. The basis of text summarization is the creation of a summary, which
can be defined as a text created from one or more documents that provides
important information in the original documents and does not exceed the length of
half of the original document. The task of automatic text summarization is to
create a concise and flowing summary that will preserve the content of key
information and overall meaning. Automatic summarization is used, for example, in
the generation of excerpts of articles, for example, on news websites. Automatic
text summarization is very difficult. When a person tries to summarize a text, they
usually read it in its entirety and can write a summary based on their understanding.
However, computers cannot think about text in the same way as a human, so
summarizing is a difficult and non-trivial task.

141

Text summarization is an important task in data science that allows us to remove
excess information noise, thanks to which we can work only with essential
information from the original texts. There are four criteria by which the quality of
summarization can be judged:

• Information coverage - Information coverage tells how much of the important
information in the text the summarization was able to contain.

• Coherence of summarization - Coherence of summarization is a measure that
expresses the relationship and continuity between sentences.

• Minimizing redundancy - Minimizing redundancy means minimizing duplicate
information in summaries.

• Brevity - Brevity is a metric that expresses how many words a summary needs to
contain important information.

📝 1.1.4

What is the name of the metric that expresses how many words the summary
needs to contain important information?

1.2 The approaches to summarization

🕮 1.2.1

APPROACHES TO SUMMARIZATION

There are two main approaches to the task of summarization - extraction and
abstraction. Extraction is based on extracting from an existing document the most
important content that exists in the document, while abstraction approaches can
generate new sentences.

142

EXTRACTIVE SUMMARY

Extractive summarization works on the principle that it decides which sentences
from the text are significant and need to be included in the summary. For this
purpose, the so-called sentence scoring, which means that each sentence is
assigned a score and then the sentences are ranked. The sentences that have the
highest score must be included in the summary.

Simply put, if we use an extractive approach, we try to find the most relevant
informative sentences in a document, then "extract" them from the text and
combine them again to create a new, shorter version of the original text. With this
approach, no new sentences are created that did not previously exist in the text.
The extracted sentences from the original document are just recombined.
Extractive summarization can use several methods:

• TF-IDF (Term Frequency - Inverse Document Frequency) - This statistical method
is used to assess the importance of words. Term frequency is used to determine
how many times a term occurs in a document. The frequency of expressions like
"the" can be very high. The inverse document frequency is calculated as the
logarithm of the total number of documents divided by the total number of
documents in which the term occurs. The inverse frequency of a term document
can be low even though its term frequency is very high.

• Graph-based methods - With this technique, a graph is created. Graph nodes
represent sentences. The edges of the graph symbolize connections between
sentences that share the same words. Nodes that have more edges contain
important sentences and have higher priority in summarization.

• Principles using machine learning - Using machine learning, we can view text
summarization as a two-class classification problem. Sentences are grouped into
summary and non-summary sentences. The summarizer is trainable, the training
data set and their extraction summaries are used as a reference.

• LSA (Latent Semantic Analysis) - LSA is a robust algebraic-statistical method that
extracts the hidden semantic structures of words and sentences, that is, it extracts
properties that cannot be mentioned directly. These features are essential to the
data, but are not native features of the dataset. It is an unsupervised approach
along with the use of Natural Language Processing (NLP).

• Methods using neural networks – Neural networks try to imitate the activity of the
human brain when learning. Like the human brain, they contain neurons that
process data. So the neural network tries to think like a human to judge which
sentences are important and should be included in the summary. Using training
data, it tries to learn the types of sentences that should be included in the
summary. After the network learns the features that must exist in the summary

143

sentences, we need to determine the trends and relationships between the features
that are inherent in most of the sentences.

• Methods based on Fuzzy logic - This method considers each characteristic of the
text, such as sentence length, title similarity, keyword similarity, etc. for the fuzzy
system input. All rules needed for summarization are also input to the knowledge
base. Each sentence receives a score ranging from 0 to 1. The obtained value
determines the importance of the sentences for generating the summary.

📝 1.2.2

Choose the correct statements about extractive summarization

• decides which sentences from the text are significant and need to be
included in the summary

• the summarized text consists only of the sentences that were in the original
text

• uses the concept of sentence scoring
• the summarized text also consists of new sentences that were not in the

original text
• does not use the concept of sentence punctuation

🕮 1.2.3

ABSTRACT SUMMARY

Abstract summarization is a smarter form of summarization compared to
extractive summarization because it can generate new sentences. In this approach,
we must first create a transient representation of the input text. This is usually
created by representing the topic, i.e. by transforming the text in order to identify
the main topics of the text and by representing the indicator, where a set of
"indicators" - e.g. the length of sentences or sentences containing certain
"indicator" words expresses the importance of a part of the text. The individual
sentences are again ranked according to their score, and the sentences with the
highest scores are used to compile the summary.

Abstract summarization attempts to understand text using advanced natural
language processing techniques and create new sentences by paraphrasing as a
human would. This approach is significantly more complex, as it requires a
semantic understanding of the text and the connection between concepts, context

144

and topics. Similar to extractive summarization, abstract summarization can be
achieved by several methods:

• Tree-based methods - The main idea of this group of methods is to use a
dependency tree that represents the text or content of a document. An example of
such an algorithm is sentence fusion, which can process multiple documents.

• Template-based methods - In these methods, the entire document is represented
using a certain wizard. Linguistic patterns or extraction rules are mapped to point
text snippets that can be mapped to guide slots (to create a database).

• Rule-based methods - Rule-based methods display input documents in terms of
classes and facet lists. Verbs and nouns with similar meanings are identified to
create extraction rules. A number of candidate rules are selected and transferred to
the summary.

• Graph-based methods - Similar to extractive summarization, abstract
summarization can be achieved using graphs.

• Ontology-based methods - Ontologies are extremely popular in NLP, including
both extractive and abstract summaries where appropriate, as they are usually
limited to the same topic or domain. In addition, each domain has its own
knowledge structure, which can be better represented using an ontology. Although
they differ in their specific approaches, all ontology-based summarization methods
involve sentence reduction by compression and reformulation using both linguistic
and NLP techniques. Fuzzy ontology is a typical representative.

• Multimodal Semantic Model - A semantic model is initially created using an
object-based knowledge representation. Nodes represent concepts and links
between these concepts represent the relationship between them. Important ideas
are scored using an information density metric that checks for completeness,
relationship with others, and number of term occurrences. The selected terms are
finally transformed into sentences to form a summary.

145

• Semantic Text Representation Model - The goal of this technique is to analyze the
input text using the semantics of the words, rather than using the syntax or
structure of the text.

📝 1.2.4

Choose the correct statements about abstract summarization

• the created summary contains only the sentences that were in the original
text

• it relies entirely on the concept of sentence scoring
• uses the indicator representation to express the importance of individual

parts of the text
• the summary contains sentences that were not in the original text

🕮 1.2.5

COMBINED SUMMARY

There are combined approaches that use an abstract generator. The abstract
generator takes as input the text that comes from the extractive summarizer.
Combined summarization is more effective because it works with text that is
already stripped of all redundant and irrelevant information. Many current
algorithms, including the BART algorithm, are based on this approach.

1.3 Koncepts used in text summarization

🕮 1.3.1

CONCEPTS USED IN TEXT SUMMARY

In order to understand the principle of operation of the individual algorithms that
serve to summarize the text, we must first familiarize ourselves with neural
networks. The human brain contains tens of thousands of brain cells called
neurons. These neurons are interconnected, can communicate with each other and
create complex structures. In artificial intelligence, there are methods that teach
computers to process data similarly to the human brain. These methods are called
neural networks.

146

NEURON

Before we explain the architecture of neural networks, it is necessary to familiarize
ourselves with how a neuron works. The simplest possible implementation is a
neuron with two inputs, similar to the figure below, where x1 x2 represent the inputs
and y represents the output.

There are three things going on here:

• First, each input is multiplied by some weight w.
• The weighted inputs are counted and the so-called bias (some constant)
• The result from the second step is fed into the activation function, which is

used to turn the result of the input into an output that has a nice, readable
form. A commonly used activation function is a sigmoid function that
converts a number to a value between 0 and 1.

📝 1.3.2

What is the basic unit of a neural network called?

🕮 1.3.3

NEURON NETWORKS

If we connect several neurons together, we talk about the so-called neural
networks. A basic neural network has interconnected artificial neurons in three
layers:

147

• Input Layer - These are our original inputs, similar to x1 and x2 in the
previous image.

• Hidden layer - The hidden layer analyzes the output from the input layer. If
the neural layer has several hidden layers, we are talking about deep neural
networks.

• Output layer - The output layer gives the final result.

•

📝 1.3.4

The layer of the neural network that processes the output from the input layer is
called

• hidden layer
• output layer
• input layer

🕮 1.3.5

TYPES OF NEURONAL NETWORKS

There are several types of neural networks. We will describe the most famous of
them.

Feedforward neural networks

Feedforward neural networks process data in one direction, from the input layer to
the output layer. Every node in one layer is connected to every other node in the
next layer.

148

Recurrent Neural Networks (RNNs)

Recurrent neural networks are special architectures that take temporal information
into account. The hidden state of the neural network at time t takes information
from the input at time t and the activations from the hidden units at time t-1 to
compute the outputs for time t. This can be seen in the image below. In this way, a
recurrent neural network can remember previous inputs and their outputs.

Remembering previous input is particularly important in natural language
processing tasks because the input words are not of equal size and the next word
is highly dependent on the previous words. Thus, recurrent neural networks can
remember context.

Long Short Term Memory (LSTM) Networks

The memory of RNNs is short, which can be a problem. The optimization of this
problem was the creation of networks with a longer memory, which are called
LSTMs and use the so-called cell state. This cell state is the state at any time and is
updated with relevant information at each time step. The output at each time step
is derived from the input, the previous output, and the updated state of the cell.

Transformer networks

With the introduction of LSTMs and their ability to remember the state of cells, the
memory of neural networks improved but was still limited. To solve memory
problems, transformer networks have been developed that introduce the concept of
attention blocks. Attention blocks calculated how each word in the input was
related to other words in the input. The higher the value, the more attention is paid
to these words and the more dependent the set of words is. Attention increases the
number of contextual connections a network can make, and the network can learn
relationships and context from large data sets.

149

🕮 1.3.6

Algorithms used in text summarization

Nowadays, since this is a field that produces really useful results, many different
algorithms are used and constantly improved.

GPT-3

GPT-3 is an automatic regressive artificial intelligence algorithm developed by
OpenAI, an AI-powered research lab based in San Francisco, California. It is a
massive artificial neural network that uses deep learning to generate human text
and is trained on huge text files with thousands of billions of words. It is the third-
generation AI language prediction model in the GPT-n series and the successor to
GPT-2.

This artificial intelligence algorithm is a program that can calculate a word or even
a character that must appear in a text in relation to the words around it. This is
called the conditional probability of words. It is a generative neural network that
allows for a numerical score or a yes or no response. It also generates long
sequences of original text as output. The total number of weights that OpenAI GPT-
3 dynamically stores in its memory and uses to process each query is 175 billion.

BERT

BERT (Bidirectional Encoder Representation for Transformers) uses a fully
bidirectional unsupervised approach and is pre-prepared for pure text corpus only
(Wikipedia). The two-way approach means that the words in the sentence are
evaluated not only from left to right and top to bottom, as a person would do, but
also in the opposite direction. The interesting thing about this algorithm is that it
learns using a masking function ("masked language modeling": some words are
masked into a sentence) and then BERT has to predict which one is the missing
word or if the sentence follows another sentence. BERT uses an attention
mechanism that is able to learn the contextual relationships between words in a
text. Below we briefly describe the BART algorithm, which is currently the most
modern in the field of summarization and is derived from BERT.

150

BART

BART (Bidirectional Autoencoder Representation for Transformers). The BART
algorithm generalizes both the GPT and BERT approaches, taking the best of the
two models. BART is trained to corrupt the text with a noise function (which adds
"noise" to the text, not just masks) and then trains the model to recover the original
text. It is based on a transformer-based neural machine translation architecture
with a bidirectional encoder (like BERT) and a left-to-right decoder (like GPT). The
BART algorithm maps document corruptions to an input document and can be
applied to any type of document corruption (token masking, token erasure, text
padding, sentence permutation, document rotation, etc.). The BART algorithm
achieves new, state-of-the-art results in abstract dialogue, text generation, question
answering, and summarization tasks.

151

Keyword Extraction

Chapter 2

152

2.1 The introduction into keyword extraction

🕮 2.1.1

Introduction to keyword extraction

Keyword extraction is one of the summarization techniques used to capture the
most important words or phrases from a document. Using this technique, a small
set of units consisting of one or more phrases can be extracted. Key phrases play
an important role in quickly getting the idea of a textual data without having to read
the whole text. This text summarization technique finds application in the field of
content management, such as search engine optimization, advertising and user
recommendation systems. For example, when visiting an ad or website, end users
are attracted if the keywords are relevant to their needs.

Approaches to keyword extraction can be most simply divided into two basic
groups, namely simple statistical approaches and approaches based on machine
learning. If we wanted to take a closer look at keyword extraction, we could divide
the extraction principles into five categories, namely simple statistical approaches,
graph-based approaches, linguistic approaches, machine learning-based
approaches, and hybrid approaches.

📝 2.1.2

Which of the following terms do not belong to approaches to keyword extraction

• absctractive
• extractive
• statistical
• graph based
• hybrid
• machine learning based

🕮 2.1.3

Preprocessing of texts

Different approaches to keyword extraction may require different levels of pre-
processing of the text from which we are going to extract keywords. Text
preprocessing refers to techniques such as:

153

• Removing stop words - The most important step in the revision process is to
remove words that have no meaning in the text. Such words include, for
example, conjunctions, prepositions, or other words that occur frequently in
the text but do not make sense by themselves. A list of such words for
different languages can be obtained using the NLTK python library.

• Text to lower case - Keyword extraction algorithms can be case sensitive.
For example, if we have the sentence "Keyword extraction is usefull. Rake is
the best technique for keyword extraction", we would not want to get both
"Keyword extraction" and "keyword extraction" in the list of keywords.

• Removal of punctuation and special characters - Texts may contain various
special characters and unwanted punctuation. Let's say we're extracting
keywords from social media statuses. Such statuses can often contain
emojis that do not carry any semantic meaning and we do not want them to
be extracted as keywords.

📝 2.1.4

Conjunctions, prepositions, or other words that appear in the text are often marked
as

2.2 Statistical Approaches

🕮 2.2.1

Statistical approaches

Statistical approaches extract keywords by using statistical functions such as TF-
IDF (Term Frequency-Inverse Document Frequency), n-gram statistics, word co-
occurrences, and other statistics. Most statistical approaches are language-
independent, meaning that they can be used for texts in a language if a large
enough corpus is available. In addition to applicability to active language, speed is
an indisputable advantage of statistical approaches. algorithms are rather faster in
contrast to approaches that are based on machine learning.

TF-IDF (Term Frequency - Inverse Document Frequency)

TF-IDF is one of the most well-known possible approaches to find important words
from a document. TF-IDF talks about the importance of the words in the document
in relation to the entire corpus. It is already clear from the name of the approach

154

that this approach is composed of two components, namely the TF component and
the IDF component. The TF (Term Frequency) component expresses how often
(frequency) a given word occurs in a document from the corpus. it is usually
normalized by dividing the document's word count to avoid overestimating long
documents, where the search term may appear more often than shorter ones,
without making the document more relevant. Therefore, we obtain the TF
component according to the following, where the number of occurrences of the
word ti in the document is not dj. The denominator expresses the sum of the
number of occurrences of all words in the document.

IDF (Inverse Document Frequency) talks about specific words. In principle, it can be
said that the more often a word occurs in documents, the less important it is (a
word that occurs in all documents, such as the English article "the" or the Slovak
conjunction "a", is mostly unusable in searches). We calculate the IDF for the word i
using the formula below, where |D| represents the number of documents in which
we search and |{j : ti ϵ dj}| is the number of documents that contain the word i.

📝 2.2.2

TF-IDF talks about the importance of the words in the document in relation to the
entire corpus

•
•

🕮 2.2.3

RAKE (Rapid Automatic Keyword Extraction)

RAKE enjoys the most popularity among statistics-based keyword extraction
algorithms. The idea behind this algorithm is that keywords often contain multiple
words, but rarely contain punctuation, stop words, or other words with minimal
lexical meaning. The algorithm is primarily based on the co-occurrence of words,

155

for example, when extracting keywords from customer feedback on a specific
phone, a key phrase could be represented by a bigram such as "good camera",
"quality sound." These words in the feedback domain of a specific product often
appeared together . It's a collocation. The input to the algorithm is the text cleaned
of trace words and punctuation. The algorithm then calculates the co-occurrence
matrix.

Each word is then assigned a score. The degree of the word in the matrix is
calculated - the sum of the number of common occurrences divided by the
frequency of their occurrence. Frequency of occurrence means how many times a
word occurs in the corpus.

156

The final score for the identified key phrases will be the sum of the scores of the
individual words that the key phrase contains. So for the keyword phrase "feature
extraction" the value will be equal to 4.66.

📝 2.2.4

What is the basis of the RAKE algorithm?

• co-occurrences of words
• cosine similarity
• frequency of words in text

📝 2.2.5

Implementation of the RAKE algorithm

To implement the RAKE algorithm, we will first start the nltk library, rake-nltk. After
installation, we can import the libraries. Lists of stop words are available on various
websites. We could download any of them and implement it in our code as a letter.
However, we can also use the list of stop words offered by the nltk library. In our
case, we will show the extraction of keywords from simple text, which will be stored
in a string variable. We will have to tokenize this text into sentences, for which we
will use the Punkt Sentence Tokenizer, which divides the text into a list of
sentences. We have the following text: "Text summarization is a method which
belongs to the area of Natural Language Processing. Keyword extraction is a
process of obtaining the most important keywords in a document. Keyword
extraction is usefull text summarization technique." Let's save this text as a string
variable. Let's just convert this text to lowercase letters. Let's save a list of our stop
words in the stop_words variable.

pip install nltk

pip install rake-nltk

import nltk

from rake_nltk import Rake

nltk.download('stopwords')

from nltk.corpus import stopwords

nltk.download('punkt')

text = "Text summarization is a method which belongs to the

area of Natural Language Processing. Keyword extraction is a

process of obtaining the most important words in document.

Keyword extraction is usefull text summarization technique."

157

text = text.lower()

stop_words = nltk.corpus.stopwords.words('english')

In the rake_extractor variable, we initialize the Rake class that will perform the
extraction. The stopwords parameter specifies a list of words to be removed from
the text. The range of n-grams, i.e. the number of words we want our keywords to
contain, is determined by the min_length parameter, which defines the minimum
number of words that phrases must contain, and the max_length parameter, which
defines the maximum number of words. words that the extracted key phrases may
contain. In our case, we want phrases that have exactly two words. The
include_repeated_phrases parameter specifies whether we want the extracted
keywords to be repeated in the result. We then call the function
extract_keywords_from_text which will accept our variable named text as a
parameter.

rake_extractor = Rake(stopwords = stop_words, min_length=2,

max_length=2, include_repeated_phrases=False)

rake_extractor.extract_keywords_from_text(text)

To get keyword phrases ranked highest to lowest with scores.

rake_extractor.get_ranked_phrases_with_scores()

and to get the keywords we will use the get_ranked_phrases or
get_ranked_phrases_with_scores method depending on whether we want to see the
rank scores for our keywords as well.

rake_extractor.get_ranked_phrases_with_scores()

🕮 2.2.6

KP-miner

There are more complex keyword extraction methods that use TF-IDF only as a
statistical method to calculate the importance of key phrases. This includes, for
example, the KP-miner method, which is divided into three steps. The first step is to
select the candidate words from the documents, the second step is to calculate the
score of the candidate words, and the third step is to select the candidate word
with the highest score as the final keyword phrase. KP-miner introduced two new
statistical functions in the candidate word selection phase. The Least Allowable
Seen Frequency factor means that only words that appear more than n times in the
document can be considered as candidate words. The second statistical function
introduced by KP-miner is called CutOff and is based on the fact that if a word
appears after a given threshold position in a long document, it will not be a key
phrase, meaning that the word that appears after the CutOff will be filtered out.

158

Finally, the final key phrases are selected by combining the candidate word
positions and TF-IDF scores.

📝 2.2.7

List the steps of the KP-miner algorithm

• <|br>
• <|br>
• <|br>
• Calculation of IDF
• Calculation Factor of the lowest permissible frequency of vision and CutOff
• Calculation of candidate words
• TF calculation
• <|br>
• Calculation of TF-IDF

🕮 2.2.8

YAKE

YAKE is a typical keyword phrase extraction method using TF-IDF. The difference
between YAKE and KP-miner is that YAKE uses the candidate word location or TF-
IDF information and introduces a new set of five features. The case of WC reflects
the case of the candidate words. The WP variable in the formula reflects the
position of the word, meaning that the more often the word is at the front of the
document, the greater its value. Word frequency is WF expresses that the higher the
frequency of a word in a document, the greater its value. WRC context word
relatedness refers to the number of different words occurring on either side of a
candidate word. Word DifSentence WD indicates the frequency of the candidate
word in different sentences. These five values are combined to calculate S(w) as
shown in the formula below.

Finally, the final S(kw) of each candidate word is calculated using the 3-gram model
as shown in the following equation, where kw represents the candidate word and
TF represents the frequency of the key phrase. The smaller the value of S(kw), the
more likely it is that kw will be a key phrase.

159

📝 2.2.9

Implementation of the YAKE algorithm

To implement the algorithm, we need to download and import the appropriate
library. The basic implementation of the algorithm is simple, it is enough to define
the language in which our text is located and the maximum number of n-grams.

pip install yake

import yake

yake_extractor = yake.KeywordExtractor(lan="en", n=2)

keywords = yake_extractor.extract_keywords(text)

for kw in keywords:

 print(kw)

📝 2.2.10

The difference between YAKE and KP-miner is that KP-miner uses candidate word
locations or TF-IDF information and introduces a new set of five features

• yes
• no

2.3 Graph based approaches

🕮 2.3.1

Graph-based approaches

All graph-based approaches compute to a vertex in the graph, relying not only on
information that is specific to a local vertex, but also taking into account global
information that is recursively computed from the entire graph. The basis of many
graph-based algorithms is the PageRank algorithm

160

PageRank

PageRank is an algorithm that was developed to rank web pages according to a
system of quantity and quality of links that point to it. PageRank is calculated
according to the formula below, where A represents the subpage for which
PageRank is calculated and T1 to Tn are the subpages that link to subpage A. PR
stands for PageRank of subpages, C stands for new links from subpages, and is a
damping factor that takes care of reducing the excessive influence of some
subpages, which can cause the use of fake bots. 1-d is the factor that takes care of
eachnovú stránku, na ktorú neukazuje žiadny odkaz.

TextRank

The most famous graph-based keyword extraction algorithm is TextRank, which is
based on the PageRank algorithm. TextRank uses the PageRank algorithm on a
graph where vertices correspond to words. An important aspect is a text that
contains deep linguistic knowledge, or domain- or language-specific annotated
corpora, making it highly transferable to other domains, genres, or languages.

The original PageRank algorithm assumes an unweighted graph. But the graphs for
TextRank are built from natural language text and therefore would include many
links between tokens extracted from the text. Therefore, useful pages of
relationships between graph vertices would be important. For this reason, TextRank
is applied to a weighted chart.

An interesting feature of the TextRank algorithm is that it also includes features of
linguistic approaches. The first step of the algorithm is to tokenize the text and then
annotate it with POS tags. The authors of TextRank conducted experiments and
observed the best results when considering only nouns and adjectives. Vertices
that pass a syntactic filter in which POS tags are only noun or adjective are graphed
as vertices.

📝 2.3.2

TextRank uses the PageRank algorithm on a graph where vertices correspond to
words

• yes
• no

161

🕮 2.3.3

SingleRank

Another graph-based keyword extraction algorithm is SingleRank, which extends
TextRank with two main differences. As in the TextRank algorithm, with SingleRank,
vertices are passed through a syntactic filter and edges are also assigned based on
the co-occurrence of words in the window. The first major difference is that these
edges are assigned a weight based on the distance between two words that are in a
predefined window. The second difference counts the number of vertices it keeps
as potential keywords after running the PageRank algorithm. SingleRank keeps all
words, while with TextRank it's usually the top 30%.

📝 2.3.4

The difference between the TextRank and PageRank algorithms is the weight
assigned based on the two words in the predefined window and the number of
words the algorithms keep as potential keywords.

🕮 2.3.5

TopicRank

TopicRank uses a slightly different method from the TextRank and SingleRank
algorithms. Its task is to extract key phrases from those equally present in the
document. This algorithm considers the topic as similar candidates for key
phrases. These topics are then ranked according to their importance in the
document, and the most important key phrase for each topic.

The TopicRank algorithm consists of the following steps:

• identifying topics,

• chart-based assessment,

• keyword selection.

There are three strategies used to find the best keyword phrase for a given topic.
One strategy converts all key phrases back to their generic form and selects the key
phrase that appeared first in the document. The second strategy selects the most
frequent key phrase, while the third selects based on the centroid of the cluster.
The centroid is an imaginary or real location representing the center of the cluster.

162

Each data point is assigned to each of the clusters by the reduced sum of squares
within the cluster.

📝 2.3.6

Sort the steps of the TopicRank algorithm

• topic identification
• chart-based assessment
• <|br>
• keyword selection
• <|br>

2.4 Machine learning based approaches

🕮 2.4.1

Approaches based on machine learning

Keyword extraction approaches that are based on machine learning use supervised
(supervised) learning and transform the keyword extraction task into a
classification or prediction problem. A model trained on the labeled set is used to
determine whether a candidate word in the text is a key phrase or not. The
advantage of machine learning-based approaches is that they require less or no
text pre-processing and extract key phrases with high semantic relevance. The
disadvantage is that the models are language- and sometimes context-dependent,
and changing the corpus may require training the model anew, or choosing a
different model. Another disadvantage is that machine learning brings with it a
higher computational effort, which makes extraction using machine learning-based
approaches slower than approaches that are solely based on statistics and do not
require training data.

KEA

One of the first methods of keyword extraction that uses machine learning is KEA,
which consists of determining whether a candidate word is a keyword phrase by
calculating the TF-IDF of each candidate word and the place where it first appears
in the text, and putting these value values into Naive Bayes.

163

🕮 2.4.2

KeyBERT

The most widely used technique that can extract keywords with high semantic
relevance is KeyBERT. This technique uses a pre-trained BERT (Bidirectional
Encoder Representations from Transformes) model. The KeyBERT algorithm itself
begins by sending a document to the BERT model, which creates a representation
of the document by dividing the text into fixed-size vectors representing the
semantics of the document.

In the second step, the candidate phrase generator extracts candidate phrases
from the document using simple techniques such as occurrence count, TF-IDF, and
so on. In the next step, this data is again sent to the BERT model and a phrase-level
representation is obtained. Subsequently, the cosine similarity is calculated
between the document-level representation and the phrase-level representation, to
obtain the most similar words to the document representation, which are the
resulting keywords. The calculation takes place according to the formula below.

The results are then sorted in descending order and the top n items are selected.

📝 2.4.3

KeyBERT algorithm implementation

The first step that needs to be done is to install the library that implements
KeyBERT and then import it.

164

Subsequently, we can implement the algorithm using two lines of code. The
keyphrase_ngram_range parameter defines the range of desired n-grams. We insert
the list of desired stop words into the stop_words parameter. The default model
used for extractions is the "all-MiniLM-L6-v2" model. This model works with the
English language and belongs

pip install keybert

from keybert import KeyBERT

keybert_extractor = KeyBERT()

keywords = keybert_extractor.extract_keywords(text,

keyphrase_ngram_range=(2, 2), stop_words=stop_words)

📝 2.4.4

List the steps of the KeyBERT algorithm

• Getting key phrases
• <|br>
• <|br>
• Creating a document-level representation
• Calculation of cosine similarity
• Creating a phrase-level representation
• The document is sent to the BERT model
• Selection of candidate phrases
• <|br>
• <|br>
• <|br>

2.5 Hybrid Approaches

🕮 2.5.1

Hybrid approaches

Hybrid approaches combine the previous methods. They use heuristic knowledge
such as position, word length, HTML tags around words and other methods.

2.6 Evaluation

🕮 2.6.1

165

Evaluation of algorithms for keyword extraction

It is not easy to design an evaluation metric that could reflect the advantages and
disadvantages of an algorithm. Since an evaluation metric can only evaluate one
aspect of an algorithm, multiple metrics can more accurately and comprehensively
evaluate an algorithm. For example, researchers usually use precision, coverage
(recall), and F1-score (harmonic mean) to evaluate a method from multiple
perspectives.

🕮 2.6.2

Metrics based on statistics

Statistics-based evaluation metrics analyze the performance of the method by
calculating the proportion of the number of different key phrases, such as the
number of extracted key phrases, correct key phrases, incorrect key phrases, and
manually assigned key phrases. Standard statistics-based metrics include
precision, coverage, and harmonic mean.

Precision

Mathematically, the precision metric is defined as the number of true positives tp
divided by the sum of the true positives tp and the number of false positives fp. It
can be calculated according to the formula below.

Recall

This metric is defined by the formula below as the number of true positives tp
divided by the sum of true positives tp and false negatives fn.

Harmonic mean (F1 score)

The previous two metrics influence each other. In an ideal situation, both are high,
but in general, when the precision metric is high, the coverage is low, and vice
versa. The harmonic mean is a combination of both.

166

📝 2.6.3

Precision is defined as the number of true positives tp divided by the sum of true
positives tp and the number of false positives fp

• yes
• no

📝 2.6.4

Recall is defined as the number of true positives tp divided by the sum of true
positives tp and the number of false positives fp

• yes
• no

🕮 2.6.5

Metrics based on linguistics

The ranking metrics listed so far are based on the assumption that key phrases are
independent of each other, but based on human language habits, we hope that
more important key phrases should be placed higher. The following three ranking
metrics can reflect the ranking functions among the key phrase outputs by the
algorithm.

Mean Reciprocal Rank (MRR)

Mean reciprocal rank is a measure for evaluating models that return a document-
ordered list of key phrases. MRR only cares about one highest rated relevant item. If
the model returns a relevant keyword phrase in the third highest position, then MRR
takes care of that. It doesn't matter if the other relevant key phrases (assuming
there are any) rank #1 or #10.

167

MRR gives the average ranking of the first correct prediction, where d is the number
of documents and ranki is the rank in which the first correct key phrase of
document i was found.

Mean Average Precision (MAP)

MAP takes into account the order of the particular returned list of key phrases. The
average accuracy of AP is defined by the equation,

where |N| the length of the list, |LN| represents the number of relevant items, P(n) is
the precision, and gd(n) is equal to one if the nth item is a golden keyphrase and 0
otherwise. By averaging the AP over a set of n documents, the mean average
accuracy (MAP) is defined as:

where C represents the number of correct key phrases, M represents the number of
all extracted key phrases, and I represents the number of correct key phrases
before incorrect phrases.

168

Classification

169

Introduction to
classification

Chapter 1

170

1.1 Introduction

🕮 1.1.1

Introduction into classification

So, in order to classify, we need two things. A classifier, that is, an algorithm that
can provide a classification on some dataset. Suppose we go to solve one of the
typical classification tasks, namely whether the report is fraud or not. The data file
in our case could be a .csv file, in which we would have a message in one column
and a binary label (0/1) in the other column. If the message is a hoax, it would have
a label of 1, and if the message is not a hoax, it would have a label of 0.

At the moment we need to find (train) our model. By default, this is done in such a
way that some part of the dataset (for example 75%) is taken, which will be used to
learn the model. This part of the dataset is also called the training set. The model
will learn similarly to how a human would. It will look at a message, read whether it
is a hoax or not and will look for patterns among the data to learn which messages
look like a hoax. Once the training process is complete, the second phase, testing.
In this phase, the model will get the remaining 25% of the data, which they also
refer to as the test set, and will try to classify the messages into that to look at the
output. given the probability with which the model will assume that a given
message is a hoax.

📝 1.1.2

The algorithm that implements the classification is called

🕮 1.1.3

Types of classification tasks

Classification tasks are divided into:

• binary classification,
• multi-class classification,
• multi-label classification.

Binary classification

We already talked about binary classification in the previous examples, when we
remembered the classification tasks like whether the picture is a dog or a cat or
whether the message is a hoax. So it is a type of classification where we can
classify our case only among the two tried ones. For example, whether the email is
spam. The input variables would represent the characteristics/properties of the

171

email. This variable could be represented by one of two values (classes). If the
email was spam, it would be assigned a value of 1, otherwise it would be assigned
a value of 0.

Multiclass classification

Multiclass classification is used in cases where our input variable can take more
than two values. A typical task of multi-class classification is the categorization of
face or plant species.

Let's imagine that we wanted to create a model that could determine which of the
flowers it was. In such a case, we would therefore have three possible values of the
output variable, which is why we say it is a multi-class classification.

Multi-label classification

Let's imagine that we want to classify objects in a photo. One photo can contain a
person, a table, a dog, etc. Compared to binary or multi-class classification, where
we assumed a single class designation, a specific photo can therefore have several
objects in the scene.

172

Symbolical classification
models

Chapter 2

173

2.1 Decision Tree

🕮 2.1.1

Decision tree

A decision tree is a classifier with a tree structure. For the decision tree, we
introduce the following concepts:

• Root - the place where the tree begins. From this point (vertex / node), the
tree further branches into two or more parts.

• Leaf - the final output that does not branch further.
• Branch - a subtree that was created by branching.

The decision tree is very easy to understand because it makes decisions similar to
a human. At the top of the tree is the question or main criterion from which the tree
branches. Let's say that we are looking for a job with a salary above €1,500 and a
home office option.

📝 2.1.2

What is the name of the place where the tree starts

174

🕮 2.1.3

Measuring the quality of tree splitting

Two metrics are typically used to measure the quality of a distribution, namely the
Gini index and entropy.

The Gini index is a metric for classification tasks whose value ranges from 0 to 1,
where 0 indicates that all elements are associated with a certain class or that there
is only one class. If the Gini index is 1, the elements are randomly assigned to
different classes. If the Gini index reaches a value of 0.5, it means that the
elements are evenly distributed in some classes. An attribute with a low Gini index
should be preferred over a high Gini index. The Gini index is calculated according to
the formula below, where pi is the probability that the object will be classified in a
certain class.

Let's imagine that we choose a white chess piece from a box containing 100 white
pieces. Then we can say that the box has zero entropy. Now let's imagine that 50 of
them are replaced by black. Probability of drawing white dropped from 1.0 to 0.5
and entropy increased. Shannon's entropy model uses a base-2 logarithmic
function (log2(P(x)) to measure entropy, because as the probability P(x) of
randomly drawing a white piece increases, the result gets closer to the base-2
logarithm value of 1, as shown in the picture.

📝 2.1.4

An attribute with a low Gini index should be preferred over a high Gini index

• yes
• no

175

🕮 2.1.5

Entropy is a metric for measuring the uncertainty with which a case is classified
into a class, and the task of the algorithm is to minimize this uncertainty. Similar to
the Gini index, the optimal distribution is chosen by the property with the least
entropy. Entropy can be calculated according to the formula, where P(x=k)
expresses the probability that the target character will have the value k.

The logarithm of fractions gives a negative value, so the entropy formula uses a
minus sign to negate these negative values. The maximum value of entropy
depends on the number of classes. To find the best feature that serves as the root
node in terms of information retrieval, we first use each descriptive feature and
partition the dataset according to the values of these descriptive features, and then
calculate the entropy of the dataset. This gives us the remaining entropy when we
divide the data set by feature values. We then subtract this value from the originally
calculated entropy of the data set to see how much this element distribution
reduces the original entropy, which provides the information gain of the element
and is calculated according to the formula, according to which the feature with the
highest information gain will be used as the root node.

🕮 2.1.6

Algorithms for creating a tree

Algorithm ID3

The ID3 (Iterative DiChaudomiser 3) algorithm creates a tree structure from the
training data set, which is used to classify the yet unclassified data. It tries to find
the categorical feature that will yield the greatest informational gain for the
categorical targets. Information gain is calculated using entropy. The algorithm
searches each branch and stops when each subspace contains only elements of
one class. Trees created by this algorithm are prone to overtraining.

176

Algorithm C4.5

A better version is the C4.5 algorithm, which eliminated the problem of classifying
datasets that contain attributes with a large number of values. The entropy of
attributes that take on a large number of values is very low. Therefore, the so-called
normalized information gain. Another difference, compared to the previous
algorithm, is that it can also work with attributes that have empty values. After
building the model, it examines the tree once more and removes nodes that do not
have a significant impact on the classification.

Algorithm C5.0

Another modification of the algorithm was named C5.0. This algorithm was faster,
more efficient and it was possible to parallelize the algorithm using threads.

CART algorithm

CART is a decision tree where each branch is divided into a predictor variable and
each node has a prediction for the target variable at the end. In the decision tree,
nodes are divided into subnodes based on an attribute threshold. The root node is
taken as the training set and is divided into two parts by considering the best
attribute and the threshold value. Further, the subsets are also partitioned using the
same logic. This continues until the last pure subset of the tree or the maximum
possible number of leaves in this growing tree is found. The algorithm works
according to the following procedure:

the best split point of each input is obtained,

based on these split points, a new best split point is identified,

divides the selected input according to the best dividing point,

splitting continues until the stopping rule is met or no further requested splitting is
available.

A tree that is too large increases the risk of overlearning, and a small tree may not
capture all the important features of a file. Therefore, a technique called pruning is
used, which reduces the size of the tree without reducing accuracy.

There are two ways to reduce the size of the tree. The first method is precutting,
which consists in tuning hyperparameters before training. It includes a heuristic
known as "stopping early" that stops the growth of the decision tree - preventing it
from reaching its full depth. Stops the tree building process to avoid creating leaves

177

with small patterns. Cross-validation error will be monitored during each phase of
tree splitting. If the error value no longer decreases - we stop the growth of the
decision tree. The hyperparameters that can be tuned to stop early and avoid
congestion are the maximum depth, the minimum number of samples required to
split an internal node, and the minimum number of samples required to be in a leaf.

The second method is post-pruning, which does not prevent the tree from growing
but prunes the tree after the tree has grown to its full depth. For each non-leaf node
in the tree, the algorithm calculates the expected error rate that may occur if the
subtree at that node is truncated. Next, the expected error rate that would appear if
the node had not been pruned is calculated using the error rate for each branch,
combined by weighting according to the dimension of the observations along each
branch. If pruning a node leads to a higher expected error rate, then the subtree is
preserved.

📝 2.1.7

The root node is the one with the lowest information gain

• yes
• no

2.2 K-nearest neighbors classifier

🕮 2.2.1

K-nearest neighbors classifier

The K-Nearest Neighbors algorithm is among the lazy learning algorithms because
it does not learn from the training set immediately, instead it stores the data set
and performs an action on the data set at the time of classification.

Suppose we have a picture of a creature that looks similar, like a dog and a wolf,
but we want to know if it is a dog or a wolf.

178

The first step of the algorithm is to find a suitable number K, which will indicate the
number of nearest neighbors. Choosing the right K is an important task. Very low
values of K could lead to unstable decision boundaries, and high values of K could
be computationally demanding. After selecting K, the algorithm finds the K-nearest
neighbors to our creature according to the Euclidean distance.

📝 2.2.2

The number K is used to determine the number of nearest neighbors by which to
determine the resulting class for the case

• yes
• no

🕮 2.2.3

Subsequently, the algorithm counts how many of the nearest neighbours belong to
the dog category and how many of them belong to the wolf category. It assigns the
creature the category that occurred most often in K-neighbours. Consider that our
K=5. The creature will be assigned the wolf category.

179

180

Logistic regression

Chapter 3

181

3.1 Logistic regression

🕮 3.1.1

Logistic regression

Logistic regression is a classification algorithm that can be divided into three types:

• Binomial: In binomial logistic regression, there can be only two possible
values for the dependent variable, such as 0 or 1, pass or fail, etc.

• Multinomial: In multinomial logistic regression, there can be 3 or more
possible unordered values/categories of the dependent variable. The
dependent variable takes on three values/categories: cat, dog, sheep, so it is
a polytomous variable, in the previous case it is a dichotomous variable,
what they have in common is that they are nominal, that means there is only
discrimination, while in the following case I can also take order into account.

• Ordinal: In ordinal logistic regression, there can be 3 or more possible
ordered values/levels of the dependent variable, such as "low", "medium" or
"high".

📝 3.1.2

What types of logistic regression do we know?

• Multinominal
• Binary
• Cardinal

🕮 3.1.3

Using logistic regression, we could train a model that would learn to estimate
whether a person of a given gender with a certain age and weight might suffer from
a heart attack in the future. The result of the model would be a value between 0 and
1 indicating the probability. In order to distribute the probability between the values
0 and 1, the logistic regression uses a sigmoid function (sigmoid) according to the
formula below.

182

🕮 3.1.4

In the figure, we can then see that such a curve will not be a straight line, as in
linear regression, but will have the shape of the letter S. In logistic regression, we
use the concept of a threshold value, which defines the probability of either 0 or 1.
For example, values above the threshold tend to 1 and the value tends to 0 below
the thresholds.

📝 3.1.5

The concept that logistic regression uses to make decisions is called

• sigmoid value
• threshold value
• distribution value

📝 3.1.6

The logistic regression equation can be most easily understood from the linear
regression equation. We know that the equation of a straight line can be calculated
using the formula below.

183

In logistic regression, y must be equal to a value between 0 and 1. We work on this
by adjusting the left side of the equation according to the following formula.

3.2 Naive Bayes Classifier

🕮 3.2.1

Naive Bayes classifier

The classifier is called naive because it assumes that each input variable is
independent. Naive Bayes classifier is used for both binomial and multinomial data.
It is based on Bayes' theorem, also known as Bayes' rule or Bayes' law. The idea
behind Bayes' theorem is to determine the probability of an outcome occurring. We
call this probability conditional probability and it depends on previous results. In
practice, Bayes' theorem could be used, for example, in determining Alzheimer's
based on age. If Alzheimer's corresponds to a person's age, then we would be able
to more accurately determine the probability of Alzheimer's. We could write the
Bayes theorem according to the formula below, where A, B represent phenomena,
P(A), P(B) their probability of occurrence and P(A|B) is the conditional probability of
phenomenon A assuming that phenomenon B and P have occurred (B|A) is the
conditional probability of event B given that event A has occurred.

🕮 3.2.2

According to the data distribution, there are three types of Naive Bayes models:

• Gaussian – The data is continuous and has a normal (Gaussian) distribution.
• Multinomial – In a multinomial model, variables are represented by

frequencies of occurrence. In the case of classifying articles into categories,
it could be about the frequency with which words occur in individual
categories.

184

• Bernoulli – The Bernoulli classifier works similarly to the multinomial
classifier, but the variables are Boolean. For example, whether a particular
word is present in the document. This model is also known for document
classification tasks.

The Bayesian classifier also comes with some problems, such as that all data must
be discrete. Another problem with the algorithm is that a small test set can bias the
calculation of relative probabilities. If a certain value is not found in the test set at
all, the probability of its occurrence was 0.

📝 3.2.3

Choose the correct statements about the Naive Bayes classifier

• The probability depends on the previous results
• It assumes that the input variables are independent
• It can only be used for binary data

185

Subsymbolical
classification models

Chapter 4

186

4.1 SVM classifier

🕮 4.1.1

Support Vector Machine (SVM)

The goal of support vector machines is to find a hyperplane, that is, a decision line
or decision boundary that will help classify data points into classes. The
dimensions of this surface depend on the elements present. The data points that
support the hyperplane (are closest to the hyperplane) and influence its position are
called support vectors.

We know two types of support vector machines:

• Linear - if possible, split the data file with a straight line.
• Non-linear – if the data set cannot be divided by a straight line.

🕮 4.1.2

Linear SVM

Let's consider the previous example, with the help of which we explained KNN.
There are many possible ways in which these classes could be distinguished by a
straight line.

187

The SVM algorithm will search for a line whose distance from the nearest points
from both classes is maximal. Such a straight line (superplane) will be considered
optimal.

In case we needed to classify a hitherto unknown data point, we would classify it
according to which side of the hyperplane it is located on.

📝 4.1.3

With linear SVM, the data set can be divided by a straight line

• yes
• no

🕮 4.1.4

Nonlinear SVM

There are cases where the data cannot be divided using a straight line.

188

In this case, we can add the third dimension z and we can calculate it according to
the formula.

z = x2+y2

Note that since we are now in three dimensions, the hyperplane is the plane parallel
to the x-axis at some z (say z = 1). What remains is to map back to two dimensions.

189

📝 4.1.5

With nonlinear SVM, another dimension is added

• yes
• no

190

Evaluation of classification
models

Chapter 5

191

5.1 Accuracy

🕮 5.1.1

Accuracy

Accuracy simply measures how often the classifier predicts correctly. Accuracy can
be defined as the ratio of the number of correct predictions to the total number of
predictions. Accuracy can be calculated according to the formula where TP
represents true positive cases, TN true negative cases, FP false positive cases and
FN false negative cases.

When accuracy reaches high values, it does not necessarily mean that our model
classifies correctly. Let's imagine that we have a classifier that determines whether
there is a dog or a wolf in the image. We have a set of test images, along with
labels, and we put the first dog image into the model. We assume that our model
predicts that it is a dog, and then compare the prediction with the correct label. If
the model predicts that it is a wolf and we compare it to the correct label, the model
is wrong.

We repeat this process for all images in the test set. Finally, we will have the
numbers of TP, TN, FP, FN. However, in reality, it is very rare that all wrong or right
matches will be balanced.

📝 5.1.2

Accuracy môžeme definovať ako pomer počtu správnych predpovedí a celkového
počtu predpovedí

• yes
• no

5.2 Accuracy, coverage and their harmonic mean

🕮 5.2.1

Precision

192

This metric explains how many of the correctly predicted cases actually turned out
to be positive and is defined as the number of actual positives divided by the
number of predicted positives.

📝 5.2.2

Precision expresses how many of the correctly predicted cases actually turned out
to be positive

• yes
• no

🕮 5.2.3

Recall

Recall explains how many true positives we were able to correctly predict using our
model and is defined as the number of true positives divided by the total number of
true positives.

📝 5.2.4

Coverage (recall) refers to how many of the correctly predicted cases actually
turned out to be positive

• yes
• no

🕮 5.2.5

F1 score

It provides a combined idea of precision and recall metrics. It is at its maximum
when Accuracy equals Recall. Its advantage is that it penalizes extreme values.

193

5.3 Confusion matrix

🕮 5.3.1

Confusion matrix

The confusion matrix is a table that contains the values of TP, TN, FP and FN. We
read it so that the row represents the class and the columns represent the number
of true and false cases in the class.

5.4 AUC-ROC

🕮 5.4.1

AUC-ROC

The ROC curve (receiver operating characteristic curve) shows the performance of
the model at different thresholds. It contains two parameters namely the true
positive rate of TPR and the false positive rate of FPR.

194

The area under the curve (AUC) is a measure of the classifier's ability to
discriminate between classes. The larger the AUC, the better the performance of
the model, and thus when the AUC is equal to 1, the classifier is able to perfectly
distinguish between all positive and negative points of the class. When AUC equals
0, the classifier would predict all negative points as positive and vice versa. When
the AUC is 0.5, the classifier is unable to distinguish between positive and negative
classes.

📝 5.4.2

When AUC is equal to 0, the classifier is able to perfectly distinguish between all
positive and negative points of the class.

• yes
• no

5.5 Log loss

🕮 5.5.1

Log Loss, Cross Entropy Loss

195

Logarithm Loss or Cross Entropy Loss is one of the main metrics to assess the
performance of a classification problem. For one sample with a true label y ∈ {0,1}
and a probability estimate p = Pr(y = 1), the log loss is calculated according to the
formula.

Cross-entropy loss, or logarithmic loss, measures the performance of a
classification model that outputs a probability value between 0 and 1. Cross-
entropy loss increases when the predicted probability differs from the actual label.
A perfect model would have a log loss of 0.

📝 5.5.2

Cross-entropy loss or logarithmic loss measures the performance of a
classification model whose output is a probability value between 0 and -1

• no
• yes

196

Implementation of
classification models in

Python

Chapter 6

197

6.1 Classification models

📝 6.1.1

Implementation in Python

In this section, we will show how classification can be easily implemented in
Python. It is enough if we create one python file or jupyter notebook. Before we
start writing the code, we need to install the libraries numpy pandas, matplotlib,
seaborn and sklrearn.

Dataset

The data file with which we will work is the database of potential customers of a
company that deals with the sale of fireplaces. It contains a thousand records, and
using classifiers we will try to model how many people from our dataset bought a
fireplace in the last year. The dataset contains the customer's age, monthly salary
and information on whether the customer purchased the given product.

We import the numpy library, for working with fields, pandas, for working with our
data file. The seaborn and matplotlib libraries will later be used to plot the data, and
sklearn will be used to train our classification models.

import pandas as pd

import numpy as np

import seaborn as sns

import matplotlib.pyplot as plt

import sklearn

We load our dataset into the dataset variable using the pandas library and the
read_csv method. This variable will be of type Dataframe. Using the print() method,
we print the first and last 5 records. From the listing, we can further see that our
dataset has a thousand rows and three columns.

dataset =

pd.read_csv("https://raw.githubusercontent.com/livi83/customer

s-dataset/main/dataset.csv", sep=";")

print(dataset)

print(dataset.describe())

198

We check if we don't have empty values in the dataset using the isnull method. We
add their numbers using the sum() method.

print(dataset.isnull().sum())

Using the matplotlib library, we can visualize how many customers have purchased
the product and how many customers have not purchased the product.

dataset.Zakúpil.value_counts().plot(kind='bar')

plt.xlabel('Zakúpil')

plt.ylabel('počet zákazníkov')

plt.title('Počet zákazníkov vzhľadom k tomu, či produkt

zakúpili')

plt.show()

We will access individual rows and columns using the iloc method. It accepts a list
of rows and columns as parameters. If we put a colon in any of the positions, we
say that we want all values (in our case, all rows). The list x represents our
independent variables and contains all the rows of the zero and first column (we
number from zero), and y represents our dependent variable, which contains all the
rows of the last column.

x = dataset.iloc[:,[0,1]].values

y = dataset.iloc[:,2].values

print(x)

print(y)

Splitting the dataset into a training and testing set

We have loaded the data file, we need to divide it into a training and a test part. For
this, we will use the sklearn library and its train_test_split method, with which we
will split the data in a ratio of 75:25.

from sklearn.model_selection import train_test_split

x_train, x_test, y_train, y_test =

train_test_split(x,y,test_size=0.25, random_state=0)

In this step, we created the variables x_train, x_test, y_train, y_test. As for y_train,
y_test, the values are in the range 0-1 and therefore it is not necessary to modify
them, but x_train, x_test must undergo standardization before training. For this
purpose, we can use the StandardScaler class from the sklearn library, which
subtracts the mean from their values and divides them by the standard deviation to
adjust the data to unit variance.

199

#normalizacia

from sklearn.preprocessing import StandardScaler

sc = StandardScaler()

x_train = sc.fit_transform(x_train)

x_test = sc.fit_transform(x_test)

Import of evaluation metrics

Before we start with the implementation of the classifiers, we can import the
evaluation metrics. We import the confusion matrix, accuracy, precision, recall and
harmonic mean F1.

Evalvácia

from sklearn import metrics

from sklearn.metrics import confusion_matrix, accuracy_score,

precision_score, recall_score, f1_score

Next, we create a con_matrix function that accepts the predicted values as a
parameter and renders the confusion matrix

def conf_matrix(y_pred):

 cm = confusion_matrix(y_test, y_pred)

 names = ['True Neg','False Pos','False Neg','True Pos']

 counts = ["{0:0.0f}".format(value) for value in

 cm.flatten()]

 percentages = ["{0:.2%}".format(value) for value in

 cm.flatten()/np.sum(cm)]

 labels = [f"{v1}\n{v2}\n{v3}" for v1, v2, v3 in

 zip(names,counts,percentages)]

 labels = np.asarray(labels).reshape(2,2)

 ax = sns.heatmap(cm, annot=labels, fmt='', cmap='Blues')

 ax.set_title('Matica zmätku');

 ax.set_xlabel('\nPredikcie')

 ax.set_ylabel('Hodnoty');

 ax.xaxis.set_ticklabels(['Nezakúpil','Zakúpil'])

 ax.yaxis.set_ticklabels(['Nezakúpil','Zakúpil'])

200

 plt.show()

Implementation of Logistic Regression

In the basic version, logistic regression can be implemented by calling the
LogisticRegression class. Subsequently, we can use the imported metrics to
determine the performance of our classifier. The ratio of the number of correct
predictions to the total number of predictions is 85.6%, the rate of correctly
identified positive cases out of all predicted positive cases is 82.2%, the rate of
correctly identified positive cases out of all actual positive cases is 80.6%, and the
harmonic mean rate is 81.4%. By calling the conf_matrix function, we can output
the confusion matrix. Our model correctly classified 135 cases and incorrectly 17
for the class it did not purchase. The rest of the test data therefore belongs to the
purchased class, while the model estimated 79 of them correctly and 19 incorrectly.

from sklearn.linear_model import LogisticRegression

model = LogisticRegression().fit(x_train,y_train)

y_pred = model.predict(x_test)

#Celkové vyhodnotenie modelu

print('Accuracy: '+ f'{accuracy_score(y_test,y_pred)}')

print('Precision: '+ f'{precision_score(y_test,y_pred)}')

print('Recall: '+ f'{recall_score(y_test,y_pred)}')

print('F1-score: '+ f'{f1_score(y_test,y_pred)}')

conf_matrix(y_pred)

Implementation of the Naïve Bayes classifier

The ratio of the number of correct predictions to the total number of predictions is
88.8%, the rate of correctly identified positive cases out of all predicted positive
cases is 85.7%, the rate of correctly identified positive cases out of all actual
positive cases is 85.7%, and the harmonic mean rate is 85.7%.

By calling the conf_matrix function, we can output the confusion matrix. Our model
correctly classified 138 cases for the class did not buy and incorrectly 14.
Therefore, the rest of the test data belongs to the class purchased, while the model
estimated 84 of them correctly and 14 incorrectly.

from sklearn.naive_bayes import GaussianNB

model = GaussianNB().fit(x_train,y_train)

y_pred = model.predict(x_test)

201

#Celkové vyhodnotenie modelu

print('Accuracy: '+ f'{accuracy_score(y_test,y_pred)}')

print('Precision: '+ f'{precision_score(y_test,y_pred)}')

print('Recall: '+ f'{recall_score(y_test,y_pred)}')

print('F1-score: '+ f'{f1_score(y_test,y_pred)}')

conf_matrix(y_pred)

Implementation of KNN classifier

To implement the KNN classifier, it is important to find the optimal value of K. Let's
try values of K from 1 to 40 and try to find out at which value the classifier achieves
the highest accuracy. As we can see from the graph, the optimal number of nearest
neighbors will be 2.

from sklearn.neighbors import KNeighborsClassifier

test_error_rates = []

for k in range(1,40):

 model = KNeighborsClassifier(n_neighbors=k)

 model.fit(x_train,y_train)

 y_pred = model.predict(x_test)

 test_error = 1 - accuracy_score(y_test,y_pred)

 test_error_rates.append(test_error)

min_value = min(test_error_rates)

print(test_error_rates.index(min_value))

plt.figure(figsize=(6,4),dpi=100)

plt.plot(range(1,40),test_error_rates,label='Test Error')

plt.legend()

plt.ylabel('Error Rate')

plt.xlabel("K Value")

The ratio of the number of correct predictions to the total number of predictions is
90%, the rate of correctly identified positive cases out of all predicted positive
cases is 88.5%, the rate of correctly identified positive cases out of all actual
positive cases is 86.7%, and the harmonic mean of the rates is 87. 6%.

By calling the conf_matrix function, we can print out the confusion matrix. Our
model correctly classified 141 cases for the class did not buy and incorrectly 11.

202

The rest of the test data therefore belongs to the class bought, while the model
estimated 85 of them correctly and 13 incorrectly.

model = KNeighborsClassifier(n_neighbors=4)

model.fit(x_train,y_train)

y_pred = model.predict(x_test)

#Celkové vyhodnotenie modelu

print('Accuracy: '+ f'{accuracy_score(y_test,y_pred)}')

print('Precision: '+ f'{precision_score(y_test,y_pred)}')

print('Recall: '+ f'{recall_score(y_test,y_pred)}')

print('F1-score: '+ f'{f1_score(y_test,y_pred)}')

conf_matrix(y_pred)

Implementation of SVM

Our data is linear, so we will use the linear SVM implementation.

The ratio of the number of correct predictions to the total number of predictions is
90.4%, the rate of correctly identified positive cases from all predicted positive
cases is 88.5%, the rate of correctly identified positive cases from all actual positive
cases is 86.7%, and their harmonic mean is 87.6%. By calling the conf_matrix
function, we can output the confusion matrix. Our model correctly classified 141
cases for the class did not buy and incorrectly 11. The rest of the test data
therefore belongs to the class bought, while the model estimated 85 of them
correctly and 13 incorrectly.

from sklearn.svm import SVC

model =SVC(kernel='linear').fit(x_train,y_train)

svm_y_pred = model.predict(x_test)

#Celkové vyhodnotenie modelu

print('Accuracy: '+ f'{accuracy_score(y_test,y_pred)}')

print('Precision: '+ f'{precision_score(y_test,y_pred)}')

print('Recall: '+ f'{recall_score(y_test,y_pred)}')

print('F1-score: '+ f'{f1_score(y_test,y_pred)}')

conf_matrix(y_pred)

Implementation of the CART decision tree

To implement a decision tree using the sklearn library, we call the
DecisionTreeClassifier class. The default metric for measuring the quality of

203

distribution is the Gini index. If we wanted to change the metric to entropy, it would
be enough to insert the criterion parameter with the entropy value into the
classifier.

We already used the random_state parameter when dividing the dataset into
training and testing sets. This parameter controls how the data will be divided and
can take the value none, which will give us a random distribution of data at each
start, we can insert an integer into it. A value from 0 to 42 is usually chosen to
ensure a random but always equal distribution of data. In other words, if we give the
random_state parameter an integer value, we specify randomness in the selection.
However, the data selection will be the same after each run. Likewise, if we want to
control the randomness of the split in decision trees or random forests, the
random_state parameter is useful.

The ratio of the number of correct predictions to the total number of predictions is
87.6%, the rate of correctly identified positive cases from all predicted positive
cases is 86%, the rate of correctly identified positive cases from all actual positive
cases is 81.6%, and their harmonic mean is 83. 7%. By calling the conf_matrix
function, we can output the confusion matrix. Our model correctly classified 139
cases for the class did not buy and incorrectly 13. Therefore, the rest of the test
data belongs to the class bought, while the model estimated 80 of them correctly
and 18 incorrectly.

from sklearn.tree import DecisionTreeClassifier

model= DecisionTreeClassifier(random_state=0).fit(x_train,

y_train)

y_pred = model.predict(x_test)

#Celkové vyhodnotenie modelu

print('Accuracy: '+ f'{accuracy_score(y_test,y_pred)}')

print('Precision: '+ f'{precision_score(y_test,y_pred)}')

print('Recall: '+ f'{recall_score(y_test,y_pred)}')

print('F1-score: '+ f'{f1_score(y_test,y_pred)}')

conf_matrix(y_pred)

204

Ensemble learning

Chapter 7

205

7.1 The introduction into ensemble learning

🕮 7.1.1

Ensemble learning

So far we have shown how to train one specific model. In practice, the concept of
ensemble learning (Ensemble Learning) is used more, the idea of which is to train
several models using the same algorithm. The combination of several models
makes it possible to achieve a better classification, compared to the use of a single
classifier.

According to the method of work, ensemble learning methods can be divided into
sequential and parallel.

Sequential methods

• They build the model sequentially, step by step.
• They support dependency between base classifiers
• For example Adaboost - multiple weak classifiers are trained sequentially

and each model tries to correct the errors of the previous model using
weighting. This process is iteratively repeated until a stopping condition is
met, which can be, for example, the maximum number of iterations or a
certain accuracy limit. The resulting prediction is a combination of all
individual models with weights proportional to accuracy.

Parallel methods

• Classifiers work in parallel.
• They support independence between classifiers.
• The resulting prediction is given by averaging or voting.
• Random Forest, Gradient Boosting.
• Built on random selections.

According to the type of classifiers used, ensemble learning methods can be
divided into homogeneous and heterogeneous.

Homogeneous methods

• All models are of the same type (eg only decision trees).
• Bagging, Boosting.
• The resulting prediction is given by majority voting or averaging.

206

Heterogeneous methods

• Models of different types.
• Stacking.
• The resulting prediction is given by weighted voting or linear combination.

📝 7.1.2

Sequential methods support dependency between underlying classifiers

• yes
• no

📝 7.1.3

Parallel methods support dependency between underlying classifiers

• yes
• no

📝 7.1.4

The resulting prediction of parallel models is a combination of all individual models
with weights proportional to accuracy.

• no
• yes

📝 7.1.5

The resulting prediction of sequential models is given by the majority vote

• no
• yes

207

🕮 7.1.6

Bagging

The term Bagging originated from the words Bootstrap Aggregating. Bootstrap is
based on random sampling of small parts of the dataset, and these sets can be
replaced. Such random sampling can help to better interpret the standard deviation
in a dataset.

Bagging is a simple method of training a number of different models on different
randomly selected subsets of the training set and then combining their predictions
using voting. Thus, the data is first divided into several training and test sets, on
which the models are subsequently trained and the prediction of the majority is the
result.

Advantages of bagging:

• increases the accuracy score of the model,
• can handle overfitting,
• reduces distortion and dispersion errors,
• simple implementation.

🕮 7.1.7

BOOSTING

To understand Boosting, it is important to realize that Boosting is a generic
algorithm rather than a specific model. Boosting is a learning method that
combines a group of weak classifiers into a strong classifier to minimize training
errors. In contrast to bagging, we can talk about "teamwork" as the models run in
parallel. In boosting, a random sample of data is taken, fitted with a model, and
then trained sequentially—that is, each model tries to compensate for the
weaknesses of its predecessor. At each iteration, the weak rules from each
individual classifier are combined into a single, strong prediction rule.

Adaboost (Adaptive Boosting)

Adaboost is a boosting-based technique that is based on combining multiple weak
classifiers into one strong classifier. A single split decision tree can be a weak
classifier in Adaboost. At the moment the first distribution is created, all
observations are given equal weight. Thus, for error correction, misclassified cases
receive a higher weight.

208

Gradient Boosting

Like Adaboost, Gradient Boosting also tries to improve on its predecessor but uses
a slightly different method. It does not try to change the weights for misclassified
cases but tries to correct its passer in order to reduce the error rate. A modification
of Gradient Boosting is the so-called XGBoost, which consists of boosted decision
trees for higher performance.

🕮 7.1.8

Stacking

Stacking is another method of ensemble learning. It is based on the composition of
classification models and consists of two-layer estimates. The first layer is
composed of all the underlying models that are used to predict the outputs on the
test data sets. The second layer consists of a meta classifier that takes all the
predictions of the underlying models as input and generates new predictions. The
advantage of stacking is that it can take advantage of a set of well-performing
models for a classification or regression task and produce predictions that perform
better than any single model in the ensemble.

