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1.1 Introduction 

📝 1.1.1 

The Knowledge Discovery - Introduction course focuses on the process of 
transforming data into information and knowledge. We will introduce the field of 
knowledge discovery and practically demonstrate how to extract relevant 
information from data. The course will consist of a theoretical and a practical part 
that complements each other. We will work in the Python programming language 
and will use mainly the Pandas library. 

📝 1.1.2 

As more and more data accumulates in today's world, whether on the web or other 
physical storage, the concept of Knowledge Discovery has emerged. By knowledge 
we mean information that is of value to us. Knowledge discovery can be 
understood as a process that consists of the following tasks: 

• data selection, 
• data preprocessing, 
• data transformation, 
• data analysis, 
• results interpretation. 

We can discover knowledge from a variety of sources, whether from databases, 
texts, or the web. 

📝 1.1.3 

The CRISP-DM methodology is one of the most widely used and versatile 
techniques for solving various knowledge discovery tasks. The methodology 
consists of the following steps: 

• business understanding, 
• data understanding, 
• data preparation, 
• modeling, 
• evaluation, 
• deployment. 

The order of the phases is not fixed and the process is cyclical. It was primarily 
developed for project management in the area of knowledge discovery from 
databases, but is applicable to other areas as well. 
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📝 1.1.4 

First, let's recall the work with data files. In our course, we will mainly use the 
pandas library for working with data. Pandas contains a function for importing data 
from different data files and writing back the output in different formats. Most 
often we will encounter files saved in CSV format. Reading a CSV file and then 
transforming it into a tabular structure (DataFrame) is built into the pandas library 
using the read_csv() function. The first parameter of the function is the path to the 
file and the second parameter is sep, which we can use to define a separator. The 
default value in the case of the separator is a comma but we will often encounter a 
semicolon. 

 
import pandas as pd 

 

df = pd.read_csv('dataset.csv', sep=';') 

📝 1.1.5 

Another option is to use datasets provided by other libraries such as Sklearn. This 
library is designed to work with machine learning and provides multiple datasets for 
different tasks. Using the import function, we can import different data files. Then 
we just need to create an instance of that data file and load it into the pandas 
DataFrame structure. In the final result, the result is similar to if we loaded a CSV 
file from disk. 

 
import pandas as pd 

from sklearn.datasets import load_wine 

 

wine = load_wine() 

df = pd.DataFrame(data=wine.data, columns= wine.feature_names) 

print(df) 

 
Program output: 
     alcohol  malic_acid   ash  alcalinity_of_ash  magnesium  

total_phenols  \ 

0      14.23        1.71  2.43               15.6      127.0           

2.80    

1      13.20        1.78  2.14               11.2      100.0           

2.65    

2      13.16        2.36  2.67               18.6      101.0           

2.80    

3      14.37        1.95  2.50               16.8      113.0           

3.85    
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4      13.24        2.59  2.87               21.0      118.0           

2.80    

..       ...         ...   ...                ...        ...            

...    

173    13.71        5.65  2.45               20.5       95.0           

1.68    

174    13.40        3.91  2.48               23.0      102.0           

1.80    

175    13.27        4.28  2.26               20.0      120.0           

1.59    

176    13.17        2.59  2.37               20.0      120.0           

1.65    

177    14.13        4.10  2.74               24.5       96.0           

2.05    

 

     flavanoids  nonflavanoid_phenols  proanthocyanins  

color_intensity   hue  \ 

0          3.06                  0.28             2.29             

5.64  1.04    

1          2.76                  0.26             1.28             

4.38  1.05    

2          3.24                  0.30             2.81             

5.68  1.03    

3          3.49                  0.24             2.18             

7.80  0.86    

4          2.69                  0.39             1.82             

4.32  1.04    

..          ...                   ...              ...              

...   ...    

173        0.61                  0.52             1.06             

7.70  0.64    

174        0.75                  0.43             1.41             

7.30  0.70    

175        0.69                  0.43             1.35            

10.20  0.59    

176        0.68                  0.53             1.46             

9.30  0.60    

177        0.76                  0.56             1.35             

9.20  0.61    

 

     od280/od315_of_diluted_wines  proline   

0                            3.92   1065.0   

1                            3.40   1050.0   

2                            3.17   1185.0   
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3                            3.45   1480.0   

4                            2.93    735.0   

..                            ...      ...   

173                          1.74    740.0   

174                          1.56    750.0   

175                          1.56    835.0   

176                          1.62    840.0   

177                          1.60    560.0   

 

[178 rows x 13 columns] 

 

📝 1.1.6 

Load from the sklearn library the dataset california_housing, which contains 
records of homes in California. You fetch the dataset into an object using the 
fetch_california_housing() function. List the names of the columns that the dataset 
contains, separated by commas. 

 
import pandas as pd 

from sklearn.datasets import fetch_california_housing 

1.2 Data description 

📝 1.2.1 

In the first part, we focus on the fact that it needs to understand what data we've 
actually retrieved. However, we don't go in-depth yet because we are trying to first 
understand the problem we want to solve in the context of the whole dataset and 
the meaning of the variables. So let's look first at how much and what type of data 
is in the data set. This is what the shape() and info() functions that describe the 
data set are there to do. Shape returns information about the number of rows and 
columns. Info also provides more detailed information about the individual 
variables and especially their data type. 

 
import pandas as pd 

from sklearn.datasets import load_wine 

 

wine = load_wine() 

df = pd.DataFrame(data=wine.data, columns= wine.feature_names) 

print(df.info()) 

 
Program output: 
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RangeIndex: 178 entries, 0 to 177 

Data columns (total 13 columns): 

 #   Column                        Non-Null Count  Dtype   

---  ------                        --------------  -----   

 0   alcohol                       178 non-null    float64 

 1   malic_acid                    178 non-null    float64 

 2   ash                           178 non-null    float64 

 3   alcalinity_of_ash             178 non-null    float64 

 4   magnesium                     178 non-null    float64 

 5   total_phenols                 178 non-null    float64 

 6   flavanoids                    178 non-null    float64 

 7   nonflavanoid_phenols          178 non-null    float64 

 8   proanthocyanins               178 non-null    float64 

 9   color_intensity               178 non-null    float64 

 10  hue                           178 non-null    float64 

 11  od280/od315_of_diluted_wines  178 non-null    float64 

 12  proline                       178 non-null    float64 

dtypes: float64(13) 

memory usage: 18.2 KB 

None 

 

The dataset contains 178 rows and 13 columns. All variables are in decimal format. 
We can also see that the dataset does not contain any missing values. 

📝 1.2.2 

Load from the sklearn library the dataset california_housing that contains records 
of homes in California. You fetch the dataset into an object using the 
fetch_california_housing() function. Examine the dataset and select the correct 
assertions about the retrieved data. 

 
import pandas as pd 

from sklearn.datasets import fetch_california_housing 

 

cali = fetch_california_housing() 

 

df = pd.DataFrame(data=cali.data, columns=cali.feature_names) 

print(df.info()) 

 
Program output: 
 

RangeIndex: 20640 entries, 0 to 20639 

Data columns (total 8 columns): 
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 #   Column      Non-Null Count  Dtype   

---  ------      --------------  -----   

 0   MedInc      20640 non-null  float64 

 1   HouseAge    20640 non-null  float64 

 2   AveRooms    20640 non-null  float64 

 3   AveBedrms   20640 non-null  float64 

 4   Population  20640 non-null  float64 

 5   AveOccup    20640 non-null  float64 

 6   Latitude    20640 non-null  float64 

 7   Longitude   20640 non-null  float64 

dtypes: float64(8) 

memory usage: 1.3 MB 

None 

 

• the dataset consists of 20640 rows and 8 columns 
• all variables are in decimal format 
• the dataset consists of 8 rows and 20640 columns 
• all variables are in integer format 
• the dataset also contains missing values 
• the dataset does not contain missing values 

📝 1.2.3 

Most often, the first functions used when loading a data file are the pandas head() 
and tail() library functions. These functions display the first and last 5 records of 
the dataset. In this way, we are able to quickly explore a small portion of the data 
file. 

 
import pandas as pd 

from sklearn.datasets import load_wine 

 

wine = load_wine() 

df = pd.DataFrame(data=wine.data, columns= wine.feature_names) 

print('Head:') 

print(df.head()) 

print('Tail:') 

print(df.tail()) 

 
Program output: 
Head: 

   alcohol  malic_acid   ash  alcalinity_of_ash  magnesium  

total_phenols  \ 

0    14.23        1.71  2.43               15.6      127.0           

2.80    
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1    13.20        1.78  2.14               11.2      100.0           

2.65    

2    13.16        2.36  2.67               18.6      101.0           

2.80    

3    14.37        1.95  2.50               16.8      113.0           

3.85    

4    13.24        2.59  2.87               21.0      118.0           

2.80    

 

   flavanoids  nonflavanoid_phenols  proanthocyanins  

color_intensity   hue  \ 

0        3.06                  0.28             2.29             

5.64  1.04    

1        2.76                  0.26             1.28             

4.38  1.05    

2        3.24                  0.30             2.81             

5.68  1.03    

3        3.49                  0.24             2.18             

7.80  0.86    

4        2.69                  0.39             1.82             

4.32  1.04    

 

   od280/od315_of_diluted_wines  proline   

0                          3.92   1065.0   

1                          3.40   1050.0   

2                          3.17   1185.0   

3                          3.45   1480.0   

4                          2.93    735.0   

Tail: 

     alcohol  malic_acid   ash  alcalinity_of_ash  magnesium  

total_phenols  \ 

173    13.71        5.65  2.45               20.5       95.0           

1.68    

174    13.40        3.91  2.48               23.0      102.0           

1.80    

175    13.27        4.28  2.26               20.0      120.0           

1.59    

176    13.17        2.59  2.37               20.0      120.0           

1.65    

177    14.13        4.10  2.74               24.5       96.0           

2.05    

 

     flavanoids  nonflavanoid_phenols  proanthocyanins  

color_intensity   hue  \ 
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173        0.61                  0.52             1.06              

7.7  0.64    

174        0.75                  0.43             1.41              

7.3  0.70    

175        0.69                  0.43             1.35             

10.2  0.59    

176        0.68                  0.53             1.46              

9.3  0.60    

177        0.76                  0.56             1.35              

9.2  0.61    

 

     od280/od315_of_diluted_wines  proline   

173                          1.74    740.0   

174                          1.56    750.0   

175                          1.56    835.0   

176                          1.62    840.0   

177                          1.60    560.0   

 

📝 1.2.4 

Load from the sklearn library the dataset california_housing, which contains records 
of homes in California. You fetch the dataset into an object using the 
fetch_california_housing() function. The dataset consists of the following 
variables: 

• MedInc - the median income of homes in the block 
• HouseAge - the median age of houses in the block 
• AveRooms - the average number of rooms per household 
• AveBedrms - the average number of bedrooms per household 
• Population - population 
• AveOccup - the average number of household members 
• Latitude - latitude of the block 
• Longitude - longitude of the block 

Examine the dataset and list the median age of the houses of the first block. Round 
the result to a whole number. 

 
import pandas as pd 

from sklearn.datasets import fetch_california_housing 

 

cali = fetch_california_housing() 

 

df = pd.DataFrame(data=cali.data, columns=cali.feature_names) 

print(df.head()) 
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Program output: 
   MedInc  HouseAge  AveRooms  AveBedrms  Population  AveOccup  

Latitude  \ 

0  8.3252      41.0  6.984127   1.023810       322.0  2.555556     

37.88    

1  8.3014      21.0  6.238137   0.971880      2401.0  2.109842     

37.86    

2  7.2574      52.0  8.288136   1.073446       496.0  2.802260     

37.85    

3  5.6431      52.0  5.817352   1.073059       558.0  2.547945     

37.85    

4  3.8462      52.0  6.281853   1.081081       565.0  2.181467     

37.85    

 

   Longitude   

0    -122.23   

1    -122.22   

2    -122.24   

3    -122.25   

4    -122.25   

 

📝 1.2.5 

The describe() function provides purely descriptive information about the dataset. 
This information includes statistics that summarize the variables, their variance, the 
presence of missing values, and their shape. The basic statistics displayed by the 
function are as follows: 

• count - number of elements, 
• mean - average value, 
• std - standard deviation of observations 
• min - minimum value 
• 25% - lower quartile 
• 50% - median 
• 75% - upper quartile 
• max - maximum value 

 
import pandas as pd 

from sklearn.datasets import load_wine 

 

wine = load_wine() 

df = pd.DataFrame(data=wine.data, columns= wine.feature_names) 

print(df.describe()) 
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Program output: 
          alcohol  malic_acid         ash  alcalinity_of_ash   

magnesium  \ 

count  178.000000  178.000000  178.000000         178.000000  

178.000000    

mean    13.000618    2.336348    2.366517          19.494944   

99.741573    

std      0.811827    1.117146    0.274344           3.339564   

14.282484    

min     11.030000    0.740000    1.360000          10.600000   

70.000000    

25%     12.362500    1.602500    2.210000          17.200000   

88.000000    

50%     13.050000    1.865000    2.360000          19.500000   

98.000000    

75%     13.677500    3.082500    2.557500          21.500000  

107.000000    

max     14.830000    5.800000    3.230000          30.000000  

162.000000    

 

       total_phenols  flavanoids  nonflavanoid_phenols  

proanthocyanins  \ 

count     178.000000  178.000000            178.000000       

178.000000    

mean        2.295112    2.029270              0.361854         

1.590899    

std         0.625851    0.998859              0.124453         

0.572359    

min         0.980000    0.340000              0.130000         

0.410000    

25%         1.742500    1.205000              0.270000         

1.250000    

50%         2.355000    2.135000              0.340000         

1.555000    

75%         2.800000    2.875000              0.437500         

1.950000    

max         3.880000    5.080000              0.660000         

3.580000    

 

       color_intensity         hue  

od280/od315_of_diluted_wines      proline   

count       178.000000  178.000000                    

178.000000   178.000000   
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mean          5.058090    0.957449                      

2.611685   746.893258   

std           2.318286    0.228572                      

0.709990   314.907474   

min           1.280000    0.480000                      

1.270000   278.000000   

25%           3.220000    0.782500                      

1.937500   500.500000   

50%           4.690000    0.965000                      

2.780000   673.500000   

75%           6.200000    1.120000                      

3.170000   985.000000   

max          13.000000    1.710000                      

4.000000  1680.000000   

 

📝 1.2.6 

Load from the sklearn library the dataset california_housing, which contains 
records of homes in California. You fetch the dataset into an object using the 
fetch_california_housing() function. What is the average value of the average 
population per block? 

 
import pandas as pd 

from sklearn.datasets import fetch_california_housing 

 

cali = fetch_california_housing() 

 

df = pd.DataFrame(data=cali.data, columns=cali.feature_names) 

print(df.describe()) 

 
Program output: 
             MedInc      HouseAge      AveRooms     AveBedrms    

Population  \ 

count  20640.000000  20640.000000  20640.000000  20640.000000  

20640.000000    

mean       3.870671     28.639486      5.429000      1.096675   

1425.476744    

std        1.899822     12.585558      2.474173      0.473911   

1132.462122    

min        0.499900      1.000000      0.846154      0.333333      

3.000000    

25%        2.563400     18.000000      4.440716      1.006079    

787.000000    
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50%        3.534800     29.000000      5.229129      1.048780   

1166.000000    

75%        4.743250     37.000000      6.052381      1.099526   

1725.000000    

max       15.000100     52.000000    141.909091     34.066667  

35682.000000    

 

           AveOccup      Latitude     Longitude   

count  20640.000000  20640.000000  20640.000000   

mean       3.070655     35.631861   -119.569704   

std       10.386050      2.135952      2.003532   

min        0.692308     32.540000   -124.350000   

25%        2.429741     33.930000   -121.800000   

50%        2.818116     34.260000   -118.490000   

75%        3.282261     37.710000   -118.010000   

max     1243.333333     41.950000   -114.310000   

 

📝 1.2.7 

Load from the sklearn library the dataset california_housing, which contains 
records of homes in California. You fetch the dataset into an object using the 
fetch_california_housing() function. What is the median age of the houses in the 
block? Print the result as an integer. 

 
import pandas as pd 

from sklearn.datasets import fetch_california_housing 

 

cali = fetch_california_housing() 

 

df = pd.DataFrame(data=cali.data, columns=cali.feature_names) 

print(df.describe()) 

 
Program output: 
             MedInc      HouseAge      AveRooms     AveBedrms    

Population  \ 

count  20640.000000  20640.000000  20640.000000  20640.000000  

20640.000000    

mean       3.870671     28.639486      5.429000      1.096675   

1425.476744    

std        1.899822     12.585558      2.474173      0.473911   

1132.462122    

min        0.499900      1.000000      0.846154      0.333333      

3.000000    
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25%        2.563400     18.000000      4.440716      1.006079    

787.000000    

50%        3.534800     29.000000      5.229129      1.048780   

1166.000000    

75%        4.743250     37.000000      6.052381      1.099526   

1725.000000    

max       15.000100     52.000000    141.909091     34.066667  

35682.000000    

 

           AveOccup      Latitude     Longitude   

count  20640.000000  20640.000000  20640.000000   

mean       3.070655     35.631861   -119.569704   

std       10.386050      2.135952      2.003532   

min        0.692308     32.540000   -124.350000   

25%        2.429741     33.930000   -121.800000   

50%        2.818116     34.260000   -118.490000   

75%        3.282261     37.710000   -118.010000   

max     1243.333333     41.950000   -114.310000   

 

📝 1.2.8 

Another way to get to know a data file is to use the info() function. This function 
gives us more concise information than describe() but we get information about 
the data type of the variables. We can also use the info() function to find out if the 
data file contains missing values. 

 
import pandas as pd 

from sklearn.datasets import load_wine 

 

wine = load_wine() 

df = pd.DataFrame(data=wine.data, columns= wine.feature_names) 

print(df.info()) 

 
Program output: 
 

RangeIndex: 178 entries, 0 to 177 

Data columns (total 13 columns): 

 #   Column                        Non-Null Count  Dtype   

---  ------                        --------------  -----   

 0   alcohol                       178 non-null    float64 

 1   malic_acid                    178 non-null    float64 

 2   ash                           178 non-null    float64 

 3   alcalinity_of_ash             178 non-null    float64 
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 4   magnesium                     178 non-null    float64 

 5   total_phenols                 178 non-null    float64 

 6   flavanoids                    178 non-null    float64 

 7   nonflavanoid_phenols          178 non-null    float64 

 8   proanthocyanins               178 non-null    float64 

 9   color_intensity               178 non-null    float64 

 10  hue                           178 non-null    float64 

 11  od280/od315_of_diluted_wines  178 non-null    float64 

 12  proline                       178 non-null    float64 

dtypes: float64(13) 

memory usage: 18.2 KB 

None 

 

📝 1.2.9 

Load from the sklearn library the dataset california_housing, which contains 
records of homes in California. You fetch the dataset into an object using the 
fetch_california_housing() function. What data type are most of the variables in the 
dataset? 

 
import pandas as pd 

from sklearn.datasets import fetch_california_housing 

 

cali = fetch_california_housing() 

 

df = pd.DataFrame(data=cali.data, columns=cali.feature_names) 

print(df.info()) 

 
Program output: 
 

RangeIndex: 20640 entries, 0 to 20639 

Data columns (total 8 columns): 

 #   Column      Non-Null Count  Dtype   

---  ------      --------------  -----   

 0   MedInc      20640 non-null  float64 

 1   HouseAge    20640 non-null  float64 

 2   AveRooms    20640 non-null  float64 

 3   AveBedrms   20640 non-null  float64 

 4   Population  20640 non-null  float64 

 5   AveOccup    20640 non-null  float64 

 6   Latitude    20640 non-null  float64 

 7   Longitude   20640 non-null  float64 

dtypes: float64(8) 
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memory usage: 1.3 MB 

None 
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Exploratory analysis 

Chapter 2 
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2.1 Descriptive statistics 

📝 2.1.1 

Exploratory analysis methods are used to discover patterns, generate hypotheses, 
recognize specificities, and illustrate phenomena. The starting point of any data 
analysis is the data itself. The data do not have to satisfy certain conditions (e.g. 
the data must have been obtained by random sampling). The main point is to 
represent the data in different ways and to recognise regularities and irregularities, 
structures, patterns and peculiarities. In the exploratory process, we look for 
interesting configurations and relationships in the data. If we want to compare two 
or more variables, we need appropriate quantities that will numerically characterize 
the basic properties of the frequency distribution. Such amounts are called  
numerical characteristics and can be divided into three categories: 

• position characteristics - represent a certain level or position of the character 
around which the residuals are concentrated. This position is measured by 
different kinds of mean values such as arithmetic, harmonic and geometric 
mean, modus, median and quantiles. 

• variability characteristics - they express the differences (variability, 
dispersion) of the values and are an important factor when comparing 
variables in which the position characteristics are identical. The best known 
are quantile, quartile and variation range, quartile deviation, mean deviation, 
proportional mean deviation, variance, standard deviation and coefficient of 
variation. 

• characteristics of skewness and peakedness measures - moment 
characteristics are required for their calculation. The best known are the 
skewness coefficient, the kurtosis coefficient and the Pearson skewness 
measure. 

📝 2.1.2 

Most descriptive statistics include Python functions. However, in order to 
understand what is behind the called function, we need to understand at least the 
mathematical notation of the statistics. Let's first introduce different averages. 

Arithmetic mean - is the sum of all given values divided by their number. In Python, 
we can use the mean() function of the statistics library to calculate it. 
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Harmonic mean - is the inverse of the arithmetic mean of the inverted values. In 
Python, we can use the harmonic_mean() function of the statistics library to 
calculate it. 

 

Geometric mean - is the product of the positive numbers is the product of the 
values squared to the number of values. The similarity to the arithmetic mean is in 
the substitution of the sum of the operation by product and division by the n-th root. 
In Python, we can use the geometric_mean() function of the statistics library to do 
the calculation. 

 

 
import pandas as pd 

import statistics as stat 

from sklearn.datasets import load_wine 

 

wine = load_wine() 

df = pd.DataFrame(data=wine.data, columns= wine.feature_names) 

print('Arithmetic mean:',stat.mean(df['magnesium'])) 

print('Harmonic mean:',stat.harmonic_mean(df['magnesium'])) 

print('Geometric mean:',stat.geometric_mean(df['magnesium'])) 

 
Program output: 
Arithmetic mean: 99.74157303370787 

Harmonic mean: 97.9056614747819 

Geometric mean: 98.79450755406194 

 

📝 2.1.3 

Load from the sklearn library the dataset california_housing, which contains 
records of homes in California. You fetch the dataset into an object using the 
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fetch_california_housing() function. What is the value of the harmonic mean of the 
age of the houses in the block? Round the result to two decimal places. 

 
import pandas as pd 

from scipy import stats 

from sklearn.datasets import fetch_california_housing 

 

cali = fetch_california_housing() 

 

df = pd.DataFrame(data=cali.data, columns=cali.feature_names) 

print(round(stats.hmean(df['HouseAge']),2)) 

 
Program output: 
20.38 

 

📝 2.1.4 

Other statistics used include the modus and median. 

Modus - represents the most frequent value occurring in the variable under study. In 
Python, we can use the mode() function of the statistics library to calculate it. 

 

Median - this is the mean value of the variable under study, with the requirement 
that the values must be arranged in a non-decreasing sequence. We have defined n 
as the number of values and xi as the value at the i-th position. Then for an even 
number of elements we calculate the median as follows: 

 

For an odd number of elements, we proceed as follows: 

 

In Python, we can use the median() function of the statistics library to calculate. 
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We distinguish three cases depending on what is the relative position of the modus, 

median and arithmetic mean of the examined variable. If , then we speak 

about symmetric frequency distribution. If , then we speak about negative 

skewness. In the case of , we speak about positive skewness. 

 
import pandas as pd 

import statistics as stat 

from sklearn.datasets import load_wine 

 

wine = load_wine() 

df = pd.DataFrame(data=wine.data, columns= wine.feature_names) 

print('Modus:',stat.mode(df['magnesium'])) 

print('Median:',stat.median(df['magnesium'])) 

 
Program output: 
Modus: 88.0 

Median: 98.0 

 

📝 2.1.5 

Use of individual position characteristics: 

• We use the mean mainly for metric variables in the case of symmetric 
distributions and the use of parametric tests. 

• We use the median for intensive variables in the case we want to know the 
centre of the data distribution, in the case of outliers and skewed 
distribution. 

• We use the modus for variables when the distribution has multiple peaks. 
• In the case of a symmetric distribution, all these characteristics are 

approximately the same. 

📝 2.1.6 

Load from the sklearn library the dataset california_housing, which contains 
records of homes in California. You fetch the dataset into an object using the 
fetch_california_housing() function. What is the most common value for the age of 
the houses in the block? Print the result as an integer. 

 
import pandas as pd 

import statistics as stat 

from sklearn.datasets import fetch_california_housing 
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cali = fetch_california_housing() 

 

df = pd.DataFrame(data=cali.data, columns=cali.feature_names) 

print(round(stat.mode(df['HouseAge']),2)) 

 
Program output: 
52.0 

 

📝 2.1.7 

Load from the sklearn library the dataset california_housing, which contains 
records of homes in California. You fetch the dataset into an object using the 
fetch_california_housing() function. Examine the variable age of the houses in the 
block and identify the frequency distribution of the variable being examined. List the 
values of the mean, median, and mode rounded to two decimal places in the 
following form: 

positive skewness, mean: 42.53, median: 22.36, modus: 30.00 

 
import pandas as pd 

import statistics as stat 

from sklearn.datasets import fetch_california_housing 

 

cali = fetch_california_housing() 

 

df = pd.DataFrame(data=cali.data, columns=cali.feature_names) 

print(round(stat.mode(df['HouseAge']),2)) 

print(round(stat.mean(df['HouseAge']),2)) 

print(round(stat.median(df['HouseAge']),2)) 

 
Program output: 
52.0 

28.64 

29.0 

 

📝 2.1.8 

Quantiles are numerical values that divide the sorted values of the variable under 
study in non-decreasing order into k equal parts. The best-known are the median 
(k=2), quartiles (k=4), deciles (k=10) and percentiles (k=100). 

Quartiles represent percentiles with levels of 25%, 50% and 75%. Quartiles divide 
the set into 4 parts. 
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• QI is the first/lower quartile and the 25th percentile or x0,25. 
• QII is the second quartile or 50th percentile or median x0,5. 
• QIII is the third/upper quartile or 75th percentile or x0,75. 

 

 

In Python, we have two options to get the upper and lower quartile. The first option 
is the describe() function of the pandas library. The second option is to use the 
numpy library, which contains a quantile() function whose second parameter is the 
percentile. So if we specify 0.25 as a parameter the function will result in a lower 
quartile and 0.75 will result in an upper quartile. 

Using the upper and lower quartiles, we can calculate the quartile range which 
represents the region of the middle 50% of the values of the variable. This measure 
of variability is not affected by extreme values of the variable. In Python, we can use 
the iqr() function of the scipy library to calculate this or substitute the upper and 
lower quartiles into the formula: 

 

 
import pandas as pd 

import numpy as np 

from scipy import stats 

from sklearn.datasets import load_wine 

 

wine = load_wine() 

df = pd.DataFrame(data=wine.data, columns= wine.feature_names) 

print(df['magnesium'].describe()) 

print('Upper quartile:',np.quantile(df['magnesium'],0.75)) 

print('Lower quartile:',np.quantile(df['magnesium'],0.25)) 

print('Quartile range:',stats.iqr(df['magnesium'])) 

 
Program output: 
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count    178.000000 

mean      99.741573 

std       14.282484 

min       70.000000 

25%       88.000000 

50%       98.000000 

75%      107.000000 

max      162.000000 

Name: magnesium, dtype: float64 

Upper quartile: 107.0 

Lower quartile: 88.0 

Quartile range: 19.0 

 

📝 2.1.9 

Load from the sklearn library the dataset california_housing, which contains 
records of homes in California. You fetch the dataset into an object using the 
fetch_california_housing() function. Examine the variable age of houses in the 
block and calculate the quartile range of the variable being examined. Round the 
result to integers. 

 
import pandas as pd 

from scipy import stats 

from sklearn.datasets import fetch_california_housing 

 

cali = fetch_california_housing() 

 

df = pd.DataFrame(data=cali.data, columns=cali.feature_names) 

print('Quartile range:',stats.iqr(df['HouseAge'])) 

 
Program output: 
Kvartilove rozpatie: 19.0 

 

📝 2.1.10 

Data with the same mean can have different scatter. The amount of variability in 
the data can be determined by a suitably chosen variability characteristic or 
measure of dispersion. One of these is the quartile range introduced earlier. Others 
are: 

The variance - the most commonly used characteristic of variability, referred to as 
s2, which is the root mean square deviation of the measurement from the arithmetic 
mean. The larger the variance the more the data deviate from the mean. In Python, 
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we can use the var() function of the numpy library or the pvariance() function of the 
statistics library to calculate this. 

 

Standard deviation - this is the positive square root of the variance, denoted as s. 
The greater the difference in the values of the examined variable the greater the 
value of the standard deviation. In Python, we can use the std() function of the 
numpy library or the pstdev() function of the statistics library to do the calculation. 

 

Coefficient of variation - used for comparing variability and represents a relative 
measure of variability. It does not depend on the units in which the values of the 
variable are expressed, unlike the variance and standard deviation. If the value of 
the coefficient of variation is greater than 50%, the arithmetic mean loses its 
meaning because the statistical population is heterogeneous and the arithmetic 
mean cannot represent it. In this case, we use the median instead of the arithmetic 
mean as mean. In Python, we have to calculate the given coefficient using the 
following formula: 

 

 
import pandas as pd 

import statistics as stat 

import numpy as np 

from sklearn.datasets import load_wine 

 

wine = load_wine() 

df = pd.DataFrame(data=wine.data, columns= wine.feature_names) 

print('The variance 

Statistics:',stat.pvariance(df['magnesium'])) 

print('The variance Numpy:',np.var(df['magnesium'])) 

print('Standard deviation 

Statistics:',stat.pstdev(df['magnesium'])) 

print('Standard deviation Numpy:',np.std(df['magnesium'])) 
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print('Coefficient of variation 

Statistics:',stat.pstdev(df['magnesium'])/stat.mean(df['magnes

ium'])*100) 

print('Coefficient of variation 

Numpy:',np.std(df['magnesium'])/np.mean(df['magnesium'])*100) 

 
Program output: 
Rozptyl Statistics: 202.8433278626436 

Rozptyl Numpy: 202.8433278626436 

Smerodajna odchylka Statistics: 14.242307673359806 

Smerodajna odchylka Numpy: 14.242307673359806 

Variacny koeficient Statistics: 14.27920899998899 

Variacny koeficient Numpy: 14.27920899998899 

 

📝 2.1.11 

Use of individual variability characteristics: 

• Standard deviation and variance measure the dispersion around the mean 
and are used when the mean is appropriate as a measure of the mean. 

• Standard deviation and dispersion are strongly affected by outliers, so in this 
case, we prefer the quartile range, median absolute deviation, and mean 
absolute deviation from the median, respectively. 

• In the case of a strongly skewed distribution, the standard deviation and 
variance do not provide good information about the dispersion of the data. 

• In case we want to assess the relative magnitude of the dispersion of the 
data from the mean we use the coefficient of variation. 

📝 2.1.12 

Load from the sklearn library the dataset california_housing, which contains 
records of homes in California. You fetch the dataset into an object using the 
fetch_california_housing() function. Examine the variable age of the houses in the 
block to see if the coefficient of variation is greater than 50%. List the yes/no 
values and write the result as a percentage rounded to two decimal places. For 
example: 

yes, 58.56% 

 
import pandas as pd 

import numpy as np 

from sklearn.datasets import fetch_california_housing 

 

cali = fetch_california_housing() 
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df = pd.DataFrame(data=cali.data, columns=cali.feature_names) 

print('Variacny 

koeficient:',round(np.std(df['HouseAge'])/np.mean(df['HouseAge

'])*100,2)) 

 
Program output: 
Variacny koeficient: 43.94 

 

📝 2.1.13 

A final option in descriptive statistics is to look at the shape of the data distribution 
using skewness and kurtosis. 

The skewness a3 measures the degree of asymmetry in the distribution of a 
variable. A positive value means that the mean is greater than the median, so most 
of the values are less than the mean. In this case, the distribution is skewed to the 
left. A negative value means that the median is greater than the mean and hence 
most values are greater than the mean. In this case, the distribution is skewed to 
the right. Values close to 0 indicate a symmetric distribution, which means that the 
mean and median are equal. In Python, we can use the skew() function of the scipy 
library to calculate this. It is calculated as follows: 

 

where 
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Kurtosis a4 measures the degree of steepness of the distribution of a variable. A 
positive value means that the distribution is more skewed. A negative value means 
that the distribution is flatter. In Python, we can use the  kurtosis() function of the 
scipy library to calculate this. It is given by the relation 

 

 

 
import pandas as pd 

from scipy import stats 

from sklearn.datasets import load_wine 

 

wine = load_wine() 

df = pd.DataFrame(data=wine.data, columns= wine.feature_names) 

print('Skewness:',stats.skew(df['magnesium'])) 

print('Kurtosis:',stats.kurtosis(df['magnesium'], 

fisher=True)) 
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Program output: 
Skewness: 1.088914887210701 

Kurtosis: 2.0128060084773907 

 

📝 2.1.14 

If we have non-zero values for the result of skewness and skewness, then it is 
obvious that the data under study do not have a normal distribution. However, it 
may be that the values are close enough, but not quite equal to 0. We can use the 
Shapiro-Wilk test to estimate the probability that the data under study have a 
normal distribution. The null hypothesis of the Shapiro-Wilk test is that the data 
have a normal distribution. If the resulting p-value is less than or equal to 0.05, we 
reject the null hypothesis and assume that the data under study do not have a 
normal distribution. In Python, we can use the shapiro() function of the scipy library 
to perform the calculation. 

 

Using individual shape characteristics: 

• We use skewness if we want to see if lower values are more frequent than 
higher values or vice versa. 

• We use kurtosis if we want to see how the values of a variable actually 
cluster around the mean. 

 
import pandas as pd 

from scipy import stats 

from sklearn.datasets import load_wine 

 

wine = load_wine() 

df = pd.DataFrame(data=wine.data, columns= wine.feature_names) 

p_value = round(stats.shapiro(df['magnesium'])[1],4) 

if p_value<=0.05: 

  print('p =',p_value, 'the null hypothesis is rejected') 

else: 

  print('p =',p_value, 'the null hypothesis is not rejected') 

 
Program output: 
p = 0.0 the null hypothesis is rejected 
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📝 2.1.15 

Load from the sklearn library the dataset california_housing, which contains 
records of homes in California. You fetch the dataset into an object using the 
fetch_california_housing() function. Examine the variable age of the houses in the 
block to see if the variable has a normal distribution. Print if it does/does not have a 
normal distribution and also list the associated skewness, and kurtosis statistics 
and verify the p-value. Round the results to two decimal places. Notation: 

does not have a normal distribution, p = 0.02, skew = 0.12, 

kurtosis = -0.25 

 
import pandas as pd 

from scipy import stats 

from sklearn.datasets import fetch_california_housing 

 

cali = fetch_california_housing() 

 

df = pd.DataFrame(data=cali.data, columns=cali.feature_names) 

print('Sikmost:',round(stats.skew(df['HouseAge']),2)) 

print('Spicatost:',round(stats.kurtosis(df['HouseAge'], 

fisher=True),2)) 

p_value = round(stats.shapiro(df['HouseAge'])[1],4) 

if p_value<=0.05: 

  print('p =',p_value, 'nulová hypotéza sa zamieta') 

else: 

  print('p =',p_value, 'nulová hypotéza sa nezamieta') 

 
Program output: 
Sikmost: 0.06 

Spicatost: -0.8 

p = 0.0 nulová hypotéza sa zamieta 

/home/johny/.local/lib/python3.9/site-

packages/scipy/stats/_morestats.py:1800: UserWarning: p-value 

may not be accurate for N > 5000. 

  warnings.warn("p-value may not be accurate for N > 5000.") 

 

2.2 Data visualisation 

📝 2.2.1 

Data visualization can tell us much more about the data than just the numbers. 
With visualization, we can more easily uncover configurations and data structures. 
We use graphical methods to look for outliers, recognize clusters in data, check 
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data distributions and assumptions, explore relationships between variables, 
compare measures of mean and variance, or examine time-dependent data. 
Graphical methods are useful for showing broader properties of data. If we want to 
present the selected data in a precise form it is better to show it in tables. When 
analyzing a graph we evaluate densities, clusters, gaps, outliers, and the shape of 
the distribution. 

Graphs can be grouped according to different criteria. In our case, we will divide 
them by usage. However, we will by no means cover all possibilities but we will try 
to present the most important ones. Some graphs are so specific that they are only 
part of specific analyses. An example of such a graph is the dendrogram that is 
part of cluster analysis and is used to visualize clusters in the data space. 

📝 2.2.2 

We can examine the abundance of the data in each variable in different ways. One 
possibility is by using the value_counts() function of the pandas library. The result 
is a listing of the unique values and the number of repetitions in the data set. If we 
set the normalize parameter in the function to True, the resulting counts are output 
in percentage notation. The last option is to visualize the frequencies using the 
plot() function, where we can choose a bar chart type by setting the kind parameter 
to bar. 

We have also added a target column to our data file. This column is used for the 
classification task, where based on the other variables we can classify the wine into 
the given three categories. In our case, for the moment, it will mainly serve us to 
better understand the data. 

 
import pandas as pd 

from sklearn.datasets import load_wine 

 

wine = load_wine() 

df = pd.DataFrame(data=wine.data, columns= wine.feature_names) 

df["target"] = wine.target 

print('Frequencies:',df['target'].value_counts(),sep='\n') 

print('Percentages:',df['target'].value_counts(normalize=True)

,sep='\n') 

df['target'].value_counts().plot(kind='bar') 

 
Program output: 
Pocetnosti: 

1    71 

0    59 

2    48 

Name: target, dtype: int64 

Pocetnosti percentualne: 
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1    0.398876 

0    0.331461 

2    0.269663 

Name: target, dtype: float64 

 

 

📝 2.2.3 

Load from the sklearn library the dataset california_housing, which contains 
records of homes in California. You fetch the dataset into an object using the 
fetch_california_housing() function. What is the number of oldest houses by the 
average age of the houses in the block? List the average age and the number of 
records for it. 

24: 875 

 
import pandas as pd 

from scipy import stats 

from sklearn.datasets import fetch_california_housing 

 

cali = fetch_california_housing() 

 

df = pd.DataFrame(data=cali.data, columns=cali.feature_names) 

df['HouseAge'].value_counts().plot(kind='bar') 

print(df.HouseAge.value_counts()) 

 
Program output: 
52.0    1273 

36.0     862 
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35.0     824 

16.0     771 

17.0     698 

34.0     689 

26.0     619 

33.0     615 

18.0     570 

25.0     566 

32.0     565 

37.0     537 

15.0     512 

19.0     502 

27.0     488 

24.0     478 

30.0     476 

28.0     471 

20.0     465 

29.0     461 

31.0     458 

23.0     448 

21.0     446 

14.0     412 

22.0     399 

38.0     394 

39.0     369 

42.0     368 

44.0     356 

43.0     353 

40.0     304 

13.0     302 

41.0     296 

45.0     294 

10.0     264 

11.0     254 

46.0     245 

5.0      244 

12.0     238 

8.0      206 

9.0      205 

47.0     198 

4.0      191 

48.0     177 

7.0      175 

6.0      160 
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50.0     136 

49.0     134 

3.0       62 

2.0       58 

51.0      48 

1.0        4 

Name: HouseAge, dtype: int64 

 

 

📝 2.2.4 

If we want to look at the distribution of the data or the distribution of the data, we 
can use a histogram. The histogram works with intervals where the intervals are 
represented by the width of the bar (x-axis) and the number of cases that fall within 
the interval is represented by the height of the bar (y-axis). Visualization of the 
histogram is possible using the plot() function, where we can choose the type of 
the plot by setting the kind parameter to hist. 

 
import pandas as pd 

from sklearn.datasets import load_wine 

 

wine = load_wine() 

df = pd.DataFrame(data=wine.data, columns= wine.feature_names) 

df['magnesium'].plot(kind='hist', title='magnesium') 

 
Program output: 
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📝 2.2.5 

Load from the sklearn library the dataset california_housing, which contains 
records of homes in California. You fetch the dataset into an object using the 
fetch_california_housing() function. Visualize a histogram of each variable in the 
dataset. Which of the histograms visualize information about the rooms in the 
houses? 

 
import pandas as pd 

from scipy import stats 

from sklearn.datasets import fetch_california_housing 

 

cali = fetch_california_housing() 

 

df = pd.DataFrame(data=cali.data, columns=cali.feature_names) 

print(df.info()) 

#df['MedInc'].plot(kind='hist') 

#df['HouseAge'].plot(kind='hist') 

#df['AveRooms'].plot(kind='hist') 

#df['AveBedrms'].plot(kind='hist') 

#df['Population'].plot(kind='hist') 

#df['AveOccup'].plot(kind='hist') 

#df['Latitude'].plot(kind='hist') 

#df['Longitude'].plot(kind='hist') 
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Program output: 
 

RangeIndex: 20640 entries, 0 to 20639 

Data columns (total 8 columns): 

 #   Column      Non-Null Count  Dtype   

---  ------      --------------  -----   

 0   MedInc      20640 non-null  float64 

 1   HouseAge    20640 non-null  float64 

 2   AveRooms    20640 non-null  float64 

 3   AveBedrms   20640 non-null  float64 

 4   Population  20640 non-null  float64 

 5   AveOccup    20640 non-null  float64 

 6   Latitude    20640 non-null  float64 

 7   Longitude   20640 non-null  float64 

dtypes: float64(8) 

memory usage: 1.3 MB 

None 
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•  
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43 

•  

•  



44 

•  
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•  

•  

📝 2.2.6 

We covered descriptive statistics in the previous lesson. In addition to numerical 
characteristics, we can also visualize descriptive statistics using a box plot. Thus, 
we can assess and compare measures of the location and dispersion of values in 
their neighbourhood. Visualization of the histogram is possible using the boxplot() 
function, which is found in the matplotlib library. As the first parameter, we specify 
the variable we want to visualize. The showmeans parameter adds visual 
information about the mean value to our graph, which is represented by the green 
triangle. The red line tells us the mean value. The rectangle, in turn, gives us the 
upper-to-lower quartile boundary. The maximum and minimum are bounded by lines 
from the rectangle upwards and downwards. 
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import pandas as pd 

from sklearn.datasets import load_wine 

import matplotlib.pyplot as plt 

 

wine = load_wine() 

df = pd.DataFrame(data=wine.data, columns= wine.feature_names) 

plt.boxplot(df['magnesium'], showmeans=True) 

 
Program output: 

 

 

📝 2.2.7 

Using the matplotlib library, we can also visualize multiple box plots at the same 
time. As a first parameter, we send not a single variable but a list of variables to be 
examined. We can then color-code the variables using various settings, which you 
can see in the following code. In our case, we have combined variables whose 
range of values is approximately similar. However, it is more transparent to observe 
the individual variables separately so that we are not affected by the different 
scales of values. 

 
import pandas as pd 

from sklearn.datasets import load_wine 

import matplotlib.pyplot as plt 

 

wine = load_wine() 

df = pd.DataFrame(data=wine.data, columns= wine.feature_names) 
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box = 

plt.boxplot([df['total_phenols'],df['flavanoids'],df['proantho

cyanins']], showmeans=True) 

#boxes customization 

plt.setp(box['boxes'][0], color='green') 

plt.setp(box['caps'][0], color='green') 

plt.setp(box['caps'][1], color='green') 

plt.setp(box['whiskers'][0], color='green') 

plt.setp(box['whiskers'][1], color='green') 

 

plt.setp(box['boxes'][1], color='red') 

plt.setp(box['caps'][2], color='red') 

plt.setp(box['caps'][3], color='red') 

plt.setp(box['whiskers'][2], color='red') 

plt.setp(box['whiskers'][3], color='red') 

 

plt.title('Distribution of wine attributes') 

plt.xticks([1,2,3], ['total 

phenols','flavanoids','proanthocyanins']) 

 

plt.show() 

 
Program output: 
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📝 2.2.8 

Load from the sklearn library the dataset california_housing, which contains 
records of homes in California. You fetch the dataset into an object using the 
fetch_california_housing() function. Use the box plot to examine each attribute of 
the dataset and select the correct assertions. 

We will add one more column to our data file, target. This column is used for the 
classification task where based on the other variables we can classify the median 
California home price value, expressed in hundreds of thousands of dollars. In our 
case, it will mainly serve us to better understand the data. 

 
import pandas as pd 

import matplotlib.pyplot as plt 

from scipy import stats 

from sklearn.datasets import fetch_california_housing 

 

cali = fetch_california_housing() 

 

df = pd.DataFrame(data=cali.data, columns=cali.feature_names) 

#print(df.info()) 

#plt.boxplot(df['HouseAge'], showmeans=True) 

#plt.boxplot(df['AveRooms'], showmeans=True) 

#plt.boxplot(df['AveBedrms'], showmeans=True) 

plt.boxplot(df['AveOccup'], showmeans=True) 

#plt.boxplot(df['Population'], showmeans=True) 

 
Program output: 
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• the average age of the houses is close to the median age of the houses in 
the block 

• descriptive statistics of the average number of rooms and bedrooms are 
similar 

• the age of houses has a normal distribution 
• the average age of the houses is similar to the average number of rooms 

📝 2.2.9 

There is no standard that specifies which chart we should use to visualize the data. 
However, there are a few guidelines that can help us choose: 

• It is important to understand what type of data we are examining. If you have 
continuous variables, then a histogram would be a good choice. Similarly, if 
we want to display a ranking, an ordered bar chart would be a good choice. 

• Let's choose a graph that effectively conveys the correct and relevant 
meaning of the data without actually misrepresenting the facts. 

• Simplicity is best. It is considered better to draw a simple graph that is easy 
to understand than to draw complex graphs that require several reports and 
texts to understand. 

• Let's choose a diagram that does not overwhelm the audience with 
information. Our goal should be to illustrate abstract information clearly. 

2.3 Data summarization 

📝 2.3.1 

During data analysis, it is often necessary to group data based on certain criteria. 
The concepts of clustering occur in several parts of data analysis. The pandas 
library contains a groupby() function that groups our dataset into different classes 
over which we can perform aggregation. The groupby() function performs two basic 
functions: it divides the data into groups based on certain criteria and applies the 
function to each group separately. The result of groupby() is a structure that 
provides us with several aggregation functions such as sum(), mean(), median(), 
min(), max(), and so on. 

 
import pandas as pd 

from sklearn.datasets import load_wine 

 

wine = load_wine() 

df = pd.DataFrame(data=wine.data, columns= wine.feature_names) 

df["target"] = wine.target 

print(df.groupby('target').mean()) 
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Program output: 
          alcohol  malic_acid       ash  alcalinity_of_ash   

magnesium  \ 

target                                                                    

0       13.744746    2.010678  2.455593          17.037288  

106.338983    

1       12.278732    1.932676  2.244789          20.238028   

94.549296    

2       13.153750    3.333750  2.437083          21.416667   

99.312500    

 

        total_phenols  flavanoids  nonflavanoid_phenols  

proanthocyanins  \ 

target                                                                      

0            2.840169    2.982373              0.290000         

1.899322    

1            2.258873    2.080845              0.363662         

1.630282    

2            1.678750    0.781458              0.447500         

1.153542    

 

        color_intensity       hue  

od280/od315_of_diluted_wines      proline   

target                                                                         

0              5.528305  1.062034                      

3.157797  1115.711864   

1              3.086620  1.056282                      

2.785352   519.507042   

2              7.396250  0.682708                      

1.683542   629.895833   

 

📝 2.3.2 

Load from the sklearn library the dataset california_housing, which contains 
records of homes in California. You fetch the dataset into an object using the 
fetch_california_housing() function. 

We'll also add a target column to our dataset. This column is used for the 
classification task, where based on the other variables we can classify the median 
price value of California homes, expressed in hundreds of thousands of dollars. In 
our case, for the moment, it will mainly serve us to better understand the data. 

Using clustering based on the target variable, find the median value of the age of 
homes in the block for a target value of 5. Round the result to a whole number. 
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import pandas as pd 

import matplotlib.pyplot as plt 

from sklearn.datasets import fetch_california_housing 

 

cali = fetch_california_housing() 

 

df = pd.DataFrame(data=cali.data, columns=cali.feature_names) 

df['target'] = cali.target 

print(df.groupby('target').mean()) 

 
Program output: 
           MedInc   HouseAge  AveRooms  AveBedrms  Population  

AveOccup  \ 

target                                                                     

0.14999  2.122475  30.750000  6.575951   2.016259   305.25000  

2.566440    

0.17500  2.366700  39.000000  3.572464   1.217391   259.00000  

1.876812    

0.22500  1.818075  36.250000  3.975628   1.265805  2112.00000  

3.652335    

0.25000  0.857100  21.000000  1.629630   1.222222    64.00000  

2.370370    

0.26600  2.301300  34.000000  4.897959   1.051020   808.00000  

2.748299    

...           ...        ...       ...        ...         ...       

...    

4.98800  8.248000  29.000000  7.072727   0.978182   826.00000  

3.003636    

4.99000  8.148900  18.000000  6.600817   1.001362  1634.00000  

2.226158    

4.99100  6.786100  28.000000  7.386861   1.083942   617.00000  

2.251825    

5.00000  3.899581  38.000000  4.773400   1.094456  1036.00000  

2.097639    

5.00001  7.825123  33.802073  6.817436   1.097833  1112.80829  

2.570442    

 

          Latitude   Longitude   

target                           

0.14999  37.665000 -120.197500   

0.17500  34.150000 -118.330000   

0.22500  36.005000 -119.335000   

0.25000  32.790000 -114.650000   

0.26600  35.130000 -119.450000   
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...            ...         ...   

4.98800  37.330000 -122.060000   

4.99000  37.890000 -122.180000   

4.99100  33.550000 -117.770000   

5.00000  35.584444 -120.155556   

5.00001  35.225751 -119.702477   

 

[3842 rows x 8 columns] 

 

📝 2.3.3 

Aggregation is the process of performing any mathematical operation on a set of 
data or a subset of it. Aggregation is one of the many techniques in the pandas 
library that is used to manipulate data in data analysis. 

The aggregate() function is used to apply aggregation to one or more columns. 
Some of the most commonly used aggregations are as follows: 

• sum: returns the sum of the values 
• min: returns the minimum of the values 
• max: returns the maximum of the values 

It is important to note that we can only perform aggregations over numeric values. 

 
import pandas as pd 

from sklearn.datasets import load_wine 

 

wine = load_wine() 

df = pd.DataFrame(data=wine.data, columns= wine.feature_names) 

df["target"] = wine.target 

print(df.aggregate('max')) 

 
Program output: 
alcohol                           14.83 

malic_acid                         5.80 

ash                                3.23 

alcalinity_of_ash                 30.00 

magnesium                        162.00 

total_phenols                      3.88 

flavanoids                         5.08 

nonflavanoid_phenols               0.66 

proanthocyanins                    3.58 

color_intensity                   13.00 

hue                                1.71 
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od280/od315_of_diluted_wines       4.00 

proline                         1680.00 

target                             2.00 

dtype: float64 

 

📝 2.3.4 

Load from the sklearn library the dataset california_housing, which contains 
records of homes in California. You fetch the dataset into an object using the 
fetch_california_housing() function. 

Use aggregation to find the lowest value in the MedInc column. Round the result to 
two decimal places. 

 
import pandas as pd 

import matplotlib.pyplot as plt 

from sklearn.datasets import fetch_california_housing 

 

cali = fetch_california_housing() 

 

df = pd.DataFrame(data=cali.data, columns=cali.feature_names) 

print(round(df.aggregate(min),2)) 

 
Program output: 
MedInc          0.50 

HouseAge        1.00 

AveRooms        0.85 

AveBedrms       0.33 

Population      3.00 

AveOccup        0.69 

Latitude       32.54 

Longitude    -124.35 

dtype: float64 

 

📝 2.3.5 

The most important operations implemented by groupby() are aggregation, filter, 
transform, and apply. An efficient way to implement aggregation functions in a data 
file is to execute them after grouping the required columns. The aggregation 
function returns one aggregated value for each group. After creating these groups, 
we can apply several aggregation operations to the data grouped in this way. 
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The advantage of aggregation is that we can also work with functions from other 
libraries, such as numpy, in the call to get the value of standard deviation and so on. 
The following notation will allow us to create different views of the variables we are 
examining, with the addition that we can also create their naming and thus make 
the table in question clearer. 

 
import pandas as pd 

import numpy as np 

from sklearn.datasets import load_wine 

 

wine = load_wine() 

df = pd.DataFrame(data=wine.data, columns= wine.feature_names) 

df["target"] = wine.target 

 

df_group = df.groupby('target').aggregate( 

  mean_alcohol=('alcohol', np.mean), 

  max_ash=('ash', np.max), 

  std_magnesium=('magnesium', np.std) 

) 

print(df_group) 

 
Program output: 
        mean_alcohol  max_ash  std_magnesium 

target                                       

0          13.744746     3.22      10.498949 

1          12.278732     3.23      16.753497 

2          13.153750     2.86      10.890473 

 

📝 2.3.6 

Load from the sklearn library the dataset california_housing, which contains 
records of homes in California. You fetch the dataset into an object using the 
fetch_california_housing() function. 

Combine different aggregation methods for different variables. Aggregate the data 
based on the variable target. Then output a value of 5 for the target: 

• the minimum of the AveRooms variable 
• the median of the variable AveOccup 
• the maximum of the variable AveBedrms 

Round the result to two decimal places and output in the following format: 

AveRooms: 3.52 AveOccup: 2.98 AveBedrms: 1.25 
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import pandas as pd 

import matplotlib.pyplot as plt 

import numpy as np 

from sklearn.datasets import fetch_california_housing 

 

cali = fetch_california_housing() 

 

df = pd.DataFrame(data=cali.data, columns=cali.feature_names) 

df['target']=cali.target 

df_group = df.groupby('target').aggregate( 

  min_rooms=('AveRooms', np.min), 

  med_occup=('AveOccup', np.median), 

  max_bedrms=('AveBedrms', np.max) 

).round(2) 

print(df_group) 

 
Program output: 
         min_rooms  med_occup  max_bedrms 

target                                    

0.14999       3.57       2.52        3.50 

0.17500       3.57       1.88        1.22 

0.22500       2.02       3.35        1.49 

0.25000       1.63       2.37        1.22 

0.26600       4.90       2.75        1.05 

...            ...        ...         ... 

4.98800       7.07       3.00        0.98 

4.99000       6.60       2.23        1.00 

4.99100       7.39       2.25        1.08 

5.00000       2.83       1.90        1.36 

5.00001       1.82       2.52       25.64 

 

[3842 rows x 3 columns] 

 

📝 2.3.7 

An essential part of data summarization is the use of a contingency table. A 
contingency table is a table that is used to clearly summarize the relationship 
between two (or more) variables. The rows of the contingency table correspond to 
the possible values of the first variable, and the columns to the possible values of 
the second. The corresponding cell of the contingency table usually contains the 
number of cases where at the same time the first variable had a value 
corresponding to the corresponding row and the second variable had a value 
corresponding to the corresponding column. The pandas library provides two 
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options for creating a contingency table, the pivot_table() and crosstab() functions. 
Since both functions generate the same output but the pivot_table() function offers 
more options, we will only work with it. Using the aggfunc parameter, we can again 
specify the aggregation function. If we don't specify this parameter, the 
contingency table generates average values by default. The parameter 
margins=True allows us to turn on aggregation for all rows in the table. 

 
import pandas as pd 

import numpy as np 

from sklearn.datasets import load_wine 

 

wine = load_wine() 

df = pd.DataFrame(data=wine.data, columns= wine.feature_names) 

df["target"] = wine.target 

 

table = pd.pivot_table(df, index =["target"], aggfunc=np.mean, 

margins=True) 

 

print(table) 

 
Program output: 
        alcalinity_of_ash    alcohol       ash  

color_intensity  flavanoids  \ 

target                                                                         

0               17.037288  13.744746  2.455593         

5.528305    2.982373    

1               20.238028  12.278732  2.244789         

3.086620    2.080845    

2               21.416667  13.153750  2.437083         

7.396250    0.781458    

All             19.494944  13.000618  2.366517         

5.058090    2.029270    

 

             hue   magnesium  malic_acid  nonflavanoid_phenols  

\ 

target                                                            

0       1.062034  106.338983    2.010678              0.290000    

1       1.056282   94.549296    1.932676              0.363662    

2       0.682708   99.312500    3.333750              0.447500    

All     0.957449   99.741573    2.336348              0.361854    

 

        od280/od315_of_diluted_wines  proanthocyanins      

proline  \ 

target                                                                
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0                           3.157797         1.899322  

1115.711864    

1                           2.785352         1.630282   

519.507042    

2                           1.683542         1.153542   

629.895833    

All                         2.611685         1.590899   

746.893258    

 

        total_phenols   

target                  

0            2.840169   

1            2.258873   

2            1.678750   

All          2.295112   

 

📝 2.3.8 

Load from the sklearn library the dataset california_housing, which contains 
records of homes in California. You fetch the dataset into an object using the 
fetch_california_housing() function. 

Group the data based on the target variable. Use the contingency table to find the 
standard deviation value for the entire table for the Population column. Round the 
result to two decimal places. 

 
import pandas as pd 

import matplotlib.pyplot as plt 

import numpy as np 

from sklearn.datasets import fetch_california_housing 

 

cali = fetch_california_housing() 

 

df = pd.DataFrame(data=cali.data, columns=cali.feature_names) 

df['target']=cali.target 

 

table = pd.pivot_table(df, index =["target"], aggfunc=np.std, 

margins=True).round(2) 

print(table) 

 
Program output: 
         AveBedrms  AveOccup  AveRooms  HouseAge  Latitude  

Longitude  MedInc  \ 
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target                                                                           

0.14999       1.03      0.38      4.05     16.68      2.86       

3.21    1.53    

0.225         0.15      0.74      2.31     20.85      2.50       

2.89    1.02    

0.3           1.01      0.68      2.27     15.56      1.22       

2.63    1.01    

0.325         0.67      0.32      3.49     16.58      2.71       

2.98    1.13    

0.375         0.47      3.22      1.56     13.95      2.73       

1.79    0.56    

...            ...       ...       ...       ...       ...        

...     ...    

4.956         0.01      0.21      1.43      1.41      0.01       

0.06    3.13    

4.964         0.11      0.13      0.64      8.49      3.20       

3.34    0.93    

5.0           0.09      0.58      1.54     12.73      1.98       

2.21    1.31    

5.00001       0.80      1.49      4.67     13.03      1.78       

1.95    3.25    

All           0.47     10.39      2.47     12.59      2.14       

2.00    1.90    

 

         Population   

target                

0.14999      299.62   

0.225       3186.56   

0.3          114.55   

0.325        415.47   

0.375       2745.95   

...             ...   

4.956        272.94   

4.964        160.51   

5.0          671.25   

5.00001      813.32   

All         1132.43   

 

[3117 rows x 8 columns] 
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Data Analysis 

Chapter 3 
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3.1 Univariate analysis 

📝 3.1.1 

Each data set we want to analyze will have different fields (i.e., columns) of 
multiple observations (i.e., variables) that represent different facts. The columns of 
the dataset are most likely related to each other because they are collected from 
the same event. One field of a record may or may not affect the value of another 
field. To examine the type of relationships that these columns have, and to analyze 
the cause and effect between them, we need to work our way to identifying the 
dependencies that exist between the variables. The strength of such a relationship 
between two fields of a data set is called correlation, which is represented by a 
numerical value between -1 and 1. 

For example, height and weight are correlated, so it can be assumed that taller 
people are usually heavier than shorter ones. If we have a new person who is taller 
than the average height we observed before, then they are more likely to weigh 
more than the average weight we observed. 

Correlation tells us how variables change together, in the same or opposite 
direction, and in the strength of the relationship. We calculate the Pearson 
correlation coefficient to find the correlation. If the correlation is +1, then it can be 
said to be a perfect positive/linear correlation (variable A is directly proportional to 
variable B), while a correlation of -1 is a perfect negative correlation (variable A is 
inversely proportional to variable B). Values closer to 0 are not correlated. If the 
correlation coefficients are close to 1 in absolute value, the variables are said to 
have a strong correlation; in comparison, those close to 0.5 have a weak 
correlation. 

📝 3.1.2 

In the previous chapter, we focused on descriptive statistics. We had a variable that 
contained numerical values and we calculated the mean, median, and mode and 
analyzed the distribution of the values. We then grouped the data based on the 
target variable and then calculated the mean, median, modus, and standard 
deviation for each option. Analysis of one type of data is called univariate analysis. 

Univariate analysis is the simplest form of data analysis. It means that our data has 
only one type of variable and that we perform the analysis over it. The main goal of 
the univariate analysis is to take the data, summarize it, and find patterns among 
the values. It does not deal with causes or relationships between values. A few 
techniques that describe ways found in univariate data include central tendency 
(i.e., mean, mode, and median) and dispersion (i.e., range, variance, maximum and 
minimum quartiles (including interquartile range), and standard deviation). 

Let us recap the whole process over the new data matrix. The data matrix contains 
information on the sales of games in recent years. Using the info() function, we can 
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find out what variables are in the dataset and possibly how much missing data 
each variable contains. Then, using the describe() function we can find the mean, 
median, maximum, minimum and standard deviation. 

 
import pandas as pd 

 

df = 

pd.read_csv('https://priscilla.fitped.eu/data/pandas/games_sal

es.csv', sep=',') 

 

print(df.info()) 

 

print(df.describe()) 

 
Program output: 
 

RangeIndex: 55792 entries, 0 to 55791 

Data columns (total 16 columns): 

 #   Column         Non-Null Count  Dtype   

---  ------         --------------  -----   

 0   Rank           55792 non-null  int64   

 1   Name           55792 non-null  object  

 2   Genre          55792 non-null  object  

 3   ESRB_Rating    23623 non-null  object  

 4   Platform       55792 non-null  object  

 5   Publisher      55792 non-null  object  

 6   Developer      55775 non-null  object  

 7   Critic_Score   6536 non-null   float64 

 8   User_Score     335 non-null    float64 

 9   Total_Shipped  1827 non-null   float64 

 10  Global_Sales   19415 non-null  float64 

 11  NA_Sales       12964 non-null  float64 

 12  PAL_Sales      13189 non-null  float64 

 13  JP_Sales       7043 non-null   float64 

 14  Other_Sales    15522 non-null  float64 

 15  Year           54813 non-null  float64 

dtypes: float64(9), int64(1), object(6) 

memory usage: 6.8+ MB 

None 

               Rank  Critic_Score  User_Score  Total_Shipped  

Global_Sales  \ 

count  55792.000000   6536.000000  335.000000    1827.000000  

19415.000000    
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mean   27896.500000      7.213709    8.253433       1.887258      

0.365503    

std    16105.907446      1.454079    1.401489       4.195693      

0.833022    

min        1.000000      1.000000    2.000000       0.030000      

0.000000    

25%    13948.750000      6.400000    7.800000       0.200000      

0.030000    

50%    27896.500000      7.500000    8.500000       0.590000      

0.120000    

75%    41844.250000      8.300000    9.100000       1.800000      

0.360000    

max    55792.000000     10.000000   10.000000      82.860000     

20.320000    

 

           NA_Sales     PAL_Sales     JP_Sales   Other_Sales          

Year   

count  12964.000000  13189.000000  7043.000000  15522.000000  

54813.000000   

mean       0.275541      0.155263     0.110402      0.044719   

2005.659095   

std        0.512809      0.399257     0.184673      0.129554      

8.355585   

min        0.000000      0.000000     0.000000      0.000000   

1970.000000   

25%        0.050000      0.010000     0.020000      0.000000   

2000.000000   

50%        0.120000      0.040000     0.050000      0.010000   

2008.000000   

75%        0.290000      0.140000     0.120000      0.040000   

2011.000000   

max        9.760000      9.850000     2.690000      3.120000   

2020.000000   

 

📝 3.1.3 

Read data from the banking.csv file, which contains information about the bank's 
customers. There are several variables in the file, which can be clearly divided into 
3 categories: 

Customer demographic information: 

• customer_id - customer identifier 
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• vintage - how long the customer has been with the bank in the number of 
days 

• age - age of the customer 
• gender - gender of the customer 
• occupation - occupation of the customer 
• city - city of the customer (anonymised) 

Information related to the bank for customers: 

• customer_nw_category - customer value (3:low 2:medium 1:high) 
• branch_code - branch code for the customer's account 
• days_since_last_transaction - number of days since the last payment in the 

last 1 year 

Transaction information: 

• current_balance - balance as of the current day 
• previous_month_end_balance - month-end balance in the previous month 
• average_monthly_balance_prevQ - average monthly balances in the previous 

quarter 
• average_monthly_balance_prevQ2 - average monthly balances two quarters 

back 
• percent_change_credits - percentage change in credits between the last two 

quarters 
• current_month_credit - the total amount of credits in the current month 
• previous_month_credit - the total amount of credit in the previous month 
• current_month_debit - the total amount of debt in the current month 
• previous_month_debit - the total amount of debt in the previous month 
• current_month_balance - average balance in the current month 
• previous_month_balance - average balance in the previous month 
• churn - client at risk - client's average balance falls below the minimum 

balance in the following quarter (1/0) 

 

After loading the data file, examine the variables and print the average value of the 
current balance across all accounts (current_balance). 

 
import pandas as pd 

 

df = 

pd.read_csv('https://priscilla.fitped.eu/data/pandas/banking.c

sv', sep=',', decimal='.') 

pd.set_option('display.float_format', lambda x: f'{x:.3f}') 

print(df.info()) 

 

print(df.describe()) 
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Program output: 
 

RangeIndex: 28382 entries, 0 to 28381 

Data columns (total 21 columns): 

 #   Column                          Non-Null Count  Dtype   

---  ------                          --------------  -----   

 0   customer_id                     28382 non-null  int64   

 1   vintage                         28382 non-null  int64   

 2   age                             28382 non-null  int64   

 3   gender                          27857 non-null  object  

 4   dependents                      25919 non-null  float64 

 5   occupation                      28302 non-null  object  

 6   city                            27579 non-null  float64 

 7   customer_nw_category            28382 non-null  int64   

 8   branch_code                     28382 non-null  int64   

 9   current_balance                 28382 non-null  float64 

 10  previous_month_end_balance      28382 non-null  float64 

 11  average_monthly_balance_prevQ   28382 non-null  float64 

 12  average_monthly_balance_prevQ2  28382 non-null  float64 

 13  current_month_credit            28382 non-null  float64 

 14  previous_month_credit           28382 non-null  float64 

 15  current_month_debit             28382 non-null  float64 

 16  previous_month_debit            28382 non-null  float64 

 17  current_month_balance           28382 non-null  float64 

 18  previous_month_balance          28382 non-null  float64 

 19  churn                           28382 non-null  int64   

 20  last_transaction                28382 non-null  object  

dtypes: float64(12), int64(6), object(3) 

memory usage: 4.5+ MB 

None 

       customer_id   vintage       age  dependents      city  

\ 

count    28382.000 28382.000 28382.000   25919.000 27579.000    

mean     15143.509  2091.144    48.208       0.347   796.110    

std       8746.454   272.677    17.807       0.998   432.872    

min          1.000    73.000     1.000       0.000     0.000    

25%       7557.250  1958.000    36.000       0.000   409.000    

50%      15150.500  2154.000    46.000       0.000   834.000    

75%      22706.750  2292.000    60.000       0.000  1096.000    

max      30301.000  2476.000    90.000      52.000  1649.000    

 

       customer_nw_category  branch_code  current_balance  \ 

count             28382.000    28382.000        28382.000    

mean                  2.226      925.975         7380.552    
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std                   0.660      937.799        42598.712    

min                   1.000        1.000        -5503.960    

25%                   2.000      176.000         1784.470    

50%                   2.000      572.000         3281.255    

75%                   3.000     1440.000         6635.820    

max                   3.000     4782.000      5905904.030    

 

       previous_month_end_balance  

average_monthly_balance_prevQ  \ 

count                   28382.000                      

28382.000    

mean                     7495.771                       

7496.780    

std                     42529.345                      

41726.219    

min                     -3149.570                       

1428.690    

25%                      1906.000                       

2180.945    

50%                      3379.915                       

3542.865    

75%                      6656.535                       

6666.887    

max                   5740438.630                    

5700289.570    

 

       average_monthly_balance_prevQ2  current_month_credit  \ 

count                       28382.000             28382.000    

mean                         7124.209              3433.252    

std                         44575.810             77071.452    

min                        -16506.100                 0.010    

25%                          1832.507                 0.310    

50%                          3359.600                 0.610    

75%                          6517.960               707.272    

max                       5010170.100          12269845.390    

 

       previous_month_credit  current_month_debit  

previous_month_debit  \ 

count              28382.000            28382.000             

28382.000    

mean                3261.694             3658.745              

3339.761    

std                29688.889            51985.424             

24301.112    
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min                    0.010                0.010                 

0.010    

25%                    0.330                0.410                 

0.410    

50%                    0.630               91.930               

109.960    

75%                  749.235             1360.435              

1357.553    

max              2361808.290          7637857.360           

1414168.060    

 

       current_month_balance  previous_month_balance     churn   

count              28382.000               28382.000 28382.000   

mean                7451.133                7495.177     0.185   

std                42033.939               42431.979     0.389   

min                -3374.180               -5171.920     0.000   

25%                 1996.765                2074.407     0.000   

50%                 3447.995                3465.235     0.000   

75%                 6667.958                6654.693     0.000   

max              5778184.770             5720144.500     1.000   

 

📝 3.1.4 

The next step is to use visualization to examine the distribution of the selected 
variables. Let's look at the distribution of the Year variable that we can examine 
using a histogram. Before we visualize the histogram, we can see how many years 
are actually in our dataset. We can get the number of unique years by using the 
unique() function, which returns the unique elements of the variable under study. 
We can then use this value to partition the histogram into exactly a unique number 
of years, giving us an accurate representation of the counts for those years. From 
the graph, we can observe that from around 2008 onwards, the production of 
games started to decline. 

 
import pandas as pd 

 

df = 

pd.read_csv('https://priscilla.fitped.eu/data/pandas/games_sal

es.csv', sep=',') 

 

y_bins = len(df['Year'].unique()) 

 

df['Year'].plot(kind='hist', bins=y_bins) 
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Program output: 

 

 

📝 3.1.5 

Next, we can take a look at the ratings of games by critics and users. On closer 
inspection of the records, we find that the User_Score variable contains a 
significant number of missing values. While we are left with few records after 
removing them we can observe through visualization that users tend to rate games 
more positively, as a higher value means a better score. This can also be seen by 
comparing the average values, which have a difference of about 1 point. 

 
import pandas as pd 

 

df = 

pd.read_csv('https://priscilla.fitped.eu/data/pandas/games_sal

es.csv', sep=',') 

print(df['Critic_Score'].describe()) 

 

df['Critic_Score'].dropna().plot(kind='hist') 

 

print(df['User_Score'].describe()) 

 

df['User_Score'].dropna().plot(kind='hist') 

 
Program output: 
count    6536.000000 

mean        7.213709 
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std         1.454079 

min         1.000000 

25%         6.400000 

50%         7.500000 

75%         8.300000 

max        10.000000 

Name: Critic_Score, dtype: float64 

count    335.000000 

mean       8.253433 

std        1.401489 

min        2.000000 

25%        7.800000 

50%        8.500000 

75%        9.100000 

max       10.000000 

Name: User_Score, dtype: float64 

 

 

📝 3.1.6 

The next step is to examine the categorical variables. We start by looking at which 
platform most games have been produced for. However, since the frequency graph 
is rather opaque, we will only select the top 30 most numerous platforms. The 
describe() function doesn't give us information about the basic statistics in the 
case of a categorical variable but we can find out the number of elements, the 
number of categories, and the most numerous category in this way. 
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import pandas as pd 

 

df = 

pd.read_csv('https://priscilla.fitped.eu/data/pandas/games_sal

es.csv', sep=',') 

print(df['Platform'].describe()) 

 

df['Platform'].dropna().value_counts().iloc[:30].plot(kind='ba

r') 

 
Program output: 
count     55792 

unique       74 

top          PC 

freq      10978 

Name: Platform, dtype: object 

 

 

📝 3.1.7 

The genre of games gave us interesting results, where the most numerous games 
were from the miscellaneous genre, which can probably mean an increase in Indie 
games. The second most numerous games were action games, followed by 
adventure and sports games. On the other hand, strategy games were not as 
abundant despite often being a popular game type. 

We can follow a similar approach when examining other categorical variables such 
as publisher (Developer). 
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import pandas as pd 

 

df = 

pd.read_csv('https://priscilla.fitped.eu/data/pandas/games_sal

es.csv', sep=',') 

print(df['Genre'].describe()) 

 

df['Genre'].dropna().value_counts().plot(kind='bar') 

 
Program output: 
count     55792 

unique       20 

top        Misc 

freq       9476 

Name: Genre, dtype: object 

 

 

📝 3.1.8 

Load the data from the banking.csv file, which contains information about the 
bank's customers. After loading the data file, find out what is the ratio of males and 
females among the bank's customers (gender). We recommend using the 



71 

visualization and writing out both genders and the percentages rounded to two 
decimal places in the result. 

male: 54.25% female: 45.75% 

 
import pandas as pd 

 

df = 

pd.read_csv('https://priscilla.fitped.eu/data/pandas/banking.c

sv', sep=',', decimal='.') 

 

df['gender'] = df['gender'].astype('category') # set 

occupation as categorical variable 

 

df['gender'].value_counts(normalize=True).mul(100).plot(kind='

bar') 

 

print(df['gender'].value_counts(normalize=True).mul(100).round

(2)) 

 
Program output: 
Male      59.4 

Female    40.6 

Name: gender, dtype: float64 
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📝 3.1.9 

Load data from the banking.csv file, which contains information about the bank's 
customers. After loading the data file find out what is the most common 
occupation of the bank's customers (occupation). We recommend using the 
visualization and printing the occupation and the percentage rounded to two 
decimal places in the result. 

 
import pandas as pd 

 

df = 

pd.read_csv('https://priscilla.fitped.eu/data/pandas/banking.c

sv', sep=',', decimal='.') 

 

df['occupation'] = df['occupation'].astype('category') # set 

occupation as categorical variable 

 

df['occupation'].value_counts(normalize=True).mul(100).plot(ki

nd='bar') 

 

print(df['occupation'].value_counts(normalize=True).mul(100).r

ound(2)) 

 
Program output: 
self_employed   61.750 

salaried        23.690 

student          7.270 

retired          7.150 

company          0.140 

Name: occupation, dtype: float64 



73 

 

 

📝 3.1.10 

Load the data from the banking.csv file, which contains information about the 
bank's customers. After loading the data file find out what is the most common 
rating of the bank's customers (customer_nw_category). We recommend using the 
visualization and writing out the rating number and percentage rounded to two 
decimal places in the result. 

 
import pandas as pd 

 

df = 

pd.read_csv('https://priscilla.fitped.eu/data/pandas/banking.c

sv', sep=',', decimal='.') 

 

df['customer_nw_category'] = 

df['customer_nw_category'].astype('category') # set occupation 

as categorical variable 

 

df['customer_nw_category'].value_counts(normalize=True).mul(10

0).plot(kind='bar') 
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print(df['customer_nw_category'].value_counts(normalize=True).

mul(100).round(2)) 

 
Program output: 
2    51.30 

3    35.63 

1    13.08 

Name: customer_nw_category, dtype: float64 

 

 

3.2 Bivariance analysis 

📝 3.2.1 

This is an analysis of more than one (exactly two) type of variables. Bivariate 
analysis is used to see if there is a relationship between two different variables. 
When we create a scatter plot by plotting one variable against the other in the 
Cartesian plane (think of the x and y axes), we get a picture of what the data is 
trying to tell us. If the data points appear to correspond to a straight line or curve, 
then there is a relationship or correlation between the two variables. In general, 
bivariate analysis helps us predict the value of one variable (i.e., the dependent 
variable) if we know the value of the independent variable. 

Let's look at our dataset of games. Using a scatter plot we can compare and see if 
critics' ratings have an impact on the worldwide sales of the games in question. 
From the graph, we can observe that sales increase as critics' ratings increase, so 
we can assume that ratings have an effect on the marketability of games. We can 
use either the plot() function of the pandas library. Or we can use the more 
advanced seaborn library, which offers a much larger number of functions when 
creating plots. The lmplot() function adds a regression line to the scatter plot, 
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which tells us whether two variables are dependent on each other. If the values are 
close to the line, then we can say that there is a dependency between the two 
variables. 

 
import pandas as pd 

import seaborn as sns 

from matplotlib import pyplot as plt 

 

df = 

pd.read_csv('https://priscilla.fitped.eu/data/pandas/games_sal

es.csv', sep=',') 

print(df.info()) 

#df.plot(x='Critic_Score',y='Global_Sales',kind='scatter') # 

using pandas 

sns.lmplot(x='Critic_Score',y='Global_Sales',data=df) # using 

seaborn with line 

 
Program output: 
 

RangeIndex: 55792 entries, 0 to 55791 

Data columns (total 16 columns): 

 #   Column         Non-Null Count  Dtype   

---  ------         --------------  -----   

 0   Rank           55792 non-null  int64   

 1   Name           55792 non-null  object  

 2   Genre          55792 non-null  object  

 3   ESRB_Rating    23623 non-null  object  

 4   Platform       55792 non-null  object  

 5   Publisher      55792 non-null  object  

 6   Developer      55775 non-null  object  

 7   Critic_Score   6536 non-null   float64 

 8   User_Score     335 non-null    float64 

 9   Total_Shipped  1827 non-null   float64 

 10  Global_Sales   19415 non-null  float64 

 11  NA_Sales       12964 non-null  float64 

 12  PAL_Sales      13189 non-null  float64 

 13  JP_Sales       7043 non-null   float64 

 14  Other_Sales    15522 non-null  float64 

 15  Year           54813 non-null  float64 

dtypes: float64(9), int64(1), object(6) 

memory usage: 6.8+ MB 

None 
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📝 3.2.2 

Another way to find out the dependency between two variables is to use boxplot(). 
Again, we have the option to use both the pandas and seaborn libraries and the 
notation is similar. This time we look at the effect of game genre on the 
marketability of games. Since worldwide sales contain too much data, let's focus 
on just one market, e.g. Japan. As we can see from the graph, the number of genres 
can overwhelm the x-axis, so we need to rotate the labels 90 degrees to increase 
the clarity of the graph. 

We can observe that the yield from the Role-playing and Sports genres is higher 
than that from the Racing and Shooter genres. Most genres contain outliers that 
represent high returns. 

 
import pandas as pd 

import seaborn as sns 

from matplotlib import pyplot as plt 
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df = 

pd.read_csv('https://priscilla.fitped.eu/data/pandas/games_sal

es.csv', sep=',') 

print(df.info()) 

#df.boxplot(by='Genre',column='JP_Sales') 

gr = sns.boxplot(x='Genre',y='JP_Sales',data=df) 

gr.set_xticklabels(gr.get_xticklabels(), rotation=90) 

 
Program output: 
 

RangeIndex: 55792 entries, 0 to 55791 

Data columns (total 16 columns): 

 #   Column         Non-Null Count  Dtype   

---  ------         --------------  -----   

 0   Rank           55792 non-null  int64   

 1   Name           55792 non-null  object  

 2   Genre          55792 non-null  object  

 3   ESRB_Rating    23623 non-null  object  

 4   Platform       55792 non-null  object  

 5   Publisher      55792 non-null  object  

 6   Developer      55775 non-null  object  

 7   Critic_Score   6536 non-null   float64 

 8   User_Score     335 non-null    float64 

 9   Total_Shipped  1827 non-null   float64 

 10  Global_Sales   19415 non-null  float64 

 11  NA_Sales       12964 non-null  float64 

 12  PAL_Sales      13189 non-null  float64 

 13  JP_Sales       7043 non-null   float64 

 14  Other_Sales    15522 non-null  float64 

 15  Year           54813 non-null  float64 

dtypes: float64(9), int64(1), object(6) 

memory usage: 6.8+ MB 

None 
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📝 3.2.3 

In the next section, we can look at the impact of the game platform on 
marketability. However, we have too many platforms in the dataset to make sense 
of the visualization. Therefore, we will only choose the TOP10 most numerous 
platforms and visualize only their profit using boxplot(). 

A surprising result from the graph is that the revenue of the most used platform 
(PC) is lower than for example the different PlayStation types. 

 
import pandas as pd 

import seaborn as sns 

from matplotlib import pyplot as plt 

 

df = 

pd.read_csv('https://priscilla.fitped.eu/data/pandas/games_sal

es.csv', sep=',') 

#print(df.info()) 

print(df['Platform'].dropna().value_counts().iloc[:10]) 

platforms = 

['PC','PS2','DS','PS','XBL','PSN','PS3','PSP','PS4','X360'] 
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df_plat = df[df['Platform'].isin(platforms)] 

#df_plat.boxplot(by='Genre',column='Global_Sales') 

gr = sns.boxplot(x='Platform',y='Global_Sales',data=df_plat) 

gr.set_xticklabels(gr.get_xticklabels(), rotation=90) 

 
Program output: 
PC      10978 

PS2      3564 

DS       3292 

PS       2703 

XBL      2115 

PSN      2004 

PS3      1870 

PSP      1804 

PS4      1755 

X360     1701 

Name: Platform, dtype: int64 

 

 

📝 3.2.4 

Load the data from the banking.csv file, which contains information about the 
bank's customers. After loading the data file, determine does the length of the 
customer's relationship with the bank have an impact on customer exposure (churn 
and vintage). We recommend using visualization in the form of a boxplot. 
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import pandas as pd 

import seaborn as sns 

 

df = 

pd.read_csv('https://priscilla.fitped.eu/data/pandas/banking.c

sv', sep=',', decimal='.') 

 

gr = sns.boxplot(x='churn',y='vintage',data=df) 

 
Program output: 

 

 

• the length of the contract has no effect 
• the length of the contract has an impact 
• the distribution of the variable is similar 
• the distribution of the variable is significantly different 

📝 3.2.5 

Load the data from the banking.csv file, which contains information about the 
bank's customers. After loading the data file, find out what is the ratio of male and 
female customers at risk among the bank's customers (churn and gender). We 
recommend using a visualization, listing both genders and the percentage rounded 
to two decimal places in the result. We recommend the use of a bar chart. 

male churn: 54.25% female churn: 45.75% 

 
import pandas as pd 

import seaborn as sns 
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df = 

pd.read_csv('https://priscilla.fitped.eu/data/pandas/banking.c

sv', sep=',', decimal='.') 

 

df['gender'] = df['gender'].astype('category') # set as 

categorical variable 

dfd = df[['gender','churn']][:] 

sns.countplot(x='gender', hue='churn', data=dfd) 

 

print(dfd['churn'].loc[dfd['gender']=='Male'].value_counts(nor

malize=True).mul(100).round(2)) 

print(dfd['churn'].loc[dfd['gender']=='Female'].value_counts(n

ormalize=True).mul(100).round(2)) 

 
Program output: 
0    80.85 

1    19.15 

Name: churn, dtype: float64 

0    82.45 

1    17.55 

Name: churn, dtype: float64 

 

 

📝 3.2.6 

Load the data from the banking.csv file, which contains information about the 
bank's customers. After loading the data file, find out what is the ratio of customers 



82 

at risk based on age among the bank's customers (churn and age). Create a new 
categorical variable to classify the following age categories: 

• young - age<18 
• adult - 18<=age<60 
• senior - age>=60 

We recommend using visualization and printing all age categories and percentages 
rounded to two decimal places in the result. We recommend the use of a bar chart. 

young: 50.24% adult: 27.75% senior: 22.01% 

 
import pandas as pd 

import seaborn as sns 

 

df = 

pd.read_csv('https://priscilla.fitped.eu/data/pandas/banking.c

sv', sep=',', decimal='.') 

 

dfd = df[['churn','age']][:] 

dfd['age_group'] = 'str' 

dfd['age_group'][dfd['age']>=60] = 'senior' 

dfd['age_group'][(dfd['age']<60) & (dfd['age']>=18)] = 'adult' 

dfd['age_group'][dfd['age']<18] = 'young' 

sns.countplot(x='age_group', hue='churn', data=dfd) 

 

print(dfd['churn'].loc[dfd['age_group']=='senior'].value_count

s(normalize=True).mul(100).round(2)) 

print(dfd['churn'].loc[dfd['age_group']=='adult'].value_counts

(normalize=True).mul(100).round(2)) 

print(dfd['churn'].loc[dfd['age_group']=='young'].value_counts

(normalize=True).mul(100).round(2)) 

 
Program output: 
:8: SettingWithCopyWarning:  

A value is trying to be set on a copy of a slice from a 

DataFrame 

 

See the caveats in the documentation: 

https://pandas.pydata.org/pandas-

docs/stable/user_guide/indexing.html#returning-a-view-versus-

a-copy 

  dfd['age_group'][dfd['age']>=60] = 'senior' 

:9: SettingWithCopyWarning:  

A value is trying to be set on a copy of a slice from a 

DataFrame 
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See the caveats in the documentation: 

https://pandas.pydata.org/pandas-

docs/stable/user_guide/indexing.html#returning-a-view-versus-

a-copy 

  dfd['age_group'][(dfd['age']<60) & (dfd['age']>=18)] = 

'adult' 

:10: SettingWithCopyWarning:  

A value is trying to be set on a copy of a slice from a 

DataFrame 

 

See the caveats in the documentation: 

https://pandas.pydata.org/pandas-

docs/stable/user_guide/indexing.html#returning-a-view-versus-

a-copy 

  dfd['age_group'][dfd['age']<18] = 'young' 

0    83.17 

1    16.83 

Name: churn, dtype: float64 

0    80.61 

1    19.39 

Name: churn, dtype: float64 

0    87.1 

1    12.9 

Name: churn, dtype: float64 
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3.3 Multivariate analysis 

📝 3.3.1 

Multivariate analysis is the analysis of three or more variables. This allows us to 
examine correlations (i.e. how one variable changes relative to another) and 
attempt to make more accurate predictions of future behaviour than a bivariate 
analysis. Initially, we explored the visualization of univariate analysis and bivariate 
analysis; we will follow a similar approach for multivariate analysis. 

One common way to visualize multivariate data is to create a matrix scatter plot, 
also known as a pairwise plot. A pairwise plot shows each pair of variables in 
contrast to each other. The pairwise plot allows us to see both the distribution of 
each variable and the relationships between the two variables. 

 
import pandas as pd 

import seaborn as sns 

from matplotlib import pyplot as plt 

 

df = 

pd.read_csv('https://priscilla.fitped.eu/data/pandas/games_sal

es.csv', sep=',') 

#print(df.info()) 

sns.pairplot(data=df, 

vars=['Global_Sales','Critic_Score','User_Score'], kind='reg') 

 
Program output: 
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We obtained a 3x3 matrix graph for the Global_Sales, Critics_Score and User_Score 
columns. The histogram on the diagonal allows us to show the distribution of one 
variable. The regression plots on the upper and lower triangles show the 
relationship between the two variables. The left graph in the third row shows a 
regression plot representing that there is no correlation between global sales and 
user score. In comparison, the middle regression plot in the bottom row shows that 
there is a correlation between critic scores and user scores. 

📝 3.3.2 

We can augment the pairwise graph with additional information by inserting a color 
into the graph based on a categorical variable. Therefore, let's insert information 
about different genres into the graph. Density plots on the diagonal allow us to see 
the distribution of one variable, while scatter plots on the upper and lower triangles 
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show the relationship (or correlation) between two variables. The hue parameter is 
the name of the variable that is used to label the data points, which in our case is 
the thesis genre. The downside of our view is that we have too many different 
genres and therefore the visualization is a bit messy. 

 
import pandas as pd 

import seaborn as sns 

from matplotlib import pyplot as plt 

 

df = 

pd.read_csv('https://priscilla.fitped.eu/data/pandas/games_sal

es.csv', sep=',') 

#print(df.info()) 

sns.set(style='ticks', color_codes=True) 

sns.pairplot(data=df, 

vars=['Global_Sales','Critic_Score','User_Score'], 

hue='Genre') 

 
Program output: 
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📝 3.3.3 

Correlation analysis is an effective technique for determining whether there is a 
correlation or dependence (relationship) between variables. The calculation of the 
linear (Pearson) correlation coefficient for a pair of variables can be done using the 
corr() function of the pandas library or the pearsonr() function of the scipy library 
for a particular pair of variables. In this case, we can observe that there is a small 
dependence between critics' ratings and worldwide sales but it is statistically 
significant since the p-value is less than 0.05. 

 
import pandas as pd 

from scipy import stats 

 

df = 

pd.read_csv('https://priscilla.fitped.eu/data/pandas/games_sal

es.csv', sep=',') 

 

dfd = df[['Global_Sales','Critic_Score']].dropna() 

 

corr = stats.pearsonr(dfd['Global_Sales'], 

dfd['Critic_Score']) 

print("p-value:\t", corr[1]) 

print("cor:\t\t", corr[0]) 

 
Program output: 
p-value:  3.7086715030237096e-87 

cor:   0.2959412674530926 

 

📝 3.3.4 

Load the data from the banking.csv file, which contains information about the 
bank's customers. After loading the data file, see if there is a correlation between 
the variables age and current_balance. In this way, we want to see if there is a 
correlation between the age of the customers and their current account balance. 
Print whether there is a statistically significant relationship between the variables 
(yes/no) and the correlation value rounded to 2 decimal places and the p-value. 

no, p-value: 0.12, cor: 0.45 

 
import pandas as pd 

from scipy import stats 
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df = 

pd.read_csv('https://priscilla.fitped.eu/data/pandas/banking.c

sv', sep=',', decimal='.') 

 

dfd = 

df[['age','current_balance']].dropna()#df[['churn','gender']][

:] 

 

corr = stats.pearsonr(dfd['age'], dfd['current_balance']) 

print("p-value:\t", round(corr[1],2)) 

print("cor:\t\t", round(corr[0],2)) 

 
Program output: 
p-value:  0.0 

cor:   0.05 

 

📝 3.3.5 

Load the data from the banking.csv file, which contains information about the 
bank's customers. After loading the data file, see if there is a correlation between 
the previous_month_end_balance and current_balance variables. In this way, we 
want to see if there is a correlation between the previous month's account balance 
and the current account balance. List whether there is a statistically significant 
relationship between the variables (yes/no) and the correlation value rounded to 2 
decimal places and the p-value. 

no, p-value: 0.12, cor: 0.45 

 
import pandas as pd 

from scipy import stats 

 

df = 

pd.read_csv('https://priscilla.fitped.eu/data/pandas/banking.c

sv', sep=',', decimal='.') 

 

dfd = 

df[['previous_month_end_balance','current_balance']].dropna() 

 

corr = stats.pearsonr(dfd['previous_month_end_balance'], 

dfd['current_balance']) 

print("p-value:\t", round(corr[1],2)) 

print("cor:\t\t", round(corr[0],2)) 

 
Program output: 
p-value:  0.0 
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cor:   0.95 

 

📝 3.3.6 

Using the corr() function of the pandas library, we can generate a table of 
correlations of all variables in the dataset. A correlation coefficient approaching 1 
indicates a very strong positive correlation between two variables. We can observe 
this on the diagonal, which actually compares a given variable to itself, so it will be 
1. 

 
import pandas as pd 

 

df = 

pd.read_csv('https://priscilla.fitped.eu/data/pandas/games_sal

es.csv', sep=',') 

 

dfd = df[['Global_Sales','Critic_Score']].dropna() 

 

correlation = df.corr(method='pearson') 

print(correlation) 

 
Program output: 
                   Rank  Critic_Score  User_Score  

Total_Shipped  \ 

Rank           1.000000     -0.137650   -0.293034      -

0.441132    

Critic_Score  -0.137650      1.000000    0.582673       

0.203425    

User_Score    -0.293034      0.582673    1.000000      -

0.025732    

Total_Shipped -0.441132      0.203425   -0.025732       

1.000000    

Global_Sales  -0.554659      0.295941    0.241650            

NaN    

NA_Sales      -0.550922      0.314285    0.234039            

NaN    

PAL_Sales     -0.438841      0.253431    0.190490            

NaN    

JP_Sales      -0.443212      0.174933    0.108721            

NaN    

Other_Sales   -0.427737      0.254755    0.224679            

NaN    
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Year          -0.097345      0.015670   -0.116728      -

0.169701    

 

               Global_Sales  NA_Sales  PAL_Sales  JP_Sales  

Other_Sales  \ 

Rank              -0.554659 -0.550922  -0.438841 -0.443212    

-0.427737    

Critic_Score       0.295941  0.314285   0.253431  0.174933     

0.254755    

User_Score         0.241650  0.234039   0.190490  0.108721     

0.224679    

Total_Shipped           NaN       NaN        NaN       NaN          

NaN    

Global_Sales       1.000000  0.914964   0.904582  0.228782     

0.856798    

NA_Sales           0.914964  1.000000   0.683959  0.075239     

0.687831    

PAL_Sales          0.904582  0.683959   1.000000  0.123954     

0.814068    

JP_Sales           0.228782  0.075239   0.123954  1.000000     

0.082254    

Other_Sales        0.856798  0.687831   0.814068  0.082254     

1.000000    

Year              -0.041354 -0.059352   0.082548 -0.351626     

0.089282    

 

                   Year   

Rank          -0.097345   

Critic_Score   0.015670   

User_Score    -0.116728   

Total_Shipped -0.169701   

Global_Sales  -0.041354   

NA_Sales      -0.059352   

PAL_Sales      0.082548   

JP_Sales      -0.351626   

Other_Sales    0.089282   

Year           1.000000   

 

📝 3.3.7 

We can also visualize the correlation between variables using a heatmap. This way 
we can immediately see which variables have a high correlation and vice versa. We 
will use the heatmap() function of the seaborn library. 
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import pandas as pd 

import seaborn as sns 

from matplotlib import pyplot as plt 

 

df = 

pd.read_csv('https://priscilla.fitped.eu/data/pandas/games_sal

es.csv', sep=',') 

correlation = df.corr(method='pearson') 

sns.heatmap(correlation, xticklabels=correlation.columns, 

yticklabels=correlation.columns) 

 
Program output: 

 

 

📝 3.3.8 

Load the data from the banking.csv file, which contains information about the 
bank's customers. After loading the data file, find out the correlation between all 
the variables. We recommend using a heatmap() type chart. Based on the 
visualization, select the true statements. 

 
import pandas as pd 

from scipy import stats 
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import seaborn as sns 

 

df = 

pd.read_csv('https://priscilla.fitped.eu/data/pandas/banking.c

sv', sep=',', decimal='.') 

 

correlation = df.corr(method='pearson') 

sns.heatmap(correlation, xticklabels=correlation.columns, 

yticklabels=correlation.columns) 

print(correlation) 

 
Program output: 
                                customer_id   vintage       

age  dependents  \ 

customer_id                        1.000000 -0.007750 -

0.000442   -0.008616    

vintage                           -0.007750  1.000000  

0.006220    0.005192    

age                               -0.000442  0.006220  

1.000000   -0.000612    

dependents                        -0.008616  0.005192 -

0.000612    1.000000    

city                               0.000743  0.007616  

0.015439    0.001892    

customer_nw_category               0.009618 -0.001154 -

0.076532    0.013134    

branch_code                       -0.000286  0.003512 -

0.058990    0.020141    

current_balance                    0.006589  0.000031  

0.054346   -0.003070    

previous_month_end_balance         0.005819 -0.000669  

0.058342    0.000216    

average_monthly_balance_prevQ      0.004485 -0.002054  

0.061708    0.001213    

average_monthly_balance_prevQ2    -0.002532 -0.001759  

0.059607    0.002949    

current_month_credit               0.002494 -0.004617  

0.023840    0.003260    

previous_month_credit             -0.006414 -0.000169  

0.029961    0.025054    

current_month_debit                0.002603 -0.004978  

0.027702    0.008207    

previous_month_debit              -0.008760 -0.006760  

0.033296    0.032021    
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current_month_balance              0.005140 -0.000550  

0.057662   -0.000652    

previous_month_balance             0.004553 -0.002208  

0.060297    0.001239    

churn                             -0.002723 -0.004769 -

0.020012    0.033487    

 

                                    city  customer_nw_category  

branch_code  \ 

customer_id                     0.000743              0.009618    

-0.000286    

vintage                         0.007616             -0.001154     

0.003512    

age                             0.015439             -0.076532    

-0.058990    

dependents                      0.001892              0.013134     

0.020141    

city                            1.000000              0.006613    

-0.061234    

customer_nw_category            0.006613              1.000000     

0.235059    

branch_code                    -0.061234              0.235059     

1.000000    

current_balance                -0.005654             -0.058314     

0.000181    

previous_month_end_balance     -0.004089             -0.059854     

0.000214    

average_monthly_balance_prevQ  -0.006298             -0.059535     

0.001955    

average_monthly_balance_prevQ2 -0.007891             -0.047010     

0.001310    

current_month_credit            0.004118             -0.025254    

-0.013988    

previous_month_credit           0.008087             -0.072374    

-0.023849    

current_month_debit             0.001465             -0.035917    

-0.016944    

previous_month_debit            0.005995             -0.071721    

-0.017584    

current_month_balance          -0.005796             -0.058648     

0.001031    

previous_month_balance         -0.005839             -0.059113     

0.002080    
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churn                          -0.001585              0.006551     

0.035469    

 

                                current_balance  

previous_month_end_balance  \ 

customer_id                            0.006589                    

0.005819    

vintage                                0.000031                   

-0.000669    

age                                    0.054346                    

0.058342    

dependents                            -0.003070                    

0.000216    

city                                  -0.005654                   

-0.004089    

customer_nw_category                  -0.058314                   

-0.059854    

branch_code                            0.000181                    

0.000214    

current_balance                        1.000000                    

0.947276    

previous_month_end_balance             0.947276                    

1.000000    

average_monthly_balance_prevQ          0.958307                    

0.970530    

average_monthly_balance_prevQ2         0.714600                    

0.722998    

current_month_credit                   0.030371                    

0.032493    

previous_month_credit                  0.061754                    

0.114222    

current_month_debit                    0.044412                    

0.066329    

previous_month_debit                   0.081247                    

0.109606    

current_month_balance                  0.983412                    

0.974714    

previous_month_balance                 0.942207                    

0.969605    

churn                                 -0.024181                    

0.006886    

 

                                average_monthly_balance_prevQ  

\ 
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customer_id                                          0.004485    

vintage                                             -0.002054    

age                                                  0.061708    

dependents                                           0.001213    

city                                                -0.006298    

customer_nw_category                                -0.059535    

branch_code                                          0.001955    

current_balance                                      0.958307    

previous_month_end_balance                           0.970530    

average_monthly_balance_prevQ                        1.000000    

average_monthly_balance_prevQ2                       0.763495    

current_month_credit                                 0.033639    

previous_month_credit                                0.085699    

current_month_debit                                  0.060579    

previous_month_debit                                 0.121272    

current_month_balance                                0.976290    

previous_month_balance                               0.994038    

churn                                                0.011960    

 

                                average_monthly_balance_prevQ2  

\ 

customer_id                                          -0.002532    

vintage                                              -0.001759    

age                                                   0.059607    

dependents                                            0.002949    

city                                                 -0.007891    

customer_nw_category                                 -0.047010    

branch_code                                           0.001310    

current_balance                                       0.714600    

previous_month_end_balance                            0.722998    

average_monthly_balance_prevQ                         0.763495    

average_monthly_balance_prevQ2                        1.000000    

current_month_credit                                  0.036271    

previous_month_credit                                 0.062264    

current_month_debit                                   0.045239    

previous_month_debit                                  0.102519    

current_month_balance                                 0.725826    

previous_month_balance                                0.736635    

churn                                                 0.018376    

 

                                current_month_credit  

previous_month_credit  \ 

customer_id                                 0.002494              

-0.006414    
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vintage                                    -0.004617              

-0.000169    

age                                         0.023840               

0.029961    

dependents                                  0.003260               

0.025054    

city                                        0.004118               

0.008087    

customer_nw_category                       -0.025254              

-0.072374    

branch_code                                -0.013988              

-0.023849    

current_balance                             0.030371               

0.061754    

previous_month_end_balance                  0.032493               

0.114222    

average_monthly_balance_prevQ               0.033639               

0.085699    

average_monthly_balance_prevQ2              0.036271               

0.062264    

current_month_credit                        1.000000               

0.168561    

previous_month_credit                       0.168561               

1.000000    

current_month_debit                         0.937021               

0.165092    

previous_month_debit                        0.135729               

0.733953    

current_month_balance                       0.034182               

0.085320    

previous_month_balance                      0.038254               

0.108496    

churn                                       0.020755               

0.042179    

 

                                current_month_debit  

previous_month_debit  \ 

customer_id                                0.002603             

-0.008760    

vintage                                   -0.004978             

-0.006760    

age                                        0.027702              

0.033296    
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dependents                                 0.008207              

0.032021    

city                                       0.001465              

0.005995    

customer_nw_category                      -0.035917             

-0.071721    

branch_code                               -0.016944             

-0.017584    

current_balance                            0.044412              

0.081247    

previous_month_end_balance                 0.066329              

0.109606    

average_monthly_balance_prevQ              0.060579              

0.121272    

average_monthly_balance_prevQ2             0.045239              

0.102519    

current_month_credit                       0.937021              

0.135729    

previous_month_credit                      0.165092              

0.733953    

current_month_debit                        1.000000              

0.191755    

previous_month_debit                       0.191755              

1.000000    

current_month_balance                      0.069720              

0.102010    

previous_month_balance                     0.063375              

0.139723    

churn                                      0.048041              

0.073058    

 

                                current_month_balance  

previous_month_balance  \ 

customer_id                                  0.005140                

0.004553    

vintage                                     -0.000550               

-0.002208    

age                                          0.057662                

0.060297    

dependents                                  -0.000652                

0.001239    

city                                        -0.005796               

-0.005839    
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customer_nw_category                        -0.058648               

-0.059113    

branch_code                                  0.001031                

0.002080    

current_balance                              0.983412                

0.942207    

previous_month_end_balance                   0.974714                

0.969605    

average_monthly_balance_prevQ                0.976290                

0.994038    

average_monthly_balance_prevQ2               0.725826                

0.736635    

current_month_credit                         0.034182                

0.038254    

previous_month_credit                        0.085320                

0.108496    

current_month_debit                          0.069720                

0.063375    

previous_month_debit                         0.102010                

0.139723    

current_month_balance                        1.000000                

0.963276    

previous_month_balance                       0.963276                

1.000000    

churn                                       -0.006391                

0.014593    

 

                                   churn   

customer_id                    -0.002723   

vintage                        -0.004769   

age                            -0.020012   

dependents                      0.033487   

city                           -0.001585   

customer_nw_category            0.006551   

branch_code                     0.035469   

current_balance                -0.024181   

previous_month_end_balance      0.006886   

average_monthly_balance_prevQ   0.011960   

average_monthly_balance_prevQ2  0.018376   

current_month_credit            0.020755   

previous_month_credit           0.042179   

current_month_debit             0.048041   

previous_month_debit            0.073058   

current_month_balance          -0.006391   
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previous_month_balance          0.014593   

churn                           1.000000   

 

 

• there is no relationship between demographic variables 
• there is a relationship between demographic variables 
• there is a relationship between customer variables 
• there is no relationship between customer variables 
• there is a relationship between variables on transactions 
• there is no relationship between transaction variables 

📝 3.3.9 

Load the data from the banking.csv file, which contains information about the 
bank's customers. After loading the data file, find the correlation between the 
variables from the category of transaction information. We recommend using a  
heatmap() type chart. Based on the visualization, select the true statements. 

 
import pandas as pd 

from scipy import stats 

import seaborn as sns 
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df = 

pd.read_csv('https://priscilla.fitped.eu/data/pandas/banking.c

sv', sep=',', decimal='.') 

print(df.info()) 

dfd = 

df[['current_balance','previous_month_end_balance','average_mo

nthly_balance_prevQ','average_monthly_balance_prevQ2','current

_month_credit','previous_month_credit','current_month_debit','

previous_month_debit','current_month_balance','previous_month_

balance','churn']][:] 

 

correlation = dfd.corr(method='pearson') 

sns.heatmap(correlation, xticklabels=correlation.columns, 

yticklabels=correlation.columns) 

#print(correlation) 

 
Program output: 
 

RangeIndex: 28382 entries, 0 to 28381 

Data columns (total 21 columns): 

 #   Column                          Non-Null Count  Dtype   

---  ------                          --------------  -----   

 0   customer_id                     28382 non-null  int64   

 1   vintage                         28382 non-null  int64   

 2   age                             28382 non-null  int64   

 3   gender                          27857 non-null  object  

 4   dependents                      25919 non-null  float64 

 5   occupation                      28302 non-null  object  

 6   city                            27579 non-null  float64 

 7   customer_nw_category            28382 non-null  int64   

 8   branch_code                     28382 non-null  int64   

 9   current_balance                 28382 non-null  float64 

 10  previous_month_end_balance      28382 non-null  float64 

 11  average_monthly_balance_prevQ   28382 non-null  float64 

 12  average_monthly_balance_prevQ2  28382 non-null  float64 

 13  current_month_credit            28382 non-null  float64 

 14  previous_month_credit           28382 non-null  float64 

 15  current_month_debit             28382 non-null  float64 

 16  previous_month_debit            28382 non-null  float64 

 17  current_month_balance           28382 non-null  float64 

 18  previous_month_balance          28382 non-null  float64 

 19  churn                           28382 non-null  int64   

 20  last_transaction                28382 non-null  object  

dtypes: float64(12), int64(6), object(3) 
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memory usage: 4.5+ MB 

None 

 

 

• there is a relationship between the current balance and balances from 
previous months 

• there is no relationship between the current balance and balances from 
previous months 

• the transaction variables debit/credit are mainly correlated with each other 
• the transaction variables debit/credit are correlated with all variables 
• the transaction variables debit/credit do not correlate with the balance 

variables 
• the transaction variables debit/credit are correlated with the balance 

variables 
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Project - data analysis 

Chapter 4 
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4.1 Data analysis 

📝 4.1.1 

The project focuses on the analysis of the company's employees. The dataset 
contains information about employees. The most important data and variables 
used in the analysis are: 

• Age - age of the employee 
• Department - department 
• DistanceFromHome - the distance of the employee's home from the place of 

work 
• Education - level of education 
• EducationField - the area in which the employee has studied 
• MonthlyIncome - monthly income 
• JobLevel - job position level (values from 1 to 5) 
• YearsAtCompany - the number of years he has worked in the company 
• TotalWorkingYears - total number of years of employment 

 
# import library 

import pandas as pd 

# read csv https://priscilla.fitped.eu/data/nlp/employees.csv 

df = 

pd.read_csv('https://priscilla.fitped.eu/data/nlp/employees.cs

v', sep=',') 

# explore dataset 

print(df.info()) 

 
Program output: 
 

RangeIndex: 1470 entries, 0 to 1469 

Data columns (total 35 columns): 

 #   Column                    Non-Null Count  Dtype  

---  ------                    --------------  -----  

 0   Age                       1470 non-null   int64  

 1   Attrition                 1470 non-null   object 

 2   BusinessTravel            1470 non-null   object 

 3   DailyRate                 1470 non-null   int64  

 4   Department                1470 non-null   object 

 5   DistanceFromHome          1470 non-null   int64  

 6   Education                 1470 non-null   int64  

 7   EducationField            1470 non-null   object 

 8   EmployeeCount             1470 non-null   int64  

 9   EmployeeNumber            1470 non-null   int64  

 10  EnvironmentSatisfaction   1470 non-null   int64  
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 11  Gender                    1470 non-null   object 

 12  HourlyRate                1470 non-null   int64  

 13  JobInvolvement            1470 non-null   int64  

 14  JobLevel                  1470 non-null   int64  

 15  JobRole                   1470 non-null   object 

 16  JobSatisfaction           1470 non-null   int64  

 17  MaritalStatus             1470 non-null   object 

 18  MonthlyIncome             1470 non-null   int64  

 19  MonthlyRate               1470 non-null   int64  

 20  NumCompaniesWorked        1470 non-null   int64  

 21  Over18                    1470 non-null   object 

 22  OverTime                  1470 non-null   object 

 23  PercentSalaryHike         1470 non-null   int64  

 24  PerformanceRating         1470 non-null   int64  

 25  RelationshipSatisfaction  1470 non-null   int64  

 26  StandardHours             1470 non-null   int64  

 27  StockOptionLevel          1470 non-null   int64  

 28  TotalWorkingYears         1470 non-null   int64  

 29  TrainingTimesLastYear     1470 non-null   int64  

 30  WorkLifeBalance           1470 non-null   int64  

 31  YearsAtCompany            1470 non-null   int64  

 32  YearsInCurrentRole        1470 non-null   int64  

 33  YearsSinceLastPromotion   1470 non-null   int64  

 34  YearsWithCurrManager      1470 non-null   int64  

dtypes: int64(26), object(9) 

memory usage: 402.1+ KB 

None 

 

📝 4.1.2 

Calculate the absolute frequencies of employees for all departments (Department). 
How many employees does the Sales Department have? 

 
# import library 

import pandas as pd 

# read csv 

df = 

pd.read_csv('https://priscilla.fitped.eu/data/nlp/employees.cs

v', sep=',') 

# calculate counts of employess in departments 
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📝 4.1.3 

You can already calculate the number of employees in each department. Complete 
the code in one line to calculate the average of these numbers. The result should 
be 490. 

 
# import library 

import pandas as pd 

# read csv 

df = 

pd.read_csv('https://priscilla.fitped.eu/data/nlp/employees.cs

v', sep=',') 

# calculate mean of counts of employess in departments 

📝 4.1.4 

What command do we use to plot the histogram for sorting the DailyRate variable? 

 
# import library 

import pandas as pd 

# read csv 

df = 

pd.read_csv('https://raw.githubusercontent.com/sasu4/pris_data

/main/employees.csv', sep=',') 

df["DailyRate"].plot.hist() 

df["DailyRate"].plot.bar() 

•  
• df["DailyRate"].value_counts().plot.bar() 
• df["DailyRate"].value_counts().plot.hist() 

📝 4.1.5 

Calculate the frequencies of employees according to the level of education they 
have attained. However, calculate these numbers only for employees from the  
Sales Department. 

How many employees in the sales department have a level of education higher than 
3? 

 
# import library 

import pandas as pd 

# read csv 
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df = 

pd.read_csv('https://priscilla.fitped.eu/data/nlp/employees.cs

v', sep=',') 

# filter only the sales department and list the numbers for 

education 

📝 4.1.6 

How do we calculate the variation range of the DailyRate variable? 

 
# import library 

import pandas as pd 

# read csv 

df = 

pd.read_csv('https://priscilla.fitped.eu/data/nlp/employees.cs

v', sep=',') 

df["DailyRate"].max()-df["DailyRate"].min() 

df["DailyRate"].max()+df["DailyRate"].min() 

df["DailyRate"].sum()-df["DailyRate"].count() 

df["DailyRate"].min()-df["DailyRate"].max() 

df["DailyRate"].sum()-df["DailyRate"].avg() 

📝 4.1.7 

What does it mean if the standard deviation is high? 

• The values are more scattered within the variation range. 
• Most of the values are around the average. 
• Most values are around the median. 
• Values are scattered well outside the range of variation too. 

📝 4.1.8 

What is the standard deviation of the age of employees? (round the result to 2 
decimal places) 

 
# import library 

import pandas as pd 

# read csv 

df = 

pd.read_csv('https://priscilla.fitped.eu/data/nlp/employees.cs

v', sep=',') 

# calculate the standard deviation of the variable Age using 

the pandas library 
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📝 4.1.9 

Use the Matplotlib library to plot a box plot for the distance of the employee's home 
from the work location. Which of the following box plots visualizes the distribution 
of this variable? 

 
# import library 

import pandas as pd 

import matplotlib.pyplot as plt 

# read csv 

df = 

pd.read_csv('https://priscilla.fitped.eu/data/nlp/employees.cs

v', sep=',') 

# display a boxplot for distance from home using the 

matplotlib library 

•  
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•  

•  
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•  

•  
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•  

📝 4.1.10 

Plot a box plot of the distribution of the age of employees who have graduated with 
a degree in human resources. 

Which of the following plots shows this? 

 
# import library 

import pandas as pd 

import matplotlib.pyplot as plt 

# read csv 

df = 

pd.read_csv('https://priscilla.fitped.eu/data/nlp/employees.cs

v', sep=',') 

# display a box plot for the age of employees who have a 

degree in human resources 
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•  

•  
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•  

•  
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•  

•  

📝 4.1.11 

If a variable has a positive skewness, it means that: 

• Most values are close to the measure of central tendency 
• The values are relatively homogenously distributed over the variation range 
• Most values are greater than average 
• Most values are less than the average 
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📝 4.1.12 

Plot a histogram that describes the distribution of a variable that represents the 
total number of years of employment of an employee. Use 8 intervals. 

Which of the following statements can be read from the plot? 

 
# import library 

import pandas as pd 

# read csv 

df = 

pd.read_csv('https://priscilla.fitped.eu/data/nlp/employees.cs

v', sep=',') 

# draw a histogram of the variable total number of years the 

employee has worked 

df["TotalWorkingYears"].plot.hist(bins = 8) 

• The kurtosis is probably positive 
• The kurtosis is probably negative 
• The kurtosis is probably close to zero 
• The skewness is probably positive 
• The skewness is probably negative 
• The skewness is probably close to zero 
• Probably does not have a normal distribution 
• Probably has a normal distribution 
• The mode is 7.5 
• The median is less than 15 
• The mode is in the interval of 5 to 10 
• The median is greater than 15 

📝 4.1.13 

Show the pivot table to find the frequencies for the combinations of what 
department the employee works in and what level of education they have attained. 

Select from the options, combining which will give the resulting number of such 
employees 128. 

 
# import library 

import pandas as pd 

import numpy as np 

# read csv 

df = 

pd.read_csv('https://priscilla.fitped.eu/data/nlp/employees.cs

v', sep=',') 
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# draw a pivot table for department and level of education 

• Sales 
• Research & Development 
• Human Resources 
• 4 
• 1 
• 2 
• 3 
• 5 

📝 4.1.14 

Use the Seaborn library to show box plots for monthly employee income 
(MonthlyIncome). Plot a box plot for each group by education (Education). 

After the plots are drawn, identify the group (level of education attained) that has 
the highest income. What color is the box plot for this group with the default 
Seaborn setting? 

 
# import libraries 

import pandas as pd 

import seaborn as sns 

# read csv 

df = 

pd.read_csv('https://priscilla.fitped.eu/data/nlp/employees.cs

v', sep=',') 

 

• purple 
• blue 
• yellow 
• orange 
• red 

📝 4.1.15 

Draw box plots for the variable age using the Seaborn library. However, the output 
should contain two box plots, one for the group with JobLevel equal to 1 and the 
other with JobLevel equal to 5. 

What can be clearly deduced from this visualization? 

 
# import libraries 

import pandas as pd 
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import seaborn as sns 

import matplotlib.pyplot as plt 

# read csv 

df = 

pd.read_csv('https://priscilla.fitped.eu/data/nlp/employees.cs

v', sep=',') 

# dark design setting 

plot = sns.set(style="darkgrid") 

# draw boxplots for the age variable for the group with 

JobLevel equal to 1 and the other with JobLevel equal to 2. 

plot =  

# show chart 

plt.show() 

• No employee at level 5 is less than 35 years of age. 
• Every employee of the company is less than 60 years old. 
• The youngest employee at Level 5 is older than 75% of all employees at Level 

1. 
• That a Level 1 employee would be over 53 years old is exceptional. 
• The range of variation in the age of employees at level 1 is approximately 18 

to 52 years. 
• All employees at level 5 are between 39 and 60 years of age. 
• The majority of Level 1 employees are between the ages of 27 and 37. 
• The average age of employees at Level 1 is 32. 

📝 4.1.16 

Which of the following tests are used to test the normality of a variable? 

• Lilliefors' test 
• Kolmogorov-Smirnov test 
• Shapiro-Wilk W test 
• T-test 
• Cochran-Cox test 
• Mann-Whitney U test 

📝 4.1.17 

Use the Shapiro-Wilk test to check the normality of the variable age. Show the 
result. Copy the entire output of the test into the answer sheet. 

 
# import library 

import pandas as pd 

from scipy import stats 

# read csv 
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df = 

pd.read_csv('https://priscilla.fitped.eu/data/nlp/employees.cs

v', sep=',') 

# use the Shapiro-Wilk test to verify the normality of the age 

variable 

📝 4.1.18 

Verify that the variable age has a normal distribution. 

 
# import library 

import pandas as pd 

from scipy import stats 

# read csv 

df = 

pd.read_csv('https://priscilla.fitped.eu/data/nlp/employees.cs

v', sep=',') 

• It does not have a normal distribution. 
• It has a normal distribution. 

📝 4.1.19 

Draw a jointplot from the Seaborn library for the variable monthly income and total 
number of years of employment (not just at this company). 

Which of the following statements can be read from the plot? 

 
# import libraries 

import pandas as pd 

import seaborn as sns 

import matplotlib.pyplot as plt 

# read csv 

df = 

pd.read_csv('https://priscilla.fitped.eu/data/nlp/employees.cs

v', sep=',') 

 

# draw a jointplot from the Seaborn library for the variable 

monthly income and total years worked 

• Monthly income depends significantly on the number of years of 
employment. 

• Monthly income does not depend significantly on the number of years of 
employment. 
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• The variable MonthlyIncome does not have a normal distribution. 
• The variable MonthlyIncome has a normal distribution. 
• The TotalWorkingYears variable does not have a normal distribution. 
• The TotalWorkingYears variable has a normal distribution. 
• If an employee has a higher income, he or she also has more years of 

employment. 
• If an employee has less income, he or she has less years of employment. 

📝 4.1.20 

Using the Scipy library, calculate Pearson's R with the corresponding p-value. 
Evaluate the correlation between the variable monthly income and the number of 
years worked in the company. 

Copy the entire output into your answer. 

 
# import library 

import pandas as pd 

from scipy import stats 

# read csv 

df = 

pd.read_csv('https://priscilla.fitped.eu/data/nlp/employees.cs

v', sep=',') 

# evaluate the correlation between the variable monthly income 

and the number of years worked in the company 

📝 4.1.21 

Calculate the correlation coefficients between the variables Age, DailyRate, 
JobLevel, MonthlyIncome, TotalWorkingYears, YearsAtCompany. 

On which variable does the employee's monthly income depend most? 

 
# import libraries 

import pandas as pd 

import seaborn as sns 

import matplotlib.pyplot as plt 

# read csv 

df = 

pd.read_csv('https://priscilla.fitped.eu/data/nlp/employees.cs

v', sep=',') 

# calculate the correlation coefficients between the variables 

Age, DailyRate, JobLevel, MonthlyIncome, TotalWorkingYears, 

YearsAtCompany 
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• JobLevel 
• Age 
• DailyRate 
• TotalWorkingYears 
• YearsAtCompany 
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Analysis of Titanic data 

Chapter 5 
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5.1 Analysis of Titanic data 

📝 5.1.1 

The data analysis project focuses on a very popular dataset related to the sinking 
of the Titanic. In this tragedy, 1502 of the 2224 passengers and crew died. The 
dataset contains information on 887 actual Titanic passengers. Each line 
represents one passenger. The columns contain the following information about 
the passengers: 

• PassenderID - unique passenger identifier 
• Survived - information on whether the passenger survived (1) or not (0) 
• Pclass - passenger class (1,2,3) 
• Name - name of the passenger 
• Sex - passenger's gender 
• Age - age of the passenger 
• SibSp - number of siblings or spouses on board 
• Parch - number of parents or children on board 
• Ticket - ticket number 
• Fare - fare of the ticket 
• Cabin - cabin number 
• Embarked - the city where the passenger boarded (C - Cherbourg, S - 

Southampton, Q - Queenstown) 

In the following micro-lectures, we will look at which characteristics had the highest 
correlation with passengers' chances of survival. 

 
# import library 

import pandas as pd 

# read csv from 

https://priscilla.fitped.eu/data/pandas/titanic.csv 

df = 

pd.read_csv('https://priscilla.fitped.eu/data/pandas/titanic.c

sv', sep=',') 

# explore dataset 

print(df.info()) 

 
Program output: 
 

RangeIndex: 891 entries, 0 to 890 

Data columns (total 12 columns): 

 #   Column       Non-Null Count  Dtype   

---  ------       --------------  -----   

 0   PassengerId  891 non-null    int64   

 1   Survived     891 non-null    int64   
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 2   Pclass       891 non-null    int64   

 3   Name         891 non-null    object  

 4   Sex          891 non-null    object  

 5   Age          714 non-null    float64 

 6   SibSp        891 non-null    int64   

 7   Parch        891 non-null    int64   

 8   Ticket       891 non-null    object  

 9   Fare         891 non-null    float64 

 10  Cabin        204 non-null    object  

 11  Embarked     889 non-null    object  

dtypes: float64(2), int64(5), object(5) 

memory usage: 83.7+ KB 

None 

 

📝 5.1.2 

Load the data from the dataset titanic.csv (the file is located at 
https://priscilla.fitped.eu/data/pandas/titanic.csv). Examine the data in the dataset 
and see if the dataset contains any missing data. If so, list the variable with the 
largest number and its count. Print the result in the following form: 

PassengerID: 235 

 
# import library 

import pandas as pd 

# read csv from 

https://priscilla.fitped.eu/data/pandas/titanic.csv 

df = 

pd.read_csv('https://priscilla.fitped.eu/data/pandas/titanic.c

sv', sep=',') 

# explore dataset 

total = df.isnull().sum().sort_values(ascending=False) 

print(total) 

 
Program output: 
Cabin          687 

Age            177 

Embarked         2 

PassengerId      0 

Survived         0 

Pclass           0 

Name             0 

Sex              0 

SibSp            0 
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Parch            0 

Ticket           0 

Fare             0 

dtype: int64 

 

📝 5.1.3 

After reviewing the missing data, decide which statements are true. 

• except for the variables Cabin, Age and Cabin, the other variables are fine 
• the Cabin variable contains too many missing values 
• we need to delete all rows that contain missing values 
• we need to complete all rows of the Cabin variable that contain missing 

values 
• we will not consider the Cabin variable because it contains too many missing 

values 
• the Age variable will not be considered because it contains too many missing 

values 

📝 5.1.4 

Load the data from the dataset titanic.csv (the file is located at 
https://priscilla.fitped.eu/data/pandas/titanic.csv). Examine the data in the dataset 
to determine the ratio of male to female survivors. Write out the result as a 
percentage rounded to two decimal places and in the following format: 

Male: 23.50%, Female: 33.42% 

 
# import library 

import pandas as pd 

# read csv from 

https://priscilla.fitped.eu/data/pandas/titanic.csv 

df = 

pd.read_csv('https://priscilla.fitped.eu/data/pandas/titanic.c

sv', sep=',') 

# explore dataset 

#percentage of women survived 

women = df.loc[df.Sex == 'female']["Survived"] 

rate_women = round(sum(women)/len(women)*100,2) 

 

#percentage of men survived 

men = df.loc[df.Sex == 'male']["Survived"] 

rate_men = round(sum(men)/len(men)*100,2) 

 

print(str(rate_women) +" % of women who survived." ) 
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print(str(rate_men) + " % of men who survived." ) 

 
Program output: 
74.2 % of women who survived. 

18.89 % of men who survived. 

 

📝 5.1.5 

Based on an examination of the ratio of male to female survivors of the disaster 
decide which statements are true. You can help by visualizing using a bar graph. 
Also, visualise the proportion of men and women on the boat. 

 
# import library 

import pandas as pd 

import seaborn as sns 

import matplotlib.pyplot as plt 

# read csv from 

https://priscilla.fitped.eu/data/pandas/titanic.csv 

df = 

pd.read_csv('https://priscilla.fitped.eu/data/pandas/titanic.c

sv', sep=',') 

# explore dataset 

df['SurvivedCat'] = df['Survived'].map({0:"not_survived", 

1:"survived"}) 

 

fig, ax = plt.subplots(1, 2, figsize = (10, 8)) 

df["Sex"].value_counts().plot.bar(color = "skyblue", ax = 

ax[0]) 

ax[0].set_title("Number Of Passengers By Sex") 

ax[0].set_ylabel("Population") 

sns.countplot(x="Sex", hue = "SurvivedCat", data = df) 

ax[1].set_title("Sex: Survived vs Dead") 

plt.show() 

 

 
Program output: 
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• the percentage of female survivors is high 
• the percentage of male survivors is high 
• the percentage of male survivors is low 
• the percentage of female survivors is low  
• gender can affect the chance of survival 
• gender does not affect the chance of survival 
• there were more men than women on the ship 
• there were more women than men on the ship 
• there were approximately the same number of men as women on the ship 

📝 5.1.6 

Load the data from the dataset titanic.csv (the file is located at 
https://priscilla.fitped.eu/data/pandas/titanic.csv). Examine the data in the dataset 
and find out the distribution of the number of passengers in each class. Write the 
result in numbers and in the following format: 

Class 1: 459, Class 2: 232, Class 3: 120 

 
# import library 
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import pandas as pd 

# read csv from 

https://priscilla.fitped.eu/data/pandas/titanic.csv 

df = 

pd.read_csv('https://priscilla.fitped.eu/data/pandas/titanic.c

sv', sep=',') 

# explore dataset 

fig, ax = plt.subplots(1, 2, figsize = (10, 8)) 

df["Pclass"].value_counts().plot.bar(color = "skyblue", ax = 

ax[0]) 

ax[0].set_title("Number Of Passengers By Pclass") 

ax[0].set_ylabel("Population") 

sns.countplot(x="Pclass", hue = "Survived", data = df, ax = 

ax[1]) 

ax[1].set_title("Pclass: Survived vs Dead") 

plt.show() 

 

print(df['Pclass'].value_counts()) 

 
Program output: 

3    491 
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1    216 

2    184 

Name: Pclass, dtype: int64 

 

📝 5.1.7 

Based on a review of the distribution of passengers by class, review the distribution 
of passengers who survived the disaster by class. Decide which statements are 
true. You can help by visualizing using a bar graph. 

 
# import library 

import pandas as pd 

# read csv from 

https://priscilla.fitped.eu/data/pandas/titanic.csv 

df = 

pd.read_csv('https://priscilla.fitped.eu/data/pandas/titanic.c

sv', sep=',') 

# explore dataset 

fig, ax = plt.subplots(1, 2, figsize = (10, 8)) 

df["Pclass"].value_counts().plot.bar(color = "skyblue", ax = 

ax[0]) 

ax[0].set_title("Number Of Passengers By Pclass") 

ax[0].set_ylabel("Population") 

sns.countplot(x="Pclass", hue = "Survived", data = df, ax = 

ax[1]) 

ax[1].set_title("Pclass: Survived vs Dead") 

plt.show() 

 

print(df['Pclass'].value_counts()) 

 
Program output: 
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3    491 

1    216 

2    184 

Name: Pclass, dtype: int64 

 

• most passengers were in 3rd class 
• most passengers were in 2nd class 
• most passengers were in 1st class 
• fewest passengers were in 2nd class 
• fewest passengers were in 1st class 
• fewest passengers were in 3rd class 
• most of the 3rd class passengers did not survive the crash 
• most of the 3rd class passengers survived the crash 
• most of the 1st class passengers did not survive the disaster 

📝 5.1.8 

Load the data from the dataset titanic.csv (the file is located at 
https://priscilla.fitped.eu/data/pandas/titanic.csv). Examine the data in the dataset 
and find the distribution of the number of passengers by embarkation point. Write 
the result in numbers and in the following format: 
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S: 459, C: 232, Q: 120 

 
# import library 

import pandas as pd 

import matplotlib.pyplot as plt 

import seaborn as sns 

# read csv from 

https://priscilla.fitped.eu/data/pandas/titanic.csv 

df = 

pd.read_csv('https://priscilla.fitped.eu/data/pandas/titanic.c

sv', sep=',') 

# explore dataset 

fig, ax = plt.subplots(1, 2, figsize = (10, 8)) 

df["Embarked"].value_counts().plot.bar(color = "skyblue", ax = 

ax[0]) 

ax[0].set_title("Number Of Passengers By Embarked") 

ax[0].set_ylabel("Number") 

sns.countplot(x="Embarked", hue = "Survived", data = df, ax = 

ax[1]) 

ax[1].set_title("Embarked: Survived vs Unsurvived") 

plt.show() 

 

 

print(df['Embarked'].value_counts()) 

 
Program output: 
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S    644 

C    168 

Q     77 

Name: Embarked, dtype: int64 

 

📝 5.1.9 

Based on a review of passenger class distribution, examine the distribution of 
survivors by embarkation location. Decide which statements are true. You can help 
by visualizing using a bar graph. 

 
# import library 

import pandas as pd 

import matplotlib.pyplot as plt 

import seaborn as sns 

# read csv from 

https://priscilla.fitped.eu/data/pandas/titanic.csv 
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df = 

pd.read_csv('https://priscilla.fitped.eu/data/pandas/titanic.c

sv', sep=',') 

# explore dataset 

fig, ax = plt.subplots(1, 2, figsize = (10, 8)) 

df["Embarked"].value_counts().plot.bar(color = "skyblue", ax = 

ax[0]) 

ax[0].set_title("Number Of Passengers By Embarked") 

ax[0].set_ylabel("Number") 

sns.countplot(x="Embarked", hue = "Survived", data = df, ax = 

ax[1]) 

ax[1].set_title("Embarked: Survived vs Unsurvived") 

plt.show() 

 
Program output: 

 

 

• most passengers boarded at Southampton 
• more than half of the passengers boarded at Southampton did not survive 

the crash 
• only the passengers who embarked at Cherbourg survived more than died 
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• fewest passengers boarded in Queenstown 
• most passengers boarded in Queenstown 
• fewest passengers boarded in Cherbourg 
• most passengers embarked in Cherbourg 
• more than half of the passengers embarked at Cherbourg did not survive the 

disaster 

📝 5.1.10 

Load the data from the dataset titanic.csv (the file is located at 
https://priscilla.fitped.eu/data/pandas/titanic.csv). Examine the data in the dataset 
and find out the age distribution of the passengers. Write the most numerous age 
category in the following format (we recommend visualizing it as a histogram): 

40-45 

 
# import library 

import pandas as pd 

import matplotlib.pyplot as plt 

import seaborn as sns 

# read csv from 

https://priscilla.fitped.eu/data/pandas/titanic.csv 

df = 

pd.read_csv('https://priscilla.fitped.eu/data/pandas/titanic.c

sv', sep=',') 

# explore dataset 

sns.histplot(df['Age'].dropna()) 

 
Program output: 
24.00    30 

22.00    27 

18.00    26 

19.00    25 

28.00    25 

         .. 

36.50     1 

55.50     1 

0.92      1 

23.50     1 

74.00     1 

Name: Age, Length: 88, dtype: int64 



133 

 

 

📝 5.1.11 

Load the data from the dataset titanic.csv (the file is located at 
https://priscilla.fitped.eu/data/pandas/titanic.csv). Examine the data in the dataset 
and see if there is a correlation between age and whether or not the passenger 
survived the crash. Write whether there is a statistically significant relationship 
between the variables (yes/no) and the correlation value rounded to 2 decimal 
places and the p-value. 

no, p-value: 0.12, cor: 0.45 

 
# import library 

import pandas as pd 

from scipy import stats  

# read csv from 

https://priscilla.fitped.eu/data/pandas/titanic.csv 

df = 

pd.read_csv('https://priscilla.fitped.eu/data/pandas/titanic.c

sv', sep=',') 

dfd = df[['Age','Survived']].dropna() 

# explore dataset 

corr = stats.pearsonr(dfd['Age'], dfd['Survived']) 

print("p-value:\t", round(corr[1],2)) 

print("cor:\t\t", round(corr[0],2)) 
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Program output: 
p-value:  0.04 

cor:   -0.08 

 

📝 5.1.12 

Load the data from the dataset titanic.csv (the file is located at 
https://priscilla.fitped.eu/data/pandas/titanic.csv). Examine the data in the dataset 
to see if there is a correlation between class and whether or not the passenger 
survived the crash. Write whether there is a statistically significant relationship 
between the variables (yes/no) and the correlation value rounded to 2 decimal 
places and the p-value. 

no, p-value: 0.12, cor: 0.45 

 
# import library 

import pandas as pd 

from scipy import stats  

# read csv from 

https://priscilla.fitped.eu/data/pandas/titanic.csv 

df = 

pd.read_csv('https://priscilla.fitped.eu/data/pandas/titanic.c

sv', sep=',') 

dfd = df[['Pclass','Survived']].dropna() 

# explore dataset 

corr = stats.pearsonr(dfd['Pclass'], dfd['Survived']) 

print("p-value:\t", round(corr[1],2)) 

print("cor:\t\t", round(corr[0],2)) 

 
Program output: 
p-value:  0.0 

cor:   -0.34 

 

📝 5.1.13 

Load the data from the dataset titanic.csv (the file is located at 
https://priscilla.fitped.eu/data/pandas/titanic.csv). Examine the data in the dataset 
and see if there is a correlation between the number of siblings (Sibsp) and whether 
or not the passenger survived the crash. Write whether there is a statistically 
significant relationship between the variables (yes/no) and the correlation value 
rounded to 2 decimal places and the p-value. 
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no, p-value: 0.12, cor: 0.45 

 
# import library 

import pandas as pd 

from scipy import stats  

# read csv from 

https://priscilla.fitped.eu/data/pandas/titanic.csv 

df = 

pd.read_csv('https://priscilla.fitped.eu/data/pandas/titanic.c

sv', sep=',') 

dfd = df[['SibSp','Survived']].dropna() 

# explore dataset 

corr = stats.pearsonr(dfd['SibSp'], dfd['Survived']) 

print("p-value:\t", round(corr[1],2)) 

print("cor:\t\t", round(corr[0],2)) 

 
Program output: 
p-value:  0.29 

cor:   -0.04 

 

📝 5.1.14 

Load the data from the dataset titanic.csv (the file is located at 
https://priscilla.fitped.eu/data/pandas/titanic.csv). Examine the data in the dataset 
and see if there is a correlation between the number of children (Parch) and 
whether or not the passenger survived the crash. Write whether there is a 
statistically significant relationship between the variables (yes/no) and the 
correlation value rounded to 2 decimal places and the p-value. 

no, p-value: 0.12, cor: 0.45 

 
# import library 

import pandas as pd 

from scipy import stats  

# read csv from 

https://priscilla.fitped.eu/data/pandas/titanic.csv 

df = 

pd.read_csv('https://priscilla.fitped.eu/data/pandas/titanic.c

sv', sep=',') 

dfd = df[['Parch','Survived']].dropna() 

# explore dataset 

corr = stats.pearsonr(dfd['Parch'], dfd['Survived']) 

print("p-value:\t", round(corr[1],2)) 

print("cor:\t\t", round(corr[0],2)) 
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Program output: 
p-value:  0.01 

cor:   0.08 

 

📝 5.1.15 

Load the data from the dataset titanic.csv (the file is located at 
https://priscilla.fitped.eu/data/pandas/titanic.csv). Examine the data in the dataset 
and see if there is a correlation between the ticket price and whether or not the 
passenger survived the disaster. Write whether there is a statistically significant 
relationship between the variables (yes/no) and the correlation value rounded to 2 
decimal places and the p-value. 

no, p-value: 0.12, cor: 0.45 

 
# import library 

import pandas as pd 

from scipy import stats  

# read csv from 

https://priscilla.fitped.eu/data/pandas/titanic.csv 

df = 

pd.read_csv('https://priscilla.fitped.eu/data/pandas/titanic.c

sv', sep=',') 

dfd = df[['Fare','Survived']].dropna() 

# explore dataset 

corr = stats.pearsonr(dfd['Fare'], dfd['Survived']) 

print("p-value:\t", round(corr[1],2)) 

print("cor:\t\t", round(corr[0],2)) 

 
Program output: 
p-value:  0.0 

cor:   0.26 

 

📝 5.1.16 

Load the data from the dataset titanic.csv (the file is located at 
https://priscilla.fitped.eu/data/pandas/titanic.csv). Examine the data in the dataset 
and see if there is a correlation between the embarkation point and whether or not 
the passenger survived the disaster. The embarkation variable must be 
transformed into numerical values before analysis. Write whether there is a 
statistically significant relationship between the variables (yes/no) and the 
correlation value rounded to 2 decimal places and the p-value. 



137 

no, p-value: 0.12, cor: 0.45 

 
# import library 

import pandas as pd 

from scipy import stats  

# read csv from 

https://priscilla.fitped.eu/data/pandas/titanic.csv 

df = 

pd.read_csv('https://priscilla.fitped.eu/data/pandas/titanic.c

sv', sep=',') 

dfd = df[['Embarked','Survived']].dropna() 

dfd['Embarked'] = dfd['Embarked'].map({"S":1, 

"C":2,"Q":2,"NaN":0}) 

# explore dataset 

corr = stats.pearsonr(dfd['Embarked'], dfd['Survived']) 

print("p-value:\t", round(corr[1],2)) 

print("cor:\t\t", round(corr[0],2)) 

 
Program output: 
p-value:  0.0 

cor:   0.15 

 

📝 5.1.17 

Based on the results obtained from the data analysis, select the passenger 
characteristics that have an impact on disaster survival. 

 

• Age 
• Pclass 
• Sibsp 
• Parch 
• Fare 
• Embarked 
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Summarisation 
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Summarisation 

Chapter 1 
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1.1 The introduction into summarization 

🕮 1.1.1 

INTRODUCTION TO SUMMARIZATION 

There are more and more electronic documents on the Internet, and the text 
contained in them can be too long and difficult to understand. With the 
development of the field of artificial intelligence, which is called natural language 
processing, algorithms were developed with the help of which the text can be 
shortened, i.e. summarized. Natural Language Processing is characterized by 
algorithms that can understand human language. Typical tasks with which natural 
language is processed are, for example, determining the morphological properties 
of texts (e.g. determining the parts of speech), translating documents, 
supplementing texts (e.g. whisperer in Google search) but also algorithms that can 
simplify a lot of long text into a coherent and fluent summary . The subfield of 
language processing that is simplified by text is called summarization. 

 

📝 1.1.2 

Select tasks typical of natural language processing 

• determining the parts of speech in the text 
• machine translation of documents 
• summarization of the text 
• image processing 

 

🕮 1.1.3 

With the help of text summarization, a long text can be simplified into paragraphs, 
sentences or capture key phrases. In this way, we can reduce the time needed to 
understand long materials such as research papers without missing important 
information. The basis of text summarization is the creation of a summary, which 
can be defined as a text created from one or more documents that provides 
important information in the original documents and does not exceed the length of 
half of the original document. The task of automatic text summarization is to 
create a concise and flowing summary that will preserve the content of key 
information and overall meaning. Automatic summarization is used, for example, in 
the generation of excerpts of articles, for example, on news websites. Automatic 
text summarization is very difficult. When a person tries to summarize a text, they 
usually read it in its entirety and can write a summary based on their understanding. 
However, computers cannot think about text in the same way as a human, so 
summarizing is a difficult and non-trivial task. 
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Text summarization is an important task in data science that allows us to remove 
excess information noise, thanks to which we can work only with essential 
information from the original texts. There are four criteria by which the quality of 
summarization can be judged: 

 

• Information coverage - Information coverage tells how much of the important 
information in the text the summarization was able to contain. 

 

• Coherence of summarization - Coherence of summarization is a measure that 
expresses the relationship and continuity between sentences. 

 

• Minimizing redundancy - Minimizing redundancy means minimizing duplicate 
information in summaries. 

 

• Brevity - Brevity is a metric that expresses how many words a summary needs to 
contain important information. 

 

📝 1.1.4 

What is the name of the metric that expresses how many words the summary 
needs to contain important information? 

 

1.2 The approaches to summarization 

🕮 1.2.1 

APPROACHES TO SUMMARIZATION 

There are two main approaches to the task of summarization - extraction and 
abstraction. Extraction is based on extracting from an existing document the most 
important content that exists in the document, while abstraction approaches can 
generate new sentences. 
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EXTRACTIVE SUMMARY 

Extractive summarization works on the principle that it decides which sentences 
from the text are significant and need to be included in the summary. For this 
purpose, the so-called sentence scoring, which means that each sentence is 
assigned a score and then the sentences are ranked. The sentences that have the 
highest score must be included in the summary. 

Simply put, if we use an extractive approach, we try to find the most relevant 
informative sentences in a document, then "extract" them from the text and 
combine them again to create a new, shorter version of the original text. With this 
approach, no new sentences are created that did not previously exist in the text. 
The extracted sentences from the original document are just recombined. 
Extractive summarization can use several methods: 

• TF-IDF (Term Frequency - Inverse Document Frequency) - This statistical method 
is used to assess the importance of words. Term frequency is used to determine 
how many times a term occurs in a document. The frequency of expressions like 
"the" can be very high. The inverse document frequency is calculated as the 
logarithm of the total number of documents divided by the total number of 
documents in which the term occurs. The inverse frequency of a term document 
can be low even though its term frequency is very high. 

• Graph-based methods - With this technique, a graph is created. Graph nodes 
represent sentences. The edges of the graph symbolize connections between 
sentences that share the same words. Nodes that have more edges contain 
important sentences and have higher priority in summarization. 

• Principles using machine learning - Using machine learning, we can view text 
summarization as a two-class classification problem. Sentences are grouped into 
summary and non-summary sentences. The summarizer is trainable, the training 
data set and their extraction summaries are used as a reference. 

• LSA (Latent Semantic Analysis) - LSA is a robust algebraic-statistical method that 
extracts the hidden semantic structures of words and sentences, that is, it extracts 
properties that cannot be mentioned directly. These features are essential to the 
data, but are not native features of the dataset. It is an unsupervised approach 
along with the use of Natural Language Processing (NLP). 

• Methods using neural networks – Neural networks try to imitate the activity of the 
human brain when learning. Like the human brain, they contain neurons that 
process data. So the neural network tries to think like a human to judge which 
sentences are important and should be included in the summary. Using training 
data, it tries to learn the types of sentences that should be included in the 
summary. After the network learns the features that must exist in the summary 
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sentences, we need to determine the trends and relationships between the features 
that are inherent in most of the sentences. 

• Methods based on Fuzzy logic - This method considers each characteristic of the 
text, such as sentence length, title similarity, keyword similarity, etc. for the fuzzy 
system input. All rules needed for summarization are also input to the knowledge 
base. Each sentence receives a score ranging from 0 to 1. The obtained value 
determines the importance of the sentences for generating the summary. 

 

📝 1.2.2 

Choose the correct statements about extractive summarization 

• decides which sentences from the text are significant and need to be 
included in the summary 

• the summarized text consists only of the sentences that were in the original 
text 

• uses the concept of sentence scoring 
• the summarized text also consists of new sentences that were not in the 

original text 
• does not use the concept of sentence punctuation 

 

🕮 1.2.3 

ABSTRACT SUMMARY 

 

Abstract summarization is a smarter form of summarization compared to 
extractive summarization because it can generate new sentences. In this approach, 
we must first create a transient representation of the input text. This is usually 
created by representing the topic, i.e. by transforming the text in order to identify 
the main topics of the text and by representing the indicator, where a set of 
"indicators" - e.g. the length of sentences or sentences containing certain 
"indicator" words expresses the importance of a part of the text. The individual 
sentences are again ranked according to their score, and the sentences with the 
highest scores are used to compile the summary. 

 

Abstract summarization attempts to understand text using advanced natural 
language processing techniques and create new sentences by paraphrasing as a 
human would. This approach is significantly more complex, as it requires a 
semantic understanding of the text and the connection between concepts, context 
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and topics. Similar to extractive summarization, abstract summarization can be 
achieved by several methods: 

 

• Tree-based methods - The main idea of this group of methods is to use a 
dependency tree that represents the text or content of a document. An example of 
such an algorithm is sentence fusion, which can process multiple documents. 

 

• Template-based methods - In these methods, the entire document is represented 
using a certain wizard. Linguistic patterns or extraction rules are mapped to point 
text snippets that can be mapped to guide slots (to create a database). 

 

• Rule-based methods - Rule-based methods display input documents in terms of 
classes and facet lists. Verbs and nouns with similar meanings are identified to 
create extraction rules. A number of candidate rules are selected and transferred to 
the summary. 

 

• Graph-based methods - Similar to extractive summarization, abstract 
summarization can be achieved using graphs. 

 

• Ontology-based methods - Ontologies are extremely popular in NLP, including 
both extractive and abstract summaries where appropriate, as they are usually 
limited to the same topic or domain. In addition, each domain has its own 
knowledge structure, which can be better represented using an ontology. Although 
they differ in their specific approaches, all ontology-based summarization methods 
involve sentence reduction by compression and reformulation using both linguistic 
and NLP techniques. Fuzzy ontology is a typical representative. 

 

• Multimodal Semantic Model - A semantic model is initially created using an 
object-based knowledge representation. Nodes represent concepts and links 
between these concepts represent the relationship between them. Important ideas 
are scored using an information density metric that checks for completeness, 
relationship with others, and number of term occurrences. The selected terms are 
finally transformed into sentences to form a summary. 
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• Semantic Text Representation Model - The goal of this technique is to analyze the 
input text using the semantics of the words, rather than using the syntax or 
structure of the text. 

 

📝 1.2.4 

Choose the correct statements about abstract summarization 

• the created summary contains only the sentences that were in the original 
text 

• it relies entirely on the concept of sentence scoring 
• uses the indicator representation to express the importance of individual 

parts of the text 
• the summary contains sentences that were not in the original text 

 

🕮 1.2.5 

COMBINED SUMMARY 

 

There are combined approaches that use an abstract generator. The abstract 
generator takes as input the text that comes from the extractive summarizer. 
Combined summarization is more effective because it works with text that is 
already stripped of all redundant and irrelevant information. Many current 
algorithms, including the BART algorithm, are based on this approach. 

 

1.3 Koncepts used in text summarization 

🕮 1.3.1 

CONCEPTS USED IN TEXT SUMMARY 

In order to understand the principle of operation of the individual algorithms that 
serve to summarize the text, we must first familiarize ourselves with neural 
networks. The human brain contains tens of thousands of brain cells called 
neurons. These neurons are interconnected, can communicate with each other and 
create complex structures. In artificial intelligence, there are methods that teach 
computers to process data similarly to the human brain. These methods are called 
neural networks. 
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NEURON 

Before we explain the architecture of neural networks, it is necessary to familiarize 
ourselves with how a neuron works. The simplest possible implementation is a 
neuron with two inputs, similar to the figure below, where x1 x2 represent the inputs 
and y represents the output. 

 

There are three things going on here: 

 

• First, each input is multiplied by some weight w. 
• The weighted inputs are counted and the so-called bias (some constant) 
• The result from the second step is fed into the activation function, which is 

used to turn the result of the input into an output that has a nice, readable 
form. A commonly used activation function is a sigmoid function that 
converts a number to a value between 0 and 1. 

 

📝 1.3.2 

What is the basic unit of a neural network called? 

 

🕮 1.3.3 

NEURON NETWORKS 

If we connect several neurons together, we talk about the so-called neural 
networks. A basic neural network has interconnected artificial neurons in three 
layers: 
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• Input Layer - These are our original inputs, similar to x1 and x2 in the 
previous image. 

• Hidden layer - The hidden layer analyzes the output from the input layer. If 
the neural layer has several hidden layers, we are talking about deep neural 
networks. 

• Output layer - The output layer gives the final result. 

•  

 

📝 1.3.4 

The layer of the neural network that processes the output from the input layer is 
called 

• hidden layer 
• output layer 
• input layer 

 

🕮 1.3.5 

TYPES OF NEURONAL NETWORKS 

There are several types of neural networks. We will describe the most famous of 
them. 

 

Feedforward neural networks 

Feedforward neural networks process data in one direction, from the input layer to 
the output layer. Every node in one layer is connected to every other node in the 
next layer. 
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Recurrent Neural Networks (RNNs) 

Recurrent neural networks are special architectures that take temporal information 
into account. The hidden state of the neural network at time t takes information 
from the input at time t and the activations from the hidden units at time t-1 to 
compute the outputs for time t. This can be seen in the image below. In this way, a 
recurrent neural network can remember previous inputs and their outputs. 

 

Remembering previous input is particularly important in natural language 
processing tasks because the input words are not of equal size and the next word 
is highly dependent on the previous words. Thus, recurrent neural networks can 
remember context. 

 

Long Short Term Memory (LSTM) Networks 

The memory of RNNs is short, which can be a problem. The optimization of this 
problem was the creation of networks with a longer memory, which are called 
LSTMs and use the so-called cell state. This cell state is the state at any time and is 
updated with relevant information at each time step. The output at each time step 
is derived from the input, the previous output, and the updated state of the cell. 

 

Transformer networks 

With the introduction of LSTMs and their ability to remember the state of cells, the 
memory of neural networks improved but was still limited. To solve memory 
problems, transformer networks have been developed that introduce the concept of 
attention blocks. Attention blocks calculated how each word in the input was 
related to other words in the input. The higher the value, the more attention is paid 
to these words and the more dependent the set of words is. Attention increases the 
number of contextual connections a network can make, and the network can learn 
relationships and context from large data sets. 
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🕮 1.3.6 

Algorithms used in text summarization 

Nowadays, since this is a field that produces really useful results, many different 
algorithms are used and constantly improved. 

 

GPT-3 

GPT-3 is an automatic regressive artificial intelligence algorithm developed by 
OpenAI, an AI-powered research lab based in San Francisco, California. It is a 
massive artificial neural network that uses deep learning to generate human text 
and is trained on huge text files with thousands of billions of words. It is the third-
generation AI language prediction model in the GPT-n series and the successor to 
GPT-2. 

 

This artificial intelligence algorithm is a program that can calculate a word or even 
a character that must appear in a text in relation to the words around it. This is 
called the conditional probability of words. It is a generative neural network that 
allows for a numerical score or a yes or no response. It also generates long 
sequences of original text as output. The total number of weights that OpenAI GPT-
3 dynamically stores in its memory and uses to process each query is 175 billion. 

 

BERT 

BERT (Bidirectional Encoder Representation for Transformers) uses a fully 
bidirectional unsupervised approach and is pre-prepared for pure text corpus only 
(Wikipedia). The two-way approach means that the words in the sentence are 
evaluated not only from left to right and top to bottom, as a person would do, but 
also in the opposite direction. The interesting thing about this algorithm is that it 
learns using a masking function ("masked language modeling": some words are 
masked into a sentence) and then BERT has to predict which one is the missing 
word or if the sentence follows another sentence. BERT uses an attention 
mechanism that is able to learn the contextual relationships between words in a 
text. Below we briefly describe the BART algorithm, which is currently the most 
modern in the field of summarization and is derived from BERT. 
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BART 

BART (Bidirectional Autoencoder Representation for Transformers). The BART 
algorithm generalizes both the GPT and BERT approaches, taking the best of the 
two models. BART is trained to corrupt the text with a noise function (which adds 
"noise" to the text, not just masks) and then trains the model to recover the original 
text. It is based on a transformer-based neural machine translation architecture 
with a bidirectional encoder (like BERT) and a left-to-right decoder (like GPT). The 
BART algorithm maps document corruptions to an input document and can be 
applied to any type of document corruption (token masking, token erasure, text 
padding, sentence permutation, document rotation, etc.). The BART algorithm 
achieves new, state-of-the-art results in abstract dialogue, text generation, question 
answering, and summarization tasks. 
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Keyword Extraction 

Chapter 2 
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2.1 The introduction into keyword extraction 

🕮 2.1.1 

Introduction to keyword extraction 

Keyword extraction is one of the summarization techniques used to capture the 
most important words or phrases from a document. Using this technique, a small 
set of units consisting of one or more phrases can be extracted. Key phrases play 
an important role in quickly getting the idea of a textual data without having to read 
the whole text. This text summarization technique finds application in the field of 
content management, such as search engine optimization, advertising and user 
recommendation systems. For example, when visiting an ad or website, end users 
are attracted if the keywords are relevant to their needs. 

 

Approaches to keyword extraction can be most simply divided into two basic 
groups, namely simple statistical approaches and approaches based on machine 
learning. If we wanted to take a closer look at keyword extraction, we could divide 
the extraction principles into five categories, namely simple statistical approaches, 
graph-based approaches, linguistic approaches, machine learning-based 
approaches, and hybrid approaches. 

 

📝 2.1.2 

Which of the following terms do not belong to approaches to keyword extraction 

• absctractive 
• extractive 
• statistical 
• graph based 
• hybrid 
• machine learning based 

 

🕮 2.1.3 

Preprocessing of texts 

Different approaches to keyword extraction may require different levels of pre-
processing of the text from which we are going to extract keywords. Text 
preprocessing refers to techniques such as: 
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• Removing stop words - The most important step in the revision process is to 
remove words that have no meaning in the text. Such words include, for 
example, conjunctions, prepositions, or other words that occur frequently in 
the text but do not make sense by themselves. A list of such words for 
different languages can be obtained using the NLTK python library. 

• Text to lower case - Keyword extraction algorithms can be case sensitive. 
For example, if we have the sentence "Keyword extraction is usefull. Rake is 
the best technique for keyword extraction", we would not want to get both 
"Keyword extraction" and "keyword extraction" in the list of keywords. 

• Removal of punctuation and special characters - Texts may contain various 
special characters and unwanted punctuation. Let's say we're extracting 
keywords from social media statuses. Such statuses can often contain 
emojis that do not carry any semantic meaning and we do not want them to 
be extracted as keywords. 

 

📝 2.1.4 

Conjunctions, prepositions, or other words that appear in the text are often marked 
as 

 

2.2 Statistical Approaches 

🕮 2.2.1 

Statistical approaches 

Statistical approaches extract keywords by using statistical functions such as TF-
IDF (Term Frequency-Inverse Document Frequency), n-gram statistics, word co-
occurrences, and other statistics. Most statistical approaches are language-
independent, meaning that they can be used for texts in a language if a large 
enough corpus is available. In addition to applicability to active language, speed is 
an indisputable advantage of statistical approaches. algorithms are rather faster in 
contrast to approaches that are based on machine learning. 

 

TF-IDF (Term Frequency - Inverse Document Frequency) 

TF-IDF is one of the most well-known possible approaches to find important words 
from a document. TF-IDF talks about the importance of the words in the document 
in relation to the entire corpus. It is already clear from the name of the approach 
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that this approach is composed of two components, namely the TF component and 
the IDF component. The TF (Term Frequency) component expresses how often 
(frequency) a given word occurs in a document from the corpus. it is usually 
normalized by dividing the document's word count to avoid overestimating long 
documents, where the search term may appear more often than shorter ones, 
without making the document more relevant. Therefore, we obtain the TF 
component according to the following, where the number of occurrences of the 
word ti in the document is not dj. The denominator expresses the sum of the 
number of occurrences of all words in the document. 

 

 

 

IDF (Inverse Document Frequency) talks about specific words. In principle, it can be 
said that the more often a word occurs in documents, the less important it is (a 
word that occurs in all documents, such as the English article "the" or the Slovak 
conjunction "a", is mostly unusable in searches). We calculate the IDF for the word i 
using the formula below, where |D| represents the number of documents in which 
we search and |{j : ti ϵ dj}| is the number of documents that contain the word i. 

 

 

📝 2.2.2 

TF-IDF talks about the importance of the words in the document in relation to the 
entire corpus 

•  
•  

 

🕮 2.2.3 

RAKE (Rapid Automatic Keyword Extraction) 

RAKE enjoys the most popularity among statistics-based keyword extraction 
algorithms. The idea behind this algorithm is that keywords often contain multiple 
words, but rarely contain punctuation, stop words, or other words with minimal 
lexical meaning. The algorithm is primarily based on the co-occurrence of words, 
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for example, when extracting keywords from customer feedback on a specific 
phone, a key phrase could be represented by a bigram such as "good camera", 
"quality sound." These words in the feedback domain of a specific product often 
appeared together . It's a collocation. The input to the algorithm is the text cleaned 
of trace words and punctuation. The algorithm then calculates the co-occurrence 
matrix. 

 

Each word is then assigned a score. The degree of the word in the matrix is 
calculated - the sum of the number of common occurrences divided by the 
frequency of their occurrence. Frequency of occurrence means how many times a 
word occurs in the corpus. 
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The final score for the identified key phrases will be the sum of the scores of the 
individual words that the key phrase contains. So for the keyword phrase "feature 
extraction" the value will be equal to 4.66. 

 

📝 2.2.4 

What is the basis of the RAKE algorithm? 

• co-occurrences of words 
• cosine similarity 
• frequency of words in text 

 

📝 2.2.5 

Implementation of the RAKE algorithm 

To implement the RAKE algorithm, we will first start the nltk library, rake-nltk. After 
installation, we can import the libraries. Lists of stop words are available on various 
websites. We could download any of them and implement it in our code as a letter. 
However, we can also use the list of stop words offered by the nltk library. In our 
case, we will show the extraction of keywords from simple text, which will be stored 
in a string variable. We will have to tokenize this text into sentences, for which we 
will use the Punkt Sentence Tokenizer, which divides the text into a list of 
sentences. We have the following text: "Text summarization is a method which 
belongs to the area of Natural Language Processing. Keyword extraction is a 
process of obtaining the most important keywords in a document. Keyword 
extraction is usefull text summarization technique." Let's save this text as a string 
variable. Let's just convert this text to lowercase letters. Let's save a list of our stop 
words in the stop_words variable. 

 
pip install nltk 

pip install rake-nltk 

import nltk 

from rake_nltk import Rake 

nltk.download('stopwords') 

from nltk.corpus import stopwords 

nltk.download('punkt') 

 

text = "Text summarization is a method which belongs to the 

area of Natural Language Processing. Keyword extraction is a 

process of obtaining the most important words in document. 

Keyword extraction is usefull text summarization technique." 
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text = text.lower() 

 

stop_words = nltk.corpus.stopwords.words('english') 

In the rake_extractor variable, we initialize the Rake class that will perform the 
extraction. The stopwords parameter specifies a list of words to be removed from 
the text. The range of n-grams, i.e. the number of words we want our keywords to 
contain, is determined by the min_length parameter, which defines the minimum 
number of words that phrases must contain, and the max_length parameter, which 
defines the maximum number of words. words that the extracted key phrases may 
contain. In our case, we want phrases that have exactly two words. The 
include_repeated_phrases parameter specifies whether we want the extracted 
keywords to be repeated in the result. We then call the function 
extract_keywords_from_text which will accept our variable named text as a 
parameter. 

 
rake_extractor = Rake(stopwords = stop_words, min_length=2, 

max_length=2, include_repeated_phrases=False) 

rake_extractor.extract_keywords_from_text(text) 

 

# To get keyword phrases ranked highest to lowest with scores. 

rake_extractor.get_ranked_phrases_with_scores() 

and to get the keywords we will use the get_ranked_phrases or 
get_ranked_phrases_with_scores method depending on whether we want to see the 
rank scores for our keywords as well. 

 
rake_extractor.get_ranked_phrases_with_scores() 

🕮 2.2.6 

KP-miner 

There are more complex keyword extraction methods that use TF-IDF only as a 
statistical method to calculate the importance of key phrases. This includes, for 
example, the KP-miner method, which is divided into three steps. The first step is to 
select the candidate words from the documents, the second step is to calculate the 
score of the candidate words, and the third step is to select the candidate word 
with the highest score as the final keyword phrase. KP-miner introduced two new 
statistical functions in the candidate word selection phase. The Least Allowable 
Seen Frequency factor means that only words that appear more than n times in the 
document can be considered as candidate words. The second statistical function 
introduced by KP-miner is called CutOff and is based on the fact that if a word 
appears after a given threshold position in a long document, it will not be a key 
phrase, meaning that the word that appears after the CutOff will be filtered out. 



158 

Finally, the final key phrases are selected by combining the candidate word 
positions and TF-IDF scores. 

 

📝 2.2.7 

List the steps of the KP-miner algorithm 

• <|br> 
• <|br> 
• <|br> 
• Calculation of IDF 
• Calculation Factor of the lowest permissible frequency of vision and CutOff 
• Calculation of candidate words 
• TF calculation 
• <|br> 
• Calculation of TF-IDF 

 

🕮 2.2.8 

YAKE 

YAKE is a typical keyword phrase extraction method using TF-IDF. The difference 
between YAKE and KP-miner is that YAKE uses the candidate word location or TF-
IDF information and introduces a new set of five features. The case of WC reflects 
the case of the candidate words. The WP variable in the formula reflects the 
position of the word, meaning that the more often the word is at the front of the 
document, the greater its value. Word frequency is WF expresses that the higher the 
frequency of a word in a document, the greater its value. WRC context word 
relatedness refers to the number of different words occurring on either side of a 
candidate word. Word DifSentence WD indicates the frequency of the candidate 
word in different sentences. These five values are combined to calculate S(w) as 
shown in the formula below. 

 

Finally, the final S(kw) of each candidate word is calculated using the 3-gram model 
as shown in the following equation, where kw represents the candidate word and 
TF represents the frequency of the key phrase. The smaller the value of S(kw), the 
more likely it is that kw will be a key phrase. 
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📝 2.2.9 

Implementation of the YAKE algorithm 

To implement the algorithm, we need to download and import the appropriate 
library. The basic implementation of the algorithm is simple, it is enough to define 
the language in which our text is located and the maximum number of n-grams. 

 
pip install yake 

import yake 

yake_extractor = yake.KeywordExtractor(lan="en", n=2) 

keywords = yake_extractor.extract_keywords(text) 

for kw in keywords: 

    print(kw) 

📝 2.2.10 

The difference between YAKE and KP-miner is that KP-miner uses candidate word 
locations or TF-IDF information and introduces a new set of five features 

• yes 
• no 

 

2.3 Graph based approaches 

🕮 2.3.1 

Graph-based approaches 

All graph-based approaches compute to a vertex in the graph, relying not only on 
information that is specific to a local vertex, but also taking into account global 
information that is recursively computed from the entire graph. The basis of many 
graph-based algorithms is the PageRank algorithm 

 

 



160 

PageRank 

PageRank is an algorithm that was developed to rank web pages according to a 
system of quantity and quality of links that point to it. PageRank is calculated 
according to the formula below, where A represents the subpage for which 
PageRank is calculated and T1 to Tn are the subpages that link to subpage A. PR 
stands for PageRank of subpages, C stands for new links from subpages, and is a 
damping factor that takes care of reducing the excessive influence of some 
subpages, which can cause the use of fake bots. 1-d is the factor that takes care of 
eachnovú stránku, na ktorú neukazuje žiadny odkaz. 

 

TextRank 

The most famous graph-based keyword extraction algorithm is TextRank, which is 
based on the PageRank algorithm. TextRank uses the PageRank algorithm on a 
graph where vertices correspond to words. An important aspect is a text that 
contains deep linguistic knowledge, or domain- or language-specific annotated 
corpora, making it highly transferable to other domains, genres, or languages. 

The original PageRank algorithm assumes an unweighted graph. But the graphs for 
TextRank are built from natural language text and therefore would include many 
links between tokens extracted from the text. Therefore, useful pages of 
relationships between graph vertices would be important. For this reason, TextRank 
is applied to a weighted chart. 

An interesting feature of the TextRank algorithm is that it also includes features of 
linguistic approaches. The first step of the algorithm is to tokenize the text and then 
annotate it with POS tags. The authors of TextRank conducted experiments and 
observed the best results when considering only nouns and adjectives. Vertices 
that pass a syntactic filter in which POS tags are only noun or adjective are graphed 
as vertices. 

 

📝 2.3.2 

TextRank uses the PageRank algorithm on a graph where vertices correspond to 
words 

• yes 
• no 
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🕮 2.3.3 

SingleRank 

Another graph-based keyword extraction algorithm is SingleRank, which extends 
TextRank with two main differences. As in the TextRank algorithm, with SingleRank, 
vertices are passed through a syntactic filter and edges are also assigned based on 
the co-occurrence of words in the window. The first major difference is that these 
edges are assigned a weight based on the distance between two words that are in a 
predefined window. The second difference counts the number of vertices it keeps 
as potential keywords after running the PageRank algorithm. SingleRank keeps all 
words, while with TextRank it's usually the top 30%. 

 

📝 2.3.4 

The difference between the TextRank and PageRank algorithms is the weight 
assigned based on the two words in the predefined window and the number of 
words the algorithms keep as potential keywords. 

 

🕮 2.3.5 

TopicRank 

TopicRank uses a slightly different method from the TextRank and SingleRank 
algorithms. Its task is to extract key phrases from those equally present in the 
document. This algorithm considers the topic as similar candidates for key 
phrases. These topics are then ranked according to their importance in the 
document, and the most important key phrase for each topic. 

 

The TopicRank algorithm consists of the following steps: 

• identifying topics, 

• chart-based assessment, 

• keyword selection. 

There are three strategies used to find the best keyword phrase for a given topic. 
One strategy converts all key phrases back to their generic form and selects the key 
phrase that appeared first in the document. The second strategy selects the most 
frequent key phrase, while the third selects based on the centroid of the cluster. 
The centroid is an imaginary or real location representing the center of the cluster. 
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Each data point is assigned to each of the clusters by the reduced sum of squares 
within the cluster. 

 

📝 2.3.6 

Sort the steps of the TopicRank algorithm 

• topic identification 
• chart-based assessment 
• <|br> 
• keyword selection 
• <|br> 

 

2.4 Machine learning based approaches 

🕮 2.4.1 

Approaches based on machine learning 

Keyword extraction approaches that are based on machine learning use supervised 
(supervised) learning and transform the keyword extraction task into a 
classification or prediction problem. A model trained on the labeled set is used to 
determine whether a candidate word in the text is a key phrase or not. The 
advantage of machine learning-based approaches is that they require less or no 
text pre-processing and extract key phrases with high semantic relevance. The 
disadvantage is that the models are language- and sometimes context-dependent, 
and changing the corpus may require training the model anew, or choosing a 
different model. Another disadvantage is that machine learning brings with it a 
higher computational effort, which makes extraction using machine learning-based 
approaches slower than approaches that are solely based on statistics and do not 
require training data. 

 

KEA 

One of the first methods of keyword extraction that uses machine learning is KEA, 
which consists of determining whether a candidate word is a keyword phrase by 
calculating the TF-IDF of each candidate word and the place where it first appears 
in the text, and putting these value values into Naive Bayes. 
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🕮 2.4.2 

KeyBERT 

The most widely used technique that can extract keywords with high semantic 
relevance is KeyBERT. This technique uses a pre-trained BERT (Bidirectional 
Encoder Representations from Transformes) model. The KeyBERT algorithm itself 
begins by sending a document to the BERT model, which creates a representation 
of the document by dividing the text into fixed-size vectors representing the 
semantics of the document. 

 

In the second step, the candidate phrase generator extracts candidate phrases 
from the document using simple techniques such as occurrence count, TF-IDF, and 
so on. In the next step, this data is again sent to the BERT model and a phrase-level 
representation is obtained. Subsequently, the cosine similarity is calculated 
between the document-level representation and the phrase-level representation, to 
obtain the most similar words to the document representation, which are the 
resulting keywords. The calculation takes place according to the formula below. 

 

The results are then sorted in descending order and the top n items are selected. 

 

📝 2.4.3 

KeyBERT algorithm implementation 

The first step that needs to be done is to install the library that implements 
KeyBERT and then import it. 
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Subsequently, we can implement the algorithm using two lines of code. The 
keyphrase_ngram_range parameter defines the range of desired n-grams. We insert 
the list of desired stop words into the stop_words parameter. The default model 
used for extractions is the "all-MiniLM-L6-v2" model. This model works with the 
English language and belongs 

 
pip install keybert 

from keybert import KeyBERT 

keybert_extractor = KeyBERT() 

keywords = keybert_extractor.extract_keywords(text, 

keyphrase_ngram_range=(2, 2), stop_words=stop_words) 

📝 2.4.4 

List the steps of the KeyBERT algorithm 

• Getting key phrases 
• <|br> 
• <|br> 
• Creating a document-level representation 
• Calculation of cosine similarity 
• Creating a phrase-level representation 
• The document is sent to the BERT model 
• Selection of candidate phrases 
• <|br> 
• <|br> 
• <|br> 

 

2.5 Hybrid Approaches 

🕮 2.5.1 

Hybrid approaches 

Hybrid approaches combine the previous methods. They use heuristic knowledge 
such as position, word length, HTML tags around words and other methods. 

 

2.6 Evaluation 

🕮 2.6.1 
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Evaluation of algorithms for keyword extraction 

It is not easy to design an evaluation metric that could reflect the advantages and 
disadvantages of an algorithm. Since an evaluation metric can only evaluate one 
aspect of an algorithm, multiple metrics can more accurately and comprehensively 
evaluate an algorithm. For example, researchers usually use precision, coverage 
(recall), and F1-score (harmonic mean) to evaluate a method from multiple 
perspectives. 

 

🕮 2.6.2 

Metrics based on statistics 

Statistics-based evaluation metrics analyze the performance of the method by 
calculating the proportion of the number of different key phrases, such as the 
number of extracted key phrases, correct key phrases, incorrect key phrases, and 
manually assigned key phrases. Standard statistics-based metrics include 
precision, coverage, and harmonic mean. 

 

Precision 

Mathematically, the precision metric is defined as the number of true positives tp 
divided by the sum of the true positives tp and the number of false positives fp. It 
can be calculated according to the formula below. 

 

Recall 

This metric is defined by the formula below as the number of true positives tp 
divided by the sum of true positives tp and false negatives fn. 

 

Harmonic mean (F1 score) 

The previous two metrics influence each other. In an ideal situation, both are high, 
but in general, when the precision metric is high, the coverage is low, and vice 
versa. The harmonic mean is a combination of both. 
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📝 2.6.3 

Precision is defined as the number of true positives tp divided by the sum of true 
positives tp and the number of false positives fp 

• yes 
• no 

 

📝 2.6.4 

Recall is defined as the number of true positives tp divided by the sum of true 
positives tp and the number of false positives fp 

• yes 
• no 

 

🕮 2.6.5 

Metrics based on linguistics 

The ranking metrics listed so far are based on the assumption that key phrases are 
independent of each other, but based on human language habits, we hope that 
more important key phrases should be placed higher. The following three ranking 
metrics can reflect the ranking functions among the key phrase outputs by the 
algorithm. 

 

Mean Reciprocal Rank (MRR) 

Mean reciprocal rank is a measure for evaluating models that return a document-
ordered list of key phrases. MRR only cares about one highest rated relevant item. If 
the model returns a relevant keyword phrase in the third highest position, then MRR 
takes care of that. It doesn't matter if the other relevant key phrases (assuming 
there are any) rank #1 or #10. 
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MRR gives the average ranking of the first correct prediction, where d is the number 
of documents and ranki is the rank in which the first correct key phrase of 
document i was found. 

 

Mean Average Precision (MAP) 

MAP takes into account the order of the particular returned list of key phrases. The 
average accuracy of AP is defined by the equation, 

 

where |N| the length of the list, |LN| represents the number of relevant items, P(n) is 
the precision, and gd(n) is equal to one if the nth item is a golden keyphrase and 0 
otherwise. By averaging the AP over a set of n documents, the mean average 
accuracy (MAP) is defined as: 

 

where C represents the number of correct key phrases, M represents the number of 
all extracted key phrases, and I represents the number of correct key phrases 
before incorrect phrases. 
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1.1 Introduction 

🕮 1.1.1 

Introduction into classification 

So, in order to classify, we need two things. A classifier, that is, an algorithm that 
can provide a classification on some dataset. Suppose we go to solve one of the 
typical classification tasks, namely whether the report is fraud or not. The data file 
in our case could be a .csv file, in which we would have a message in one column 
and a binary label (0/1) in the other column. If the message is a hoax, it would have 
a label of 1, and if the message is not a hoax, it would have a label of 0. 

At the moment we need to find (train) our model. By default, this is done in such a 
way that some part of the dataset (for example 75%) is taken, which will be used to 
learn the model. This part of the dataset is also called the training set. The model 
will learn similarly to how a human would. It will look at a message, read whether it 
is a hoax or not and will look for patterns among the data to learn which messages 
look like a hoax. Once the training process is complete, the second phase, testing. 
In this phase, the model will get the remaining 25% of the data, which they also 
refer to as the test set, and will try to classify the messages into that to look at the 
output. given the probability with which the model will assume that a given 
message is a hoax. 

📝 1.1.2 

The algorithm that implements the classification is called 

🕮 1.1.3 

Types of classification tasks 

Classification tasks are divided into: 

• binary classification, 
• multi-class classification, 
• multi-label classification. 

 

Binary classification 

We already talked about binary classification in the previous examples, when we 
remembered the classification tasks like whether the picture is a dog or a cat or 
whether the message is a hoax. So it is a type of classification where we can 
classify our case only among the two tried ones. For example, whether the email is 
spam. The input variables would represent the characteristics/properties of the 
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email. This variable could be represented by one of two values (classes). If the 
email was spam, it would be assigned a value of 1, otherwise it would be assigned 
a value of 0. 

 

Multiclass classification 

Multiclass classification is used in cases where our input variable can take more 
than two values. A typical task of multi-class classification is the categorization of 
face or plant species. 

Let's imagine that we wanted to create a model that could determine which of the 
flowers it was. In such a case, we would therefore have three possible values of the 
output variable, which is why we say it is a multi-class classification. 

 

Multi-label classification 

Let's imagine that we want to classify objects in a photo. One photo can contain a 
person, a table, a dog, etc. Compared to binary or multi-class classification, where 
we assumed a single class designation, a specific photo can therefore have several 
objects in the scene. 
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2.1 Decision Tree 

🕮 2.1.1 

Decision tree 

A decision tree is a classifier with a tree structure. For the decision tree, we 
introduce the following concepts: 

 

• Root - the place where the tree begins. From this point (vertex / node), the 
tree further branches into two or more parts. 

• Leaf - the final output that does not branch further. 
• Branch - a subtree that was created by branching. 

  

The decision tree is very easy to understand because it makes decisions similar to 
a human. At the top of the tree is the question or main criterion from which the tree 
branches. Let's say that we are looking for a job with a salary above €1,500 and a 
home office option. 

 

 

📝 2.1.2 

What is the name of the place where the tree starts 
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🕮 2.1.3 

Measuring the quality of tree splitting 

Two metrics are typically used to measure the quality of a distribution, namely the 
Gini index and entropy. 

The Gini index is a metric for classification tasks whose value ranges from 0 to 1, 
where 0 indicates that all elements are associated with a certain class or that there 
is only one class. If the Gini index is 1, the elements are randomly assigned to 
different classes. If the Gini index reaches a value of 0.5, it means that the 
elements are evenly distributed in some classes. An attribute with a low Gini index 
should be preferred over a high Gini index. The Gini index is calculated according to 
the formula below, where pi is the probability that the object will be classified in a 
certain class. 

 

Let's imagine that we choose a white chess piece from a box containing 100 white 
pieces. Then we can say that the box has zero entropy. Now let's imagine that 50 of 
them are replaced by black. Probability of drawing white dropped from 1.0 to 0.5 
and entropy increased. Shannon's entropy model uses a base-2 logarithmic 
function (log2(P(x)) to measure entropy, because as the probability P(x) of 
randomly drawing a white piece increases, the result gets closer to the base-2 
logarithm value of 1, as shown in the picture. 

 

 

📝 2.1.4 

An attribute with a low Gini index should be preferred over a high Gini index 

• yes 
• no 
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🕮 2.1.5 

Entropy is a metric for measuring the uncertainty with which a case is classified 
into a class, and the task of the algorithm is to minimize this uncertainty. Similar to 
the Gini index, the optimal distribution is chosen by the property with the least 
entropy. Entropy can be calculated according to the formula, where P(x=k) 
expresses the probability that the target character will have the value k. 

 

 

The logarithm of fractions gives a negative value, so the entropy formula uses a 
minus sign to negate these negative values. The maximum value of entropy 
depends on the number of classes. To find the best feature that serves as the root 
node in terms of information retrieval, we first use each descriptive feature and 
partition the dataset according to the values of these descriptive features, and then 
calculate the entropy of the dataset. This gives us the remaining entropy when we 
divide the data set by feature values. We then subtract this value from the originally 
calculated entropy of the data set to see how much this element distribution 
reduces the original entropy, which provides the information gain of the element 
and is calculated according to the formula, according to which the feature with the 
highest information gain will be used as the root node. 

 

 

🕮 2.1.6 

Algorithms for creating a tree 

Algorithm ID3 

 

The ID3 (Iterative DiChaudomiser 3) algorithm creates a tree structure from the 
training data set, which is used to classify the yet unclassified data. It tries to find 
the categorical feature that will yield the greatest informational gain for the 
categorical targets. Information gain is calculated using entropy. The algorithm 
searches each branch and stops when each subspace contains only elements of 
one class. Trees created by this algorithm are prone to overtraining. 
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Algorithm C4.5 

A better version is the C4.5 algorithm, which eliminated the problem of classifying 
datasets that contain attributes with a large number of values. The entropy of 
attributes that take on a large number of values is very low. Therefore, the so-called 
normalized information gain. Another difference, compared to the previous 
algorithm, is that it can also work with attributes that have empty values. After 
building the model, it examines the tree once more and removes nodes that do not 
have a significant impact on the classification. 

 

Algorithm C5.0 

Another modification of the algorithm was named C5.0. This algorithm was faster, 
more efficient and it was possible to parallelize the algorithm using threads. 

 

CART algorithm 

CART is a decision tree where each branch is divided into a predictor variable and 
each node has a prediction for the target variable at the end. In the decision tree, 
nodes are divided into subnodes based on an attribute threshold. The root node is 
taken as the training set and is divided into two parts by considering the best 
attribute and the threshold value. Further, the subsets are also partitioned using the 
same logic. This continues until the last pure subset of the tree or the maximum 
possible number of leaves in this growing tree is found. The algorithm works 
according to the following procedure: 

the best split point of each input is obtained, 

based on these split points, a new best split point is identified, 

divides the selected input according to the best dividing point, 

splitting continues until the stopping rule is met or no further requested splitting is 
available. 

A tree that is too large increases the risk of overlearning, and a small tree may not 
capture all the important features of a file. Therefore, a technique called pruning is 
used, which reduces the size of the tree without reducing accuracy. 

 

There are two ways to reduce the size of the tree. The first method is precutting, 
which consists in tuning hyperparameters before training. It includes a heuristic 
known as "stopping early" that stops the growth of the decision tree - preventing it 
from reaching its full depth. Stops the tree building process to avoid creating leaves 
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with small patterns. Cross-validation error will be monitored during each phase of 
tree splitting. If the error value no longer decreases - we stop the growth of the 
decision tree. The hyperparameters that can be tuned to stop early and avoid 
congestion are the maximum depth, the minimum number of samples required to 
split an internal node, and the minimum number of samples required to be in a leaf. 

The second method is post-pruning, which does not prevent the tree from growing 
but prunes the tree after the tree has grown to its full depth. For each non-leaf node 
in the tree, the algorithm calculates the expected error rate that may occur if the 
subtree at that node is truncated. Next, the expected error rate that would appear if 
the node had not been pruned is calculated using the error rate for each branch, 
combined by weighting according to the dimension of the observations along each 
branch. If pruning a node leads to a higher expected error rate, then the subtree is 
preserved. 

 

📝 2.1.7 

The root node is the one with the lowest information gain 

• yes 
• no 

 

2.2 K-nearest neighbors classifier 

🕮 2.2.1 

K-nearest neighbors classifier 

The K-Nearest Neighbors algorithm is among the lazy learning algorithms because 
it does not learn from the training set immediately, instead it stores the data set 
and performs an action on the data set at the time of classification. 

Suppose we have a picture of a creature that looks similar, like a dog and a wolf, 
but we want to know if it is a dog or a wolf. 
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The first step of the algorithm is to find a suitable number K, which will indicate the 
number of nearest neighbors. Choosing the right K is an important task. Very low 
values of K could lead to unstable decision boundaries, and high values of K could 
be computationally demanding. After selecting K, the algorithm finds the K-nearest 
neighbors to our creature according to the Euclidean distance. 

 

 

📝 2.2.2 

The number K is used to determine the number of nearest neighbors by which to 
determine the resulting class for the case 

• yes 
• no 

 

🕮 2.2.3 

Subsequently, the algorithm counts how many of the nearest neighbours belong to 
the dog category and how many of them belong to the wolf category. It assigns the 
creature the category that occurred most often in K-neighbours. Consider that our 
K=5. The creature will be assigned the wolf category. 
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3.1 Logistic regression 

🕮 3.1.1 

Logistic regression 

Logistic regression is a classification algorithm that can be divided into three types: 

 

• Binomial: In binomial logistic regression, there can be only two possible 
values for the dependent variable, such as 0 or 1, pass or fail, etc. 

• Multinomial: In multinomial logistic regression, there can be 3 or more 
possible unordered values/categories of the dependent variable. The 
dependent variable takes on three values/categories: cat, dog, sheep, so it is 
a polytomous variable, in the previous case it is a dichotomous variable, 
what they have in common is that they are nominal, that means there is only 
discrimination, while in the following case I can also take order into account. 

• Ordinal: In ordinal logistic regression, there can be 3 or more possible 
ordered values/levels of the dependent variable, such as "low", "medium" or 
"high". 

 

📝 3.1.2 

What types of logistic regression do we know? 

• Multinominal 
• Binary 
• Cardinal 

 

🕮 3.1.3 

Using logistic regression, we could train a model that would learn to estimate 
whether a person of a given gender with a certain age and weight might suffer from 
a heart attack in the future. The result of the model would be a value between 0 and 
1 indicating the probability. In order to distribute the probability between the values 
0 and 1, the logistic regression uses a sigmoid function (sigmoid) according to the 
formula below. 
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🕮 3.1.4 

In the figure, we can then see that such a curve will not be a straight line, as in 
linear regression, but will have the shape of the letter S. In logistic regression, we 
use the concept of a threshold value, which defines the probability of either 0 or 1. 
For example, values above the threshold tend to 1 and the value tends to 0 below 
the thresholds. 

 

 

📝 3.1.5 

The concept that logistic regression uses to make decisions is called 

• sigmoid value 
• threshold value 
• distribution value 

 

📝 3.1.6 

The logistic regression equation can be most easily understood from the linear 
regression equation. We know that the equation of a straight line can be calculated 
using the formula below. 
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In logistic regression, y must be equal to a value between 0 and 1. We work on this 
by adjusting the left side of the equation according to the following formula. 

 

 

3.2 Naive Bayes Classifier 

🕮 3.2.1 

Naive Bayes classifier 

The classifier is called naive because it assumes that each input variable is 
independent. Naive Bayes classifier is used for both binomial and multinomial data. 
It is based on Bayes' theorem, also known as Bayes' rule or Bayes' law. The idea 
behind Bayes' theorem is to determine the probability of an outcome occurring. We 
call this probability conditional probability and it depends on previous results. In 
practice, Bayes' theorem could be used, for example, in determining Alzheimer's 
based on age. If Alzheimer's corresponds to a person's age, then we would be able 
to more accurately determine the probability of Alzheimer's. We could write the 
Bayes theorem according to the formula below, where A, B represent phenomena, 
P(A), P(B) their probability of occurrence and P(A|B) is the conditional probability of 
phenomenon A assuming that phenomenon B and P have occurred (B|A) is the 
conditional probability of event B given that event A has occurred. 

 

 

🕮 3.2.2 

According to the data distribution, there are three types of Naive Bayes models: 

 

• Gaussian – The data is continuous and has a normal (Gaussian) distribution. 
• Multinomial – In a multinomial model, variables are represented by 

frequencies of occurrence. In the case of classifying articles into categories, 
it could be about the frequency with which words occur in individual 
categories. 
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• Bernoulli – The Bernoulli classifier works similarly to the multinomial 
classifier, but the variables are Boolean. For example, whether a particular 
word is present in the document. This model is also known for document 
classification tasks. 

The Bayesian classifier also comes with some problems, such as that all data must 
be discrete. Another problem with the algorithm is that a small test set can bias the 
calculation of relative probabilities. If a certain value is not found in the test set at 
all, the probability of its occurrence was 0. 

 

📝 3.2.3 

Choose the correct statements about the Naive Bayes classifier 

• The probability depends on the previous results 
• It assumes that the input variables are independent 
• It can only be used for binary data 
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4.1 SVM classifier 

🕮 4.1.1 

Support Vector Machine (SVM) 

The goal of support vector machines is to find a hyperplane, that is, a decision line 
or decision boundary that will help classify data points into classes. The 
dimensions of this surface depend on the elements present. The data points that 
support the hyperplane (are closest to the hyperplane) and influence its position are 
called support vectors. 

 

We know two types of support vector machines: 

• Linear - if possible, split the data file with a straight line. 
• Non-linear – if the data set cannot be divided by a straight line. 

 

🕮 4.1.2 

Linear SVM 

Let's consider the previous example, with the help of which we explained KNN. 
There are many possible ways in which these classes could be distinguished by a 
straight line. 
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The SVM algorithm will search for a line whose distance from the nearest points 
from both classes is maximal. Such a straight line (superplane) will be considered 
optimal. 

 

 

In case we needed to classify a hitherto unknown data point, we would classify it 
according to which side of the hyperplane it is located on. 

 

📝 4.1.3 

With linear SVM, the data set can be divided by a straight line 

• yes 
• no 

 

🕮 4.1.4 

Nonlinear SVM 

There are cases where the data cannot be divided using a straight line. 
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In this case, we can add the third dimension z and we can calculate it according to 
the formula. 

 

z = x2+y2 

 

 

Note that since we are now in three dimensions, the hyperplane is the plane parallel 
to the x-axis at some z (say z = 1). What remains is to map back to two dimensions. 
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📝 4.1.5 

With nonlinear SVM, another dimension is added 

• yes 
• no 
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Chapter 5 
 

  



191 

5.1 Accuracy 

🕮 5.1.1 

Accuracy 

Accuracy simply measures how often the classifier predicts correctly. Accuracy can 
be defined as the ratio of the number of correct predictions to the total number of 
predictions. Accuracy can be calculated according to the formula where TP 
represents true positive cases, TN true negative cases, FP false positive cases and 
FN false negative cases. 

 

When accuracy reaches high values, it does not necessarily mean that our model 
classifies correctly. Let's imagine that we have a classifier that determines whether 
there is a dog or a wolf in the image. We have a set of test images, along with 
labels, and we put the first dog image into the model. We assume that our model 
predicts that it is a dog, and then compare the prediction with the correct label. If 
the model predicts that it is a wolf and we compare it to the correct label, the model 
is wrong. 

We repeat this process for all images in the test set. Finally, we will have the 
numbers of TP, TN, FP, FN. However, in reality, it is very rare that all wrong or right 
matches will be balanced. 

 

📝 5.1.2 

Accuracy môžeme definovať ako pomer počtu správnych predpovedí a celkového 
počtu predpovedí 

• yes 
• no 

 

5.2 Accuracy, coverage and their harmonic mean 

🕮 5.2.1 

Precision 
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This metric explains how many of the correctly predicted cases actually turned out 
to be positive and is defined as the number of actual positives divided by the 
number of predicted positives. 

 

📝 5.2.2 

Precision expresses how many of the correctly predicted cases actually turned out 
to be positive 

• yes 
• no 

 

🕮 5.2.3 

Recall 

Recall explains how many true positives we were able to correctly predict using our 
model and is defined as the number of true positives divided by the total number of 
true positives. 

 

 

📝 5.2.4 

Coverage (recall) refers to how many of the correctly predicted cases actually 
turned out to be positive 

• yes 
• no 

 

🕮 5.2.5 

F1 score 

It provides a combined idea of precision and recall metrics. It is at its maximum 
when Accuracy equals Recall. Its advantage is that it penalizes extreme values. 
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5.3 Confusion matrix 

🕮 5.3.1 

Confusion matrix 

 

The confusion matrix is a table that contains the values of TP, TN, FP and FN. We 
read it so that the row represents the class and the columns represent the number 
of true and false cases in the class. 

 

 

5.4 AUC-ROC 

🕮 5.4.1 

AUC-ROC 

The ROC curve (receiver operating characteristic curve) shows the performance of 
the model at different thresholds. It contains two parameters namely the true 
positive rate of TPR and the false positive rate of FPR. 
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The area under the curve (AUC) is a measure of the classifier's ability to 
discriminate between classes. The larger the AUC, the better the performance of 
the model, and thus when the AUC is equal to 1, the classifier is able to perfectly 
distinguish between all positive and negative points of the class. When AUC equals 
0, the classifier would predict all negative points as positive and vice versa. When 
the AUC is 0.5, the classifier is unable to distinguish between positive and negative 
classes. 

 

 

📝 5.4.2 

When AUC is equal to 0, the classifier is able to perfectly distinguish between all 
positive and negative points of the class. 

• yes 
• no 

 

5.5 Log loss 

🕮 5.5.1 

Log Loss, Cross Entropy Loss 
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Logarithm Loss or Cross Entropy Loss is one of the main metrics to assess the 
performance of a classification problem. For one sample with a true label y ∈ {0,1} 
and a probability estimate p = Pr(y = 1), the log loss is calculated according to the 
formula. 

 

 

 

Cross-entropy loss, or logarithmic loss, measures the performance of a 
classification model that outputs a probability value between 0 and 1. Cross-
entropy loss increases when the predicted probability differs from the actual label. 
A perfect model would have a log loss of 0. 

 

📝 5.5.2 

Cross-entropy loss or logarithmic loss measures the performance of a 
classification model whose output is a probability value between 0 and -1 

• no 
• yes 

  



196 

 

Implementation of 
classification models in 

Python 

Chapter 6  
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6.1 Classification models 

📝 6.1.1 

Implementation in Python 

In this section, we will show how classification can be easily implemented in 
Python. It is enough if we create one python file or jupyter notebook. Before we 
start writing the code, we need to install the libraries numpy pandas, matplotlib, 
seaborn and sklrearn. 

 

Dataset 

The data file with which we will work is the database of potential customers of a 
company that deals with the sale of fireplaces. It contains a thousand records, and 
using classifiers we will try to model how many people from our dataset bought a 
fireplace in the last year. The dataset contains the customer's age, monthly salary 
and information on whether the customer purchased the given product. 

We import the numpy library, for working with fields, pandas, for working with our 
data file. The seaborn and matplotlib libraries will later be used to plot the data, and 
sklearn will be used to train our classification models. 

 
import pandas as pd 

import numpy as np 

import seaborn as sns 

import matplotlib.pyplot as plt 

import sklearn 

We load our dataset into the dataset variable using the pandas library and the 
read_csv method. This variable will be of type Dataframe. Using the print() method, 
we print the first and last 5 records. From the listing, we can further see that our 
dataset has a thousand rows and three columns. 

 
dataset = 

pd.read_csv("https://raw.githubusercontent.com/livi83/customer

s-dataset/main/dataset.csv", sep=";") 

print(dataset) 

 
print(dataset.describe()) 
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We check if we don't have empty values in the dataset using the isnull method. We 
add their numbers using the sum() method. 

 
print(dataset.isnull().sum()) 

Using the matplotlib library, we can visualize how many customers have purchased 
the product and how many customers have not purchased the product. 

 
dataset.Zakúpil.value_counts().plot(kind='bar') 

plt.xlabel('Zakúpil') 

plt.ylabel('počet zákazníkov') 

plt.title('Počet zákazníkov vzhľadom k tomu, či produkt 

zakúpili') 

plt.show() 

We will access individual rows and columns using the iloc method. It accepts a list 
of rows and columns as parameters. If we put a colon in any of the positions, we 
say that we want all values (in our case, all rows). The list x represents our 
independent variables and contains all the rows of the zero and first column (we 
number from zero), and y represents our dependent variable, which contains all the 
rows of the last column. 

 
x = dataset.iloc[:,[0,1]].values 

y = dataset.iloc[:,2].values 

print(x) 

print(y) 

Splitting the dataset into a training and testing set 

We have loaded the data file, we need to divide it into a training and a test part. For 
this, we will use the sklearn library and its train_test_split method, with which we 
will split the data in a ratio of 75:25. 

 
from sklearn.model_selection import train_test_split 

x_train, x_test, y_train, y_test = 

train_test_split(x,y,test_size=0.25, random_state=0) 

In this step, we created the variables x_train, x_test, y_train, y_test. As for y_train, 
y_test, the values are in the range 0-1 and therefore it is not necessary to modify 
them, but x_train, x_test must undergo standardization before training. For this 
purpose, we can use the StandardScaler class from the sklearn library, which 
subtracts the mean from their values and divides them by the standard deviation to 
adjust the data to unit variance. 
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#normalizacia 

from sklearn.preprocessing import StandardScaler 

sc = StandardScaler() 

x_train = sc.fit_transform(x_train) 

x_test = sc.fit_transform(x_test) 

Import of evaluation metrics 

Before we start with the implementation of the classifiers, we can import the 
evaluation metrics. We import the confusion matrix, accuracy, precision, recall and 
harmonic mean F1. 

 
# Evalvácia 

from sklearn import metrics 

from sklearn.metrics import confusion_matrix, accuracy_score, 

precision_score, recall_score, f1_score 

Next, we create a con_matrix function that accepts the predicted values as a 
parameter and renders the confusion matrix 

 
def conf_matrix(y_pred): 

  cm = confusion_matrix(y_test, y_pred) 

 

  names = ['True Neg','False Pos','False Neg','True Pos'] 

  counts = ["{0:0.0f}".format(value) for value in 

                  cm.flatten()] 

  percentages = ["{0:.2%}".format(value) for value in 

                      cm.flatten()/np.sum(cm)] 

 

 

  labels = [f"{v1}\n{v2}\n{v3}" for v1, v2, v3 in 

            zip(names,counts,percentages)] 

 

  labels = np.asarray(labels).reshape(2,2) 

 

  ax = sns.heatmap(cm, annot=labels, fmt='', cmap='Blues') 

 

  ax.set_title('Matica zmätku'); 

  ax.set_xlabel('\nPredikcie') 

  ax.set_ylabel('Hodnoty'); 

  ax.xaxis.set_ticklabels(['Nezakúpil','Zakúpil']) 

  ax.yaxis.set_ticklabels(['Nezakúpil','Zakúpil']) 
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  plt.show() 

Implementation of Logistic Regression 

In the basic version, logistic regression can be implemented by calling the 
LogisticRegression class. Subsequently, we can use the imported metrics to 
determine the performance of our classifier. The ratio of the number of correct 
predictions to the total number of predictions is 85.6%, the rate of correctly 
identified positive cases out of all predicted positive cases is 82.2%, the rate of 
correctly identified positive cases out of all actual positive cases is 80.6%, and the 
harmonic mean rate is 81.4%. By calling the conf_matrix function, we can output 
the confusion matrix. Our model correctly classified 135 cases and incorrectly 17 
for the class it did not purchase. The rest of the test data therefore belongs to the 
purchased class, while the model estimated 79 of them correctly and 19 incorrectly. 

 
from sklearn.linear_model import LogisticRegression 

model = LogisticRegression().fit(x_train,y_train) 

y_pred = model.predict(x_test) 

 

#Celkové vyhodnotenie modelu 

print('Accuracy: '+ f'{accuracy_score(y_test,y_pred)}') 

print('Precision: '+ f'{precision_score(y_test,y_pred)}') 

print('Recall: '+ f'{recall_score(y_test,y_pred)}') 

print('F1-score: '+ f'{f1_score(y_test,y_pred)}') 

conf_matrix(y_pred) 

Implementation of the Naïve Bayes classifier 

The ratio of the number of correct predictions to the total number of predictions is 
88.8%, the rate of correctly identified positive cases out of all predicted positive 
cases is 85.7%, the rate of correctly identified positive cases out of all actual 
positive cases is 85.7%, and the harmonic mean rate is 85.7%. 

 

By calling the conf_matrix function, we can output the confusion matrix. Our model 
correctly classified 138 cases for the class did not buy and incorrectly 14. 
Therefore, the rest of the test data belongs to the class purchased, while the model 
estimated 84 of them correctly and 14 incorrectly. 

 
from sklearn.naive_bayes import GaussianNB 

model = GaussianNB().fit(x_train,y_train) 

y_pred = model.predict(x_test) 

 



201 

#Celkové vyhodnotenie modelu 

print('Accuracy: '+ f'{accuracy_score(y_test,y_pred)}') 

print('Precision: '+ f'{precision_score(y_test,y_pred)}') 

print('Recall: '+ f'{recall_score(y_test,y_pred)}') 

print('F1-score: '+ f'{f1_score(y_test,y_pred)}') 

 

conf_matrix(y_pred) 

Implementation of KNN classifier 

To implement the KNN classifier, it is important to find the optimal value of K. Let's 
try values of K from 1 to 40 and try to find out at which value the classifier achieves 
the highest accuracy. As we can see from the graph, the optimal number of nearest 
neighbors will be 2. 

 
from sklearn.neighbors import KNeighborsClassifier 

test_error_rates = [] 

 

for k in range(1,40): 

    model = KNeighborsClassifier(n_neighbors=k) 

    model.fit(x_train,y_train)  

    

    y_pred = model.predict(x_test) 

     

    test_error = 1 - accuracy_score(y_test,y_pred) 

    test_error_rates.append(test_error) 

     

min_value = min(test_error_rates) 

print(test_error_rates.index(min_value)) 

 

plt.figure(figsize=(6,4),dpi=100) 

plt.plot(range(1,40),test_error_rates,label='Test Error') 

plt.legend() 

plt.ylabel('Error Rate') 

plt.xlabel("K Value") 

The ratio of the number of correct predictions to the total number of predictions is 
90%, the rate of correctly identified positive cases out of all predicted positive 
cases is 88.5%, the rate of correctly identified positive cases out of all actual 
positive cases is 86.7%, and the harmonic mean of the rates is 87. 6%. 

 

By calling the conf_matrix function, we can print out the confusion matrix. Our 
model correctly classified 141 cases for the class did not buy and incorrectly 11. 
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The rest of the test data therefore belongs to the class bought, while the model 
estimated 85 of them correctly and 13 incorrectly. 

 
model = KNeighborsClassifier(n_neighbors=4) 

model.fit(x_train,y_train) 

y_pred = model.predict(x_test) 

 

#Celkové vyhodnotenie modelu 

print('Accuracy: '+ f'{accuracy_score(y_test,y_pred)}') 

print('Precision: '+ f'{precision_score(y_test,y_pred)}') 

print('Recall: '+ f'{recall_score(y_test,y_pred)}') 

print('F1-score: '+ f'{f1_score(y_test,y_pred)}') 

 

conf_matrix(y_pred) 

Implementation of SVM 

Our data is linear, so we will use the linear SVM implementation. 

The ratio of the number of correct predictions to the total number of predictions is 
90.4%, the rate of correctly identified positive cases from all predicted positive 
cases is 88.5%, the rate of correctly identified positive cases from all actual positive 
cases is 86.7%, and their harmonic mean is 87.6%. By calling the conf_matrix 
function, we can output the confusion matrix. Our model correctly classified 141 
cases for the class did not buy and incorrectly 11. The rest of the test data 
therefore belongs to the class bought, while the model estimated 85 of them 
correctly and 13 incorrectly. 

 
from sklearn.svm import SVC 

model =SVC(kernel='linear').fit(x_train,y_train) 

svm_y_pred = model.predict(x_test) 

 

#Celkové vyhodnotenie modelu 

print('Accuracy: '+ f'{accuracy_score(y_test,y_pred)}') 

print('Precision: '+ f'{precision_score(y_test,y_pred)}') 

print('Recall: '+ f'{recall_score(y_test,y_pred)}') 

print('F1-score: '+ f'{f1_score(y_test,y_pred)}') 

 

conf_matrix(y_pred) 

Implementation of the CART decision tree 

To implement a decision tree using the sklearn library, we call the 
DecisionTreeClassifier class. The default metric for measuring the quality of 
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distribution is the Gini index. If we wanted to change the metric to entropy, it would 
be enough to insert the criterion parameter with the entropy value into the 
classifier. 

We already used the random_state parameter when dividing the dataset into 
training and testing sets. This parameter controls how the data will be divided and 
can take the value none, which will give us a random distribution of data at each 
start, we can insert an integer into it. A value from 0 to 42 is usually chosen to 
ensure a random but always equal distribution of data. In other words, if we give the 
random_state parameter an integer value, we specify randomness in the selection. 
However, the data selection will be the same after each run. Likewise, if we want to 
control the randomness of the split in decision trees or random forests, the 
random_state parameter is useful. 

The ratio of the number of correct predictions to the total number of predictions is 
87.6%, the rate of correctly identified positive cases from all predicted positive 
cases is 86%, the rate of correctly identified positive cases from all actual positive 
cases is 81.6%, and their harmonic mean is 83. 7%. By calling the conf_matrix 
function, we can output the confusion matrix. Our model correctly classified 139 
cases for the class did not buy and incorrectly 13. Therefore, the rest of the test 
data belongs to the class bought, while the model estimated 80 of them correctly 
and 18 incorrectly. 

 
from sklearn.tree import DecisionTreeClassifier   

model= DecisionTreeClassifier(random_state=0).fit(x_train, 

y_train) 

y_pred = model.predict(x_test)   

 

#Celkové vyhodnotenie modelu 

print('Accuracy: '+ f'{accuracy_score(y_test,y_pred)}') 

print('Precision: '+ f'{precision_score(y_test,y_pred)}') 

print('Recall: '+ f'{recall_score(y_test,y_pred)}') 

print('F1-score: '+ f'{f1_score(y_test,y_pred)}') 

 

conf_matrix(y_pred) 
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Ensemble learning 

Chapter 7 
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7.1 The introduction into ensemble learning 

🕮 7.1.1 

Ensemble learning 

So far we have shown how to train one specific model. In practice, the concept of 
ensemble learning (Ensemble Learning) is used more, the idea of which is to train 
several models using the same algorithm. The combination of several models 
makes it possible to achieve a better classification, compared to the use of a single 
classifier. 

According to the method of work, ensemble learning methods can be divided into 
sequential and parallel. 

Sequential methods 

• They build the model sequentially, step by step. 
• They support dependency between base classifiers 
• For example Adaboost - multiple weak classifiers are trained sequentially 

and each model tries to correct the errors of the previous model using 
weighting. This process is iteratively repeated until a stopping condition is 
met, which can be, for example, the maximum number of iterations or a 
certain accuracy limit. The resulting prediction is a combination of all 
individual models with weights proportional to accuracy. 

 

Parallel methods 

• Classifiers work in parallel. 
• They support independence between classifiers. 
• The resulting prediction is given by averaging or voting. 
• Random Forest, Gradient Boosting. 
• Built on random selections. 

According to the type of classifiers used, ensemble learning methods can be 
divided into homogeneous and heterogeneous. 

 

Homogeneous methods 

• All models are of the same type (eg only decision trees). 
• Bagging, Boosting. 
• The resulting prediction is given by majority voting or averaging. 
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Heterogeneous methods 

• Models of different types. 
• Stacking. 
• The resulting prediction is given by weighted voting or linear combination. 

 

📝 7.1.2 

Sequential methods support dependency between underlying classifiers 

• yes 
• no 

 

📝 7.1.3 

Parallel methods support dependency between underlying classifiers 

• yes 
• no 

 

📝 7.1.4 

The resulting prediction of parallel models is a combination of all individual models 
with weights proportional to accuracy. 

• no 
• yes 

 

📝 7.1.5 

The resulting prediction of sequential models is given by the majority vote 

• no 
• yes 
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🕮 7.1.6 

Bagging 

The term Bagging originated from the words Bootstrap Aggregating. Bootstrap is 
based on random sampling of small parts of the dataset, and these sets can be 
replaced. Such random sampling can help to better interpret the standard deviation 
in a dataset. 

Bagging is a simple method of training a number of different models on different 
randomly selected subsets of the training set and then combining their predictions 
using voting. Thus, the data is first divided into several training and test sets, on 
which the models are subsequently trained and the prediction of the majority is the 
result. 

Advantages of bagging: 

• increases the accuracy score of the model, 
• can handle overfitting, 
• reduces distortion and dispersion errors, 
• simple implementation. 

 

🕮 7.1.7 

BOOSTING 

To understand Boosting, it is important to realize that Boosting is a generic 
algorithm rather than a specific model. Boosting is a learning method that 
combines a group of weak classifiers into a strong classifier to minimize training 
errors. In contrast to bagging, we can talk about "teamwork" as the models run in 
parallel. In boosting, a random sample of data is taken, fitted with a model, and 
then trained sequentially—that is, each model tries to compensate for the 
weaknesses of its predecessor. At each iteration, the weak rules from each 
individual classifier are combined into a single, strong prediction rule. 

 

Adaboost (Adaptive Boosting) 

Adaboost is a boosting-based technique that is based on combining multiple weak 
classifiers into one strong classifier. A single split decision tree can be a weak 
classifier in Adaboost. At the moment the first distribution is created, all 
observations are given equal weight. Thus, for error correction, misclassified cases 
receive a higher weight. 
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Gradient Boosting 

Like Adaboost, Gradient Boosting also tries to improve on its predecessor but uses 
a slightly different method. It does not try to change the weights for misclassified 
cases but tries to correct its passer in order to reduce the error rate. A modification 
of Gradient Boosting is the so-called XGBoost, which consists of boosted decision 
trees for higher performance. 

 

🕮 7.1.8 

Stacking 

Stacking is another method of ensemble learning. It is based on the composition of 
classification models and consists of two-layer estimates. The first layer is 
composed of all the underlying models that are used to predict the outputs on the 
test data sets. The second layer consists of a meta classifier that takes all the 
predictions of the underlying models as input and generates new predictions. The 
advantage of stacking is that it can take advantage of a set of well-performing 
models for a classification or regression task and produce predictions that perform 
better than any single model in the ensemble. 

 
 

 


