

Basic data pre-processing libraries

Published on

Work in progress version

Erasmus+ FITPED-AI

Future IT Professionals Education in Artificial Intelligence

Project 2021-1-SK01-KA220-HED-000032095

The European Commission support for the production of this publication does not
constitute an endorsement of the contents which reflects the views only of the authors,
and the Commission cannot be held responsible for any use which may be made of
the information contained therein.

Licence (licence type: Attribution-Non-commercial-No Derivative Works) and may be
used by third parties as long as licensing conditions are observed. Any materials
published under the terms of a CC Licence are clearly identified as such.

All trademarks and brand names mentioned in this publication and all trademarks and
brand names mentioned that may be the intellectual property of third parties are
unconditionally subject to the provisions contained within the relevant law governing
trademarks and other related signs. The mere mention of a trademark or brand name
does not imply that such a trademark or brand name is not protected by the rights of
third parties.

© 2023 Constantine the Philosopher University in Nitra

TABLE OF CONTENTS

1 Lambda expressions, functions as parameters of other functions ..6

1.1 Lambda expressions. Functions as parameters of other functions (map, filter, sort,

sorted). ...7

2 Regular expressions ... 19

2.1 Regular expression - introduction .. 20

3 NumPy library - arrays .. 26

3.1 Examples .. 27

4 Regular expressions ... 36

4.1 Special sequences, character sets ... 37

5 Numpy arrays .. 46

5.1 Arrays ... 47

6 Random number generation ... 49

6.1 Library random - generating random numbers ... 50

Regular expression ... 53

1 Introduction to regular expressions .. 54

1.1 Theoretical basics ... 55

1.2 Abbreviated notation for regular expressions .. 57

2 Examples ... 60

2.1 Programmes .. 61

2.2 Advanced Programmes ... 63

Pandas ... 67

1 Pandas introduction ... 68

1.1 Introduction .. 69

List (Series) .. 70

1.2 Data input ... 71

1.3 Checking the data ... 75

2 Data manipulation ... 78

2.1 Missing values .. 79

2.2 Data selection ... 86

2.3 Adding a new column into DataFrame .. 96

2.4 Removing data from DataFrame ... 99

2.5 Working with data in DataFrame .. 105

3 Data summarization ... 110

3.1 Data grouping ... 111

3.2 Pivot tables ... 116

3.3 Visualization ... 122

3.4 Category variables .. 131

4 Project ... 140

4.1 Spaceship Titanic - basic characteristics .. 141

4.2 Spaceship Titanic - working with data ... 148

6

Lambda expressions,
functions as parameters of

other functions

Chapter 1

7

1.1 Lambda expressions. Functions as parameters of
other functions (map, filter, sort, sorted).

📝 1.1.1

In Python, we can often simplify code by using Lambda functions. Lambda is a
function without a name which means it is an anonymous function.

The characteristics of this function are as follows:

• The function can have multiple arguments, separated by commas
• The function can consist of only one line of code. It is restricted to a single

expression.
• It is good for short operations/data manipulations.

An example of Lambda function can be found below.

multi = lambda x, y : x * y

print(multi(3,4))

print(multi("Hello",4))

Program output:
12

HelloHelloHelloHello

The above function can be also written as follows

def multi(x,y):

 return x * y

print(multi(3,4))

print(multi("Hello",4))

Program output:
12

HelloHelloHelloHello

The result and meaning are exactly the same, but the code is more concise.

8

📝 1.1.2

Mark all true statements about the lambda function

• A lambda function can have at most one line of code.
• A lambda function can have at most two lines of code
• The lambda function is anonymous
• The default name of the lambda function is lambda.

📝 1.1.3

Python Lambda Function can be used with list comprehension. List comprehension
is a simple way to create a new list based on the values of an existing list.

The general pattern is as follows:

newlist = [expression for item in iterable if condition == True]

An example of the list is given below.

names = ["David", "Philip", "Jan", "Tom", "Mark"]

ComprehensionList = [x for x in names if "a" in x]

print(ComprehensionList)

Program output:
['David', 'Jan', 'Mark']

#We want to determine triples from the set {1,...,10}

satisfying the condition x^2+y^2<=z^2

TripleCondition=[(x,y,z) for x in range(1,10) for y in

range(1,10) for z in range(1,10) if x**2 + y**2 <= z**2]

print(TripleCondition)

Now we can use the lambda function in conjunction with list comprehension, which
significantly extends the range of possibilities.

names = ["David", "Philip", "Jan", "Tom", "Mark"]

numbers = [1,2,3,4,5]

multi = [lambda arg1=x,arg2=y: arg1*arg2 for x in names for y

in numbers]

for item in multi:

 print(item())

9

The above code works as follows:

Inside the list comprehension, each iteration creates a new lambda function with a
default argument of x (where x is the current item in the iteration). Inside the for
loop, the same function is calling with object having the default argument using
item().

📝 1.1.4

Please select the description of the purpose of the lambda function

first = [2,3]

second = [5,3]

third = [2,9]

multi = [lambda arg1=x,arg2=y,arg3=z: "Yes" if ((arg1+arg2<=""

pre="">

The function checks whether a triangle can be constructed from

three segments of the given length. From three lists, it

checks all possible combinations of elements (one element from

one list). It returns the answer Yes if a triangle can be

built, No otherwise.

The function checks whether a triangle can be constructed from

three segments of the given length. It checks combinations of

segments from one list (three elements from one list). It

returns the answer yes if a triangle can be built, no

otherwise.

The function checks whether a triangle can be constructed from

three segments of the given length. It checks combinations of

only the first element from each list. Returns the answer yes

if a triangle can be built, no otherwise.

📝 1.1.5

As we know, the lambda function does not allow using multiple lines of code.
However, this can be overcome by using several lambda functions. For example,
the following code will return the median of the elements in the list. Note in the
above code the function sorted is used, which will be explained in the next lessons -
it returns a sorted list.

List = [[1, 4, 2, 5], [3, 6, 1, 8, 19], [5, 7, 2, 8, 10, 2]]

Sort each sublist

sortList = lambda x: (sorted(i) for i in x)

10

Get the median element

median = lambda x, other_lambda : [y[int(len(y)/2)] if (len(y)

% 2 ==1) else (y[int(len(y)/2)-1]+y[int(len(y)/2)])/2 for y in

other_lambda(x)]

results = median(List, sortList)

print(results)

Program output:
[3.0, 6, 6.0]

📝 1.1.6

In this section, we will have the opportunity to see how useful the lambda function
really is. It significantly shortens the code in combination with the other functions
presented in this section.

The first important function used in conjunction with the lambda function is the
map function. It allows us to execute lambda functions on individual elements of a
list.

map() is a function which takes two arguments: function - is the name of a function
that will be used (for us it will be lambda) and the second seq is a sequence for
example a list.

result = map(func, seq)

The map function applies the function to all the elements of the sequence seq.

With Python 3, map() function returns an iterator.

names = ["David", "Philip", "Jan", "Tom", "Mark"]

WithA = list(map(lambda x: x if "a" in x else "", names))

print(WithA)

Another example of code simplification using the map() function is checking
whether elements from lists satisfy the inequality

--- ERROR ---

Note that the lists do not have to be of equal length.

A=[2,3,4,6]

B=[2,3,1]

11

C=[5,3,8,7,8]

TripleCondition=list(map(lambda x,y,z: "Yes" if x**2 + y**2 <=

z**2 else "No", A,B,C))

print(TripleCondition)

📝 1.1.7

Check the code that calculates the volume of a set of spheres with known radii.

from math import pi

A=[4, 2.3, 1.5, 4, 5, 4.56]

Volume=list(map(lambda r: 4/3*pi*r**3, A))

from math import pi

A=[4, 2.3, 1.5, 4, 5, 4.56]

Volume=list(map(lambda r: 4/3*pi*r**3 for r in A))

from math import pi

A=[4, 2.3, 1.5, 4, 5, 4.56]

Volume=list(map(A, lambda r: 4/3*pi*r**3))

📝 1.1.8

Check the result of following code.

shopping = [["12345", "Milk", 4, 13.45],

 ["45368", "Bread", 2, 56.2],

 ["24794", "Butter", 5, 17.87]]

discount = 0.01

total = list(map(lambda x: (x[1],x[2]*(1-discount)) if x[2] >=

100 else (x[1], x[2]), map(lambda x: (x[0],x[1],x[2] * x[3]),

shopping)))

print(total)

[('Milk', 53.8), ('Bread', 111.27600000000001), ('Butter',

89.35000000000001)]

[('Milk', 53.8), ('Bread', 112.4000000000001), ('Butter',

89.35000000000001)]

[('12345','Milk', 53.8), ('45368','Bread',

111.27600000000001), ('24794','Butter', 89.35000000000001)]

12

📝 1.1.9

Another very useful function that is used in conjunction with a lambda expression is
the filtering function filter(). It is a clear and elegant way to check whether the
elements of a list fulfill a certain condition - more specifically, whether the function
called on the elements of the list returns True.

The general syntax is as follows:

filter(function, seq)

where function returns a Boolean value, True of False. This function will be applied
to every element of the list seq. An item will be produced by the iterator result of
filter() if item is included in the list seq and if function(item) returns True.

See a simple example below:

names = ["David", "Philip", "Jan", "Tom", "Mark"]

WithA = list(filter(lambda x: "a" in x, names))

print(WithA)

As you can see, this version is even more concise than when using the map()
function, because here we don't even have to use a conditional statement. Of
course, which function should be used depends on what the goal of our program is.

The next example uses dictionary for filtering.

dictOfAnimals = {'antelope' : 'land', 'dolphin' : 'water',

'elephant' : 'land', 'catfish' : 'water', 'carp' : 'water'}

InWater = dict(filter(lambda x: x[1] == 'water',

dictOfAnimals.items()))

print(InWater)

Program output:
{'dolphin': 'water', 'catfish': 'water', 'carp': 'water'}

It is also possible to apply the filter function using the empty None function. Then
the filter function returns all

elements that are really a certain value.

List = ["Noe", "empty", 0, 1, False, True, "0", 0.33]

13

SomeValue = list(filter(None, List))

print(SomeValue)

It is very interesting to use several conditions in one filter function. See example
below

Tuple=[(1,'antelope','land'),

 (2,'dolphin','water'),

 (3,'elephant','land'),

 (4,'catfish','water'),

 (5,'carp','water')]

def filter1(t): return t[0]>2

def filter2(t): return 'a' in t[1]

def filter3(t): return t[2]==('water')

filters = (filter1,filter2,filter3)

filtered_list = list(filter(lambda x: all(f(x) for f in

filters), List))

print(filtered_list)

Program output:
[(4, 'catfish', 'water'), (5, 'carp', 'water')]

📝 1.1.10

Please check all true statements.

• The filter function uses a function that returns True or False.
• The filter function can receive several separate lists as arguments. For

example, the below code is correct if A, B, and C are three lists.

filter(function, A,B,C)

• The filter function can be used for dictionary and tuple.
• Using the filter function, we must also use the if else statement.

📝 1.1.11

Check the result of following code.

library=[(2020,'Clean Code in Python - Second Edition: Develop

maintainable and efficient code','Mariano Anaya',1,422),

14

 (2022,'Python 3. The Comprehensive Guide','Johannes

Ernesti, Peter Kaiser',2,1036),

 (2015,'The Foundations of Mathematics','Ian Stewart,

David Tall',2,416),

 (2020,'Mathematics for Machine Learning',' Marc Peter

Deisenroth, A. Aldo Faisal, Cheng Soon Ong',3,398)]

def pages(t): return t[4]<500

def title(t): return 'Python' in t[1]

def year(t): return t[0]>=2020

def authors(t): return t[3]<3

uses = (pages,title,authors)

result = list(filter(lambda x: all(f(x) for f in uses),

library))

print(result)

• [(2020, 'Clean Code in Python - Second Edition: Develop maintainable and
efficient code', 'Mariano Anaya', 1, 422)]

• [(2020,'Clean Code in Python - Second Edition: Develop maintainable and
efficient code','Mariano Anaya',1,422),

 (2022,'Python 3. The Comprehensive Guide','Johannes Ernesti, Peter
Kaiser',2,1036),

 (2015,'The Foundations of Mathematics','Ian Stewart, David Tall',2,416),

 (2020,'Mathematics for Machine Learning',' Marc Peter Deisenroth, A. Aldo
Faisal, Cheng Soon Ong',3,398)]

• []
• [(2020,'Clean Code in Python - Second Edition: Develop maintainable and

efficient code','Mariano Anaya',1,422),

 (2022,'Python 3. The Comprehensive Guide','Johannes Ernesti, Peter
Kaiser',2,1036)]

• [(2022,'Python 3. The Comprehensive Guide','Johannes Ernesti, Peter
Kaiser',2,1036)]

📝 1.1.12

The two basic ways to sort a list are:

1. Using the function sorted(), which does not change the original object
2. Using the sort method list.sort(), which sorts the original list without creating

a copy

15

The first way - the function sorted() - can also be applied to the dictionary.

print(sorted([4,5,5,2,7,2]))

Program output:
[2, 2, 4, 5, 5, 7]

List=[4,5,5,2,7,2]

List.sort()

print(List)

Program output:
[2, 2, 4, 5, 5, 7]

print(sorted([(1,4),(2,5),(3,5),(4,2),(5,7),(6,2)]))

Program output:
[(1, 4), (2, 5), (3, 5), (4, 2), (5, 7), (6, 2)]

Both the function sorted() and the sort() method have a parameter key that
specifies the value by which the elements of the list or dictionary should be sorted.
In the case of a dictionary, the lambda function is used for defining this parameter.
We can specify the variable according to which the elements should be sorted.

print(sorted([(1,4),(2,5),(3,5),(4,2),(5,7),(6,2)],key=lambda

x:x[1]))

Program output:
[(4, 2), (6, 2), (1, 4), (2, 5), (3, 5), (5, 7)]

As you can see based on the example above, the sorting is stable. This means that
two elements with the same key will be sorted according to the original order. This
is a very useful feature when you want to sort a dictionary by several columns.

The value of the key parameter should be a function that takes a single argument
and returns a key to use for sorting purposes. Other possible examples of defining
the key parameter are given below.

#Sorts the string converted to lowercase

print(sorted("Priscilla ra is the best tool for distance

learning".split(), key=str.lower))

16

Program output:
['best', 'distance', 'for', 'is', 'learning', 'Priscilla',

'ra', 'the', 'tool']

#Names sorted by second letter

names = ["David", "Philip", "Jan", "Tom", "Mark"]

bySecondLetter = sorted(names, key=lambda x: x[1])

print(bySecondLetter)

Program output:
['David', 'Jan', 'Mark', 'Philip', 'Tom']

#Dictionary sorted first by place of occurrence, then by name

Tuple=[(1,'antelope','land'),

 (2,'dolphin','water'),

 (3,'elephant','land'),

 (4,'catfish','water'),

 (5,'carb','water')]

print(sorted(Tuple, key=lambda x: (x[2],x[1])))

Program output:
[(1, 'antelope', 'land'), (3, 'elephant', 'land'), (5, 'carb',

'water'), (4, 'catfish', 'water'), (2, 'dolphin', 'water')]

If we want to sort in descending order, we use the reverse parameter with a boolean
value. This applies to both the function sorted() and the sort method.

print(sorted([4,5,5,2,7,2], reverse=True))

Program output:
[7, 5, 5, 4, 2, 2]

List=[4,5,5,2,7,2]

List.sort(reverse=True)

print(List)

Program output:
[7, 5, 5, 4, 2, 2]

17

📝 1.1.13

Please check all true sentences.

• The dictionary can be sorted by only one variable
• Sorting with the function sorted() and the method sort is stable.
• The function sorted() changes the order of the elements in the original list.
• The key parameter should be determined by some function, for example, a

lambda function.

📝 1.1.14

Check the result of the following code.

library=[(2020,'Clean Code in Python - Second Edition: Develop

maintainable and efficient code','Mariano Anaya',1,422),

 (2022,'Python 3. The Comprehensive Guide','Johannes

Ernesti, Peter Kaiser',2,1036),

 (2015,'Some methods for Python','Hilip Nowak',2,312),

 (2020,'Mathematics for Machine Learning',' Marc Peter

Deisenroth, A. Aldo Faisal, Cheng Soon Ong',3,398),

 (2015,'The Foundations of Mathematics','Ian Stewart,

David Tall',2,416)]

changed=sorted(library, key=lambda x: (x[3],x[0],x[2][1]))

print(changed)

Program output:
[(2020, 'Clean Code in Python - Second Edition: Develop

maintainable and efficient code', 'Mariano Anaya', 1, 422),

(2015, 'Some methods for Python', 'Hilip Nowak', 2, 312),

(2015, 'The Foundations of Mathematics', 'Ian Stewart, David

Tall', 2, 416), (2022, 'Python 3. The Comprehensive Guide',

'Johannes Ernesti, Peter Kaiser', 2, 1036), (2020,

'Mathematics for Machine Learning', ' Marc Peter Deisenroth,

A. Aldo Faisal, Cheng Soon Ong', 3, 398)]

[(2020, 'Clean Code in Python - Second Edition: Develop

maintainable and efficient code', 'Mariano Anaya', 1, 422),

(2015, 'The Foundations of Mathematics', 'Ian Stewart, David

Tall', 2, 416),

(2015, 'Some methods for Python', 'Hilip Nowak', 2, 312),

(2022, 'Python 3. The Comprehensive Guide', 'Johannes Ernesti,

Peter Kaiser', 2, 1036),

18

(2020, 'Mathematics for Machine Learning', ' Marc Peter

Deisenroth, A. Aldo Faisal, Cheng Soon Ong', 3, 398)]

• [(2020, 'Clean Code in Python - Second Edition: Develop maintainable and
efficient code', 'Mariano Anaya', 1, 422),

(2015, 'Some methods for Python', 'Hilip Nowak', 2, 312),

(2015, 'The Foundations of Mathematics', 'Ian Stewart, David Tall', 2, 416),

(2022, 'Python 3. The Comprehensive Guide', 'Johannes Ernesti, Peter Kaiser',
2, 1036),

(2020, 'Mathematics for Machine Learning', ' Marc Peter Deisenroth, A. Aldo
Faisal, Cheng Soon Ong', 3, 398)]

[(2020, 'Clean Code in Python - Second Edition: Develop

maintainable and efficient code', 'Mariano Anaya', 1, 422),

(2020, 'Mathematics for Machine Learning', ' Marc Peter

Deisenroth, A. Aldo Faisal, Cheng Soon Ong', 3, 398),

(2015, 'Some methods for Python', 'Hilip Nowak', 2, 312),

(2015, 'The Foundations of Mathematics', 'Ian Stewart, David

Tall', 2, 416),

(2022, 'Python 3. The Comprehensive Guide', 'Johannes Ernesti,

Peter Kaiser', 2, 1036)]

19

Regular expressions

Chapter 2

20

2.1 Regular expression - introduction

📝 2.1.1

Regular expression

Regular expressions are a universal way to find or match (often complex) character
strings in text. Single expressions are specified as regex expressions.

In its simpler form, it's a simple pattern that describes a specific searchable text.

The creator of the concept of regular expressions is considered to be the American
mathematician Stephen Cole Kleen, who formalized them in the 1950s. Regular
expressions were used in two ways to search for patterns in text, and for lexical
analysis in compilers.

Technically, a regular expression is a set of rules that a string should follow. If the
string satisfies the given rules, we say it matches a regular expression (called to
match). Mathematically, a regular expression defines a (usually infinite) set of
strings (the elements of the set match the expression).

Basic syntax

Regular expression elements:

text matching

• Each character except special characters is self-defining,

e.g.:

"a" specifies a string consisting of the character a

• Consecutive symbols mean that exactly these must occur in the string
symbols in exactly the same order,

e.g.:

"ab3" stands for a string consisting of the letters a, b and the number 3

"regular expression" means a regular expression

When using regular expressions, standard syntax (special symbols) is used, which
can be divided into three groups: characters, quantifiers and groupings.

21

Characters

Characters are simply a way of recording what character we are looking for in the
text.

• \d – any number
• \D – not a number
• \w – any letter
• \W - not a letter
• \s – white space
• \S – no white space
• . – any character
• \ – output character
• \b – word boundary
• \B – not a word boundary
• ^ – beginning of the string
• $ – end of string

#Example 1 - find letter 'o' in text

import re

text = 'John has a dog, and Ann has a cat and a parrot'

print(re.findall('o', text))

Program output:
['o', 'o', 'o']

Example 2 - we would like to split text which contains a

different number of whitespaces (spaces, tabs, newlines)

import re

text = 'one two three\nfour\tfive'

div = re.split('\s+',text)

print(div)

Program output:
['one', 'two', 'three', 'four', 'five']

Quantifiers

* – 0 or more

+ – 1 or more

22

? – 0 or 1

{} – exact number of characters

{min, max} – the range of the number of characters

• "ca?t" - matches the patterns ct, cat
• "ca*t" - matches the patterns ct, cat, caat, caaat, ...
• "ca+t" - matches the patterns cat, caat, caaat, ...

Example 3

import re

words = 'aa ab abb abbbb ac abcd abbc accd acd acdb acabb'

find all words, wherein "a" is followed by "b" zero, one or

more times

print(re.findall('ab*', words))

find all words, wherein "a" is followed by "b", and "b"

must appear at least once

print(re.findall('ab+', words))

Program output:
['a', 'a', 'ab', 'abb', 'abbbb', 'a', 'ab', 'abb', 'a', 'a',

'a', 'a', 'abb']

['ab', 'abb', 'abbbb', 'ab', 'abb', 'abb']

Grouping

[] – matches all characters in brackets

[^] - matches all characters outside the brackets

() – grouping

| - or

Example 4 - look for a string starting with "a" followed by

any character followed by a number.

import re

text = 'John has a 2 dogs, and Ann has a cat and a 9 parrots'

print(re.findall('a.[0-9]', text))

Program output:
['a 2', 'a 9']

23

📝 2.1.2

"^Al" - will find us a string

• starting with "Al"
• finishing with "Al"
• containing Al

without Al

📝 2.1.3

which word will be searched with the regular expression „a?b+$”

• acabb
• abbc
• abcd
• aaaaa

📝 2.1.4

Regular expressions in Python, the re library

Python has a built-in package called re that you can use to work with regular
expressions.

Import the re module:

import re

The re module offers a set of functions that allow us to search for the appropriate
string:

findall - returns a list containing all matches,

search - Returns a Match object if there is a match anywhere in the string

split - returns a list where the string has been split on each match,

sub - replaces one or more matches with a new string.

Example 1

import re

24

text = "i have 123 cats"

let's try to extract the number 123 from the text

reg = r'\d\d\d'

match = re.search(reg, text)

We're checking to see if we found anything

if match:

 num = match.group()

 print(num)

Program output:
123

#Example 2 - regular expression responsible for IP search:

import pandas as pd

import re

df = pd.DataFrame(['0.0.0.0',

 '54.239.128.212',

 '256.256.256.256',

 '1.a.255.255',

 'IP adress hide in text (89.78.209.42).',

],

 columns=['ip'])

ip_pattern = "(?:(?:25[0-5]|2[0-4]\d|[01]?\d\d?)\.){3}\

(?:25[0-5]|2[0-4]\d|[01]?\d\d?)"

df['ip_found'] = df['ip'].apply(lambda x:

re.findall(ip_pattern, str(x)))

print(df)

Program output:
 ip ip_found

0 0.0.0.0 [0.0.0.0]

1 54.239.128.212 [54.239.128.212]

2 256.256.256.256 []

3 1.a.255.255 []

4 IP adress hide in text (89.78.209.42). [89.78.209.42]

25

📝 2.1.5

to return all matches you will use the command:

• findall
• find
• split
• search
• searchall

26

NumPy library - arrays

Chapter 3

27

3.1 Examples

📝 3.1.1

Numpy arrays

Numpy operates very efficiently on numeric data arranged in arrays.

import numpy as np

a = np.array([1.1, 3., 3.3, 7., 11.1, 12.3, 15.])

b = np.array([1.0, 3.7, 4.6, 7.3, 11., 12., 15.3])

print(a)

print(b)

Data types

All data stored in variables and, in particular, in Numpy arrays are assigned a
specific type. The type may be inferred from the assignment

print(a.dtype)

k = np.array([1, 3, 4, 7, 1])

print(k.dtype)

k = np.array([1.1, 3.5, 4.3, 7.8, 1.])

print(k.dtype)

... or may be directly specified while creating the array.

k = np.array([1.1, 3.5, 4, 7, 1], dtype=int)

print(k.dtype)

Generating arrays

Numpy arrays may also be generated using functions available in Numpy.

x = np.linspace(0.1, 10*np.pi, 500)

print(x)

Operating on Numpy arrays

Operations on Numpy arrays are elementwise.

28

m = 3 * a

print(m)

Program output:
[3.3 9. 9.9 21. 33.3 36.9 45.]

s = a + b

print(s)

Program output:
[2.1 6.7 7.9 14.3 22.1 24.3 30.3]

t = np.cos(a)

print(t)

Program output:
[0.45359612 -0.9899925 -0.98747977 0.75390225 0.10423603

0.96473262

 -0.75968791]

r = a < b

print(r)

Program output:
[False True True True False False True]

Visualizing data stored in Numpy arrays

An convenient way to visualize data stored in Numpy arrays is to use Matplotlib.

import matplotlib

import numpy as np

import matplotlib.pyplot as plt

x = np.linspace(0.1, 10*np.pi, 500)

plt.plot(x, np.sin(x)/x)

plt.title('Characteristics')

plt.show()

29

Program output:

import matplotlib

import numpy as np

import matplotlib.pyplot as plt

v = np.random.ranf(100000)

plt.hist(v, bins=50, density=1)

plt.title('Random numbers (constant distribution)')

plt.show()

Program output:

30

import matplotlib

import numpy as np

import matplotlib.pyplot as plt

mean,sdev = 2,0.5

rg = np.random.default_rng(1)

v = rg.normal(mean,sdev,10000)

plt.hist(v, bins=50, density=1)

plt.title('Random numbers (Gaussian distribution)')

plt.show()

Program output:

31

📝 3.1.2

Task

Evaluate the value of pi using popular approach based on Monte Carlo method for
n=10000 trials. This method is based on counting random hits inside the whole
square with side 1 and hits inside the quarter of a circle with radius 1 and centre in
one of the corners of this square. Below you find graphical ilustration of this
concept. An answer to this task is the calculated value of pi, up to six decimal
places.

As a follow up, you may perform calculations and generate the plot of standard
deviation as a function of number of Monte Carlo trials.

import matplotlib

import numpy as np

import matplotlib.pyplot as plt

t = np.linspace(0,2*np.pi,100)

plt.plot(np.cos(t),np.sin(t))

x,y = 2*np.random.rand(2,100) - 1

plt.scatter(x,y)

32

plt.axis('equal')

plt.title('Idea of Monte Carlo method')

plt.show()

Program output:

📝 3.1.3

Numpy arrays - further examples

Importing Numpy

first import numpy

import numpy as np

1. Task: create a NumPy array using the arange() function with numbers from
interval -10 to 10

create the array from interval and print it

ar = np.arange(-10,11) # if we want to include the 10, we need

to add 1 number more (because of zero)

print(ar)

Program output:
[-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4

5 6 7

33

 8 9 10]

2. Task: create a NumPy array of 100 zeros with the zeros() function

create the array of 100 zeros and print it (we can add the

parameter dtype=int to have integers)

ar_zeros = np.zeros((100,), dtype=int)

print(ar_zeros)

Program output:
[0

0 0 0 0 0 0

 0

0 0 0 0 0 0

 0]

3. Task: create two random NumPy arrays with 10 numbers (use function
random.randint(low=0, high=100,...) and print the addition of both arrays

create the first array arr1

arr1 = np.random.randint(low=0, high=100, size=10)

create the second array arr2

arr2 = np.random.randint(low=0, high=100, size=10)

print(arr1+arr2)

Program output:
[94 155 73 147 113 66 114 132 63 135]

📝 3.1.4

Task 1

Two numpy array are given. Your task is to print the digit sum of the highest
number and what array contains the number.

Example of the output:

 125, 2. array

34

import numpy as np

arr1 =

np.array([275,44,6100,871,1022,485241,2237,477000,22113,4849,1

2374,0])

arr2 =

np.array([1,841,389163,158,31530,800000,151230,12348,231,3889,

3107])

write your solution here

digmax = -1

index = 0

for d in arr1:

 digsum = 0

 while d//10>0:

 digsum += d%10

 d = d//10

 if digsum>digmax:

 digmax = digsum

 index = 1

for d in arr2:

 digsum = 0

 while d//10>0:

 digsum += d%10

 d = d//10

 if digsum>digmax:

 digmax = digsum

 index = 2

print(str(digmax)+", "+str(index)+". array")

Program output:

📝 3.1.5

Task 2

Multiple numpy matrices are given. First run the code below which changes the
values of the three matrices. Your task is to identify the matrix that has the lowest
average.

import numpy as np

matrix1 = np.full((3,3),8)

35

matrix2 = np.array([[10,11,12],[4,5,6],[7,8,9]])

matrix3 = np.array([[11,72,-3],[20,0,18],[-1,-3,-7]])

matrix4 = np.multiply(matrix2, matrix1)

matrix5 = np.subtract(matrix3, matrxi2)

Program output:

here write your code

avg1 = np.average(matrix1)

avg2 = np.average(matrix2)

avg3 = np.average(matrix3)

avg4 = np.average(matrix4)

avg5 = np.average(matrix5)

averages = np.array([avg1,avg2,avg3,avg4,avg5])

print(np.argmin(averages, axis=0)+1)

print(averages)

Program output:

• matrix1
• matrix2
• matrix3
• matrix4
• matrix5

36

Regular expressions

Chapter 4

37

4.1 Special sequences, character sets

📝 4.1.1

Special sequence means predefined classes of characters that have a unique
meaning. This is a useful way to match and search strings for specific conditions.
Below we introduce special sequences and their meanings, as well as examples of
their use.

Special sequence: \A - Matches pattern only at the start of the string

import re

str = "Priscilla is the best tool for distance learning"

print(re.findall("\APri", str))

if re.findall("\APri", str):

 print("The sentence begins with 'Pri'")

else:

 print("The sentence does not begin with 'Pri'")

Special sequence: \Z Matches pattern only at the end of the string

import re

str = "Priscilla is the best tool for distance learning"

print(re.findall("ing\Z", str))

if re.findall("ing\Z", str):

 print("The sentence ends with 'ing'")

else:

 print("The sentence does not end with 'ing'")

Special sequence: \b Matches pattern at the beginning or at the end of a WORD. It
depends on the use. We have to use it with a raw string prefix 'r'.

import re

str = "Priscilla is the best tool for distance learning"

print(re.findall(r"ool\b", str))

if re.findall(r"ool\b", str):

 print("There is at least one word ending with 'ool'")

else:

 print("There isn't any word ending with 'ool'")

import re

str = "Priscilla is the best tool for distance learning"

print(re.findall(r"\bt", str))

38

if re.findall(r"\bt", str):

 print("There is at least one word starting with 't'")

else:

 print("There isn't any word starting with 't'")

Special sequence: \B Matches pattern if it is not at the beginning or at the end of a
WORD. It depends on the use. We have to use it with a raw string prefix 'r'.

import re

str = "Priscilla is the best tool for distance learning"

print(re.findall(r"\Bool", str))

if re.findall(r"\Bool", str):

 print("There is at least one word that has 'ool' in it,

but not at the beginning")

else:

 print("There isn't any word that has 'ool' in it, but not

at the beginning")

import re

str = "Priscilla is the best tool for distance learning"

print(re.findall(r"ool\B", str))

if re.findall(r"ool\B", str):

 print("There is at least one word that has 'ool' in it,

but not at the end")

else:

 print("There isn't any word that has 'ool' in it, but not

at the end")

Special sequence: \d - Matches to any digit: 0, 1, 2, 3, 4, 5, 6, 7, 8 or 9.

import re

str = "Priscilla is the best tool for distance learning"

print(re.findall("\d", str))

if re.findall("\d", str):

 print("There are digits")

else:

 print("There are no digits")

Special sequence: \D - Matches to any non-digit

import re

str = "Priscilla is the best tool for distance learning"

print(re.findall("\D", str))

39

if re.findall("\D", str):

 print("There are no digits")

else:

 print("There are only digits")

Special sequence: \s - Matches any whitespace character

import re

str = "Priscilla is the best tool for distance learning"

print(re.findall("\s", str))

if re.findall("\s", str):

 print("There is at least one whitespace")

else:

 print("There is no whitespace")

Special sequence: \S - Matches any non-whitespace character

import re

str = "Priscilla is the best tool for distance learning"

print(re.findall("\S", str))

if re.findall("\S", str):

 print("There is at least one charakter that is not a

whitespace")

else:

 print("There are only whitespaces")

Special sequence: \w - Matches any alphanumeric character: 0,...,9, a,...,z,A,...,Z

import re

str = "Priscilla is the best tool for distance learning"

print(re.findall("\w", str))

if re.findall("\w", str):

 print("There is at least one alphanumeric charakter")

else:

 print("There is no alphanumeric charakter")

import re

str = "Priscilla is the best tool for distance learning"

print(re.findall("\w{7}", str))

if re.findall("\w{7}", str):

 print("There is at least one word with at least 7

alphanumeric characters")

else:

40

 print("There is no word with at least 7 alphanumeric

characters")

Special sequence: \W - Matches any non-alphanumeric character: 0,...,9, a,...,z,A,...,Z

import re

str = "Priscilla is the best tool for distance learning"

print(re.findall("\W", str))

if re.findall("\W", str):

 print("There is at least one non-alphanumeric charakter")

else:

 print("There is no non-alphanumeric charakter")

📝 4.1.2

Check the special sequence, which will allow us to check if there is any
whitespace in the string.

str = "I love Priscilla!"

print(re.findall("\s", str))

str = "I love Priscilla!"

print(re.findall("\S", str))

str = "I love Priscilla!"

print(re.findall("\w", str))

str = "I love Priscilla!"

print(re.findall("\W", str))

str = "I love Priscilla!"

print(re.findall("\b", str))

str = "I love Priscilla!"

print(re.findall("\b", str))

str = "I love Priscilla!"

print(re.findall("\d", str))

str = "I love Priscilla!"

print(re.findall("\D", str))

📝 4.1.3

Check the special sequence, which will allow us to check if there is a word that has
'l' but not at the beginning of the word (in the middle or at the end).

str = "I love Priscilla!"

print(re.findall(r"\Bl", str))

str = "I love Priscilla!"

print(re.findall(r"l\B", str))

41

str = "I love Priscilla!"

print(re.findall("\Bl", str))

str = "I love Priscilla!"

print(re.findall("\Al", str))

str = "I love Priscilla!"

print(re.findall("l\Z", str))

str = "I love Priscilla!"

print(re.findall(r"\Al", str))

str = "I love Priscilla!"

print(re.findall(r"l\Z", str))

str = "I love Priscilla!"

print(re.findall("\D", str))

📝 4.1.4

Check the output of the code below

import re

str = "I love Priscilla! She inspires me..."

print(len(re.findall("\W", str)))

• 0
• Yes
• 27
• 9
• 4
• 6

📝 4.1.5

Character classes can be used instead of the special sequence. In many cases,
they can be used equivalently. The basic form of defining character classes is to
write a string of characters in square brackets.

For example, the character class [tc]ool, it's a match for words tool and cool.

import re

str = "Priscilla is the best tool for distance learning. It is

so cool."

print(re.findall("[tc]ool", str))

42

We can build the character classes by using a range of values, we should use '-'
then.

For example, [d-h] means all letters from d through h. Or [4-7] means the digits
4,5,6,7.

Several ranges can be used for one character class definition. For example, [d-hk-m]
means all letters from d through h and k through m.

We can also build the character classes by using a negation, we use the sign '^' for
negation.

For example, [^d-h] means all letters except d through h. Or [^4-7] means the digits
0,1,2,3,8,9.

import re

str = "Priscilla is the best tool for distance learning. She

is so cool."

#Match d, e, f, g, h, a, or c.

print(re.findall("[d-ha-c]", str))

#Match a letter other than a, b, c and d.

print(re.findall("[^abcd]", str))

#Match d, e, f, g or h followed by a, b or c.

print(re.findall("[d-h][a-c]", str))

#Match d, e, f, g or h followed by a letter other than a and

b.

print(re.findall("[d-h][^ab]", str))

Thus, many special sequences can be used equivalently with character classes.

The equivalent pairs are listed below.

• \d - character class [0-9]
• \D - character class [^0-9]
• \s - character class [\t\n\x0b\r\f]
• \S - character class [^ \t\n\x0b\r\f]
• \w - character class [a-zA-Z_0-9]
• \W - character class [^a-zA-Z_0-9]

43

import re

str = "Priscilla is the best tool for distance learning. She

is so cool."

print(re.findall("\W", str))

print(re.findall("[^a-zA-Z_0-9]", str))

📝 4.1.6

Check all true sentences.

• The following two codes have the same meaning.

import re

str = "Artificial intelligence will change our world!"

print(re.findall("\d", str))

import re

str = "Artificial intelligence will change our world!"

print(re.findall("[^0-9]", str))

• The output of the following code will be 40

import re

str = "Artificial intelligence will change our world!"

print(len(re.findall("[^1-9!]", str)))

• The output of the following code will be ['Ar']

import re

str = "Artificial intelligence will change our world!"

print(re.findall("[a-iA-I][^a-n !]", str))

📝 4.1.7

match function - the much function attempts to match a pattern, defined as regular
expression, to text (re.match(pattern, string, flags)). You may specify more than
one flag, by separating them with the pipeline sign (|). The re.match function returns
a match object on success and None upon failure.

Flags:

re.I - Performs case-insensitive matching

re.L - Interprets words according to the current locale

re.M - Makes $ match the end of a line and makes ^ match the start of any line

44

re.S - Makes a period (dot) match any character, including a newline

re.U - Interprets letters according to the Unicode character set. This flag affects the
behavior of \w, \W, \b, \B

re.X - It ignores whitespace (except inside a set [] or when escaped by a backslash
and treats unescaped # as a comment marker

#Finds Priscilla-Fan, Priscillafan, PRISCILLA-FAN, etc.

import re

pattern = r'Priscilla[-]?fan.'

texts=['Priscilla-Fans live everywhere', 'Priscillafan lives

here', 'Samantafan lives here']

for text in texts:

 print(text)

 if re.match(pattern, text, re.IGNORECASE): print('Match')

 else: print('No match')

 print()

Program output:
Priscilla-Fans live everywhere

Match

Priscillafan lives here

Match

Samantafan lives here

No match

Groups - match function may also be used to capture groups

#Match dates formatted like MM/DD/YYYY, MM-DD-YY, etc.

import re

pattern = re.compile(r'^(\d\d)[-/](\d\d)[-/](\d\d(?:\d\d)?)$')

45

dates = ['02/14/2023', '05-01-1993', '30th July 2022']

for date in dates:

 print(date)

 obj = pattern.match(date)

 if obj:

 print('Match')

 month = obj.group(1) #02

 day = obj.group(2) #14

 year = obj.group(3) #2023

 print(day)

 print(month)

 print(year)

 print()

 else: print('No match')

Program output:
02/14/2023

Match

14

02

2023

05-01-1993

Match

01

05

1993

30th July 2022

No match

📝 4.1.8

Write Python expression which verifies whether the given time matches one out of
a few specified formats and extract the value of hours and minutes.

46

Numpy arrays

Chapter 5

47

5.1 Arrays

📝 5.1.1

Generate numbers from 10 to 0

x=10

while x>=0:

 print(x)

 x=x-1

x=10

while x>=0:

 print(x)

x=10

while x>=0:

 print(x)

 x=x+1

📝 5.1.2

Numpy arrays

Numpy operates very efficiently on numeric data arranged in arrays.

import numpy as np

a = np.array([1.1, 3., 3.3, 7., 11.1, 12.3, 15.])

b = np.array([1.0, 3.7, 4.6, 7.3, 11., 12., 15.3])

print(a)

print(b)

Different data types

All data stored in variables and, in particular, in Numpy arrays are assigned a
specific type.

48

print(a.dtype)

k = np.array([1, 3, 4, 7, 1])

print(k.dtype)

Manipulating Numpy arrays

x = a + b

print(x)

Plotting data stored in Numpy arrays with Matplotlib

import matplotlib

import numpy as np

import matplotlib.pyplot as plt

x = np.linspace(0.1, 10*np.pi, 500)

plt.plot(x, np.sin(x)/x)

plt.title('Characteristics')

plt.show()

📝 5.1.3

Task

i=7

print(7)

Program output:
7

49

Random number generation

Chapter 6

50

6.1 Library random - generating random numbers

📝 6.1.1

Random numbers

Often when writing machine code comes the use of data generation. Rrandom
number generators can be used for this purpose.

In Python, the most popular library for generating values is the random library

let's take a look at the functions offered by the random library:

Generating a floating random number between 0 and 1

function random()

import random

nu =random.random()

print(nu)

Program output:
0.7809914352329894

Generating a random integer within a given range – randint()

randint(min,max) -where [min,max] defin the lower and upper

limit of the range.

import random

nu = random.randint(20,40)

print(nu)

Program output:
34

Generating a random integer list using for loop – randint()

import random

rand_list = []

for i in range(0,5):

51

 nu = random.randint(0,10)

 rand_list.append(nu)

print(rand_list)

Program output:
[3, 0, 5, 9, 9]

Generating a sample of random integers within a given range

– sample()

sample(range, how many values)

import random

nu = random.sample(range(0, 50), 10)

print(nu)

Program output:
[38, 19, 33, 21, 0, 48, 7, 17, 13, 28]

#Selecting a random number from a given list – choice()

import random

lists = [2, 10, 11, 8, 13, 26, 17]

nu = random.choice(lists)

print(nu)

Program output:
26

Generating a random number from a list in the specified

range – randrange()

import random

nu = random.randrange(10,20,5)

print(nu)

Program output:
10

52

Generating a floating random number within a given range –

uniform()

#uniform(min, max)

import random

nu - random.uniform(10,15)

print(nu)

Program output:
10

Generating a randomly shuffled list – shuffle()

a shuffle() function takes a list as an argument and shuffles

the elements

import random

lists=[1, 2, 3, 4, 5, 6, 7, 8]

random.shuffle(lists)

print(lists)

Program output:
[3, 8, 2, 4, 7, 1, 6, 5]

📝 6.1.2

To change the order of items in a list you can use a function

📝 6.1.3

to select a float from a given range, use the function

53

Regular expression

54

Introduction to regular
expressions

Chapter 1

55

1.1 Theoretical basics

📝 1.1.1

A regular expression (regex or regexp) is a string that defines a pattern for
searching text using special characters. In general, regular expressions come from
the field of theoretical computer science and the theory of formal languages.
Regular expressions are most commonly used in text manipulation in the following
cases:

• determining whether a text matches a regular expression (input validation),
• text search - finding out where in the text the substring being searched for is

located,
• replacing a substring in a string (find and replace),
• extracting all occurrences of a substring.

Regular expressions in Python are written in the so-called raw string, which ensures
that special sequences of characters do not have their special meaning activated
(e.g. \n creates a new line):

r""

A raw string is an ordinary string but with a different form of notation. We can also
write regular expressions as plain text strings, but then we have to watch out for
special character sequences, which we have to treat with a double slash. This
reduces the clarity of regular expressions.

print("hello\nworld")

print(r"hello\nworld")

📝 1.1.2

Some characters have special meanings in the case of regular expressions. This
means that if we want to use them, we have to prefix them with a backslash
character, which ensures that the program does not take the special meaning into
account. For example, \n indicates a new line. However, if we write it as a raw
string, its special meaning will not be used.

print("hello\nworld")

print(r"hello\nworld")

56

📝 1.1.3

Thus, a regular expression defines a so-called search pattern for strings. In
programming languages, there are functions to check whether a given string
satisfies the regular expression condition. In Python, we will use the re library,
which contains the match() function. This function verifies that the string matches
the regular expression and if it finds a match, it returns a special object of type
Match. If it does not find a match it returns an empty value of the form None. The
Match object contains a number of useful pieces of information that we can work
with later, such as information about where in the string the matched regular
expression is located.

There are a number of symbols and characters that have a specific function in the
case of regular expressions:

• . (dot) - this is a wildcard that represents an arbitrary character,
• ^ - identifies the beginning of a string or line,
• $ - identifies the end of a string or line.

import re

print(re.match(r'^I','Informatics')) # does the word start

with a capital i?

print(re.match(r'$a','Informatics')) # end the word with a

small a?

📝 1.1.4

Create a regular expression that checks whether the word Alphabet starts with a
capital A. As an answer, write out an object of type Match.

import re

📝 1.1.5

Create a regular expression that checks whether the word com ends in com. Write
an object of type Match as the answer.

import re

57

📝 1.1.6

Widely used in regular expressions are quantifiers. A quantifier is a character that
tells us how many times the character that precedes the quantifier can be repeated
in the string. We distinguish the following quantifiers:

• ? - means no or just 1 occurrence,
• * - means no or more occurrences,
• + - means just 1 or more occurrences,
• {number} - means the exact number of occurrences defined in brackets,
• {min,max} - means the number of occurrences between the defined

boundaries, including the boundaries.

import re

print(re.match(r'.*','hello world'))

print(re.match(r'hel{2}o','hello'))

print(re.match(r'ab*a','abbbbba'))

📝 1.1.7

Write a regular expression that verifies and correctly evaluates the word pool.

import re

📝 1.1.8

Write a regular expression that verifies and correctly evaluates all the words abbc,
abbbc, abbbbc.

import re

1.2 Abbreviated notation for regular expressions

📝 1.2.1

To avoid having to always print all the characters of a given word or to be able to
cover different characters, for example when checking the quality of a password,
we can use so-called character groups when creating regular expressions.

• by writing out the characters - e.g. [cde]
• by character range - e.g. [a-z]
• by combination - e.g. [cdex-z1-3]

We can also use a sequence of wildcard characters:

58

• \d - denotes digits, it is the same as the [0-9] notation
• \D - indicates everything except digits
• \s - denotes white spaces, which is a space, tab, etc.
• \S - indicates everything except white spaces
• \w - indicates all alphanumeric characters and underscore, similar to the

notation [a-zA-Z0-9_]
• \W - denotes all characters except \w

The last character that is often used in combination with a group of characters is |
(vertical bar). This allows several regular expressions, or parts of regular
expressions, to be separated from each other and any one of them used. For
example, the notation aaa|bbb corresponds to the strings aaa or bbb. The more
complex notation ([ab]{2}|z)k corresponds to either the two characters of [ab]
followed by k, or z that is followed by k - consequently, we can use these regular
expressions to write the words: aak, abk, bak, bbk, and zk.

📝 1.2.2

With regular expressions, we can search either the first part of a string that
matches the regular expression using the search() function, all matching substrings
using the findall() function, or individual matches using the finditer() function. We
need to be careful that the parts of our string that match the regular expression do
not overlap each other. This is not a problem for the search() function, since it
returns only the first occurrence found. However, the findall() and finditer()
functions, when traversing the string from left to right, ignore characters that they
have already evaluated as part of a previous match.

import re

print(re.search(r'.n', 'Good evening!'))

print(re.findall(r'.n', 'Good evening!'))

print(list(re.finditer(r'.n', 'Good evening!')))

📝 1.2.3

Another possibility of applying regular expressions is substitution. Substitution
using the sub() function works very similarly to the string method replace(). The
only difference is that the replaced part must match the condition of the regular
expression. In the sub() function, we can use the count parameter to specify how
many substrings we want to replace, if we set the value to 1, the replacement will
only occur in the first occurrence.

import re

print(re.sub(r'\s+and\s+', ' & ', 'Black and white and red

and green and blue'))

59

print(re.sub(r'\s+and\s+', ' & ', 'Black and white and red

and green and blue', count=1))

📝 1.2.4

Write a regular expression that verifies that the given number is a three-digit
number. Remember that a three-digit number must not start with zero.

import re

📝 1.2.5

Write a regular expression that verifies that the given string is the beginning of a
phone area code. A phone area code always starts with a + sign.

import re

📝 1.2.6

Let's take a closer look at the findall() function, which can capture a group of
characters/words that satisfy a regular expression. Let's say we want to identify all
the words that start with a capital letter in a given text.

import re

text = 'Sarah has lived at the house already 4 years. Peter

came to visit Sarah and John during summer.'

res = re.findall(r'[A-Z][a-z]+',text)

print(res)

Program output:
['Sarah', 'Peter', 'Sarah', 'John']

60

Examples

Chapter 2

61

2.1 Programmes

📝 2.1.1

Create a regular expression that successfully recognizes tagged users on social
networks. The user's name is usually prefixed with @.

⌨ 2.1.2 Tagging

Create a program that successfully recognizes tagged users on social networks.
The user's name is usually prefixed with @.

Input : Correct me if I’m wrong, but I think that after

today’s release of #willow Chapter 7, Julian Glover is now the

first actor to hit all three @Lucasfilm franchises

Output: ['@Lucasfilm']

📝 2.1.3

Create a regular expression that successfully recognizes decimal numbers in the
text. Decimal numbers will be written with a decimal point.

⌨ 2.1.4 Decimal numbers

Create a program that successfully recognizes decimal numbers in the text.
Decimal numbers will be written with a decimal point.

Input : How do you guys read this as decimal value 0.015? I

read it as 15/100 (fifteen hundredth) and my co-worker read it

as 15/1000 (fifteen thousandth).

Output: ['0.015']

📝 2.1.5

Create a regular expression that successfully recognizes fractions in text. Assume
that the fraction will consist of positive integers. E.g. 3/4

⌨ 2.1.6 Fractions

Create a program that successfully recognizes fractions in text. Assume that the
fraction will consist of positive integers. E.g. 3/4

62

Input : How do you guys read this as decimal value 0.015? I

read it as 15/100 (fifteen hundredth) and my co-worker read it

as 15/1000 (fifteen thousandth).

Output: ['15/100','15/1000']

📝 2.1.7

Create a regular expression that successfully recognizes an email address in the
text. Assume that the email address will be in the standard format. For example,
john.smith@gmail.com

⌨ 2.1.8 Email

Create a program that successfully recognizes an email address in the text.
Assume that the email address will be in a standard format. For example,
john.smith@gmail.com.

Input : john.smith@gmail.com

Output: ['john.smith@gmail.com']

📝 2.1.9

Create a regular expression that successfully evaluates the password strength. The
password could contain only upper and lower case letters and numbers. Password
length should be at least 8 characters.

⌨ 2.1.10 Password

Create a program that successfully evaluates the strength of a password. The
password could contain only upper and lower case letters and numbers. Password
length should be at least 8 characters.

Input : ab18aaPL

Output: ['ab18aaPL']

📝 2.1.11

Create a regular expression that successfully evaluates the suitability of the
username. The username can consist of alphanumeric characters as well as _ and -
characters. The username must contain only lowercase letters. The length of the
username should be at least 3 characters and no more than 16 characters.

63

⌨ 2.1.12 Username

Create a program that successfully evaluates the suitability of a username. The
username can consist of alphanumeric characters as well as _ and - characters.
The username must contain only lowercase letters. The length of the username
should be at least 3 characters and no more than 16 characters.

Input : beever10

Output: ['beever10']

2.2 Advanced Programmes

⌨ 2.2.1 URL

Create a program that successfully detects the URL in the text and informs whether
it is written correctly or not. Assume that https is mandatory.

Input : https://www.ukf.sk

Output: True

⌨ 2.2.2 IP address

Create a program that successfully detects the IP address in the text and informs
whether it is entered correctly or not.

Input : 192.168.1.255

Output: True

⌨ 2.2.3 Date I.

Create a program that successfully detects the date in text in the format YYYY-MM-
dd and informs whether it is written correctly or not.

Input : 2022-02-02

Output: True

⌨ 2.2.4 Date II.

Create a program that successfully detects the date in text in the format
dd/MM/YYYYY and informs whether it is entered correctly or not.

Input : 31/01/2022

64

Output: True

⌨ 2.2.5 Date III.

Create a program that successfully detects the date in the text in the format
dd.mmm.YYYY and informs whether it is entered correctly or not. Write the months
in English (Jan, Feb, Mar, Apr, May, Jun, Jul, Aug, Sep, Oct, Nov, Dec). Ensure that
the months have the correct number of days.

Input : 31.Jan.2022

Output: True

⌨ 2.2.6 Time I.

Create a program that successfully recognizes the time in text in the 12-hour
format HH:MM and informs whether it is written correctly or not.

Input : 09:59

Output: True

⌨ 2.2.7 Čas II.

Create a program that successfully recognizes the time in text in the 12-hour
format HH:MM am/pm and reports whether it is written correctly or not. Be sure to
check if the time contains am/pm information, which can also be written in upper
case.

Input : 09:59 PM

Output: True

⌨ 2.2.8 Time III.

Create a program that successfully recognizes the time in text in 24-hour HH:MM
format and informs whether it is written correctly or not. For hours and minutes 0-9,
it is necessary to write a 0 in front of them.

Input : 23:59

Output: True

65

⌨ 2.2.9 Time IV.

Create a program that successfully recognizes the time in text in 24-hour HH:MM
format and informs whether it is written correctly or not. For hours and minutes 0-9,
it is not necessary to write a 0 in front of them.

Input : 5:59

Output: True

⌨ 2.2.10 Time V.

Create a program that successfully recognizes the time in text in the 24-hour
format HH:MM:SS and informs whether it is written correctly or not. For hours and
minutes 0-9, it is necessary to write a 0 in front of them.

Input : 05:59:42

Output: True

⌨ 2.2.11 URL slug

Create a program that successfully recognizes the URL slug in the text. This is the
last part of the URL that serves as a unique identifier for the page. These are
alphanumeric characters that can be separated by a hyphen. E.g.
https://www.abc.com/this-is-a-slug/

Input : this-is-a-slug

Output: True

⌨ 2.2.12 Phone number

Create a program that successfully recognizes an international phone number in
the text. Make sure the area code begins with a + or 00. Also, ensure that it
recognizes a number with spaces, but also without spaces.

Input : 00421 123 459 21

Output: True

⌨ 2.2.13 File name

Create a program that successfully recognizes a file name in text. Make sure that
the file extension contains exactly 3 characters. The file name can contain
alphanumeric characters.

66

Input : filename.txt

Output: True

⌨ 2.2.14 Duplicity

Create a program that successfully detects if there are duplicate words in the text
(can also be a number).

Input : hello world hello

Output: True

67

Pandas

68

Pandas introduction

Chapter 1

69

1.1 Introduction

📝 1.1.1

The Pandas library is one of the most widely used Python libraries in the world.
Pandas stand for "Python Data Analysis Library". Pandas is a freely distributable
library.

The significant advantage of Pandas is that it can take data (e.g. in CSV format)
and create a table structure object called a DataFrame. This structure is very similar
to what we can do in any spreadsheet editor (e.g. Excel). Working with a
spreadsheet is much easier than working with dictionaries or lists, which require
using loops to search through them.

Nowadays, most tools for working with Python already include the Pandas library
directly installed in the base version, so installing the library is unnecessary and we
will not describe it.

📝 1.1.2

However, in order to use the Pandas library in our program, we need to import it.
Importing the library means loading it into memory, where we can then work with it.
A similar procedure applies to any library you want to use in Python (e.g. numpy,
matplotlib, etc.).

import pandas

As a priority, the library import is called using the "import" command. But then we
have to use the full library name, i.e. pandas, in each call. Therefore, there is an
option to create an alias using the "as" command. So in our case, the variable "pd"
will represent the pandas library.

import pandas as pd

📝 1.1.3

Which of the import calls for pandas library are correct?

import pandas

import pandas as pd

import pandas as panda

as panda import pandas

import panda

import pd as pandas

import pd

70

📝 1.1.4

One of the main reasons for the popularity of pandas is its ability to handle different
types of data:

• spreadsheets with columns that are capable of storing different types of
data (e.g., numeric data and text data)

• ordered and unordered series data (any sequence of numbers in a list, e.g.
[2,4,8,9,10])

• multi-dimensional matrix data (three-dimensional, four-dimensional, etc.)
• any other form of statistical data (e.g., data from databases)

In addition, the large number of intuitive and easy-to-use functions/methods makes
pandas a convenient and frequently chosen tool for data analysis.

📝 1.1.5

Before we start working with the pandas library in more detail, let's recall some of
the basic structures we'll be working with.

List (Series)

In pandas, the Series object represents one-dimensional data. It is initialized with
the pd.Series() statement. In the following example, you can see how to create a
numeric list using pandas Series:

import pandas as pd

s = pd.Series([10,11,12,13,15])

print(s)

We can see that we have a one-dimensional list as an output that is represented by
pandas Series. The numbers on the left, as if in the first column, represent the index
of each element of the list.

📝 1.1.6

Create a Pandas Series from the following list of numbers:

[15,0,2,19,200,10,22]

What will be the average of the given values? Do not round the result.

Procedure to solve the problem:

71

• import the pandas library
• create a variable of type pandas Series
• use a for loop to go through the Series and add the numbers
• divide the sum of the numbers by their count and print the average

1.2 Data input

📝 1.2.1

As mentioned earlier, the Pandas library can store data in the form of a table called
a DataFrame. A DataFrame is a two-dimensional representation of data in rows and
columns that can be initialized in pandas using the DataFrame() function. In the
following code, a simple list is converted to a one-dimensional DataFrame:

import pandas as pd

df = pd.DataFrame([10,11,12,13,15])

print(df)

As we can see, the result is similar to the Series view but remember that in the case
of Series it is only a one-dimensional list. On the other hand, a DataFrame is similar
to a table, so in our example, we again see first the indexes in the first column,
which denote the rows, and in the first row, we see the index or the column name.
This is what makes the difference from Series, where we didn't have column
naming. The way the pandas library works is that unless we specify column
information when we create the DataFrame, it automatically numbers the columns
starting from 0.

📝 1.2.2

Working with DataFrame provides various options. Among the first functions we
will introduce is the shape() function.

import pandas as pd

df = pd.DataFrame([11,12,13,45,202,71,239,3,5])

print(df.shape)

The shape function returns information about the shape of the created DataFrame.
So our DataFrame consists of 9 rows and 1 column.

72

📝 1.2.3

We mentioned that by default the columns are named with numeric indices. By
calling the columns method, we can either write our own column naming or print
the column names of our DataFrame.

import pandas as pd

df = pd.DataFrame([11,2,8,99,3,74,123,3])

print(df.columns)

df.columns = ['num']

print(df.columns)

print(df.index)

Printing the columns, in the case of the default option, will output information that it
is a range of indexes that start with 0 and end with 1, with a step of 1. We get
similar information for the row indexes when we call the index method. However,
the moment we assign a new list to the columns, in our case with the name of a
single column, the columns method will print the index list with our name on it.
Analogously, we can also change the names of rows in a DataFrame.

import pandas as pd

df = pd.DataFrame([11,2,8,99,3,74,123,3])

df.columns = ['num']

df.index =

['row1','row2','row3','row4','row5','row6','row7','row8']

print(df)

📝 1.2.4

Until now we have been working with a one-dimensional list but DataFrame is more
often used as a two-dimensional list or table. So let's be given two integer lists:

[36,22,3,78,2,1]

[4,66,81,22,3,7]

Store both lists in a DataFrame and see what its shape is. Creating a DataFrame is
analogous to creating a one-dimensional list but now we'll put it there as a list of
lists [[...],[...]].

73

import library

create dataframe

examine

• (6,2)
• (2,6)
• [6,2]
• [2,6]

📝 1.2.5

Working with pandas involves importing data from different data files and writing
back the output in different formats. These operations are essential processes
when working with data, and the most common type of file encountered is the CSV
file. Reading a CSV file and then transforming it into a DataFrame is built into the
pandas library using the read_csv() function. Suppose we have a students.csv file
stored on disk, then loading it into a DataFrame will look like this:

import pandas as pd

df = pd.read_csv('students.csv', sep=';')

The second parameter in the function is the so-called separator (sep). A standard
CSV file has individual records separated by semicolons. In the case of a specific
file, we can of course modify the separator to the desired character or set of
characters. The pandas library then loads the contents of the file into the
DataFrame based on the specified delimiter and it is the delimiter that is used to
create the columns.

Pandas also supports other file types such as XLS, JSON, XML, or HDF5.

📝 1.2.6

We don't have to load the CSV file only from our own disk but we can also load it
from the web storage. We just need to pass the direct URL to the requested CSV file
as the first parameter to the read_csv() function. So, load the titanic.csv data file
from the following URL into the DataFrame and output its shape. The separator in
this case is a comma.

https://priscilla.fitped.eu/data/pandas/titanic.csv

import library

74

read csv from

https://priscilla.fitped.eu/data/pandas/titanic.csv

📝 1.2.7

There are many cases where we need to write data to a file and save it to disk for
future use. The pandas library uses the to_csv() function to write data to a file. The
parameter of the called function is the path to the file where the data is to be
written. If the file already exists on the disk it overwrites it with the new content.
Similar to loading data, we can use the sep parameter to specify a separator to
separate our data. It is also convenient to specify an additional parameter, index,
which has two options, True or False. Index tells whether to include the row index in
the result file, if we don't specify this value the default is True.

import pandas as pd

df = pd.DataFrame([[22,1,34],[11,2,3]])

df.to_csv('export.csv', sep = ';', index = False)

📝 1.2.8

Pandas also allows you to import data directly from an MS Excel file. The condition
for working with such a file is that it does not contain any images, formulas or
macros. For this reason, we also more often encounter that the MS Excel file is
saved in CSV format. However, if we are going to work with an XLS/XLXS file, we
proceed as follows:

import pandas as pd

df = pd.read_excel('file.xlsx', sheetname='Sheet1')

The sheetname argument defines the name of the sheet from which we will retrieve
data.

📝 1.2.9

Nowadays, JSON format is also very popular, so we have a library and a set of
methods for working with this flexible format. JSON is a lightweight data
interchange format that was inspired by JavaScript. Importing JSON data using the
json library not only allows you to specify the path to the file in the operating
system or cloud storage but also via a URL. In this way, for example, we can
connect to increasingly popular sites that provide datasets from various domains.
The following command displays logs from using the repository.

75

import pandas as pd

import json

df =

pd.read_json('https://api.github.com/repos/pydata/pandas/issue

s?per_page=5')

print(df.head())

1.3 Checking the data

📝 1.3.1

Working with a DataFrame starts with loading the dataset and before we look at the
different options for working with the data, it's a good idea to look at what data
we've actually stored in the DataFrame. The first step is the already introduced
shape function, which tells us how many rows and columns the DataFrame has
created.

If we have a dataset that contains thousands of rows, it's not a good idea to list all
the rows. In such cases, we can get an overview of the dataset by listing only the
first few rows. This is what the head() and tail() functions are for.

In the theoretical examples, we'll work with the file scrabble_games.csv, which
keeps track of tournament games in the board game Scrabble, keeping track of the
winners, their scores, and other interesting information about each game.

import pandas as pd

df =

pd.read_csv('https://priscilla.fitped.eu/data/pandas/scrabble_

games.csv', delimiter=',')

print('Function head:')

print(df.head())

print('Function tail:')

print(df.tail())

If we want to display the first few rows of data, we can use the df.head() command,
where df is the name of the DataFrame. Similarly, if we want to display the last few
rows, we can use the df.tail() command. In both of these cases, the first (or last) 5
rows are displayed by default.

If we want to display more (or fewer) rows, we can specify the number of rows as a
parameter in the head() or tail() functions. For example, the first 10 rows can be
displayed using the df.head(10) function. To display the last eight rows we use the
df.tail(8) function.

76

📝 1.3.2

Load the dataset regarding titanic. Practical tasks will mostly work with this
dataset, which contains the passenger records of the infamous steamship Titanic.

Use the head() and tail() functions to examine the data and identify the correct age
of the passengers (Age column):

• 7th passenger from the beginning
• 12th passenger from the end

import library

read csv from

https://priscilla.fitped.eu/data/pandas/titanic.csv

explore the dataset

• 54
• 56
• 25
• 22
• 28
• 35
• 2

📝 1.3.3

Pandas supports various data types such as int64, float64, date, time, and Boolean
values. When analyzing data, there will be countless times when we need to convert
data from one type to another. Similarly, the moment we load a dataset into a
DataFrame, it's a good idea to familiarize yourself with what data type is actually in
each column. In such cases, it is essential to understand these different data types.

The first aspect to be aware of when working with any data is the different data
types. We can get these using the dtypes method.

import pandas as pd

df =

pd.read_csv('https://priscilla.fitped.eu/data/pandas/scrabble_

games.csv', sep = ',')

print(df.dtypes)

77

From the output, we can see that our dataset contains three different data types:
int64, bool and object. The object specifies textual data or a combination of textual
and numeric data. int64 represents integer data and bool in turn speaks of a logical
true/false value.

📝 1.3.4

Load the data from the dataset titanic.csv. Examine the data types in the dataset
and select which data type predominates in the dataset.

import library

read csv from

https://priscilla.fitped.eu/data/pandas/titanic.csv

explore the dataset

• int64
• object
• float64

📝 1.3.5

Similar information as in the previous assignment we can also get using the info
function. In this case, however, we get much more information, not only about the
individual columns (variables) but also about the entire DataFrame.

import pandas as pd

df =

pd.read_csv('https://priscilla.fitped.eu/data/pandas/scrabble_

games.csv', sep=',')

print(df.info())

After calling the info function, we see that our dataset consists mostly of integer
data. We can also see that the dataset contains 19 columns and 99402 non-zero
rows.

78

Data manipulation

Chapter 2

79

2.1 Missing values

📝 2.1.1

When working with real datasets, you will certainly often encounter missing data
during data analysis. Understanding how the pandas program displays missing
data for each data type is very important to ensure the accuracy of our future data
analysis. Missing values can be the most unwanted values in data science. Since it
is not reasonable to ignore missing values, we need to find ways to work with them
efficiently and correctly. Pandas is quite flexible in handling missing values. Empty
values are often denoted by NaN.

import pandas as pd

df =

pd.read_csv('https://priscilla.fitped.eu/data/pandas/household

.csv', sep=';')

print(df.info())

At first glance, we may not see anything extraordinary in the displayed data but if
we look closely at the third column in the displayed table, not every row contains all
24 non-zero records. That means all columns except the date contain several non-
zero or missing values. We can try to verify this by displaying the DataFrame
header:

print(df.head())

📝 2.1.2

Load the data from the dataset titanic.csv. Examine the data in the dataset and
select which columns contain the missing values.

import library

read csv from

https://priscilla.fitped.eu/data/pandas/titanic.csv

explore the dataset

• Age
• Cabin
• PassengerId

80

• Survived
• Name
• Ticket

📝 2.1.3

The first option to deal with missing values is to remove either rows or columns
that contain any missing values. If we want to remove rows that contain empty
values, we call the dropna() function.

import pandas as pd

df =

pd.read_csv('https://priscilla.fitped.eu/data/pandas/household

.csv', sep=';')

df = df.dropna()

print(df)

In this way, we removed all rows that contained at least one missing value. The
second option is to remove the columns that contain missing values by setting the
axis parameter to 1. Axis specifies the axis along which the function is to be
executed.

df =

pd.read_csv('https://priscilla.fitped.eu/data/pandas/household

.csv', sep=';')

df = df.dropna(axis=1)

print(df)

The disadvantage of both approaches is that we also delete the records that have a
value from the data matrix. When we delete the columns, we end up with only the
date variable, which in principle does not tell us anything of substance but satisfies
the condition that it is the only one that does not have missing values. There is also
another option and that is to delete only the rows or columns that contain only
missing values. We can do this using the how parameter. In our example, since the
Date column does not contain any missing values, calling this function will not
delete any rows or columns.

81

df =

pd.read_csv('https://priscilla.fitped.eu/data/pandas/household

.csv', sep=';')

df = df.dropna(how="all")

print(df)

📝 2.1.4

Load the data from the dataset titanic.csv. Examine the data in the dataset and
remove rows that contain missing values. How many rows are left in the cleaned
dataset?

import library

read csv from

https://priscilla.fitped.eu/data/pandas/titanic.csv

drop rows with missing values

📝 2.1.5

Deleting all or some records is not always the best way to go. Sometimes we want
to focus more on deleting rows or columns with a few or mostly missing values. We
can't verbalize this to pandas in the form of a how parameter but we can use the
thresh parameter, which specifies the value of the number of missing records in a
row/column that we keep in the matrix. Other rows/columns with missing values
that do not meet this condition will be removed from the matrix.

import pandas as pd

df =

pd.read_csv('https://priscilla.fitped.eu/data/pandas/household

.csv', sep=';')

df = df.dropna(thresh=4)

print(df)

Since we have a data matrix with 6 columns, if we set the threshold to 4 it will mean
that rows that contain 3 or more missing values will be deleted. This way we have
deleted only one row from the original DataFrame.

82

📝 2.1.6

Until now, we have not looked at which column to delete missing values from but
we can also specify individual columns. Using the subset parameter, we can restrict
the deletion of missing values to the columns (variables) we specify.

import pandas as pd

df =

pd.read_csv('https://priscilla.fitped.eu/data/pandas/household

.csv', sep=';')

df = df.dropna(subset=['Waste','Gas'])

print(df)

Program output:
 Date Household Electricty Water Gas Waste

7 2020-08-31 1748.0 NaN 7.8 8.9 8.0

8 2020-09-30 1748.0 18.4 2.4 4.5 3.0

9 2020-10-31 NaN NaN 9.6 6.0 4.0

10 2020-11-30 1748.0 5.8 16.6 1.7 7.0

11 2020-12-31 1748.0 14.6 8.4 2.1 3.0

12 2021-01-31 1748.0 14.8 17.6 9.8 3.0

13 2021-02-28 1748.0 10.8 7.0 0.5 3.0

14 2021-03-31 1748.0 13.4 2.4 8.2 6.0

15 2021-04-30 1748.0 13.8 2.4 3.6 7.0

16 2021-05-31 1748.0 1.4 9.2 4.9 2.0

17 2021-06-30 1748.0 19.0 11.4 9.0 6.0

18 2021-07-31 1748.0 8.4 8.0 2.6 5.0

19 2021-08-31 1748.0 8.6 0.8 4.4 1.0

20 2021-09-30 1748.0 14.8 13.4 0.4 2.0

21 2021-10-31 1748.0 0.8 9.2 4.5 5.0

22 2021-11-30 1748.0 10.8 13.2 1.7 8.0

23 2021-12-31 1748.0 2.2 4.8 3.5 7.0

📝 2.1.7

We have introduced various methods of deleting rows or columns based on
missing values. Deleting is not the only option. In some cases, instead of deleting
missing values, we can choose to add or replace them. In fact, the filling may be a
better option because data implies value and, as we have seen, in some cases we
have lost most of the original data set. Of course, the method of filling in missing

83

values depends on the data structure and the task. The fillna function is used to fill
in missing values. The first option is to fill in a constant value. If one constant value
is sent to the function, all missing values are replaced by that constant. Therefore, it
is preferable to specify different constant values for different columns, which we
can send as a parameter in the form of a dictionary.

import pandas as pd

df =

pd.read_csv('https://priscilla.fitped.eu/data/pandas/household

.csv', sep=';')

val = {"Household": 1748, "Waste": 0}

df = df.fillna(value = val)

print(df)

The value for Household has been adjusted to 1748, indicating a given household
and the expenditure for Waste has been set to 0, as we cannot estimate that value.

📝 2.1.8

Load the data from the dataset titanic.csv. Examine the data in the dataset and
complete the rows in the Age column that contain missing values. Insert a constant
value of 0 in place of the missing values. In the code, you have an output of the
average age of the passengers. How much did the result change after the empty
values were filled in? (write the answer in integer)

import library

read csv from

https://priscilla.fitped.eu/data/pandas/titanic.csv

print mean with missing values

print(df['Age'].mean())

fill Age with 0

print mean with filled values

print(df['Age'].mean())

📝 2.1.9

As you may have noticed in the previous task, adding a certain constant does not
change our results. Another option for filling in missing values is to use aggregate

84

functions. This way we can at least partially estimate what the approximate values
should have been in place of the missing values. We can use the mean, median or
mode function.

import pandas as pd

df =

pd.read_csv('https://priscilla.fitped.eu/data/pandas/household

.csv', sep=';')

df = df.fillna(df['Waste'].mean())

print(df)

Program output:
 Date Household Electricty Water Gas

Waste

0 2020-01-31 1748.000000 7.000000 13.000000 5.700000

4.705882

1 2020-02-29 1748.000000 10.600000 18.200000 7.200000

4.705882

2 2020-03-31 4.705882 4.705882 4.705882 4.705882

4.705882

3 2020-04-30 1748.000000 18.600000 18.800000 4.705882

4.705882

4 2020-05-31 1748.000000 12.000000 14.200000 4.800000

4.705882

5 2020-06-30 1748.000000 12.800000 8.400000 8.300000

4.705882

6 2020-07-31 1748.000000 10.800000 16.400000 5.100000

4.705882

7 2020-08-31 1748.000000 4.705882 7.800000 8.900000

8.000000

8 2020-09-30 1748.000000 18.400000 2.400000 4.500000

3.000000

9 2020-10-31 4.705882 4.705882 9.600000 6.000000

4.000000

10 2020-11-30 1748.000000 5.800000 16.600000 1.700000

7.000000

11 2020-12-31 1748.000000 14.600000 8.400000 2.100000

3.000000

12 2021-01-31 1748.000000 14.800000 17.600000 9.800000

3.000000

85

13 2021-02-28 1748.000000 10.800000 7.000000 0.500000

3.000000

14 2021-03-31 1748.000000 13.400000 2.400000 8.200000

6.000000

15 2021-04-30 1748.000000 13.800000 2.400000 3.600000

7.000000

16 2021-05-31 1748.000000 1.400000 9.200000 4.900000

2.000000

17 2021-06-30 1748.000000 19.000000 11.400000 9.000000

6.000000

18 2021-07-31 1748.000000 8.400000 8.000000 2.600000

5.000000

19 2021-08-31 1748.000000 8.600000 0.800000 4.400000

1.000000

20 2021-09-30 1748.000000 14.800000 13.400000 0.400000

2.000000

21 2021-10-31 1748.000000 0.800000 9.200000 4.500000

5.000000

22 2021-11-30 1748.000000 10.800000 13.200000 1.700000

8.000000

23 2021-12-31 1748.000000 2.200000 4.800000 3.500000

7.000000

In our case, we supplemented the Waste column with the average value measured
from the other rows.

📝 2.1.10

We have shown different ways of filling in values, the last way is to fill in based on
the previous or next value from the given column. This method can come in handy
when working with time series data. Consider that we have data that contains, for
example, daily temperature measurements and the temperature on one day is
missing. The optimal solution would be to use the temperature on the following or
the previous day.

import pandas as pd

df =

pd.read_csv('https://priscilla.fitped.eu/data/pandas/household

.csv', sep=';')

df = df.fillna(method='bfill')

86

print(df)

The bfill command fills in missing values backwards, so they are always replaced
by the next value. The opposite approach is ffill, which fills in values based on the
previous available value. However, such a call will fill in all missing values, which
may not always be appropriate. Therefore, it is possible to limit the number of
missing values filled in by this method. If we set the limit parameter to 1, it means
that only the next value is always completed.

df = df.fillna(method='bfill', limit=1)

2.2 Data selection

📝 2.2.1

Pandas provides several methods for selecting data from a DataFrame but we'll
start by learning how to index using two functions: loc and iloc. Pandas allows us
to index a DataFrame by rows and columns of integer values (indexed by 0) or
namespaces. Despite what we've encountered so far, rows don't always have to be
indexed by numbers only and conversely, columns don't always have to be indexed
by namespaces. The iloc function allows us to use a numeric index of rows and
columns, on the other hand, loc implies the use of namespaces. The key idea is that
integer values are automatically matched to the number of rows or columns but the
namespaces are appended to the rows and columns to which they have been
assigned, so if we delete a row or column, it is removed from the sequence.

📝 2.2.2

ILOC

Indexing with iloc in the pandas library is used to index or select by position based
on integer location. The function parameters are first the row index and then the
column index and we can also insert a list of rows or columns when making a
selection. Since it works on an integer basis, it represents the selection of rows and
columns by number in the order in which they occur in the DataFrame. As
mentioned earlier, the default state is that each row has a row number from 0 to the
total number of rows -1 and iloc operates just based on these indexes. The
important thing to remember is that the index always starts with 0.

import pandas as pd

df =

pd.read_csv('https://priscilla.fitped.eu/data/pandas/scrabble_

games.csv', sep=',')

rows:

print(df.iloc[0]) # first row

87

print(df.iloc[5]) # fifth row

print(df.iloc[-1]) # last row

columns:

print(df.iloc[:,0]) # first column

print(df.iloc[:,5]) # fifth column

print(df.iloc[:,-1]) # last column

Based on the index, we can dump both the first and the last row from the
DataFrame. To do this, we make use of slicing that is used, for example, when
working with strings. We work analogously in the case of columns but we have to
specify the first parameter indicating the selected set of rows. In this case, we want
all rows for a given column, so we specify the : character to indicate the selection
of all values.

There is one important fact to remember when working with iloc. In case we are
selecting only one row, we get back a series, and in case of selecting more than 1
row, we have a DataFrame. If we would like to get a DataFrame in the first case as
well, we need to specify a list with one value as a parameter.

📝 2.2.3

Load the data from the dataset titanic.csv. Examine the data in the dataset and
select the correct row/column selection boundary to get the first 10 rows with only
the passenger name. Use the iloc function.

import library

read csv from

https://priscilla.fitped.eu/data/pandas/titanic.csv

explore dataset

df.iloc[0:10,3]

df.iloc[10,'Name']

df.iloc[0:10,'Name']

df.iloc[10,3]

df.iloc[-10,4]

df.iloc[0:10,4]

df.iloc[10,4]

df.iloc[-10,4]

88

📝 2.2.4

Load the data from the dataset titanic.csv. Examine the data in the dataset and
select the correct row/column selection bounds to get the following subset of data.
In the answer write out the entire command, e.g.

df.iloc[:,0:5]

import library

read csv from

https://priscilla.fitped.eu/data/pandas/titanic.csv

explore dataset

📝 2.2.5

LOC

Unlike iloc, loc works on the basis of name labels, or text labelling of row and
column indexes. We encounter this more often because especially when selecting
columns it is much clearer to call a column based on a given index namespace.
However, it is possible to do similarly for rows. Consider our Scrabble game

89

registration dataset. We have named the columns with name labels but the row
index is an integer label starting at 0. In the data matrix, we also have information
regarding the identifier of an individual game. Let's say that our row indices will just
represent that identifier.

import pandas as pd

df =

pd.read_csv('https://priscilla.fitped.eu/data/pandas/scrabble_

games.csv', sep=',')

df2 =

pd.read_csv('https://priscilla.fitped.eu/data/pandas/scrabble_

games.csv', sep=',')

print(df.head())

df2.set_index('gameid', inplace=True)

print(df2.head())

Although visually they are still numbers, calling the loc function will mean that the
program treats them as text data. While it can handle integer values, calling

df.loc[26]

it is not the same as calling the iloc function with the parameter 26. In our case, it
will return a row whose index is 26, in other words, it will return a row with the game
number 26. This can be anywhere in the data matrix; in contrast, the iloc function
will always return the 26th row of the matrix.

print('LOC:')

print(df2.loc[26])

print('ILOC:')

print(df.iloc[26])

📝 2.2.6

However, most often in practice, we encounter data selection based on conditional
selection. The so-called Boolean indexing or logical selection is used for this
purpose. You enter a list or series of True/False values into the loc function, based
on which rows are selected in which your series has True values.

For example, if we take the name of the winner using the condition below, we get a
pandas series with True/False values for each row, with True values for rows where
the winner's name is "Harriere Lakernick".

df['winnername'] == 'Harriette Lakernick'

90

We can insert these boolean lists directly into the loc function.

import pandas as pd

df =

pd.read_csv('https://priscilla.fitped.eu/data/pandas/scrabble_

games.csv', sep=',')

print(df.loc[df['winnername'] == 'Harriette Lakernick'])

Program output:
 gameid tourneyid tie winnerid winnername

winnerscore \

0 1 1 False 268 Harriette Lakernick

0

1 2 1 False 268 Harriette Lakernick

0

2 3 1 False 268 Harriette Lakernick

0

3 4 1 False 268 Harriette Lakernick

0

4 5 1 False 268 Harriette Lakernick

0

...

...

94679 95278 327 False 268 Harriette Lakernick

381

98413 99012 342 False 268 Harriette Lakernick

0

98414 99013 342 False 268 Harriette Lakernick

0

98415 99014 342 False 268 Harriette Lakernick

0

98416 99015 342 False 268 Harriette Lakernick

0

 winneroldrating winnernewrating winnerpos loserid

losername \

0 1568 1684 1 429

Patricia Barrett

1 1568 1684 1 435

Chris Cree

2 1568 1684 1 441

Caesar Jaramillo

91

3 1568 1684 1 456

Mike Chitwood

4 1568 1684 1 1334

Nancy Scott

...

...

94679 1799 1718 16 507

James Frankki

98413 1718 1691 14 733

Steve Pellinen

98414 1718 1691 14 674

Laura Scheimberg

98415 1718 1691 14 675

Ruth Hamilton

98416 1718 1691 14 507

James Frankki

 loserscore loseroldrating losernewrating loserpos

round division \

0 0 1915 1872 3

1 1

1 0 1840 1798 6

2 1

2 0 1622 1606 10

3 1

3 0 1612 1600 9

4 1

4 0 1537 1590 4

6 1

...

... ...

94679 340 1652 1643 14

9 1

98413 0 1840 1843 4

1 1

98414 0 1617 1581 16

3 1

98415 0 1683 1647 15

10 1

98416 0 1643 1651 13

12 1

 date lexicon

0 1998-12-06 False

92

1 1998-12-06 False

2 1998-12-06 False

3 1998-12-06 False

4 1998-12-06 False

...

94679 2000-10-14 False

98413 2000-11-11 False

98414 2000-11-11 False

98415 2000-11-11 False

98416 2000-11-11 False

[85 rows x 19 columns]

📝 2.2.7

Load the data from the dataset titanic.csv. Examine the data in the dataset and use
the loc function to determine how many people had a ticket for booth C123.

import library

read csv from

https://priscilla.fitped.eu/data/pandas/titanic.csv

explore dataset

📝 2.2.8

Load the data from the dataset titanic.csv. Examine the data in the dataset and use
the loc function to find out how many people paid more than $30 for a ticket (Fare
column).

import library

read csv from

https://priscilla.fitped.eu/data/pandas/titanic.csv

explore dataset

📝 2.2.9

We've demonstrated working with conditional selection but we'll definitely need to
create compound conditions. To create a compound condition we can use the
logical operators and (&) or or (|). The logic is similar to the case of only one

93

condition, that is, a series of True/False results will be produced. In case we use the
or logical operator, we print the rows for which at least one condition is satisfied.
On the other hand, the logical operator and means that we only select rows for
which all conditions are satisfied at the same time. It is important to enclose each
condition in parentheses because without parentheses an inconsistent result may
be generated.

import pandas as pd

df =

pd.read_csv('https://priscilla.fitped.eu/data/pandas/scrabble_

games.csv', sep=',')

print(df.loc[(df['tie']==True) & (df['division']==2)])

Program output:
 gameid tourneyid tie winnerid winnername

winnerscore \

77 78 1 True 458 Jan Asuquo

0

78 79 1 True 458 Jan Asuquo

0

137 138 1 True 1330 Carl Davis

0

231 232 1 True 2223 Karen Slaton

0

1138 1139 3 True 2912 Jim Piazza

0

...

...

95751 96350 329 True 806 John Robertson

0

95799 96398 329 True 910 Michael Krepakevich

0

96107 96706 330 True 2151 Laurina Ghiglione

0

96801 97400 333 True 112 Barbara Lowrey

0

98698 99297 342 True 3671 Vivian Henderlite

0

 winneroldrating winnernewrating winnerpos loserid

losername \

77 1254 1255 15 2223

Karen Slaton

94

78 1254 1255 15 465

Carl Hickerson

137 1434 1465 3 486

Thelma Litton

231 1209 1188 23 455

Carole Miller

1138 1466 1455 39 5890

Anita Shields

...

...

95751 1493 1500 5 1279

Danny Panganiban

95799 1453 1475 7 907

Tim Knowles

96107 1277 1238 4 1475

Margaret West

96801 1422 1443 6 1483

Thomas E Wood

98698 1336 1306 17 3171

Rita McGee

 loserscore loseroldrating losernewrating loserpos

round division \

77 0 1209 1188 23

5 2

78 0 1307 1282 17

6 2

137 0 1209 1250 13

4 2

231 0 1401 1310 24

7 2

1138 0 1416 1361 61

1 2

...

... ...

95751 0 1424 1447 6

7 2

95799 0 1485 1475 14

7 2

96107 0 977 999 9

7 2

96801 0 1449 1446 9

1 2

95

98698 0 1179 1157 21

7 2

 date lexicon

77 1998-12-06 False

78 1998-12-06 False

137 1998-12-06 False

231 1998-12-06 False

1138 1999-01-22 False

...

95751 2000-11-11 False

95799 2000-11-11 False

96107 2000-11-04 False

96801 2000-11-05 False

98698 2000-11-11 False

[139 rows x 19 columns]

In the above example, we have selected those games that ended in a tie in the
second division.

📝 2.2.10

Load the data from the dataset titanic.csv. Examine the data in the dataset and use
the loc function to find out how many underage boys (<18) were on the Titanic.
Don't forget to solve for the missing values first! Since we can't fill in the ages, it will
be convenient to delete the missing values.

import library

read csv from

https://priscilla.fitped.eu/data/pandas/titanic.csv

explore dataset

📝 2.2.11

Load the data from the dataset titanic.csv. Examine the data in the dataset and use
the loc function to find out how many Titanic passengers survived and were
between the ages of 20-40?

import library

96

read csv from

https://priscilla.fitped.eu/data/pandas/titanic.csv

explore dataset

📝 2.2.12

There are two ways to access DataFrame data, either by notation or by notation.
One option, already presented, is using square brackets. This option also has
multiple approaches:

• selection of the entire column:
• df['column'] - the result is a series
• df[[list of columns]] - the result is a DataFrame
• row range selection:
• df[start:end] - start and end are positive integers and the result is a

DataFrame
• df[start:end:step] - start, end are positive integers, step can also be a negative

number that denotes every n-th row, which will be in the resulting DataFrame

import pandas as pd

df =

pd.read_csv('https://priscilla.fitped.eu/data/pandas/scrabble_

games.csv', sep=',')

print(df['winnername'])

print(df[20:30:2])

The second option uses the so-called dot notation. It is access to an attribute using
a dot character. It can do similar things to square bracket notation but has some
limitations. It is with the loc and iloc functions that we recommend using square
brackets rather than dots. The biggest disadvantage of dot notation is that it uses a
similar approach to attributes as Python, so if the column name is similar to any
existing method or doesn't meet the variable naming standard (e.g. using
diacritics), it will result in an error. For example, df.max will not work, so it is better
to use the df['max'] approach.

print(df.losername)

2.3 Adding a new column into DataFrame

📝 2.3.1

In the following lessons, we will show how to manipulate the DataFrame. Let's start
by saying that we want to add a new column to an existing DataFrame. To add new

97

columns, we can use the insert() function, which updates the existing DataFrame.
The other option, however, is to call the assign() function, which adds a new column
and creates a new DataFrame. Let's first create a simple DataFrame representing
this portal.

import pandas as pd

priscilla = {

 'Course': ['Java','Python','SQL','HTML','C'],

 'Chapters': [17,17,9,9,17],

 'Lessons': [63,55,30,30,57]

}

df = pd.DataFrame(priscilla)

print(df)

add new column

tests = [2,2,1,1,0]

df = df.assign(Tests=tests)

print(df)

Although we mentioned that the assign() function creates a new DataFrame, if we
assign it to the original one, we overwrite it with the new content. We created a new
column in the form of a list containing the number of tests in the given course and
added it to the DataFrame. By analogy, we can also add multiple lists at once
separated by a comma to the assign(name1=list1, name2=list2) function.

📝 2.3.2

Another option is the insert() function, which works similarly to assign(), but we can
specify where we want to create the new column. The function works with three
parameters: the position of the new column, the name of the new column, and a list
of data.

import pandas as pd

priscilla = {

 'Course': ['Java','Python','SQL','HTML','C'],

 'Chapters': [17,17,9,9,17],

 'Lessons': [63,55,30,30,57]

}

df = pd.DataFrame(priscilla)

tests = [2,2,1,1,0]

df.insert(3,'Tests',tests)

print(df)

98

Program output:
 Course Chapters Lessons Tests

0 Java 17 63 2

1 Python 17 55 2

2 SQL 9 30 1

3 HTML 9 30 1

4 C 17 57 0

📝 2.3.3

The last option is to create a column by notating square brackets. In principle, this
is a simple assignment of values to a column, if the column does not exist in the
DataFrame, it will be created. If it is already there, its data will be overwritten with
the new ones.

import pandas as pd

priscilla = {

 'Course': ['Java','Python','SQL','HTML','C'],

 'Chapters': [17,17,9,9,17],

 'Lessons': [63,55,30,30,57]

}

df = pd.DataFrame(priscilla)

tests = [2,2,1,1,0]

df['Tests'] = tests

print(df)

Program output:
 Course Chapters Lessons Tests

0 Java 17 63 2

1 Python 17 55 2

2 SQL 9 30 1

3 HTML 9 30 1

4 C 17 57 0

📝 2.3.4

Run the following code to initialize the DataFrame. Then add a new column called
Type, which will contain the following list:

['cold','cold','hot','cold','hot','cold','cold']

The answer is the correct command to the job to create the column (accepts
assign, insert, or create column via square brackets).

99

import pandas as pd

cereal = {

 'name': ['Apple Cinnamon Cheerios','Apple Jacks','Basic

4','Bran Chex','Bran Flakes',"Cap'n'Crunch",'Cheerios'],

 'manufactor': ['General Mills','Kelloggs','General

Mills','Ralston Purina','Post','Quaker Oats','General Mills'],

 'calories': [110,110,130,90,90,120,110]

}

df = pd.DataFrame(cereal)

print(df)

add a new column type

2.4 Removing data from DataFrame

📝 2.4.1

We have already partially mentioned deleting data from the DataFrame in the
chapter dealing with missing values. However, sometimes it can happen that we
have too much information in the data file that we don't need. One option is to
select only the essential data using the loc or iloc functions. The other option is to
delete unnecessary columns. To delete data, there is a drop() function in pandas.
By default, the function works by not deleting data from the current DataFrame but
creating a new one. If we want to delete the columns of the current DataFrame, we
use the inplace=True parameter. Another important parameter is axis, which has
two values 0 or 1, where 0 specifies deletion of rows and 1 indicates deletion of
columns.

import pandas as pd

priscilla = {

 'Course': ['Java','Python','SQL','HTML','C'],

 'Chapters': [17,17,9,9,17],

 'Lessons': [63,55,30,30,57],

 'Tests': [2,2,1,1,0]

}

df = pd.DataFrame(priscilla)

print(df)

drop the column Lessons

df2 = df.drop(['Lessons'], axis=1)

print(df2)

Program output:
 Course Chapters Lessons Tests

100

0 Java 17 63 2

1 Python 17 55 2

2 SQL 9 30 1

3 HTML 9 30 1

4 C 17 57 0

 Course Chapters Tests

0 Java 17 2

1 Python 17 2

2 SQL 9 1

3 HTML 9 1

4 C 17 0

The drop() function cleared the Lessons column from the DataFrame by passing it
as the first parameter. An alternative is to specify it through a named parameter.
Since we wanted to delete the column, we set axis=1. However, in order not to lose
the column completely, we created a new DataFrame df2. If we wanted to, using the
inplace=True command, we would overwrite the current DataFrame.

alternative solution

df2 = df.drop(columns=['Lessons'], axis=1)

inplace solution

df.drop(['Lessons'], axis=1, inplace=True)

📝 2.4.2

Load the data from titanic.csv. Examine the data in the dataset and delete the
column that contains the passenger ticket information from the dataset. The
correct answer is the command to create that column (accepts assign, insert, or
create column via square brackets to resolve). Use df as the name of the created
DataFrame.

import library

read csv from

https://priscilla.fitped.eu/data/pandas/titanic.csv

drop the column

📝 2.4.3

Another option is to delete a column based on a numeric index and call the column
using the columns function. It should not be forgotten that index numbering starts
from 0. Therefore, the following code will delete the second column.

101

import pandas as pd

priscilla = {

 'Course': ['Java','Python','SQL','HTML','C'],

 'Chapters': [17,17,9,9,17],

 'Lessons': [63,55,30,30,57],

 'Tests': [2,2,1,1,0]

}

df = pd.DataFrame(priscilla)

print(df)

drop the second column

df.drop(df.columns[[1]], axis=1, inplace=True)

print(df)

Program output:
 Course Chapters Lessons Tests

0 Java 17 63 2

1 Python 17 55 2

2 SQL 9 30 1

3 HTML 9 30 1

4 C 17 57 0

 Course Lessons Tests

0 Java 63 2

1 Python 55 2

2 SQL 30 1

3 HTML 30 1

4 C 57 0

📝 2.4.4

Load the data from titanic.csv. Examine the data in the dataset and delete the
column that contains the passenger ticket price information from the dataset.
Select all the correct alternatives to delete that column.

import library

read csv from

https://priscilla.fitped.eu/data/pandas/titanic.csv

drop the column

df.drop(df.columns[[9]],axis=1,inplace=True)

df = df.drop(df.columns[[9]],axis=1)

df.drop(['Fare'],axis=1,inplace=True)

102

df = df.drop(['Fare'],axis=1)

df = df.drop(['Fare'],axis=0)

df.drop(['Fare'],axis=0,inplace=True)

df.drop(df.columns[[8]],axis=1,inplace=True)

df = df.drop(df.columns[[8]],axis=1)

📝 2.4.5

The drop() function can also delete more than one column. Again, we have several
alternatives to write the deletion, either by calling the column names directly or via
indexes. We can also send a list of columns directly as a parameter.

import pandas as pd

priscilla = {

 'Course': ['Java','Python','SQL','HTML','C'],

 'Chapters': [17,17,9,9,17],

 'Lessons': [63,55,30,30,57],

 'Tests': [2,2,1,1,0]

}

df = pd.DataFrame(priscilla)

print(df)

drop multiple column

df.drop(df.columns[[1,2]], axis=1, inplace=True)

print(df)

alternatives

#df.drop(['Chapters','Lessons'], axis=1, inplace=True)

#listOfCols = ['Chapters','Lessons']

#df.drop(listOfCols, axis=1, inplate=True)

Program output:
 Course Chapters Lessons Tests

0 Java 17 63 2

1 Python 17 55 2

2 SQL 9 30 1

3 HTML 9 30 1

4 C 17 57 0

 Course Tests

0 Java 2

1 Python 2

2 SQL 1

3 HTML 1

4 C 0

103

📝 2.4.6

As we have already shown in deleting columns, deleting rows is very similar
because it works with the same drop() function. The main difference is in the axis
parameter, which in the case of row deletion must be set to 0 (since this is the
default value of this parameter, we don't need to write it into the function). So we can
delete rows in exactly the same way as we delete columns, using either row names
or indexes. Rows are more likely to be denoted using indexes only and so you will
encounter this option more often. In the following code, you can experiment with
different options for deleting rows.

import pandas as pd

priscilla = {

 'Course': ['Java','Python','SQL','HTML','C'],

 'Chapters': [17,17,9,9,17],

 'Lessons': [63,55,30,30,57],

 'Tests': [2,2,1,1,0]

}

df = pd.DataFrame(priscilla, index=['r1','r2','r3','r4','r5'])

print(df)

drop multiple rows

df.drop(df.index[[1,2]], inplace=True)

print(df)

alternatives

#df.drop([0, 3], inplace=True)

#df.drop(['r1','r2'], inplace=True)

#df.drop(df.index[-1], inplace=True)

Program output:
 Course Chapters Lessons Tests

r1 Java 17 63 2

r2 Python 17 55 2

r3 SQL 9 30 1

r4 HTML 9 30 1

r5 C 17 57 0

 Course Chapters Lessons Tests

r1 Java 17 63 2

r4 HTML 9 30 1

r5 C 17 57 0

104

📝 2.4.7

Load the data from titanic.csv. Examine the data in the dataset and delete the last
10 rows from the dataset. Select the correct notation to delete the given rows.

import library

read csv from

https://priscilla.fitped.eu/data/pandas/titanic.csv

drop the rows

df.drop(df.index[-10:],inplace=True)

df.drop([-10:],inplace=True)

df.drop(df.index[-10],inplace=True)

df.drop([-10],inplace=True)

📝 2.4.8

In addition to deleting specific rows based on indexes or name tags, we can also
delete rows based on a condition linked to a selected column. This is similar to
deleting missing values but in this case, we can delete data we are not interested in
based on the condition. We still use the drop() function and the first parameter is
basically the condition of the selection of the data we want to delete. For example,
we can remove the information about games that ended in a tie from the Scrabble
tournament data, so we can focus only on wins and losses. In most cases, the
alternative to deleting records is to select the data based on a similar condition, as
we showed in the Data Selection chapter.

import pandas as pd

df =

pd.read_csv('https://priscilla.fitped.eu/data/pandas/scrabble_

games.csv', sep=',')

print(df.info())

remove rows based on a condition

df.drop(df[df['tie']==True].index, inplace = True)

print(df.info())

We deleted all records from the data file that had a tied value of True. We can
similarly delete based on more complex conditions, using the logical operators and
or or. Remember to enclose each condition in parentheses. In the following
example, we can select only those games where the winner significantly beat the
opponent.

105

df.drop(df[(df['winnerscore']>400) &

(df['loserscore']<200)].index, inplace=True)

alternative data selection using loc

#df2 = df.loc[(df['winnerscore']>400) &

(df['loserscore']<200)]

print(df.info())

📝 2.4.9

Load the data from titanic.csv. Review the data in the dataset and delete the
passengers from the dataset so that only passengers who did not survive the
disaster and were over 40 years of age remain in the data matrix. Pass the correct
notation of the condition to the task, which will be placed in df.drop().

import library

read csv from

https://priscilla.fitped.eu/data/pandas/titanic.csv

drop the rows

2.5 Working with data in DataFrame

📝 2.5.1

As with other structures such as lists or dictionaries, we have the ability to loop
through the DataFrame row by row accessing a specific column of each row.
Pandas uses the iterrows() or itertuples() functions for searching.

The iterrows() function is used to scan rows, which returns as a result (index,
series), where index is the row index and series contains the data from each
column for that row. In order to get the data for a particular column, we need to
access the series e.g. row['column'].

import pandas as pd

df =

pd.read_csv('https://priscilla.fitped.eu/data/pandas/household

.csv', sep=';')

for index, row in df.iterrows():

 print(index, row['Date'], row['Water'])

Program output:

106

0 2020-01-31 13.0

1 2020-02-29 18.2

2 2020-03-31 nan

3 2020-04-30 18.8

4 2020-05-31 14.2

5 2020-06-30 8.4

6 2020-07-31 16.4

7 2020-08-31 7.800000000000001

8 2020-09-30 2.4

9 2020-10-31 9.6

10 2020-11-30 16.599999999999998

11 2020-12-31 8.4

12 2021-01-31 17.6

13 2021-02-28 7.0

14 2021-03-31 2.4

15 2021-04-30 2.4

16 2021-05-31 9.2

17 2021-06-30 11.4

18 2021-07-31 8.0

19 2021-08-31 0.8

20 2021-09-30 13.4

21 2021-10-31 9.2

22 2021-11-30 13.2

23 2021-12-31 4.8

📝 2.5.2

The second option is to search using the itertuples() function, which is the most
commonly used, as it returns all DataFrame elements in the form of an iterator that
contains tuples for each row. Also, in terms of DataFrame processing speed, the
itertuples() function is faster than iterrows(). The itertuples() function has one
essential parameter - index, which can have two True/False states and corresponds
to whether we want our tuples to contain the row index or not. The default state is
True and therefore if we call the function without parameters, the tuples will
automatically contain the row index. The second parameter is name, which we can
use to set the name of the tuples.

import pandas as pd

df =

pd.read_csv('https://priscilla.fitped.eu/data/pandas/household

.csv', sep=';')

107

for row in df.itertuples():

 print(row)

As we can see, the content of the row variable is a tuple, so if we want to access
the individual columns, we use the following notation using the getattr() function.

for row in df.itertuples():

 print(getattr(row,'Index'),getattr(row, "Household"),

getattr(row, "Gas"))

📝 2.5.3

In other programming languages, we often encounter the for loop when searching
through various one- and two-dimensional structures. We can also use it in the case
of DataFrame searches but from the time point of view, this method is the most
time-consuming. Therefore, this kind of search is not recommended for larger data
sets. We can use the row index as the control variable of the loop.

import pandas as pd

df =

pd.read_csv('https://priscilla.fitped.eu/data/pandas/household

.csv', sep=';')

for index in df.index:

 print(df['Household'][index], df['Gas'][index])

We get a similar result if we use auxiliary variable i, which will take values from the
DataFrame length range and use the loc or iloc function to retrieve the data.

loc

for i in range(len(df)):

 print(df.loc[i,'Household'], df.loc[i,'Gas'])

iloc

for i in range(len(df)):

 print(df.iloc[i,1], df.iloc[i,4])

📝 2.5.4

The last option is a bit more difficult because we will not use any loop directly but
we will use the lambda function above the apply() function. A lambda function is

108

basically a simple one-line anonymous function. And it is the apply() function that is
used to support running functions over DataFrame rows.

import pandas as pd

df =

pd.read_csv('https://priscilla.fitped.eu/data/pandas/household

.csv', sep=';')

print(df.apply(lambda row: str(row['Household'])+"

"+str(row['Waste']), axis = 1))

Program output:
0 1748.0 nan

1 1748.0 nan

2 nan nan

3 1748.0 nan

4 1748.0 nan

5 1748.0 nan

6 1748.0 nan

7 1748.0 8.0

8 1748.0 3.0

9 nan 4.0

10 1748.0 7.0

11 1748.0 3.0

12 1748.0 3.0

13 1748.0 3.0

14 1748.0 6.0

15 1748.0 7.0

16 1748.0 2.0

17 1748.0 6.0

18 1748.0 5.0

19 1748.0 1.0

20 1748.0 2.0

21 1748.0 5.0

22 1748.0 8.0

23 1748.0 7.0

dtype: object

📝 2.5.5

Load the data from titanic.csv. There were an estimated 2,224 passengers aboard
the Titanic. Examine the data in the dataset and see how many passengers we have

109

recorded. List the proportion of passengers accounted for and what percentage of
them survived. Write the result as a percentage and round to whole numbers,
keeping the following notation:

80% pas, 93% sur

import library

read csv from

https://priscilla.fitped.eu/data/pandas/titanic.csv

explore the dataset

📝 2.5.6

Load the data from titanic.csv. Examine the data in the dataset to see how many
passengers died and had a ticket on the lower deck. This information can be found
in the Pclass column, where 1 is upper, 2 is middle and 3 is the lower deck.

import library

read csv from

https://priscilla.fitped.eu/data/pandas/titanic.csv

explore the dataset

📝 2.5.7

Load the data from titanic.csv. Since the disaster happened quite a while ago, some
data were only estimated - for example, the age of the passengers. Examine the
data in the dataset and see how many passengers had their ages estimated. If the
age was estimated, it was encoded as a decimal number xx.5. However, do not
consider ages less than 1, as this was set as a fraction.

import library

read csv from

https://priscilla.fitped.eu/data/pandas/titanic.csv

explore the dataset

110

Data summarization

Chapter 3

111

3.1 Data grouping

📝 3.1.1

Data summarization is one of the most essential tasks in data analysis because, in
this step, the data analyst converts a large amount of data into a few primary data
summaries. Therefore, we will first discuss how to group and aggregate the data
and then look at the basic statistics capabilities of the pandas library.

In general, datasets consist of one observation per row, which means we can get
datasets containing millions of rows. Of course, deriving any data analysis based
on tens of rows is not the same as millions of rows. In such situations,
grouping/summarizing rows based on common variables is a good solution. For
grouping, the groupby() function is used in pandas. The result of the function call is
the DataFrameGroupBy structure, which provides us with several aggregation
functions such as sum(), mean(), median(), and so on.

import pandas as pd

df =

pd.read_csv('https://priscilla.fitped.eu/data/pandas/scrabble_

games.csv', sep=',')

df2 = df.groupby(['winnername']).sum()

print(df2)

The above code grouped our data based on the winners of the Scrabble duels,
summing the individual numeric columns. However, as we can see, it also summed
columns that only contained, for example, the tournament identifier, which is not
appropriate.

📝 3.1.2

Load the data from titanic.csv. Examine the data in the dataset and use gender
grouping to determine the number of male survivors of the disaster.

import library

read csv from

https://priscilla.fitped.eu/data/pandas/titanic.csv

explore dataset

112

📝 3.1.3

We often encounter the need to aggregate data for more than one column. We
follow the same procedure as in the previous cases and send a list of columns to
the function. If we don't want to do grouping for all columns, we can select a group
of columns of interest to us as groupby. If we assign the grouped DataFrame to a
variable, we can then call aggregate functions over that data.

import pandas as pd

df =

pd.read_csv('https://priscilla.fitped.eu/data/pandas/scrabble_

games.csv', sep=',')

df2 = df.groupby(['date', 'round'])[['winnerscore']]

print(df2.mean())

In this case, we aggregated the data for each day and the rounds played on that day
and we were interested in the average winning score per round.

📝 3.1.4

Load the data from titanic.csv. Examine the data in the dataset and using clustering
based on gender and deck (Pclass, where 1 is upper, 2 is middle, and 3 is lower
deck), find the average age of males on the lower deck.

import library

read csv from

https://priscilla.fitped.eu/data/pandas/titanic.csv

explore dataset

📝 3.1.5

When we use the grouping function to create a new structure, the default state is
that this new structure does not contain an index for the rows. Respectively, even if
it is there, it is still original and the values do not follow one by one. Therefore, when
creating grouped data, it is possible to call the reset_index() function, which resets
the index for the new dataset and renumbers it again from 0.

Another important feature of the group_by() function is the dropna parameter,
which defaults to True, meaning that it will not consider missing values in the
aggregation. If we would like to include them, we need to set this parameter to
False.

113

The last parameter we'll mention is sort, which also defaults to True. This means
that the values are automatically sorted by the grouped column in ascending order.
This is a time-consuming operation, but we may sometimes need to turn it off even
if we want the reverse ordering.

import pandas as pd

df =

pd.read_csv('https://priscilla.fitped.eu/data/pandas/scrabble_

games.csv', sep=',')

df2 = df.groupby(['date', 'round'],

sort=False)[['winnerscore']].mean().reset_index()

sorted_df = df2.sort_values(['date','round'], ascending=False)

print(sorted_df)

Program output:
 date round winnerscore

2224 2000-12-31 7 54.133333

2226 2000-12-31 6 55.533333

2223 2000-12-31 5 57.266667

2222 2000-12-31 4 51.733333

2225 2000-12-31 3 51.933333

...

8 1998-12-06 5 0.000000

3 1998-12-06 4 0.000000

2 1998-12-06 3 0.000000

1 1998-12-06 2 0.000000

0 1998-12-06 1 0.000000

[2241 rows x 3 columns]

📝 3.1.6

We've introduced a few aggregation functions, but we've only ever used one.
Pandas allows us to use the aggregate() function to send a list of aggregation
functions that we want to get over an aggregated column. We can call the following
aggregate functions:

• count() - returns the count of group elements
• size() - returns the size of each group
• sum() - returns the total sum of each group
• mean() - returns the average of each group (same as average())
• average() - returns the average of each group (same as mean())
• std() - returns the standard deviation of each group

114

• describe() - returns various basic statistics
• min() - returns the minimum of each group
• max() - returns the maximum of each group
• first() - returns the first value of each group
• last() - returns the last value of each group

import pandas as pd

df =

pd.read_csv('https://priscilla.fitped.eu/data/pandas/scrabble_

games.csv', sep=',')

df2 = df.groupby(['date',

'round'])[['winnerscore']].aggregate(['min','max'])

print(df2)

Program output:
 winnerscore

 min max

date round

1998-12-06 1 0 0

 2 0 0

 3 0 0

 4 0 0

 5 0 0

...

2000-12-31 3 0 395

 4 0 392

 5 0 440

 6 0 436

 7 0 425

[2241 rows x 2 columns]

📝 3.1.7

Load the data from titanic.csv. Examine the data in the dataset and use the
grouping and aggregate functions to find the youngest and oldest passengers by
gender. Write the solution in the form (keep the decimal numbers returned by the
dataset):

youngest_female, youngest_male, oldest_female, oldest_male

import library

115

read csv from

https://priscilla.fitped.eu/data/pandas/titanic.csv

explore dataset

📝 3.1.8

Load the data from titanic.csv. Examine the data in the dataset and use the
grouping and aggregate functions to see which port had the most passengers
boarding. In the dataset, this information is in the Embarked column, where the
abbreviations represent the following ports:

• C = Cherbourg,
• Q = Queenstown,
• S = Southampton.

Write the name of the port and the number of passengers who boarded in the
following format:

port: number

import library

read csv from

https://priscilla.fitped.eu/data/pandas/titanic.csv

explore dataset

📝 3.1.9

The last function we will mention in this chapter is the unique() function, which
allows us to get unique values from columns. The function is applied to a series, so
we must always select a specific column over which to call the function. The result
is a list of unique values sorted by occurrence.

import pandas as pd

df =

pd.read_csv('https://priscilla.fitped.eu/data/pandas/scrabble_

games.csv', sep=',')

winners = df['winnername'].unique()

print(winners)

116

Program output:
['Harriette Lakernick' 'Patricia Barrett' 'Sam Dick-Onuoha'

...

 'Monica Disponett' 'Dixie Davis' 'Jason Allain']

📝 3.1.10

Load the data from titanic.csv. Examine the data in the dataset and find out how
many unique cabins were on the Titanic. In the dataset, this information is in the
Cabin column. Be sure to check for missing data.

import library

read csv from

https://priscilla.fitped.eu/data/pandas/titanic.csv

explore the dataset

3.2 Pivot tables

📝 3.2.1

A pivot table is a very effective tool to better understand the data. It can summarize
and organize large data from a larger table. A pivot table can contain totals,
averages, and various other statistics that are grouped together in a meaningful
way. You've probably already encountered it in a spreadsheet calculator, such as
Excel. Similarly, we can easily create a contingency table using the pandas library.
The pivot_table() function works on a similar principle as the groupby() function,
which is used to group data.

import pandas as pd

df =

pd.read_csv('https://priscilla.fitped.eu/data/pandas/scrabble_

games.csv', sep=',')

table = pd.pivot_table(df, index=['division','round'])

print(table)

Above we have created a contingency table for each division and round of play in
Scrabble tournaments. As we can see, all the numerical columns have been entered
into the table, and the averages for each round for specific divisions have been
automatically created. The advantage of contingency tables is that it is really quick
to visualize the data in spreadsheet form. The index parameter gives us the

117

grouping condition for the table. We have the option to add another dimension to
the table using the columns parameter, which creates an additional level grouping.

table2 = pd.pivot_table(df, index=['division','round'],

columns=['tourneyid'])

print(table2)

Program output:
 gameid

\

tourneyid 1 2 3 4 5

6

division round

1 1 76.4 289.000000 658.00 1635.6 1828.666667

1970.666667

 2 98.2 296.000000 674.55 1626.6 1817.500000

1987.333333

 3 89.8 293.166667 691.15 1638.8 1817.000000

1973.666667

 4 48.8 298.000000 698.25 1603.8 1789.000000

1977.000000

 5 81.0 292.666667 762.75 1611.2 1824.333333

1974.666667

...

...

9 15 NaN NaN NaN NaN NaN

NaN

 16 NaN NaN NaN NaN NaN

NaN

 17 NaN NaN NaN NaN NaN

NaN

 18 NaN NaN NaN NaN NaN

NaN

 19 NaN NaN NaN NaN NaN

NaN

 ...

winnerscore \

tourneyid 7 8 9 10 ...

338 339

division round ...

1 1 2050.25 2152.0 2244.666667 2344.50 ...

0.0 0.0

118

 2 2055.75 2144.5 2256.000000 2346.75 ...

0.0 0.0

 3 2063.50 2151.0 2249.000000 2390.25 ...

0.0 0.0

 4 2076.75 2154.0 2254.000000 2398.50 ...

0.0 0.0

 5 2075.25 2150.5 2222.666667 2364.00 ...

0.0 0.0

...

... ...

9 15 NaN NaN NaN NaN ...

NaN NaN

 16 NaN NaN NaN NaN ...

NaN NaN

 17 NaN NaN NaN NaN ...

NaN NaN

 18 NaN NaN NaN NaN ...

NaN NaN

 19 NaN NaN NaN NaN ...

NaN NaN

tourneyid 340 341 342 343 344 345

346 347

division round

1 1 60.166667 0.0 102.375 0.0 0.0 0.0

50.375000 0.0

 2 80.333333 0.0 105.000 0.0 0.0 0.0

100.555556 0.0

 3 75.166667 0.0 104.250 0.0 0.0 0.0

86.555556 0.0

 4 78.166667 0.0 104.500 0.0 0.0 0.0

86.222222 0.0

 5 74.000000 0.0 103.625 0.0 0.0 0.0

95.444444 0.0

...

... ...

9 15 NaN NaN NaN NaN NaN NaN

NaN NaN

 16 NaN NaN NaN NaN NaN NaN

NaN NaN

 17 NaN NaN NaN NaN NaN NaN

NaN NaN

119

 18 NaN NaN NaN NaN NaN NaN

NaN NaN

 19 NaN NaN NaN NaN NaN NaN

NaN NaN

[243 rows x 4472 columns]

📝 3.2.2

Load the data from titanic.csv. Examine the data in the dataset and determine
which group of passengers (male/female) by deck type (Pclass) was the youngest
and what was the average age of that group by deck. Write the result in the
following form, write the deck with the number as in the dataset:

gender, deck, average age

import library

read csv from

https://priscilla.fitped.eu/data/pandas/titanic.csv

explore the dataset

📝 3.2.3

Contingency tables give us more options than simple grouping but of course, as we
have already mentioned, the idea is similar. We've already seen the index
parameter, which is used to specify the columns for which we will group the
DataFrame data. Another important parameter is values, which specifies the values
for which we want to create the contingency table.

import pandas as pd

df =

pd.read_csv('https://priscilla.fitped.eu/data/pandas/scrabble_

games.csv', sep=',')

table = pd.pivot_table(df, index=['division','round'],

values='winnerscore')

print(table)

Program output:

120

📝 3.2.4

Load the data from titanic.csv. Examine the data in the dataset and determine
which group of passengers had the highest and lowest survival rates. We are
interested in the combination of the port they boarded at and which deck they
sailed on. The individual ports (Embarked) have the following codes:

• C = Cherbourg,
• Q = Queenstown,
• S = Southampton.

Decks (Pclass) are also represented by a code:

• 1 = upper deck (write upper),
• 2 = middle deck (write middle),
• 3 = under deck (write under).

Write the result in the following form, round the survival rate to whole numbers and
write it as a percentage:

max: port, deck, % survival rate; min: port, deck, % survival

rate

import library

read csv from

https://priscilla.fitped.eu/data/pandas/titanic.csv

explore the dataset

📝 3.2.5

So far, we were still working with the default state of the contingency table, which
only computed the average for the values we examined. We mentioned that we can
do functions similar to the groupby and therefore aggfunc is an important
parameter to specify aggregate functions. The notation of the aggregate functions
is the same as in the case of clustering, with sum, min, max, mean being among the
most commonly used. If we want the contingency table to compute multiple
functions we have to write them as a list in the parameter.

The final step to complete the table is to add a summary row to Total. Depending
on the aggregate function selected, the summary row will give us the information
for the entire table and we set it via the margins parameter, which we set to True.
This gives us an extra dimension to the data we are looking at, and especially if we
still have a lot of information in the table, we can immediately see the overall
average or the smallest and largest value for the entire dataset. If we want, we can
name the summary row using the margins_name parameter.

121

import pandas as pd

df =

pd.read_csv('https://priscilla.fitped.eu/data/pandas/scrabble_

games.csv', sep=',')

df2 = df.loc[df['winnerscore']>0] # we look only at score > 0

table = pd.pivot_table(df2, index=['tourneyid','division'],

values='winnerscore', aggfunc=['mean','sum','min','max'],

margins=True, margins_name='Total')

print(table)

Program output:
 mean sum min

max

 winnerscore winnerscore winnerscore

winnerscore

tourneyid division

13 1 448.562500 7177 370

549

14 1 427.526316 8123 395

487

16 1 414.600000 6219 357

470

19 1 429.000000 8580 338

542

26 1 424.473684 8065 358

630

...

...

333 1 419.916667 5039 326

495

340 1 428.300000 8566 359

482

342 1 436.545455 9604 376

507

346 1 412.846154 5367 384

511

Total 404.495932 4922311 5

630

[73 rows x 4 columns]

122

📝 3.2.6

Load the data from titanic.csv. Examine the data in the dataset and find out where
the passenger who paid the highest amount for a ticket on Titanic boarded and
which deck he was on. We recommend focusing on a combination of the port
where they boarded and the ship they boarded. Evaluate the results for both
genders. Also add up the total amount collected on tickets for all passengers.

The individual ports (Embarked) have the following codes:

• C = Cherbourg,
• Q = Queenstown,
• S = Southampton.

Decks (Pclass) are also represented by a code:

• 1 = upper deck (write upper),
• 2 = middle deck (write middle),
• 3 = under deck (write under).

Write the result in the following form, round the price of the tickets to whole
numbers :

male: port, deck, price; female: port, deck, price; total:

price

import library

read csv from

https://priscilla.fitped.eu/data/pandas/titanic.csv

explore the dataset

3.3 Visualization

📝 3.3.1

The pandas library offers various data visualization options in the form of
generating graphs from DataFrames and series. This will help us to detect trends
and relationships between different variables in our dataset. Pandas has built-in
options to generate graphs in the form of plot() function. This function is linked to
the popular visualization library matplotlib but pandas uses a simplified notation.
This allows us to generate the same results with less code as with the original
library.

123

import pandas as pd

df =

pd.read_csv('https://priscilla.fitped.eu/data/pandas/household

.csv', sep=';')

subdf = df[['Date','Water']]

subdf.plot()

Program output:

To ensure that our visualizations are accurate and that they correctly represent the
knowledge extracted from the retrieved data, it is crucial to resolve missing data.

📝 3.3.2

Of course, such simple graphs are not enough and it would be ideal to include
essential information that will help the reader to better orient the displayed data.
Therefore, we have several parameters that will enliven our graph. Let us imagine
the functionality of the following parameters:

• x: represents the data on the x-axis, where we can specify the name of the
column that is on the x-axis,

• title: we can create a caption for our chart,
• legend: is used to enable or disable the display of the legend in the chart

(True/False),
• grid: is used to enable or disable the display of the grid in the chart

(True/False),
• color: is used to change the color of a line in a chart, using the Tableau color

palette (tab:blue, tab:orange, tab:green, tab:red, tab:purple, tab:brown, tab:pink,
tab:gray, tab:olive, tab:cyan)

124

• linestyle: used to change the line style (solid, dotted, dashed, dashdot)

import pandas as pd

df =

pd.read_csv('https://priscilla.fitped.eu/data/pandas/household

.csv', sep=';')

subdf = df[['Date','Water']]

subdf.plot(x='Date', title='Water price', legend=False,

grid=True, color='tab:cyan', linestyle='dashed')

Program output:

📝 3.3.3

In addition to the visual aspect that completes the chart, the right type of chart is
also essential. Not every chart type is suitable for the data being displayed. The
evolution of water consumption over time can be shown in both bar and line graphs
but a pie chart is less suitable. Conversely, a pie chart or bar chart is more
appropriate for the age distribution of Titanic passengers. So how to decide which
graph is appropriate for our data can be shown in the following paragraphs:

• if we want to compare the data, for example over time, we use a line graph,
• if we want to find out the composition of the data or its composition, we use

a pie chart or an area chart,
• if we want to investigate the distribution of the data or its distribution, we

use a dot plot or a histogram,

125

• if we want to investigate the relationship between the data, we use a dot or
bubble plot.

📝 3.3.4

So once we know which data to use for which plot, we can specify it in the plot()
function using the kind parameter. Again, we have several options for choosing the
type of the plot:

• line: line graph (default option),
• bar: bar chart,
• barh: horizontal bar chart,
• box: box plot,
• kde: similar to histogram, density estimation plot,
• density: similar to kde,
• area: area graph,
• pie: pie chart,
• scatter: scatter plot,
• hexbin: a graph in the form of honeycombs (hexagons).

import pandas as pd

df =

pd.read_csv('https://priscilla.fitped.eu/data/pandas/household

.csv', sep=';')

subdf = df[['Date','Water']]

subdf.plot(x='Date', title='Water price', kind='bar',

legend=False, color='tab:cyan')

Program output:

126

import pandas as pd

df =

pd.read_csv('https://priscilla.fitped.eu/data/pandas/household

.csv', sep=';')

subdf = df[['Date','Gas']]

subdf.plot(x='Date', title='Gas price', kind='barh',

legend=False)

Program output:

127

import pandas as pd

df =

pd.read_csv('https://priscilla.fitped.eu/data/pandas/household

.csv', sep=';')

subdf = df[['Date','Electricty']]

subdf.plot(x='Date', title='Electricity price', kind='area',

legend=False, color='tab:red')

Program output:

128

📝 3.3.5

Load data from StudentsPerformance.csv, which contains test results for math,
reading, and writing. Explore the data in the dataset using the visualization to see
which histogram visualizes the results from writing.

import library

read csv from

https://priscilla.fitped.eu/data/pandas/StudentsPerformance.cs

v

explore the dataset

129

•

•

130

•

•

📝 3.3.6

Load the data from titanic.csv. Examine the data in the dataset using a histogram
to see which age group was most represented on the ship. Write the result in the
form lower limit - upper limit, for an interval of 10 years, e.g. 80-90.

import library

read csv from

https://priscilla.fitped.eu/data/pandas/titanic.csv

131

explore the dataset

3.4 Category variables

📝 3.4.1

Categorical data refers to a type of data that can be divided into groups or
categories. Only a fixed number of possible values and a limited grouping are
considered categorical data. Examples of categorical data include nationality, sex,
marital status, or occupation. Strings are not necessarily considered categorical
data because categorical implies a sense of grouping. Names of people are strings
but are not categorical because names are most likely to be unique, whereas age
groups, such as 0-10 years, 11-20 years, and 21-30 years, are categorical because
they represent groups. Sometimes, numerical data are grouped into small groups to
form categorical data in order to get a better overview when analysing the data.

import pandas as pd

df =

pd.read_csv('https://priscilla.fitped.eu/data/pandas/household

.csv', sep=';')

df.plot(x='Date', y=['Water'], kind='bar')

convert to datetime type

df.Date = pd.to_datetime(df.Date)

create quarters from date

df["Quarter"] = df.Date.dt.quarter

df.plot(x='Quarter', y=['Water'], kind='bar')

Program output:

132

📝 3.4.2

In the previous case, although we created quarters from dates, the data in the graph
remained equally distributed.

133

Therefore, to get a better overview based on categories, we need to use some
aggregation, such as an average. Then we can visualize a new DataFrame that
contains the aggregated data.

import pandas as pd

df =

pd.read_csv('https://priscilla.fitped.eu/data/pandas/household

.csv', sep=';')

convert to datetime type

df.Date = pd.to_datetime(df.Date)

create quarters from date

df["Quarter"] = df.Date.dt.quarter

agregate by Water

subdf = df.groupby(['Quarter'])[['Water']].mean()

subdf.plot(kind='bar')

Program output:

134

📝 3.4.3

Another way to create a categorical variable is to use the cut() function. This
function is used to divide the elements of a list into different categories, or bins.
The parameters of the function are first a series of data from the DataFrame,
followed by the bins parameter, which we use to define the condition for splitting
the data. In our case, we divide the price of water consumed into three categories:

• 0< price <=10 - low
• 10< price <= 15 - normal
• 15< price <= infinity - high

That condition containing equality is determined by the right parameter, which has
a default value of True. The last parameter that is important to us is labels, which is
used to create labels for each category. We can then visualize the frequency of
occurrence of each category using the value_counts() function, which returns
information about how many times the category occurs in the DataFrame. By
connecting the plot() function, we can visualize the obtained counts directly.

import pandas as pd

df =

pd.read_csv('https://priscilla.fitped.eu/data/pandas/household

.csv', sep=';')

create categories based on price

df['Water Prices'] = pd.cut(df['Water'],

bins=[0,10,15,float('Inf')], labels=['low','normal','high'])

135

print(df.head())

visualize the counts of each category

df['Water Prices'].value_counts().plot(kind='bar')

Program output:
 Date Household Electricty Water Gas Waste Water

Prices

0 2020-01-31 1748.0 7.0 13.0 5.7 NaN

normal

1 2020-02-29 1748.0 10.6 18.2 7.2 NaN

high

2 2020-03-31 NaN NaN NaN NaN NaN

NaN

3 2020-04-30 1748.0 18.6 18.8 NaN NaN

high

4 2020-05-31 1748.0 12.0 14.2 4.8 NaN

normal

📝 3.4.4

Load the data from titanic.csv. Examine the data in the dataset, focusing on the
price group. Divide the ticket prices into intervals of 15 and determine which price
group was the least numerous. You can put tickets with a price above $90 in the
last group. Record the groups as follows:

0-15, 15-30, 30-45, 45-60, 60-75, 75-90, 90-...

136

import library

read csv from

https://priscilla.fitped.eu/data/pandas/titanic.csv

explore the dataset

📝 3.4.5

An alternative function to cut() is the map() function, which performs a similar
function but works on a different principle. The map() function is used to perform a
simple data transformation that uses a dictionary structure, where the key
represents the "old" data and the value represents the new, transformed data. The
use of this function is appropriate if we only want to convert numeric values to text
values and thus obtain a categorical variable. Let's say that in our data set about
Scrabble games, we want to examine individual divisions, so we can create
categories based on the numeric values 1-9.

import pandas as pd

df =

pd.read_csv('https://priscilla.fitped.eu/data/pandas/scrabble_

games.csv', sep=',')

print(df['division'].unique())

map categories based on division

division_map = {1: 'first', 2: 'second', 3: 'third', 4:

'fourth', 5: 'fifth', 6: 'sixth', 7: 'seventh', 8: 'eight',

9:'ninth'}

df['cat_division'] = df['division'].map(division_map)

visualize the counts of each category

df['cat_division'].value_counts().plot(kind='bar')

Program output:
[1 3 2 4 5 6 7 8 9]

137

📝 3.4.6

In the previous chapter, we focused on visualizations using the plot() function.
Categorical variables give us a different way of looking at the visualization, and in
this case box plots are often used. The pandas library supports special boxplots
with the boxplot() function. First of all, however, let's focus on what the boxplot
visualizes for us:

• the upper bound represents the highest value (max)
• the lower bound represents the lowest value (min)
• the middle value represents the median (median)
• the line between the upper limit and the median represents the upper quartile
• the line between the lower limit and the median represents the lower quartile

138

Working with the boxplot() function involves using the following parameters: by
specifies, for example, a categorical variable and column specifies the variable we
want to analyze or visualize. If we visualize from the dataset of Scrabble games the
scores of the losers for each division, we can notice that in some divisions we don't
have any graphs (1-4 and 7-9). This may indicate to us a problem with the dataset,
or that this is clearly how the competitors in those divisions lost their games.

import pandas as pd

df =

pd.read_csv('https://priscilla.fitped.eu/data/pandas/scrabble_

games.csv', sep=',')

map categories based on division

division_map = {1: 'first', 2: 'second', 3: 'third', 4:

'fourth', 5: 'fifth', 6: 'sixth', 7: 'seventh', 8: 'eight',

9:'ninth'}

df['cat_division'] = df['division'].map(division_map)

visualize the counts of each category

df.boxplot(by='cat_division', column=['loserscore'])

Program output:

139

📝 3.4.7

Load the data from titanic.csv. Explore the data in the dataset using a boxplot to
see what the distribution of age groups is across the different classes on the board.
First, transform the Pclass variable into a categorical variable where the numbers
represent the ship class: 1 = first, 2 = second, and 3 = third.

import library

read csv from

https://priscilla.fitped.eu/data/pandas/titanic.csv

create category Class

visualize using boxplot by Class and Age

• the higher the class, the lower the age of the passengers
• the lower the class, the lower the age of the passengers
• the higher the class, the higher the age of the passengers
• the lower the class, the higher the age of the passengers

140

Project

Chapter 4

141

4.1 Spaceship Titanic - basic characteristics

📝 4.1.1

The last chapter focuses on the application of the knowledge gained in the course
over a similar dataset to the one you encountered in the assignments. In this case,
we will be working with a Titanic-inspired dataset called "Spaceship Titanic". The
dataset in question was created in order to compete in a model prediction task.
However, our goal will only be to examine the dataset, which contains information
about nearly 13,000 passengers who were moving from our solar system to three
new planets. During the "voyage", the spacecraft encounters an anomaly and some
of the passengers are transported to another dimension.

📝 4.1.2

Consider the data file space_titanic.csv (the data is separated by a comma in the
file) and the variables it contains:

• PassengerId: a unique identifier for each passenger in the format gggg_pp,
where gggg represents the group of people they are travelling with and pp
their group number,

• HomePlanet: the planet from which the passenger departed,
• CryoSleep: indicates whether the passenger has chosen to travel in deep

sleep, if so the passenger is in his/her cabin,
• Cabin: the passenger's cabin number, written in the form deck/number/side,

where side can be p for port and s for starboard,
• Destination: the planet to which the passenger is bound,
• Age: age of the passenger,
• VIP: information if the passenger has paid for VIP service during the cruise,
• RoomService, FoodCourt, ShoppingMall, Spa, VRDeck: variables informing

how much money the passenger has spent in each luxury section of the ship,
• Name: first and last name of the passenger,
• Transported: information if the passenger has been transported to another

dimension.

import library

import pandas as pd

read csv from

https://priscilla.fitped.eu/data/pandas/space_titanic.csv

df =

pd.read_csv('https://priscilla.fitped.eu/data/pandas/space_tit

anic.csv',sep=',')

explore the dataset

print(df.head())

142

Program output:
 PassengerId HomePlanet CryoSleep Cabin Destination Age

VIP \

0 0001_01 Europa False B/0/P TRAPPIST-1e 39.0

False

1 0002_01 Earth False F/0/S TRAPPIST-1e 24.0

False

2 0003_01 Europa False A/0/S TRAPPIST-1e 58.0

True

3 0003_02 Europa False A/0/S TRAPPIST-1e 33.0

False

4 0004_01 Earth False F/1/S TRAPPIST-1e 16.0

False

 RoomService FoodCourt ShoppingMall Spa VRDeck

Name \

0 0.0 0.0 0.0 0.0 0.0

Maham Ofracculy

1 109.0 9.0 25.0 549.0 44.0

Juanna Vines

2 43.0 3576.0 0.0 6715.0 49.0

Altark Susent

3 0.0 1283.0 371.0 3329.0 193.0

Solam Susent

4 303.0 70.0 151.0 565.0 2.0 Willy

Santantines

 Transported

0 False

1 True

2 False

3 False

4 True

📝 4.1.3

Load the data from space_titanic.csv. Examine the data in the dataset to see which
variables do not contain missing data. As a result, write the variables separated
with commas in the order they appear in the dataset. For example:

HomePlanet, Cabin, Age

import library

143

read csv from

https://priscilla.fitped.eu/data/pandas/space_titanic.csv

explore the dataset

📝 4.1.4

Load the data from space_titanic.csv. Examine the data in the dataset and see what
percentage of missing data each variable contains. Calculate first what percentage
of missing values each variable contains and then you will be able to determine an
approximate result for all variables. Round the result to whole numbers.

import library

read csv from

https://priscilla.fitped.eu/data/pandas/space_titanic.csv

explore the dataset

📝 4.1.5

Load the data from space_titanic.csv. Examine the data in the dataset and find out
the average age of the passengers on the ship. Round the result to two decimal
places.

import library

read csv from

https://priscilla.fitped.eu/data/pandas/space_titanic.csv

explore the dataset

📝 4.1.6

Read the data from space_titanic.csv. Examine the data in the dataset and see how
many different groups of passengers are registered on the ship.

import library

read csv from

https://priscilla.fitped.eu/data/pandas/space_titanic.csv

explore the dataset

144

📝 4.1.7

Load the data from space_titanic.csv. Examine the data in the dataset and find out
what percentage of passengers travel from Mars. Round the result to whole
numbers.

import library

read csv from

https://priscilla.fitped.eu/data/pandas/space_titanic.csv

explore the dataset

📝 4.1.8

Load the data from space_titanic.csv. Examine the data in the dataset and find out
what percentage of passengers travel in cryo-sleep. Round the result to whole
numbers.

import library

read csv from

https://priscilla.fitped.eu/data/pandas/space_titanic.csv

explore the dataset

📝 4.1.9

Load the data from space_titanic.csv. Examine the data in the dataset and find out
what percentage of passengers paid for VIP services on the ship? Round the result
to whole numbers.

import library

read csv from

https://priscilla.fitped.eu/data/pandas/space_titanic.csv

explore the dataset

145

📝 4.1.10

Load the data from space_titanic.csv. Examine the data in the dataset and
determine which graph corresponds to the correct visualization of the age
distribution of passengers on the ship.

import library

read csv from

https://priscilla.fitped.eu/data/pandas/space_titanic.csv

explore the dataset

•

•

146

•

•

147

•

📝 4.1.11

Load the data from space_titanic.csv. Examine the data in the dataset to see which
deck had the most passengers. Also, list the number of passengers accommodated
on that deck.

A: 142

import library

read csv from

https://priscilla.fitped.eu/data/pandas/space_titanic.csv

explore the dataset

📝 4.1.12

Load the data from space_titanic.csv. Examine the data in the dataset and
determine what percentage of passengers were transported to another dimension
after encountering the anomaly. Round the result to whole numbers.

import library

read csv from

https://priscilla.fitped.eu/data/pandas/space_titanic.csv

explore the dataset

148

4.2 Spaceship Titanic - working with data

📝 4.2.1

In the first part, we focused on finding out what the dataset regarding the Titanic
spacecraft actually looks like and what the characteristics of the passengers who
sailed on the ship are. In the second part, we focus on examining those passengers
who were transported to another dimension after the ship crash. The aim is to
investigate if there is any correlation between some of the
characteristics/parameters of the passengers on the ship and their transfer to
another dimension.

📝 4.2.2

Load the data from space_titanic.csv. Examine the data in the dataset to see what
the percentage distribution of the planet of origin of the passengers transferred
was. In other words, we want to know what percentage of passengers were
transferred to another dimension based on their home planet (note that the sum of
these percentages may not add up to 100). Round the result to integers and write it
out in the following form:

import library

read csv from

https://priscilla.fitped.eu/data/pandas/space_titanic.csv

explore the dataset

📝 4.2.3

Load the data from space_titanic.csv. Examine the data in the dataset to see what
happened to the cryo-sleep passengers after the anomaly crash.

import library

read csv from

https://priscilla.fitped.eu/data/pandas/space_titanic.csv

explore the dataset

• about a third of the passengers sailed in cryo-sleep
• more than two-thirds of the cryo-passengers have been transported to

another dimension

149

• about a third of the passengers who were not in the cryo-ship were
transported to another dimension

• more than two-thirds of the passengers sailed in cryo-sleep
• half of the passengers sailed in cryo-sleep
• half of the cryo-passengers have been transported to another dimension
• less than a third of the cryo-passengers have been transported to another

dimension
• more than two-thirds of the passengers who were not in the cryo-ship were

transported to another dimension
• half of the passengers who weren't in the cryo-ship were transported to

another dimension

📝 4.2.4

Load the data from space_titanic.csv. Examine the data in the dataset and
determine which deck had the most passengers transferred to another dimension
after the crash. Print, along with the name of the deck, the number of passengers
transferred.

import library

read csv from

https://priscilla.fitped.eu/data/pandas/space_titanic.csv

explore the dataset

📝 4.2.5

Load the data from space_titanic.csv. Examine the data in the dataset and
determine which side of the deck had the most passengers moved to another
dimension after the crash. List, along with the name of the side (Portside or
Starboard), the number of passengers moved.

Portside: 142

import library

read csv from

https://priscilla.fitped.eu/data/pandas/space_titanic.csv

explore the dataset

150

📝 4.2.6

Load the data from space_titanic.csv. Examine the data in the dataset and see what
the difference was in passenger spending on luxury ship services. Compare the
average spending of passengers who were transferred to another dimension and
those who were not. Round the resulting consumption to two decimal places and
print it in the following format:

Transported: 153.52 Saved: 133.41

Don't forget to fill in the missing values in the examined variables!

import library

read csv from

https://priscilla.fitped.eu/data/pandas/space_titanic.csv

explore the dataset

📝 4.2.7

Load the data from space_titanic.csv. Examine the data in the dataset and
determine the age group of passengers that were most transported to another
dimension. Create the age groups on a 10-year interval. Print the result in the
following format, including the number of passengers moved:

60-69: 785

import library

read csv from

https://priscilla.fitped.eu/data/pandas/space_titanic.csv

explore the dataset

📝 4.2.8

Load the data from space_titanic.csv. Examine the data in the dataset and
determine the age group of passengers that were most likely to move to another
dimension. Create the age groups on a 10-year interval. Report the result in the
following format, including the percentage of passengers transferred, rounded to
two decimal places:

60-69: 55.55

151

import library

read csv from

https://priscilla.fitped.eu/data/pandas/space_titanic.csv

explore the dataset

📝 4.2.9

Load the data from space_titanic.csv. Examine the data in the dataset to see how
many passengers who were travelling in groups were moved to another dimension
(there were at least two in the group). The group information can be found in the
PassengerID variable.

import library

read csv from

https://priscilla.fitped.eu/data/pandas/space_titanic.csv

explore the dataset

152

