

Python - interactive

Published on

Work in progress version

Erasmus+ FITPED-AI

Future IT Professionals Education in Artificial Intelligence

Project 2021-1-SK01-KA220-HED-000032095

The European Commission support for the production of this publication does not
constitute an endorsement of the contents which reflects the views only of the authors,
and the Commission cannot be held responsible for any use which may be made of
the information contained therein.

Licence (licence type: Attribution-Non-commercial-No Derivative Works) and may be
used by third parties as long as licensing conditions are observed. Any materials
published under the terms of a CC Licence are clearly identified as such.

All trademarks and brand names mentioned in this publication and all trademarks and
brand names mentioned that may be the intellectual property of third parties are
unconditionally subject to the provisions contained within the relevant law governing
trademarks and other related signs. The mere mention of a trademark or brand name
does not imply that such a trademark or brand name is not protected by the rights of
third parties.

© 2023 Constantine the Philosopher University in Nitra

TABLE OF CONTENTS
1 Sandbox...7

1.1 Sandbox ..8

2 Introduction to Programming ...9

2.1 Problem and algorithm .. 10

2.2 Why algorithmize? .. 14

2.3 Programming language ... 16

3 Python ... 19

3.1 Python language ... 20

3.2 Output command .. 21

4 Variables ... 25

4.1 Variable .. 26

4.2 Expression .. 29

4.3 Output formatting ... 32

5 Input command .. 35

5.1 Input ... 36

5.2 Numeric input ... 38

6 Conditional statement .. 40

6.1 Conditional statement ... 41

7 Cycle ... 48

7.1 What the loop is .. 49

7.2 Range of values .. 54

8 Operations in a cycle ... 58

8.1 Revision.. 59

8.2 Calculations in a cycle .. 61

9 Data types .. 68

9.1 Data types ... 69

Type ... 70

9.2 Integers ... 72

9.3 Decimal numbers .. 76

9.4 Mathematical functions ... 79

9.5 Boolean expressions.. 85

10 Strings ... 96

10.1 String .. 97

10.2 The basics of working with a string ... 100

10.3 Typical tasks ... 103

10.4 Characters ... 107

10.5 Special characters ... 111

10.6 Slices .. 115

10.7 Basic functions ... 119

11 While loop ... 121

11.1 While loop .. 122

11.2 Endless loop.. 127

12 Simple lists .. 130

12.1 Simple lists ... 131

13 Random numbers ... 135

13.1 Random numbers .. 136

14 Loop within a loop ... 138

14.1 Loop within a loop .. 139

15 Functions ... 142

15.1 Function .. 143

15.2 Global and local variables ... 149

15.3 Function with a return value .. 152

15.4 Parameter replacement value ... 156

15.5 Recursion .. 158

16 Exceptions ... 163

16.1 Exceptions .. 164

16.2 Types of exceptions .. 166

16.3 .. 170

17 Files... 173

17.1 Text file .. 174

17.2 Typical tasks ... 180

18 Lists... 186

18.1 List ... 187

List ... 187

18.2 Working with data in a list .. 192

18.3 Iterations and slices ... 198

18.4 List comprehension ... 201

19 Lists and memory .. 204

19.1 List manipulation .. 205

19.2 List as a parameter .. 212

20 Tuple ... 218

20.1 Tuple .. 219

20.2 Tuple in functions ... 224

20.3 Variadic function .. 226

21 List of lists ... 229

21.1 Table... 230

21.2 Matrix ... 237

21.3 Different number of elements in a line .. 240

22 Set and dictionary .. 243

22.1 Set .. 244

22.2 Dictionary ... 248

7

Sandbox

Chapter 1

8

1.1 Sandbox

📝 1.1.1

In the context of programming, a sandbox refers to a controlled and isolated
environment where software code can be executed. It is designed to provide a
secure and restricted space for running potentially untrusted or unverified code,
without allowing it to affect the underlying system or compromise its security.

The primary purpose of a sandbox is to limit the potential harm caused by
malicious or buggy code by enforcing various restrictions and constraints. It
creates a virtual barrier between the code being executed and the rest of the
system, preventing unauthorized access to sensitive resources or actions.

You can write and switch on any code in the Python language. The icons in the
upper part serve for pausing the software or in worse case for resetting the kernel,
on which the software is running.

write you code here

9

Introduction to
Programming

Chapter 2

10

2.1 Problem and algorithm

📝 2.1.1

Algorithm and problem

• the assumption for the use of algorithm is the existence of a problem
• in the first years of life, problem solving is built on different basis than later

in life
• solving many problems is automatic, without being aware of the existence of

the algorithm

📝 2.1.2

The problem of drinking cocoa

• check whether there is enough ingrediences
• pour milk into the cup
• heat it up
• mix sugar and cocoa in an empty cup
• check the temperature of milk
• if the milk is not warm enough, go back to the point 4
• pour the milk into the mixture of sugar and cocoa
• let it cool out
• drink it

And the problem is solved...

📝 2.1.3

Terminology

• Problem - the state, in which there is a difference between what we have at
the given moment and what we want to achieve

• Problem solving - removing the difference between the original state and the
one we want to achieve

• Algorithm - procedure, we follow while solving the problem

It is not possible to solve every problem and we do not always get to the required
outcome.

11

📝 2.1.4

Algorithm and life

• solving real-life problems using algorithm principles is quite difficult
• correct algorithm always takes into consideration all the situations, details,

accidents or uncommon situations (drinking cocoa, autonomous vehicle)
• talking about algorithms only makes sense when we have access to a limited

set of rules (it can even be really huge), by which we can design the
procedure of solution

📝 2.1.5

Algorithm and programming

Algorithm - an elementary concept, a correct definition is necessary:

• an exact sequence of steps and instructions that will lead us from the
(changeable) input data to the result in the final time

• not every sequence is algorithm, it has to meet following traits:

1. elementarity: the procedure is composed of simple steps that are
understandable to the executor (computer, non-thinking device, human)

2. determinism: the procedure is structured in such a way that it is clearly
determined what action should follow, or whether the procedure has already
ended

3. efficiency: the calculation gives a result after a finite number of steps at
every moment of its execution

4. finality: the procedure always ends after a finite number of steps have been
performed

5. mass: the procedure is applicable to the entire class of admissible input data
(can be applied to different inputs)

6. efficiency: the procedure is carried out in the shortest possible time and with
the use of the least amount of resources (time and memory)

📝 2.1.6

Elementality

Every procedure can be written in multiple ways:

It is important for the executor to understand the procedure.

Heating up the milk in a microwave oven:

12

• longterm owner: heat up the milk
• new owner?
• a child(wait for your parents and ask them)

Find the sixth square for number 2

• this formulation is OK for pupil of fifth or sixth year
• pupil in the second year would not be able to solve it, even though it is only

2.2.2.2.2.2

Exactness:

• Mill the two days old rolls!
• Crack two eggs!

📝 2.1.7

Determinism

• in every step it has to be clear, where the solving is supposed to be going,
how to continue

• if for example the sequence of "wash yourself, clean after yourself, take your
clothes off and go to sleep" would be executed in different order the
outcome could be different than it was meant to be

• if the non-thinking device did the most time consuming task at first: it would
go to sleep and when it waked up it would clean, take off its clothes and
wash itself

📝 2.1.8

Efficiency

• execution of the algorithm demonstrably leads to the correct result after a
finite number of steps when solving any of the group of tasks for which the
algorithm was created

• in real life it doesn't always work - cooking/baking
• digital technology, as long as there is no malfunction, has no problems with

this requirement

📝 2.1.9

Finality

• characteristic requires that the algorithm always terminate
• a person working with a problem based on experience can determine

whether or not his procedure will give the right result (or whether it will end
or not)

13

• a computer without experience cannot decide at such a level

Algorithm for computer:

• put the pot of food on the stove
• turn on the gas
• stir until it starts to boil

Or:

• dig until you find the treasure
• as long as the entered number is less than one, multiply it by two!

There are also problems, whose solution is finite, but finding the result takes a very
long time.

• encryption algorithms, when theoretically we can decrypt every message, but
the implementation time is so long that the message loses its meaning after
decryption (after 10 years)

• counting the cells in human body
• molecules in liter of air
• grains of sand in the desert

📝 2.1.10

Mass

• feature more useful than necessary
• not every algorithm can be mass
• it necessary to put some input parameters into the algorithm
• e.g. block volume, calculation of the length of the braking distance at the

speed of the vehicle and the road surface and the specified weight
• when creating an algorithm, it is not about solving a specific problem, but

only about describing a procedure that can be used to obtain a result

📝 2.1.11

Efficiency

• again not necessary feature
• to design a procedure that can solve the problem by using the minimal

amount of resources in the shortest possible time
• even an inefficient algorithm is an algorithm

During the parade, the commander needed to find out the number of soldiers on
board. The soldiers stood in 32 rows of 17. He assigned the task to two soldiers.

• The first one proceeded as follow: 17+17+17+17...+17

14

• The second one tried 17x30

What do you think, who was the first one to get the result?

The problem of adding numbers from 1 to 100:

• The first way, one that everybody understands is to proseed 1+2+3+4+...+0
• we will eventually get the result, but if we take the pair of numbers 1+100,

2+99, 3+98... 50+51 (together there is 50 of them) we solve the problem
significantly faster: there is 50 pairs, their addition is 101, therefore 101 x 50
= 5 050

2.2 Why algorithmize?

📝 2.2.1

Why algorithmize?

Life is an algorithm (resp. it is composed of algorithms).

Me waking up:

• Alarm rings
• I open my right eye
• I hit it (the alarm)
• I close the right eye
• I wake up suddenly in twenty minutes
• I eat breakfeast in a rush
• I run to work

What is the description of an algorithm good for?

• thanks to the description we can delegate another person or computer with
the execution of the algorithm

• thanks to the expression of thoughts, the problem becomes more
comprehensible to us and we are able to understand it better

📝 2.2.2

Algorithmization

• process we are performing while writing/preparing an algorithm

15

Firstly we always need to think about:

• input conditions (f.e. the number of values that can enter the algorithm)
• output conditions (features of outcomes)

📝 2.2.3

Algorithm language

Language - way of communication

• slovak language contains approx. 110.000 words
• english language contains approx. 800.000 words

Why the use human language is problematic:

• frazeologisms, proverbs and sayings
• synonymums
• homonymums
• forms, cases, persons
• smooth and natural development, adding and excluding words

=> the need for reduction of natural language

📝 2.2.4

Algorithmic languages

Several types:

• flowcharts (sequence of activities described through graphic signs and text
in them, defined by standards)

• structure diagrams (a condensed version of flow diagrams, which is not
defined by the standard)

• picture languages (often children's programming languages allowing
programming by connecting pictures)

• decision tables (describe more complex problems, consist of a list of
conditions, a combination of conditions, a list of activities and a combination
of activities - they are not suitable for our work)

• verbal notation of the algorithm in the natural language (formalized
languages that differ from programming languages by the use of national
words)

• programming languages (formalized algorithmic languages often based on
word reduction of the English language)

16

• modelling languages (e.g. UML describes procedures by combining text and
agreed symbols)

📝 2.2.5

Composition of an algorithmic language

Operating component:

• commands - sentences of the language commanding the processor to
perform specified actions (input, output and assignment)

• variables and constants - objects containing values during the
implementation of the algorithm

• expressions - description of constants, variables and values use; how to
process them using operations and functions similar to mathematics e.g.
content = a * b, content2 = pi * r * r

Control component (algorithmic structures):

• tools for managing the sequence of execution of individual elements of the
operational component

• thanks to it, the action to be performed is clearly determined in each step of
the algorithm sequence

• a sequence of commands
• branching - decision making based on a condition
• cycle/loop – repetition of activities

📝 2.2.6

Commands notation

• notation using natural language is not clear
• that is why we use programming language...

2.3 Programming language

📝 2.3.1

Programming language

• algorithmic language - allows writing the sequence of command execution

17

• programming language - formalizes the algorithmic language into a notation
that can be processed by a translator; based on the notation, commands are
executed by a non-thinking device (usually a computer)

• programming - analogy of algorithmization, but additionaly with the notation
in the relevant programming language

📝 2.3.2

Types of programming languages

Low-level programming languages:

• closer to the machine language
• easier/faster execution of the instructions
• often tied to the processor's instruction set
• machine code, assembler, maybe C

Higher level programming languages:

• more user-friendly
• closer to the human language - more abstract communication
• translation to the instructions of the processor
• often multiplatform
• Java, C, Pascal, Python, JavaScript, PHP

📝 2.3.3

History of the programming languages

• 1940s - machine language programming
• 1950s - programming in the language of symbolic adresses
• 1956 - programming language fortran (Formula TRANslation)
• 1958 - programming language algol (ALGOrithmic Language)
• 1961 - programming language basic (Beginners All-Purpose Symbolic

Instruction Code)
• around 1970 - programming language pascal (systematic, structured

programming)
• around 1980 - programming language C (+ transition to object-oriented

programming)
• 1990s - development of the more complex versions of languages with the

aim of using new possibilities, especially of personal computers (graphic,
sound, multiamedia) - event-driven programming (Visual Basic, Delphi)

• present - programming languages independent on platform (Java, script
languages - PHP, Python), .NET platform a frameworks (e.g. Javascript)

18

📝 2.3.4

Program life cycle

• problem definition - a clear problem definition is half the solution
• problem analysis - dividing the problem into smaller and simpler

subproblems, complete definition of inputs and outputs
• solution design - description of the sequence by steps in human/algorithmic

language
• coding - programming - transcription of the design into source code
• testing - removing program errors (syntactic and logical)

deployment at the customer and provision of support

📝 2.3.5

Program execution

The device executes commands based on their translation into the language of the
device - most often the machine code of the processor.

Translation can be executed in two ways:

• before first time run - trough the compiler
• in real-time - trough the interpreter

📝 2.3.6

Compiler

• the source code translates into machine instructions (exe file)
• we named translator the compilator, the process of translation is

compilation
• file containing commands in the language of the executing device is created

(machine code)
• errors in code have to be removed before the start of process
• examples: C, Pascal

📝 2.3.7

Interpreter

• source code is translated into the instructions while the program is running
• interpreter translates it for the processor command after command
• a group of basic syntax errors is revealed at the beginning, some of them

only while the program is running
• Basic, Java, PHP, Python

19

Python

Chapter 3

20

3.1 Python language

📝 3.1.1

Python

• language creation: 1989
• introduced by Guid van Rossum
• high-level language - to express the commands it uses certain words from

english language
• a translation of commands to a low-level, that the computer understand is

executed only when the the program is started - code is interpreted
• designed so that programs can be created using a minimum of code

📝 3.1.2

Program behavior

• Python is case sensitive - it distinguishes between the lower and upper case
letters

• Interpreter considers following commands to be different:

Command

command

COMMAND

• interpreted code => starting the program does not mean the program is error
free

• errors only appear at the moment when the interpreter comes to a line of
code with error notation

• WARNING, it may happen that the program you create will work at first, but
an error and error message will appear while the program is running

• e.g.

print("Hello")

print("I am the computer No." + 10)

📝 3.1.3

First program

Write a program that says hello.

This task has nothing to do with algorithmization, it serves to:

21

• familiarization with the basic syntax of the Python language
• prezentation of the procedure for creating the program
• familiarization with the method of outputting results from the program

📝 3.1.4

• in every programming language we need to follow certain rules
• it is not enough to write commands one after the other
• in the Python language we write one command in one line

So let's try to find the solution for the given task - Write the program that says
hello.

The print() command is used to print the text.

We enter the text that we want to print in brackets and enclose it in quotation
marks.

print("hello")

By clicking the arrow icon behind the program you start the program and below the
code you will see its result - try it.

You can experiment with the program and rewrite the text between quotation marks
to different greeting.

After running the program again the result below the code will change.

The number before the arrow indicates the number of program starts - it is only
informational, it does not limit the user in any way.

3.2 Output command

📝 3.2.1

We continue to say hello

Create a new program, in which you say hello and subsequently introduce
yourself.

The situation is very simple:

• we say hello in the first line

22

• in next line we repeat the command for printing and we enter "introduction"
in quotation marks

print("Hello")

print("I am Jose Carrot")

• commands are separated by the newline character = we place each
command on a new line

Try to add your hometown to a new line by using the print() command.

📝 3.2.2

• each print() function always prints its text on a new line

print("Mother")

print("Father")

• to display the output with multiple values in one line you need to separate the
values with a comma

print("Hi!", "I am a super student.")

At first glance, this entry does not differ in any way from:

print("Hi! I am a super student.")

it just inserts a space between the two texts

However, later it will prove to be very useful...

📝 3.2.3

String

Text in quotation marks, or any sequence of characters or digits, which we will use
as written text (not a number) is denoted as a string in programming language.

The easiest way to identify a string is that it is placed between delimiting
characters, quotation marks("") or apostrophes('').

"string 1"

23

'string with apostrophes'

📝 3.2.4

Python language only supports two ways of notation of strings - delimitation by
quotation marks " or apostrophes '.

print("Hello world!")

print('Hello world!')

What is it good for?

If you decided to print the text which is supposed to contain quotation marks, for
example:

I am a "programmer"

we would be facing a problem because the entry

print("I am a "programmer".")

would be invalid.

Python evaluates the quotes behind "I am" as the end of the string and analyze the
rest as a new string looking for example for a comma as a separator.

The solution is to use apostrophes - the text for the output starts with an
apostrophe and unless Python finds a closing apostrophe it prints content as
entered.

print('I am a "programmer".')

The opposite version, where we use an apostrophe inside a string is also possible.

print("I am a 'programmer'.")

📝 3.2.5

• the print() function provides versatile functionality
• without the content it prints an empty line or skips line
• e.g.:

print('next line will be empty')

24

print()

print('a line is omitted before this')

📝 3.2.6

• special ability of the print() command is that it is able to evaluate (calculate)
an expression

• for now we will limit ourselves to mathematical examples
• e.g.:

print(20 + 10)

Program output:
30

...at first it finds out the result of the calculation in brackets and then prints it

We enter the calculation without the quotation marks, based on which the system
knows that it is supposed to work with the content of the brackets as numbers and
we do not just want to print it in in the same form as we see it between the
quotation marks.

For code:

print("20 + 10")

Program output:
20 + 10

the result is the same as the text in the quotation marks.

25

Variables

Chapter 4

26

4.1 Variable

📝 4.1.1

• so far we have written informations directly in "program".

print("hello")

• or we performed calculations

print(956 + 3)

• we did not remember any informations so we could not work with them on
several parts of the program

📝 4.1.2

• if we want to remember the value for later or multiple use, we need to use so-
called variables

Variables

• they represent an independent (named) place in computer's memory
• we can use one or many of variables in program
• each variable has to have its own unique name defined by the programmer

Variable is created by executing an assigment command

• based on the name placed on the left side
• the value entered on the right side is inserted (assigned) to it

It is not needed to define earlier if we use a number, characters or sequence of
characters - string

Python takes care of correct setting of the variable automatically.

n = 10

n=10

27

n= 10

myname = 'George'

All lines assigning the number 10 to the variable n are accepted. Spaces are simply
ignored.

There are rules for formal modification of source code, that prefer code where is
one space on both sides of a
command (PEP8, https://www.python.org/dev/peps/pep-0008/).

Variable can not exist without being assigned a value.

📝 4.1.3

In variable names the compiler distinguishes between lower and upper case letters,
variables:

myvariable

Myvariable

are two different variables.

📝 4.1.4

Variable name

• can be practically any one

a

counter

Fero12

Bratislava_is_the_city

Be_careful_it_is_bad

number

_number

Number

Number_1

number_Second

It is necessary to follow rules:

First character has to be:

https://www.python.org/dev/peps/pep-0008/

28

• alphabet latter (upper or lower case), letters from the alphabet of different
languages can also be used (but it is not recommended)

• underline character "_"

Rest of the name can consist of letters, underscore character "_" and digits.

Unacceptable variable names are e.g.:

4pieces

#number

• it is recommnded to use lower case letters and underscore character for
variable names

📝 4.1.5

Variable names cannot be the same as Python keywords.

The list of the keywords is as follows:

📝 4.1.6

Variable is created by executing an assignment statement

Assignment statement:

• inserts some value into the variable

29

It consists of:

• the variable name of the left side
• operator "="
• the value (or calculation, based on which the value is obtained) on the right

side

We will initially insert a number or text into the variable.

n = 10

var_name = 'word'

📝 4.1.7

• we can find out the content of the variable by using the print() command
• if we state its name in the brackets (without the quotation marks), it will print

the content of the variable

print(variable)

Program output:

• we do not enclose the variable name into the quotes or apostrophes
• according to the use or not of the quotes characters and apostrophes the

interpreter knows whether it is supposed to print the content of variable or
the text which we wrapped in quotes or apostrophes

weight = 73

print(weight) # prints 73 - value inserted in variable

weight

print("weight") # prints text weight

4.2 Expression

📝 4.2.1

Expression

• we often store the result of the calculation in variables
• such a notation is referred to as an expression

30

E.g. in program:

x = 10 + 20 - 3 * 7

the is used common mathematical expression, which is evaluated from left to right,
observing the priority of mathematical operation, where the product (*) takes
priority over the sum (+) and the difference (-).

The result stored in variable x can be printed as:

print(x)

In an expression, like in mathematics, parentheses take priority during evaluation.
For example in the command:

x = 10 + (20 - 3) * 7

print(x)

Program output:

the difference in parentheses is evaluated first, then the product and finally the
sum, * takes precedence over + and -.

The difference between directly printing the result of the calculation using

print(10 + (20 - 3) * 7)

Program output:

and storing it to the variable means that we only see the result when it is printed
and if it is saved to a variable, we can use it later.

E.g.:

print(x*x)

print(x/2)

Program output:

31

📝 4.2.2

In the expression on the right side we can also use variables.

E.g. in program:

x = 10

y = 20

z = x + y # namiesto názvov premenných sa použijú hodnoty:

10 + 20

print(z)

The sequence is as follow:

1. firstly we insert values into the x and y variables
2. the calculation is based on the expression x + y - instead of the

variables,their values is used - we will perform the sum of the values stored
in the variables x and y. i.e. 10 + 20

3. the result is inserted into the variable, whose name is placed on the left side,
i.e. variable z

4. we print the content of variable z

Variable that are listed to the right side of assignment symbol, are always
replaced by the value they contain during the calculation, and their contents are
not changed by this use.

📝 4.2.3

• if we use the name of the variable somewhere other than on the left side of
the assignment expression, then the value that the variable contains is
replaced it

• we can freely combine directly entered values and variables in expressions,
e.g.:

mysum = 100

new_sum = mysum - 20

print(new_sum)

The value 80 will be stored in the new_sum variable after the commands are
executed.

📝 4.2.4

We can often encounter notation where the name of the same variable appears on
both sides of the assignment command

32

poc = 3

print(poc)

poc = poc + 1

print(poc)

The calculation procedure is the same as in the previous cases. The right side of
the assignment command is processed first:

• the current value of the poc variable is used
• the value 1 is added to it
• the result of the expression is then stored into the poc variable, overwriting

its original value

So the value 3 is printed first, it changes, and the value 4 is printed in the second
print().

4.3 Output formatting

📝 4.3.1

Just as we could execute the calculation when listing the values, we can also
execute it with variables. We can print not only the values of the variables but also
the result of the operation.

So instead of:

a = 15

b = 10

c = a + b

print(c)

we can skip the calculation of the variable c and directly print the sum of two
variables.

a = 15

b = 10

print(a + b)

📝 4.3.2

If we want to print the values of several variables, it is possible to print them in one
command.

33

x = 10

y = 20

z = x + y

print(x, y, z)

prints out:

10 20 30

The space between the values is inserted automatically by the print command.

📝 4.3.3

Program printout:

x = 10

y = 20

print(x, y, x + y)

has the form:

10 20 30

• is very brief
• the sequence of numbers in the pritnout may be unclear to the user
• that is why is advisable to combine variables printout with descriptive texts,

that explain the numbers in more detail, e.g.:

x = 25

print('Value of variable x is', x)

It prints out:

Value of variable x is 25

• the variable x enclosed in apostrophes is an ordinary character string,
therefore we do not assign any value to it in print command

• the value is only assigned to the stand-alone variable name specified as the
second parameter of print

34

📝 4.3.4

• combining variables with static texts requires separating each part of the
printout with a comma, e.g.:

x = 10

y = 20

z = x + y

print(x, '+', y, '=', z)

• the result will be as expected:

10 + 20 = 30

• when constructing the printout, do not forget that there is a space between
the individual parts of the printout

• in the printout it is added automatically thanks to the rules defined for the
print command

35

Input command

Chapter 5

36

5.1 Input

📝 5.1.1

Write a program that calculates the content and circuit of a rectangle.

Calculating the area of the rectangle for the specific values is easy,

e.g.:

• for 4 and 3 we put the values into the variables
• we assign the calculation to the variable
• we print the result

a = 4

b = 3

content = a * b

print(content)

If we want the calculation for the values 5 and 7 do we need to write a new
program?

By the way, to get the result in specific case it would be enough to leave only the
multiplication itself on the program...

print(5 * 7)

📝 5.1.2

• one of the "useful" properties of the algorithm is mass
• it allows us to use the same algorithm for solving all tasks of the same type
• for this approach we need to generalize the approach to the problem
• if it is mathematical problem, it has often been generalized by someone

before us

S = a * b

• it means, that we calculate the area as a product of the dimensions of the
sides

• the size of the first side represents designation a, the second b
• a and b are what we can think of as variables in programming language

37

📝 5.1.3

• writing the value of the variables to the code is nonsens
• we need to teach the program to read input values from the user without

changing the code

The input command is used to get the values of variables from the user

• the input command reads the data entered by keyboard and confirmed by
Enter and move it to the program as a text string

• the command allow us to write and delete input value and only after the
press Enter send the data to the program

• then we insert the data into a variable

The entire entry has the form:

data = input()

Before pausing the program and waiting for the input, it is usually necessary to
inform the user what input is expected, e.g.:

print('Write the name: ')

first_name = input()

Next, we can work with variable, e.g.:

print('Hi, you are', first_name)

📝 5.1.4

The instructions for the user also can be enetered in the parantheses of the input
command.

firstname = input('Write name: ')

surname = input('Write surname: ')

We can print the variables loaded using the input command in the same way as
before, using the print command.

print('Hi', firstname, surname)

Print the text according to the entered first name and last name, e.g.:

38

Hi Jose Carrrot

5.2 Numeric input

📝 5.2.1

Let's try to execute the following command, whose goal is to sum up two numbers.

a = input('Write 1st number: ')

b = input('Write 2nd number: ')

print(a + b)

• for 3 and 2 we expect 5
• the result is 32

• the input command always returns the value as a text string
• it concat the contents of the variables as text = it merges them

📝 5.2.2

• if we are sure that a number will be entered at the input, we need to convert
the data

• conversion = data type change: text -> number, number -> text etc.
• conversion from text to number is provided by int()

The program will look like this:

text1 = input('Zadaj 1. číslo: ') # rads the TEXT enterd at

the input

a = int(text1) # changes the originaly

entered text to a number

text2 = input('Zadaj 2. číslo: ') # reads the second TEXT

entered at the input

b = int(text2) # second text is also

changed to a number

print(a + b) # finds/calculates the

result for the numbers

• int(text) provides the trasformation of text into a number
• it inserts numerical value returned by the int() function into the variables a, b

39

With such values the sum operation performs mathematical addition.

If there is text stored in the variables, the operation "+" will merge them.

print(text1 + text2)

Attention, if one value is text and the other is numeric, the program will throw an
error.

print(text1 + b)

Program output:
NameError

name 'text1' is not defined

📝 5.2.3

Let's get back to the task:

Write a program that calculates the area and circuit of a rectangle.

t1 = input('Enter the side a: ')

a = int(t1)

t2 = input('Enter the side b: ')

b = int(t2)

S = a * b

print('Area: ', S)

📝 5.2.4

Write a program, that prints 5 multiple of the entered value:

40

Conditional statement

Chapter 6

41

6.1 Conditional statement

📝 6.1.1

• sequence - a sequence of commands that is executed in the order in which it
is entered in the program

• the compiler proceeds one by one and when the command is executed it
moves to the next one

aa = input('Enter the first value')

bb = input('Enter the second value')

a = int(aa)

b = int(bb)

print('The sum is:", aa + bb)

• most programs need to decide how to proceed further based on the
processed data

📝 6.1.2

The option to decide and execute different commands based on the fulfillment or
unfulfillment of the condition is provided by branching.

It consist of a condition and commands that are executed in case of fulfillment and
non-fulfillment of the condition

The branching command has the following form:

if condition:

 command

The condition represents a notation that can be said to be true or false

It often takes the form of:

• comparing two values
• coparing the value and the variable (value that variable contains)

42

• e.g.:

5 > 3

8 < 1

a > 3

In code can takes the form:

if vek < 10:

 print("minor")

if vek > 18:

 print("adult")

In code it can take the form:

• the basis of branching is the if statement
• it is followed by a condition that must result in true or false
• the condition must be followed by a colon
• the colon is followed by commands to be executed if the condition is met
• command, or commands are only executed if the condition is met
• if the condition is not met the command is not executed and the program

continues with the next command

The command or commands must be indented from the marging using spaces.

If there is more than one command, the number of spaces must be the seme, e.g.:

if vek > 18:

 print("adult")

 print("because they are older than 18")

📝 6.1.3

Incomplete branching describe the situation in which the condition is met.

if age > 18:

43

 print("adult")

Complete branching describes the behaviour not just in the case the condition is
met, but also if it is not:

• we add else to the original form of the statement
• the statement has the form:

if condition:

 comands _for the fulfilled condition

else:

 commands _for the unfulfilled condition

If and else statements must have the same indentation - in this case they start on
the left margin,

e.g.:

if vek > 18:

 print("adult")

else:

 print("minor")

• if the value of the age variable is larger than 18, the text "adult" is printed,
otherwise (the age is less than or equal to 18) the text "minor" is printed

📝 6.1.4

• the part of the program, in case the condition is met = positive branch
• the part of the program in case the condition is not met = negative branch

if age > 18:

 print("adult") # positive branch

else:

 print("minor") # negative branch

📝 6.1.5

• the use of one command in positive branch or one in negative branch is not
really common

• we ussualy need to use more than one command
• the fact that several commands are to be executed in a certain branch is

provided by indentation - it defines the whole block of commands

44

if condition:

 command1

 command2

 command3

else:

 command4

 command5

another_code

• commands 1-3 are executed in case the condition is met
• commands 4-5 in case it is not

The next code must continue with the same indentation as the if and else
statements and it will be executed whether the condition was met or not.

📝 6.1.6

Comparison

We have several operators for determining the relationship between the right and
left sides:

• == compares whether the values are equal to each other, e.g. a==b
• <= compares whether the value on the left is less than or equal to the value

on the right, e.g. c<=10
• >= compares whether the value on the left is greater than or equal to the

value on the right, e.g. c<=10
• != compares whether the values are not equal, e.g. a != b - the condition is

met if the values are different from each other

In case of using <= and <= signs their order must be observed. Using =< will be
evaluated as an error.

if 4 =< 5:

 print('it applies')

Program output:
SyntaxError

invalid syntax (, line 1)

45

📝 6.1.7

Let's test the values of two variables and print whether they are equal or one of
them is larger than the other. We actually need to test three options.

a == b

a > b

a < b

By using if:

a = 10

b = 5

if a == b:

 print(a, b, 'are equal')

if a > b:

 print(a, 'is larger than', b)

if a < b:

 print(b, 'is larger than', a)

📝 6.1.8

Let's redisign the solution to make it more efficient.

a = 10

b = 15

if a == b:

 print(a, b, 'are equal')

else:

 if a > b:

 print(a, 'is larger than ', b)

 else:

 if a < b:

 print(b, 'is larger than ', a)

• the condtion a > b is tested only if a == b does not hold
• the condition a < b is tested only if a == b and a < b do not hold

46

However, the notation can be abbreviated because we do not have to execute the
last test - the validity follows automatically.

a = 10

b = 15

if a == b:

 print(a, b, 'are equal')

else:

 if a > b:

 print(a, 'is larger than ', b)

 else:

 print(b, 'is larger than ', a)

📝 6.1.9

• we also have the option to abbreviate the entry from the previous example
• there is a version of the if statement in the if - elif - else structure
• if the compiler evaluates one of the conditions as fulfilled, the following elif

branches are no longer evaluated and it continues execution after the if
block

if condition1:

 block of commands

elif condition2:

 block of commands

elif ...

elif ...

elif ...

else:

 block of commands

• the number of elif conditions is unlimited
• the else branch does not have to be entered

In the optimal entry, our solution would look like this:

a = 10

b = 8

if a == b:

47

 print(a, b, 'are equal')

elif a > b:

 print(a, 'is larger than', b)

else:

 print(b, 'is larger than', a)

Program output:
10 je väčšie ako 8

📝 6.1.10

What is printed after the program is executed?

x = 6

if (x == 5):

 print('Hi')

 print('Hello')

else:

 print('Cheers')

print('Bye')

📝 6.1.11

What is printed after the program is executed?

points = 7

if points == 10:

 print('excellent')

elif points == 9:

 print('super')

elif points == 8:

 print('okay')

elif points == 7:

 print('can be')

elif points == 6:

 print('a little above the line')

else:

 print('something needs to be done about it')

 print('end')

48

Cycle

Chapter 7

49

7.1 What the loop is

📝 7.1.1

• we often need to repeat part of the algorithm
• the notation enables repeating = loop

• for each repetition is important what (the body of the loop) is supposed to be
repeated

• when, for which values, are the commands in the body of the loop supposed
to be repeated

The loop enables repeating parts of the program for specified list of values or until
the cindition is met, e.g.:

_for values: _for repetitions 1,2,3,4,5

what: lift a barbell

_for values: _for the coins 10,20,50,10,10

what: put inside a purse

until when: _while you have something _in your account

what: buy toys

until when: until you are at the end of the text

what: replace the word five _with a number 5

📝 7.1.2

Print the text 'Python' 7 times below.

• we need to repeat the printout of the value for 7 times
•

print('Python')

print('Python')

print('Python')

print('Python')

print('Python')

print('Python')

50

print('Python')

We can get the same efest by using loop.

• in the definition of repetition we need to specify the group of values for
which the printout is supposed to be repeated:

for i in 1, 2, 3, 4, 5, 6, 7:

 print('Python')

When repeating the same activity it is not important what values we enter, only their
number is important.

📝 7.1.3

How many times is the following loop executed?

for i in 1, 3, 4, 6:

 print('Winter')

📝 7.1.4

Print "Hello" 5 times below

• the number of repetitions does not depent on the values listed in the group
but on their number

• we can provide the task with the following program:

for i in 1, 2, 3, 4, 5:

 print("Hello")

• i gradually acquires 5 different values and prints the text "Hello" ince for each
of them

• however, the value of variable i is not used anywhere

Loop also fulfills the same role:

51

for i in 1, 1, 1, 1, 1:

 print("Hello")

or any other notation with the group of five not necessarily different values.

📝 7.1.5

Definition of the loop

for variable in sequence:

 command

Must apply:

• the sequence must be defined as a sequence of values that we can loop
trough

• there must be a colon at the end of the first line of the loop
• commands to be executed must be indented form the margin

Sequence of values:

• values are separated by a comma, while each value has its place in the
sequence, e.g. 1, 2, 3, 4, 5, 6, 7

📝 7.1.6

Write the values 1-6 below.

• we need to repeat the printout of the changing value 6 times

print(1)

print(2)

print(3)

print(4)

print(5)

print(6)

• the sequence of values that the loop is supposed to print are given in its
definition:

52

for i in 1, 2, 3, 4, 5, 6:

 print(i)

• variable i acquires the values of the first element of the sequence and the
command is executed, where the acquired value of the variable i is printed

• then we return to the beggining of the loop, the variable i acquires the value
of the secend element of the sequence and the command is executed again

• this is repeated until all sequence values are used up

📝 7.1.7

Write the program that prints 5 lines with the text "I know how to use the loop
now." and in each one of them it desplays the serial number of the line.

1 I know how to use the loop now.

2 I know how to use the loop now.

3 I know how to use the loop now.

4 I know how to use the loop now.

5 I know how to use the loop now.

• we need to print the values 1 - 5, so we insert the sequence 1 - 5 into the loop
definition

• we ensure that the variable i gradually acquires these values

for i in 1, 2, 3, 4, 5:

• repetition consist in printing the variable i
• it is enough to add unchanging text to the changing numbers

for i in 1, 2, 3, 4, 5:

 print(i, 'I know how to use the loop now.')

📝 7.1.8

Write a program that prints multiples for 1-10 for a given integer value.

We firstly ask the user for a number whose multiples we want to display.

text = input('Enter an integer from 1 to 10: ')

a = int(text)

53

• we need to provide following form for the output (e.g. for input 5)

1 - 5

2 - 10

3 - 15

atď.

• in the first line there is 1-multiple, in the second a double, in the third tripple,
etc.

• the loop contains the output of the value from the enumerated sequence and
its a-multiple

for i in 1, 2, 3, 4, 5, 6, 7, 8, 9, 10:

 print(i,'-',a * i)

📝 7.1.9

Adjust the program with the multiplier so that the lines are separated from each
other by a line:

1 * 5 = 5

2 * 5 = 10

etc.

Original solution:

for i in 1,2,3,4,5,6,7,8,9,10:

 print(i, '*', a, '=', i * a)

• we need to add command for printing the "line"
• it is going to be repeated in each line with numbers => it is supposed to be

part of the loop
• we add it with the same indentation as the command that prints the numbers

has

By setting the same indention of the commands in the loop, we say that all of them
are supposed to be repeated within one step of the loop - the loop will go to the
next step only when it executes all commands with the same indentation.

54

entry = input('Enter a number: ')

a = int(entry)

for i in 1,2,3,4,5,6,7,8,9,10:

 print(i, '*', a, '=', i * a)

 print('--------------------------')

• wrong entries:

for i in 1,2,3,4,5,6,7,8,9,10:

 print(i, '*', a, '=', i * a)

print('--------------------------')

ends with a list of all multiplications and adds a "line" at

the end.

for i in 1,2,3,4,5,6,7,8,9,10:

 print(i, '*', a, '=', i * a)

 print('--------------------------')

will result in an error because it is not possible to

determine which part of the program the second print()

statement belongs to.

7.2 Range of values

📝 7.2.1

• writing the list of values in a loop, especially if they are consecutive, is
pointless

• Python uses the range() function to generate the list of numbers
• the simplest version of range() - entering a single parameter - the number of

integers (how many numbers from zero will be in the list)
• For example:

range(3)

It retursn the list of values - numbers:

0, 1, 2

• using the command itself does nothing
• the sequence is created that we can use directly in the loop

55

for i in range(3):

 print(i)

• for repeating the action n-times it is enough to generate the list with n values
using range()

• generated list always begins with the value 0 and ends with the value n-1

n = 5

for i in range(n):

 print(i)

📝 7.2.2

• to generate the list of values that does not start with zero, we add second
parameter to the range() function

range(start, stop)

• start determines the starting element of the sequence
• stop determines the final element of the sequence

z = range(10, 15)

for i in z:

 print(i)

Prints the sequence:

10, 11, 12, 13, 14

📝 7.2.3

Complete the parameter of the range() function so that the following list is
displayed:

15, 16, 17, 18, 19, 20

for i in range(15,21):

 print(i)

Program output:
10

56

📝 7.2.4

• in range() it is possible to define a step by witch the values in the list will
change by leaps

range(start, stop, step)

• the leap of the change is determined by the third parameter - step

for i in range(10, 31, 5):

 print(i)

• for the parametres start and stop applies the same rules
• the last value of the sequence is at least 1 less than the stop value

📝 7.2.5

Which values can be stored in the variable end to generate a list

5, 9, 13, 17, 21

end = ?

z = range(5, end, 4)

for i in z:

 print(i)

📝 7.2.6

Step parameter can also have negative values, that can be used to create a list with
descending values.

range(20, 15, -1)

Creates:

20, 19, 18, 17, 16

• for values start and stop in this case has to apply star > stop
• value given in stop does not display in the list

57

z = range(20, 10, -3)

for i in z:

 print(i)

Creates:

20, 17, 14, 11

📝 7.2.7

How many values will the list generated by the range() function have?

z = range(20, 0, -5)

for i in z:

 print(i)

58

Operations in a cycle

Chapter 8

59

8.1 Revision

📝 8.1.1

Management structures

• sequence - the progression of commands

tradius = input("Enter radius: ")

radius = int(tradius)

print('area:', 3.14 * radius * radius)

print('circuit:', 3.14 * 2 * radius)

• branching - part of the program is only executed if the condition is met

tsalary = input('Enter the salary of the potential spouse: ')

salary = int(tsalary)

if salary < 500:

 print('run away quickly')

elif salary < 1000:

 print('think about it')

elif plat < 2000:

 print('as long as there are two of you, you can make a

living out of it')

else:

 print('he is the one')

• cycle - repetition of the part of the program

tnumber = input("Enter a value: ")

number = int(tnumber)

for i in range(number):

 print('hi')

📝 8.1.2

Definition of repetition

We define the number of repetition:

60

• by listing specific values as part of the line defining the cycle
• by creating some list of values, e.g. using range()

for i in 1,2,5,8,7:

 print(i)

Or:

for i in 'mum','dad','grandpa','grandma','brother-1','brother-

2':

 print(i)

By using range() that creates the list:

• for 1-parameter assignment - range(n) - <0,n-1) values are generated

for i in range(10):

 print(i)

• for 2-parameter assignment - range(a,b) - <a,b-1) values are generated

for i in range(10,15):

 print(i)

• for 3-parameter assigment - range(a,b,step) - <a,b-1) values are generated
but in such a way that the step is added to the generated value

for i in range(10,20,3):

 print(i)

📝 8.1.3

Comments

• programs are becoming more extensive
• so far we have met with comments that were telling us what is supposed to

happen in the program

data loading

61

calculation

data output

• such comments serve for later understanding of the code or for another
programmer

• comment is not intended for the program interpreter and is ignored by the
interpreter

• comment star with a # character and the compiler ignores the text from this
character to the right untill the end of the line

• informal rule is that behing the # character there is a space

txt = input('enter an input') # this line reads the radius

r = int(txt) # cast to an integer

• a multi-line - block comment can be also used
• it begins and ends with three quotation marks or apostrophes

"""This is a block comment

 it can contain several lines."""

print(10+20)

8.2 Calculations in a cycle

📝 8.2.1

A list of income for the whole year is given. Find out how much you had in your
bank account for each month, ussuming you did not spend anything of it.

• the amounts of money are: 1000, 1200, 1120, 1450, 1300, 1210, 1800,
1500, 1354, 1290, 1358, 1700, 1882, 1730

• it is a list for which we have to know the current value after adding the sum
• at the beggining we will probably have zero in our accont

amount = 0

• the list of values changes every month, the money amount increases by the
given value

• the operation repeats = we use cycle
• it always adds the current value = we lists the amounts to be added

62

for i in 1000, 1200, 1120, 1450, 1300, 1210, 1800, 1500, 1354,

1290, 1358, 1700, 1882, 1730:

 amount = amount + i

print(amount)

• we also have a request to print the current value, so we add:

amount = 0

for i in 1000, 1200, 1120, 1450, 1300, 1210, 1800, 1500, 1354,

1290, 1358, 1700, 1882, 1730:

 amount = amount + i

 print(amount)

print('total amount: ', amount)

• or with details:

amount = 0

for i in 1000, 1200, 1120, 1450, 1300, 1210, 1800, 1500, 1354,

1290, 1358, 1700, 1882, 1730:

 print('amount =',amount,'+',i,'=',amount + i)

 suma = suma + i

print('total amount: ', amount)

📝 8.2.2

Calculate the sum of first 100 positive numbers.

• we need to sum up the values 1 + 2 + 3 + 4 + 5 + 6 ... + 99 + 100
• we will add them gradually, in a cycle, which will be repeated from 1 to 100
• in every step we add i-value
• we use _sum variable for storing the temporary result
• _sucet is empty on the beggining - it containts the value 0

sum = 0

for i in range(1, 101): # the last value is supposed to be

100

 sum = sum + i

print(sum)

• or with output:

sum = 0

63

for i in range(1, 101): # the last value is supposed to be

100

 print(i,' sum = sum +', i, ' i.e.', sum, '+', i, '=', sum

+ i)

 sum = sum + i

print('sum is:',sum)

📝 8.2.3

Calculate the product of firt n numbers given n as an input.

Loading is simple:

t_n = input()

n = int(t_n)

• e.g., for 10 it is a multiplication of 1 * 2 * 3 * 4 * 5 * 6 * 7 * 8 * 9 * 10
• we generally have to execute it sequentially just like addition

If we break down the individual steps of the calculation, we need some "storage"
with a neutral value:

sucin = 1

• in case of multiplication it is the value 1 - the result of the calculation does
not change, if we used the value 0 for multiplication, the result would always
be 0

• in case of sum it is the value 0 - the result would not change by adding 0

product = 1

product = product * 2 # we multiply the original value by 2

- 1*2=2

product = product * 3 # we add the multiplication by 3 -

2*3=6

product = product * 4 # we add the multiplication by 4 -

6*4=24...

• or:

64

product = 1

for i in range(1, n + 1):

 product = product * i

print(product)

• or the entire program:

t_n = input()

n = int(t_n)

product = 1

for i in range(1, n + 1):

 print(i,' product = product *', i, ' t.j.', product, '*',

i, '=', product * i)

 product = product * i

print('result:',product)

📝 8.2.4

Multiply the enterd sequence of numbers. Display the number that is being
multiplied at the moment.

E.g., the printout for the sequence: 4, 9, 2, 5, 2 looks like:

1 - 4

2 - 36

3 - 72

4 - 360

5 - 720

• for displaying the serial number we need the counter
• at the beginning we have the value of zero - no step has been executed yet
• in every step of the cycle the value increases by 1
• the variable will be called step

product = 1 # we set the neutral value for the

multiplication

step = 0 # we will count how many time has the cycle

been executed

for i in 4, 9, 2, 5, 2:

 step = step + 1 # the cycle was executed again,

increase the step by 1

65

 sucin = product * i # we multiply

 print(step, '-', product) # we print it

📝 8.2.5

Write a program that finds out how much have you spent for your purchases in the
last week. It asks for the daily amount of money spent.

• we do not know the amounts spent in individual days, we only know that
there is 7 days

• the code can look like:

_sum = 0

text = input('Enter the amount: ') # load the amount for

the first day

daily_consumption = int(text) # convert it to a number

_sum = _sum + daily_consumption # add the amount for the

first day

text = input('Enter the amount: ') # we add the amount for

the second day

daily_consumption = int(text) # cast it to a number

_sum = _sum + daily_consumption # add the amount for the

second day

text = input('Enter the amount: ') # load the amount for

the third day

daily_amount = int(text) # convert it to a number

_sum = _sum + daily_consumption # add the amount for the

third day

What is being repeated?

• more commands(steps) - we can repeat the arbitrary number of commands
in the cylce

• we use the same variable for loading the values from the user (text and
daily_consumption)

• tha variable can be used for storing the value more than one time
• the old value is always overwritten by a new one

This sequence of commands:

66

text = input('Enter the amount: ') # load the amount

daily_amount = int(text) # cast to a number

_sum = _sum + daily_amount # add the amount

is repeated for 7 times.

After the loading and adding of all the amounts to the variable _sum the program
prints only the result:

_sum = 0

for i in range(7): # week has seven days, it is

repeated for 7 times

 text = input('Enter the amount : ')

 daily_consumption = int(text)

 _sum = _sum + daily_consumption

print('In the week you spent ', spolu)

📝 8.2.6

Get the precipitation for the last n days and calculate their average value. The
values are eneter in whole milimetres.

• we do not know anything at the beginning - not the rainfall values, not their
number

• at first we need to know/read the number to be used as a number of
repetition of the loop

text = input('Enter the number of days: ')

n = int(text)

• we can get the average as sum/number
• we load the number of values at the beginning of the program
• we will continuously oncrease the sum by loading the precipitation on

individual days

sum_ = 0

for i in range(n):

67

 text = input('Enter precipitation : ')

 z = int(text)

 sum_ = sum_ + z

• to find out the average we devide the sum by the number - the "/" operator is
used for the division

print('Average value of prcipitation in', n, 'days is',

_sum/n)

The result is the number with a decimal point, e.g.:

5.0

even for integers. That is how Python inform us that the result is generally a real
number.

68

Data types

Chapter 9

69

9.1 Data types

📝 9.1.1

Every variable is defined by two things:

• title (name), according to which we refr to it
• data type, which determines whether it stores text or a number

Experince:

• data loading returns input in text form
• if we wanted to work with such data as with number, we had to retype them

t_n = input('Zadaj cislo')

n = int(t_n)

• Python is a language with dynamic type checking - it is not necessary to
define data types for variables in advance

• the type of the variable is based on the values

Most commonly used data types are:

• integer - integers, e.g. 10 or 5
• float - floating point numbers - storing decimal numbers, e.g. 10.5 or 5.3
• string - a string represented by apostrophes or double quotes

When writing decimal numbers we use decimal point - a comma is evaluated as an
error.

x = 4 # 4 - will be interpreted as an integer, data type

integer

y = 4.0 # 4.0 - will be interpreted as a number with a

decimal point, data type float

z = "4" # "4" - will be interpreted as a string, data type

string

70

📝 9.1.2

Type

• for every variable we can find out its type using the type() function

a = 4

print(type(a))

Program output:

• the printout means that the eneterd value is treated as an integer

Likewise:

b = "Python"

print(type(b))

Program output:

• it means that the entered value is treated as a string

c = 4.2

print(type(c))

Program output:

• it represents a decimal number

📝 9.1.3

Casting functions

• the acquisition of a value by a variable determines the data type of a variable
• to make it possible to execute operations with the concents of variable

intended for different data type, we need operations that can transform data
between individual types

71

Python supports three basic casting functions, that convert one data type to
another data type

• int() - returns a value with a data type int
• str() - returns a value with a data type str
• float() - returns a value with a data type float

a = int(10.5) # returns 10

b = int('69') # returns 69

c = float(100) # returns 100.0

d = float('35.53') # returns 35.53

e = str(24) # returns '24'

f = str(66.99) # returns '66.99'

• if the cast operation fails, the compiler dysplay an error message, e.g.:

aa = 'text'

a = int(aa)

Program output:
ValueError

invalid literal for int() with base 10: 'text'

📝 9.1.4

Get the result of the substraction of two values stored in integer variables and
display it in a form:

8–5=3

• using print() and separating parts with commas, we do not get required
outcome, because it inserts spaces between the parameters

• we combine numbers and text, converting numbers to a text
• we use str() function, which can be use both for a variable and for the result

of a mathematical operation

a = 8

b = 5

result = str(a) + '-' + str(b) + '=' + str(a - b)

print(result)

72

Program output:

9.2 Integers

📝 9.2.1

Numeric types

Numeric type variables (int and float) store numeric values and allow us to execute
following operations:

• + (sum) a + b, e.g.: 10 + 3 = 13
• - (difference) a – b, e.g.: 10 - 3 = 7
• * (product) a * b, e.g.: 10 * 3 = 30
• / (share) a / b, e.g.: 10 / 4 = 2.5

• // (integer share) a // b, e.g.: 10 // 3 = 3, while the decimal part is neglected
• % (remainder after integer division) a % b, e.g.: 10 % 3 = 1
• ** (power) a ** b, e.g. 5 ** 3 = 125, so 5 * 5 * 5

📝 9.2.2

Remainder after division

• integers have an operation that returns a remainder when divided
• % operator is used for notation
• in the last case, an error will occur - you cannot divide by zero...

print(10 % 3) # result - 1

print(10 % 2) # result - 0

print(15 % 4) # result - 3

print(20 % 7) # result - 6

print(10 % 0) # ZeroDivisionError: integer division or modulo

by zero

Program output:

73

1

0

3

6

ZeroDivisionError

integer division or modulo by zero

What is going to be stored in variable x after the program ends?

y = 22

z = 4

x = (y // z) ** (y % z)

print(x)

Program output:
25

📝 9.2.3

Evenness and oddness

• using the modulo (%) operation we can define, whether the entered number
is even or odd

• for odd numbers, the remainder after the division with 2 is 1
• in case of even numbers is 0

• condition, that finds out whether the number is even or odd, can look like:

n = 10

if (n % 2 == 0):

 print(n, 'is even.')

else:

 print(n, 'is odd.')

• alebo:

n = 10

if (n % 2 == 1):

 print(n, 'is odd.')

74

else:

 print(n, 'is even.')

📝 9.2.4

Negative numbers

• they represent exactly half of all registrable integer values
• we eneter a negative number using the - sign before the numerical value

c = -1

d = 15 + -5

• we can enclose a negative value in parentheses:

e = 15 // (-5)

📝 9.2.5

Abbreviated entry

• Python provides the special shorthand version for changing the value of a
variable

• it is used in entries when we want to change the original value of a variable
by an arbitrary operation

E.g., the entry:

poc = poc + 1

Can be abbreviated to:

poc += 1

• the abbreviated entry could be read as increasing the value of the poc
variable by one.

There must be no space between the operation sign and the assignment sign (=).

75

Similarly, the entry:

poc = poc - 3

is equivalent to entry:

poc -= 3

• we change the value of the variable poc by subtracting the value 3 from it

As well as addition and subtraction, we can also enter other operations.

Increase the value in variable x by a factor of ten.

x = x * 10

x *= 10

Decrease the value of b by 15.

b = b - 15

b -= 15

Halves the value stored in the amount variable.

suma = suma / 2

suma /= 2

Execute an integer division of the contents of the sum

variable by three.

suma = suma // 3

suma //= 3

Power the contents of the number variable to the fourth.

cislo = cislo ** 4

cislo **= 4

📝 9.2.6

What is going to be stored in the variable poc after the execution of the following
steps?

poc = 3

poc *= 5

76

poc //= 4

poc -= 5

poc += 15

poc //= 6

poc **= 3

print(poc)

📝 9.2.7

• in abbreviated entry, we do not have to display only a numerical value on the
right side, we can also use a variable

Entry:

a += b

means that the value of the variable a will be increased be the contents of variable
b.

What is the following program going to print?

a = 3

b = 8

a *= b

print(a)

📝 9.2.8

Write a program, that finds out and prints the number of divisors for a given
number.

...

9.3 Decimal numbers

📝 9.3.1

• Python uses data type float to store decimal (real) numbers
• the decimal part is separated from the integer by a dot

77

5.18

• we can recognise the real number in the printout by the fact it has displayed
decimal part

• a number with zero decimal part displays it as .0

a = 10

b = 2

c = 10//2

d = 10/2

print(c) # the result of integer division is an integer

print(d) # the result od "classical" division is a real number

• if we want to specify that the given variable is supposed to be a float type we
let the compiler know by inserting a decimal value

a = 12.5

b = 3.0 # in this case we also enter an integer as a

decimal number

📝 9.3.2

Real numbers are entered in a standard format:

3.1415296536, 556.44

Or in scientific format:

5.5644e2

• which means 5,5644 * 102 = 556,44
• in this notation the integer is between 1 and 10, while the shift of the decimal

point is provided by the exponent

How much is:

328 = ??? # in scientific format

578.33 = ??? # in scientific format

0.328 = ??? # in scientific format

0.00328 = ??? # in scientific format

78

5.14e2 = ??? # in standard format

5.14e3 = ??? # in standard format

5.14e-1 = ??? # in standard format

📝 9.3.3

• the combination of an integer and real number type or the operation for real
numbers returns a real number as a result

The outcome of the following code...:

a = 10

b = 5

c = a / b

print(c)

Program output:

...is a real number.

📝 9.3.4

Loading a decimal number

• we use input() to load a decimal number
• then we convert the text to a decimal number using the float() function

aa = input('Enter a number: ')

a = float(aa)

Determine which one of the two decimal numbers in the input is larger.

...

79

9.4 Mathematical functions

📝 9.4.1

Mathematical functions

• each data type has a set of the standard functions by which we can process
the values

• they are called the buit-in functions
• we do not have to add any "adds-on" to the program to be able to use these

functions
• it applies, that the function processes the value or the values which we enter

in the parentheses (we call them parameters or arguments)
• it returns the result, we can continue to work with, e.g. print it or insert it to a

variable

Every data type has its own built-in functions. For example, numeric data types have
these functions:

• abs() - returns the absolute value of the entered number
• max() - returns the maximal value of the entered values
• min() - returs the minimal value of the enetered values
• pow(x, y) - returns x squared by y, it is the same calculation as x ** y

a = abs(-3) # result 3

b = max(2, 5, 6, 8, 1, 3) # result 8

c = min(2, 5, 6, 8, 1, 3) # result 1

d = pow(3, 2) # result 9

e = abs(-3.5) # result 3.5

📝 9.4.2

Rounding

• rounding has a special place when working with real numbers
• the round() function processes decimal value by rounding it to a integer

value

round(3.45) # result 3

round(5.75) # result 6

80

round(-1.6) # result -2

In Python, .5 values are rounded:

• down in case there is an even number before .5, e.g.:

round(4.5) # result 4

round(6.5) # result 6

• up in case there is an odd number before .5, e.g.:

round(5.5) # result 6

round(7.5) # result 8

What is the result of the following program?

a = 14

b = round(a/4*100)/100

c = a - b

d = round(c)

print(d)

📝 9.4.3

Rounding 2

• for rounding to the specified number of decimal places is used the prevalent
version of the round() function

• the second parameter defines the number of decimal places to which the
value is supposed to be rounded

E.g., to round to two decimal places:

pi = 3.14159

pi2 = round(pi, 2)

print(pi2)

Program output:

81

In case of entering the nagetive value the value is rounded to tens, hundreds, etc.
For example:

a = round(1234, -1) # result 1230

b = round(1234, -2) # result 1200

c = round(1254, -2) # result 1300

d = round(2854, -3) # result 3000

What is the result of?

print(round(13.67, 1)) # result

print(round(1.865, 2)) # result

print(round(136, -1)) # result

print(round(136, -2)) # result

📝 9.4.4

Function nesting

• each function processes the arguments and returns the result, which we can
continue using, e.g.:

x = max(10,20)

print(x)

• we can merge the entry into one command
• we leave out the assignment of the rsult of the function max() to a variable

and simply print the result

print(max(10,20))

The compiler evaluates the entry in this way:

• firstly it processes the innermost function - the maximum of 10 and 20
• it returns the result
• uses it as an argument for the print function

We can also use:

82

a = round(max(5.6, 7.8))

• the innermost max() function is evaluated first
• its result becomes the argument of the round() function
• then the result is assigned to the variable a

This way we can nest practically any number of functions in to each other.

What is the result for the following sequence of commands?

a = 10

b = 3.6

c = min(a, round(abs(round(b-a)) * 3))

print(c)

📝 9.4.5

One-line data loading

Just like we can nest mathematical functions, we also can nest and process all
other functions.

Due to they textural form, we had to carry out the loading of numerical data from
the user in two steps:

• loading
• conversion to a number

aa = input()

a = int(aa)

However, this procedure can be simplyfied thanks to nesting the input() function
into the int() function that transform text into a number.

a = int(input('enter an integer'))

Or:

83

b = int(input('enter a decimal number'))

Write a program that reads from the input an integer representing the number of
liters of fuel in the car's tank and a decimal number with information about the fuel
consumption per 100 km.

Subsequently, the program displays how many whole kilometers the fuel in the
tank is sufficient for.

...

📝 9.4.6

One-line data loading

Just like we can nest mathematical functions, we also can nest and process all
other functions.

Due to they textural form, we had to carry out the loading of numerical data from
the user in two steps:

• loading
• conversion to a number

aa = input()

a = int(aa)

However, this procedure can be simplyfied thanks to nesting the input() function
into the int() function that transform text into a number.

a = int(input('enter an integer'))

Or:

b = int(input('enter a decimal number'))

Write a program that reads from the input an integer representing the number of
liters of fuel in the car's tank and a decimal number with information about the fuel
consumption per 100 km.

84

Subsequently, the program displays how many whole kilometers the fuel in the
tank is sufficient for.

...

📝 9.4.7

One-line data loading

Just like we can nest mathematical functions, we can also nest and process all
other functions.

Due to they textural form, we had to carry out the loading of numerical data from
the user in two steps:

• loading
• conversion to a number

1

aa = input()

2

a = int(aa)

This procedure can be simplyfied thanks to nesting the input() function into the int()
function that transform text into a number.

1

a = int(input('enter integer'))

Or:

1

b = int(input('enter decimal number'))

Write a program that reads an integer and a decimal number from the input.
Integer represents the liters of fuel in a car's tank and the decimal number informs
the program about the fuel consumption per 100 km.

Subsequently, the program displays how many full kilometers the fuel in the tank
is sufficient for.

85

1

...

9.5 Boolean expressions

📝 9.5.1

Boolean expression

video

We are familiar with the expressions:

x = 1 + 2 * 3

a = '10'

b = '20'

c = a + b

• in addition to expressions whose result is a number, we often work with
expressions whose result is true or false

• we refer to these expressions as boolean and we have already encountred
them when using conditions in the if statement

• we often compered variables with each other or variables with values, we
can also compere the values themselves, e.g.:

if 4 > 0:

 print ('true')

else:

 print('false')

• we can replace this code with just the output:

print(4 > 0) # prints True

• if the expression in the brackets is true then its result is True value, in
opposite case the result is False

• is it true that 5 - 3 < 0?

https://youtu.be/uB-jDbja8VE

86

print(5 - 3 < 0) # prints False

Pay attention to the size of the letters. The values true or false are not boolean
values.

Complete the code to determine whether the n is positive.

txt = input('Enter a number')

n = int(txt)

print(n)

📝 9.5.2

Bool type

video

• to store the boolean values we use boolean (bool) type variables
• therefore we ussualy obtain their content as a result of comparison,

verification of the truth of the condition, etc.

The condition, whether a > b, can be verified by the entry in the if structure:

if a > b:

Alternatively, we can also store the result of the evaluation into a variable:

a = 10

b = 5

result = a > b

print(result)

• if the value a is larger than the value b, the value stored in the result variable
will be True

• in the opposite case (lesser or equal), the result variable will contain the
False value after the evaluation

• we can also check the data type of the resulting value:

https://youtu.be/IA0zpIXuIuA

87

print(type(result)) # prints

Program output:

📝 9.5.3

Boolean variable

video

• if we can print the evaluation of the expression, we can also store it in a
variable:

result = 4 > 0

print(result)

• the code first evaluates whether 4 > 0
• then the True value corresponding to the truth is stored into the result

variable

• in another code it is firstly evaluated whether 4 > a + 5, therefore 15
• then the False value corresponding to the untruth is store into the result

variable

a = 10

result = 4 > a + 5

print(result)

📝 9.5.4

Comparison operators

video

• > - is larger, e.g. a > b
• >= - is larger or equal, e.g. a >= b
• < - is lesser, e.g. a < b
• <= - is lesser or equal, e.g. a <= b
• == - is equal, e.g. a == b
• != - is not equal, eg. a != b

Using characters in the wrong order will cause an error (e.g.: =>, or <>).

https://youtu.be/DGbSAYBxl1c
https://youtu.be/GkcxbVFcwgM

88

a = 10

b = 7

result = a => b

Program output:

📝 9.5.5

The result of comparison can be also used on the conditions:

• at first we find the result of the expression
• then we use it in a condition, e.g.:

a = 10

b = 5

result = a == b

if result == True:

 print("The values are equal")

else:

 print("The values are different")

Entry...:

if result == True

...we ussualy enter in the form:

if result

• because the evaluation of the condition result == True depends on what
value the result variable has

• if the condition is true

if vysledok == True

• we ask whether the truth is truth (True == True) – the result is True

• if the variable contains the value expressing false, then the condition is still
the same:

89

if vysledok == True

• we ask whether the false is true (False == True) – the result is False.

The answer to the condition is actually already contained in the result variable:

• if it contains the true value, the result is true (True)
• if false, the result is False

So the following entry is correct and efficient:

if result

📝 9.5.6

Compound conditions

video

In program, we often combine multiple conditions which can be in a different
relationship.

Most often, we encounter the situations in which:

• all conditions must apply simultaneously
• it is enough for one of the conditions to apply

According to the entered age of the employee find out whether he is in the
productive age - between 18 and 70 years.

Task can be solved as follows:

age = int(input('Enter the employee´s age: '))

if age >= 18: # whether the first condition is met

https://youtu.be/PFMn3s8Chr0

90

 # check, whether the age is also simultaneously less then

the upper limit

 if age <= 70: # both conditions are met

 print("The employee is in the productive age")

Or we can combine the conditions into a single expression and evaluate them
trough a single if:

age = int(input('Enter the employee´s age: '))

if (age >= 18) and (age <= 70):

 print("The employee is in the productive age")

• the notation allows to enter two verifications into a single multiple condition
• the fact that they are supposed to apply simultaneously is expressed by

using the boolean clutch and (and simultaneously)
• in a multiple condition, complete conditions are combined - i.e. variable must

be specified in each subcondition

Python does not require the use of parentheses when creating a multiple condition,
but we recommend them to avoid various errors.

📝 9.5.7

Condition improvement

• Python allows to delimit a variable with comparison operators on both sides
• this way we can abbreviate the notations of the boolean expressions
• we do so only if the same variable occurs in both conditions

The expression...:

(n >= 0) and (n <= 10)

...can also be entered as:

0 <= n <= 10

The entry of our program will take on a new form:

91

age = int(input('Enter the employee´s age: '))

if (18 <= age <= 70):

 print("The employee is in the productive age")

Alebo:

age = int(input('Enter the employee´s age: '))

if (70 >= age >= 18):

 print("The employee is in the productive age")

📝 9.5.8

Or clutch

video

• in some cases, the fulfillment of the one of the verified conditions is
suffiecient

• we use boolean clutch or

if (a > 0) or (b < 0)

The evaluation of the expression is true:

• if at least one of the conditions is met – i.e. postačí, ak je a > 0 alebo b < 0
• if both conditions are met

Complete the program so it prints that the number is accepted in case it is
negative or even.

number = int(input('Enter a number: '))

if ():

 print('accepted')

https://youtu.be/MBFJyuNbw8U

92

📝 9.5.9

Compound expressions

video

• simultaneous validity of the several conditions - and,
• fulfillment of at least one condition from the group - or.

The use of this pair is not liminet for the use in if,

• we can use them while working with boolean expressions
• E.g. the result of the expression stored in the c variable

a = 10

b = 5

c = a > b or b < 0

print(c)

• obtained by successively evaluating the individual parts of the compound
condition

• at first we evaluate each part separately:

c = a > b or b < 0

 10 > 5 or 5 < 0

 True or False

• the result of the combination of the truth values true (True) or (or) false
(False) is True.

📝 9.5.10

Let's test the requirement for the number to be both positive and even:

n = 15

We test whether the number is both positive and even:

n > 0 # the result is True

n % 2 == 0 # the result is False

https://youtu.be/2f9IGD7GwEM

93

We connect the rsults with the boolean clutch and:

result = (n > 0) and (n % 2 == 0)

 True and False

 False

📝 9.5.11

Negation

In addition to checking whether the condition is true, we can also use the notation:
if it is not true, then, e.g.:

a = 5

b = 1

zeroDevisor = b == 0 # in this case the result is False

if not(zeroDevisor): # if it is not true that the devisor

equals zero

 quotient = a / b

 print(quotient)

else:

 print("Attempting to divide by zero")

• an entry starting with the expression not - negates the result of the
expression or the content of the variable listed after it

• it makes False from the True value and vice versa

In this case the zeroDivisor contains the False value and the notation in the
condition means:

• if it is not true, that zeroDivisor, calculate the quotient
• resp. if zeroDivisor contains the False value, then execute
• resp. if negated content of the zeroDivisor variable is true, then execute

94

📝 9.5.12

Priority of operations

• when evaluating, we need to take to account the priority of individual
operators

• we know from mathematics that * a / takes precedence over + a -
• in Python, the operations listed in the line above are executed first

*, @, /, //, %

+, -

in, not in, is, is not, <, <=, >, >=, !=, ==

not x

and

or

📝 9.5.13

Compound expressions

The combination of the boolean expressions and boolean variables does not need
to be limited to only two elements

E.g.:

h1 = False

a = 5

b = 7

result = not(a > b) or (b - 5 < a) and h1 or not(h1)

print(result)

...will be evaluated with respected priorities such as:

not(a > b) or (b - 5 < a) and h1 or not(h1)

not(False) or True and False or not(False)

 True or True and False or True

 True or False or True

 True or True

 True

What is the result of:

95

k = 4

j = 2

result = (k >= 5) or (j >= 6) and (j >= k)

print(result)

Program output:
False

How to adjust the following expression so that the result is True?

k = 83

j = 15

result = (k % 20 >= 5) or (j <= 6) and (j < k)

print(result)

96

Strings

Chapter 10

97

10.1 String

📝 10.1.1

String

• data type
• allows us to store and work with a group of characters
• it ussualy represents a word or continuous text

Enclosement:

• apostrophes (')
• quotation marks(")

E.g.:

name = 'Adam'

...inserts the Adam text content into the name variable.

For entry...:

name = Adam

...the compiler would expect the variable called Adam, whose content it would
insert into the name variable.

📝 10.1.2

String operations:

• connecting - the simplest operation
• the execution provides the "+” character
• it creates the third string form the two string by connecting the content of

the second string to the end of the content of the first one

vysledok = 'attention' + 'bites'

print(vysledok) # prints attentionbites

98

We can connect any number of strings or variables, that contain string.

a = 'Mum'

b = 'has'

c = 'Ema'

d = a + b + c

print(d) # does it print Mum has Ema?

📝 10.1.3

String and number connecting

• we need to use number to string casting using str() function

s = 'result: ' # text

a = 3 # number

b = 7 # number

c = a + b # number

d = s + str(c)

print(d)

• if we wanted to use "+" sugn to connect a text and a number we would get an
error message

E.g.:

a = "result: " # text

b = 3 # number

c = a + b

c = b + a

📝 10.1.4

String

• string is often used to indicate the type of a variable containing a text string
• type(variable) returns str value

a = "Python"

print(type(a))

Program output:

99

📝 10.1.5

Casting at the input

• when loading data, all data enter the program as text strings
• for further processing in a different way, it is necessary to cast them

print('Enter an integer: ');

entry1 = input()

a = int(entry1) # cast to an integer

print('Enter a decimal number: ');

vstup2 = input()

b = float(vstup2) # cast to a decimal number

c = a - b

result = 'Difference: ' + str(c) # cast the number to a

text

print(result)

📝 10.1.6

String multiplication

• in addintion to summation, Python also allows to use string multiplication
• one variable needs to be a string and the other on an integer, e.g.:

n = 3

txt = 'uff '

c = n * txt

print(c)

• the result of the multiplication is a text string containing the content of the
text variable repeated n-times in a r

• operations such as division or substraction can not be used on strings

📝 10.1.7

What is the result of the following steps?

ab = '10'

print(ab + ab)

100

print(ab + 'ab')

print('ab' + 'ab')

print('ab' * 3)

print(ab * 3)

print(int(ab) * 3)

print(int(ab) + 3)

print(ab + 3)

print(ab + str(3))

10.2 The basics of working with a string

📝 10.2.1

Working with text

• finding th elenght of the text
• iterating trough characters
• searching for character or string
• changing the size of characters, etc.

📝 10.2.2

String lenght

• = number of characters
• len() function

data = "Mum"

dlzka = len(data)

print(lenght)

• the number of the characters contained in the data variable was stored in the
lenght variable

What does the following code print?

print(len(''))

📝 10.2.3

Index

• string consist of characters
• each character has its place in the string defined by an index

101

• index of the first character is 0 => the second at position 1 etc.
• the last character is on the position one less than the total number of

characters in the string

E.g. for:

data = "Madonna";

the characters are distributed at individual positions as follows:

The number of characters in the string 7, the last character is in position 6.

📝 10.2.4

Characters

• acces to characters is enabled by the notation consisting of the variable
name followed by square brackets with an index

E.g.:

data = 'Sit down'

first = data[0]

print(first)

Acces to individual characters:

data = 'Sit down'

prvy = data[0]

print(prvy) # prints S

print(data[1]) # prints i

print(data[2]) # prints t

print(data[3]) # prints space

print(data[4]) # prints d

print(data[5]) # prints o

print(data[6]) # prints w

print(data[7]) # prints n

print(data[8]) # prints an error

102

• the last character of the string has an index one less than the lenght of the
entire string, i.e.:

last = len(data) - 1

📝 10.2.5

Iteration trough characters of a string

• we can acces each character in the string trough its index
• if we need to iterate trough all of the characters, we usually do this by using

the loop

Print the entered word letter by letter below.

ret = input('Enter a string: ')

lenght = len(ret)

for i in range(lenght):

 print(ret[i])

• range(lenght) generates the values starting with zero and ending with the
dlzka-1 value

• from the index of the first to the index of the last character

📝 10.2.6

Write a program that prints letters in even positions of the string (characters in
position 0, 2, 4, 6, ...).

• we generate the list of values using range
• starting with zero
• ending with the lenght of the string
• with step 2, therefore 0, 2, 4...

ret = input('Enter a string: ')

lenght = len(ret)

for i in range(0, lenght, 2):

 print(ret[i])

103

📝 10.2.7

• we can use the for loop feature, where instead of generating a range we can
directly enter a string

ret = 'Slovakia'

for i in ret:

 print(i)

• at each step of the loop, the next character in the specified string is inserted
into a variable i

• we use iteration when we want to process only the characters of the string,
but we are not interested in their position

10.3 Typical tasks

📝 10.3.1

Write a program that finds how many times the character 's' is found in the given
word.

• we iterate trough the word - trough characters
• if we find the 's' character, we count it in

word = input('Enter a word: ') # read the word from the input

lenght = len(word) # find the number of

characters

the number of found characters will be stored in the number

variable - 0 at the beggining

number = 0

for i in range(lenght): # we iterate trough the

positions in loop from 0 to lenhgt-1

 if word[i] == 's': # if there is an 's' in the

position i, we increase the number

 number = number + 1

print('The word contains', number, 'of "s" characters') #

output

📝 10.3.2

• the same thing once again

104

Write a program that finds how many times the character 's' is found in the entered
word.

• and the solution is only possible in Python
• if we use strig in in, the loop iterates it trough the characters
• it inserts the following character into the variable i at each step:

word = input('Enter a word: ') # read the word from the input

number = 0 # number of found characters

- 0 at the beggining

for i in word: # we iterate trough the

characters in the loop

 if i == 's': # if the investigated

character is 's', we increase the number

 number = number + 1

print('The word contains', number, 'of "s" characters') #

output

📝 10.3.3

Working with numbers

Write a program that finds out how many even and odd digits are present in the
number read from the input as a string .

• we will work with characters as with numbers - digits (125 has digits 1, 2, 5)
• we need to cast each character to a number using int()
• then using % we determine, whether the digit is even

number = input('Enter a number: ') # we read the number from

the input

even = 0 # the number of even and odd is

0

odd = 0

for i in number: # in the loop we iterate

trough the digits in the word

 digit = ? # each character (digit) is

casted to a number

 if digit ??? : # aif the digit is divisible

by 2, we increase the even

 even = even + 1

 else: # else odd

105

 odd = odd + 1

print('The number contains', even, 'even and', odd, 'odd

digits.')

📝 10.3.4

And again the same thing:

Write a program that finds out how many even and odd digits are present in the
number read from the input as a string.

• we do not have to solve everything using mathematics
• we know that the digits, or characters 0,2,4,6,8 are even and the others are

odd
• so if the read digit is 0 or 2, or 4, or 6, or 8, we increase the number of even

otherwise odd
• if we remember the boolean expressions, we know that we write or using or
• the name of the variable is stated in each condition

number = input('Enter a number: ') # we read the number from

the input

even = 0 # the number of even and odd is

0

odd = 0

for i in number:

 # if the investigated character is 0,2,4,6,8 in other

words 0 or 2 or...

 if i == '0' or i == '2' ??? :

 even = even + 1 # we increase the number of

even

 else: # else odd

 odd = odd + 1

print('The number contains', even, 'even and', odd, 'odd

digits.') # output

📝 10.3.5

And the last improvement:

Write a program that finds out how many even and odd digits are present in the
number read from the input as a string.

• again usable specifically in Python onoly

Entry:

106

if i in '0' or i == '2' or i == '4' or i == '6' or i == '8'

• we test, whether the variable has one or the other or another value
• we can use in operator, that tests, whether the value is present in the list>

if i in '02468':

The whole program looks like:

number = input('Enter a number: ') # we read the number from

the input

even = 0 # the number of even and odd is

0

odd = 0

for i in cislo:

 if i in '02468' :

 even = even + 1 # we increase the number of

even

 else: # else odd

 odd = odd + 1

print('The number contains', even, 'even and', odd, 'odd

digits.') # output

📝 10.3.6

Similar program:

Write a program that finds out how many vowels there are in the enterd word.
Consider only lowercase letters.

• vowels are a, e, i, o, u, y
• we take each character from the read string and determine, whether it is

present in this list (in)

word = input('Enter a word: ') # read the word from the

input

vowels = 0 # the number of vowels is zero in

the beggining

for i in word: # we iterate trough the

characters of the word in the loop

 if i in 'aeiouy': # if the investigated

character is in the list of vowels

107

 vowels = vowels + 1 # increase their number

print('The word contains', vowels, 'vowels.') # output

📝 10.3.7

Write a program that prints a mirror image of the entered word.

• Mama -> amaM
• winter -> retniw
• at first we create a separate variable into which we will insert characters
• we insert each following character in the sequence before the existing string,

napr. for the word Aladin we will proceed as follows:

A - result = "A"

l - result = "l" + result, i.e. "lA"

a - result = "a" + result, i.e. "alA"

• we simply rewrite the idea:

word = input()

mirror = ''

for character in word:

 # we instert the processed character before the string

created so far

 mirror = character + mirror

 print(mirror)

print("result:", mirror)

10.4 Characters

📝 10.4.1

Character

• the basic building element of a string
• we can compare characters based on their order, which resembles the

alphabet

 'a' < 'b' < 'c' … < 'z'

• all uppercase letters are lesser than all lowercase letters

108

'A' < 'B' … < 'Z' < 'a' < … < 'z'

• it is the consequence of character encoding in the computer
• each character has its own numerical code based on which the system

knows what form to give the character
• characters are usually represented by tan ASCII table containing 255 base

characters
• currently the alphabets are necoded using Unicode/UTF-8 encoding, but the

first 128 characters are encoded the same way
• not all characters are displayable, in printouts we only use characters from

32 to 126

print("ASCII table:")

for i in range(32,127):

 print(i, '-', chr(i))

📝 10.4.2

Upper and lowercase letters

• the uppercase letter - between the first uppercase and the last uppercase
character

• lowercase letter - between the first lowercase and the last lowercase
character

• digit - between the smallest and the largest digit

letter = input('Enter a character: ')

if 'a' <= letter <= 'z':

 print('lowercase letter')

elif 'A' <= letter <= 'Z':

 print('uppercase letter')

else:

 print('it is not a letter')

📝 10.4.3

Character and its code

• ord() –returns the position of the character in ASCII table, napr. ord('A')
return the value 65

• chr() – returns the character, which is in the entered position, e.g. chr(65)
returns 'A'

109

For the enetered character it prints its predecessor and successor.

• we use ord() and chr() functions
• we find the character's position in the ASCII table using ord()
• to get the predecessor, we use chr() to print a character at a position one

smaller
• to get the successor, we use chr() to print a character one position larger

character = input('Enter a character: ')

poz = ord(character)

print('predecessor: ', chr(poz - 1))

print('successor: ', chr(poz + 1))

📝 10.4.4

What is the output of the code:

print(chr(ord('2') - 2))

📝 10.4.5

Comparison

• we can determine the similarity of the strings trough a simple comparison

r1 = 'Grandma'

r2 = 'Grandpa'

if r1 == r2:

 print('the same')

else:

 print('different')

• string comparison does not tell which string is alphabetically larger or
smaller

• for alphabetical comparisonis used the "classic" comparison using character
positions in the ASCII/Unicod etable

• it progresses in both strings from the first position
• when different characters are encountered, their position in the ASCII table is

compared
• the string, whose first different character is in the smaller position, is smaller

than the other one

'Mama' < 'Tata'

110

'Michal' > 'Michaela'

'Ivan' < 'Ivana'

📝 10.4.6

Compare:

mum dad

spring summer

autumn winter

Aladin Jasmina

donkey Shrek

📝 10.4.7

Comparing numbers

• we usually compare numbers based on mathematical rules
• however, there may also be situations when we compare them

lexicographically - as a text

It applies that:

0 < 1 < 2… < 9

'0' < '1' < '2'… < '9'

Although it applies that:

'12' < '13'

It also applies that:

'122' < '13'

• because the character '2' is at a smaller position in ASCII table than '3'.

📝 10.4.8

What is the result of the following program?

a = 'Dingo'

b = 'Bingo'

111

print(a > b)

📝 10.4.9

Find the maximum digit in the entered number. For example for 784541 it is 8.

• the number of digits is limited when using a numeric types
• we use string to load long numbers

The process is simple:

• at the beggining we declare the smallest possible value, therefore 0, as the
largest digit

• we will gradually read the values from the individual positions of the string
(from the beggining to the end) and compare them with the largest value
found so far

• given that the alphabetical order od the digits is the same as their order by
size, we can compare text

number = input()

mx = '0' # or mx = number[0] we are working with

characters, so max will also be saved as a character

for digit in number:

 if mx < digit: # if the current digit is larger than the

largest one so far

 mx = digit # we will remember it

print(mx);

10.5 Special characters

📝 10.5.1

Special characters 1

• they can be used for the printout of certain characters and adjusting the
layout of the text

• \' – inserts an apotrophe into the text
• \" – inserts quotation marks into the text
• \\ – inserts a backslash into the text

print("We are starting to learn \"Python\"")

• we used the quotation marks to enclose the string as well as in its content
• thanks to the writing in the form of \" there was no error

112

📝 10.5.2

Special characters 2

• there are used for the printout formatting
• \n - new line character, moves the cursor to the beggining of a new line
• \t – tab, inserts a break, that indents the following text at the tab position

print('Hi, \nI am Emil.'))

Program output:
Ahoj,

Ja som Emil.

• \n character moves the cursor providing text output to a new line
• printout after \n continues in a new line

📝 10.5.3

Tab

• \t character is used as a tabulator
• indents following text to the imaginary nearest tab position

print('Mother: \tteacher')

print('Father: \tclerk')

print('Daughter: \tpupil')

print('Son: \tpupil')

Program output:
Mama: učiteľka

Otec: referent

Dcéra: žiačka

Syn: žiak

📝 10.5.4

print('my dog:\tKejsy')

print('neighbors dog:\tZahraj')

113

Program output:
môj pes: Kejsy

pes u suseda sprava: Zahraj

• sometimes it is necessary to use more tabs for correct indentation
• depending on the compiler the tab replaces e.g. maximum 8 spaces (or 4)
• the character after the tab always starts at the position 8*x + 1 (9,17,25 etc.).

After addidng the tabs we get to the required outcome.

print('my dog:\t\tKejsy')

print('neighbors dog:\tZahraj')

Program output:
môj pes: Kejsy

pes u suseda sprava: Zahraj

📝 10.5.5

Print() function

• special settings allow changing the form of the printout
• sep determines which character to insert as a separator in the print(); the

defualt setting is space
• end determines which character is inserted at the end of the written text; by

default the character \n is set, which is wrap - moving the cursor for the
printout to a new line

The simplest use is to replace the separator with a line terminator.

• string separated by commas in the command are written on separate lines:

print('one', 'two', 'three', sep = '\n')

Program output:
jeden

dva

tri

• if we anter a semicolon as separator

print('one', 'two', 'three', sep = ';')

114

Program output:
jeden;dva;tri

• if necessarry, the separator can also contain more characters, e.g. '; ' or '...'

📝 10.5.6

• the end parameter determines what sign or string is supposed to be printed
after the printout of all the text stated in the print() function

• by default it is set to \n which causes the each printout to move the cursor to
a new line at the end

• changing the end parameter ensures that the cursor does not move to a new
line after each printout

print("Hi", end = ", ")

print("long time no see", end = ", ")

print("how are you?")

• first two commands print a comma and a space after the text
• the last printout does not have the end parameter changed so there will be a

delination that would be reflected in the next run

📝 10.5.7

print() with f

• in some printouts, the division of the text into text and variables complicates
clarity

x = 10

y = 20

z = x + y

print('The sum', x , 'a', y, 'is', z, '.')

Program output:
Súčet 10 a 20 je 30 .

A simpler form of notation is available for structured statements:

print(f'Sum {x} and {y} is {z}.')

115

• the entry before the text in quotation marks or apostrophes itself contains
the letter f

• based on this the compiler knows, that the content of the following string
needs to be modified

• substitutes the value of the corresponding variables instead of the contents
of brackets {}

• every space and every character staded inside the formating string will also
be reflected in the printout

10.6 Slices

📝 10.6.1

Slice

• we can get to any character in the string using square brackets

ret = 'Sagarmatha'

x = ret[2]

print(x)

• we can read several characters from the string using the entry that we refer
to as slice

• it is created by specifiing the selection of characters for the variable name
• the slice bourders are to generating a list via range()

x = ret[beggining : end]

ret = 'Sagarmatha'

x = ret[2:4]

print(x)

• it starts at the position 2 and ends one position before the entered end value
(i.e. it takes the 3rd character as the last)

📝 10.6.2

What will the following code print?

ret = 'Michelangelo'

print(ret[0:len(ret)]) # prints

print(ret[0:6]) # prints

print(ret[7:len(ret)]) # prints

116

📝 10.6.3

Step in a slice

• we can also use step in the slice
• the notation then looks like:

x = ret[beggining : end : step]

ret = '123456789'

x = ret[1 : 8 : 3]

print(x)

• the character selection starts at the 2. character (position 1 – value 2), it
moves by 3 (value 5) and again by 3 (value 8) and ends because it has
exceeded the value of the end parameter

📝 10.6.4

What will the following code print?

ret = '01030527119'

x = ret[3:9:2]

print(x)

📝 10.6.5

• if we omit a parameter in the slice entry, Python will automatically fill it in

1

ret = '0123456789'

2

print(ret[7:]) # from the character in position 7 to the end

- 789

3

print(ret[:6]) # from the beggining to the position 6 -

012345

4

117

print(ret[:]) # from the beggining to the end

• the version with step indication also works

1

print(ret[::2]) # the result is 02468

📝 10.6.6

What will the following code print?

1

ret = 'abcdefghijkl'

2

x = ret[:2] # variable x contains

3

print(x)

4

x = ret[::3] # variable x contains

5

print(x)

📝 10.6.7

Negative indexes

• Python also allows indexing with negative values
• negative indexes start numbering from the last character, which has an index

of -1
• it proceeds from the last character to the first so that the second character

from the end has the index of -s etc.

ret = 'Slovakia'

print(ret[-1]) # prints a

118

print(ret[-2]) # prints i

print(ret[-3]) # prints k

#...

print(ret[-8]) # prints S

📝 10.6.8

• we can use negative values even as part of the slice
• the evaluation principle consist of replacing a negative value with a real

index
• in case the end value is less than the start evalue, the result is empty

ret = '0123456789'

x = ret[-1 : -3] # means that it will start on the last

character i.e. index 9 and ends at the third from the end i.e.

7

print(x)

• in another code the characters from the 3rd from the end (7) to st from the
end (9), which will not be included in the printout, i.e.: 78

ret = '0123456789'

x = ret[-3 : -1]

print(x)

📝 10.6.9

Negative step

• during the selection of characters, it proceeds by going from a larger index to
a smaller one

• therefore the index at the first position must be larger than the index on the
second

ret = 'Solomon'

x = ret[5:1:-1]

print(x)

• we can replace indexes by their negative values

ret = 'Solomon'

119

x = ret[-2:-6:-1] # it starts at the penultimate and proceeds

to the left

print(x)

📝 10.6.10

Omitting values

• if we omit the values in the slice entry and set only the step, in the case of a
negative step Python will fill them in by starting with the last and ending with
the first character

• prints the text in revesre order – the result starts from the last character

ret = 'Solomon'

x = ret[::-1]

print(x)

10.7 Basic functions

📝 10.7.1

Removing spaces

• the removal of spaces from the end and beggining of the string provides the
strip() function

• it is used as part of each string type variable – we separete it from the
variable name with a dot

• it does not remove the spaces from inside the text, only from the edges

ret = ' Mum has Emma at home. '

ocisteny = ret.strip() # contains 'Mum has Emma at home.'

📝 10.7.2

Character type

• ret.isdigit() tests whether all characters in the string are digits, if so it returns
True, otherwise it returns False

• ret.isalpha() tests whether all characters in the string are letters, is so it
returns True, otherwise it returns false False

• ret.isalnum() tests whether all characters in the string are letters or digits; if
so it returns True, otherwise it returns False (the string must not contain
spaces, commas, brackets etc.)

120

ret = '1.2'

print(ret.isdigit())

ret = 'variable4'

print(ret.isalnum())

📝 10.7.3

Letter size

• ret.islower() tests whether all characters in the string are from a set of
lowercase letters

• ret.isupper() tests whether all characters in the string are from a set of
uppercase letters

• only letters are checked when executing functions - other characters are not
considered

ret = 'beta 7'

print(ret.islower())

📝 10.7.4

Conversion uppercase -> lowercase and vice versa

• in programs, we usually do not waste time checking whether the string
contains only the upper/lowercase letters

• we just convert it to lower/uppercase letters
• ret.lower() as a result it returns all letters converted to lowercase letters
• ret.upper() as a result it returns all letters converted to uppercase letters
• the original string remains unchanged

ret = 'Asta La Vista'

ret1 = ret.lower()

print(ret) # prints unchanged 'Asta La Vista'

print(ret1) # prints changed 'asta la vista'

ret = 'Asta La Vista'

ret1 = ret.upper()

print(ret) # prints unchanged 'Asta La Vista'

print(ret1) # prints changed 'ASTA LA VISTA'

121

While loop

Chapter 11

122

11.1 While loop

📝 11.1.1

Loop with an unknown number of repetitions

• sometimes we can not determine the number of repetitions of the loop
• but we know the conditions under which the repetition should continue
• we can provide the execution with the while statement and the condition, the

fulfillment of which ensures the execution of commands in the body a the
loop

while condition:

 block of commands

• the structure is similar to the if function
• the commands contained in the while loop are being repeated until the

condition is met (it is evaluated as True)

📝 11.1.2

This is how the loop works:

1. it verifies the validity of the condition
2. if the condition is met, the block of commands is executed
3. the execution returns to the step 1

x = 1

while x < 6:

 print(x)

 x += 1

• in the block of commands, it is necessary to change the variable which is
being tested in the condition

• if we would not do so, the condition would be constanly met and the loop
would go on forever

• in our case we had to raise the value x by o 1

📝 11.1.3

Print "Hi" 10 times below.

• the task is the same as when using the for loop

123

• every task that requires the commands repetitions can be entered trough
any type of the loop

• in this case, however, the programmer has to provide all the operations
contained in the for structure in separete commands:

• setting the initial value of the control variable
• condition determining the end of the loop
• execution of the commands in the loop
• increasing the value of the control variable

i = # control variable inicialization

while i : # while the condition is met, do

 print('Ahoj') # command execution

 i = # increasing the value of the counter

📝 11.1.4

Print the even numbers from the interval from 6 to 18 using the while loop.

• we will print the variable content
• the initial value is 6
• it will increase by 2 in each step of the cycle
• the loop will be executed until the value exceeds 18

number = 6

while number <= 18:

 print(number)

 number = number + 2

We could rewrite the task into a loop with a known number of repetitions as follows:

for number in range(6,18,2):

 print(number)

📝 11.1.5

• the while loop is reffered to as a safe loop
• it tests the fulfillment of the condition first and only then it executes the

activity
• if the condition is not already met during the first verification, the commands

in the loop do not even have to run once, e.g.:

124

Print all numbers, that lie between two integer limits.

lower = 10

upper = 10

i = lower

while i < upper :

 print(i)

 i = i + 1

print('end')

• with the currently set value no number is printed
• the condition is already not met during the first verification - i (10) it is not

less than upper(also 10)
• of course the loop can be executed for different value of the upper and lower

limit

📝 11.1.6

Break

• the break statement allows a premature termination (interruption) of the
loop

• it can be used both in the while, and in the for loop

for i in range(100):

 if i > 20:

 print('it is too much for me')

 break

 else:

 print(i)

print('end')

• the loop prints the i values and in case it exceeds 20, terminates the loop by
the break statement - the execution continues with the command after the
loop - print('end')

The same entry fro the while loop:

i = 0

while i < 100:

 if i > 20:

 print('it is too much for me')

 break

125

 else:

 print(i)

 i = i + 1

print('end')

📝 11.1.7

Complete the program that finds out whether the entered number is a prime
number

• a number is prime if between the value 2 and the number one less than our
number can not be found any number that would divide it without the
remainer

• if we find such number, we do not have to continue with the investigation
and we can print that it is not a prime number

n = int(input('Enter a number: '))

primenumber = True

i = 2 # investigation starts from value 2

while i # it will run untill i < n

 if n : # if n is divisible without a remainder, we

have a divisor

 primenumber = False # we set that it is not a prime

number

 # we end the loop execution

 i = i + 1 # we move to the next value

here we continue after the end of the loop or the command

if primenumber:

 print('it is a primenumber')

else:

 print('it is not a primenumber')

📝 11.1.8

More efficient solution

• we could write the divisibility condition directly into the loop condition
• the loop would ensure increasing of the investigated value untill the

remainder after the division was zero
• this situation will definitely occur and it will occur at the lates if i has the

value n
• and if i has the value n after the end of the loop it means that we went trough

all smaller values and have not found the divisor

126

n = int(input('Enter a number: '))

i = 2 # investigation starts from value 2

while n % i != 0: # until I find the divisor

 i = i + 1 # I move to the investigation of the next

number

#----------------------------------

if i == n: # if I get to the number itslef, it is a

prime number

 print('it is a primenumber')

else:

 print('it is not a primenumber')

📝 11.1.9

Check the correctness of the program that detects whether the character 's' is
present in the entered text string.

• we can verify the existencion of the character in the condition of the loop and
then, when the 's' is found, print that we have found it and end the loop

ret = input()

i = 0 # investigation starts from the

position 0

while ret[i] != 's': # untill I find the character

 # print(ret[i])

 if ret[i] == 's': # if I found the character

 print('mam ho') # inform the user

 break # end the loop

 i = i + 1

📝 11.1.10

Correction

• the problem occurs if we try to read a character at the position beyond the
end of the string

• such character doesn not exist and the program would terminate with an
error

• the silution is the evaluation of two conditions
• we add the condition that checks whether we are not beyond the last

character

ret = input()

i = 0

127

while (i < ?? (ret)) ?? (ret[i] 's'):

 i = i + 1 # moving to the next character in the string

if i len(ret):

 print('I found')

else:

 print('was not found')

📝 11.1.11

Order matters

• if i reaches the value len(ret) then the attempt to read the character ret[i]
ends with an error

ret = input()

i = 0

while (i < len(ret)) and (ret[i] != 's'):

 i = i + 1

• therefore before we enter the condition we verify whether i < len(ret)
• if so, the evaluation of the condition continues
• otherwise the evaluation of the condition ends, because the result (of two

conditions that are supposed to apply simultaneously) will be False, no
matter what the result of the second part of the condition is – therefore, a
character outside the string will not be read

• if parts of the condition would be reversed, the program would crash every
timeit went past the last character of the string and tried to compare it to 's'

11.2 Endless loop

📝 11.2.1

Endless loop

• an endless loop is usually undesirable from program execution
• some tasks are easier to be eneter using an endless loop, and in the special

case, jump out of it using break statement

128

• the easiest way to write a still true condition is with True (we do not use the
"calculation" of the condition, but just enter the result)

while True:

 command

• the moment we achieve the desired results we can end the loop

while True:

 command

 if condition:

 break

📝 11.2.2

Input control

• endless loop is often used when testing the value of an input variable
• we want the user to enter a positive integer and we should also chack it
• if he did not meet the request we ask for it again and again and again, untill

the program recieves the required value
• if the user keeps entering a negative value we can continue forever
• after entering the correct value the loop is interrupted and the program

continues after the loop

while True:

 n = int (input('Enter a positive value: '))

 if n > 0:

 break

print('We can continue')

📝 11.2.3

Input control differently

Of course, we can avoid each use of the break statement by adding a suitable
condition.

n = int (input('Enter a positive value: '))

while n <= 0:

 n = int (input('Enter a positive value again: '))

print('We can continue')

129

Only the programmer's habits and the clarity of the code decide whether to use the
version with or without the break statement.

📝 11.2.4

List with an unknown number of elements

Write a program that finds a total weight of the passangers on the Titanic. We will
not enter the number of passangers at the beggining but we will end the list by
entering the value 0.

• since do not know the number of passangers we need to use a loop that will
be executed untill the value 0 is entered

print('Enter the weight of th epassangers.')

sum_ = 0 # we set the starting value for the sum

while : # we use an endless loop

 weight = int(input('Enter the weight: '))

 if weight == 0: # if the termnation by 0 was entered

 # end the loading

 sum_ = sum_ + weight

print('the total weight is',sum_)

130

Simple lists

Chapter 12

131

12.1 Simple lists

📝 12.1.1

Python has its own specifics when working with variables.

One of them is the ability to assign values to multiple variables in one command.

a, b, c = 10, 20, 30

print(a,b,c)

This entry:

• assigns to the first variable (a) the first value enterd after the "=" character,
i.e. 10

• to the second variable (b) the value 20, etc.

📝 12.1.2

• it is also possible to set the same value for several variables in one line

x = y = z = 20

print(x,y,z)

The assignment goes from the right to left:

• first 0 is assigned to the vraiable z
• then the z value is assigned to y
• eventually the y value is assigned to z

What is printed after the execution of the following sequence of commands?

a = 5

b = 7

c = 10

a, b, c = c, a , b - a

print(a, b, c)

132

📝 12.1.3

Split

• we often need to load more then one value into the program
• the loading of the e.g. three values (names) could look like this:

ret1 = input('Enter the 1st name: ')

ret2 = input('Enter the 12nd name: ')

ret3 = input('Enter the 3rd name: ')

• there is also an option to load all three names at once - by entering them in
one line

• strings have a split() function
• it can split the text into multiple parts based on the use of the space

E.g.:

Ivan Michal Zuzana

• from the input, split() can split into three different values, which are inserted
into three different variables

ret1, ret2, ret3 = 'Ivan Michal Zuzana'.split()

The entire load would look like:

ret = input('Enter three names separated by a space: ')

ret1, ret2, ret3 = ret.split()

print(ret1)

print(ret2)

print(ret3)

Attention, if the string is not divided into correct number of words, the program will
crash.

📝 12.1.4

Split 2

• sometimes the list also contains multi-word values
• e.g., for the first names Milan Rastislav, Adam Ivan etc.

133

• using the simple split() would be problematic due to the large number of
spaces

• split() also has a form for such purposes, in which we can enter the dividing
character

ret = input('Enter 4 names separeted by a comma: ')

a,b,c,d = ret.split(',')

print(a)

print(b)

print(c)

print(d)

• input is entered in the form where individual names or double names are
separated by commas

• attention, the space after a comma is considered as a normal character in
this case

Adam,Beata Anna,Jozef František,Ivan

📝 12.1.5

Unknown number of elements in list

• the for loop allows iterating trough a list of words as follows

for druh in 'cat', 'dog', 'fish', 'hamster':

 print('My favourite animal is', kind)

• if we use this cability of the loop and combine it with split() function, we can
read the list from the input separated by spaces or commas with an
unknown number of elements in advance

• then we can evaluate each value in the loop individualy
• the following program reads a line of comma-separated values and prints

each one of them

zoznam = input('Enter words separated by commas: ')

for i in list.split(','):

 print(i)

📝 12.1.6

Finf the number of time the name entered in the input occurs in the comma-
separated list of names.

134

Input: Anna,Beta,Anna,Ivan,Jan,Samuel,Peter,Anna,Jan

Anna

Output: 3

code here

135

Random numbers

Chapter 13

136

13.1 Random numbers

📝 13.1.1

Random integer

• useful tool for testing programs, or introducong the element of randomness
into a game or programs

• we first need to connect the random number generator to the program -
import it

• we get a library (modul) allowing to get random values

import random

• basic functions:

end = 20

nah = random.randrange(end) # generates a list using range in

the range 0 to -1 and selects a random number from it

print(nah)

random.randrange(beggining, end) # generates a random value

from the interval start... end -1

x = random.randrange(-10, 11)

print(x)

random.randrange(beggining, end) # selects a random values

from the list range(start, end, step)

x = random.randrange(-10, 11, 2) # generates random even

number in the range -10 to 10.

print(x)

📝 13.1.2

Random decimal number

import random

x = random.random() # generates a random value from the

interval <0,1)

print(x)

137

random.uniform(beggining, end) # generates a random value

from the interval <="" pre="">

138

Loop within a loop

Chapter 14

139

14.1 Loop within a loop

📝 14.1.1

Nested loop

• many tasks can be solved using a single loop
• it is not anything unusual to require to use a loop in the body of another loop
• the loop inside another loop is called nested loop
• it has the form:

for i in range(10):

 for j in range(5):

 comamnd

• care must be taken to ensure that the control variables have different names

📝 14.1.2

Write a program that prints 1 character 1 in the first line, 2 characters 2 in the
second and so on, until 9

• the solution of this task requires two different loops:
• in the first loop we change the digit that is being printed
• in the second we print this digit, the number of printouts is same as the value

that is being printed

for i in range(10): # progresses from 1 to 9

 for j in range(i): # this line ensures the repetition of

the printout i times

 print(i,end="") # and this printout of the value set in

the first loop without the indentation

 print() # after printing out i numbers, it

indentates

📝 14.1.3

Write a program that draws a square of "o" characters for the entered n.

n = int(input('enter the dimension: '))

for i in range():

140

 for j in range():

 print('o',='')

📝 14.1.4

Write a program that, for the entered integer values m and n, displays m rows
below each other and in each there will n circle "o", i.e., an m x n ractangle

m = int(input('enter the number of lines: '))

n = int(input('enter the number of columns: '))

for i in range(m):

 for j in range(n):

 print('o', end = '')

 print()

• the solution is good, but unefficient
• in the nested loop the we always execute the same activity – we always print

the character "o" the same number of times
• this operation could be simplified by preparing the entire line (inserting it into

a text variable) and then printing it – all of the lines would be printed in one
step

m = int(input('enter the number of lines: : '))

n = int(input('enter the number of columns: : '))

we fill the line variable with n characters

line = ''

for i in range(n):

 line = line + 'o'

we print the entire line m times

for i in range(m):

 print(line)

• loops are independent of each other, we may (or may not) use the same
control variable

• in the first case we execute the operations in the loop m x n times
• in the second case we repeat the assignment to the variable n times and the

and the printout m times - the resulting number of operations is m+n

📝 14.1.5

Search in string

• find() returns the position of the searched substring

141

text = 'Wolfgang Amadeus Mozart'

poz = text.find('ga')

print(poz)

• if the enterd substring does not occur in the string, -1 is returned
• we can use this fact to inform the user or for verification

text = 'Wolfgang Amadeus Mozart'

poz = text.find('ba')

if poz == -1:

 print('The substring was not found.')

else:

 print('The substring starts at the position', poz, '.')

• it is possible to search the string not from the beggining, but from the
entered position using a variation of find() with two parameters, the second
parameter defines the position which the search should start from

•

text = 'Wolfgang Amadeus Mozart'

poz = text.find('a',10)

print(poz)

📝 14.1.6

Write a program that detects how many time the entered substring is found in it.

text = "sama sasa je nesamostatna" #input()

substring = "sa" # input()

number = 0 # we set the number of found substring

index = 0 # we remember where we started searching, so that

in case of founding substring, we moved past its beggining

while the substring is located in the string from the

entered position

while text.find(substring, index) > -1:

 # it means the substring was found, increase the number

 number = number + 1

 # and move the index one further than the currently found

substring position

 index = text.find(substring,index) + 1

print(number)

142

Functions

Chapter 15

143

15.1 Function

📝 15.1.1

Function

• we are famialiar with the built-in functions (random, round a etc.)
• they execute a simple task or return some value
• we can also define our own functions

Custom function:

• solves a certain partial task
• contains the sequence of commands that are repeated several times in a

program
• allows the creation of a program hierarchy, increases clarity
• form of the function is:

def my_function():

 command1

 command2

 command3

• in order for the commands placed in the function to be executed, we need to
call for the function at some place in the code

...

my_function()

....

📝 15.1.2

Types of functions

Function can behave in different ways:

• executing only a sequence of commands (this is called a procedue in some
languages)

• executing a sequence of commands and returning a result (this is also called
a function in different languages)

• we have already used the returning result functions quite intensively:

144

a = 10.5

b = round(a)

print(b)

import random

c = random.randrange(10,20)

d = random.randrange(20,30)

print(c, d)

• functions mentioned above also have parameters from which the commands
inside function are executed

📝 15.1.3

Custom function

• the def key word is used for defining the function
• for creating names applies the same rules as for variables

def my_function():

 command/s

Create a function called greeting, that says Hi.

def greeting():

 print('Hi')

• however, creating and starting the program in which the function is defined
does nothing

• we have to ensure the launch of the function from the main program
• then the entire code file looks like this:

def greeting():

 print('Hi')

greeting()

• or we can call for the one function several times:

def greeting():

 print('Hi')

145

greeting()

greeting()

greeting()

greeting()

📝 15.1.4

Use of functions I.

• the program division into the logical moduls/units
• it allows us to first prepare the whole program and then formulate its

individual parts

def opening():

 print('Hi I am super program')

 print('I can count to 10')

def core():

 for i in range(1,11):

 print(i)

def ent():

 print('... and this is the end')

opening()

core()

end()

📝 15.1.5

Functions in different files

• we can use the import statement dor the functions that are not built-in inside
the Python core

import math

import random

• storing custom functions in separate files can be quite useful sometimes

Let's have the file named functions.py.

146

this is a separate file named functions.py

def pozdrav():

 # write the code of your function here

• and the file/program that wants to use this function
• we can import this function from the file functions.py as follows:

from functions import greeting

pozdrav()

• or if we want to use all the function from the file functions.py then:

import functions

functions.greeting()

📝 15.1.6

Function with a parameter

We use the function:

• when we want to logically split the program
• when there is a repeating sequence of commands in the program
• when there is a similar sequence of commands differing only in parameterd

Write a program that draws rectangles defined by dimensions a and b from the
input: a x b, b x a.

• if I had a method available to draw a rectangle with a spaciefied dimensions,
I would first call the one rectangle, then the other:

a = int(input())

b = int(input())

draw_rectangle(a,b)

draw_rectangle(b,a)

• just one more little thing is missing - a function to draw a rectangle
• we need to get its dimensions - parameters in the input
• we can use them as standard variables

147

def draw_rectangle(lines, columns):

 line = 'o' * columns

 for i in range(lines):

 print(line)

we repeat the body of the program

a = int(input())

b = int(input())

draw_rectangle(a,b)

print()

draw_rectangle(b,a)

📝 15.1.7

Parameters

• the function we used had two parameters

def draw_rectangle(lines, columns):

 line = 'o' * columns

 for i in range(lines):

 print(line)

• parameter is entered as a variable, whose task is to "bring" a value into a
function

• by using a variable in a function, we are actually working with the value it
represents

• value, that is inserted into the variable, is specified when calling the function

draw_rectangle(4, 5)

• the order in which the arguments are passed corresponds to the order of the
parameters in the function definition

• the first value is inserted into the first variable: 4 to riadky
• the second one to the variable entered on the second position: 5 to stlpce

When calling the function we can use not only concrete values but also variables

• their values are sent to the function

a = 3

b = 7

148

draw_rectangle(a, b)

📝 15.1.8

Parameters and arguments I.

• a function generally looks like:

def function_name(parameter1, parameter2 ... parametern):

 command1

 ...

 commandn

• parameters are specifiend in the function definition, in the brackets after its
name, separated by commas

• argument je a value, which enters the parameters of a function
• if parameters re defined for the function, an argument must be entered when

calling for it

def print_text(text):

 print(text)

print_text()

Program output:
TypeError

vypis_text() missing 1 required positional argument: 'text'

📝 15.1.9

Parameters and arguments II.

Write a program that draws a rectangle from the "x" characters while the maximum
number of characters in the line is entered in the input.

• in this case we make a method, which prints one line and we will call for it
from the loop in the body of the program

def draw_line(n):

 print('x' * n)

x = int(input())

149

for i in range(1, x+1):

 draw_line(i)

15.2 Global and local variables

📝 15.2.1

Write a program that finds a digit sum of numbers from100 to 150.

• the solution is simple - for every number we call the function printing its digit
sum

def digit_sum(number):

 sum_ = 0

 for i in str(number):

 sum_ = sum_ + int(i)

 print(number,'-',sum_)

for i in range(100,150):

 digit_sum(i)

• we used the variable named i in the body of the function and also in the main
program - do not they conflict with each other?

• variable used in function (parameters, variables declared in the function
body) are local

• their existence begins at the point of definition/declaration and ends at the
termination of the function

• if the variables in the function have the same name as the variables in the
program body, they will overlap it - and will not affect the values of the
variables in the body of the program

def digital_sum(number):

 sum_ = 0

 for i in str(number):

 sum_ = sum_ + int(i)

 print(number,'-',sum_)

for i in range(100,110):

 digit_sum(i)

print(sum_) # does not exist

Program output:
100 - 1

101 - 2

150

102 - 3

103 - 4

104 - 5

105 - 6

106 - 7

107 - 8

108 - 9

109 - 10

NameError

name 'sucet' is not defined

• the sum_ variable does not exist outside the function

📝 15.2.2

Local and global variables

• how does the following code behave?

def attempt():

 a = 10

 b = 20

 print(a + b)

attempt()

print(a)

Program output:
30

NameError

name 'a' is not defined

• variable a was declared in the body of the function and is not accesible
outside the function - a is a local variable

def attempt():

 sum_ = 5

sum_ = 10

attempt()

print(sum_)

151

Program output:
10

• sucet variable was declared, i.e. was assigned a value in the body of the
function, making the function local

• but:

def attempt():

 a = sum_

 print('a -',a)

sum_ = 10

attempt()

print('sum_ -',sum_)

• sucet variable in this progra is global = declared in the body of the main
program

• the variable is not declared in the function, it is just used in it
• if a local variable with the given name does not exist, a global one is

searched for
• global variable and its local value is accesible in the entire program, unless it

is overlapped by a local variable

📝 15.2.3

Global

• global provides a special function - it ensures that the system will treat the
variable declared in the function as a global one

def attempt():

 global sum_

 sum_ = 5

sum_ = 10

attempt()

print(sum_)

• also, if such a variable does not exist at the global level, it will create it as a
global one

def attempt():

152

 global sum_

 sum_ = 5

attempt()

print(sum_)

15.3 Function with a return value

📝 15.3.1

Functions

• just as values enters a function, we can also retrieves values from it
• obtaiinig the value as a result of the function's operation is ensured by the

return statement
• it allows us not to print the result in the function, but to obtain it and use it in

another place

Compare:

def sum_old(a, b):

 print(a + b)

def sum_new(a,b):

 return a + b

sum_old(20, 30)

x = sum_new(30, 40)

print('the sum is', x)

print('the sum of the numbers 10 and 20 is', sum_new(10, 20))

• by obtaining the value the user gets the possibility to do further operations
with the result

📝 15.3.2

General notation of the function has the form of:

def name(parameter1, ..., paramatern):

 command1

 ...

 commandn

 return result

153

• while the return statement does not have to be the last command of the
function.

Write a function that determines whether an entered number is even or odd.

def even(number):

 if number % 2 == 0:

 return True

 else:

 return False

number = int(input())

if even(number):

 print('even')

else:

 print('odd')

📝 15.3.3

Write a function that determines whether an entered number is defective (a digit
divisible by 3 is cintained in the number) and if it is not, the function prints its digit
sum.

• this is a contrieved example intended to demonstrate the use of the return
statement

def contains(number):

 sum_ = 0

 for i in number:

 digit = int(i)

 if digit % 3 == 0:

 return True

 sum_ = sum_ + digit

 print(sucet)

 return False

number = input()

res = contains(number)

if res:

 print('defective')

154

• the execution of the loop and the entire contains() function is interrupted the
moment a digit divisible by 3 is found

• the return statement has a similar function to a break in the loop
• return terminates the execution of the function and returns the defined value

📝 15.3.4

Write a function that returns the one of the two entered numbers, whose digit sum
is smaller.

• the operation of the digit sum has to be repeated two times
• it would be best to have a separate function that calculates it for us
• in a program, we can use anz number of functions that can caal for each

other

def smaller(number1, number2):

 if digit_sum(number1) < digit_sum(number2):

 return number1

 else:

 return number2

def digit_sum(number):

 sum_ = 0

 for i in number:

 sum_ = sum_ + int(i)

 return sum_

print(smaller('1025','5644'))

• it is also possible to use the following calling:

print(smaller('102',smaller('105',smaller('1025','5644'))))

📝 15.3.5

Mechanism of the subprogram execution

When the subprogram calling occurs in the program:

• the return adress is remembered (where it will be necessarz to return)
• local variable functions (with an undefined value) and formal parameters

with values set according to inputs are created

155

• program control is transferred to the body of the subprogram
• all the subprogram commands are executed
• local variables are dropped
• control is returned to the place in the program from where the subprogram

was called for

📝 15.3.6

Parameter types and result types

• Python does not control data type of the parameters
• the sucet() function miraculously works both for the text and numeric values

def sum_(a, b):

 su = a + b

 return su

print(sum_(10,15))

print(sum_('10','15'))

• however, in case one value is numeric and the other is text, the program
crashes

print(sum_(10,'15'))

• that is why sometimes it is handily to check the data type of the value and
react according to it

def sum_(a, b):

 if type(a) == type(b):

 return a + b

 else:

 return 'type mismatch'

print(sum_(10,'15'))

156

15.4 Parameter replacement value

📝 15.4.1

Missing parameter

• if parameters are defined for the function, an argument must be specified,
otherwise the program returns error TypeError.

def print_text(text):

 print(text)

print_text()

Alebo:

def sum_:(a, b):

 return a * b

print(sum_(4))

Program output:
TypeError

sucet() missing 1 required positional argument: 'b'

📝 15.4.2

Parameter called by name

• standard situation: the number of arguments in a function call is the same as
numbers and order of arguments in th efunction definition

• unusual situation: we want it differently

• the caller identifies the argument by parameter name and the compiler
associates the value assignment with the parameter

• it allows to enter arguments in different order

def greeting(name, surname):

 print("Hi", name, surname)

157

greeting(surname="Carrot", name="John")

greeting(surname="Poppy", meno="Joseph")

📝 15.4.3

The default argument

• the use of parameters called by name does not really solve the situation,
when we do not want to enter some of the parameters

def greeting(name, surname):

 print("Hi", name, surname)

greeting(surname="Carrot")

• in this case we can set some of the parameters in the function header as a
default ones

• if the given parameter is not entered, the default one is used
• if we enter the parameter, the enetered one is used

def print_pupil(name, surname, age = 15):

 if age < 12:

 print(surname, "entered by mistake")

 else:

 print(name, suranme,'is form 8.A and is', vek,'years old')

print_pupil('Ivan','Terrible')

print_pupil('John','Small',17)

print_pupil(name = 'Jana', surname = 'Blue',17)

print_pupil(name = 'Dana', surname = 'Mala')

Program output:
SyntaxError

non-default argument follows default argument (, line 1)

• the default parameters can be ommited when calling the functión(but they
should take the last places in the list)

• if we name the parameters, all but those that have a defined default value
must be specified when calling the function

158

15.5 Recursion

📝 15.5.1

Recursion

• a common, but often very well-hidden context
• object is recursuve, if it is partially composed or defined using itself

159

📝 15.5.2

Recursion

• definition of the object using the object itself
• recursive expressions are generally shorter and easier to understand than

other expressions, because they describe characteristic properties of a
function

in mathematics:

• expressing the following value by the previous one
• an = an-1+d

in programming:

• calling a subprogram by the subprogram itself

📝 15.5.3

Recursion in programming

Standard function call mechanism:

• the actvation record is stored in the system stack, it consists of:
• copy of method parameters
• return adress (the location from which the function was called)
• the execution of the body of the function
• entry into the function

160

• return to the adress stored in the stack
• realeadse of the activation record
• program continues...

Recursive call mechanism - analogy:

• each time the mothod is called, new copies of the variables/parametersare
created and the return adress is remembered

• => for each mothod call, an activation record is stored in the memory stack
and the method is executed from the beggining

• after the mothod ends, the memory is freed and thanks to the informations
from the stack, the code continues from the place it was called from

• => each recursion run is memory intenzive
• it is possible to get to the potential stack overflow

def return_element(n):

 if n == 1:

 return 10

 else:

 return return_element(n-1) + 4

print(return_element(5))

📝 15.5.4

Finiteness of the recursion

• recursions on the opening frames are infinite
• however, practice requires termination after reaching a certain number of

repetitions or fulfilling the condition
• situation, in which the method terminates (without calling itself again), is

called a trivial case
• when using recursion in porgrammimg has to be defined otherwise a stack

overflow will occur
• recursion is therefore usually defined in such a way, that the difficulty of the

solved task gradually decreases untill it reached an elementary result

def return_element(n):

 if n == 1:

 return 10

 else:

 return return_element(n-1) + 4

161

print(return_element(5))

📝 15.5.5

Write a program that calculates n! for an enterd n.

• n! = n*(n-1)*(n-2)*(n-3)*...*3*2*1
• e.g. 5! = 5*4*3*2*1

def factorial(n):

 if (n == 0): # trivial case, ...

 return 1 # ... we have the result, the

function ends

 else: # recursive case: to the result

 return n*factorial(n-1); # n* calculation is assigned

for the lower value of the factorial

print(factorial(5))

def factorial(n):

 print(' '*(10-n), 'I enter the methos with the value',n)

 if (n == 0): # trivial case, ...

 print(' '*(10-n), 'I am returning the value 1')

 return 1 # ... we have result, function ends

 else: # recursive case: to the result

 print(' '*(10-n), ' I call the calculation f = ',n,' *

','factorial(',n-1,')', sep='')

 f = n*factorial(n-1)

 print(' '*(10-n), 'I am returning the value',f)

 return f # n* calculation is assigned for the lower value

of the factorial

print(factorial(5))

📝 15.5.6

Write a recursive method that returns the power of the entered number.

• power an
• e.g. 54 = 5 * 5 * 5 * 5

• recursively, the power can be expressed as an = a*an-1
• e.g. 54 = 5*54-1=3
• the trivial case occurs if the exponent is 0 (or 1)
• each previous one is non-trivial

162

• the xponent increases by one at each subsequent level

def power(a, n):

 if n == 0: # trivial case,

 return 1;

 else: # the result is a * power a, but a

degree lower

 return a * power(a,n-1);

print(power(2,5))

def power(a, n):

 print(' '*(10-n), 'I am enterig the method with a

value',a,n)

 if (n == 0): # trivial case, ...

 print(' '*(10-n), 'I am returning the value 1')

 return 1 # ... we have result, the function

ends

 else: # recursive case: to the result

 print(' '*(10-n), ' I call the culculation m = ',a,' *

','power(',a,',',n-1,')', sep='')

 m = a*power(a, n-1)

 print(' '*(10-n), 'I am returning the value',m)

 return m # n* calculation is assigned for the lower value

of the calculation

print(power(3,4))

Program output:
 vstupujem do metody s hodnotou 3 4

 volam vypocet m = 3 * mocnina(3,3)

 vstupujem do metody s hodnotou 3 3

 volam vypocet m = 3 * mocnina(3,2)

 vstupujem do metody s hodnotou 3 2

 volam vypocet m = 3 * mocnina(3,1)

 vstupujem do metody s hodnotou 3 1

 volam vypocet m = 3 * mocnina(3,0)

 vstupujem do metody s hodnotou 3 0

 vraciam hodnotu 1

 vraciam hodnotu 3

 vraciam hodnotu 9

 vraciam hodnotu 27

 vraciam hodnotu 81

81

163

Exceptions

Chapter 16

164

16.1 Exceptions

📝 16.1.1

Exception

• exception, or an exceptional state is a situation in the program that occurs in
the event of an error during program execution and usually
interrupts/terminates program execution

• we can predict many error and treat them directly with the program

a = 1

b = 0

if b == 0:

 print("the quotient is not");

else:

 print("quotient:", a / b);

• in the code, we actually find out whether the variable b does not contain a
value that could cause the program crash, and if so, we do not allow the
dangerous operation

📝 16.1.2

• however there are situations in which programming a predictable treatment
is difficult

• the typical example is trying to convert a read value to a number

ta = input()

a = int(ta)

print(a)

Program output:
 testValueError

invalid literal for int() with base 10: 'test'

📝 16.1.3

Try-except

• through a pair of commands, we can create blocks in the code that allow us
to catch the exception and deal with it

165

some opening code

try:

 # commands in which an error could occur

except:

 # what to do if an error occured

code extension

• then the previous problem can be solved as follows:

ta = input()

try:

 a = int(ta)

 print(a)

except:

 print('an error occured after the conversion')

print('the code continues')

Program output:
 okjlnastala chyba po prevode

kod pokracuje dalej

📝 16.1.4

Range of try

• it is up to debate, how big the try block should be
• program from the previous task:

ta = input()

try:

 a = int(ta)

 print(a)

except:

 print('an error occured after the casting')

print('code continues')

• can be also adjusted to:

ta = input()

try:

 g = int(ta)

166

except:

 print('an error occured after the casting')

print(g)

print('the code continues')

Program output:
 sfnastala chyba po prevode

NameError

name 'g' is not defined

• however, in such case there is a risk that the variable g will be undefined
• the correct solution would be:

ta = input()

g = -1

try:

 g = int(ta)

except:

 print('an error occured after the casting')

print('the code continues')

print(g)

• or:

ta = input()

try:

 h = int(ta)

except:

 print('an error occured after the casting')

 h = -1

print('the code continues')

print(h)

16.2 Types of exceptions

📝 16.2.1

Various types of errors

• there are situations in which a number of errors may occur on several lines
• we need to inform the user what kind of error occured and execute a

different code for each error

167

• for this purpose, we use except, for which we indicate the error for which its
code is intended

• of course we need to be familiar with the errors that can occur

try:

 a = int(input())

 b = int(input())

 print(a // b, a % b)

 print('done')

except ZeroDivisionError:

 print('we do not divide by zero')

except ValueError:

 print('a non-numeric value was entered')

• the ZeroDivisionError exception occurs in case of division by zero
• the ValueError exception occurs in case the input value can not be cast to an

integer of the int type

📝 16.2.2

The most common types of integers

TypeError: 'int' object is not subscriptable

ValueError: substring not found

UnboundLocalError: local variable 'x' referenced before

assignment

ZeroDivisionError: division by zero

TypeError: unsupported operand type(s) for +: 'int' and 'str'

NameError: name 'fun' is not defined

IndexError: string index out of range

FileNotFoundError: [Errno 2] No such file or directory:

'data.txt'

168

📝 16.2.3

General exception

• our goal is to handle expected exceptions
• also to ensure that the program completes its activity even in case of an

exception that was not identified by us

We adjust the program from the previous task:

try:

 a = int(input())

 b = int(input())

 print(a // b, a % b)

 print('done')

except ZeroDivisionError:

 print('we do not divide by zero')

except ValueError:

 print('a non-numeric value was entered')

• if in this case an exception of a different type than those specified in the list
occurs, it will not be processed and the program will end

• therefore we will complete the block intended for processing all other
exceptions

try:

 a = int(input())

 b = int(input())

 print(a // b, a % b)

 print(a[2])

 print('done')

except ZeroDivisionError:

 print('we do not divide by zero')

except ValueError:

 print('a non-numeric value was entered')

except:

 print('something else')

Program output:
 5 22 1

something else

169

📝 16.2.4

Exception details

• even if we use a general exception we will not lose detail informations about
it

• every exception that occurs fills a variable with information about the
situation, which we can access through the following notation:

try:

 # some code causing the exception

except Exception as err:

 print(err) # print informations about the error

• usage example:

try:

 a = int(input())

 b = int(input())

 print(a // b, a % b)

except Exception as err:

 print('error:', err) # objekt err možno vypísať

 print('type:', type(err)) # we can find its type

 print('details:', err.args) # details about the error

Program output:
 10 0chyba: integer division or modulo by zero

typ:

detaily: ('integer division or modulo by zero',)

• the Exception type used represents a general exception
• all other exceptions are derived from it

📝 16.2.5

Else as a part of try

• in case no exception occurs, we can ensure the execution of commands as
follows:

try:

 # commands

170

except Exception1:

 print('the input must contain integers')

except Exception2:

 print('division by zero')

else:

 print('everything is okay')

📝 16.2.6

Finally

• the last part of the try block is the finally part
• it is intended for commands to be executed regardless of whether or not an

exception occurred in the try block

try:

 # commands

except Exception1:

 print('the input must contain integers')

except Exception2:

 print('division by zero')

else:

 print('everything is ok')

finally:

 print('and this will be executed under all circumstances')

the command after the try block has the same effect :)

16.3

📝 16.3.1

Exceptions inside functions

• there are situations when we not only process the exception, we also have to
generate it = force it

• this most often happens inside functions
• different functions handle the different exceptions differently

E.g.:

by returning the value -1

ret = 'attention bad dog'

index = ret.find('where')

171

print(index)

Program output:
-1

generating an exception

ret = 'attention bad dog'

index = ret.index('where')

print(index)

Program output:
ValueError

substring not found

📝 16.3.2

Raise

Write a function that returns a fraction. The input are the numerator and
denominator values. If the denominator is 0, throw an exception.

• in this case returning the value -1 or 0 would be inappropriate
• the best procedure is to generate an exception and, unless it is handled in

the body of the program, interrupt its execution
• the raise comand is used to create an exception
• it is used in combination with an existing type of error

def truncate(numerator, denominator):

 if denominator == 0:

 raise ValueError('Denominator is zero')

 a, b = numerator, denominator

 while a != b:

 if a < b:

 b = b - a

 else:

 a = a - b

 numerator = numerator // a

 denominator = denominator // a

 return str(numerator) + ' / ' + str(denominator)

print(truncate(10,0))

print('end')

172

Program output:
ValueError

Denominator is zero

• in case of error this version of the code will not finish
• therefore, we will use the try - except block to catch and process the

exception

def truncate(numerator, denominator):

 if denominator == 0:

 raise ValueError('Denominator is zero')

 a, b = numerator, denominator

 while a != b:

 if a < b:

 b = b - a

 else:

 a = a - b

 numerator = numerator // a

 denominator = denominator // a

 return str(numerator) + ' / ' + str(denominator)

try:

 print(truncate(10,0))

except Exception as err:

 print('An error occured:',err)

print('end')

Program output:
An error occured: No active exception to reraise

end

173

Files

Chapter 17

174

17.1 Text file

📝 17.1.1

Files

• they serve for storing data
• first form - binary files into which data was entered so that it could be

processed as quickly as possible
• entered characters represented coded numbers or text in the form in which

they were stored in the computer's memory

Advantages:

• fast prcessing

Disadvantages:

• loading must always take place into the same data structure
• if the file gets corrupted or a character is accidentally overwritten, the file is

unusable

Newer form - text files:

• the standard for data storage became text files (more precisely, files with
text understandable to the user)

• thanks to the fast hardware, the time aspect is not a problem

175

• the data are stored in a „human readable“ form
• they are often structured through special tags (XML, HTML, etc.)
• an overwritten or deleted random character usually has very little impact and

the damage can be easily repaired
• working with text files is usually not done by characters, but by lines

📝 17.1.2

Text file

• sequence of character
• lines end with the \n character

Physics, mathematics, IT sector, technology. In these and many

other fields, women get the short end of the stick

professionally.

Succeeding in the world of science and research, which has

been the domain of men for many years, is very challenging for

women. They encounter prejudice or discrimination and do not

always have suitable conditions to combine work with family

life.

The solution, although it is a long shot, but it exists: stop

putting small children in boxes and do not prevent girls from

"boyish" games and hobbies.

According to data from the Slovak Commission for UNESCO, far

fewer women than men work in the scientific sector – only 33%

worldwide.

176

📝 17.1.3

File operations

• creation
• data notation (sometimes addition)
• reading data
• for these oparetion we need: opening and closing the file

📝 17.1.4

File creation

• a special command for the file creation does not exist
• we always only open the file - for reading or entering
• in the case of opening for entering, the file will be created if it does not exist
• the command for opening has the form :

f = open('data.txt','w')

print(type(f))

• the variable f ensures the connection with a file - we will use it to refer to the
relevant commands

• the open function ensuures the creation of this connection
• the connection will be directed to the 'data.txt' file located in the same folder

as the program
• the second parameter of the open function determines whether we open the

file for writing (w) or reading (r)

Currently we can enter the data into the file, with two basic approaches existing:

• using the print command, where as the file parameter we specify a variable
representing the open file

print('ahoj', file = f)

• using the write function which is part of the file variable
• in this case, we also need to enter \n at the end of the line for delineation

f.write('hello second\n')

f.write('end')

177

• after finishing working with the file, we must close it

f.close()

• without closing the file, its contents will not be accessible to another
program

• if we exit the program without closing, it may happen that the written
characters are not actually saved in the file

📝 17.1.5

Loading an unknown number of lines

• by sequentially executing the readline() methods, we load each line, but if we
do not know the exact number of them, we will either cause an error or not
read the entire file

• it is much more reasonable to use a while statement that ends when an
empty line is read = end of file

f = open('data.txt','r')

riadok = f.readline()

while line !='':

 print(line, end='')

 riadok = f.readline()

f.close()

• we can also use a for loop just as well:

f = open('data.txt','r')

for line in f:

 print(line, end='')

f.close()

📝 17.1.6

Exception handling

• so far we have ignored the possibility of an exception, but it is dangerous

When entering data, we can:

• enter wrong name (path to file)
• the file may bacome unavailable
• may run out of disk space

178

When opening a file:

• again it may be the worng way to the file
• we do not have read permission
• acces to the file is lost etc.

entry

try:

 f = open('data.txt','r')

 print('hello', file = f)

 f.close()

except Exception as err:

 print('error:',err)

Program output:
chyba: not writable

opening

try:

 f = open('data22.txt','r')

 for line in f:

 print(line, end='')

 f.close()

except Exception as err:

 print('error:',err)

Program output:
chyba: [Errno 2] No such file or directory: 'data22.txt'

📝 17.1.7

Handling simplification

• when working with files it is recommended to use the with command
structure:

try:

 with open('data22.txt','r') as f:

 for line in f:

 print(line, end='')

179

except Exception as err:

 print('error:',err)

• after the commands in the with block are executed, the open file is
automatically closed

📝 17.1.8

Loading the entire file

• in some situations we do not need to load row by row
• we need the content of the file as a continuous string

f = open('data.txt','r')

text = f.read()

print(text)

f.close()

print('lenght:', len(text))

Program output:
ahoj

ahoj po druhe

koniec

dlzka: 25

📝 17.1.9

Printout with hidden characters

• if we take the program...

f = open('data.txt','r')

text = f.read()

print(text)

f.close()

print('lenght:', len(text))

• ... the number of characters in the output and in the string does not quite
match

• if we want to see also hidden characters (e.g. \n) we use the function repr()

f = open('data.txt','r')

180

text = f.read()

print(repr(text))

f.close()

print('lenght:', len(text))

Program output:
'ahoj\nahoj po druhe\nkoniec'

dlzka: 25

• \n represents one character - at the end of the third line there is no more

📝 17.1.10

Adding data to the end of the file

• sometimes there is a need to add text to the end of the file
• it is a combination of opening for entry and setting to end of content
• parameters 'a' will execute this operation automatically when opening the file

file preparation

with open('data.txt','w') as f:

 print('beggining', file=f)

 for i in range(5):

 print(i, file=f)

 print('end', file=f)

append

with open('data.txt','a') as f:

 print('post end', file=f)

 for i in range(2):

 print(i, file=f)

control

with open('data.txt','r') as f:

 for i in f:

 print(i, end='')

17.2 Typical tasks

📝 17.2.1

Find the number of the words if the file.

181

• words are separated by spaces
• the problem is, we do not know whether there is a space at the end of the

line
• we need to read line by line and strip each line of spaces
• subsequently, through split, we find out the number of elements in the

created list

text preparation

try:

 with open('long_text.txt','w') as f:

 print('Testing line 1 2 3 ',file=f)

 print('Python is a multi-paradigm language much like Perl,

unlike Smalltalk or Haskell. This means that instead of

forcing the programmer to use a certain programming style, it

allows the use of several. Python supports object-oriented,

structured, and functional programming. It is a dynamically

typed language, supports a large number of high-level data

types, and uses garbage collection for memory

management.',file=f)

 print('Although Python is often referred to as a

"scripting language", it is used to develop many large

software projects such as the Zope application server and the

Mnet and BitTorrent file sharing systems. It is also widely

used by Google. Proponents of Python prefer to call it a high-

level dynamic programming language, because the term

"scripting language" is associated with languages that are

only used for simple shell scripts or languages like

JavaScript: simpler and for most purposes less capable than

"real" programming languages like Python .',file=f)

 print('Another important feature of Python is that it is

easily extensible. New built-in modules can be easily written

in C or C++. Python can also be used as an extension language

for existing modules and applications that need a programmable

interface.',file=f)

except Exception as err:

 print('error:',err)

number = 0

try:

 with open('long_text.txt','r') as f:

 for line in f:

 cleaned = line.strip()

 number = number + len(cleaned.split(' '))

except Exception as err:

182

 print('error:',err)

Program output:
5

59

138

177

📝 17.2.2

Copy the content of the files.

• a typical task on language functionality
• we can copy files at once
• or by lines and possibly do some operation with the lines

text preparation

try:

 with open('long_text.txt','w') as f:

 print('Testing line 1 2 3 ',file=f)

 print('Python is a multi-paradigm language much like Perl,

unlike Smalltalk or Haskell. This means that instead of

forcing the programmer to use a certain programming style, it

allows the use of several. Python supports object-oriented,

structured, and functional programming. It is a dynamically

typed language, supports a large number of high-level data

types, and uses garbage collection for memory

management.',file=f)

 print('Although Python is often referred to as a

"scripting language", it is used to develop many large

software projects such as the Zope application server and the

Mnet and BitTorrent file sharing systems. It is also widely

used by Google. Proponents of Python prefer to call it a high-

level dynamic programming language, because the term

"scripting language" is associated with languages that are

only used for simple shell scripts or languages like

JavaScript: simpler and for most purposes less capable than

"real" programming languages like Python .',file=f)

 print('Another important feature of Python is that it is

easily extensible. New built-in modules can be easily written

in C or C++. Python can also be used as an extension language

for existing modules and applications that need a programmable

interface.',file=f)

183

except Exception as err:

 print('error:', err)

copying the entire file

try:

 with open('long_text.txt','r') as fr, open('copy1.txt','w')

as fw:

 fw.write(fr.read())

except Exception as err:

 print('error:', err)

• by lines:

try:

 with open('long_text.txt','r') as fr, open('copy2.txt','w')

as fw:

 for line in fr:

 fw.write(line)

except Exception as err:

 print('error:', err)

control

try:

 with open('copy2.txt','r') as f:

 print(f.read())

except Exception as err:

 print('error:', err)

print('end')

Program output:
Testovaci riadok 1 2 3

Python je multi-paradigmový jazyk podobne ako Perl, na rozdiel

od Smalltalku alebo Haskellu. To znamená, že namiesto toho aby

nútil programátora používať určitý štýl programovania,

umožňuje použivanie viacerých. Python podporuje objektovo

orientované, štruktúrované aj funkcionálne programovanie. Je

to dynamicky typový jazyk, podporuje veľké množstvo

vysokoúrovňových dátových typov a na správu pamäte používa

garbage collection.

Aj keď sa Python často označuje ako „skriptovací jazyk“,

používa sa na vývoj mnohých veľkých softvérových projektov ako

sú aplikačný server Zope a systémy na zdieľanie súborov Mnet a

BitTorrent. Tak isto ho široko využíva Google. Zástanci

Pythónu ho radšej volajú vysokoúrovňovým dynamickým

184

programovacím jazykom, lebo pojem „skriptovací jazyk“ sa

asociuje s jazykmi, ktoré sa používajú len na jednoduché shell

skripty alebo s jazykmi ako JavaScript: jednoduchšími a na

väčšinu účelov menej spôsobilými ako „skutočné“ programovacie

jazyky ako Python.

Ďalšou dôležitou vlastnosťou Pythonu je to, že sa dá

jednoducho rozširovať. Nové zabudované moduly môžu byť

jednoducho napísané v C alebo C++. Python tiež môže byť

použitý ako rozširovací jazyk pre existujúce moduly a

aplikácie, ktoré potrebujú programovateľné rozhranie.

koniec

📝 17.2.3

Find out the student's average from subjects that are stored together with grades
in a file, separated by commas (mathematics, 1, 2, 3) and print this average in the
second file.

• we load an unknown number of data in a line and split it
• we have to deal with the first data that is not a number - we remember it as

an object

data preparation

try:

 with open('grades.txt','w') as f:

 print('slovak language,1,2,1,1,1,3',file=f)

 print('mathematics,1,2,1,5,3',file=f)

 print('chemistry,4',file=f)

 print('biology,1,5,3',file=f)

except Exception as err:

 print('error:', err)

data preparation

try:

 with open('grades.txt','r') as fr,

open('certificate.txt','w') as fw:

 for riadok in fr:

 subject = ''

 sum_ = 0

 number = 0

 grades = line.strip().split(',') # without strip

 for z in grades:

185

 if z.isdigit():

 sum_ = sum_ + int(z)

 number = number + 1

 else:

 subject = z

 print(subject +','+str(sum_/number), file=fw)

except Exception as err:

 print('error:', err)

control

try:

 with open('certificate.txt','r') as f:

 print(f.read())

except Exception as err:

 print('error:', err)

print('end')

186

Lists

Chapter 18

187

18.1 List

📝 18.1.1

List

• more than 90% of applications do not work with simple data, but with lists
• typical lists: persons, invoices, web addresses, measured values, etc.
• required operations: adding and deleting data, various calculations,

arranging, etc.
• the simplest list: a string of characters

📝 18.1.2

List creation

• most simply by listing the elements
• the list is delimited by curly (square) brackets, with elements separated by

commas

teploty = [36.5, 36.7, 37.1, 37.1, 37.5, 38.5]

studenti = ['Joseph Poppy', 'Alan Turing', 'Michal Pear',

'Ivan Adam Shed']

roky = [1945, 1969, 1971, 1978, 1980, 1984, 2012, 2015, 2019]

• Python also allows storing elements of different types in a list

data = [20, 'Jozef', 14.8, True, 5000]

• we can also create an empty list:

a = []

• or:

a = list()

• if we let the type from th elist be printed, we get a list

a = []

b = list()

188

print('a is',type(a))

print('b is',type(b))

Program output:
a je

b je

📝 18.1.3

List output

• by default through the print command
• the result is enclosed in braces

teploty = [36.5, 36.7, 37.1, 37.1, 37.5, 38.5]

studenti = ['Joseph', 'Ivan', 'Michal', 'Anna']

print(temperatures)

print(students)

Program output:
[36.5, 36.7, 37.1, 37.1, 37.5, 38.5]

['Jozef', 'Ivan', 'Michal', 'Anna']

📝 18.1.4

Acces to the list elements

• provided through an index
• rules same as for indexes in string

a = ['January', 'February', 'March', 'April', 'May', 'June',

'July','August', 'September', 'October', 'November',

'December']

print(a[0])

print(a[11])

print(a[-2])

📝 18.1.5

Data editting

• elements in a list can be changed

189

• entry

list_[i] = value

• overwrites the content of the i-th element

E.g.:

a = ['January', 'February', 'March', 'April', 'May', 'June']

a[0] = 'January'

a[1] = 'II.'

print(a)

📝 18.1.6

The number of elements in the list

• len - function returning the number of elements

mesiace = ['January', 'February', 'March', 'April', 'May',

'June', 'July','August', 'September', 'October', 'November',

'December']

data = [20, 'Joseph', 14.8, True, 5000]

print(len(months))

print(len(data))

📝 18.1.7

List loading

• the simplest and already used is the use of split()
• the result of the split function is a list - list

data = input('Enter sa list separated by commas').split(',')

print(data)

Program output:
Zadaj zoznam oddelený čiarkami 1,2,3,4,5,6['1', '2', '3', '4',

'5', '6']

190

📝 18.1.8

Adding elements to the list

• addition is provided by the append() command

list_ = [1, 2, 3, 4, 5]

list_.append('new')

print(list_)

• this is probably one of the first uses of a command that is part of some data
structure

• the list structure is programmed in such a way that it makes the functions
that are part of it and manipulate the data stored in the given structure
available to the programmer

• they are separated from the specific variable representing the list by a dot
• these functions are referred to as methods

📝 18.1.9

Alternative addition

• we can also add an element to the end of the list by using [] to create a one-
element list from it

• and add it to the existing list using the '+' operation

list_ = [1, 2, 3, 4, 5]

new = 10

list_ = list_ + new # uncorrect

print(list_)

Program output:
TypeError

can only concatenate list (not "int") to list

list_ = [1, 2, 3, 4, 5]

new = 10

list_ = list_ + [new] # correct

print(list_)

Program output:
[1, 2, 3, 4, 5, 10]

191

📝 18.1.10

Gradual loading of list elements

• elements can be added to the list gradually
• we always read one and add it to the list - usually at the end
• we start the solution by creating an empty list
• after entering the terminating element, e.g. '0', loading stops

list_ = []

while True:

 element = input()

 if element == '0':

 break

 list_.append(element)

print(list_)

📝 18.1.11

Element location

• if we want to place the element in a specific position, and not at the end, we
use the command:

insert(position, content)

• the command inserts the given element at the indicated position and thus
moves the elements located behind the given position

list_ = [1, 2, 3, 4, 5]

list_.insert(2, 'new')

print(list_)

Program output:
[1, 2, 'novy', 3, 4, 5]

📝 18.1.12

Divide the loaded elements by putting negative values on the left side of the list
and positive values on the right side.

192

• according to the value of the element, we decide whether to insert it at the
beginning using insert() or at the end using append()

• since we're only working with text so far, not numbers, we test if the first
character is '-'

list_ = []

while True:

 element = input()

 if element == '0':

 break

 if element[0] == '-':

 list_.insert(0, element)

 else:

 list_.append(element)

print(list_)

18.2 Working with data in a list

📝 18.2.1

Traversing the list

• the operations that are executed on an array usually require processing each
element

• we implement the transition through a cycle from the first element to the last
one located at the position len(list) - 1

list_ = ['Adam', 'Berta', 'Cecil', 'Dana', 'Ema', 'Fero',

'Gusto', 'Hana']

for i in range(0, len(list_)):

 print(i, list_[i])

• or by just iterating over the elements of the list

list_ = ['Adam', 'Berta', 'Cecil', 'Dana', 'Ema', 'Fero',

'Gusto', 'Hana']

for item in list_:

 print(item)

193

📝 18.2.2

Enumerate

• enumerate() is a special function that, in addition to the list, also ensures its
indexing

• creates a pair of index and element from the list, which we can use in the
corresponding cycle

people = ['Peter', 'Pavol', 'Michael', 'Juraj', 'Jan']

for index, person in enumerate(people):

 print(index, person)

• it also allows you to set the beginning of index numbering:

people = ['Peter', 'Pavol', 'Michael', 'Juraj', 'Jan']

for index, person in enumerate(person, start = 1):

 print(index, person)

📝 18.2.3

Searching for a value in a list

• the easiest way to formulate a question about the existence of an element in
the list is by using the in keyword

list_ = ['Peter', 'Pavol', 'Michael', 'Juraj', 'Jan']

boyfriend = 'Juraj'

if boyfriend in list_:

 print(boyfriend,'is there')

else:

 print(boyfriend,'is not there')

ex = 'Joseph'

if ex in list_:

 print(ex,'is there')

else:

 print(ex,'is not there')

Program output:
Juraj tam je

Jozef tam nie je

194

• if we also want to find out what position it is in, we can use the index()
method:

list_ = ['Peter', 'Pavol', 'Michael', 'Juraj', 'Jan']

boyfriend = 'Juraj'

print(list_.index(friend))

• if the element is not in the list, it generates an exception:

list_ = ['Peter', 'Pavol', 'Michael', 'Juraj', 'Jan']

boyfriend = 'Damiel'

try:

 print(list_.index(boyfriend))

except:

 print('was not found')

• index can also have two other parameters:

i = list_.index(search, start, end)

• start is the position from which to start the search
• end is the position before which the search should end

list_ = [0,1,2,3,4,5,6,7]

value = 4

try:

 print(list_.index(value))

except:

 print(value, 'not found')

try:

 print(list_.index(value,2)) # starts searching from index 2

except:

 print(value, 'not found')

try:

 print(list_.index(value,5)) # starts searching from index 5

except:

 print(value, 'not found from 5')

195

try:

 print(list_.index(value,2,4)) # starts searching from index 2

and ends before index 4

except:

 print(valu, 'not found 2,4')

📝 18.2.4

Deleting an element

We can use two approaches to delete an element from the list:

• using the del() statement, which deletes the element at the entered position

list_ = [1,2,3,4,5,6]

del(list_[3])

print(list_)

• using the remove() method
• which deletes the first occurrence of an element with the entered content
• when it has nothing to delete, it will generate an exception

list_ = [1,2,0,3,4,0,5,0,6]

list_.remove(0)

print(list_)

list_.remove(0)

print(list_)

list_.remove(0)

print(list_)

list_.remove(0)

print(list_)

📝 18.2.5

Other operations over the list

• pop() - deletes the last element from the list and returns it as the result of the
call

list_ = [1,2,0,3,4,0,5,0,6]

last = list_.pop()

print('last:',last)

196

print(list_)

• pop(index) - deletes the element at the specified position from the list and
returns it as the result of the call

list_ = [1,2,0,3,4,0,5,0,6]

second = list_.pop(1)

print('second:',second)

print(list_)

• clear() - deletes the entire list

list_ = [1,2,0,3,4,0,5,0,6]

second = list_.clear()

print('second:',second)

print(list_)

📝 18.2.6

Numerical list

• in many tasks we need to convert the list obtained from the input to an
integer or decimal number

• we usually create a new list
• for data read from input and separated by commas, the code might look like

this:

input_ = input().split(',') # e.g. '10','20','30','40'

numbers = []

for x in input_:

 numbers.append(int(x))

print(numbers)

• or:

input_ = input().split(',') # e.g. '10','20','30','40'

numbers = []

for x in input_:

 numbers += [int(x)]

print(numbers)

197

• if we also assume an empty input, then we have to process it after reading
the input

• the result of the split() method is always a list, so in the condition we check
if it is not empty

input_ = input().split(',') # e.g. '10','20','30','40'

numbers = []

if input_ != ['']

 for x in input_:

 input_.append(int(x))

print(numbers)

📝 18.2.7

Operations over (not only) a numeric list

• Python provides several functions that work with a list of list elements
• they have defined different behavior for different data types of elements in

the list
• sum (zoznam) returns the sum of the elements stored in the list
• max (zoznam) returns the element with the maximum value
• min (zoznam) returns the element with the minimum value

list_ = [1,2,3,4,5,0,8]

print(sum(list_))

print(min(list_))

print(max(list_))

list_ = ['1','2','3','4','5','0','8']

print(sum(list_))

print(min(list_))

print(max(list_))

list_ = ['Peter', 'Pavol', 'Michael', 'Juraj', 'Jan']

print(sum(list_))

print(min(list_))

print(max(list_))

📝 18.2.8

Lists connecting

• it is possible to connect lists using '+'

198

• connection is a concatenation of lists into a sequence of elements copying
the order in which the lists were added

a = [1,1,1]

b = [2,2]

c = [3,3,3,3]

x = a + b

y = c + a + b

print(x)

print(y)

18.3 Iterations and slices

📝 18.3.1

List creation

• by entering an empty list

a = []

• using the list() list

a = list()

• using the list() function with a parameter that will provide an iterable
element, or list

Napr.:

a = list(range(1,10))

print(a)

a = list('Aladin')

print(a)

a = ['methematics','IT', 'physics','chemistry']

b = list(a)

print(b)

• in the last example, a copy of the original list is created in list b, which is
independent of list a

199

📝 18.3.2

Creating a list from a file

• when opening a file, the input is a list of lines, similar to using for
• the open() command returns a list of lines, which can be enumerated via:

list(open('data.txt', 'r'))

data preparation

try:

 with open('data.txt','w') as f:

 print('slovak language',file=f)

 print('mathematics',file=f)

 print('chemistry',file=f)

 print('biology',file=f)

except Exception as err:

 print('error:', err)

try:

 lines = list(open('data.txt', 'r'))

 print(lines)

except Exception as err:

 print('error:', err)

📝 18.3.3

Non-iterable objects

• some objects cannot be used to create a list

list_ = list(10)

Program output:
TypeError

'int' object is not iterable

list_ = list(True)

Program output:
TypeError

'bool' object is not iterable

200

list_ = list(1,3,2)

Program output:
TypeError

list expected at most 1 argument, got 3

list_ = list('m')

it is ok

📝 18.3.4

Slices

• as with strings, lists also support slices
• the syntax is exactly the same, the result is a new list

new = list_[start : stop : step]

list_ = [0,1,2,3,4,5,6,7]

new = list_[1:4]

print(new)

list_ = [0,1,2,3,4,5,6,7]

new = list_[1:6:2]

print(new)

list_ = [0,1,2,3,4,5,6,7]

new = list_[-1:-3]

print(new)

list_ = [0,1,2,3,4,5,6,7]

new = list_[-3:-1]

print(new)

list_ = [0,1,2,3,4,5,6,7]

new = list_[-1:-3:-1]

print(new)

list_ = [0,1,2,3,4,5,6,7]

new = list_[:5:]

print(new)

list_ = [0,1,2,3,4,5,6,7]

new = list_[::-1]

201

print(new)

📝 18.3.5

Iterator betrayal

How are the following programs different?

list_ = [1,1,1,1,1,1]

for x in list_:

 x += 1

print(list_)

list_ = [1,1,1,1,1,1]

for i in range(len(list_)):

 list_[i] += 1

print(list_)

• in the first case, we only change the value of the variable, which changes in
each step

• the value of the i-th element is inserted into it
• it cannot change the content of the variable whose value it has acquired
• in the second case, we directly change the content of the i-th element of the

list

18.4 List comprehension

📝 18.4.1

List comprehension

• a special feature of Python language that makes it a brutally powerful
language

• is used to generate new lists from the existing ones
• it can be thought of as a filter
• in square brackets we indicate the expression on the basis of which the new

element is formed
• the creation of a new element is repeated according to the elements iterated

in the for section
• and this can be supplemented by a condition

[expression for element in list_ if condition]

• creating a list based on the elements defined by the cycle

202

insert i in the list, which you get as an element of the

cycle iteration for range(10)

list_ = [i for i in range(10)]

print(list_)

Program output:
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

insert triple i into the list, which you get as an element

of the cycle iteration for range(10)

list_ = [i*3 for i in range(10)]

print(list_)

Program output:
[0, 3, 6, 9, 12, 15, 18, 21, 24, 27]

📝 18.4.2

Go through the list

• For the list on the input, create a list containing twice the values of this list.

list_ = [1,5,8,7,2]

new= [i*2 for i in list_]

print(new)

📝 18.4.3

Working with text

• From an existing list of strings, create a new one in which each element
begins with an uppercase letter.

list_ = ['anna', 'beata', 'cynthia', 'daniel']

new = [name[0].upper()+name[1:] for name in list_]

print(new)

203

📝 18.4.4

Filter

• From the existing list of numbers, include in the new one only those that are
divisible by 7.

list_ = [10,12,14,21,8,7,31,35]

new = [i for i in list_ if i % 7 == 0]

print(new)

📝 18.4.5

Filter text

• From the existing list of names, add those that do not contain 'a' to the new
list.

list_ = ['anna', 'beata', 'cynthi', 'daniel', 'kitti']

new = [name for name in list_ if name.find('a') == -1]

print(new)

204

Lists and memory

Chapter 19

205

19.1 List manipulation

📝 19.1.1

List in memory

• we can create a list in memory, e.g. by listing the elements

a = [100, 200, 300, 400, 500]

• the necessary memory space is allocated for it - in this case 5 spaces
• element values are not stored in the list
• each element of the list is stored in "random" locations in memory, and the

list only contains the addresses of those random locations

206

• if we make an assignment

b = a

• it means that the same list in memory is referenced by two variables (as in
the picture)

• rewriting an element at a specific location in the list rewrites that element for
both lists

207

b[1] = 0

a[2] = 0

print(a)

print(b)

Program output:
[1, 0, 0, 4, 5]

[1, 0, 0, 4, 5]

• such behavior is typical of lists or more complex data structures
• in the case of simple variables of standard types, assigning values between

variables just copies them

📝 19.1.2

Adding an element

When adding a new element to a list, we usually take two approaches:

• adding via the append() method

a = [1, 2, 3]

b = a

b[1] = 'edited'

a.append('new')

print('a:',a)

print('b:',b)

• a list like a list of addresses in memory is created in memory in a contiguous
block for fast access to elements

• using the append() command will keep the contiguous block
• if necessary, creates a new contiguous block and copies the original

elements into it
• the minimum number of elements in a block is around 200 on the first use

a = [1, 2, 3]

b = a

b[1] = 'edited'

a = a + ['new']

print('a:',a)

print('b:',b)

208

• the assignment in line 4 creates a new variable that it gets
• as the contents of the original list and the list with one element - that is, the

allocation of new space will take place
• this breaks the binding of a and b

📝 19.1.3

Behavior in basic operations

• slice returns a list of elements by default, so it does not change the original
list

a = [1, 2, 3, 4, 5]

b = a[1:3]

print('b:',b)

print('a:',a)

• similarly comprehension

a = [1, 2, 3, 4, 5]

b = [i for i in a if i % 2 == 0]

print('b:',b)

print('a:',a)

📝 19.1.4

Assignment to slice

• in addition to retrieving a slice from a list, we can change the list by
assigning a list of elements to the slice, e.g.:

list_ = [1, 2, 3, 4, 5]

list_[1:3] = [11, 13]

print(list_)

• in this case, two elements were replaced by two new elements
• it is also possible to implement an operation that replaces some number of

elements with another number of elements
• however, such operations are supported specifically in the Python language -

in "classic" programming languages such an operation is meaningless

list_ = [1, 2, 3, 4, 5]

209

list_[1:3] = [99] # two elements are replaced by one

print(list_)

• or four elements are replaced by three

list_ = [1, 2, 3, 4, 5]

list_[1:3] = [0, 0, 0, 0]

print(list_)

What is the result of the following assignment?

list_ = [1, 2, 3, 4, 5]

list_[4:5] = [0, 0, 0, 0]

print(list_)

📝 19.1.5

Elements comparison

• the comparison is the same as for strings
• it is traversed through the elements of the list, and in the case of the first

difference, the elements are compared

a = [1, 2, 3, 4, 5]

b = [1, 2, 3, 5, 4]

print(a == b)

print(a < b)

a = [1, 2]

b = [1, 2, 3, 5, 4]

print(a < b)

• strings:

a = ['alphabet', 'ate', 'grandpa', 'told', 'on', 'bear']

b = ['alphabet', 'ate', 'girl', 'told', 'on', 'bear']

print(a < b)

• the combination of text and numeric value is problematic

a = ['alphabet', 'ate', 'grandpa', 'told', 'on', 'bear']

210

b = ['alphabet', 1, 2, 3, 5, 4]

print(a < b)

📝 19.1.6

Ordering list elements

• we have the following functions:
• sorted() - as a result of the operation it returns the ordered elements of the

list, the original list is not changed

a = ['alphabet', 'ate', 'grandpa', 'told', 'on', 'bear']

print('a before:',a)

print('a sorted:', sorted(a))

print('a after:', a)

• sort() - list method - rearranges the elements => the list changes

a = ['alphabet', 'ate', 'grandpa', 'told', 'on', 'bear']

print('a before:',a)

a.sort()

print('a after:', a)

• operations between incompatible types are still not allowed

a = ['alphabet', 'ate', 'grandpa', 'told', 'on', 'bear', 4]

print('a before:',a)

a.sort()

print('a after:', a)

📝 19.1.7

The input contains a list of names separated by commas. Find out which name
appears the most times in the list.

Adam, Dana, Jana, Adam, Jana, Zuzana, Adam, Jana, Jana

data = input().split(', ')

data.sort()

maxname = data[0]

maxnumber = 0

number = 0

name = data[0]

211

print(data)

i = 0

while i < len(data):

 while i < len(data) and name == data[i]:

 i = i + 1

 number = number + 1

 if number > maxnumber:

 maxnumber = number

 maxname = name

 if (i == len(data)):

 break

 name = data[i]

 number = 0

print(maxname, maxnumber)

📝 19.1.8

Layout parameters

• the sorted() function has two optional parameters - reverse and key
• reverse allows you to reverse the sort order

list_ = [1, 2, 8, 4, 5]

z2 = sorted(list_, reverse = True)

print(z2)

• key allows you to define rules for ordering through a function
• e.g. to order the values based on the absolute value, we use:

list_ = [-1, 2, 8, 4, -5]

z2 = sorted(list_, key = abs)

print(z2)

Program output:
[-1, 2, 4, -5, 8]

• it is common to arrange strings regardless of character size using the lower
function from the str package, e.g.:

a = ['alphabet', 'Ate', 'grandpa', 'Told', 'on', 'bear']

print('a sorted:', sorted(a))

print('a sorted lower:', sorted(a, key = str.lower))

212

• as a key parameter, we actually enter the name of the function, which should
modify the input before the actual comparison

📝 19.1.9

Join

• the function that allows us to process the list elements given as a text string
is split()

• its opposite is the join() function, which creates a text string from the list
with a separator that we enter

• join() is a text string method of the form:

list_ = list()

separator = ' '

result = separator.join(list_)

• e.g. for the loaded input, we can easily change its form using separators

data = input().split()

print(data)

text = ';'.join(data)

print(text)

text = '--'.join(data)

print(text)

Program output:
 mama ma doma malu emu['mama', 'ma', 'doma', 'malu', 'emu']

mama;ma;doma;malu;emu

mama--ma--doma--malu--emu

19.2 List as a parameter

📝 19.2.1

Function parameter

We know that:

• the parameter acts as a variable whose task is to "bring" a value to the
function

• by using a variable in a function, we are actually working with the value it
represents

213

• the value that is inserted into the variable is specified when the function is
called

def sum_(a, b):

 return a + b

s = sum_(10, 20)

print(s)

x = 10

y = 5

z = sum_(x, y)

print(z)

📝 19.2.2

List as parameter I.

• list is the standard input to the function
• we can scroll through it or evaluate individual elements
• the sum of the elements in the list:

def sum_:(z):

 suc = sum_(z)

 return suc

list_ = [1, 2, 3, 4, 5]

z = sum_(list_)

print(z)

• number of occurrences of an element:

def number(element, list_):

 poc = 0

 for i in list_:

 if i == element:

 poc = poc + 1

 return poc

list_ = [1, 2, 3, 2, 5, 2, 3, 1]

z = number(2, number)

print(z)

214

📝 19.2.3

List as a parameter II.

• in the case of a variable representing a list, its content is not independent of
the original variable

• standard function:

def sum_(a, b):

 a = a + 5

 return a + b

x = 10

y = 5

print('originally:', x)

z = sucet(x, y)

print('new:', x)

• function with a list:

def sum_(z):

 su = sum(z)

 z.append(suc) # we will also add sum_ to the end of the list

 return su

list_ = [1, 2, 3, 4, 5]

print('originally:', list_)

z = sum_(list_)

print('new:', list_)

• this behavior is due to the fact that the list is passed to the function not as a
copy of the value, but as a memory reference

• reason - slowness of copying list contents, copying properties of other
languages

• the consequence is that changes to the contents of the list in the function
also change its contents in memory, which remain in the changed form even
after exiting the function

• this behavior can be used very effectively

📝 19.2.4

Adjust the list of elements by zeroing negative values and doubling positive ones.
Execute the operation in the function.

215

def operation(z):

 for i in range(len(z)):

 if z[i] < 0:

 z[i] = 0

 else:

 z[i] = z[i] * 2

list_ = [-1, 2, -3, 4, 5]

operation(list_)

print(list_)

• we implemented the content change by rewriting the list elements => the
original list was changed

• of course, the task can be solved without changing the original list

def operation(z):

 n = list()

 for i in range(len(z)):

 if z[i] < 0:

 n.append(0)

 else:

 n.append(z[i] * 2)

 return n

list_ = [-1, 2, -3, 4, 5]

new = operation(list_)

print(list_)

print(new)

📝 19.2.5

Creating a list

• we often need to create an empty list filled with some initial value
• thanks to the direct access to the list, we can provide this directly in the

universal method

def create_list(number, default = 0):

 return [default] * number

z1 = create_list(5, 1)

print(z1)

216

z2 = create_list(5)

print(z2)

z3 = create_list(4, '')

print(z3)

z4 = create_list(5, 'nic')

print(z4)

Program output:
[1, 1, 1, 1, 1]

[0, 0, 0, 0, 0]

['', '', '', '']

['nic', 'nic', 'nic', 'nic', 'nic']

📝 19.2.6

Editing the list

• when preparing general methods for data processing, it is necessary to
decide whether the goal is to change values

• the decision depends on the situation, the scope of the list and the goals of
further processing

• the following pair of functions execute the same operation with different
effects on the original list

def add1(list_, element):

 return list_ + [element]

def add2(list_, element):

 list_.append(element)

 return list_

original = [1, 3, 8, 5, 6]

print(add1(original, 'x'))

print('original:', original)

print('---')

print(add1(original, 'y'))

print('original:', original)

📝 19.2.7

Function parameter

We know that:

217

• the parameter acts as a variable whose task is to "bring" a value to the
function

• by using a variable in a function, we are actually working with the value it
represents

• the value that is inserted into the variable is specified when the function is
called

def sum_(a, b):

 return a + b

s = sum_(10, 20)

print(s)

x = 10

y = 5

z = sum_(x, y)

print(z)

218

Tuple

Chapter 20

219

20.1 Tuple

📝 20.1.1

Mutable and immutable

• lists, or collections specifically in Python are generally divided into mutable
(changeable) and immutable (unchangeable)

• a typical mutable structure is list
• its non-editable version is tuple - n tuple
• it supports virtually all operations as in the list, just without operations that

change the contents of the list

📝 20.1.2

Why do I need immutable elements?

After all, they represent lists impoverished by the possibility of change???

• faster list iteration, more efficient work with memory, faster copying
• they are usually used for storing data of different types (name, surname, date

of birth, salary), while lists are for similar/same data
• they provide the programmer with the assurance that the data will not be

rewritten - some parts of the values should not be changed: e.g. the name
and surname representing a person should not allow changing only the first
name or only the surname, if a change is made, then it is the change of the
entire record

• there is no need to synchronize them during multi-threaded code
• more advanced programming techniques
• they copy the security standards of other languages

📝 20.1.3

Tuple

• represents a tuple produced from any iterable sequence
• as with the list, it is an ordered collection of elements
• similar to the case of the list
• unlike lists, tuples are immutable = once a tuple is created, it cannot be

changed in any way

point = (100, -75)

print(point)

220

print(type(point))

• point is a typical example of tuple
• changing some coordinate represents a completely different point - it should

not be possible to change only one of the coordinates
• if we want to change a point, delete it and create a new one

📝 20.1.4

Creating tuple

• dubious operation, since tuple type variable cannot be changed, but
functional

a = ()

x = tuple()

print(type(a), a)

print(type(x), x)

Program output:
 ()

 ()

• it makes sense to fill the variable with values
• we use round brackets

pointA = (10, 10)

pointB = (10, 10, 10)

• a special case is the one-element set
• we write it with a comma after the value

value = (10,)

• the reason is that the entry...:

value = (10)

• ...is evaluated as the mathematical notation of the value in parentheses and
thus in this case as an int

221

print(type(value))

Program output:

📝 20.1.5

Elementary operations

• connecting with "+"
• chaining with "*"

t1 = (10, 20, 30)

t2 = (1, 2, 3)

t3 = t1 + t2

print(type(t3), t3)

t4 = t1 * 3

print(type(t4), t4)

📝 20.1.6

Element searching

• len() - number of elements
• in - determines whether the element is in the list
• count() - number of occurrences
• index() - position of the first occurrence

t = (1, 2, 3, 4, 3, 5, 9, 8, 11, 3, 5)

print(len(t))

Program output:
11

mam

hodnota 3 3

nenajdeny

if 2 in t:

 print('I have')

else:

 print('I do nothave')

222

print('value 3', t.count(3),'x')

• yes, count() also works for list

wanted= 6

try:

 i = t.index(wanted)

 print(wanted,'on the position',i)

except:

 print('not found')

📝 20.1.7

Element access and slice

• tuple element is accessed via index

t = (1, 2, 3, 4, 3, 5, 9, 8, 11, 3, 5)

print(t[1])

Program output:
2

• however, an attempt to change it leads to an error

t[1] = 7

Program output:
TypeError

'tuple' object does not support item assignment

• slice works in a standard way

print(t[1:4])

Program output:
(2, 3, 4)

• however, again, it does not allow editing

223

t[1:3] = (1,2)

Program output:
TypeError

'tuple' object does not support item assignment

📝 20.1.8

Tuple iteration

• by default we iterate through for

t = (1, 2, 3, 4, 3, 5, 9)

for element in t:

 print(element)

📝 20.1.9

Function over the list

• sum
• min
• max

t = (1, 2, 3, 4, 3, 5, 9, 8, 11, 3, 5)

print(sum(t))

print(min(t))

print(max(t))

📝 20.1.10

Convert tuple -> list

• despite the fact that we create and populate the list in order to process it as
efficiently as possible, sometimes it is necessary to change the type from
immutable to mutable during the operation

t = (1, 2, 3, 4, 3, 5, 9, 8, 11, 3, 5)

l1 = list(t)

print(l1)

l1.remove(2)

224

print(l1)

• beware, the following notation creates a single tuple element as part of the
mutable list

l2 = [t]

print(l2)

Program output:
[(1, 2, 3, 4, 3, 5, 9, 8, 11, 3, 5)]

📝 20.1.11

Conversion to tuple

• via the tuple() function practically universally

t = tuple('Python')

print(t)

t = tuple([2, 3, 5, 7])

print(t)

t = tuple(range(1, 11))

print(t)

20.2 Tuple in functions

📝 20.2.1

Multiple assignment

• the assignment of multiple values to multiple variables in one line can be
written in only one line

a, b, c = 1, 2, 3

print(a, b, c)

225

📝 20.2.2

Return multiple outputs from a function

• Python allows multiple values to be returned from a function
• e.g. the area and perimeter of the rectangle

def rect_info(a, b):

 s = a * b

 o = 2 * a + 2 * b

 return s, o

area, perimeter = rect_info(5, 6)

print(area, perimeter)

• if we load the values into one variable, we have an immutable tuple object at
our disposal

• we can execute all the operations allowed for tuples with it

result = rect_info(2, 4)

print(result)

print(type(result))

Program output:
(8, 12)

📝 20.2.3

Find all the divisors of the entered number and write whether it is a prime number.

• task is a nice example of a combination of getting a tuple and processing it
further

• in the function we first create a list of divisors
• then we print them and if their number is 2, it is a prime number, otherwise it

is a composite number

def divisors(n):

 d = ()

 for i in range(1, n + 1):

 if n % i == 0:

 d = d + (i,)

226

 return d

x = 7 # int(input())

list_ = delitele(x)

print(list_)

print(", ".join(list_))

if len(list_) == 2:

 print("prime number")

else:

 print("composite number")

20.3 Variadic function

📝 20.3.1

Variadic function

• a function with a mutable(changeable) number of arguments
• a certain form is represented by a function that has some parameters set to

default values
• unless we specify them when calling the function, the default ones are used

def sum_up(a, b = 0, c = 0, d = 0):

 return a + b + c + d

• if we enter one parameter, the result will be the entered value
• if we enter two, they are added and the default values - 0 are used instead of

c and d

print(sum_up(10))

print(sum_up(20, 30))

• we could use 3 or 4 inputs, but with 5 parameters it is no longer possible to
match the value to the corresponding variable

print(sum_up(1, 2, 3, 4, 5))

Program output:
TypeError

scitaj() takes from 1 to 4 positional arguments but 5 were

given

227

📝 20.3.2

Wrapped parameter

• if we need to send an unknown and arbitrary number of parameters to the
function, we use the so-called wrapped parameter

• it is preceded by the character *
• allows you to get any number of parameters from a function call and iterate

in the function

def sum_up(*numbers):

 sum_ = 0

 for i in numbers:

 sum_ = sum_ + i

 return sum_

s = sum_up(1,2,3)

print(s)

• what type is the numbers variable in the function?

def sum_up(*numbers):

 print(type(numbers))

 sucet = 0

 for i in numbers:

 sum_ = sum_ + i

 return sum_

s = sum_up(1,2,3)

print(s)

• it is tuple

📝 20.3.3

Write a function that, for a enetered list, returns an entered number of random
values from it.

• in this case the first parameter will define the number of elements for the
resulting tuple and will be followed by an unknown number of elements to
choose from

import random

228

def choose(z, *list_):

 elements = ()

 for i in range(z):

 elements = elements +

(zoznam[random.randrange(len(list_))],)

 return elements

print(choose(3, 1,2,3,4,5,6,7))

print(choose(3, 'a','b','c','d','e','f','g'))

print(choose(3, 'a','b'))

• if we choose as a list of values the list generated by range(), a small problem
arises:

print(choose(3, range(8)))

print(type(range(8)))

Program output:
(range(0, 8), range(0, 8), range(0, 8))

• it is a special element passed to the function as a range element
• in order to send the generated values instead, we have to "unpack" it
• again using "*"

print(choose(3, *range(8)))

• we can also expand the list before sending it to the variadic function

print(choose(3, *['Adam','Beta','Cecil','Dana']))

📝 20.3.4

Print?

• it is a typical variadic function that allows the printout of any number of
elements that are practically of any type

print(range(8))

print(*range(8))

print(['Eva','Fedor','Gusto','Hana'])

print(*['Eva','Fedor','Gusto','Hana'])

229

List of lists

Chapter 21

230

21.1 Table

📝 21.1.1

Write a program that loads a list of students' names and their heights. The number
of students is entered by the user at the input. Then find the tallest student and
print his name and height.

• with current knowledge we can design and create two lists (list or tuple) and
fill them with data

number = int(input())

students = []

heights = []

for i in range(number):

 name = input("name:")

 students.append(name)

 height = int(input("height:"))

 heights.append(height)

print(students)

print(heights)

• if we look at the task from a non-informatics point of view, it is actually a list
of students, where each item consists of a name and height

• we create the list for the purpose of further use, and it is not likely that the
data in it should change

• we can create a list whose items will be tuples

number = int(input())

students = []

for i in range(number):

 name = input("name:")

 height = int(input("height:"))

 pupils.append((name,height))

print(students)

• then we will search the list
• we can remember the greatest height, but finding it is not enough to find out

the name, because we need to know who it belongs to

231

📝 21.1.2

Access to items

• if we work with a list, we get to a specific element based on its index

students = [('Ivan' , 150), ('Dana', 174), ('Jozef', 178)]

print(students[1])

• the result is an element at the entered position, which in this case is an
element of type tuple

• we could get data from it, e.g. as follow:

students = [('Ivan' , 150), ('Dana', 174), ('Jozef', 178)]

slacker = students[1]

print('name:',slacker[0])

print('height:',slacker[1])

• or we can choose an entry combining the retrieval of the i-th element and the
j-th item from its composite content

• entry:

height = students[1][0]

• gets the items at position 1 from the students list and from the given item (in
this case tuple) the data located at index 0

students = [('Ivan' , 150), ('Dana', 174), ('Jozef', 178)]

print('name:',students[1][0])

print('height:',students[1][1])

📝 21.1.3

Table

• such a list can be easily imagined as a table

name height

Ivan 150

Dana 174

Jozef 178

232

Jana 162

Michal 179

students = [('Ivan' , 150), ('Dana', 174), ('Jozef', 178),

('Jana', 162), ('Michal', 179)]

print(students[3][1])

• the first index specifies the line and the second index the column

📝 21.1.4

So let's finish the task:

• Write a program that loads a list of students' names and their heights. The
number of students is entered by the user at the input. Then find the tallest
student and print his name and height.

number = int(input())

students = []

for i in range(number):

 name = input("name:")

 height = int(input("height:"))

 students.append((name,height))

• when searching, we will remember the index (line) of the highest height so
far

• after the comparison is done, we take the index and print the values for it at
position 0 and 1 in the tuple

• we search by going through the list, using len or enumerate

maxindex = 0

for index, student in enumerate(students): # going through

the list of students

 # if the value of the student ('jozo',162) is greater than

the value (height) at the maxindex position in the table,

 # which has been found so far as the largest

 if student[1] > students[maxindex][1]:

 maxindex = index

print(students[maxindex])

233

📝 21.1.5

Modified task

Print the names of all the students whose height is the greatest.

• the functions sum, max and min do work for lists, but only at the level of
simple lists

• so in the first step we find the maximum height and in the second we print all
the students who reach it

students = [('Ivan' , 150), ('Dana', 174), ('Jozef', 178),

('Jana', 162), ('Michal', 178)]

maxheight = 0

for student in students:

 if student[1] > maxheight:

 maxheight = student[1]

for student in students:

 if student[1] == maxheight:

 print(student)

Program output:
('Jozef', 178)

('Michal', 178)

• if we wanted to get a list of such students as a list, we can also use
comperhension

maxi = []

[maxi.append(student) for student in students if student[1] ==

maxheight]

print(maxi)

Program output:
[('Jozef', 178), ('Michal', 178)]

📝 21.1.6

List of lists

234

• Register the list of employees with their salaries and number of children.
• Add a function that will increase the salary by 10 percent.
• Add a function that finds the amount of family allowances (€60 per child)

and adds it to the list for each employee as a new value.

name salary children allowances summ

Ivan 1500 1 60 1560

Dana 1704 5 300 2004

Jozef 1780 1 60 1840

Jana 1620 3 180 1800

Michal 1709 0 0 1709

• we create a list of employees
• in this case, however, we need to be able to change the content of individual

items - employees
• therefore we must create individual items as list-s

employees = [['Ivan',1500,1], ['Dana',1704,5],

['Jozef',1780,1], ['Jana',1620,3], ['Michal',1709,0]]

def increaseby10percent(z):

 for employee in employees:

 employee[1] = round(employee[1] * 1.1,2)

increaseby10percent(employees)

print(employees)

• we have already mentioned that rewriting the value representing a specific
element from the list in the cycle does not change the content of the list, only
the representing variable

• if it was a simple variable - this fact would apply
• since the employee in the cycle is a variable of type list, it affects the

assignment of the elements of the employee list

• adding a new item representing 60 times the number of children can be done
by traversing the list or using comprehension

def allowances1(z):

 for employee in employees:

 employee.append(employee[2]*60)

allowances1(employees)

print(employees)

235

employees = [employee + [employee[2]*60] for employee in

employees]

print(employees)

• in both cases, when the function is called multiple times, a new item in the
list is always created

• the calculation needs to be adjusted so that the item is added only if the
number of list elements in the employee is less than 4

• otherwise, we rewrite the value in column 3 - if the number of children
changes

def allowances1(z):

 for employee in employees:

 if len(employee) < 4:

 employee.append(employee[2]*60)

 else:

 employee[3] = employee[2]*60

allowances2(employees)

print(employees)

employees[1][2] = 8

allowances2(employees)

print(employees)

📝 21.1.7

Preparing an empty list

• in many cases we need to create a table (list of lists) so that it already has
some dimension, but the values in it have been set to the initial value, e.g.
empty

Create a tic-tac-toe playing field.

 O O X

 X X O

 O O X

236

• it is a table with dimensions 3x3, in which there will probably be a list
consisting of three empty triples at the beginning

line = ['', '', '']

table = [line] * 3

print(table)

Program output:
[['', '', ''], ['', '', ''], ['', '', '']]

• so far everything looks fine
• let's try to enter the first move

table[1][1] = 'O'

print(table)

Program output:
[['', 'O', ''], ['', 'O', ''], ['', 'O', '']]

• we are shocked be the result, the element at position 1 in each line has been
overwritten

• the reason is the way memory is handled when using a list
• again the same thing applies as in all other cases - the same memory

reference is repeated for each line

Solution - eliminate the link between the table and the content of the line variable,
which can be done in the following ways:

• by entering values

table = []

for i in range(3):

 table.append(['','',''])

table[1][1] = 'O'

print(table)

• by using a method that returns a new line independent of the previous ones
• a new local variable is always created in its body, which allocates memory in

free space

237

def getLine():

 line = ['', '', '']

 return line

table = []

for i in range(3):

 table = table + [getLine()]

table[1][1] = 'O'

print(table)

📝 21.1.8

Is function

• the is function helps with memory sharing problems
• it identifies whether two objects are the same, whether one list is the same

as the other

line = ['', '', '']

table = [line] * 3

table[1][2] = 'X'

print(table)

print(table[0] is table[1])

21.2 Matrix

📝 21.2.1

Matrix

• a matrix is a structure that we have imagined as a table
• it can be multidimensional, most often we encounter two-dimensional one
• it consists of m lines and n columns, with the number of columns in each line

being the same

• the tic-tac-toe board was a 3 x 3 matrix

238

• we can create the matrix both at the tuple level and at the list level

tuple_matrix = ((1,0,0),(1,1,0),(0,0,0),(0,1,1))

print(tuple_matrix)

list_matrix = [[1,0,0],[1,1,0],[0,0,0],[0,1,1]]

print(list_matrix)

• a more beautiful (matrix) output will provide us with a line-by-line output with
line expansion

def output(matrix):

 for i in matrix:

 print(*i)

output(tuple_matrix)

print('--------')

output(list_matrix)

📝 21.2.2

Sudoku

Write a program that, given the input 3x3 matrix, evaluates whether it is a correctly
solved Sudoku and prints it.

• i.e. each number 1-9 must appear exactly once in the matrix
• we need to determine the method of loading the inputs - ideally, loading by

lines, while the numbers will be separated by a space

sudoku = []

for i in range(3):

 sudoku = sudoku + [input().split()]

print(sudoku)

Program output:
 1 1 3 2 5 4 3 5 8[['1', '1', '3'], ['2', '5', '4'], ['3',

'5', '8']]

• now we go through the list and find out which number appears in it how
many times

239

• we can create a list in which the number of ones will be in the first place, the
number of twos in the second place, etc.

• we only need a list of numbers

occurrence = [0] * 10 # we also count with index 0, where the

value will be 0

print(occurrence)

• we go through the matrix and for each value found we increase the number
of its occurrences

for line in sudoku:

 for item in line: # the item is a string, we need to change

it to a number

 digit = int(item)

 occurrence[digit] = occurence[digit] + 1

• control, we go through the list and if we find the number of occurrences of a
digit being greater than 1, we print it

• if such a situation arises, I will remember it to generate the final answer

problem = False

for i in range(1,10):

 if occurrence[i] != 1:

 print(i, '-', occurrence[i], 'times')

 problem = True

if problem:

 print('Wrong entry')

else:

 print('Correct entry')

📝 21.2.3

Addition of matrices

• a typical and simple task
• at the input there are matrixes with the same dimensions
• it is necessary to create a third one, in which the values from the first two,

which are located in the same positions, will be added up

240

• for this time we enter the matrix firmly

m1 = ((1,2,3),(1,0,0),(1,2,2))

m2 = ((0,5,0),(7,0,5),(2,1,1))

m3 = ()

for i in range(len(m1)):

 line = ()

 for j in range(len(m1[i])):

 line = line + (m1[i][j] + m2[i][j],)

 m3 = m3 + (line,)

print(m3)

Program output:
((1, 7, 3), (8, 0, 5), (3, 3, 3))

• in the first loop we go through the lines, their number represents the number
of elements of the tuple in the m1 list

• in the second loop we go through the number of elements of the inner tuple -
these are numbers

• within the loop with the variable j we create a tuple for each pair of numbers
in the line

• after the end of the j loop, we add the created tuple as a new list = line to the
resulting matrix

• whether we choose m1 or m2 when defining cycles does not matter - the
matrices must have the same dimensions - this is how the addition of
matrices is defined

21.3 Different number of elements in a line

📝 21.3.1

Different number of elements in a line

• the matrix required to have the same number of elements in each line
• however, in general, there is no such requirement when working with lists

241

• if we go through the rows, we identify their number in the same way as in the
matrix len(list)

• if we are traversing the elements in a line, we find out their number via
len(list[i]), where i is the linebeing traversed

Load individual lines from a text file and create a list that contains numbers
representing the length of words for each line.

Meta received a fine of 265 million euros in Ireland

The concern, which includes the social networks Facebook and

Instagram, for example, violated the data protection law

Čítajte viac https://www.sme.sk/

Výsledok:

4 7 1 5 6 2 5 3 8 3

7 7 6 9 8 5 8 1 9 7 5 2 7 6

7 4 19

file preparation

try:

 with open('data.txt','w') as f:

 print('Meta received a fine of 265 million euros in

Ireland', file=f)

 print('The concern, which includes the social networks

Facebook and Instagram, for example, violated the data

protection law', file=f)

 print('Read more https://www.sme.sk/', file=f)

except:

 print('problem with the entry')

loading a file into a list

list_ = ()

try:

 with open('data.txt','r') as f:

 for line in f:

 list_ = list_ + (line.split(),)

except:

 print('problem')

traversing the list

lenghts = ()

for i in range(len(list_)): # traversing the lines

 line_ = ()

242

 for j in range(len(list_[i])): # traversing the words

 line_ = line_ + (len(list_[i][j]),)

 lenghts = lenghts + (line_,)

print(list_)

print(lenghts)

243

Set and dictionary

Chapter 22

244

22.1 Set

📝 22.1.1

A set

• one of the simplest structures designed to hold lists
• working with it is much faster than with other structures, but:
• does not allow storing duplicates
• there is no element position in the list - elements are stored in their own

effective structure
• elements must be immutable, e.g. strings, numbers, tuples
• it is not possible to work with a set of lists because lists are mutable

structures, whose contents can be changed

set_ = set()

set_.add(100)

set_.add('Peter')

set_.add(1000.56)

print(set_)

• adding an element with the same content has no effect

set_.add('Peter')

print(set_)

• we can check if an element is in the set:

a = 'Peter'

b = 'Michal'

if a in set_:

 print(a, 'is an', set_)

else:

 print(a, 'is not in', set_)

print(b in set_)

📝 22.1.2

Operations on sets

• the easiest is to find the number of elements in a set

245

m1 = {'A', 'B', 'C', 'D'}

m2 = {'X', 'Y', 'Z'}

print(len(m1))

print(len(m2))

• in addition to adding, we also need to know how to delete an element
• given the absence of an index, we determine which element to delete

m1 = {'A', 'B', 'C', 'D'}

m1.discard('B')

print(m1)

• if the entered element is not in the set, nothing happens
• if we need information that we are trying to remove a non-existent element,

we can use the remove() method

m1 = {'A', 'B', 'C', 'D'}

m1.remove('B')

print(m1)

m1.remove('B')

print(m1)

• the complete deletion of elements will be provided by the clear() method

m1 = {'A', 'B', 'C', 'D'}

m1.clear()

print(m1)

📝 22.1.3

Operations with sets

• update - inserting elements of another set into a set

m1 = {'A', 'B', 'C', 'D'}

m2 = {'X', 'Y', 'Z'}

m1.update(m2)

print(m1)

Program output:
{'B', 'D', 'C', 'X', 'Y', 'A', 'Z'}

246

• penetration - identification of common elements

m1 = {'A', 'B', 'C', 'D'}

m2 = {'A', 'Y', 'C'}

m3 = m1 & m2

print(m3)

Program output:
{'C', 'A'}

• unification of sets

m1 = {'A', 'B', 'C', 'D'}

m2 = {'A', 'Y', 'C'}

m3 = m1 | m2

print(m3)

Program output:
{'B', 'D', 'C', 'Y', 'A'}

📝 22.1.4

Comparing sets

• sets can be compared based on the following rules
• sets are equal if they have the same elements

m1 = {'A', 'B', 'C', 'D'}

m2 = {'A', 'Y', 'C'}

m3 = {'A', 'B', 'C', 'D'}

print(m1 == m2)

print(m1 == m3)

• one set is smaller than another if it contains all its elements + something

m1 = {'A', 'B', 'C', 'D'}

m2 = {'A', 'B', 'C'}

m3 = {'A', 'B', 'Y'}

print(m1 > m2)

print(m1 < m2)

247

• attention, if the set also contains other elements, then none of them is bigger

m1 = {'A', 'B', 'C', 'D'}

m3 = {'A', 'B', 'Y'}

print(m1 > m3)

print(m1 < m3)

📝 22.1.5

Find all the different digits that occur in the entered number.

• we are not interested in how many times they are repeated, only which ones
occur there

• so we create a set to which we will add elements
• adding a duplicate element does nothing
• after traversing the number, we will print them

number = input()

list_ = set()

for i in number:

 list_.add(i)

print(list_)

Program output:
 123221545{'2', '3', '4', '1', '5'}

📝 22.1.6

Traversal of a set

• we iterate the same way as in the case of the other lists
• let's print only elements from the set that have more than 4 characters

set_ = {'Seven', 'words', 'was', 'found', 'on', 'papyrus',

'scrolls', 'by', 'Black', 'sea'}

for i in set_:

 if len(i) > 4:

 print(i)

248

22.2 Dictionary

📝 22.2.1

Dictionary

• represents a list into which we insert the key and its corresponding value
• subsequently, we can retrieve the value by querying the key
• the order is defined since version 3.7
• it is created using dict() or empty parentheses

e = {}

d = dict()

print(type(e))

print(type(d))

• or possibly by listing values (name, salary)

d = {'Adam':1500, 'Beta':1800, 'Cynthia':1578, 'Damian': 1384}

print(d)

The aim of the dictionary is:

• creating a list of unique objects and assign a value to them
• and subsequently, , getting the feature for a unique value corresponding to it
• gaining access to a record known e.g. in php as associative fields
• for unique Adam we get his salary

print(d['Adam'])

• saveing the necessary parameters describing the object with their values

car = {

 "brand": "Ford",

 "type": "Mustang",

 "year": 1964

}

print(car)

print(car["brand"])

249

📝 22.2.2

Basic operations

• dictionary size by default trough len

d = {'Adam':1500, 'Beta':1800, 'Cynthia':1578, 'Damian': 1384}

print(len(d))

• adding an element - we enter the key value as the index of the element and
assign its value

d['Zuzana'] = 2100

print(d)

• if we try to get a non-existent element through an index call, an exception is
generated

print(d['Elvira'])

• but if we use the get() method, it returns None value in case it does not exist

print(d.get('Elvira'))

• element editing - by assigning a new value to the element defined by the key

d['Adam'] = 1999

print(d)

• deleting an element using del
• if no such element exists in the list, an exception is generated

del d['Adam']

print(d)

• an alternative is to use the pop() method, which returns the value of the
entered key and deletes the given element from the list

• if the element does not exist, an exception is generated

d = {'Adam':1500, 'Beta':1800, 'Cynthia':1578, 'Damian': 1384}

250

name = 'Zuzana'

data = d.pop(name)

print(name, ':', data)

print(d)

Program output:
Adam : 1500

{'Beta': 1800, 'Cynthia': 1578, 'Damian': 1384}

• deleting the entire dictionary using clear()

d.clear()

print(d)

📝 22.2.3

Typical examples of use

• only if the key values can be considered unique, e.g.:

identification number => name of the person

name of the person => telephone number

municipality => district

telephone number => name of the person

town => GPS coordinates of the center

domain address => IP adress

VRN => customer

📝 22.2.4

Design a structure that will provide the tracking of borrowed cars in the car rental
office.

The car will be identifiable by VRN and the person by name.

• we create a list in which the VRN will be answered by the person who has the
car on loan

• one car cannot be borrowed by more than one customer at the same time
• however, one customer may have several vehicles rented at the same time

d = {}

d['NR233AA'] = 'Stone'

251

d['NR258CC'] = 'Plum'

d['NR408XX'] = 'Stone'

d['NR233AA'] = 'Poppy'

d['BA23300'] = 'Plum'

print(d)

• we can print the name of the person who has a rented car with a given VRN
at any time

car = input()

print(d[car])

• checking whether the given car is in the list
• respectively whether a pair is defined for the key value

if "NR233AA" in d:

 print("we have")

📝 22.2.5

Traversing a list

• we iterate through keys, values, or dictionary elements

d = {'Adam':1500, 'Beta':1800, 'Cynthia':1578, 'Damian': 1384}

print(d.keys())

print(d.values())

print(d.items())

print('--------')

for i in d.keys():

 print(i)

print('--------')

for i in d.values():

 print(i)

print('--------')

for i in d.items():

 print(i)

Program output:
dict_keys(['Adam', 'Beta', 'Cynthia', 'Damian'])

dict_values([1500, 1800, 1578, 1384])

252

dict_items([('Adam', 1500), ('Beta', 1800), ('Cynthia', 1578),

('Damian', 1384)])

Adam

Beta

Cynthia

Damian

1500

1800

1578

1384

('Adam', 1500)

('Beta', 1800)

('Cynthia', 1578)

('Damian', 1384)

📝 22.2.6

Practical use 1

• communication between different systems
• a dictionary can be part of a list and describe the properties of the objects in

the list

Record information about students, find out how many men and women are on the
list.

We will record about students:

• name
• gender
• year of birth
• residence

• the data will not be placed in the unnamed columns of the table
• each element of the list will have a data description (key) and its value
• entering the key value is also possible in the following way:

253

s1 = {'name':'Jozef', 'gender':'man', 'year': 1998,

'residence': 'Paris'}

s2 = {'name':'Klement', 'gender':'man', 'year': 1968,

'residence': 'Prague'}

s3 = {'name':'Jana', 'gender':'woman', 'year': 1999,

'residence': 'Bratislava'}

s4 = {'name':'Juan', 'gender':'man', 'year': 1988,

'residence': 'Madrid'}

z = list()

z = z + [s1]

z = z + [s2]

z = z + [s3]

z = z + [s4]

print(z)

• the result of this code is a list of dictionaries, where each dictionary
describes a person

• let's print a list of names of registered persons

for human in z:

 print(human['name'])

• let's finish the task, find out how many men and how many women we have

men = 0

women = 0

for human in z:

 if human['gender'] == 'man':

 men = men + 1

 else:

 women = women + 1

print('men:',men)

print('women:',women)

📝 22.2.7

Practical use 2

• a dictionary is also mentioned as a typical example of the dictionary
• at the input we have pairs of words in different languages, one of them is

chosen as key value, the other as value
• then we will load a word from the user and use it as a key value to quickly

find an equivalent

254

dictionary = { 'car' : 'auto', 'student' : 'študent', 'school'

: 'škola', 'street' : 'ulica'}

wanted = input()

try:

 print('translation "' + wanted + '" - ',dictionary[wanted])

except:

 print('not found')

• the translation in the opposite direction is not so simple
• we have to iterate over the key-value pair and write the key for the found

value

dictionary = { 'car' : 'auto', 'student' : 'študent', 'school'

: 'škola', 'street' : 'ulica'}

wanted = input()

for key, value in dictionary.items():

 if value == wanted:

 print(value, 'the translation is', key)

print('end')

255

