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Python language 

Chapter 1 
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1.1 Python language 

🕮 1.1.1 

1989 is considered to be the year of the birth of the Python language. It was 
introduced by Guido van Rossum, who for many years played a decisive role in 
deciding Pythons direction (he gave up leadership in 2018). 

Python is a high-level language, meaning it uses selected natural (English) language 
words to express commands. Its keywords, commands and control structures were 
designed to match the user's mindset on the one hand and the requirements of an 
algorithmic language on the other. 

The translation of commands to a lower level that the computer understands is 
realized only when the program is started. 

 

📝 1.1.2 

Writing a program in Python consists of writing commands in the English language. 

• Yes 
• No 

 

🕮 1.1.3 

Python is an interpreted programming language. We cannot usually run the 
program we write in it by double-clicking on the icon, but we need a translator - 
interpreter to run it. The interpreter evaluates and executes commands step by 
step, line by line, command by command. 

 

The interpreter is part of the development environment in every basic installation. 
With interpreted source code, we have to remember that running a program doesn't 
mean it's error-free, just that they haven't been discovered yet. 

 

Errors appear only when the interpreter comes to a line of code with an error 
notation. Therefore, it may happen that the program you create will be functional at 
the beginning, but an error and an error message will appear only during the 
program's execution. 
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📝 1.1.4 

Can a program written in Python be executed even if there are errors in it? 

• Yes 
• No 

 

🕮 1.1.5 

The Python language allows you to write cross-platform applications, which means 
that the same program code can be run on portable devices, home computers 
(regardless of the operating system), supercomputers, or even various hardware 
toys or microcomputers. 

Thanks to this, we only need to learn the language once and we can create 
applications for practically every type of device. 

 

📝 1.1.6 

What types of devices can Python be used on? 

• microcomputers 
• supercomputers 
• smartphones 
• personal computers 
• laptops 

🕮 1.1.7 

When writing the source code, it is necessary to remember that Python is a so-
called case sensitive, that is, it is necessary to distinguish between upper and lower 
case letters. A language interpreter would evaluate the words 

Command, command, COMMAND 

or other versions of the entry as different entries. 

 

📝 1.1.8 

Select for command 
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Print 

 

options that will certainly perform the same operation. 

• Print 
• print 
• PRINT 
• PrinT 

 

📝 1.1.9 

Choose the correct statements about Python. 

• A program written in Python cannot run on different platforms. 
• A program written in Python does not pre-find all the errors in the code 

before it runs. 
• Python is case sensitive in source code. 
• Python does not have a built-in development environment, so we need to 

install an external application additionally. 

 

1.2 Development environment on the computer 

🕮 1.2.1 

As part of the course, we will not need any additional installations or settings, the 
web browser will take care of everything. We will be using Python version 3. 

 

However, considering that our goal is to learn to write programs in Python, it would 
be convenient to install a simple development environment on your computer that 
will allow you to test the operation and outputs of the programs. 

 

The current version of Python is available at http://python.org. 

 

To work in Python on a local computer, it is necessary to select and start one of the 
programming environments (shells), for example the IDLE environment, which 
contains a set of tools to facilitate writing and running programs. 
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🕮 1.2.2 

After installation, we find the Idle program in the system and start it. Usually, the 
link to it includes the information that it is Idle Python. 

 

 

🕮 1.2.3 

After starting, a simple window will appear with information about the running 
environment, which includes a menu that allows you to create and run programs. 
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An open window provides access to the Python interpreter where code can be 
entered and executed directly, but this method is not used when writing longer 
programs. 

 

Example of typing commands into the command line. 

>>> 

Type the following command and press Enter. 

print("Welcome to the world of Python") 

 

Pressing Enter created a Python program that displays the greeting "Welcome to 
the world of Python". 

 

The print command ensures that the text is printed on the screen. 

 

🕮 1.2.4 

As a rule, we save the programs we create in separate files. 

To create a new file, we use the command in the menu File -> New File by default. 
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This command will create an empty file into which we can write a program that can 
be run later.

 

 

🕮 1.2.5 

Let's start with a very simple program in which we print some text using the print() 
command. 

We put the text we want to print between quotation marks or apostrophes and write 
it in parentheses. 

Our first program might look like this: 

print("Hi!") 

print("I am Python") 
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🕮 1.2.6 

The program must be saved before running. We can do this manually, or the 
environment will force us to do it automatically at the first start. 

The option File -> Save is used for saving. 
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🕮 1.2.7 

We start the program via the command Run -> Run module or by pressing the F5 
key. 

After the first save (or entering the name of the file with the program), the program 
is saved automatically before starting. 

 

 

🕮 1.2.8 

We can see the result of running the program in the main window. 

First, information about the start of the program is displayed (with the name under 
which we saved it), and then the program starts 

RESTART + program name 

and then it executes the program's commands - in our case, it prints the two texts 
that we assigned to it. 
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The >> sign, which appears under the program output after all commands have 
been executed, indicates that the program has finished its activity. 
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Output command 

Chapter 2 
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2.1 Print command - print() 

🕮 2.1.1 

The print() command is used to print text or for executing a simple calculation. 

We enter the text that we want to print in brackets and enclose it in quotation 
marks. 

print("Hello world!") 

The command prints on the screen 

Hello world! 

 

In the case of calculation, we write "example input" in brackets: 

print(16 + 5) 

and the programming language processes the request by printing the result: 

21 

 

📝 2.1.2 

What does the following command print? 

print("Hello.") 

• Hello. 
• "Hello." 
• Hello 
• ("Hello.") 

 

📝 2.1.3 

Complete the program that prints the text Python is great. 

_____("_____ _____ _____.") 

• Python 
• great 
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• print 
• is 
• English 

 

🕮 2.1.4 

When using the print() command, a new line is set for further output after the text in 
quotes is printed. Therefore, the next print() command always prints its text on a 
new line. 

For example, a sequence of commands 

print("Hello world!") 

print("I am a programmer.") 

 

prints two independent texts below each other. 

Hello world! 

I am a programmer. 

 

📝 2.1.5 

Arrange the commands in the program so that the output has the following form. 

Hello. 

I am Priscilla. 

I believe, 

I will teach you 

TO PROGRAM 

• print("TO PROGRAM") 
• print("I will teach you") 
• print("Hello.") 
• print("I am Priscilla.") 
• print("I believe,") 

 

🕮 2.1.6 

To display the output with multiple values in one line, you need to separate the 
values with a comma. 
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print("Hello world!", "I am a programmer.") 

 

The sequence of commands written in this way prints two independent texts in one 
line one after the other. A space will be automatically inserted between the texts. 

Heloo world! I am a programmer. 

 

📝 2.1.7 

Complete the print() command so that the printed texts are put in one line: 

Hello. Today is a beautiful day. The sun is shining. 

 

Program: 

print("Hello."_____ "Today is a beautiful day."_____ "The sun 

is shining.") 

 

📝 2.1.8 

Complete the program so that it prints the text Happiness will come on Tuesday. 

__________________________________________________ 

• , 
• , 
• ( 
• . 
• . 
• , 
• ) 
• "will come" 
• ; 
• ; 
• . 
• Wednesday 
• ; 
• "Happiness" 
• "on" 
• print 
• "Tuesday" 
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🕮 2.1.9 

Text in quotation marks, or any sequence of characters or numbers that we will 
treat as written text (not a number) is referred to as a string in the programming 
language. 

The easiest way to identify a string is by placing it between enclosing characters, 
quotation marks ("") or apostrophes (''). 

 

📝 2.1.10 

Which statements are true? 

• the string represents a sequence of characters enclosed by e.g. quotation 
marks 

• "mum has emma" is a string 
• 603 is a string 
• 2 is a string 

 

🕮 2.1.11 

Python supports two ways of entering strings - enclosing them with quotation 
marks " or apostrophes '. 

print("Hello world!") 

print('Hello world!') 

 

What is it good for? 

If we decided to print the text that contains quotation marks, for example: 

Ja som "programátor". 

 

then we would have a problem, because the entry 

print("I am "a programmer".") 
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would be invalid. Python would only evaluate the text "I am" as the end of the string 
and analyze the rest as a new string and look for, for example, a comma as a 
separator. 

The solution is to use apostrophes - the text that is to be printed starts with an 
apostrophe, and unless Python finds a closing apostrophe, it prints the content as 
entered. 

print('I am "a programmer".') 

 

The opposite version, where we use an apostrophe inside the string, is also 
possible. 

print("I am 'a programmer'.") 

 

📝 2.1.12 

Which of the codes are written incorrectly? 

• print("I am "Peter"!") 
• print("I am 'Peter"!') 
• print("I am 'Peter'!") 
• print('I am "Peter"!') 

 

📝 2.1.13 

Complete the correct combinations of quotation marks or apostrophes: 

print("I am _____very clever'. I hit myself in the forehead 

with a hammer._____) 

print('In direct speech, sentences are enclosed by a sign 

__________); 

 

2.2 Simple calculations 

🕮 2.2.1 

The print() command provides us with versatile functionality. If we use it without 
content, it will print, or skip an empty line. 

Napr. 
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print('Hello') 

print() 

print('Let's count...') 

vypíše: 

Hello 

--- nothing is here - just an empty line --- 

Let's count... 

čiže: 

Hello 

 

Let's count... 

 

📝 2.2.2 

Arrange the lines so that the output looks like this: 

Hello, 

 

The print command can be used for a variety of things: 

 

printing a text 

mathematical calculation 

inserting empty lines 

• print('printing a text') 
• print() 
• print('mathematical calculation') 
• print('inserting empty lines') 
• print('Hello,') 
• print('The print command can be used for a variety of things::') 
• print() 

 

🕮 2.2.3 

The print command can be used not only for text output, but it can also execute 
various calculations, e.g. 

print(16+7); 

first finds the result of the calculation in parentheses and then prints it. 
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We enter the calculation without quotation marks, on the basis of which the system 
knows that it is supposed to work with the contents of the brackets as with 
numbers and we don't just want to print it in the same form as it is in quotation 
marks. 

For the entry 

print("16+7"); 

the result would be identical to the text in quotation marks: 

16+7 

 

📝 2.2.4 

What does the following command print? 

print(22+17) 

 

📝 2.2.5 

What does the following command print? 

print("18+9") 

 

📝 2.2.6 

What does the following command print? 

print(22 + 17 + 3) 

 

🕮 2.2.7 

The basic mathematical operations we use in expressions are 

• + for addition, e.g. 10 + 20 (we already know that) 
• - for subtraction, e.g. 20 - 8, 
• * for multiplication, e.g. 5 * 8, the multiplication sign is represented by an 

asterisk. 
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The same rules apply to the use of parentheses in expressions as in mathematics, 
i.e. calculation in parentheses takes precedence over multiplication and division, 
and these take precedence over addition and subtraction. 

Therefore: 

print(1 + (4 - 1) * 3 + 2 * 8) 

 

is calculated: 

• first we find the result of the calculation in parentheses and multiply it by the 
value 3 - calculations in parentheses take precedence, 

• then we multiply 2 and 8, 
• finally, we add the obtained values. 

 

So the result is 26. 

 

📝 2.2.8 

What does the following command print? 

print(22 - 17 + 3) 

 

📝 2.2.9 

What does the following command print? 

print(3 * 2 - 2) 

 

2.3 Programmer's comments 

🕮 2.3.1 

In programs, we often need to note something down, explain, write a note, organize 
thoughts or add comments for later understanding, or for another user or 
programmer. Such text is not intended for the program interpreter and must be 
ignored, the code will not be executed, as it will only serve as a comment to the 
rest of the code. 



 

 

26 

We define the information that the text is supposed to be considered a comment 
with the sign #. 

The text that is listed after this character in the given line is ignored - if the # 
character is listed at the beginning of the line, the entire line is logically ignored. 
The informal rule is that there is a space after the # sign. 

E.g. 

# a line for the program output follows 

print('Hello world.')  

or 

print('Hello world.')          # this line printed a greeting 

print('You are so nice today.')   # this line tried to flatter 

me 

 

📝 2.3.2 

Add characters for comments to the code: 

 

_____ this program will print important informations 

print('Attention.')  

print('Hello world.') _____ first important information 

print('You are so nice today.')  _____ second important 

information 

 

🕮 2.3.3 

Using the comment character, we can only make a one-line comment. If we want to 
comment several lines, we must repeat the character in each line. 

# this is the first line of the comment 

# this is the second line of the comment 

 

The second type of comments in Python are block comments, which can contain 
several lines of code. Such a comment begins and ends with the character """ or '''. 

"""This is a block comment 

        it can contain several lines.""" 
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'''This is also a block comment 

        it can also contain several lines.''' 

 

📝 2.3.4 

What character is used to insert a multiline comment? 

• ''' 
• # 
• // 

 

2.4 My first programs 

⌨ 2.4.1 Prvý výpis 

Create a program that prints the following text 

I use the print command. 

 

⌨ 2.4.2 Trojuholník 

Write a program that creates the following triangle from the "o" characters: 

o 

oo 

ooo 

oooo 

 

⌨ 2.4.3 Adam a Eva 

Create a program that prints the text: 

I am 'Adam'. Nice to meet you "Eva". 
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Variables 

Chapter 3 
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3.1 Variable 

🕮 3.1.1 

In the first chapter, we directly wrote out information in the form of texts. We didn't 
remember any information, so we couldn't work with it in several parts of the 
program. 

If we want to remember the value for later or multiple use, we need to use the so-
called variables. 

Variables represent a separate place in computer memory where some value can 
be remembered for later use. We can use one or a large number of variables in the 
program. In order to distinguish between them, each variable must have its own 
unique name set by the programmer. 

The name of the variable can be practically arbitrary, it is necessary to observe only 
a few rules, which we will mention later. 

Variable values can change during program execution. 

 

📝 3.1.2 

Is the following statement true? 

A variable in a program can have any name that is determined by the programmer 
based on the rules defined in the given programming language. 

• Yes 
• No 

 

🕮 3.1.3 

A variable is created by executing an assignment command the moment we first 
insert a value into it. An assignment command consists of a variable name on the 
left side, the "=" operator, and a value (or a calculation that yields a value) on the 
right side. 

Do premenných budeme spočiatku vkladať číslo alebo text. 

n = 10 

name = 'python' 
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How will it look in the computer? Executing the command creates a new variable 
based on the name entered on the left side and inserts (assigns) the value entered 
on the right side into it. 

So the name of the variable is a kind of reference to a specific value. In Python, it is 
not necessary to indicate in advance whether we will store a number, characters, or 
a sequence of characters - strings. Python takes care of setting the variable 
correctly automatically. A variable cannot exist without a value. 

The Python language interpreter does not care which of the following notations we 
use 

n = 10 

n=10 

n= 10 

spaces are simply ignored. 

However, there are rules for formal arrangement of the source code 
(PEP8, https://www.python.org/dev/peps/pep-0008/), which prefer 
notation where there is one space on either side of the assignment 
statement. 

 

 

📝 3.1.4 

Complete the program so that the value 25 is inserted into the temperature 
variable. 

temperature _____ 25 

 

📝 3.1.5 

Is the following statement true? 

In the assignment command, the value located on the right is stored in the variable 
with the name on the left. The parts of the assignment statement are joined by the 
"=" sign. 

• True 
• False 

 

https://www.python.org/dev/peps/pep-0008/
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🕮 3.1.6 

The name of the variable can be anything, if we follow a few rules for naming 
variables: 

The first character of the name must be: 

• Alphabet letter (lowercase or uppercase). Letters from the alphabet of 
different languages can also be used (but this is not recommended). 

• The underscore character "_". 

 

The rest of the variable name can consist of letters, underscore "_" and numbers. 

Allowed variable names are e.g. 

number 

_number 

Number 

Number_1 

number_Second 

Unallowed variable names are e.g. 

4pieces 

#number 

According to the PEP8 rules, the recommendation for variable names 
is to use lowercase letters and the underscore character. 

 

📝 3.1.7 

Can the word 1class be a variable name? 

• Yes 
• No 

 

🕮 3.1.8 

In variable names, the compiler distinguishes between lower and uppercase letters, 
therefore the variables myvariable and Myvariable are two different variables. 
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📝 3.1.9 

Are the letters used in variable names case sensitive in Python? If not, the variable 
"NUMBER" and "number" represent the same variable. 

• The variable name is case sensitive. 
• The variable name is not case sensitive. 

 

🕮 3.1.10 

Variable names cannot be the same as Python keywords. 

The list of keywords is as follows: 

 

In the case of incorrect use of the variable name, the translator reacts e.g. with the 
following error: 

>>> True = 3 

SyntaxError: you cannot assign a keyword 

 

📝 3.1.11 

Which of the names can be used as a variable name? 

• _4num 
• num 
• num4 
• n_u_m 
• #num 
• 5num 
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• print 
• !warning 

 

3.2 Operations with variables 

🕮 3.2.1 

We already know how to store a value in a variable. We can, of course, also look at 
the value stored in the variable. 

We will use the well-known print() command, which, in addition to printing the text 
in apostrophes or quotation marks, can also print the contents of the variable. We 
just need to put its name in parentheses. 

print(variable) 

 

We do not enclose the variable name in quotes or apostrophes. Based on the use of 
these characters, the translator knows whether to print the content that is in the 
variable or the text that we enclosed in quotes. 

temperature = 33 

print(temperature)   # prints 33 - the value that is stored in 

the temperature variable 

print("temperature") # prints the text temperature 

 

📝 3.2.2 

Complete the program so that it prints the value of the variable v. 

v = 5 

_____(_____) 

• print 
• "v" 
• print: 
• v= 
• v 
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🕮 3.2.3 

We usually don't use variables to just read and print a value, but we can also store 
the result of a calculation in them. The notation of a calculation is referred to as an 
expression. 

For example in the program 

x = 10 + 20 - 3 * 7 

a common mathematical expression is entered, which is evaluated from left to 
right, observing the priority of mathematical operations, where the product (*) takes 
precedence over the sum (+) and the difference (-). 

In an expression, like in mathematics, parentheses take precedence during 
evaluation. For example, in the command 

x = 10 + (20 – 3) * 7 

the difference is evaluated first, then the product and finally the sum. * takes 
precedence over + and -. 

We can print the result stored in the x variable 

print(x) 

The difference between directly printing the result of the calculation using 

print(10 + 20 - 3 * 7) 

and saving it to a variable is that we only see the result when it is printed, and if it is 
saved to a variable, we can use it later. 

 

⌨ 3.2.4  

Write a program that stores the result of the following mathematical operation in a 
variable 

5 + 48 + 3 * 11 - 85  

and subsequently prints its content using the print command. 
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📝 3.2.5 

What is printed after the execution of the following sequence of commands? 

c = 15 - 8 * 3 

print(c) 

 

📝 3.2.6 

What is printed after the execution of the following sequence of commands? 

a = (10 - 7) * 2 + 4 * 3 - (7 - 2) 

print(a) 

 

🕮 3.2.7 

In addition to the expression consisting only of numerical values (e.g. 5 * 7 + 3), we 
can also use variables in the expression on the right side. 

For example in the program: 

x = 10 

y = 20 

z = x + y   # values 10 + 20 are used instead of variable 

names 

we first insert values into the x and y variables. 

Subsequently, the calculation will take place based on the expression x + y, where 
instead of the variables, their values are used - that is, we perform the sum of the 
values that are stored in the variables x and y, i.e. 10 + 20. 

Finally, the result is inserted into the variable whose name is given on the left side, 
i.e. variable z. 

Variables listed to the right of the assignment symbol are always replaced by the 
value they contain during the calculation and their contents are not changed by this 
use. 

z = x + y 
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Before the assignment itself, the right side of the assignment command is always 
evaluated first, where: 

• x is replaced by the current value of the variable (read from the 
corresponding memory location), 

• the current value in the variable y is added to it, 
• the result is stored in the new variable z. 

 

And finally, we can print the result 

print(z) 

 

📝 3.2.8 

What is printed after the execution of the following sequence of commands? 

a = 10 

b = 25 

c = a + b 

print(c) 

 

⌨ 3.2.9 Sum of variables 

Write a program that: 

• creates a variable a and assigns the value 10 to the variable a 
• creates a variable b and assigns the value 17 to the variable b 
• print the sum of these two variables 

 

⌨ 3.2.10  

Write a program that: 

• creates a variable a and assigns the value 5 to the variable a 
• creates a variable b and assigns the value 4 to the variable b 
• creates a variable c and assigns it the product of the variables a and b 
• prints the contents of the variable c 

 
file1.py 
#!/usr/local/bin/python 
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# create a variable a and assign the value 5 to it 

 

# create a variable b and assign the value 4 to it 

 

# create a variable c and assign the product a, b to it 

 

# print the contents of the variable c 

 

 

3.3 Variables in expressions 

🕮 3.3.1 

We know that if we use the name of the variable somewhere other than on the left 
side of the assignment expression, then the value that the variable contains is put 
in its place. However, we can freely combine directly entered values and variables in 
expressions, e.g.: 

amount = 100 

new_amount = amount - 20 

 

The value 80 will be stored in the new_amount variable after the commands are 
executed. 

 

📝 3.3.2 

What value will be stored in the variable x after the execution of the following 
commands? 

a = 10 

z = 15 

x = a + 15 + z 

• 40 
• 30 
• 15 
• 0 

 



 

 

38 

📝 3.3.3 

What value will be stored in the variable c after the calculation is executed? 

a = 2 

b = 3 

c = 2 * (a + b) - a * 3 + b 

• 7 
• 18 
• 1 
• 10 

 

🕮 3.3.4 

We can often encounter an entry where the name of the same variable appears on 
both sides of the assignment command. 

poc = 3 

print(poc) 

poc = poc + 1 

print(poc) 

 

The calculation procedure is the same as in the previous cases. The right-hand side 
of the assignment commandis evaluated first: 

• the current value of the poc variable is read, 
• the value 1 is added to it, 
• the result of the expression is then stored in the poc variable, rewriting its 

original value. 

 

So the value 3 is printed first, it changes and the value 4 is printed in the second 
printout. 

 

📝 3.3.5 

Arrange the assignment command so that the program prints 5 and 8 below each 
other. 
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a = 1 

b = 2 

• print(a) 
• print(b) 
• b = 2 * a + b 
• a = b - a 
• a = a + b 

 

🕮 3.3.6 

Just as we could execute the calculation when printing values, we can also execute 
it with variables and send not only the values of the variables in the print command, 
but also the results of the operations to the output. 

Therefore instead of: 

a = 15 

b = 10 

c = a + b 

print(c) 

 

we can omit the calculation of the variable c and directly print the sum of the 
contents of the two variables. 

a = 15 

b = 10 

print(a+b) 

 

📝 3.3.7 

What does the following program print? 

a = 3 

b = 4 

c = 5 

print(a + b * c) 

 

⌨ 3.3.8  

Write a program that: 
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• creates a variable a and assigns the value 15 to the variable a, 
• creates a variable b and assigns the value 40 to the variable b, 
• creates a variable c and assigns it the difference of the variables a and b, 
• prints the contents of variable c, 
• creates a variable d and assigns to it the difference of the product of a and b 

with the contents of the variable c 
• prints the contents of variable d, 
• prints the sum of variables c and d. 

 
file1.py 
#!/usr/local/bin/python 

 

# create a variable a and assign the value 15 to it 

 

# create a variable b and assign the value 40 to it 

 

# create variable c and assign it the difference of variables 

a and b 

 

# print the contents of the variable c 

 

# create a variable d and assign to it the difference of the 

product of a and b with the contents of the variable c 

 

# print the contents of the variable d 

 

# print the sum of the variables c and d 

 

 

⌨ 3.3.9  

Write a program that: 

• creates a variable a and assigns it 333, 
• creates a variable b and assigns it a value 203 smaller - use the calculation, 
• prints the value of b, 
• creates a variable c and assigns the product of a and b to it, 
• creates a variable first and assigns it the value c, 
• changes the contents of the variable first by multiplying it by two (puts its 

double into the variable first), 
• creates a variable second and assigns it the value of the variable first 
• changes the content of the variable second by subtracting the product of a 

and b from its original content, 
• prints the difference of the variables first and second. 
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file1.py 
#!/usr/local/bin/python 

 

# create variable a and assign it 333, 

 

# create a variable b and assign it a value 203 smaller - use 

the calculation, 

 

# print the value of b, 

 

# create a variable c and assign to it the product of a and b, 

 

# create the variable first and assign it the value c, 

 

# change the content of variable first by multiplying it by 

two (puts double of it into variable first), 

 

# create a variable second and assign it the value of the 

variable first 

 

# change the content of the variable second by subtracting the 

product of a and b from its original content, 

 

# print the difference of the first and second variables 

 

3.4 Output formatting 

🕮 3.4.1 

If we want to print the values of several variables, it is possible to print them in one 
command. 

x = 10 

y = 20 

z = x + y 

print(x, y, z) 

 

Prints 

10 20 30 
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while the space is filled automatically with the print command. 

 

📝 3.4.2 

What does the following program print? 

a = 15 

b = 10 

print(a, b, a * b - a) 

• 15 10 135 
• 135 
• 15, 10, 135 
• 10, 15, 135 

 

📝 3.4.3 

Variables a, b have set initial values. What is printed after the sequence of 
commands is executed? 

a = 10  

b = 5 

 

a = a + b 

b = a - b 

a = a - b 

 

print(a, b) 

• 5 5 
• 0 5 
• 5 10 
• 10 5 

 

🕮 3.4.4 

Let's imagine a program 

x = 10 

y = 20 

print(x, y, x + y) 
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whose output takes the form 

10 20 30 

 

However, such output is very brief and the sequence of numbers in the printout may 
be unclear to the user. Therefore, it is advisable to combine the printout of variables 
with descriptive texts that explain the numbers in more detail, e.g. 

x = 25 

print('The value of the variable x is', x) 

 

prints: 

The value of the variable x is 25 

 

Note that the variable x mentioned in apostrophes is an ordinary string of 
characters, so no value is substituted for it. The value is only inserted into the 
stand-alone variable name specified as the second parameter of the print function. 

 

📝 3.4.5 

What does the following program print? 

a = 15 

b = 10 

print('The result of the sum of a and b is', a + b) 

• The result of the sum of a and b is 25 
• The result of the sum of a and b is25 
• The result of the sum of 10 and 15 is 25 
• The result of the sum of 10 10 15 is 25 

 

🕮 3.4.6 

If we want to print several variables in combination with several static texts, we 
must separate each part of the output with a comma, e.g.: 
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x = 10 

y = 20 

z = x + y 

print(x, '+', y, '=', z) 

 

The result will be as expected 

10 + 20 = 30 

 

When constructing the output, do not forget that there should be a space between 
the individual parts of the printout - this is added automatically in the printout 
thanks to the rules defined for the print command. 

 

📝 3.4.7 

Complete the code correctly so that we receive the exact required out. 

j = 25 

k = 12 

print(_____, '__________, __________ '=', _____ - _____) 

 

The required output is 

25 - 12 = 13 

• j 
• k 
• ' 
• - 
• j 
• k 
• k 
• j 
• + 
• , 

 

📝 3.4.8 
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Choose the correct statement. 

• A variable in Python can hold any value, but once it is assigned it must not 
change. 

• A variable is created after the program is started and is valid throughout the 
entire program's run. 

• A variable in Python is created after assigning a value to it, and we can use 
its value repeatedly in the following part of the program. 

 
 
 

⌨ 3.4.9  

Write a program that: 

• creates a variable a and assigns the value 10 to the variable a, 
• creates a variable b and assigns the value 20 to the variable b, 
• prints the product of the variables a and b in the form: 

The product of 10 and 20 is 200 

 
file1.py 
#!/usr/local/bin/python 

 

# create a variable a and assign the value 10 to it 

 

# create a variable b and assign it a value of 20 

 

# print the product of a and b in the form "The product of 10 

and 20 is 200" 

 

⌨ 3.4.10  

Write a program that: 

• creates a variable a and assigns the value 37 to the variable a 
• creates a variable b and assigns the value 26 to the variable b, 
• prints the results of operations with variables in the form: 

súčet: 37 + 26 = 63 

rozdiel: 37 - 26 = 11 

súčin: 37 * 26 = 962 

 
file1.py 
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#!/usr/local/bin/python 

 

# create a variable a and assign the value 37 to it 

 

# create a variable b and assign the value 26 to it 

 

# provide a printout for the sum 

 

# provide a printout for the difference 

 

# provide a printout for the product 
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Input command 

Chapter 4 
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4.1 Input command 

🕮 4.1.1 

We usually expect programs to be able to solve the problem for different values. 

If we had a program that could only add the values 230 and 180, then instead of 
writing it, it would be enough to use a calculator or just the knowledge from 
elementary school. 

The purpose of the program is to be able to perform the same operation or 
sequence of operations with arbitrary values. These must somehow get into the 
program without us having to write them directly into the code. We refer to them as 
input values, and in order for the program to work with them, it needs to recieve 
them from the user and store them in variables. 

Operations that provide the loading of values are referred to as input operations. 
Initially, it involves entering the desired values from the keyboard and reading them 
by the program. 

 

📝 4.1.2 

What are the commands that ensure the loading of values from the user to the 
program called? 

• input 
• output 
• ongoing 

 

🕮 4.1.3 

So far, we have been working with variables that we have previously set to some 
specific values. If we wanted to change the inputs, we needed to rewrite the 
program. However, we cannot expect such an activity from the user of the program, 
and we must teach the program to read input values from the user. 

The input() command is used to retrieve data from user input. The command reads 
the data entered by the keyboard and confirmed by Enter and returns it in the form 
of a text string. The value returned by the input() command can then be stored in a 
variable. 

The entire entry then has the form: 
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data = input() 

 

Before stopping the program and waiting for the input, it is usually necessary to 
inform the user about what we actually expect at the input, e.g.: 

print('Enter a name: ') 

name = input() 

 

Subsequently, we can work with such a variable. 

 

📝 4.1.4 

Which of the entries for data input is correct if we want to insert the entered data 
into the variable a? 

• input(a) 
• a = input() 
• input() = a 

 

🕮 4.1.5 

Instructions for the user can also be entered in the parentheses of the input() 
command. 

  name = input('Enter a name: ') 

  surname = input('Enter a surname: ') 

 

We can print the variables loaded using the input() command in the same way as 
before using the print() command. 

print('Hello', name, surname) 

 

Prints the text according to the entered name and surname, e.g.: 

Hello Joseph Carrot 
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📝 4.1.6 

Complete the program so that it reads the name and surname and outputs: 

Hello, your name is Ferko Carrot. 

 

name = _____('Enter a name: ') 

surname = _____('Enter a surname: ') 

print('Hello, your name is', _____, _____) 

 

⌨ 4.1.7  

Complete the program so that it reads the name and age and outputs: 

Hello, your name is Ferko and you are 17 years old. 

When retrieving data, display the texts 'Enter name: ' and 'Enter age: '. 

Prepare the solution to the task on the computer in the Idle environment to see 
how the program works and just copy it here. 

For example for entry: 

Jozef  

15 

the output will be 

Hello, your name is Jozef and you are 15 years old 

 
file1.py 
#!/usr/local/bin/python 

# load name with display text 'Enter name: ' 

 

# load age with display text 'Enter age: ' 

 

# load the text in the form Hello, you are Jozef and you are 

15 so that you use the content in the variables 

 

 

4.2 Not a sum like a sum 
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🕮 4.2.1 

Let's try the following commands whose purpose is to add two numbers. 

a = input('Enter the 1st number: ') 

b = input('Enter the 2nd number: ') 

print(a + b) 

 

For example, if we entered the values 3 and 2, we would expect to see the value 5. 
However, the result is the value 32. 

The reason is that the input() command cannot distinguish whether the input is text 
or number and returns the value in a more universal form - as a text string. 

Since in Python we don't need to define the variables or their type (number or 
string) in advance and we leave the type determination to the compiler in the first 
step, getting the correct value can be a bit more time consuming... 

 

📝 4.2.2 

What will be the result of the following sequence of commands for input values 5 
and 7? 

a = input() 

b = input() 

print(b + a) 

• 75 
• 57 
• 12 
• 21 

 

⌨ 4.2.3 'Stupid' sum 

Write a program that adds two values given as text input (i.e., do not convert them 
to numbers). 

When retrieving data, display the texts 'Enter 1st value: ' and 'Enter 2nd value: '.  

Prepare the solution to the task on the computer in the Idle environment to see 
how the program works and just copy it here. 
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For example for entry: 

20 

15 

the output will be 

2015 

 

For entry: 

mother 

winter 

the output will be 

motherwinter 

 
file1.py 
#!/usr/local/bin/python 

# load the first value with the text display 'Enter 1st value: 

', e.g. into the variable first 

 

# load the second value with the text display 'Enter 2nd 

value: ', e.g. into the variable second 

 

# print the result as the 'sum' of the first and second values 

 

 

🕮 4.2.4 

If we are sure that a number will be entered at the input and we want to work with 
the read value as a number, we need to convert the read data - change it from a 
string to an integer. We do so using the int() command. So the program will look 
like this: 

text1 = input('Enter 1st number: ')  # reads the TEXT entered 

on the input 

a = int(text1)                     # changes the originally 

entered text to a number 

text2 = input('Enter 2nd number: ')  # reads the second TEXT 

entered at the input 
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b = int(text2)                     # also changes the second 

text to a number 

print(a + b)                       # finds/calculates the 

result for numbers 

 

The int(text) entry ensures the transformation of the text into a number and 
assigning it to the variables a, b inserts the numerical value returned by the int() 
command. 

With such values, the sum operation then executes mathematical addition. 

If there is text stored in the variables, the "+" operation will combine them, if there is 
a number stored in both variables, the "+" operation will perform their mathematical 
sum. 

 

Attention, if one value is text and the other numeric, the program throws an error: 

print(text1 + d) --- TypeError: must be str, not int 

 

📝 4.2.5 

What is the result of the following sequence of commands for input values 5 and 7? 

first = input() 

second= input() 

a = int(first) 

b = int(second) 

print(b + a) 

• 75 
• 57 
• 12 
• 35 

 

⌨ 4.2.6  

Write a program that adds two values entered as numbers on the input (i.e. 
converts them to numbers after reading them). 

When retrieving data, display the texts 'Enter 1st value: ' and 'Enter 2nd value: '.  
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Prepare the solution to the task on the computer in the Idle environment to see 
how the program works and just copy it here. 

For example for input: 

20 

15 

the output will be 

35 

 

For input: 

10 

-1 

the output will be 

9 

 
file1.py 
#!/usr/local/bin/python 

# load the first value with the text display 'Enter 1st value: 

', e.g. into the text1 variable 

 

# convert the first value to a number, e.g. into the variable 

a 

 

# load the second value with the text display 'Enter 2nd 

value: ', e.g. into the text2 variable 

 

# convert the second value to a number, e.g. to variable b 

 

# print the result as the sum of the first and second numeric 

values  (obtained after conversion) 

 

 

📝 4.2.7 

Add commands to the source code so that double of the read value is printed: 

text = _____() 
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a = _____(_____) 

print(2 _____ _____) 

• int 
• input 
• a 
• input 
• * 
• int 
• text 
• a 
• text 
• + 

 

4.3 Input(programs) 

⌨ 4.3.1 Greeting 

Write a program that reads the user's name and then greets him, e.g.: 

input: Jozef 

output: Hello, Jozef 

 

Display text 'Enter name: ' when input is loaded 

 

⌨ 4.3.2  

Write a program that reads the user's name, his job and then prints the information 
in the form, e.g.: 

input:  

Jozef 

mason 

output: Jozef is mason . 

 

Display text 'Enter name: ' and 'Enter occupation: ' when input is loaded 

 
file1.py 
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#!/usr/local/bin/python 

# load the name with the text display 'Enter name: ', e.g. 

into the variable name 

 

# load the second value with the text display 'Enter job: ', 

e.g. to the variable job 

 

# print the result in the print command 

 

⌨ 4.3.3  

Write a program that multiplies two input values entered as numbers (i.e. converts 
them to numbers after reading them). 

When retrieving data, display the texts 'Enter 1st value: ' and 'Enter 2nd value: '. 

Prepare the solution to the task on the computer in the Idle environment to see 
how the program works and just copy it here. 

For example for the input: 

20 

15 

the output will be 

300 

 

For the input: 

10 

-1 

the output will be 

-10 

 
file1.py 
#!/usr/local/bin/python 

# load the first value with the text display 'Enter 1st value: 

', e.g. into the variable text1 

 

# convert the first value to a number, e.g. into the variable 

a 
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# load the second value with the text display 'Enter 2nd 

value: ', e.g. into the variable text2 

 

# convert the second value to a number, e.g. to variable b 

 

# print the result as the product of the first and second 

numerical values (obtained after conversion) - using the sign 

* 

 

⌨ 4.3.4 Sum of three numbers 

Write a program that adds three values entered as numbers on the input (i.e. 
converts them to numbers after reading them). 

When using the input() command, for the sake of simplifying the check (and 
unnecessary delay due to typos), we will skip displaying the text for the user: 

 

Don't use the notation: 

text1 = input('Enter the 1st value:') 

but the notation 

text1 = input() 

 

Prepare the solution to the task on the computer in the Idle environment to see 
how the program works and just copy it here. 

For example for the input: 

20 

15 

10 

the output will be 

45 

 
file1.py 
#!/usr/local/bin/python 

# load the first value, e.g. into the variable text1 
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# convert the first value to a number, e.g. into the variable 

a 

 

# load the second value, e.g. into the variable text2 

 

# convert the second value to a number, e.g. into the variable 

b 

 

# load the third value, e.g. into the variable text3 

 

# convert the third value to a number, e.g. into the variable 

c 

 

# print the result as the sum of the first, second and third 

numerical values (obtained after conversion) 

 

⌨ 4.3.5  

Load an integer value and print a decuple of it, e.g.: 

input : 3 

output: 30 

 

input : 5 

output: 50 

 

⌨ 4.3.6  

The state contributes a fixed amount of money to family for each child. Write a 
code that, for the specified number of children, calculates how much of family 
allowances will the given family receive and prints this amount. The allowance for 
one child is EUR 30. 

input : 3 

output: 90 

 

input : 8 

output: 240  
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⌨ 4.3.7  

For the specified length of the side of the square garden, calculate and write how 
much mesh is needed to fence it and what its area is. Also follow the order of 
outputs - first the fence, then the area, e.g.: 

input : 3 

output:  

fence: 12 

area: 9 

 

input : 5 

output:  

fence: 20 

area: 25 

 
file1.py 
#!/usr/local/bin/python 

# load text data from input 

 

# convert the text data to a number representing the length of 

the side of the garden 

 

# calculate the length of the fence 

 

# print the length of the fence 

 

# calculate the area 

 

# print the area 

 

 

⌨ 4.3.8  

During the construction of the pool, it is necessary to purchase tiles that will be 
placed on the bottom and side walls that will be spread around the pool. 

Tiles are sold by the surface, side walls by the meter. Calculate for the specified 
width and length of the pool how many m2 of tiles will be needed to cover the 
bottom and how many m of side walls will be needed to cover the perimeter. 

At the input, the width and length are listed in separate lines - load each value with a 
separate input() command, which always reads the entire content listed in the line. 
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At the output, first indicate the area of the tiles on the bottom, and then the area of 
the walls. Separate the values with a space. 

input :  

3 

2 

output: 6 10 

 

input :  

5 

4 

output: 20 18 

 
file1.py 
#!/usr/local/bin/python 

# load a text data representing the width 

 

# load a text data representing the length 

 

# convert data to integer variables 

 

# calculate and print first the area, then the perimeter 
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Conditional statement 

Chapter 5 
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5.1 Conditional statement 

🕮 5.1.1 

A sequence of commands that are executed in the order in which they are written in 
the program is called sequence. 

In such a case, the compiler proceeds by individual commands, and when the 
command is executed, it proceeds to the next one. 

All the programs we have encountered so far worked in just that way, e.g.: 

aa = input('Enter first value') 

bb = input('Enter second value') 

a = int(aa) 

b = int(bb) 

print('The sum is:', a + b) 

 

📝 5.1.2 

What is the name of an order of commands that are executed in the order in which 
they are written? 

• sequence 
• consequence 
• score 

 

🕮 5.1.3 

However, most programs do not only contain simple sequences, but very often 
need to decide how to proceed further based on the processed data. Branching 
gives us the ability to decide and execute other commands based on whether or not 
a condition is met. 

It consists of a condition and commands that are executed in case of fulfillment 
and non-fulfilment of the condition. 

The branching command has the following form: 

if condition: 

 command 

napr.: 
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if age < 10: 

   print("minor") 

 

if age > 18: 

    print("adult") 

etc. 

The basis of branching is an if statement followed by a condition that must result 
either in true or false. 

The condition must be followed by a colon. 

The colon is followed by commands to be executed if the condition is met. These 
commands must be offset from the margin by the same number of spaces. 

 

The size of the offset is not strictly given. However, according to 
PEP8, 4 spaces are recommended. 

 

Command, or commands are executed only if the condition is met. 

If the condition is not met, the command is not executed and the program 
continues with the next command. 

 

📝 5.1.4 

Complete the program with a conditional statement so that if the value of the age 
variable is greater than 18, the text: "adult" is printed. 

txt = input() 

age = int(txt) 

_____ age > 18_____ 

    _____("adult") 

 

🕮 5.1.5 

In the previous program, we gave an example of incomplete branching, when we 
processed only the situation when the condition was met. Quite often, however, we 
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need to treat both situations - when the condition is met and when the condition is 
not met. Then we talk about full branching. 

In this case, we add an else part to the original form of the command. The 
command then has the form: 

if condition: 

    commands for the fulfilled condition 

else: 

    commands for the unfulfilled condition 

 

napr. 

if age > 18: 

    print("adult") 

else: 

    print("minor") 

 

Both the if and else statements must have the same offset - in this case they start 
from the left margin. 

If the value of the age variable is greater than 18, the text "adult" is printed, 
otherwise (that is, the age is less than or equal to 18) the text "minor" is printed. 

 

📝 5.1.6 

Complete the program so that if the value of the variable height is less than 160, 
the text: "small" is printed, otherwise "big". 

txt = input() 

height = _____(txt) 

_____ height < 160_____ 

    print("small_____) 

__________ 

    print("big") 

• fi 
• ; 
• if 
• : 
• ' 
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• int 
• ; 
• esle 
• " 
• : 
• else 

 

🕮 5.1.7 

The part of the program that is executed when the condition is met is called the 
positive branch, the part of the program that is executed when the condition is not 
met, the negative branch. 

if age > 18: 

    print("adult") # positive branch 

else: 

    print("minor")  # negative branch 

 

📝 5.1.8 

Arrange the lines of source code whose results is the output of the larger number 
from the given pair a and b. 

a = 20 

b = 30 

• print(a) 
• if a > b: 
• print(b) 
• else: 

 

📝 5.1.9 

What are the parts of a conditional statement containing the statements to be 
executed if the condition is met or not met called? 

• branches 
• conditions 
• brackets 
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🕮 5.1.10 

Using one command in the positive and one in the negative branch is rather 
exceptional, we usually need to use more commands. The fact that several 
commands are to be executed in a certain branch is provided by an offset - it 
defines the entire block of commands. 

if condition: 

 command1 

    command2 

    command3 

else: 

    command4 

    command5 

next_code 

 

Commands 1-3 are executed if the condition is met, commands 4-5 are executed if 
the condition is not met. 

The next code must continue with the same offset as the if and else statements 
and will be executed regardless of whether the condition was met or not. 

 

📝 5.1.11 

Arrange the source code lines so that commands 5 and 3 are executed if the 
condition is met, and commands 1, 2, and 7 are executed otherwise. Let commands 
4 and 6 be executed after the branch is processed. 

• if condition: 
• command2 
• command4 
• command6 
• command5 
• command3 
• else: 
• command1 
• command7 
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5.2 Taks with a condition 

🕮 5.2.1 

So far, we have only used the greater or lesser sign in the condition. However, we 
can also compare using other signs: 

• == compares whether the values are equal, e.g. a == b 
• <= compares whether the value on the left side is less than or equal to the 

value on the right side, e.g. c <= 10 
• >= compares whether the value on the left side is greater than or equal to the 

value on the right side, e.g. c >= 10 
• != compares whether the values are not equal, e.g. a != b – the condition is 

met if the values are different 

 

In the case of using <= and >= signs, their order must be observed. Using =< will be 
evaluated as an error. 

 

📝 5.2.2 

Complete the code with the correct characters for comparison: 

txt = input() 

a = int(txt) 

if a _____ 0: 

    print("A zero value was entered") 

else: 

    print("A non-zero value was entered") 

print("end") 

 

🕮 5.2.3 

Let's test the values of two variables and print whether they are the same or which 
one is greater. We actually need to test three options. 

a == b 

a > b 

a < b 

Let's try it through a simple if statement. 
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if a == b: 

    print(a, b, 'are equal') 

if a > b: 

    print(a, 'is greater than ', b) 

if a < b: 

    print(b, 'is greater than ', a) 

 

 

 

📝 5.2.4 

Complete the code that determines whether the value stored in the a variable is 
positive, negative, or zero. 

_____ a _____ 0: 

    print('zero value') 

_____ a > 0: 

    print('_____') 

_____ a < 0_____ 

    print('_____') 

• else 
• positive number 
• if 
• negative number 
• if 
• == 
• = 
• -> 
• : 
• else 
• if 

 

⌨ 5.2.5 Positive/Negative 

Write a program that will print whether the given integer is positive or negative. For 
the purposes of this task, consider zero as a positive number. 

Input : 1  

Output: positive 
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Input : -3 

Output: negative 

 

Input : 0 

Output: positive 

 
file1.py 
#!/usr/local/bin/python 

# load a value and convert it to a number 

 

# process the comparison whether the value is positive 

 

# print that it is a positive number 

 

# otherwise print that it is a negative number 

 

⌨ 5.2.6 Comparison of numbers 

Write a program that, given two given numbers, prints the greater of them. If the 
numbers are equal, print "nu,mnumbers are equal". 

Input :  

3  

2 

Output: 3 

 

Input :  

2  

8 

Output: 8 

 

Input :  

2  

2 

Output: numbers are equal 

 
file1.py 
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#!/usr/local/bin/python 

# load the values and convert them to numbers 

 

# process the comparison and print the result 

 

# process a and b are equal 

 

# process a is greater than b 

 

# process b is greater than a 

 

⌨ 5.2.7 Part-time job 

Write a program that, for a given age, will display whether the given person can 
work part-time (can/cannot). A person who is at least 17 years old can have a part-
time job. 

Input : 1  

Output: cannot 

 

Input : 17 

Output: can 

 

Input : 105 

Output: can 

 

⌨ 5.2.8 The absolute value of a number 

Write a program that prints the absolute value of a given integer. 

Input : 0  

Output: 0  

 

Input : 3 

Output: 3 

 



 

 

71 

Input : -8 

Output: 8 

 

⌨ 5.2.9  

Write a program that, for two given numbers, finds (and stores in the variable max) 
the larger of them. If they are equal, an arbitrary one of them will be printed. Ensure 
the result by printing the contents of the variable max. 

Input :  

3  

2 

Output: 3 

 

Input :  

2  

8 

Output: 8 

 

Input :  

2  

2 

Output: 2 

 

5.3 Multiple conditional statement 

🕮 5.3.1 

Although the previous solution is correct, it makes sense to consider another one 
as well. 

if a == b: 

    print(a, b, 'are equal') 

if a > b: 

    print(a, 'is larger than ', b) 

if a < b: 

    print(b, 'is larger than ', a) 
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However, if we look at the code through the eyes of an experienced programmer, it 
is inefficient - even if the values are identical and we already have a result after 
evaluating the first condition, other conditions are tested unnecessarily. 

Let's redesign the solution to make it more efficient. 

if a == b: 

    print(a, b, 'are equal') 

else: 

    if a > b: 

        print(a, 'is larger than ', b) 

    else: 

        if a < b: 

            print(b, 'is larger than ', a) 

This is the correct solution, the condition a > b is tested only if a == b does not hold. 
And the condition a < b is tested only if neither a == b nor a < b applies. 

However, the entry can be shortened, because we do not have to execute the last 
test. Validity takes effect automatically. 

if a == b: 

    print(a, b, 'are equal') 

else: 

    if a > b: 

        print(a, 'is larger than ', b) 

    else: 

        print(b, 'is larger than ', a)  

 

📝 5.3.2 

Complete a more efficient solution to find out what value is stored in the variable a. 

_____ a _____ 0: 

    print('zero value') 

_____: 

    _____ a _____ 0: 

        print('positive number') 

    _____: 

        print('negative number') 

• = 
• else 
• if 
• if 
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• else 
• if 
• == 
• else 
• > 
• else 

 

🕮 5.3.3 

In addition, Python provides an option to shorten this notation as well. There is a 
version of the if - elif - else command for successive evaluation of several 
conditions. 

In case the compiler evaluates any of the conditions as fulfilled, it no longer 
evaluates the following el-if branches and continues execution after the if block. 

if condition1: 

    block of commands 

elif condition2: 

    block of commands 

 

elif ... 

elif ... 

elif ... 

 

else: 

    block of commands 

The number of elif conditions is unlimited. The else branch does not need to be 
specified. 

In the optimal entry, our solution would look as follows. 

if a == b: 

  print(a, b, 'are equal') 

elif a > b: 

  print(a, 'is larger than ', b) 

else: 

  print(b, 'is larger than ', a) 

 

📝 5.3.4 

Complete the code. 
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a = input ('Enter a number') 

b = input ('Enter another number') 

 

_____ 

  print ('Entered numbers are the same.') 

_____ 

  print ('Entered numbers are not the same.') 

 

📝 5.3.5 

Complete the solution using the if-elif-else structure. 

_____ a _____ 0: 

    print('zero value') 

_____ a _____ 0: 

    print('positive number') 

_____: 

    print('negative number') 

• > 
• if 
• == 
• else 
• elif 

 

📝 5.3.6 

What is printed after the program is executed? 

x = 5 

if (x == 5): 

    print('Hi') 

    print('Hello') 

else: 

    print('Cheers') 

print('Ciao') 

• 'Hi Hello Ciao' 
• 'Hi Hello' 
• 'Cheers Ciao' 
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📝 5.3.7 

What is the result of the given code? 

a = 4 

b = 10 

if a == 0: 

  print(b) 

else: 

  print(a) 

• 4 
• 10 
• 0 

 

📝 5.3.8 

Arrange the source code correctly to tell if a number is positive, negative, or zero. 

• n = 10 
•    print(n, 'is negative.') 
• if n > 0: 
• else: 
• elif n < 0: 
•    print(n, 'is positive.') 
• print(n, 'is zero.') 

 

⌨ 5.3.9 Test results 

Write a program that, given the average result from the test and the number of 
points you have achieved, will print whether you have achieved an above-average, 
average or below-average result. The first input value is the average, the second is 
the achieved result. 

Input:  

10 

12 

Output: above-average 

 

Input:  

20  
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18 

Output: below-average 

 

Input:  

33 

33 

Output: average 

 

⌨ 5.3.10 A well-deserved salary 

Write a program that, given the average salary and your salary, will print out whether 
you have above-average, average or below-average earnings and by how much. The 
first input value is the average salary, the second is your income. 

Input:  

1000 

1200 

Output: 200 above-average 

 

Input:  

2000  

1600 

Output: 400 below-average 400 

 

Input:  

1333 

1333 

Output: average 

 

⌨ 5.3.11 Maximum of three numbers 

Write a program that prints the largest of the three entered numbers. If any 
numbers are the same, it prints the largest value. 

Input:  

2  

4  

6 
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Output: 6 

 

Input:  

2  

1  

2 

Output: 2 

 

⌨ 5.3.12 Maximum of four numbers 

Write a program that prints the largest of the 4 entered numbers. If any numbers 
are the same, it prints the largest value. 

Input:  

2  

3 

4  

6 

Output: 6 

 

Input:  

2 

2  

1  

2 

Output: 2 

 
file1.py 
#!/usr/local/bin/python 

#!/usr/local/bin/python 

# load four values and convert them to numbers 

 

# declare the first number as max - put a in the max variable 

 

# if the second number is greater than max, store the value of 

the second number in max 

 

# if the third number is greater than max, store the value of 

the third number in max 
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# if the fourth number is greater than max, store the value of 

the fourth number in max 

 

# print the result 
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Loop 

Chapter 6 
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6.1 Commands repetition 

🕮 6.1.1 

Very often we need to repeat part of the algorithm. A record that enables repetition 
is reffered to as a loop. For each repetition, it is important what (body of the loop) is 
to be repeated and when, for what values, the commands in the body of the loop 
are to be executed. 

A loop allows a part of a program to be repeated for a given list of values or until a 
condition is met, e.g.: 

for values:  for repetitions 1,2,3,4,5 

what:               lift a barbell 

  

for values:  for coins 10,20,50,10,10 

what:               add to purse 

  

until when:     while there is something on your account 

what:           buy presents 

  

until when:     until you are at the end of the text 

what:            replace the word five with the number 5 

 

📝 6.1.2 

How do we call an entry in a program that allows repetition of actions? 

• loop 
• branching 
• sequence 

 

🕮 6.1.3 

Print the text 'Python' 7 times below. 

To complete this task, we need to repeat the printout of the value 7 times: 
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print('Python') 

print('Python') 

print('Python') 

print('Python') 

print('Python') 

print('Python') 

print('Python') 

The same effect can be achieved by using a loop, which allows the repeating part of 
the program (in this case, the printout) to be written into the program only once. 

In the repetition definition, we need to specify a group of values for which the 
printout is supposed be repeated: 

for i in 1, 2, 3, 4, 5, 6, 7: 

   print('Python') 

When repeating the same activity, it is not important what values we enter, only 
their number is important. 

 

📝 6.1.4 

How many times will the following loop be executed? 

for i in 1, 2, 3, 4, 5, 6: 

   print('Winter') 

 

🕮 6.1.5 

The number of repetitions of the loop does not depend on the values that are listed 
in the group, but on their number. 

For example we can provide the task Write "Hello" 5 times below with the following 
program: 

for i in 1, 2, 3, 4, 5: 

   print("Hello") 

Even in this case, the variable gradually acquires 5 different values and for each of 
them it prints the text "Hello" once. However, the value of the variable i is not used 
anywhere. 

A loop will fulfill the same role 
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for i in 1, 1, 1, 1, 1: 

   print("Hello") 

or any other notation with a group of five not necessarily different values. 

 

📝 6.1.6 

How many times will the following loop be executed? 

for i in 2, 4, 0, 10, 20, 10: 

   print(i) 

 

🕮 6.1.7 

In general, the definition of a loop takes the form: 

for variable in sequence: 

    command 

For everything to work correctly, it must be true: 

1. a sequence must be defined as a sequence of values that we can traverse, 
2. there must be a colon at the end of the first line of the loop, 
3. commands to be executed must be offset from the margin. 

 

What is a sequence of values? For now, we just need to know that they are comma-
separated values. Each value has its place in the sequence and for the previous 
case we needed it in the form of 1, 2, 3, 4, 5, 6, 7. 

 

📝 6.1.8 

Which of the following lists can be used to print the greeting 4 times? 

for i in ??????: 

   print("Good morning") 

• 1, 2, 3, 4 
• 8, 9, 8, 11 
• 0, 1, 2, 3 
• 1, 1, 2, 3, 4 
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• 0, 0, 0, 0, 4 
• 0, 4 

 

⌨ 6.1.9 Hello 

Write a program that prints the word "Hello" 10 times below 

Output: 

Hello 

Hello 

Hello 

Hello 

Hello 

Hello 

Hello 

Hello 

Hello 

Hello 

 

6.2 Enumerated values 

🕮 6.2.1 

So far, we have only used the loop to print the same content. However, it also 
allows the use of values that are entered sequentially in its header. 

Print the values 1-6 below. 

To complete this task, we need to repeat the value printout 6 times: 

print(1) 

print(2) 

print(3) 

print(4) 

print(5) 

print(6) 

If we want to simplify the task using the loop, it is enough to specify the sequence 
of values that the loop is supposed print in its definition: 

for i in 1, 2, 3, 4, 5, 6: 

   print(i) 
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The loop works in such a way that the variable i acquires the value of the first 
element of the sequence and the command is executed, in which the acquired value 
of the variable i is printed. Then we return to the beginning of the loop, the variable i 
acquires the value of the second element of the sequence and the command is 
executed again. This is repeated until all sequence values are used up. 

 

📝 6.2.2 

What values will the following cycle print? 

for i in 8, 7, 3, 1, 5: 

    print(i) 

• 8 7 3 1 5 
• 8 7 6 5 1 
• 5 4 3 2 1 
• 1 2 3 4 5 

 

🕮 6.2.3 

Write a program that prints 5 lines with the text "I know how to use the loop now." 
and in each of them it displays the serial number of the line.  

1 I know how to use the loop now. 

2 I know how to use the loop now. 

3 I know how to use the loop now. 

4 I know how to use the loop now. 

5 I know how to use the loop now. 

 

The program is relatively simple: we already know that we need to print the values 
1-5. So we insert the sequence 1-5 into the definition of the cycle and ensure that 
the variable also acquires these values gradually. 

for i in 1, 2, 3, 4, 5:    

The action to be repeated consists of printing the variable i using the command 

print(i) 
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by which we would achieve a printout of values 1-5 below each other. 

It is enough for us to add the desired text, which is unchanging, to the changing 
numbers: 

print(i, 'I know how to use the loop now.') 

The loop with the output will therefore have the form: 

for i in 1, 2, 3, 4, 5: 

    print(i, 'I know how to use the loop now.') 

 

⌨ 6.2.4 Output with serial number 

Write an algorithm that prints "Hello" 10 times to the console in the form "Hello - 1 
x" and "Hello - 2 x" in the next line... "Hello - 10 x". 

Output: 

Hello - 1 x 

Hello - 2 x 

Hello - 3 x 

Hello - 4 x 

Hello - 5 x 

Hello - 6 x 

Hello - 7 x 

Hello - 8 x 

Hello - 9 x 

Hello - 10 x 

 

🕮 6.2.5 

Write a program that prints the multiples of 1-10 for a given integer value. 

We first ask the user for the number whose multiples we want to display. 

text = input('Enter an integer from 1 to 10: ') 

a = int(text) 

 

For the output, we need to ensure the following form (e.g. for input 5): 

1 - 5 

2 - 10 

3 - 15 
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etc. 

 

In the first line there is a 1-fold, in the second a double, in the third a triple, etc. 

The loop with the output will therefore have the form: 

for i in 1, 2, 3, 4, 5, 6, 7, 8, 9, 10:    

    print(i,'-',a * i) 

In this loop, we print the value from the listed sequence and its a-multiple. 

 

📝 6.2.6 

Complete the program that prints their double for numbers 5-10 in the form: 

5 - 10 

6 - 12 

etc. 

 

for i _____ 5, _____: 

    print(i, _____, _____) 

• 5..10 
• 6, 7, 8, 9, 10 
• '-' 
• in 
• ' - ' 
• i * i 
• i ++ i 
• i 
• 5-10 
• 6..10 
• 6-10 
• i * 2 
• 6, 7, 8, 10 

 

⌨ 6.2.7 Square 

Write a program that for numbers 5-10 prints their square (a * a) in the form: 



 

 

87 

5 - 25 

6 - 36 

etc. 

 

📝 6.2.8 

Complete the program that prints a small multiplication table for the entered 
number in the following form: 

1 * 5 = 5 

2 * 5 = 10 

etc. 

 

text = _____('Enter an integer from 1 to 10: ') 

a = _____(text) 

for i in 1, 2, 3, 4, _____, _____, 7, 8, 9, _____:    

    print(_____, '_____', _____, '_____', _____) 

• i * a 
• 5 
• i * i 
• get 
• * 
• a 
• 6 
• i 
• i + i 
• . 
• i 
• int 
• 10 
• input 
• 9 
• 0 
• input 
• = 
• + 
• a 
• 5 
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🕮 6.2.9 

Modify the program with the multiplier so that the rows are separated from each 
other by a line: 

1 * 5 = 5 

----------------- 

2 * 5 = 10 

----------------- 

etc. 

 

The loop with the output has the form: 

a = 5 

for i in 1,2,3,4,5,6,7,8,9,10:    

    print(i, '*', a, '=', i * a) 

to which we need to add the command with the printout "lines". This command is 
supposed to be repeated after each row of numbers, so it should be part of the 
loop. 

We will add it with the same offset as the command that prints the numbers. 

for i in 1,2,3,4,5,6,7,8,9,10:    

    print(i, '*', a, '=', i * a) 

    print('--------------------------') 

By setting the same offset of the commands in the loop, we say that all of them 
should be repeated within one step of the loop- the loop will go to the next step only 
when it executes all commands with the same offset. 

For example the entry: 

for i in 1,2,3,4,5,6,7,8,9,10:    

    print(i, '*', a, '=', i * a) 

print('--------------------------') 

would end by printing all multiplications and add a "line" at the end. 

The entry 

for i in 1,2,3,4,5,6,7,8,9,10:    

    print(i, '*', a, '=', i * a) 

  print('--------------------------') 
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would result in an error because it is not possible to determine which part of the 
program the second print() command belongs to. 

 

⌨ 6.2.10 Carpet with pattern I. 

Write a program that 'weaves a patterned carpet' - it will alternately write lines with 
10 "o" characters and 10 "x" characters. 

oooooooooo 

xxxxxxxxxx 

oooooooooo 

xxxxxxxxxx 

etc. 

Let 20 lines be printed in total. 

 

⌨ 6.2.11 Carpet with pattern II. 

Adjust the previous program that 'weaves a patterned carpet' so that after every 
pair of lines with 10 "o" and "x" characters, it adds a line with '-'. 

oooooooooo 

xxxxxxxxxx 

---------- 

oooooooooo 

xxxxxxxxxx 

---------- 

oooooooooo 

etc. 

Let 30 lines be printed in total. 

 

6.3 Generated range 

🕮 6.3.1 

So that we don't always have to manually write the range of values, just imagine 
how long it would take us to list e.g. 100 values, Python offers a number list 
generator. 
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Python uses the range() command to generate a list of numbers. 

The simplest version of range() is to enter a single parameter - the number of 
integers (how many numbers from zero will be in the list). 

For example 

range(3)  

returnas the list of numbers 

0, 1, 2 

which we can traverse right away. 

Using the command itself does nothing, it only creates a sequence, which we can 
use directly in the loop. 

for i in range(3): 

    print(i) 

prints: 

0 

1 

2 

If we need to repeat an action n times, just generate a list with n values using 
range(n). 

for i in range(n): 

The list generated in this way always starts with the value 0 and ends with the 
value n-1. 

 

📝 6.3.2 

What number will be the first element in the list produced by range(10)? 

 

📝 6.3.3 

What will be the last number of the list generated by the range(15) command. 
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🕮 6.3.4 

Sometimes we need to generate a list of values that does not start with zero. It is 
enough to add a second parameter to the range() command. 

range(start, stop) 

• start determines the starting element of the sequence 
• stop determines a stop for us, the final element of the sequence, the same 

applies as in the simpler version, that this element is no longer inserted into 
the list. 

 

z = range(10, 15) 

for i in z: 

    print(i) 

prints the sequence: 

10, 11, 12, 13, 14 

 

📝 6.3.5 

Complete the parameters of the range() command so that the given list is printed. 

15, 16, 17, 18, 19, 20 

 

z = range(_____, _____) 

for i in z: 

    print(z) 

 

6.4 Stepping in range() 

🕮 6.4.1 

In the range() command, it is also possible to define a step by which the values in 
the list will change by leaps. 

range(start, stop, step) 
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The step of the change is determined via the third parameter - step. 

for i in range(10, 31, 5): 

    print(i) 

prints the sequence 

10, 15, 20, 25, 30 

 

The same rules still apply to the start and stop parameters - the last 
value of the sequence is at least 1 less than the stop value. 

 

📝 6.4.2 

Complete the parameters of the range() command so that the given list is printed. 

5, 9, 13, 17, 21, 25 

 

for i in range(_____, _____, _____) 

    print(i) 

• 3 
• 31 
• 25 
• 5 
• 6 
• 4 
• 26 
• 4 

 

📝 6.4.3 

Which values can be stored in the variable end to generate a list 

5, 9, 13, 17, 21, 25 

 

end = ? 

z = range(5, end, 4) 



 

 

93 

for i in z: 

  print(i)  

• 26 
• 27 
• 28 
• 29 
• 25 
• 30 
• 24 

 

🕮 6.4.4 

Let's modify our multiplication table problem by using the automatically generated 
list. 

text = input('Enter an integer from 1 to 10: ') 

number = int(text) 

 

for i in range(1, 11): 

    print(i, '*', number, '=', i * number) 

 

📝 6.4.5 

Complete the code so that the loop prints the squares of the numbers from 1 to 15. 

_____ i _____ range(_____, _____)_____ 

 print('the square of', i, 'is', _____) 

• i * i 
• 1 
• 15 
• i + i 
• in 
• of 
• 16 
• - 
• : 
• for 
• 0 
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🕮 6.4.6 

The step parameter can also have negative values that can be used to create a list 
with descending values. 

range(20, 15, -1) 

creates: 

20, 19, 18, 17, 16 

For start and stop values, start > stop must apply in this case. The value specified 
in the stop will no longer appear in the list. 

range(20, 10, -3) 

creates: 

20, 17, 14, 11 

 

📝 6.4.7 

How many values will the list generated by the range() function have? 

z = range(100, 0, -10) 

 

📝 6.4.8 

Complete the program so that it prints even numbers from 20 to 40. 

for i in range(_____,_____,_____): 

    print(i) 

• 39 
• 0 
• - 
• 19 
• 1 
• 41 
• 2 
• 2 
• 40 
• 20 
• 21 
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⌨ 6.4.9 Multiplier 

Write a program that prints a small multiplier for a given integer. 

Input : -5 

Output:  

1 * -5 = -5 

2 * -5 = -10 

3 * -5 = -15 

4 * -5 = -20 

5 * -5 = -25 

6 * -5 = -30 

7 * -5 = -35 

8 * -5 = -40 

9 * -5 = -45 

10 * -5 = -50 

 

Input : 5 

Output:  

1 * 5 = 5 

2 * 5 = 10 

3 * 5 = 15 

4 * 5 = 20 

5 * 5 = 25 

6 * 5 = 30 

7 * 5 = 35 

8 * 5 = 40 

9 * 5 = 45 

10 * 5 = 50 

 

 

⌨ 6.4.10 Multiples of three 

Write a program that, for two given numbers, prints the triples of all the numbers 
between them. If the first number is greater than the second, print them in reverse 
order. 

Input :  

5 

8 

Output:  

15 
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18 

21 

24 

 

Input :  

1 

-2 

Output:  

3 

0 

-3 

-6 
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Operations in a loop 

Chapter 7 
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7.1 Sum in the loop 

📝 7.1.1 

What does the following sequence of commands print? 

for i in range(5): 

    print(i) 

    print(5) 

• 0 5 1 5 2 5 3 5 4 5 
• 0 1 2 3 4 5 
• 0 5 1 5 2 5 3 5 4 5 5 5 
• 1 5 2 5 3 5 4 5 5 5 
• 1 5 2 5 3 5 4 5 5 
• generates an error 

 

📝 7.1.2 

What does the following sequence of commands print? 

for i in range(5): 

    print(i) 

print(5) 

• 0 5 1 5 2 5 3 5 4 5 
• 0 1 2 3 4 5 
• 0 1 2 3 4 5 5 
• 1 2 3 4 5 5 
• 1 2 3 4 5 
• generates an error 

 

📝 7.1.3 

What does the following sequence of commands print? 

for i in range(5): 

    print(i) 

  print(5) 

• 0 5 1 5 2 5 3 5 4 5 
• 0 1 2 3 4 5 
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• 0 1 2 3 4 5 5 
• 1 2 3 4 5 5 
• 1 2 3 4 5 
• generates an error 

 

🕮 7.1.4 

For the given list of amounts spent when shopping in a shopping cetre find out how 
much you've spent 

Have you spent in individual stores: 

12, 16, 33, 8, 21, 17 

Use a loop to find out and print the subtotals after each receipt is added.  

Our task is to count the listed values and print subtotals, i.e.: 

• after counting the first receipt, the amount will be 12, 
• after adding the second 12 + 16 = 28, 
• after adding the third 28 + 33 = 61, 
• etc. till the end of the list. 

 

Repetition consists in adding individual amounts to the sum determined so far. So 
we define repetition for individual values as: 

for i in 12, 16, 33, 8, 21, 17: 

To store the running result, we will use the variable total, which will gradually 
increase by the amount that follows in the sequence. 

for i in 12, 16, 33, 8, 21, 17: 

   total = total + i 

Before we use the variable total to add the first value, we need to determine the 
initial value. Logically, it has the value 0 before counting in the first receipt: 

total = 0 

for i in 12, 16, 33, 8, 21, 17: 

   total = total + i 

In the task, there also is a request to print a running value, so we add: 

total = 0 
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for i in 12, 16, 33, 8, 21, 17: 

   total = total + i 

   print(total) 

 

To show how the loop is progressing and how the values of individual variables 
change, a trace table is used, which lists the values of the variables used at each 
step of the loop. 

i     calculation                          total 

      before the beggining of the loop      0 

12    total = total + 12, t.j. 0 + 12       12 

16    sum = sum + 16, t.j. 12 + 16          28 

33    sum = sum + 33, t.j. 28 + 33          61 

8     sum = sum + 8,  t.j. 61 + 8           69 

21    sum = sum + 21, t.j. 69 + 21          90 

17    sum = sum + 17, t.j. 90 + 17          107 

 

📝 7.1.5 

Complete the program to find the number of visitors to the rope park during the 
Rope Climbing Week. 

total = _____ 

for i _____ _____: 

    total = _____ _____ i 

_____("There was", _____, "visitors.") 

• 0 
• 12, 0, 50, 17, 3, 3, 45, 91 
• total 
• int() 
• in 
• input 
• 54, 72, 101, 12, 54, 33, 19 
• i 
• + 
• total 
• * 
• + 
• spolu 
• i 
• 120, 50, 17, 33, 45, 91 
• 1 
• total 
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• print 
• 2 

 

⌨ 7.1.6  

Write a program that, given the amount in our wallet and the entered prices of 
individual pieces of sports clothing, determines whether we can buy all the pieces 
of clothing. The result of the program will be only a yes/no output. 

Load the amount in the wallet with the text: "Enter your amount: ". 

The prices of individual pieces of clothing are 120, 50, 17, 33, 45, 91. 

E.g. for 

Input : 100 

Output: no 

 

Input : 1000 

Output: yes 

 
file1.py 
#!/usr/local/bin/python 

# load the amount in your wallet with the required text 

display and convert it to a number 

 

# prepare a variable to store the ongoing amount 

 

# find out the total amount of funds needed 

 

# check whether you have more money than you need 

 

🕮 7.1.7 

Calculate the sum of the first 100 positive numbers. 

Our task is to add the values 1 + 2 + 3 + 4 + 5 + 6 .... + 99 + 100. 

We will add the numbers gradually - in a loop that will repeat from 1 to 100 and we 
will add each additional value. We will use the variable sum_ to store the temporary 
result, which will be incremented by the value stored in i at each step. At the 
beginning, it is logically empty - it contains the value 0 

sum_ = 0  
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for i in range(1, 101):  # last value is supposed to be 100 

    sum_ = sum_ + i     

print(sum_ ) 

 

To monitor the activity of the loop, we can create a tracking table. 

i     calculation                             sum_ 

       before the beginning on the loop         0 

1      sum_ = sum_ + 1, i.e. 0 + 1              1 

2      sum_ = sum_ + 2, i.e. 1 + 2              3 

3      sum_ = sum_ + 3, i.e. 3 + 3              6 

4      sum_ = sum_ + 4, i.e. 6 + 4              10 

... 

99     sum_ = sum_ + 99, i.e. 4851 + 99     4950 

100    sum_ = sum_ + 100, i.e. 4950 + 100   5050 

 

📝 7.1.8 

Arrange the code so that we get the sum of the first n numbers. First do the 
conversion to a number then set the variable sum_. 

• for i in range(1, n + 1): 
• n = int(text) 
• text = input('Enter a number: ') 
• print('The sum of first', n, 'numbers is', sum_) 
• sum_ = 0 
•    sum_ = sum_ + i    

 

⌨ 7.1.9 The sum of the interval 

Write a program that finds the sum of the numbers between two given values. 
These are entered at the input by first entering a smaller, then a larger value. 

E.g. for 

Input:  

5 

7 

Output: 18 
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Input:  

10 

80 

Output: 3195 

 

7.2 Product in the loop 

🕮 7.2.1 

Now let's have a look at tasks requiring multiplication. 

Calculate the product of the first 10 numbers. 

It is a multiplication of the numbers 1 * 2 * 3 * 4 * 5 * 6 * 7 * 8 * 9 * 10. In general, 
we have to do multiplication in sequence just like addition. 

Although we could solve this task by writing the multiplication in a 
single command, this is more of an exception as we will see later. 

 

If we break down the individual steps of the calculation, then similarly to the 
previous example, we need some "storage" with a neutral value. 

product = 1 

The starting value in the case of multiplication is the value 1. In the case of the 
sum, it was the value 0, the addition of which did not change the result of the sum, 
in the case of multiplication it is 1. Indeed, if we used 0 as the starting value, then 
by multiplying it by any number, we would again only got a value of 0. 

So let's first put the value 1 in the variable product: 

product = 1 

product = product * 2   # we multiply the initial value by 2 - 

1*2=2 

product = product * 3   # we add multiplication by 3 - 2*3=6 

product = product * 4   # we add multiplication by 4 - 

6*4=24... 

If we look at the procedure more carefully, we will find a diagram 

product = product * i 

where i goes from 1 to 10. Be careful with range() we have to start with the value 1, 
because multiplying by zero would not get us to different value. 
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And we have a finished program: 

product = 1 

for i in range(1, 11): 

    product = product * i 

 

print(product) 

 

📝 7.2.2 

Complete the code so that it calculates the product of numbers between two values 
(including threshold values). 

text1 = _____('Enter smaller value: ') 

text2 = _____('Enter larger value: ') 

a = int(text1) 

b = int(text2) 

product = _____ 

for i in _____(_____, _____): 

    product = _____ _____ i    

print('The product of numbers from', a, 'to', b, 'is', 

product) 

• a+1 
• input 
• * 
• print 
• b-1 
• a 
• print 
• input 
• =* 
• p 
• b 
• 1 
• b + 1 
• == 
• product 
• a-1 
• = 
• 0 
• " 
• range 
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⌨ 7.2.3 Factorial 

Write a program that calculates the factorial for a given number n (n! = n.(n-1). ... 
.3.2.1). Print the interim result to the console. 

Input : 3 

Output: 

1 

2 

6 

 

Input : 4 

Output: 

1 

2 

6 

24 

 

⌨ 7.2.4 Product without multiplication 

Write a program that, for two given positive integers, finds the product without 
using the multiplication operation. 

Input :  

5 

3 

Output: 15 

 

Input :  

5 

5 

Output: 25 

 

Input :  

2 

5 

Output: 10 
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🕮 7.2.5 

Multiply the given sequence of numbers. Show the serial number of the numbers in 
sequence you are multiplying. 

For example for the sequence: 4, 9, 2, 5, 2, the output would look like this: 

1 - 4 

2 - 36 

3 - 72 

4 - 360 

5 - 720 

In order to be able to display which step we are currently in, we need a counter that 
we will increase by 1 in each step of the loop. We can name the variable step. 

product = 1         # we set a neutral value for 

multiplication 

step = 0            # we will count how many times the loop 

was executed 

for i in 4, 9, 2, 5, 2: 

   step = step + 1     # the loop is executed again, increase 

the step by 1 

   product = product * i   # multiply 

   print(step, '-', product)   # print 

 

⌨ 7.2.6 Product of numbers in an interval 

Write a program that calculates the product of all integers between two given 
values. Ensure that the program displays both the sequence number of the 
multiplication and the intermediate result of the product in the individual steps of 
the loop during the run. 

Input :  

5 

7 

Output:  

1 - 5 

2 - 30 

3 - 210 

210 
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Input :  

2 

5 

Output:  

1 - 2 

2 - 6 

3 - 24 

4 - 120 

120 

 

7.3 Data loading 

🕮 7.3.1 

Write a program that finds how much you spent on shopping in the last week by 
asking for the amounts spent for each day. 

In this case, we don't know the purchase values in advance to list them in the 
program as enumerated loop values, but we have to get them from the user after 
the program starts. 

We will use a scheme where the current subtotal will increase with each new value. 
Let's go step by step. First, we insert a neutral value - 0 into the variable total, we 
haven't inserted any data into the overall package yet. 

total = 0 

text = input('Enter the amount: ')  # we load the amount for 

the 1st day 

daily_amount = int(text)            # convert it to a number 

total = total + daily_amount        # we add the 1nd day 

amount  

 

text = input('Enter the amount: ')  # we load the amount for 

the 2nd day 

daily_amount = int(text)            # convert it to a number 

total = total + daily_amount        # we add the 2nd day 

amount  

 

text = input('Enter the amount: ')  # we load the amount for 

the 3rd day 

daily_amount = int(text)            # convert it to a number 

total = total + daily_amount        # we add the 3rd day 

amount  
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Two things are important in the following code: 

• several commands (steps) are repeated - which is not a problem, we can 
repeat any number of commands in the loop 

• we use the same variable for loading values from the user (text and 
daily_amount) - this approach is also standard - we can use the variable 
multiple times to store the value, of course with the fact that the old value is 
always overwritten by the new one 

 

text = input('Enter the amount: ')     # load the amount  

daily_amount = int(text)               # convert it to a 

number 

total = total + daily_amount           # add the amount  

a túto postupnosť zopakujeme n-krát. 

Po načítaní a pripočítaní všetkých súm do úložiska výsledok už len vypíšeme.  

total = 0 

for i in range(7):                # a week has 7 days, we 

repeat 7 times 

    text = input('Enter the amount: ') 

    daily_amount = int(text) 

    total = total + daily_amount 

 

print(total, 'was spent in a week.') 

 

📝 7.3.2 

Arrange the lines of the program so that for the given number of students in five 1st 
year classes, it finds out how many 1st graders attend the school. 

•    total = total + students 
• print('There is', ziakov, 'students in the classes.') 
•    students = int(text) 
• for i in range(5):        
• total = 0 
•    text = input('Enter the number of students: ') 
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⌨ 7.3.3 Missed classes 

Write a program to find the number of missed classes for the first half of the year. 
Each of the five months of the school semester is entered separately. Let the 
output take the form: "X classes were missed." 

Input:  

5 

10 

12 

3 

0 

Output: 30 hours were missed. 

 

Input:  

2 

2 

1 

0 

3 

Output: 

8 

 

🕮 7.3.4 

Get the temperatures for the last n days and calculate their average value. Let the 
temperatures be integer values. 

In this case, we do not know in advance not only the temperature values, but also 
their number. In order to load them, we first need to know their number, which we 
will then use as the number of loop repetitions. 

text = input('Enter the number of days: ') 

n = int(text) 

Priemer sa vypočíta ako súčet / počet. Počet hodnôt načítame na začiatku 
programu, súčet budeme zvyšovať priebežne načítavaním teplôt v jednotlivé dni.  

sum_ = 0 

for i in range(n): 

    text = input('Enter the temperature: ') 

    t = int(text) 

    sum_ = sum_ + t 
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Finally, to determine the average, we divide the sum of temperatures by their 
number - we use the "/" operator for division. 

print('The average temperature in', n, 'days is', sum_/n) 

The result is a number with a decimal point, e.g. 

5.0 

even for integers, Python inform us that the result is generally a real number. 

 

📝 7.3.5 

Complete the missing code so that it calculates the grade point average on the 
report card. 

text = input('Enter the number of grades: ') 

number = _____(text) 

sum_ = _____ 

_____ i in _____(_____): 

    text = input('Enter a grade: ') 

    g = int(text) 

    sum_ = sum_ + _____ 

 

print('The grade point average is', _____/_____) 

• 0 
• int 
• 1 
• z 
• sum_ 
• cycle 
• number 
• input 
• for 
• number 
• z 
• number 
• range 
• zz 
• pp 
• sum_ 
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⌨ 7.3.6 Average weight of students in class 

Write a program that finds the average weight of the students in the class. In the 
first step, find out the number of students, in the second, load their weights, and 
finally, in the third, calculate and write the average. 

Input: 4 

50 

55 

54 

60 

Output: 

54.75 

 

Input: 5 

66 

82 

58 

60 

71 

Output: 

67.4 

 

7.4 Loop (programs) 

⌨ 7.4.1 The sum of the first n numbers 

Write a program to find the sum of the first n natural numbers, the number of which 
is given in the input. Print the interim results as well. 

Input: 5 

Output: 

1 

3 

6 

10 

15 

 

Input: 4 

Output: 
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1 

3 

6 

10 

 

⌨ 7.4.2 Product without multiplication II. 

Write a program that finds the product of two given integers (even negative) 
without using the multiplication operation. 

Input :  

-5 

3 

Output:  

-15 

 

Input :  

-5  

-5 

Output:  

25 

 

Input :  

2  

5 

Output:  

10 
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Data types 

Chapter 8 
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8.1 Data types 

🕮 8.1.1 

Every variable we used so far was defined by a pair: 

• the name by which we refer to it, 
• data type that determines whether it stores text or a number (these two 

types of values are enough for us for now). 

When we loaded bdata from the input, we always got it in text form, and if we 
wanted to work with it as with numbers, we had to convert it. 

 

📝 8.1.2 

Complete the function to convert input from text to integer. 

aa = input() 

a = _____(aa) 

 

🕮 8.1.3 

As we have already mentioned, Python is a language with dynamic type checking, 
i.e. there is no need to define data types for variables in advance. Based on the 
values, Python itself determines what type of data it is working with when it is 
needed. 

Some of the most commonly used data types are 

• integer - integers, e.g. 10 or 5, 
• float - floating point numbers, used to store decimal numbers, e.g. 10.5 or 

5.3, 
• string - string represented by apostrophes or double quotes, e.g. "Python" or 

'Python'. 

 

When writing decimal numbers, we use a decimal point - in this case the comma is 
evaluated as an error. 

x = 4     # 4 - will be interpreted as data type integer. 

y = 4.0   # 4.0 - will be interpreted as a number with a 

decimal point, data type float, 

z = "4"   # "4" - will be interpreted as data type string. 
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📝 8.1.4 

For the following assignments, determine the correct data type of the variables 

a = 'Anna'  # _____ 

b = 3.15    # _____ 

c = 4       # _____ 

d = 'x'     # _____ 

e = 5.0     # _____ 

f = '1987'  # _____ 

g = 2010    # _____ 

• integer 
• string 
• float 
• float 
• integer 
• float 
• float 
• integer 
• string 
• string 
• string 
• integer 
• string 

 

🕮 8.1.5 

For every variable or expression, we can find out its data type. The type() function is 
one of Python's built-in functions that can be used to return information about the 
type of a value. 

For example, by executing the following commands: 

a = 4 

print(type(a)) 

the result is returned 

<class 'int'> 

which means that the entered value is treated as an integer. 
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By executing the commands: 

b = "Python" 

print(type(b)) 

the result is returned 

<class 'str'> 

which means that the entered value is treated as a string. 

We can also execute the entry 

print(type("Python")) 

which, however, does not really make sense to use in this form, because at first 
glance we can see that it is a string. 

 

📝 8.1.6 

Complete the code that prints the data type of the variables: 

a = 22.1 

print(_____(a)) 

b = 'The mare has a small hip.' 

print(_____(b)) 

 

📝 8.1.7 

What does the following command print? 

print(type(3.5)) 

• <|class 'float'> 
• <|class 'int'> 
• <|class 'str'> 

 

📝 8.1.8 

What does the following command print? 

print(type(input('Enter a number: '))) 
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• <|class 'str'> 
• <|class 'int'> 
• <|class 'float'> 

 

8.2 Conversion 

🕮 8.2.1 

By acquiring a value, the data type of the variable is determined. In order to perform 
operations on the content of variables intended for another data type, we need 
operations that can transform data between individual types. Python supports three 
basic converting functions that convert one data type into another data type: 

• int() - returns a value with int data type, 
• str() - returns a value with str data type, 
• float() - returns a value with float data type. 

 

The following conversions are supported: 

int(10.5)      # returns 10 

int('69')      # returns 69 

float(100)     # returns 100.0 

float('35.53') # returns 35.53 

str(24)        # returns '24' 

str(66.99)     # returns '66.99' 

 

📝 8.2.2 

What value will be stored in variable x after the conversion? 

x = str(3.14) 

• "3.14" 
• 3.14 
• "3,14" 
• 3,14 

 

🕮 8.2.3 

If the conversion operation fails, the compiler displays an error message. 
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E.g. for: 

aa = 'text' 

a = int(aa) 

is displayed 

ValueError: invalid literal for int() with base 10: 'text' 

informing about an unacceptable character, or string. 

 

📝 8.2.4 

Which of the conversions end successfully? 

• a = int(3.14) 
• a = float(3.14) 
• a = float('3.14') 
• a = int('3.14') 
• a = int(3,14) 

 

🕮 8.2.5 

For two values stored in integer variables, let's get the notation of their subtraction 
and store it in the variable result. 

For example for 8 and 5 we get the result 

8 – 5 = 3 

We will use the addition operation to join the strings, the program will look like this: 

a = 8 

b = 5 

result = str(a) + ' - ' + str (b) + ' = ' + str(a - b) 

print(result) 

 

From the integer form to the string type, we use the str() function, which can be 
used both for a variable and for the result of a mathematical operation. 
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📝 8.2.6 

Complete the code so that the result of the program is an output 

data 10 

 

p = 'data' 

result = p + '_____' + _____(10) 

print(result) 

 

📝 8.2.7 

By completing the given command, change the entered value from string type to 
integer type. 

a = '10' 

b = _____a_____ + 3 

 

📝 8.2.8 

What will be the result of the given code? 

p = input("Enter a number") 

10 + p 

• TypeError: unsupported operand type(s) for +: 'int' and 'str' 
• '10+entered value' 
• 10+entered value 
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Numeric data types 

Chapter 9 
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9.1 Numeric variables 

🕮 9.1.1 

Variables of numeric type (int and float) are able to store values of numeric type 
and execute the following operations with them: 

• + (sum) a + b, e.g.: 10 + 3 = 13 
• - (difference) a – b, e.g.: 10 - 3 = 7 
• * (product) a * b, e.g.: 10 * 3 = 30 
• / (quotient) a / b, e.g.: 10 / 4 = 2.5 
• // (integer quotient) a // b, e.g.: 10 // 3 = 3, while the decimal part is 

neglected 
• % (remainder after integer division) a % b, e.g.: 10 % 3 = 1 
• ** (power) a ** b, e.g. 5 ** 3 = 125, therefore 5 * 5 * 5 

 

 

📝 9.1.2 

Fill in the correct results for each operation: 

100 + 133 = _____ 

125 - 37 = _____ 

12 * 13 = _____ 

15 / 4 = _____ 

100 // 3 = _____ 

18 % 5 = _____ 

1 ** 3 = _____ 

• 4 
• 3 
• 0 
• 30 
• 3 
• 166 
• 88 
• 333 
• 1 
• 323 
• 233 
• 4.25 
• 33 
• 1 
• 156 
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• 3.75 

 

📝 9.1.3 

What is the result of the following arithmetic expression? 

2**3 // (10 - 6) 

 

🕮 9.1.4 

Integers have a special operation that returns a remainder when divided. The % 
operator is used to calculate it. 

E.g.: 

print(10 % 3) # result - 1 

print(10 % 2) # result - 0 

print(15 % 4) # result - 3 

print(20 % 7) # result - 6 

print(10 % 0) # ZeroDivisionError: integer division or modulo 

by zero 

In the last case, there was an error - you cannot divide by zero... 

 

📝 9.1.5 

What is stored in the variable x after the program ends? 

y = 15 

z = 4 

x = (y // z) ** (y % z) 

 

🕮 9.1.6 

Through the modulo operation (%), we can determine whether the entered number 
is even or odd. It is valid that for odd numbers the remainder after division by two is 
1, for even numbers it is 0. 

The program that provides us with this test can take the form of: 
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n = 10 

if (n % 2 == 0): 

  print(n, 'is even.') 

else: 

  print(n, 'is odd.') 

or 

n = 10 

if (n % 2 == 1): 

  print(n, 'is odd.') 

else: 

  print(n, 'is even.') 

In the programs, we just changed the condition and swapped the contents of the 
positive and negative branches. 

 

📝 9.1.7 

Fill in the correct results for each operation: 

100 % 133 = _____ 

125 % 20 = _____ 

12 % 6 = _____ 

15 // 4 = _____ 

10 // 4 = _____ 

18 % 2 = _____ 

1 % 3 = _____ 

• 6 
• 2 
• 5 
• 0 
• 100 
• 2 
• 4 
• 0 
• 5 
• 133 
• 1 
• 1 
• 3 
• 0 
• 4 
• 3 
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• 2 

 

🕮 9.1.8 

When working with integers, we must not forget negative numbers, which represent 
exactly half of all recordable values. We write a negative number using the - sign 
before the numerical value. 

E.g.: 

c = -1 

d = 15 + -5 

If we want to stay true to mathematical notation, we can enclose a negative value in 
parentheses, e.g.: 

e = 15 // (-5) 

 

📝 9.1.9 

What will be stored in the variable p after the completion of the following steps of 
the program? 

a = -3 

b = 15 // -5 

p = a - b 

 

9.2 Abbreviated entry 

🕮 9.2.1 

In addition to the basic operators, Python has a special abbreviated version for 
changing the value of a variable. It is used in entries when we want to change the 
original value of a variable by an arbitrary operation. For example the entry 

poc = poc + 1 

can be shortened to the form 

poc += 1 

The abbreviated entry could be read as increasing the value of the variable poc by 
one. 
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There must be no space between the operation sign and the assignment sign (=).  

Similarly, the entry 

poc = poc - 3 

is equivalent to the entry 

poc -= 3 

We change the value of the variable poc by subtracting the value 3 from it. 

 

📝 9.2.2 

What will be stored in the poc variable after the execution of the following steps: 

poc = 10 

poc += 7 

poc += 4 

poc -= 5 

 

🕮 9.2.3 

As well as addition and subtraction, we can also enter other operations. 

x = x  * 10 

x *= 10 

Increases the value in variable x by a factor of ten. 

b = b  - 15 

b -= 15 

Decreases b by 15. 

Such abbreviated operators can be used in combination with all basic arithmetic 
operators. 
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amount = amount / 2 

amount /= 2 

Halves the value stored in the amount variable. 

amount = amount // 3 

amount //= 3 

Executes an integer division of the contents of the amount variable by three. 

number = number ** 4 

number **= 4 

It powers the contents of the number variable to the fourth. 

 

📝 9.2.4 

What will be stored in the poc variable after the execution of the following steps: 

poc = 10 

poc *= 7 

poc //= 4 

poc -= 5 

poc //= 6 
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poc **= 3 

 

📝 9.2.5 

How would we write the following assignment in abbreviated form? 

p = p % 10 

 

📝 9.2.6 

What notation can be used as equivalent to the given command? 

v = v * 8 

• v *= 8 
• v ** 8 
• v =* 8 
• v * 8 

 

📝 9.2.7 

Complete the corresponding symbols so that the entry is correct. 

a _____ 3 # a = a / 3 

b _____ 2 # b = b % 2  

 

🕮 9.2.8 

In the abbreviated entry, not only the numerical value may appear on the right-hand 
side, but we can also use a variable just as well. 

The entry 

a += b 

means that the value of variable a will be increased by the contents of variable b. 

Program 

a = 10 

b = 5 
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a *= b 

print(a) 

prints the value 50. 

 

📝 9.2.9 

What will be the result of the following program? 

a = 2 

a += 3 

a *= 2 

b = 20 % a 

b -=2 

b += a 

print(b) 

 

9.3 Integers(programs) 

⌨ 9.3.1 Integer division 

Write a program that divides two integers and determines the quotient and 
remainder (use operations for integer division). Treat division by zero at the 
beginning of the program and if it happens, print: "Cannot divide by zero". 
Otherwise, print the quotient and the remainder separated by a space. 

Input:  

4  

5 

Output:  

0  

4 

 

Input:  

9  

0 

Output: Cannot divide by zero 
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⌨ 9.3.2 Triangle 

Write a program that checks whether the three entered numbers can be the lengths 
of the sides of a triangle. The input contains three integers. If these values can be 
the sides of a triangle, print the perimeter of that triangle. Otherwise, print -1. 

input : 3 

4 

5 

output: 12 

 

input : 1 

2 

3 

output: -1 

 

⌨ 9.3.3 Even numbers 

Write a program that prints even numbers from 1 to n. 

Input: 20 

Output:  

2 

4 

6 

8 

10 

12 

14 

16 

18 

20 

 

⌨ 9.3.4 Prime number 

Write code that checks whether the given number greater than 2 is prime. An 
integer greater than 2 is entered at the input. If the number is prime, print yes, 
otherwise print no. 

input : 5 

output: yes 
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input : 9 

output: no 

 

input : 11 

output: yes 

 

⌨ 9.3.5 The number of divisors of the entered number 

Write a program that finds and prints the number of divisors for a given number. 

Input : 7 

Output: 2 

 

Input : 12 

Output: 6 

 

Input : 100 

Output: 9 

 

 

⌨ 9.3.6 Perfect number 

In number theory, a perfect number is a positive integer equal to the sum of its own 
positive divisors, i.e. sum of positive divisors without the number itself. Write a 
program that checks whether an entered number is perfect. The input contains a 
positive integer. 

If the given number is perfect, print the value yes, otherwise, print the value no. 

input : 28 

output: yes 

 

input : 999  

output: no 
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⌨ 9.3.7 Coins + banknotes 

Write a program that, for a given integer amount in euros, prints the minimum 
number of banknotes and the minimum number of coins that can be used to pay for 
this amount, as well as their breakdown in order from the largest to smallest. 
Consider also banknotes with a 500 euros value. 

input: 3 

output:   

banknotes: 0 

coins: 2 

breakdown: 

1 x 2 

1 x 1 

 

input: 13 

output:  

banknotes: 1 

coins: 2 

breakdown:  

1 x 10  

1 x 2  

1 x 1  
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Decimal numbers 

Chapter 10 
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10.1 Decimal numbers 

🕮 10.1.1 

Many task can be solved using integer operations, but there are also problems in 
which we need to use decimal numbers. To store decimal (real) numbers, Python 
uses the float data type. 

The decimal part is separated from the integer by a dot. 

5.18 

 

We can recognize the real number in the output by the fact that its decimal part is 
displayed. A number with a zero decimal part has it displayed as .0, e.g. 

14.0 

 

We inform the compiler that the variable is supposed to be of float type by inserting 
a decimal value. 

a = 12.5 

b = 3.0    # we enter integer as a decimal number 

 

📝 10.1.2 

Choose the correctly written decimal numbers: 

• 3.1 
• 15.8 
• 17.0 
• 0.59 
• 17 
• 0,58 
• 2,5 

 

🕮 10.1.3 

Real numbers are written in a standard format: 

3.1415296536, 556.44 
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or in scientific format: 

5.5644e2  

which means 5,5644 * 102 = 556,44. 

 

📝 10.1.4 

Find the correct decimal number for numbers written in scientific format: 

1.1234e2 = _____ 

2.4532e3 = _____ 

2.4532e4 = _____ 

2.4532e1 = _____ 

5.048e0  = _____ 

3.2e-1   = _____ 

1.2e-3   = _____ 

• 245.32 
• 11.234 
• 5.048 
• 0.5048 
• 0.12 
• 0.012 
• 1123.4 
• 112.34 
• 24.532 
• 24532.0 
• 0.032 
• 3.2 
• 50.48 
• 0.0012 
• 0.32 
• 2453.2 

 

📝 10.1.5 

Find the correct number written in scientific format for decimal numbers: 

11.11  = _____ 

2.48   = _____ 

255.32 = _____ 

2553.2 = _____ 
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0.12   = _____ 

• 1.2e0 
• 2.48e0 
• 2.5532e4 
• 1.111e1 
• 2.5532e1 
• 2.5532e2 
• 1.111e2 
• 2.5532e2 
• 2.48e1 
• 2.5532e3 
• 1.111e3 
• 1.2e-1 
• 1.2e1 

 

🕮 10.1.6 

When an integer and a real number type or operation for real numbers are 
combined in a calculation, the result is a real number (a number with a decimal 
point). 

The result of the following code: 

a = 10 

b = 5 

c = a / b 

print(c) 

is a real number. This fact is presented by printing the result in the form 

2.0 

 

📝 10.1.7 

What is the result of the activity of the following code? 

a = 2 

b = 3 

c = b // a * b / a 

print(c) 

• 1.5 
• 1,5 
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• 1 
• 2.25 
• 2,25 

 

📝 10.1.8 

What does the following program print?a = 2.0 

b = 3 

c = a * b  

print(c) 

 

🕮 10.1.9 

To load a decimal number from the user, we use input() and then transform the text 
into a decimal number using the float() function: 

aa = input('Enter a number: ') 

a = float(aa) 

 

📝 10.1.10 

Complete the code for the addition of two decimal numbers: 

aa = input('Enter the 1st number: ') 

a = _____(aa) 

bb = _____('Enter the 2nd number: ') 

b = _____(bb) 

print(a + b) 

 

10.2 Functions for working with numbers 

🕮 10.2.1 

We already know that Python can work with values of different types. Each data 
type has a set of standard functions with which we can process the values. We call 
them built-in functions because we don't need to add any plugins to the program to 
use them. 

The function processes the value or values that we enter in the brackets (we call 
them parameters or arguments) and returns a result that we can work with further, 
e.g. print it or put it into a variable. 
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Each data type has its own built-in functions. For example, numeric data types have 
the following functions: 

• abs() - returns the absolute value of the entered number, 
• max() - returns the maximum value from the entered values, 
• min() - returns the minimum value from the entered values,  
• pow(x, y) - returns x to the power of y, this is the same calculation as x ** y 

 

abs(-3)               # result 3 

max(2, 5, 6, 8, 1, 3) # result 8   

min(2, 5, 6, 8, 1, 3) # result 1 

pow(3, 2)             # result 9 

 

📝 10.2.2 

Complete the function so that the result is correct: 

a = -8 

print(_____(a)) # prints 8 

 

📝 10.2.3 

Complete the function so that the result is correct: 

a = 7 

b = 2 

print(_____(a, b)) # prints 2 

 

🕮 10.2.4 

In addition, the float data type has a round() function that processes a decimal 
value by rounding it to an integer value. 

round(3.45) # result 3 

round(5.75) # result 6 

round(-1.6) # result -2 

 

📝 10.2.5 

Fill in the correct rounding results: 
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a = round(6.8) # result _____ 

b = round(13.6) # result _____ 

c = round(3.12) # result _____ 

d = round(4.51) # result _____ 

 

🕮 10.2.6 

In Python, .5 values are rounded: 

• down if .5 is preceded by an even number, e.g. 

round(4.5) # result 4 

round(6.5) # result 6 

• up if .5 is preceded by an odd number, e.g. 

round(5.5) # result 6 

round(7.5) # result 8 

 

📝 10.2.7 

Fill in the correct rounding results: 

a = round(6.5) # result _____ 

b = round(13.5) # result _____ 

c = round(3.5) # result _____ 

d = round(4.5) # result _____ 

• 4 
• 6 
• 5 
• 14 
• 13 
• 7 
• 3 
• 4 

 

📝 10.2.8 

Whatis the result of the following program? 

a = 10 

b = round(a/3*100)/100 
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c = a - b 

d = round(c) 

print(d) 

 

🕮 10.2.9 

For rounding to a specified number of decimal places, an extended version of the 
round() function is used, where the second parameter specifies the number of 
decimal places to which the value is supposed to be rounded. 

pi = 3.14159 

pi2 = round(pi, 2) 

 

The result is 3.14 

If a negative value is entered, the value is rounded to tens, hundreds, etc. For 
example: 

round(1234, -1)  # result 1230 

round(1234, -2)  # result 1200 

round(1254, -2)  # result 1300 

round(2854, -3)  # result 3000 

 

📝 10.2.10 

Fill in the correct results: 

round(13.67, 1)   # result _____ 

round(1.865, 2)   # result _____ 

round(136, -1)    # result _____ 

round(387, -2)    # result _____ 

round(3254, -2)   # result _____ 

round(8154, -3)   # result _____ 

• 1.87 
• 3250 
• 400 
• 1.90 
• 13.7 
• 3300 
• 140 
• 8000 
• 8200 
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• 130 
• 13.6 
• 14 
• 3260 
• 1.86 
• 390 

 

10.3 Nesting functions 

🕮 10.3.1 

Despite the fact that we have already used this approach quite naturally several 
times, we will explain how functions can be nested within each other. 

As we said, each function processes arguments and returns a result that we can 
use further, e.g. 

x = max(10,20) 

print(x) 

 

We can combine this entry into a single command by omitting the assignment of 
the result of the max() function to a variable and simply printing the result: 

print(max(10,20)) 

The compiler evaluates this notation by first calculating the maximum of 10 and 20, 
returning the result, and using it as an argument for the print command. 

We can also use: 

a = round(max(5.6, 7.8)) 

where the max() function is evaluated first and its result subsequently becomes the 
argument of the round() function. Then the result is assigned to the variable a. 

In this way, we can nest practically any number of functions into each other. 

 

📝 10.3.2 

What is the result of the following sequence of commands? 
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a = 10 

b = 3.6 

c = min(a, round(b * 3)) 

print(c) 

 

📝 10.3.3 

What is the result of the following sequence of functions? 

print(round(min(max(3.1, 5, 4.6, 7.8), min(10.8, 15.62, 3.21, 

11)))) 

 

🕮 10.3.4 

Just as mathematical functions, all other functions can also be nested and 
processed. 

Due to their textual form, we had to carry out the loading of numerical data from the 
user in two steps: 

aa = input() 

a = int(aa) 

 

However, this procedure can be simplified thanks to nesting the input() function in 
the int() function that transforms text into a number: 

a = int(input()) 

The process is the same with decimal numbers: 

b = float(input()) 

 

📝 10.3.5 

Complete the code to get inputs: 

x = _____(_____())    # loading an integer 

y = _____(_____())  # loading an decimal number 

• get 
• int 
• integer 
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• float 
• str 
• str 
• input 
• input 
• get 

 

10.4 Decimal numbers(programs) 

⌨ 10.4.1 The sum of two real numbers 

Write a program that, for two real numbers, calculates their sum, rounds it to a 
whole number and prints it. 

input:  

8.2 

2.5 

output: 11 

 

input:  

1.5 

3.3 

output: 5 

 

⌨ 10.4.2 Seconds 

Write a program that reads an integer representing the number of seconds from the 
input. Write how many days, hours and minutes it represents. Round the results to 3 
decimal places. 

Input: 3600 

Output: 

days: 0.042 

hours: 1.0 

minutes: 60.0 

 

Input: 500000 

Output: 

days: 5.787 



 

 

143 

hours: 138.899 

minutes: 8333.333 

 

⌨ 10.4.3 BMI calculation 

Write a program that, based on the entered weight and height in meters, calculates 
the BMI index and prints whether you are overweight or not. 

BMI (body mass index) is calculated as the ratio of weight in kilograms to the 
square of height in meters. 

• BMI < 18,5 - underweight, 
• 18,5 <= BMI < 25 - normal weight, 
• 25 <= BMI < 30 - overweight, 
• BMI > 30 - obesity. 

 

Input :  

45  

1.70 

Output: underweight 

 

Input :  

90  

1.65 

Output: obesity 

 

Input :  

80  

1.80 

Output: normal weight 

 

 

⌨ 10.4.4 Circle 

Write a program that, for an entered radius (decimal number), calculates and prints 
the area and circumference of a circle rounded to whole numbers. Let the variable 
pi have the value 3.14. 

input : 5 
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output: 79 31 

 

input : 4.5 

output: 64 28 

 

⌨ 10.4.5 Time to march 

Write a program that reads from the input the number of kilometers to the 
destination and the expected speed of the tourists. Then it will print how many 
hours the march will take. 

Input: 21 

6 

Output: 3.5 

 

Input: 100.5 

10 

Output: 10.05 

 

⌨ 10.4.6 Arrival 

Write a program that reads from the input an integer representing the number of 
liters of fuel in the car's tank and a decimal number with information about the fuel 
consumption per 100 km. 

Then the program will display how many kilometers the fuel in the tank is sufficient 
for. 

Input: 20 

8 

Output: 250 

 

Input: 50 

5 

Output: 1000 
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⌨ 10.4.7 Rate transfer 

Write a program that converts an entered number of EUR to USD. The first value will 
be the amount in EUR, the second the conversion rate. The output will be the 
number of USD that can be obtained for the entered number of EUR 

Input: 100 

1.1 

Output: 110.0 $ 

 

Input: 1000 

1.008 

Output:1008.0 $ 
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Boolean expressions 

Chapter 11 
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11.1 Boolean expression 

🕮 11.1.1 

In addition to expressions that result in a number, we often work with expressions 
that result in true or false. We refer to these expressions as boolean and we have 
already encountered them when using conditions in the if statement. 

Although so far we have only compared variables with each other or variables with 
values, we can also compare values themselves. 

An example can be an entry 

if 4 > 0: 

    print ('true') 

else: 

    print('false') 

which can be replaced directly with a command 

print(4 > 0)  # prints True 

 

If the expression in parentheses is true, the result is True, otherwise it is False. 

Eg: is it true that 5 - 3 < 0? It's not. 

print(5 - 3 < 0)  # prints False 

 

Pay attention to the size of the letters. The values true or false are not 
boolean values. 

 

📝 11.1.2 

Complete the code that tests whether n is positive. 

n = 28 

print(n _____)  # The output is the value _____ 

• True 
• > 0 
• true 
• false 
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• False 
• <| 0 
• > 50 

 

📝 11.1.3 

Complete the code that tests whether twice n is less than 50. 

n = 28 

print(2 * n _____) # The result is value _____ 

• False 
• True 
• <| 0 
• true 
• false 
• > 50 
• < 50 

 

🕮 11.1.4 

If we can print the evaluation of an expression, we can also insert it into a variable: 

result = 4 > 0 

In the code, it is first evaluated whether 4 > 0 and then the True value 
corresponding to the truth is inserted into the variable result. 

In this code, it is first evaluated whether 4 > a + 5, i.e. 15, and then the False value 
corresponding to false is inserted into the variable result. 

a = 10 

result = 4 > a + 5 

 

📝 11.1.5 

What is the result of the program? 

a = 7 

t = a < 5 

print(t) 
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• False 
• True 

 

🕮 11.1.6 

To store boolean values, we use variables of type boolean (bool). We usually get 
their content as a result of comparison, verification of the truth of the condition, etc. 

We can verify the condition, whether a > b, by writing it in the if structure: 

if a > b 

but we can also store the result of the expression evaluation in a variable 

a = 10 

b = 5 

result = a > b 

print(result) 

If the value of a is greater than b, the value of True is stored in the variable result, 
otherwise (less than or equal to), the result variable will contain the value of False 
after evaluation. 

 

We can also check the data type of the resulting value. 

print(type(result)) # prints <class 'bool'> 

 

📝 11.1.7 

Check whether the variable a contains a value of 5 and store the result in the 
variable t, whose value wiil be printed. 

a = 7 

t = a _____ 5 

print(t) 

 

🕮 11.1.8 

Comparison operators are attached to the boolean type, we will repeat them so we 
are complete: 
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• > - is greater than, e.g. a > b 
• >= - is greater or equal to, e.g. a >= b 
• < - is lesser than, e.g. a < b 
• <= - is lesser or equal to, e.g. a <= b 
• == - is equal to, e.g. a == b 
• != - is not equal, e.g. a != b 

 

Using characters in the wrong order will cause an error (eg: =>, or <>). 

 

 

📝 11.1.9 

Which comparison operators are correct? 

• >= 
• <|= 
• == 
• != 
• <|>  
• => 
• =<| 
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11.2 Using expressions 

🕮 11.2.1 

The result of the comparison can be also used in conditions by first finding the 
result of the expression and then using it in the condition, e.g.: 

a = 10 

b = 5 

result = a == b 

if result == True: 

  print("Values are equal") 

else: 

  print("Values are different") 

 

Although such a procedure is not standard for simple conditions, it 
will help us understand the principle of using boolean expressions. 

 

📝 11.2.2 

What does the following program print? 

a = 10 

b = 5 

result = a == (b + b) 

if result == true: 

  print("values are equal") 

else: 

  print("values are different") 

• ends with an error 
• values are equal 
• values are different 

 

🕮 11.2.3 

The entry 

if result == True 

we usually write in the form 
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if result 

because the evaluation of the condition result == True depends on what value the 
variable result has. 

Ak je pravdivá, 

if result == True 

we ask if true is true (True == True) - the result is True. 

If the variable contains a false value: 

if result == True 

we ask if false is true (False == True) - the result is False. 

The answer to the condition is actually already contained in the variable result: 

• if it contains a true value, the result is True, 
• if false, the result is False. 

 

📝 11.2.4 

Complete the code so that it prints whether it is a negative or non-negative number 
(allow to enter decimal numbers as well). 

input_ = input('Enter a number: ') 

a = _____(input_) 

negative = a _____ 0; 

if _____: 

    print("negative") 

else: 

    print("non-negative") 

• negative==False 
• float 
• int 
• negative==0 
• < 
• negative 
• zaporne == 0 
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📝 11.2.5 

Complete the program to verify whether n is even. 

n = 23 

print(n % 2 _____ 0) 

 

The output value is 

_____ 

 

📝 11.2.6 

Complete the program to check whether n is non-zero. 

n = -6 

print(n _____ 0) 

The output value is 

_____ 

 

11.3 Compound conditions 

🕮 11.3.1 

In the program, we often combine several conditions that can be in different 
relationships. We most often encounter situations in which: 

• all conditions must apply, 
• it is enough if only one of the conditions applies. 

 

According to the entered age of the employee, find out whether he is in productive 
age - between 18 and 70 years. 

The task can be solved as follows: 

age = int(input('Enter the age of an employee: ')) 

if age >= 18:       # whether the first condition is met 

  # check whether the age is simultaneously less than the 

upper limit 
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  if vek <= 70:     # both conditions are met 

    print("this employee is in productive age") 

 

📝 11.3.2 

Arrange the rows of the program, so that it prints the season of the year that the 
entered moth belongs to. Arrange the rows so that they are verified in the order of 
spring, summer, autumn, winter. 

• if month >= 4: 
• if month >= 7: 
•   if month <= 9: 
• if month >= 1: 
•      print("autumn") 
•      print("spring") 
•   if month <= 3: 
• month = int(input('Enter the month: ')) 
•      print("winter")      
•   if month <= 6: 
•      print("summer") 
•   if month <= 12: 
• if month >= 10: 

 

🕮 11.3.3 

Original program: 

age = int(input('Enter the age of an employee: ')) 

if age >= 18: 

  if age <= 70:      

    print("this employee is in productive age") 

will be slightly modified. 

A simpler entry allows us to write two verifications into a single compound 
condition. The fact that they should apply simultaneously is expressed through the 
boolean conjunction and (and simultaneously). This is how we simplify the entry of 
two conditional commands by combining them into one compound condition: 

age = int(input('Enter the age of an employee: ')) 

if (age >= 18) and (age <= 70):     

    print("this employee is in productuve age") 
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In a compound condition, complete conditions are combined - i.e. variables must 
be specified in each subcondition. 

Python does not require the use of parentheses when creating 
compound conditions, but we recommend them to avoid various 
mistakes. 

 

📝 11.3.4 

Let´s also modify our second program - complete the program so that it prints the 
season of the year for the entered month. 

month = int(input('Enter the month: ')) 

if month >= 4 _____ month <= 6: 

     print("spring") 

if month >= 7 _____ month <= 9: 

     print("summer") 

if month >= 10 _____ month <= 12: 

     print("autumn") 

if month >= 1 _____ month <= 3: 

     print("winter")      

• and if 
• and 
• and if 
• if 
• if 
• if 
• and 
• and 
• and if 
• and 
• if 
• and if 

 

🕮 11.3.5 

A specific feature of the Python language is the possibility of delimiting a variable 
with comparison operators from both sides, which allows us to significantly 
shorten the entry of boolean expressions. 

Attention, we only do this if the same variable appears in both 
conditions, therefore it is not a solution that can be used anytime and 
anywhere. 
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The expression 

(n >= 0) and (n <= 10) 

can be written as 

0 <= n <= 10 

The entry of our program will take on a new form: 

age = int(input('Enter the age of an employee: ')) 

if (18 <= age <= 70):     

    print("this employee is in productive age") 

or 

if (70 >= age >= 18):     

    print("this employee is in productive age") 

 

📝 11.3.6 

Arrange the lines of the program which, based on the diameter of the egg given in 
millimeters, evaluates the size category the egg belongs to. Verify the average 
value in from largest to smallest order. 

•   print('L') 
• if p >= 65: 
• elif 65 < p <= 55: 
• elif 55 < p <= 45: 
•   print('S') 
• else: 
•   print('XL') 
•   print('M') 
• p = int(input('Enter the diameter of the egg in millimeters: ')) 

 

📝 11.3.7 

Adjust the program for the seasons again - complete the program so that it prints 
the season that entered month belongs to. 

month = int(input('Enter the month: ')) 

if 4 _____ month _____ 6: 
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     print("spring") 

if 7 _____ month _____ 9: 

     print("summer") 

if 10 _____ month _____ 12: 

     print("autumn") 

if 1 _____ month _____ 3: 

     print("winter")      

• <= 
• >= 
• <= 
• >= 
• <= 
• >= 
• <= 
• >= 
• >= 
• <= 
• <= 
• >= 
• >= 
• >= 
• <= 
• <= 

 

📝 11.3.8 

Complete the boolean expression so that it tests whether the value of the variable n 
belongs to the interval <-5, 5>. 

n = 0 

print(-5 _____ n _____ 5} 

The result is 

_____ 

 

🕮 11.3.9 

In some cases, we require only one of the verified conditions to be met. In such 
case, the boolean conjunction or is used. 

if (a > 0) or (b < 0) 
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The evaluation of the expression is true if at least one of the conditions is met - i.e. 
if a > 0 or b < 0. 

If both conditions are met, the expression is also true. 

 

📝 11.3.10 

Complete the program so that it prints whether the applicant is entitled to an 
allowance, the allowances are intended for persons under 18 and over 70. 

age = int(input("Enter the age: ")) 

if (age _____ 18) _____ (age > _____): 

    print("the person is entitled to an allowance") 

• > 
• 70 
• 18 
• or 
• < 
• and 

 

📝 11.3.11 

Complete the program so that it pprints that a number is accepted if it is positive or 
even. 

number = int(input('Enter a number: ')) 

if (number > _____) _____ (number _____ 2 _____ 0): 

    print('accepted') 

• or 
• > 
• / 
• 18 
• 0 
• == 
• <| 
• ** 
• // 
• % 
• and 
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11.4 Evaluation of the compound expressions 

🕮 11.4.1 

We achieve the simultaneous validity of several conditions by using the conjunction 
and. In case it is sufficient for us to fulfill only one condition from the group listed, 
we use the conjunction or. 

The use of this pair is not limited to use in the conditional if statement - we can also 
use them when working with boolean expressions. 

For example the result of the expression stored in the variable c 

a = 10 

b = 5 

c = a > b or b < 0 

can be obtained by gradually evaluating the individual parts of the compound 
condition. First, we evaluate each part separately: 

c = a > b or b < 0 

    10 > 5 or 5 < 0 

    True   or False 

the result of a combination of truth values True or False - True. 

 

📝 11.4.2 

What is the result of the following program? 

a = 10 

b = 5 

c = a <= b or b < 0 

print(c) 

• False 
• True 

 

🕮 11.4.3 

Let's test the calculation for the requirement that the number be both positive and 
even. 
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n = 15 

Let's test whether the number is positive and even. 

n > 0        # the result is True 

n % 2 == 0   # the result is False 

we connect with the boolean conjunction and 

result = (n > 0) and (n % 2 == 0) 

              True and False 

                  False 

 

📝 11.4.4 

What is the result of the following program? 

a = 1 

b = 5 

c = a >= b and b > 0 

print(c) 

• False 
• True 

 

🕮 11.4.5 

In addition to checking whether the condition is true, it is sometimes convenient to 
use the entry: if it is not true, then e.g.: 

a = 5 

b = 1 

zeroDivisor = b == 0  # in this case the result is False 

if not(zeroDivisor):  # if it is not true that the divisor is 

zero 

 quotient = a / b 

 print(quotient)  

else: 

 print("Attempting to divide by zero")  
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An entry beginning with the expression not negates the result of the expression or 
the content of the variable listed after it - it will make the value True False and vice 
versa. 

In this case, the zeroDivisor variable contains the value False and the entry in the 
condition means: 

• if it is not true that the zeroDivisor, then calculate the quotient, 
• respectively if zeroDivisor contains the value False, then execute 
• respectively if the negated content of the zeroDivisor variable is true, then 

execute. 

 

📝 11.4.6 

What command do we use to negate the contents of a boolean variable? 

• not 
• nor 
• or 
• xor 
• no 
• now 

 

🕮 11.4.7 

The combination of logical expressions and logical variables need not be limited to 
only two elements. The evaluation proceeds by first evaluating the expressions in 
parentheses, then the negation, and then proceeds from left to right. 

E.g. 

h1 = False 

a = 5 

b = 7 

result = not(a > b) or (b - 5 < a) and h1 or not(h1) 

print(result) 

is evaluated as: 

not(a > b) or (b - 5 < a) and h1    or not(h1) 

not(False) or     True    and False or not(False) 

    True   or     True    and False or True 

          True            and False or True 
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                   False            or True 

                                   True 

 

📝 11.4.8 

What is the resulting value of the following expression? 

a = 1 

b = 2 

result = (a == 5) and (b < 6) and (a > b) 

• False 
• True 

 

📝 11.4.9 

What is the resulting value of the following expression? 

a = 2 

b = 2 

result = (a == b) and (b > 6) or (2*a > 2*b) 

• False 
• True 

 

📝 11.4.10 

What is the resulting value of the following expression? 

k = 2 

j = 3 

result = (k <= 5) or (j > 6) and (j >= k) 

• True 
• False 

 

📝 11.4.11 

What is the resulting value of the following expression? 
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a = -2 

b = 2 

result = (a != b) or (b > 6) and not (a > -a) 

• True 
• False 

 

📝 11.4.12 

What is the resulting value of the following expression? 

k = 5 

j = 6 

result = ((k <= 5) and (j > 6)) or not(k > j) 

• True 
• False 

 

11.5 Boolean expressions(programs) 

⌨ 11.5.1 Väčší/menší 

Write a program to find out whether the first of two given numbers is less than the 
second. 

input:  

2  

4 

output: True 

 

input:  

5  

2 

output: False 

 

⌨ 11.5.2 Report card 

For the entered average on the report card, write whether the student: 



 

 

164 

• passed with honors - average less than or equal to 1.5; 
• did very well - average greater than 1.5 and less than or equal to 2; 
• passed - average greater than 2 and less than or equal to 4; 
• failed - average more than 4. 

 

Use a dot as a decimal separator (1.3, 2.8, etc.) 

Input: 1.5 

Output: passed with honors 

 

Input: 4.1 

Output: failed 

 

⌨ 11.5.3 Maximum of three numbers 

Write a program that prints the largest of the three entered numbers. If all three 
numbers are equal, it will print "Numbers are equal". 

Input: 2 4 6 

Output: 6 

 

Vstup: 2 2 2 

Output: Numbers are equal 

 

⌨ 11.5.4 Multiples 

Write a program that, for three entered numbers, determines whether any of them is 
a multiple of two others. If so, it prints the given number, otherwise it prints False. 

Input:  

3  

2  

6 

Output: 6 

 

Input:  

5 
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2  

6 

Output: False 

 

⌨ 11.5.5 Interval 

Write a program that checks whether the entered number is in the entered interval. 
At the beginning of the algorithm, check whether the entered interval is correctly 
rotated (eg not 5.2 but 2.5) and if not, adjust it. 

The input contains a trio of integer values representing two interval limits and the 
entered value. 

The output will be a correctly rotated interval, and information on whether the 
entered number belongs to the interval. 

Input : 5  

10  

7 

Output: <5,10> 7 belongs 

 

Input : 100 

20 

10 

Output: <20,100> 10 does not belong 

 

Input : 30 

4 

85 

Output: <4,30> 85 does not belong 

 

⌨ 11.5.6 Test rating 

Write a program that, after entering the percentage of success in the test, prints a 
verbal rating according to the following rules 

• More than 90 percent: Excellent performance. 
• More than 70 percent, or lees than or equal to 90 percent: Great 

performance. 
• More than 50 percent, or lees than or equal to 70 percent: Good job. 
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• More than 30 percent, or lees than or equal to 50 percent: Not worst, but you 
can do better. 

• Less than or equal to 30 percent: You need to work on yourself. Next time it 
will be better. 

 

E.g.: 

Input: 65 

Output: Good job. 
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Strings 

Chapter 12 
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12.1 String data type 

🕮 12.1.1 

A string is a data type that allows you to store and work with a group of characters 
that usually make up a word or continuous text. 

In the program, string is delimited by apostrophes (') or quotation marks ("). 
Because of them, the compiler knows how to work with the given value. 

Napr. 

name = 'Adam' 

insert the text content Adam into the name variable 

For the entry 

name = Adam 

the compiler would expect a variable called Adam, whose content it would put into 
the name variable. 

 

📝 12.1.2 

Which characters delimit a text string in Python? 

• ' 
• " 
• ! 
• # 
• () 

 

🕮 12.1.3 

We already know that the simplest operation that can be executed on strings is to 
concatenate them. This operation is provided by the "+" character, which from two 
existing strings creates a new one by appending the contents of the second to the 
contents of the first string. 

output = 'it' + 'bites' 

print(output) # prints itbites 
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We can concatenate any number of strings or variables that contain the string. 

a = 'Mama' 

b = ' has ' 

c = 'Ema' 

d = a + b + c 

print(d) # vypíše Mama has Ema 

 

📝 12.1.4 

What will be stored in the variable d after the following program is executed? 

a = "Warning" 

b = "dark" 

c = "!" 

d = a + b + c 

• Warningdark! 
• warning dark 
• Warning dark! 
• Warning dark ! 
• WarningDark! 

 

🕮 12.1.5 

To concatenate a string and a number, we need to use the conversion of a number 
to a string using the str() command. 

s = 'result: ' # text 

a = 3            # number 

b = 7            # number 

c = a + b        # number 

d = s + str(c)   

print(d) 

 

In case we would like to use the "+" sign to combine text and number, e.g. 

a = "result: " # text 

b = 3            # number 

c = a + b 
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we get an error message: 

TypeError: can only concatenate str (not "int") to str 

 

📝 12.1.6 

Complete the program so that you get an output in the form 

a + b = c 

e.g. 

10 + 20 = 30 

 

a = 3            # number 

b = 7            # number 

c = a + b        # number 

d = _____(a) + '_____' + _____(b) + ' = ' + _____(c) 

print(d) 

 

🕮 12.1.7 

The variable type containing a text string is referred to as string. 

The command type(variable) returns the value of str: 

a = "Python” 

print(type(a)) 

prints 

<class 'str'> 

 

📝 12.1.8 

Assign the correct types to the variables: 

a = 3      

b = 7.5     

c = "Prague"   

d = a == b    

print(type(a))  # _____ 
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print(type(b))  # _____ 

print(type(c))  # _____ 

print(type(d))  # _____ 

• Bool 
• float 
• integer 
• int 
• int 
• bool 
• Str 
• double 
• bool 
• str 
• str 

 

🕮 12.1.9 

We also remember that when data is loaded, they all enter the program as text 
strings, and for further processing in a different way, it is necessary to convert them 
to appropriate values. 

print('Enter an integer: '); 

input1 = input() 

a = int(input1)                     # convert to an integer 

print('Enter a decimal number: '); 

input2 = input() 

b = float(input2)                   # convert to a decimal 

number 

c = a - b 

result = 'Difference: ' + str(c)     # convert the number to 

text 

print(result) 

 

📝 12.1.10 

Complete the program so that it prints the product of two decimal numbers in a 
clear form. For example for inputs: 1.1 and 2.2 will print 

1.1 * 2.2 = 2.42 

 

print('Enter 1st decimal number: '); 
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v1 = input() 

a = _____(v1) 

print('Enter 2nd decimal number: '); 

v2 = input() 

b = _____(v2) 

c = a _____ b 

result = _____(a) + ' * ' + _____(b) + ' = ' + _____(c) 

print(result) 

 

12.2 String multiplication 

🕮 12.2.1 

In addition to the sum operation, Python also allows you to use multiplication when 
working with strings. 

When multiplying, one variable must be of type string and the other of type integer, 
e.g. 

n = 3 

txt = 'uff ' 

c = n * txt 

The result of the multiplication is a text string containing the contents of the text 
variable repeated n times in a row. 

In this case it is 

uff uff uff 

 

Other operations such as division or subtraction are not used on 
strings. 

 

📝 12.2.2 

What is the result of the following command? 

print('ab' * 3) 

• ababab 
• ab3 
• 3ab 
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• aaabbb 
• error 

 

📝 12.2.3 

What is the result of the following command? 

print('ab' + 3) 

• error 
• ab3 
• 3ab 
• aaabbb 
• ababab 

 

📝 12.2.4 

What is the result of the following command? 

print(str(5) * 3) 

• 555 
• 15 
• 535353 
• 5553 
• chyba 

 

📝 12.2.5 

What will be the result of the following command? 

print(str(5) + 3) 

• error 
• 53 
• 5 3 
• '5'3 
• 5553 
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📝 12.2.6 

What is the result of the following program? 

ret = '101' 

ret *= 10 

print(ret) 

 

📝 12.2.7 

Which of the following commands is possible? 

x = input() 

• print(x + x) 
• print(x * x) 
• print(x - x) 

 

12.3 Characters in string 

🕮 12.3.1 

Every variable of the string type allows searching, finding the number of characters, 
changing the size of characters, etc. 

The simplest operation is to return the number of characters in the stored content. 
We get it through the len() command. 

data = "Mama" 

dlzka = len(data) 

print(lenght) 

 

The number of characters contained in the data variable is stored in the length 
variable, i.e. in this case 4. 

 

📝 12.3.2 

What will be stored in the length variable after the following code is executed? 

x = 'python' 
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lenght = len(x) 

 

📝 12.3.3 

What does the following code print? 

print(len('')) 

 

🕮 12.3.4 

Every string consists of characters. Each character has its place in the string, which 
is defined by an index. Python counts the elements in any list by starting to count 
from zero. 

The first character in the string is at position 0, the second at position 1, and so on. 
The last character is at a position one less than the total number of characters in 
the string. 

E.g. for: 

data = "Madonna"; 

characters are distributed in individual positions as follows: 

 

The number of characters in the string is 7, the last character is at the position 6. 

 

📝 12.3.5 

Which character is in position 1 in the string? 

ret = 'Priscilla' 

 

🕮 12.3.6 

Access to characters at individual positions is provided by notation consisting of 
the name of the variable followed by square brackets with an index, e.g.: 
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data = 'Python' 

first = data[0] 

 

The outputs for the following commands then are: 

data = 'Python' 

first = data[0] 

print(prvy)   # prints P 

print(data[1]) # prints y 

print(data[2]) # prints t 

print(data[3]) # prints h 

print(data[4]) # prints o 

print(data[5]) # prints n 

print(data[6]) # prints an error 

 

Notice that the last character of the string has an index one unit smaller than the 
length of the entire string, i.e. 

last = len(data) - 1 

 

📝 12.3.7 

Which character does the following code print? 

ret = 'Priscilla' 

print(ret[4]) 

 

📝 12.3.8 

Fill in the universal correct index of the last character. 

ret = input() 

print(ret________________________________________) 

• 2 
• ) 
• ( 
• * 
• + 
• ) 
• len 



 

 

177 

• ] 
• ret 
• } 
• [ 
• - 
• 1 
• { 
• ( 
• ] 
• [ 

 

🕮 12.3.9 

If we try to access a character that does not exist, 

ret = 'Test' 

znak = ret[4] 

an error message is displayed. 

IndexError: string index out of range 

It informs us that we are out of range of the string indexes. 

This is a fairly common mistake of a novice programmer. 

 

📝 12.3.10 

Ktoré volania pre získanie znaku z reťazca ret možno použiť? 

ret = 'Anaconda' 

• ret[0] 
• ret[7] 
• ret[len(ret)-1] 
• ret[4] 
• ret[8] 
• ret[9] 
• ret[len(ret)] 
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12.4 Characters iteration 

🕮 12.4.1 

We can access each character in the string through its index. If we need to go 
through all the characters, we usually do so by iterating using the loop. 

Let's write the entered word one letter at a time. 

ret = input('Enter a string: ') 

lenght = len(ret) 

for i in range(lenght): 

    print(ret[i]) 

The range(length) command will generate values starting with zero and ending with 
length-1, which is exactly the index of the last character we need. 

 

📝 12.4.2 

Complete the program that prints all the characters in the string below each other: 

ret = input('Enter a string: ') 

lenght = _____(ret) 

for i in _____(_____)_____ 

    print(____________________) 

• ( 
• ) 
• [ 
• length 
• } 
• ] 
• ) 
• [ 
• ] 
• : 
• ; 
• len 
• lenght 
• { 
• Range 
• in 
• ( 
• i 
• range 
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• ret 

 

🕮 12.4.3 

Write a program that prints the letters in even positions of the string below each 
other (characters in position 0, 2, 4, 6, ...) 

The procedure is very simple, just adjust the parameters of the previous cycle. 

ret = input('Enter a string: ') 

lenght = len(ret) 

for i in range(0, lenght, 2): 

  print(ret[i]) 

 

📝 12.4.4 

Complete the program that prints letters in odd positions in the entered text 
(characters in position 1, 3, 5, ...). 

ret = input('Enter a string: ') 

lenght = _____(ret) 

for i in range(_____, _____, _____): 

  print(ret[i]) 

 

🕮 12.4.5 

In Python, we can use the for loop feature, where instead of generating a range, we 
can directly enter a string. 

ret = 'Slovakia' 

for i in ret: 

  print(i) 

The loop then works in such a way that at each step of the loop the next character 
in the specified string is inserted into the variable i. 

The output of the program will be: 

S 

l 

o 

v 

a 
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k 

i 

a 

We can use this iteration if we want to process only the characters of the string, but 
we are not interested in their position. 

 

📝 12.4.6 

Complete the code so that we reach the listed output. 

ret = _____ 

 

for i in _____: 

  print(i) 

 

P 

o 

k 

e 

m 

o 

n 

 

12.5 Typical tasks 

📝 12.5.1 

Write a program that detects how many times the character a is found in the 
entered word. 

Complete the program that will solve the task: 

word = _____('Enter a word: ')  # read the word from the input 

lenght = _____(word)              # find the number of 

characters 

#in the variable number will be the number of characters found 

and - 0 at the beginning  

number = 0                        

for i in _____(lenght):              # in the loop we iterate 

through the positions from 0 to length-1 
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   if word[i] _____ 'a':              # if there is an 'a' in 

position i, we increase the number 

       number = _____ _____ 1 

print('The word cantains',_____,'characters _____a"') # output 

 

📝 12.5.2 

We'll repeat the task again, using Python's ability to iterate through the characters 
of a word directly in a loop: 

Write a program that detects how many times the character a is found in the 
entered word. 

Complete the program that will solve the task: 

word = _____('Enter a word: ')  # read the word from the input 

number = 0                           # number of characters a 

found - 0 at the beginning  

for i in _____:                     # in the loopwe go through 

the characters of the word 

    if _____ == 'a':                    # if the examined 

character is 'a', we increase the number 

        number = _____ + 1 

print('The word contains',number,'charatcters _____a"') # 

output 

 

📝 12.5.3 

Write a program that detects how many even and odd digits are in a number read 
from the input as a string. 

Complete the program: 

number = input('Enter a number: ')  # read the number from the 

input 

even = 0                       # the number of even and odd 

numbers is 0 

odd = 0                        

for i in _____:                 # we iterate trough the digits 

   x = _____(i)                  # change each character 

(digit) to a number 

   if x _____ 2 _____ 0:              # if the digit is 

divisible by 2 it is an even number 

       even = even + 1 
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   else:                       # else odd 

       odd = odd + 1        

print('The number contains',even,'even and',odd,'odd digits.') 

 

📝 12.5.4 

We will repeat the task again by using a compound condition. When reading the 
digits 0, 2, 4, 6, and 8, we increase the number of occurrences of even digits, 
otherwise the number of odd ones. 

Write a program that detects how many even and odd digits are in a number read 
from the input as a string. 

Complete the program: 

number = input('Enter a number: ')  # read the number from the 

input 

even = 0                       # the number of both even and 

odd numbers is zero 

odd = 0                        

for i in _____:                 # in the loop we iterate 

trough the digitd of the word 

    # if the examined character is 0,2,4,6,8 otherwise say 0 

or 2 or... 

    if i == '0' _____ i == '2' _____ i == '4' _____ i == '6' 

_____ i == '8':                

        even = even + 1        # increase the number of even 

    else:                        # else odd 

        odd = odd + 1         

print('The number contains',even,'even and',odd,'odd digits.') 

# output 

• and 
• or 
• and 
• word 
• and 
• and 
• and 
• number 
• or 
• or 
• or 
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🕮 12.5.5 

Python allows to replace a lengthy notation 

if i == '0' or i == '2' or i == '4' or i == '6' or i == '8' 

which tests whether the variable has one or the other or the next value, using the in 
operator, which tests whether the value is in the list: 

if i in '02468':  

 

📝 12.5.6 

Write a program that finds out how many vowels there are in the entered word. 
Consider only lowercase letters. 

Complete the program: 

word = input('Enter a word: ')   # read the word from the 

input 

vowels= 0                   # the number of vowels is 0 at the 

beginning 

for i in _____:                  # in the loop we iterate 

trough the characters of the word 

    if i _____ _____aeiouy_____:            # if the examined 

character is in the list of vowels 

        vowels = vowels + 1        # increase their number 

print('The word contains', vowels, 'vowels.') # output 

 

📝 12.5.7 

Write a program that prints a mirror image of the entered word, e.g.: 

Mama -> amaM 

winter -> retniw  

 

Although later we will also show commands that will simplify this activity, for now 
we will make do with a simple loop. 

First, we will create a separate variable into which we will insert characters by 
inserting the next character in the sequence before the existing string, e.g. for the 
word Aladdin, we will proceed as follows: 
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• first we read A and store it in the result (result = "A") 
• we read l and store it before the result obtained so far (result = "l" + result, 

i.e. "lA") 
• we read a and store it before the result obtained so far (result = "a" + result, 

i.e. "alA"), etc. 

 

word = input() 

mirror = ''              

for character in _____: 

   # insert the evaluated character before the string obtained 

so far  

   mirror = _____ + _____ 

print(mirror) 

 

12.6 Strings(programs) 

⌨ 12.6.1 Occurrence of a digit 

Write a program to find the number of times the digit '3' is present in the number 
entered at the input. 

input : 3259873102 

output: 2 

 

input : 3333333333 

output: 10 

 

⌨ 12.6.2 Digit sum 

Write a program that finds the digit sum of an entered number. 

Input : 123 

Output: 6 

 

Input : 0124 

Output: 7 
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Input : 0 

Output: 0 

 

⌨ 12.6.3 Number of digits 

Write a program to find how many digits are in a string. 

input : I have 2 slippers and I am 88 years old. 

output: 3 

 

input : 3333333333 

output: 10 

 

⌨ 12.6.4 Vowels 

Write a program that finds out how many vowels the entered sentence contains. 

Consider only characters without long and soft characters. 

Consider both lower and upper-case letters. 

 

input : Mama had Ema. 

output: 5 

 

input : WARNING, it is freezing. 

output: 7 

 

⌨ 12.6.5 Number of words 

Write a program that finds out how many words are in the entered sentence. 

Input : Mama has ema. 

output: 3 
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input : Winter started today: it started snowing in the 

morning, it was gloomy at noon, and in the evening we built a 

snowman. 

output: 22 

 

⌨ 12.6.6 Correction of a text 

Write a program that changes all non-numeric characters in the specified string to 
the number 1 and prints the changed string. 

Input : 57ada87 

Output: 5711187 

 

Input : 3.,úôéáá23Â§ô!3 

Output: 31111111231113 

 

⌨ 12.6.7 Decryption 

Write a program that prints the decrypted text for an encrypted message. 

You get the text by selecting every third letter from the input string. An encrypted 
message starts with the first letter. 

eg. for wtza irnhnbhihjnhjg idp ogjg. 

the result is warning dog - everz third letter from the word 
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Characters and special 
outputs 

Chapter 13 
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13.1 Characters in ASCII 

🕮 13.1.1 

The basic building element of the string is the character. 

We can compare characters based on their order, which resembles the alphabet 

 'a' < 'b' < 'c' … < 'z'. 

However, it also applies that all uppercase letters are smaller than all lowercase 
letters 

'A' < 'B' … < 'Z' < 'a' < … < 'z' 

This behavior is a consequence of the computer's character encoding. Each 
character has its own numerical code, based on which the system knows what form 
to give the character. 

Characters are usually represented by an ASCII table containing 255 basic 
characters. Although alphabets are currently encoded using Unicode/UTF-8 
encoding, the first 128 characters are encoded the same way. 

Not all characters are displayable, only characters from 32 to 126 are 
used in printouts. 

 

ASCII table: 
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📝 13.1.2 

Choose the correct statements based on the position of the characters in the ASCII 
table: 

• 'a'<|'z' 
• 'A'<|'Z' 
• 'Z'<|'a' 
• 'a'<|'A' 
• 'a'<|'Z' 
• 'A'<|'1' 

 

🕮 13.1.3 

How do we find out whether the entered character is lowercase or uppercase? 

If the character is present: 

• between the first uppercase and the last uppercase character it is a capital 
letter, 
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• between the first lowercase and the last lowercase character it is a 
lowercase letter. 

 

c = input('Enter a character: ') 

if 'a' <= c <= 'z': 

   print('lowercase letter') 

elif 'A' <= c <= 'Z': 

   print('uppercase letter') 

else: 

   print('it is not a letter') 

 

📝 13.1.4 

Complete the code to determine whether the character in the variable c is a digit: 

c = input('Enter chracter: ') 

if '_____' <= c _____ '_____': 

   print('it is a digit') 

else: 

   print('it is not a digit') 

 

🕮 13.1.5 

Thanks to the encoding of characters in the ASCII table, we can determine for each 
character its successor and predecessor. A couple of commands help us with this: 

• ord() –returns the position of the character in the ASCII table, e.g. ord('A') 
returns 65 

• chr() – returns the character that is at the specified position, e.g. chr(65) 
returns 'A' 

 

📝 13.1.6 

Choose the correct command: 

returning the position of the character in the ASCII table - _____, e.g. returns 66 for B 

returning the character at the specified position - _____, e.g. for 66 it returns the 
value B 

• ord() 
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• chr() 
• getChar() 
• inc() 
• order() 
• ascii() 

 

🕮 13.1.7 

For the enetred character, print its predecessor and successor. 

We will use the ord() and chr() commands: 

• Pomocou ord() zistíme pozíciu znaku v ASCII tabuľke 
• To get the predecessor, we use chr() to write a character at a position 

smaller by one. 
• To get a succesor, we use chr() to write a character at a position one larger. 

 

character = input('Enter a character: ') 

pos = ord(character) 

print('predecessor: ', chr(pos - 1)) 

print('successor: ', chr(pos + 1)) 

 

📝 13.1.8 

What is the output of the command 

print(chr(ord('A') + 1)) 

 

📝 13.1.9 

What is the output of the command 

print(chr(ord('d') + 2)) 

 

📝 13.1.10 

What is the output of the command 

print(chr(ord('7') - 2)) 
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13.2 Comparison 

📝 13.2.1 

Character positions are also used when comparing whole words (or more precisely 
strings). 

We can determine the similarity of the strings through a simple comparison. 

What does the following program print? 

r1 = 'Mama' 

r2 = 'Papa' 

if r1 == r2: 

  print('same') 

else: 

  print('different') 

• different 
• same 
• program prints an error 

 

🕮 13.2.2 

However, string comparison tells us nothing about which string is alphabetically 
larger or smaller. 

To determine the lexicographic (alphabetical) comparison, a "classic" comparison 
is used, which uses the positions of characters in the ASCII (Unicode) table. 

It proceeds in both strings from the first position and when different characters are 
encountered, their position in the ASCII table is compared. 

The string whose first distinct character has a lower position is smaller than the 
second. 

For example for 'Mom' and 'Dad' the very first character is different, and therefore: 

'Dad' < 'Mom' 

For 'Michal' and 'Michaela' the words differ only in the 6th character and 'l' > 'e', 
because 

'Michal' > 'Michaela' 
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For 'Ivan' and 'Ivana' the first 4 characters are the same and the fifth character no 
longer exists in the word 'Ivan'. Since there is nothing less than the character 'a' in 
the last position in the word 'Ivana', then: 

'Ivan' < 'Ivana' 

 

📝 13.2.3 

Choose the correct statement 

• 'parent' <| 'teacher' 
• 'parent' > 'teacher' 
• 'parent' = 'teacher' 

 

📝 13.2.4 

Choose the correct statement 

• 'Jasmina' > 'Aladin' 
• 'Jasmina' <| 'Aladin' 
• 'Jasmina' = 'Aladin' 

 

📝 13.2.5 

Choose the correct statement 

• 'spring' <| 'summer' 
• 'spring' > 'summer' 
• 'spring' = 'summer' 

 

📝 13.2.6 

Choose the correct statement 

• 'Daniel' <| 'Daniela' 
• 'Daniel' > 'Daniela' 
• 'Daniel' = 'Daniela' 
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🕮 13.2.7 

Attention, in the case of 'summer' and 'Winter', it applies that 

'summer' > 'Winter' 

because lowercase letters are placed in higher positions than uppercase ones in 
the ASCII table. 

 

📝 13.2.8 

Choose the correct statement 

• 'aladin' > 'Jasmina' 
• 'aladin' <| 'Jasmina' 
• 'aladin' = 'Jasmina' 

 

📝 13.2.9 

Choose the correct statement 

• 'Jasmina' <| 'jasmin' 
• 'Jasmina' > 'jasmin' 
• 'Jasmina' = 'jasmin' 

 

📝 13.2.10 

Choose the correct statement 

• 'pear' > 'Pear' 
• 'pear' <| 'Pear' 
• 'pear' = 'Pear' 

 

13.3 Numbers as a strings 

🕮 13.3.1 

Although we usually compare numbers based on mathematical rules, there may 
also be situations where we compare them lexicographically - like text. 
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Then it is true that 

0 < 1 < 2… < 9 

whereas we treat individual digits as characters. 

Although it is true that 

'12' < '13' 

it is also true that 

'122' < '13' 

because the character '2' is at a lower position than the character '3' in the ASCII 
table. 

When comparing numbers, we must therefore be careful whether we are comparing 
numbers in actual numerical form or as text strings. 

 

📝 13.3.2 

Choose the correct statement 

• '16' <| '20' 
• '16' > '20' 
• '16' = '20' 

 

📝 13.3.3 

Choose the correct statement 

• '160' <| '20' 
• '160' > '20' 
• '160' = '20' 

 

📝 13.3.4 

Choose the correct statement 

• '110' > '1001' 
• '110' <| '1001' 
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• '110' = '1001' 

 

📝 13.3.5 

Choose the correct statement 

• '333' > '3033' 
• '333' <| '3033' 
• '333' = '3033' 

 

📝 13.3.6 

Choose the correct statement 

• 333 <| 3033 
• 333 > 3033 
• 333 = 3033 

 

📝 13.3.7 

What is the result of the following program? 

a = 'Dingo' 

b = 'Bingo' 

print(a > b) 

 

🕮 13.3.8 

Find the maximum digit in the entered number. For example for 784541 it will be 8. 

Given that the number of digits is relatively limited when using numbers, we will use 
a string to load long numbers. 

The procedure will be quite simple: 

• for the beginning, we declare the smallest possible value, i.e. the value 0, as 
the largest digit, 

• we will gradually read the values at individual positions of the string (from 
beginning to end) and compare them with the largest value found so far, 



 

 

197 

• since the alphabetical order of the digits is the same as their order by size, 
we can compare the text. 

 

number = input() 

max = '0'    # we will work with characters, so max will also 

be saved as a character 

for digit in the number: 

  if max < digit:   # if the current digit is greater than the 

largest so far 

     max = digit    # we will remember it 

print(max); 

 

📝 13.3.9 

Complete the code to find the smallest digit in a number. 

number = input() 

min = '_____'   # set the largest possible value 

for digit in _____: 

 if min _____ digit:   

    min = _____   

print(min) 

 

13.4 Special characters 

🕮 13.4.1 

In addition to regular characters, special characters are sometimes used in 
pritnouts. They can be used to print some characters and adjust the layout of the 
text. 

Typical special characters are: 

• \' – inserts an apostrophe into the text, 
• \" – inserts quotation marks into the text, 
• \\ – inserts a backslash into the text. 

 

When using e.g.: 

print("We are starting to learn \"Python\"") 
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prints 

We are starting to learn "Python" 

 

We used the quotation marks to delimit the string as well as inside its 
content. However, thanks to writing it in the form of \" there was no 
error. 

 

📝 13.4.2 

Fill in special characters for text output 

Characters ' a " are used when working with strings. 

 

print('Characters _____ a _____ are used when working with 

strings.') 

 

🕮 13.4.3 

The second group of special characters is used when formatting the output: 

• \n - newline character, moves the cursor to the beginning of a new line, 
• \t – tab, inserts a break that indents the following text at the tab position. 

 

Napr. 

print('Hi, \nI am Emil.') 

vypíše 

Hi, 

I am Emil. 

The \n character moves the cursor ensuring text output to a new line, and the 
output after \n continues on a new line. 

 

📝 13.4.4 
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Add spaces or a newline character to get the following output: 

Mother has a: 

butter, 

ice-cream 

and cakes. 

 

print('Mother _____has_____a:_____butter,_____ice-

cream_____and_____cakes.') 

• \n 
• \n 
•  
•  
• \n 
•  
•  
• \n 
• \n 
•  
•  
• \n 

 

🕮 13.4.5 

The \t character is used as a tab - it indents the text following it to the intended 
nearest tab position. 

E.g. 

print('Mother: \tteacher') 

print('Father: \tclerk') 

print('Daughter: \tstudent') 

print('Brother: \tstudent') 

 

Zabezpečí výpis: 

Mother:   teacher 

Father:   clerk 

Daughter: student 

Brother:  student 
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📝 13.4.6 

I am 

'Python' 

        programmer 

Add special symbols to the code to get the above listing. 

print("I am_____ _____ Python_____ _____ _____ programmer") 

• \n 
• \t 
• \n 
• \' 
• \t 
• \n 
• \' 
• \' 
• \b 
• \" 
• \s 
• \t 
• \s 
• \b 
• \n 

 

🕮 13.4.7 

Sometimes it is necessary to use more tabs for correct indentation. 

Note that the tab replaces a maximum of 8 spaces. I.e. the character after the tab 
always starts at position 8*x + 1 (9,17,25, etc.). 

Napr. pre 

print('my dog:\tKejsy') 

print('the dog at the neighbors:\tZahraj') 

 

Due to the long text at the beginning of the second line, the output has the form: 

my dog:   Kejsy 



 

 

201 

the dog at the neighbors:   Zahraj 

 

After adding the tab: 

print('my dog:\t\tKejsy') 

print('the dog at the neighbors:\tZahraj') 

 

we get the desired: 

my dog:                     Kejsy 

the dog at the neighbors:   Zahraj 

 

📝 13.4.8 

Provide the output: 

first number:    1258 

second number:   2257 

line:            ---- 

total:           3515 

 

print('first number:_____1258_____second 

number:_____2257_____line:__________----

_____total:__________3515') 

• \t 
• \n 
• \t 
• \t 
• \t 
• \t 
• \n 
• \n 
• \n 
• \t 
• \t 
• \n 
• \t 
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13.5 Special printouts 

🕮 13.5.1 

In the print() command, in addition to the texts printing, we can also use special 
settings that allow changing the form of the output. 

Let's mention the two most common here: 

• sep, determines which character is inserted as a string separator in the 
print() command. The default setting is a space. 

• end, determines which character is inserted at the end of the written text. By 
default, the character \n is set, which is a wrap - moving the cursor to a new 
line. 

 

The simplest use is to replace the separator with a line terminator. 

print('one', 'two', 'three', sep = '\n') 

 

Strings separated by commas in the command are written on separate lines: 

one 

two 

three 

 

If we enter a semicolon as separator, 

print('one', 'two', 'three', sep = ';') 

we get: 

one;two;three 

If necessary, the separator can also contain more characters, e.g. '; '  

 

📝 13.5.2 

Complete the print() command to get a printout in the form 
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1*2*3*4 

print('1', '2', '3', '4', _____ = '_____) 

 

🕮 13.5.3 

The end parameter in the output specifies which character or string is supposed to 
be printed after all the text entered in the print() command has been printed. 

By default, it is set to \n, which causes each statement to move the cursor to a new 
line at the end. 

By changing the end parameter, we can ensure that the output cursor does not 
move to a new line after each printout. This way, we can print texts from several 
commands in one line. 

print("Hi", end = ", ") 

print("long time no see", end = ", ") 

print("how are you?")  

Comma + space is used as the termination string in the first two statements... 

Hi, long time no see, how are you? 

... and the cursor does not move to a new line. 

The last printout does not have the end parameter changed, so there will be 
delineation, which would be reflected in the next run. 

 

📝 13.5.4 

Complete the ending characters of the outputs so that you get the following 
statement: 

I have to bring: 10 bags of flour, 3 bags of sugar, 480 eggs, 

5 liters of water and a large saucepan. 

 

print('I have to bring', _____ = '_____') 

print('10 bags of flour', _____ = '_____') 

print('3 bags of sugar', _____ = '_____') 

print('480 eggs', _____ = '_____') 

print('5 liters of water', _____ = '_____') 
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print('and a large saucepan', _____ = '_____') 

• ,  
• end 
• end 
• ,  
•  
• ,  
• sep 
• ,  
• ,  
• ,  
• sep 
• end 
• :  
• . 
• end 
• ,  
• sep 
• end 
• :  
• sep 
• sep 
• . 
• sep 
• end 

 

📝 13.5.5 

What is printed on the output? Pay attention to each character of the printout. 

print("1","2","3","4", sep = "*", end = "!") 

 

🕮 13.5.6 

For some printoutd, the division of the text into immutable (static) strings and 
variable values (variables) can complicate the clarity of the notation. 

x = 10 

y = 20 

z = x + y 

print('The sum of', x , 'and', y, 'is', z, '.') 
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This seemingly confusing output returns: 

The sum of 10 and 20 is 30 . 

 

There is also a space before the period at the end of the sentence, which is not in 
accordance with the rules of writing the text 

For such structured statements, Python provides a simpler form of notation. 

print(f'The sum of {x} and {y} is {z}.') 

 

This notation before the text in quotes or apostrophes itself contains the letter f, 
which lets the compiler knows that the content of the following string should be 
modified so that instead of the content of the brackets {}, it inserts the value of the 
relevant variables. 

The result of the output therefore will be: 

The sum of 10 and 20 is 30. 

 

Every space and every character entered inside the format string will 
also be reflected in the output. 

 

📝 13.5.7 

Fill in the correct code so that we receive the exact required output. 

j = 25 

k = 12 

print(_____'_____j_____ - _____k_____ = _____j-k_____') 

The required output is 

25 - 12 = 13 

 

📝 13.5.8 

Print the multiplier for the number entered in the input in the form (e.g. for 5):  
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1*5=5 

2*5=10 

3*5=15... 

Complete the program that ensures the printout in the required form: 

text = input('Enter a value: ') 

n = _____(text) 

for i in range(1,11): 

    print(_____'_____*_____=_____i*n_____') 

 

13.6 Working with characters(programs) 

⌨ 13.6.1 Word order 

Write a program that, for three strings entered on separate lines, finds their 
alphabetical order and lists them alphabetically below each other. 

Input : Adam 

Jano 

Eva 

Output:  

Adam 

Eva 

Jano 

 

Input : beta 

Alfa 

Simon 

Output:  

Alfa 

Simon 

beta 

 

⌨ 13.6.2 The number of lowercase letters 

Write a program that finds the number of lowercase letters in a sentence without 
diacritics given as input. 

Input: Mama has Ema. 

Output: 7 
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⌨ 13.6.3 Printing part of the ASCII table 

Write a program that, for two given numeric values, prints the ASCII table 
characters located at the positions between them. If the values are outside the 
range of 33 and 127, it will print "error". Assume that the first value entered is less 
than the second. 

Write characters in the form of position, tab, character. 

Input :  

51 

56 

Output:  

51    3 

52    4 

53    5 

54    6 

55    7 

56    8 

 

Input : 21 

120 

Output: error 

 

⌨ 13.6.4 ASCII encoding 

Encode the entered text by using their ASCII values instead of characters and 
separating them with commas in the output. 

Input: Adam 

Output: 65,100,97,109 

 

⌨ 13.6.5 ASCII decoding 

Write a program that decodes a given word using its ASCII codes. 

The input starts with the number of characters to be decoded, followed by an 
integer value representing the character code in each line. 

Print the decoded string in a line. 
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Input: 

4 

65 

108 

101 

120 

Output: Alex 

 

⌨ 13.6.6 Dictation control 

For the typed text submitted by the student, check the number of errors by 
comparing it with the teacher's sample word. For the input representing the 
student's text in the first line and the teacher's text in the second, write the number 
of times the student wrote the wrong character. Before checking the text itself, 
check whether the submitted texts have the same number of characters, and if not, 
end the solution with the message: "different number of characters". 

If the texts are identical, write: "no errors", otherwise "the number of mistakes: x". 

input: Word 

word 

output: 

the number of mistakes: 1 

 

input: word 

word. 

output: 

different number of characters 

 

⌨ 13.6.7 Encoding II. 

Encode the text by shifting the individual characters two positions to the right in the 
ASCII table. 

Input: mama 

Output: ococ 

 

⌨ 13.6.8 Deleting the numbers 

Write a program that replaces digits with dashes in the given string. The letters will 
remain unchanged. 
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Input : Hello123 

Output: Hello--- 

 

Input : 123 

Output: --- 

 

Input : hello 0john 

Output: hello -john 

 

⌨ 13.6.9 Sum of numbers 

Write a program that calculates the sum of the integers appearing in a string. A 
decimal number is taken as 2 separate numbers. 

Input : We have 12 hens, 54 gooses and 3 dugs. 

Output: 69 

 

Input : 12.3,8 9 

Output: 32 
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Slices and basic functions 

Chapter 14 
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14.1 Slices 

🕮 14.1.1 

By using the square brackets, we can get to any character in the string. For example 
for the string 

ret = 'Sagarmatha' 

this entry 

x = ret[2] 

will store character g to the variable x. 

In addition to getting one character, we can also read several characters from the 
string at once. The entry we refer to as slice is used for this. A slice is created by 
specifying a variable name and a definition for a character selection of the form: 

x = ret[beginning : end] 

 

The slice limits are determined similarly to generating a list via range(). Unless we 
enter otherwise, step is set to 1. 

E.g. 

ret = 'Sagarmatha' 

x = ret[2:4] 

print(x) 

prints the text ga based on the fact that it starts at position 2 and ends one position 
earlier than the specified value for end (so it takes the 3rd character as the last). 
Therefore it reads the characters g, a. 

 

📝 14.1.2 

What is the result of the following code? 

ret = 'Montevideo' 

x = ret[3:6] 

print(x) 
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📝 14.1.3 

Complete the results of the output: 

ret = 'Marvel Universe' 

print(ret[0:len(ret)])  # prints _____ 

print(ret[0:6])         # prints _____ 

print(ret[7:len(ret)])  # prints _____ 

 

📝 14.1.4 

Complete the correct slice boundaries for the Com output. 

ret = 'DC Comics' 

print(ret[_____:_____]) 

 

🕮 14.1.5 

Similar to range(), we can also use a step when cutting. The entry then has the form 

x = ret[Beginning : end : step] 

E.g. for 

ret = '123456789' 

x = ret[1 : 8 : 3] 

print(x) 

258 is printed. 

The character selection starts at the 2nd character (position 1 - value 2), moves by 
3 (value 5) and again by 3 (value 8) and ends because it has exceeded the value of 
the end parameter. 

 

📝 14.1.6 

What does the following code print? 

ret = '0123456789' 

x = ret[2:9:2] 

print(x) 
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📝 14.1.7 

What does the following code print? 

ret = 'Good afternoon!' 

x = ret[2:12:4] 

print(x) 

 

🕮 14.1.8 

If we omit a parameter in the notation of the slice, Python will automatically fill it in. 

ret = '0123456789' 

print(ret[7:])  # from the character in the position 7 to the 

end - 789 

print(ret[:6])  # from the beginning to the position 6 - 

012345 

print(ret[:])   # from beginning to the end 

 

The version with step indication also works. 

print(ret[::2]) # the result is 02468 

it copies every second character of the string. 

 

📝 14.1.9 

Fill in the slice parameters so that the x variable contains the texts mentioned in the 
comments: 

ret = 'Good afternoon!' 

x = ret[_____ : _____ : _____]  # noon 

 

ret = '0123456789' 

x = ret[_____ : 8 : _____] # 036 

 

📝 14.1.10 

What does the following code print? 
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ret = '0123456789' 

x = ret[5:] 

print(x) 

 

📝 14.1.11 

What is stored in the variable x after the following code is executed? 

ret = '0123456789' 

x = ret[:2]   # variable x contains _____ 

x = ret[::3]  # variable x contains _____ 

 

14.2 Negative indexes 

🕮 14.2.1 

In addition to classic indexing, Python also allows indexing with negative values. 

Negative indices start numbering from the last character that has an index of -1. We 
proceed from the last character to the first, so that the second character from the 
end has an index of -2, and so on. 

ret = 'Slovakia' 

print(ret[-1]) # prints a 

print(ret[-2]) # prints i 

print(ret[-3]) # prints k 

... 

print(ret[-8]) # prints S 

 

📝 14.2.2 

What character is inserted into the variable x in the following steps of the program? 

ret = 'Priscilla' 

x = ret[-1]  # x contains _____ 

x = ret[-5]  # x contains _____ 

 

🕮 14.2.3 

Negative values can be also used as part of a slice. They can define the beginning 
of the sequence and the end of the sequence. The principle of evaluating such a 
slice consists in replacing a negative value with a real index. 
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If the end value is less than the start value, the result is empty. 

E.g. 

ret = '0123456789' 

x = ret[-1 : -3] # it means that it will start on the last 

character, i.e. index 9 and ends at the third from the end of 

t. j. 7 

print(x) 

prints an empty string. 

However, if we enter: 

ret = '0123456789' 

x = ret[-3 : -1] 

print(x) 

the characters from the 3rd from the end (7) to the 1st from the end (9) will be 
printed, which will no longer be included in the printout, i.e.: 78 

 

📝 14.2.4 

What will the variable x contain after each step? 

ret = 'Altavista' 

x = ret[-6:-2]  # x contains _____ 

x = ret[-7:]    # x contains _____ 

x = ret[:-5]    # x contains _____ 

 

🕮 14.2.5 

A negative value in a step has a special meaning. In such a case, during the 
selection of characters, the procedure is by going from a larger index to a smaller 
one. Thus, the index in the first position must be greater than in the second. 

E.g. 

ret = 'Solomon' 

x = ret[5:1:-1] 

print(x) 

prints omol. 



 

 

216 

 

📝 14.2.6 

What will the variable x contain after each step is executed? 

ret = 'Gargantua' 

x = ret[4:0:-1] # x contains _____ 

x = ret[6:2:-1] # x contains _____ 

x = ret[7:2:-2] # x contains _____ 

 

🕮 14.2.7 

We can also replace indexes with their negative values 

ret = 'Solomon' 

x = ret[-2:-6:-1]  # starts at the penultimate character and 

moves three to the left 

print(x) 

The output will be omol. 

 

📝 14.2.8 

What will the variable x contain after each step is executed? 

ret = 'Pantagruel' 

x = ret[-2:-4:-1]  # x contains _____ 

x = ret[-5:-8:-1]  # x contains _____ 

x = ret[-1:3:-2]   # x contains _____ 

 

🕮 14.2.9 

If we omit the slice values in the notation and set only a step, Python will complete 
them by starting with the last and ending with the first character in the case of a 
negative step. It prints the text in reverse order - the result starts from the last 
character. 

ret = 'Solomon' 

x = ret[::-1]  

print(x) 
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prints nomoloS. 

It always starts generating the result from the last character. 

 

📝 14.2.10 

What will the variable x contain after each step is executed? 

ret = 'Halikarnas' 

x = ret[::-1]  # x contains _____ 

x = ret[::-2]  # x contains _____ 

x = ret[::-3]  # x contains _____ 

 

14.3 Basic functions 

🕮 14.3.1 

Let's imagine a test in which we need to verify the correctness of the answer to a 
question 

How many countries in the world have more than 500,000 inhabitants  

Although the answer looks obvious at first glance, the student can answer in 
several ways: 

2, 02, two, Two, TWO 

For short answers, we can enter a condition with all the possibilities that can occur, 
but if we think about their complexity, it is better to take a different approach. We 
would have to treat: 

• all combinations of upper and lower case letters (two, Two, Two, TWO, tWO, 
twO, TwO, tWo), 

• checking for all numbers of zeros before numbers (2,02,002, etc.) 
• checking for unnecessarily entered spaces before or after a word (' 2','2 ') 

 

📝 14.3.2 

How many different combinations of uppercase and lowercase letters can be made 
in the word three? 
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🕮 14.3.3 

If we think about the step-by-step processing of the answer, the step-by-step 
processing could consist of the following steps: 

• remove spaces before and after the text from the input, 
• if the input consists of only digits, convert it to a number and see if it's 

correct - leading zeros are ignored in that case, 
• convert all letters to the same form - either all lowercase or all uppercase 

and compare with the correct answer. 

 

📝 14.3.4 

Complete the command that will convert the text to a number: 

text1 = input() 

a = _____(text1) 

 

🕮 14.3.5 

The strip() function provide the removal of spaces from the end and beginning of 
the string. This function is used as part of a string variable - we separate it from the 
variable name with a period. 

ret = ' Mama has Ema at home.  ' 

cleaned = ret.strip() #  obsahuje 'Mama has Ema at home.' 

The function does not remove spaces from inside the text, only from the edges. 

 

📝 14.3.6 

What will be stored in the answer variable after the strip() command is executed? 

ret = ' a b c 123 . ' 

answer = ret.strip()  

 

🕮 14.3.7 

In the next step, we should check if the cleaned string consist only of digits. 
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To determine the type of characters that a string contains, we use the following 
string functions: 

• ret.isdigit() tests whether all characters in the string are digits; if so, it 
returns True, otherwise it returns False. 

• ret.isalpha() tests whether all characters in a string are letters; if so, it 
returns True, otherwise it returns False. 

• ret.isalnum() tests whether all characters in a string are letters or numbers; if 
so, it returns True, otherwise it returns False. What other characters can be 
in the string? For example space, comma, parentheses, etc. 

 

E.g. for 

ret = '1.2' 

print(ret.isdigit())   

False will be printed because the string contains a dot character in addition to 
numbers. 

For 

ret = 'variable4' 

print(ret.isalnum())   

True will be printed because the string contains only numbers and letters. 

 

Attention, a space is considered a special character - neither a number 
nor a letter. 

 

📝 14.3.8 

Fill in the correct results for the use of the functions 

ret = '012540' 

print(ret.isdigit())  # prints _____ 

ret = 'abCD' 

print(ret.isalpha()) # prints _____ 

print('10.59'.isdigit()) # prints _____ 

print('a10'.isalpha()) # prints _____ 

print('a10'.isdigit()) # prints _____ 

print('a10'.isalnum()) # prints _____ 

print('Pozor!'.isalpha()) # prints _____ 
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print('a b c'.isalnum()) # prints _____ 

print('3 children'.isalnum()) # prints _____ 

• True 
• True 
• False 
• False 
• False 
• False 
• False 
• False 
• False 
• True 
• True 
• False 
• True 
• False 
• True 
• True 
• False 

 

🕮 14.3.9 

In addition to the type, we can also check the case of the letters in the string: 

• ret.islower() tests whether all characters in the string are from the set of 
lowercase letters, 

ret.isupper() tests whether all characters in the string are from the uppercase set. 

 

When executing the function, only letters are checked . Other characters are not 
considered, therefore e.g. 

ret = 'beta 7' 

print(ret.islower()) 

prints True. 

 

📝 14.3.10 

Fill in the correct results for the use of the functions 
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print('Alpha'.islower())  # prints _____ 

print('BETA'.isupper())   # prints _____ 

print('BETA'.islower())   # prints _____ 

print('Var'.isupper())    # prints _____ 

print('Attention!'.isupper()) # prints _____ 

• True 
• False 
• False 
• True 
• True 
• False 
• True 
• False 
• False 
• True 

 

🕮 14.3.11 

In programs we usually don't waste time by checking whether a string contains all 
lowercase or uppercase letters, but we just convert it to lowercase or uppercase. 
The lower() and upper() functions are used for this. 

 

ret.lower()returns all letters changed to lowercase as a result. The original string 
remains unchanged, e.g.: 

ret = 'Asta La Vista' 

ret1 = ret.lower() 

print(ret)   # prints unchanged 'Asta La Vista' 

print(ret1)  # prints changed 'asta la vista' 

 

ret.upper() returns all uppercase letters as a result. The original string remains 
unchanged, e.g.: 

ret = 'Asta La Vista' 

ret1 = ret.upper() 

print(ret)   # prints unchanged 'Asta La Vista' 

print(ret1)  # prints changed 'ASTA LA VISTA' 
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📝 14.3.12 

Fill in the correct results for the use of the functions 

print('Alpha'.lower())  # prints _____ 

print('BETA'.upper())   # prints _____ 

print('BETA'.lower())   # prints _____ 

print('Var'.upper())    # prints _____ 

print('POZOR!'.lower()) # prints _____ 

 

📝 14.3.13 

Since we already know all the necessary functions to handle the task from the 
beginning of the lesson, add the correct commands to verify the correctness of the 
answer: 

print('How many countries in the world have more than 500,000 

inhabitants?') 

text_o1 = input() 

# remove spaces before and after the text from the input 

text_o2 = text_o1._____() 

# if the input consists only of digits, 

if text_o2._____(): 

   # I will convert it to a number 

   number_o3 = _____(text_o2) 

   # and check if it's correct - leading zeros are ignored in 

that case 

   if cislo_o3 == 2: 

       print('correct_____) 

   else: 

       print('incorrect') 

else: 

   # the input does not contain only digits 

   # convert the string e.g. to lowercase (I could also use 

uppercase) 

   text_o4 = text_o2._____() 

   # compare with the correct answer consisting of lowercase 

letters 

   if text_o4 == '_____': 

       print('correct') 

   else: 

       print('incorrect') 
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14.4 Functions in string(programs) 

⌨ 14.4.1 Comparing the number of digits 

Write a program that, for two given strings, prints the number of digits in them and 
decides which contains more digits. Use the functions from this chapter. 

Input: we have 72 hens 

we have 3 rabbits 

Output: 2 1 string1 

 

Input: we have 72 hens 

we have 3 rabbits and 2 pigs 

Output: 2 2 match 

 

⌨ 14.4.2 Upper and lowercase letters 

Write a program that checks whether two entered strings are the same - it will not 
take their case into consideration, so mama and MaMa represent the same string. 
Also make sure to ignore spaces before and after the entered text. 

Input: Mother 

MOTHER 

Output: match 

 

Input: Father 

Dad 

Output: mismatch 

 

⌨ 14.4.3 Number of letters in the string 

Write a program that, for a entered string, finds the number of individual letters (a-z) 
in it. The user is required to use lowercase letters. If he also enters capital letters or 
numbers, write "error". 

The number of letters used is displayed only if the given letter occurs in the string. 
The list of characters must be in alphabetical order. 

Vstup: mama 

Výstup:  
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a-2 

m-2 

 

Vstup: winter 

Výstup:  

e-1 

i-1 

n-1 

r-1 

t-1 

w-1 
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While loop 

Chapter 15 
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15.1 While 

🕮 15.1.1 

Sometimes when using a loop, we don't know how many times it will need to be 
repeated. However, we can determine the condition until when the loop should be 
repeated. For example: while you are hungry, eat a cookie. 

In such a case, we can ensure the execution of the loop through the while 
command and the condition, the fulfillment of which will ensure the execution of 
the commands in the body of the loop. Its structure is similar to the if statement. 
The difference is that the commands contained in the while loop are repeated until 
the condition is met (evaluated as True). 

while condition: 

   block of commands 

 

📝 15.1.2 

What keyword (statement) defines a loop with a condition at the beginning? 

• while 
• for 
• if 

 

🕮 15.1.3 

The loop works like this: 

1. verifies the validity of the condition 
2. if the condition is met, the block of commands is executed, 
3. execution will return to point 1. 

 

x = 1 

while x < 6: 

    print(x) 

    x += 1 

The output has the form: 

1 

2 
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3 

4 

5 

Note that in the block of commands, it is necessary to change the variable that is 
tested in the condition. If we didn't do that, the condition would be fulfilled all the 
time and the loop would go on endlessly. In our case, we had to increase the value 
of x by 1. 

 

📝 15.1.4 

Write "Hello" 10 times below each other 

 

The task is practically the same as in the case of using the for loop. We can write 
any task that requires repetition of commands through any type of loop, and it is up 
to us which type of loop we choose. 

In this case, the programmer must provide all the operations contained in the for 
structure in separate commands: 

setting the initial value of the control variable, 

• the condition that determines the end of the loop, 
• execution of commands in a loop, 
• increasing the value of the control variable. 

 

i = _____           # control variable initialization 

while i <= _____:  # while the condition is met do 

  print('Ahoj')     # execution of the command 

  i = _____     # increasing the counter value 

• 1 
• i-1 
• -1 
• 10 
• 0 
• i + 1 
• 11 
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📝 15.1.5 

Arrange the code so that the loop outputs the numbers from 0 to n. 

n = int(input('Enter n:')) 

•   print(counter) 
•   counter += 1 
• while counter <= n: 
• counter = 0 

 

📝 15.1.6 

Complete the code so that 5 dots are printed in one line in a row: 

i = 4 

_____ i <= _____:  

  print('.', _____ = '') 

  i = i + 1  

 

🕮 15.1.7 

Using the while loop, write even numbers from the interval from 8 to 24 below 
each other. 

We will print out the contents of the variable whose value will be increased by 2 in 
each step of the cycle. 

We will execute the activity until the value reaches 24. 

number = 8 

while number <= 24: 

   print(number) 

   number = number + 2 

 

We could rewrite the task into a cycle with a known number of repetitions as 
follows: 

for number in range(8,25,2): 

    print(number) 
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📝 15.1.8 

Complete the program so that it prints all numbers divisible by ten that are less 
than the number entered in the input. 

max = int(input('Enter the upper limit: ')) 

number = 0 

_____ number < _____: 

  print(_____)  

  number = number + _____ 

 

🕮 15.1.9 

The while loop is referred to as a safe loop, because it is tested before the action is 
executed. If the condition is not met at the first verification, the loop commands 
may run not even once. For example: 

Print all numbers that lie between two integer limits. 

lower = 10 

upper = 10 

i = lower 

while i < upper : 

   print(i) 

   i = i + 1 

print('end') 

In this case, no number is printed, because the condition is not met during the first 
verification - i (10) is not less than the upper (also 10). 

For other values of the upper and lower limits, of course, the loop can be executed. 

 

📝 15.1.10 

For which pairs of values nothing is printed(that is, the loop does not run)? 

a = int(input()) 

b = int(input()) 

i = a 

while i >= b : 

   print(i) 

   i = i - 1 



 

 

230 

• 5, 8 
• 8, 5 
• 5, 5 
• 8, 8 

 

15.2 Break command 

📝 15.2.1 

Complete the program that finds the number of divisors of the entered number 
and prints them. 

The divisor is the number by which, when we divide the tested number, we get a 
remainder of zero. So it makes sence to examine the numbers from 1 to the entered 
number. 

Let's do a research using a while loop: 

a = _____(input('Enter a number: ')) 

i = _____ 

number = _____ 

_____ i _____ a : 

  if a _____ i _____ 0: 

      print(_____) 

      number = _____ 

  i = i _____ 1 

print('The number of divisors is', _____) 

• <| 
• % 
• number 
• + 
• - 
• i 
• == 
• * 
• 1 
• == 
• <= 
• >= 
• 1 
• 0 
• > 
• number * 2 
• number - 1 
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• while 
• number + 1 
• int 

 

🕮 15.2.2 

Sometimes the algorithm is written in such a way that it is convenient to end the 
loop earlier than it would end in the "natural" way. The break command is used to 
interrupt the loop and continue the execution of commands after the loop. 

It can be used both in the while and in the for loop. 

for i in range(100): 

   if i > 20: 

       print('it is too much for me') 

       break 

   else: 

       print(i) 

print('end') 

The loop prints i values and if it exceeds 20, it ends the loop with the break 
command - execution continues with the command after the loop - print('end'). 

The same entry for the while loop: 

i = 0 

while i < 100: 

   if i > 20: 

       print('it is too much for me') 

       break 

   else: 

       print(i) 

   i = i + 1 

print('end') 

 

📝 15.2.3 

What statement terminates a loop regardless of what stage of execution it is 
currently in and ensures that the program continues after the loop? 
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📝 15.2.4 

Complete the program that determines whether the entered number is a prime 
number. 

It is true that a number is prime if it has only two divisors, namely 1 and the number 
itself. We could solve the problem by counting all its divisors as in the previous 
problem. 

However, we know that a number is not prime as soon as we find the first divisor 
other than 1 or the number itself. Then there is no point in continuing the research, 
because it is useless. 

However, we must remember the information that we have found a divisor so that 
we can write a message to the user at the end of the program based on this 
information. If a divisor is found, we store the value 1 in the variable count and end 
the execution of the loop. This is done by the break command, which definitively 
ends the loop and the program continues with the commands after the loop. 

In case the loop that starts with the value 2 and ends by examining a value 1 less 
than the enetred number reaches the end without finding another divisor, the value 
0 is stored in the variable count. 

n = int(input('Enter a number: ')) 

number = 0 

i = 2                   # the examination will start from 

value 2 

while i _____ n:        # it will run until i < n 

   if n _____ i == 0:   # if n is divisible without a 

remainder, we have a divisor 

      number = 1         # set the count to 1 

      _____         # end the execution of the loop 

   i = i + 1 

 

# here it is continued after the end of the loop or after the 

command _____ 

if number _____ _____: 

   print('it is prime number') 

else: 

   print('it is not prime number') 

• % 
• 0 
• <|= 
• continue 
• 1 
• + 
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• exit 
• stop 
• continue 
• < 
• exit 
• break 
• break 
• stop 
• == 

 

🕮 15.2.5 

However, the program from the previous task could be also written more simply. 
We could write the divisibility condition directly into the loop condition - the cycle 
would ensure the increase of the examined value until the remainder after division 
was zero. This situation will certainly occur and at the latest it will occur if i has the 
value n. 

Based on the value of i, we would decide whether the divisor was found before it 
reached the value of n. 

n = int(input('Enter a number: ')) 

i = 2               # the examination starts from value 2 

while n % i != 0:   # until a divisor is found 

   i = i + 1        # moving on to explore the next issue 

  

if i == n:          # if I got to the number itself, it is a 

prime number 

   print('it is a primenumber') 

else: 

   print('it is not a prime number') 

 

📝 15.2.6 

Fill in the program that detects whether there is a number divisible by 17 in the 
entered interval. 

lower = int(input('enter the lower limit: ')) 

upper = int(input('enter the upper limit: ')) 

i = _____ 

while _____ <= _____: 

   if i _____ 17 == 0: 

       _____ 

   i = i + 1 
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if i > upper:  

   print('_____') 

else: 

   print('_____') 

• lower 
• if 
• lower 
• upper 
• exit 
• while 
• upper 
• break 
• i 
• there is 
• % 
• there is not 
• / 

 

📝 15.2.7 

Check the correctness of the program that detects whether the character 's' is 
present in the entered text string. 

We can verify the existence of the character in the condition of the loop, and then, 
when the character 's' is found, write that we have found it and end the loop. 

ret = input() 

i = 0                     # examination starts from position 0 

while ret[i] != 's':      # until the character is found 

   if ret[i] == 's':      # if the character was found 

      print('i have it')  # inform the user 

      break               # end the loop 

   i = i + 1 

 

Which of the following statements are true? 

• There are no mistakes in the program. 
• The program crashes for strings that do not contain the 's' character. 
• The program is infinite for some strings. 
• The program works flawlessly for words starting with 's'. 
• The program works flawlessly for words ending with 's'. 
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📝 15.2.8 

The problem in the previous program occurs if we try to read a character at a 
position beyond the end of the string. There is no such character and the program 
would terminate with an error. 

The solution is to evaluate two conditions: we add a condition to check whether we 
are not already past the last character: 

ret = input() 

i = 0              

while (i < _____(ret)) _____ (ret[i] _____ 's'):  

   i = i + 1      # move to the next character in the string 

 

if i _____ len(ret): 

   print('i found') 

else: 

   print('was not found') 

If the loop has been completed, we will find out in what way: 

• if i is less than the number of characters in the string, it means that the cycle 
ended before the condition that we are past the last character of the string 
was true - that is, the character 's' was found 

• otherwise, the loop ended if the condition that i < len(ret) was not fulfilled - 
that is, the end of the string was reached and nothing was found. 

• or 
• <|= 
• == 
• and 
• < 
• len 
• != 
• > 
• if 
• >= 
• not 

 

🕮 15.2.9 

When creating a condition in the loop, you should consider that if i has reached the 
value len(ret), then an attempt to read the character ret[i] will end with an error. 

ret = input() 
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i = 0              

while (i < len(ret)) and (ret[i] != 's'):  

   i = i + 1       

 

Therefore, we write the condition by first checking if i < len(ret). 

• If yes, the evaluation of the condition continues. 
• If not, the evaluation of the condition will end, because the result (of two 

conditions that should apply simultaneously) will be False, regardless of the 
result of the second part of the condition - so there will be no reading of a 
character outside the string. 

 

If parts of the condition were reversed, the program would crash whenever it went 
past the last character of the string and tried to compare it to 's'. 

 

📝 15.2.10 

Write a program that detects whether a number entered as a string contains the 
digits 4 or 8. If so, print which one was found first. 

Arrange the conditions correctly and complete the code. 

ret = input() 

i = 0             

while (_____) and (ret[i] != '4') and (_____):  

  i = i + 1 

if i _____ _____: 

   print('was not found') 

else: 

   print('as first was found the digit',_____) 

• ret[i] != '8' 
• <| 
• len(ret) 
• i 
• i < len(ret) 
• == 
• > 
• <|= 
• ret[i-1] 
• ret[i] 
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📝 15.2.11 

And let's try to solve the same problem in another way: 

Write a program that determines whether a number entered as a string contains 
the digits 4 or 8. 

Complete the code: 

ret = input() 

i = 0             

while i < len(ret): 

  if (ret[i] _____ '4') _____ (ret[i] _____ '8'):  

     print('was found', ret[i]) 

     _____ 

  i = i _____ 1 

if i _____ _____(ret): 

   print('was not found') 

 

📝 15.2.12 

Previous programs found only the first occurrence of the searched value. Now let's 
try to find all occurrences. 

Write a program that detects whether a number entered as a string contains the 
digit 5 and prints the positions of all its occurrences. If it does not find any 
occurrence, it informs the user about it. 

In order to have information about whether the value 5 occurred at least once after 
the end of the loop, we use a boolean variable. We set it to False at the beginning 
and change it to True when 5 occurs. After the end of the loop, we will be able to 
identify whether it is necessary to print that it was not found or do nothing (because 
the positions of the occurrence of the number 5 have been printed). 

Complete the code: 

ret = input() 

i = 0     

found = _____ 

while i < len(ret): 

  if ret[i] _____ '5': 

     print('position', i) 

     found = _____ 

  i = i + 1 

if _____ found: 
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   print('was not found') 

 

• false 
• False 
• true 
• or 
• not 
• is 
• True 
• False 
• != 
• == 
• True 

 

15.3 Infinite loop 

🕮 15.3.1 

Although we have mentioned several times that an infinite loop is undesirable for 
program execution, some tasks are easier to write using it and, in a special case, 
jump out of it using the break command. 

The easiest way to write an always true condition is with True (we don't use the 
"calculation" of the condition, but just write the result): 

while True: 

    command 

And the moment we achieve the desired results, we can end the loop. 

while True: 

    command 

    if condition: 

        break 

 

📝 15.3.2 

Complete the condition so that the loop is infinite: 

while _____: 

    command 
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🕮 15.3.3 

An infinite loop is often used when testing the value of an input variable. 

If we want the user to enter a positive integer, we should also check it. In case he 
did not fulfill the request, we ask him again and again and again until the program 
gets the required value. If the user keeps entering a negative value, we can continue 
ad infinitum. 

After entering the correct value, we interrupt the cycle and the program continues 
after the loop. 

while True: 

  n = int (input('Enter a positive value: ')) 

  if n > 0: 

    break 

print('We can continue') 

 

📝 15.3.4 

Complete the program so that it receives a negative value from the user. 

while _____: 

  n = int (input('Enter negative number: ')) 

  if n _____ 0: 

    _____ 

print('Thanks.') 

 

📝 15.3.5 

How many times is the word Python printed? 

i = 1 

while True: 

    print('Python') 

    i += 1 

    if (i > 10): 

        break                

 

🕮 15.3.6 

Of course, we can avoid each use of the break command by adding a suitable 
condition. 
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We can modify the program for obtaining a positive number as follows: 

n = int (input('Enter a positive value: ')) 

while n <= 0: 

   n = int (input('Enter a positive value again: ')) 

print('We can continue') 

We used input loading in two places. 

The cycle is activated only if we first entered an incorrect value. 

Only the programmer's habits and the clarity of the code decide whether to use the 
version with or without the break command. 

 

📝 15.3.7 

Complete the program so that it force the user to enter an even number: 

n = int(input('Enter an even number: ')) 

_____ n _____ 2 == _____: 

   n = _____(input('Enter an even number again: ')) 

print('We can continue') 

 

📝 15.3.8 

Write a program to find the average marks in an arbitrary subject. We will not enter 
the number of marks at the beginning, but we will end the program by entering the 
value 0. 

Since we don't know the number of grades, we need to use a loop that will keep 
being executed until a value of 0 is entered. This value is no longer included in the 
average. 

In order to be able to calculate the average, we also need to know the number of 
grades - we will use a counter. 

print('Zadávaj známky.') 

sum = _____            # set the starting value for the sum 

number = _____         # set the initial value for the number 

while _____:        # use an infinite loop 

 _____ = int(input('Enter the mark: ')) 

 if mark == _____:    # if termination with 0 was entered 

     _____        # stop loading 

 sum = sum + _____  # add the mark 
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 number = number + _____       # increase the number 

print('The average mark is ',sum_____ number) 

 

  

• / 
• sum 
• mark 
• digit 
• 1 
• 0 
• 1 
• break 
• 0 
• number 
• 0 
• 0 
• mark 
• True 
• 1 

 

15.4 While(programs) 

⌨ 15.4.1 Capital letter search 

Write a program that detects as quickly as possible whether there is an uppercase 
letter in the given string and prints the position of its first occurrence. If it does not 
find any occurrence, it informs the user about it. 

input:  

attention OSBD 

output:  

exists: 6 

 

output:  

attention winter is coming 

input:  

does not exist 
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⌨ 15.4.2 Input control 

Write a program that finds the greatest common divisor of two positive numbers. 
Make sure the program keeps asking for the value again if the user enters a non-
positive number. 

input:  

10 

20 

output:  

10 

 

input:  

-10 

-5 

6 

-6 

8 

output:  

2 

 

⌨ 15.4.3 Najvyšší plat 

Write a program that finds the highest value in the salary list of school employees. 
The number of employees willing to disclose their salary is not known at the 
beginning. We end the loading by entering the value 0. 

input:  

1100 

950 

980 

1121 

830 

0 

output:  

1121 

 

⌨ 15.4.4 Tired tourist 

Write a program that, based on the ascents and descents in meters of altitude 
expressed as positive and negative values, determines whether the tourist's 
destination point is higher or lower than the starting point and by how much. The 
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number of ascents and descents is unknown in advance, the list is terminated by 
zero. If there is no height difference between the starting point and the destination 
point, a match is displayed. 

input:  

100 

-50 

30 

-10 

-10 

0 

output:  

higher by 60 

 

input:  

-50 

30 

-10 

-10 

0 

output:  

lower by 40 
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Simple lists 

Chapter 16 
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16.1 Several variables 

🕮 16.1.1 

Python has its own specifics for working with variables. One of them is the ability to 
assign values to multiple variables in one command. 

a, b, c = 10, 20, 30 

This entry assigns to the first variable (a) the first value given after the "=" sign, i.e. 
10, to the second variable (b) the value of 20, etc. 

 

📝 16.1.2 

What is printed after this sequence of commands is executed? 

x, y = 20, 30 

x, y = y, x 

print(x, y) 

• 30 20 
• 20 30 
• 20 20 
• 30 30 
• error 

 

🕮 16.1.3 

It is also possible to set multiple variables to the same value in one line. 

x = y = z = 0 

The assignment goes from right to left, first 0 is assigned to the variable z, then y is 
assigned the value z, and at the end z is assigned the value y. 

 

📝 16.1.4 

What is printed after this sequence of commands is executed? 

a = 10 

b = 20 
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c = 30 

a, b, c = c, a , b - a 

print(a, b, c) 

• 30 10 10 
• 20 30 10 
• 30 20 10 
• 10 20 30 
• 10 10 30 
• 20 10 30  
• 10 30 10 
• 30 20 20 

 

🕮 16.1.5 

When retrieving input from the user, there are frequent situations where we need to 
retrieve more than one value. Loading e.g. of three values (names) could look as 
follows: 

ret1 = input('Enter the 1st name: ') 

ret2 = input('Enter the 2nd name: ') 

ret3 = input('Enter the 3rd name: ') 

However, there is also an option to load all three names at once - by entering them 
in one line. 

Strings have a split() function that can split text into multiple parts based on the 
use of a space. Text 

Ivan Michal Zuzana 

can be split into 3 different values that are put into three different variables 

ret1, ret2, ret3 = 'Ivan Michal Zuzana'.split() 

The entire load would then look like this: 

ret = input('Enter three names separated by a space: ') 

ret1, ret2, ret3 = ret.split() 

Attention, if the string is not divided into the correct number of words, 
the program will crash. 
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📝 16.1.6 

Complete the program code that reads and prints the four input words: 

_____ = input('Enter 4 words separated by a space: ') 

_____,_____,_____,_____ = ret._____() 

print('1st value:',u) 

print('2nd value:',o) 

print('3rd value:',h) 

print('4th value:',m) 

• o 
• ret 
• ret 
• m 
• m 
• h 
• split() 
• split 
• h 
• u 
• u 
• o 

 

🕮 16.1.7 

If our list of first names contained persons with multi-word first names (e.g. Milan 
Rastislav, Adam Ivan, etc.), using a simple split() would be problematic due to the 
large number of spaces. 

For such purposes, the split() function also has a form in which we can enter the 
dividing character. It can be used as follows: 

ret = input('Enter 4 names separated by a comma: ') 

a,b,c,d = ret.split(',') 

 

We then enter the input in the form where individual names or double names are 
separated by commas. Attention, the space after the comma is counted as a 
normal character in this case. 

Adam,Beata Anna,Jozef Francis,Ivan 
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📝 16.1.8 

Complete the code of the program that determines which of the four entered 
words separated by commas at the input has the most characters (assume that 
they have a different number of characters). 

ret = input('Enter 4 words separated by a comma: ') 

a, b, c, d = ret.split_____ 

max = _____ 

if len(b) > len(max):  # if the 2nd word has more characters 

than the current max 

    max = _____            # it becomes the new max 

if len(c) > len(max):  # if the 3rd word has more characters 

than the current max 

    max = _____            # it becomes the new max 

if len(d) > len(max):  # if the 4th word has more characters 

than the current max 

    max = _____            # it becomes the new max 

print(_____) 

 

• c 
• a 
• () 
• d 
• b 
• split() 
• ret 
• c 
• max 
• '' 
• b 
• d 
• (',') 
• a 
• a 

 

16.2 List in a loop 

🕮 16.2.1 

We can also loop through string values. This way we can create a list that we can 
go through. 
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for kind in 'cat', 'dog', 'fish', 'hamster': 

   print('My favourite animal is', kind) 

  

My favourite animal is cat 

My favourite animal is dog 

My favourite animal is fish 

My favourite animal is hamster 

 

📝 16.2.2 

Complete the program so that it prints favorite subjects in the following order: 

informatics 

mathematics 

physics 

chemistry 

 

for _____ _____ '_____', '_____', '_____', '_____': 

    print('My favourite subject is', name) 

• string 
• in 
• name 
• for 
• informatics 
• mathematics 
• split(',') 
• physics 
• split 
• i 
• chemistry 

 

🕮 16.2.3 

Of course, we don't have to print all the values, but we usually process them in the 
body of the loop. 

for animal in 'cat', 'dog', 'fish', 'hamster': 

  if animal == 'dog': 

    print('My favourite animal barks') 

  if animal == 'fish': 

    print('My favourite animal is silent') 
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In this case, only the animal from the list that meets our processing requirements 
will be printed. 

 

📝 16.2.4 

What does the following program print? 

for animal in 'cat', 'dog', 'fish', 'hamster': 

  if len(animal) > 5: 

     print(animal) 

 

🕮 16.2.5 

We will now use the loop's ability to iterate over a list of words and the split() 
function's ability to split the input into multiple (list) variables. 

If we input a list separated by spaces or commas, we can process each value 
separately. The following program reads a line of comma-separated values and 
prints each one. 

list = input('Enter words separated by a comma: ') 

for i in list.split(','): 

   print(i) 

 

📝 16.2.6 

Complete a program that reads a list of words separated by spaces and for each 
one of them prints the number of characters they contain: 

list = input('Enter words separated by a space: ') 

for _____ in list._____: 

   print(word,'-',_____(word)) 

 

16.3 Random numbers 

🕮 16.3.1 

A random number is a useful tool for testing programs or introducing an element of 
randomness to a game or programs. 
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We first need to connect the random number generator to the program - import it. 
We do so by entering: 

import random 

which gives us a library (module) allowing to obtain random values. 

The first basic function in the module is 

random.randrange(end) 

which returns a random integer from the list generated by range(), i.e. in the range 0 
to end -1. 

E.g. 

a = random.randrange(20) 

inserts one random value from the interval 0-19 into the variable a. 

 

📝 16.3.2 

Complete the code so that the program generates a random number from the 
interval <0,15> 

_____ random 

x = _____.randrange(_____) 

print(x) 

 

🕮 16.3.3 

The random module also includes other functions: 

random.randrange(start, end) 

Generates a random value from the interval start .. end-1, e.g. 

random.randrange(-10, 11) 

Generates a random value from -10 to 10. 

random.randrange(start, end, step) 
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Selects a random value from the list generated by the range command(start, end, 
step), e.g. 

random.randrange(-10, 11, 2) 

Generates an even random number in the range -10 to 10. 

 

📝 16.3.4 

Complete the code so that the program generates a random number from the 
interval <10,20> 

_____ random 

x = _____.randrange(_____,_____) 

print(x) 

 

📝 16.3.5 

Complete the code so that the program generates a random number from the 
interval <-25,25> 

import _____ 

x = random._____(_____, _____) 

print(x) 

 

📝 16.3.6 

Complete the code so that the program generates a random number from the 
interval <-30,30> that is divisible by 5. 

import _____ 

x = random._____(_____, _____, _____) 

print(x) 

• 29 
• range 
• 30 
• 10 
• 5 
• random 
• -30 
• -29 
• randrange 
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• 4 
• -31 
• rand 
• 31 

 

🕮 16.3.7 

In case we want to generate decimal (real) values, we need to use: 

random.random() 

which generates a random value from the interval <0.1). 

The second option is 

random.uniform(star, end) 

which generates a random value from the interval <start, end), e.g. 

random.uniform(-5.5, 10) 

will generate a random number from -5.5 to 10, but will never generate the value 10. 

 

📝 16.3.8 

Which values can be printed by the following program? 

import random 

a = random.uniform(-5, 7) 

print(a) 

• -5 
• 0 
• -2.57 
• 4.18 
• -5.2 
• 7 
• 7.1 
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🕮 16.3.9 

Write a program that generates a random number from 0 to 100 and allows the 
user to guess it. After each attempt, it guides him whether the guessed value is 
greater or less than his attempt. 

import random 

searched = random.randrange(0, 101) 

print('I think a number from 0 .. 100') 

In an infinite loop, we can ask for a guess. 

attempt = 0 

while True: 

    guess = int(input('Your guess: ')) 

    attempt += 1 

After entering the guess, we check whether it matches the number you are looking 
for. If so, we print information about a successful guess and end the cycle. 

    if guess == searched: 

        print(f'You got it right at the {pokus}. attempt.') 

        break 

otherwise, we tell the user whether their guess was too high or too low and return to 
the beginning of the loop. 

    else: 

        if guess < searched: 

            print('Try larger.') 

        else: 

            print('Try less.') 

  

📝 16.3.10 

Arrange the code so that the program randomly generates a number from the range 
-10 to 10. 

After generating the number, let the program inform whether the selected number 
was positive or negative. 

When zero is generated, the program ends and reports the number of values 
generated. 

•   elif c < 0: 
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•   attempt += 1 
•   c = random.randint(-10, 10) 
•     print(f'{c} is positive.') 
•   else: 
•   if c > 0: 
• import random 
•     print(f'It took {attempt} generations.') 
•     break   
•     print('The zero was selected, we are done.') 
• while True: 
• attempt = 0 
•     print(f'{c} is negative.') 

 

16.4 Lists and random numbers (programs) 

⌨ 16.4.1 List in line 

The input contains 5 integers separated by a comma (-1000 to 1000). Write a 
program that prints the smallest one of them. 

Input: -10,20,-75,16,8 

Output: -75 

 

⌨ 16.4.2 Searching for a name 

Find how many times the name entered in the input occurs in a comma-separated 
list of names. 

Input: Anna,Beta,Anna,Ivan,Jan,Samuel,Peter,Anna,Jan 

Anna 

Output: 3 

 

⌨ 16.4.3 Highlighting 

Write a program that adjusts the entered text so that all words starting with a 
capital letter are printed in upper case letters. 

Input: dear Andrew, I am writing from Prague. 

Output: dear ANDREW, I am writing from PRAGUE. 
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⌨ 16.4.4 Word mirror 

Write a program that, for the entered text, modifies all the words by rewriting them 
backwards. Attention, not the whole sentence, each word separately. 

Input: Dear Andrew, I am writing from Prague. 

Output: raeD ,werdnA I ma gnitirw morf .eugarP 

 

⌨ 16.4.5 A random number from 0 to 100 interval 

Write a program that generates and prints to the console a random integer from the 
interval <0.100>. For example: 

Output: 42 

 

⌨ 16.4.6 A random number from the -50 to 50 interval  

Generate and print a random integer <-50,50>: 

Output (e.g.): -5 

 

⌨ 16.4.7 A random number from the entered interval 

Generate and print a random integer for the interval specified by a pair of integer 
values on the input separated by a space. Values do not have to be entered in the 
order from smaller to larger. 

Input: 20 80 

Output(e.g.): 61 

 

Input: 22 -68 

Output(e.g.): -3 
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Working with strings 

Chapter 17 
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17.1 Nested loop 

🕮 17.1.1 

We can solve many problems using a single loop, but it is not unusual if the solution 
requires us to use a loop in the body of another loop. We call the inside loop a 
nested loop. 

It has the form: 

for i in range(10): 

   for j in range(5): 

      command 

However, when combining multiple loops with a known number of repetitions, care 
must be taken to ensure that the control variables have different names. 

 

📝 17.1.2 

How do you refer to a loop inside another loop? 

• nested 
• intern 
• integrated 
• hybrid 

 

🕮 17.1.3 

Write a program that prints one character 1 in the first line, two characters 2 in the 
second, and so on until 9. 

1 

22 

333 

4444 

55555 

666666 

7777777 

88888888 

999999999 

Solving the task requires two different loops: 
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• In the first one, we change the number that is being printed. 
• In the second loop, we take this digit and print it. The number of printouts is 

the same as the value that is being printed. 

 

This consideration leads to the design of a pair of loops: 

for i in range(10):  # proceeds from 1 to 9 

  for j in range(i): # this line ensures that the printout is 

repeated i times 

     print(i,end="") # and this printing the value set in the 

first loop without breaking a row 

  print()            # after printing i numbers, breaks a 

row     

 

📝 17.1.4 

Complete the program that draws a square of stars for the entered n. 

n = int(input('enter the parameter: ')) 

for i in range(_____): 

  for j in range(_____): 

     print('*',_____='') 

  _____() 

 

🕮 17.1.5 

Write a program that, for enetred integer values m and n, displays m rows below 
each other, with n circles (o) in each row. 

m = int(input('enter the number of rows: ')) 

n = int(input('enter the number of columns: ')) 

for i in range(m): 

  for j in range(n): 

     print('o', end = '') 

  print() 

The solution returns the desired result, but if we look at it in detail, we find that in 
the inner loop we always execute the same action - we always print the character 
"o" the same number of times. 

This operation could be simplified by preparing the entire line (inserting it into a text 
variable) and then printing it - we would print each line in one step. 
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The modified code would look like this: 

m = int(input('enter the number of rows: ')) 

n = int(input('enter the number of columns: ')) 

# fill the row variable with n characters 

row = '' 

for i in range(n): 

    row = row + 'o' 

# print the entire row m times 

for i in range(m): 

    print(row) 

Loops are independent of each other, we may (or may not) use the same control 
variable. 

In the first case, we execute operations in the loop m x n times, in the second case, 
we repeat the assignment to a variable n times and the printout m times - the 
resulting number of operations is m+n. 

 

📝 17.1.6 

Complete the program so that it creates a triangle from the characters "x" for the 
entered n as efficiently as possible. 

x 

xx 

xxx 

xxxx 

xxxxx 

 

n = int(input('enter the parameter: ')) 

row = _____ 

for i in range(n): 

    row = _____ + '_____'  # add x to the line before the 

statement 

    print(_____)           # always print the content with one 

more 'x' character 
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📝 17.1.7 

What will be stored in the sum variable after the sequence of commands is 
executed? 

sum = 0 

for i in range(1,3): 

    for j in range(1,4): 

        sum = sum + i + j 

print(sum) 

 

📝 17.1.8 

What will be stored in the line variable after the sequence of commands is 
executed? 

row = '' 

for i in range(1,5): 

    row = '' + str(i) 

    for j in range(1,4): 

        row = row + str(j) 

print(row)  

 

17.2 Searching a string 

🕮 17.2.1 

Despite the fact that we know how to work with a specific string character, we 
cannot directly change it. So no type assignment is allowed 

ret  = 'Pokemon' 

ret[0] = 'p' 

The string belongs to the types whose content cannot be changed after 
assignment. They are so-called immutable. 

So if we need to change only some characters in the string, we have to create a new 
one and assign it to the original one, e.g. if in the sentence: 

veta = 'My name is ema little.' 

we need to correct the first and last name, we create a new variable into which we 
copy the surrounding text and correct the two entered characters, e.g.: 
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sentence = 'My name is ema little.' 

sentence1 = sentence[0:11] + 'E' + sentence[12:15] + 'L' + 

sentence[16:] 

sentence = sentence1 

print(sentence) 

 

Alternatively, we don't even have to use another variable, but we can insert the 
result directly into the original variable (sentence): 

sentence = 'My name is ema little.' 

sentence = sentence[0:11] + 'E' + sentence[12:15] + 'L' + 

sentence[16:] 

print(sentence) 

 

📝 17.2.2 

Which operations are allowed to work with the variable ret. 

• ret = 'Hello' 
• p = ret[3] 
• ret[2] = '-' 
• ret[0] = 1 
• pom = ret[1] + ret[4] 
• ret[1] = ret[2] 

 

📝 17.2.3 

Replace the numbers written in words with numbers in the sentence: 

sentence = 'Three horses with two owners were standing by 

house number seven.' 

sentence = '_____' + sentence[_____:_____] + '_____' + 

sentence[_____:_____] + '_____' + sentence[_____:] 

print(sentence) 

• 64 
• 21 
• 3 
• 59 
• 5 
• 2 
• 7 
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• 18 

 

🕮 17.2.4 

The occurrence of a substring in an existing string is verified by the find() function, 
which returns the position at which the searched substring is located. 

text = 'Wolfgang Amadeus Mozart' 

pos = text.find('ga') 

print(pos) 

The pos variable will contain the value 4, because at position 4 the beginning of the 
searched substring was found for the first time. 

If the entered substring does not exist in the string, the value -1 is returned. We can 
use this fact to inform the user. 

text = 'Wolfgang Amadeus Mozart' 

pos = text.find('ba') 

if pos == -1: 

    print('The substring was not found.') 

else: 

    print('The substring starts at position', pos, '.') 

 

📝 17.2.5 

What will be the result of the following entry? 

a = 'Dingo' 

b = 'ing' 

print(b.find(a)) 

 

📝 17.2.6 

What will be the result of the following entry? 

a = 'Dingo' 

b = 'ing' 

print(a.find(b)) 
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🕮 17.2.7 

It is also possible to search the string not from the beginning, but only from the 
specified position using a variation of find() with two parameters, where the second 
one defines the position from which the search should start. 

text = 'Wolfgang Amadeus Mozart' 

pos = text.find('a',10) 

print(pos) 

prints the value 11, which represents the position of the first "a" value from position 
10. 

 

📝 17.2.8 

What does the following program fragment prints: 

text = 'Wolfgang Amadeus Mozart' 

pos = text.find('g',5) 

print(pos) 

 

🕮 17.2.9 

The replace() function is also a useful function, which as a result of its operation 
returns a string in which all occurrences of the first substring are replaced by the 
second substring. The original string remains unchanged. 

It has the form: 

ret = 'it rained for five days again' 

ret2 = ret.replace('five', '5') 

print(ret2) 

The string ret is searched for occurrences of the substring five and replaced with 
the new 5. 

The result is:  

it rained for five days again 

 

📝 17.2.10 

What will be stored in the string ret2 after executing the following commands? 
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ret = 'there is a fly on the wall' 

ret2 = ret.replace('e', 'O') 

 

📝 17.2.11 

Doplň kód tak, aby dával výstup: 

MaLA has ELA, ELA has LALA 

  

ret = 'Mama has Ema, Ema has mama' 

ret2 = ret.replace('_____', '_____') 

print(ret2) 

 

📝 17.2.12 

Complete the correct commands/functions to get the desired result: 

 

- string ret2 should contain 'mama has ema, ema has mama' 

ret = 'Mama ma Emu, Ema ma mamu' 

ret2 = ret._____ 

 

- string ret2 should contain 'MAMA HAS EMA, EMA HAS MAMA' 

ret = 'Mama has Ema, Ema has mama' 

ret2 = ret._____ 

 

17.3 Working with strings (programs) 

⌨ 17.3.1 Sequence of digits 

Write a program that prints to the console the number 1 once on the first line, the 
number 2 twice on the second line, and so on up to 9, the ninth line will have the 
number 9 nine times in a row. 

Output: 

1 
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22 

333 

4444 

55555 

666666 

7777777 

88888888 

999999999 

 

⌨ 17.3.2 A rectangle made of stars 

Write a program that, for entered integer values m and n, will display m lines with n 
stars in each line. 

Input : 2 2 

Output:  

xx 

xx  

 

Input : 2 5 

Output:  

xxxxx 

xxxxx 

 

⌨ 17.3.3 Triangle made of stars 

Write a program that reads the number n from the user on input and displays 1 star 
in the first line, two stars in the second line, three stars in the third line ... , n stars in 
the nth line. 

Input : 6 

Output: 

x 

xx 

xxx 

xxxx 

xxxxx 

xxxxxx 
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Input : 3 

Output: 

x 

xx 

xxx 

 

⌨ 17.3.4 Rectangle frame made of stars 

Write a program that displays m lines with n characters to form a rectangle of stars. 
The inside of the rectangle will be empty, the stars will be only on the perimeter. 

At the beginning of the output, do a delineation, i.e. start the printout on a new line. 
Leave one space at the beginning of the line and one between the stars. 

Input : 5 5 

Output:  

 x x x x x 

 x       x 

 x       x 

 x       x 

 x x x x x 

 

⌨ 17.3.5 Square printout 

Write a program that reads the number n from the input and prints the numbers 
from 1 to n*n so that in each row and in each column there are exactly n numbers 
that together form a square. 

Reserve four spaces for printing each integer variable. 

Input : 5 

Output: 

   1   2   3   4   5 

   6   7   8   9  10 

  11  12  13  14  15 

  16  17  18  19  20 

  21  22  23  24  25 

 

⌨ 17.3.6 Compression 

Write a program that compresses an entered string of characters. It prints the 
character first and then the number of occurrences of consecutive characters. 
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The input is a non-empty string of characters. A list of pairs is printed on the output: 
a character and a number representing the length of the sequence of its 
occurrences separated by a colon. 

Input : 122333444455555444 

Output: 1:1 2:2 3:3 4:4 5:5 4:3 

 

Input : aaaaabbbbbbb  ooo 

Output: a:5 b:7  :2 o:3 

 

⌨ 17.3.7 Numbers to text 

Write a program that replaces all single-digit numbers in a text with a word. 

Input : I have 1 tent. 

Output: I have one tent. 

 

Input : Divide it by 5. 

Output: Divide it by five. 

 

Input : 1 and 2. 

Output: One and two. 

ale: 

Input : Divide it by 15. 

Output: Divide it by 15. 

Input : Ta3 is not supposed to be modified. 

Output: Ta3 is not supposed to be modified. 

 

⌨ 17.3.8 Cancellation of diacritics 

Write a program that hides all numerical values in the text with the digit 0. 

Input : I have 1 tent. 

Output: I have 0 tent. 
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Input : Divide it by 5. 

Output: Divide it by 0. 

 

⌨ 17.3.9 The most important word 

For the entered text, find out which word appears in it the most times. If there are 
more such words, write only the one that is closest to the beginning of the text. Pay 
attention to characters such as periods and commas, which can distort the result. 
Pay attention to the case of the letters. 

Input : Ivan is at home. Ivan bought a new cat. Ivan, be 

careful. 

Output: ivan: 3x 

 

Input : Divide it by 5. 

Output: divide: 1x 
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