

Python - introduction

Published on

Work in progress version

Erasmus+ FITPED-AI

Future IT Professionals Education in Artificial Intelligence

Project 2021-1-SK01-KA220-HED-000032095

The European Commission support for the production of this publication does not
constitute an endorsement of the contents which reflects the views only of the authors,
and the Commission cannot be held responsible for any use which may be made of
the information contained therein.

Licence (licence type: Attribution-Non-commercial-No Derivative Works) and may be
used by third parties as long as licensing conditions are observed. Any materials
published under the terms of a CC Licence are clearly identified as such.

All trademarks and brand names mentioned in this publication and all trademarks and
brand names mentioned that may be the intellectual property of third parties are
unconditionally subject to the provisions contained within the relevant law governing
trademarks and other related signs. The mere mention of a trademark or brand name
does not imply that such a trademark or brand name is not protected by the rights of
third parties.

© 2023 Constantine the Philosopher University in Nitra

TABLE OF CONTENTS

1 Python language ..7

1.1 Python language ...8

1.2 Development environment on the computer .. 10

2 Output command ... 17

2.1 Print command - print() ... 18

2.2 Simple calculations ... 22

2.3 Programmer's comments ... 25

2.4 My first programs ... 27

3 Variables ... 28

3.1 Variable .. 29

3.2 Operations with variables .. 33

3.3 Variables in expressions .. 37

3.4 Output formatting ... 41

4 Input command .. 47

4.1 Input command ... 48

4.2 Not a sum like a sum ... 50

4.3 Input(programs) .. 55

5 Conditional statement .. 61

5.1 Conditional statement ... 62

5.2 Taks with a condition .. 67

5.3 Multiple conditional statement .. 71

6 Loop .. 79

6.1 Commands repetition .. 80

6.2 Enumerated values .. 83

6.3 Generated range .. 89

6.4 Stepping in range().. 91

7 Operations in a loop ... 97

7.1 Sum in the loop ... 98

7.2 Product in the loop .. 103

7.3 Data loading ... 107

7.4 Loop (programs) ... 111

8 Data types .. 113

8.1 Data types ... 114

8.2 Conversion.. 117

9 Numeric data types .. 120

9.1 Numeric variables ... 121

9.2 Abbreviated entry ... 124

9.3 Integers(programs) .. 128

10 Decimal numbers ... 132

10.1 Decimal numbers .. 133

10.2 Functions for working with numbers ... 136

10.3 Nesting functions .. 140

10.4 Decimal numbers(programs) ... 142

11 Boolean expressions .. 146

11.1 Boolean expression ... 147

11.2 Using expressions ... 151

11.3 Compound conditions ... 153

11.4 Evaluation of the compound expressions ... 159

11.5 Boolean expressions(programs)... 163

12 Strings ... 167

12.1 String data type ... 168

12.2 String multiplication ... 172

12.3 Characters in string ... 174

12.4 Characters iteration ... 178

12.5 Typical tasks ... 180

12.6 Strings(programs) ... 184

13 Characters and special outputs ... 187

13.1 Characters in ASCII .. 188

13.2 Comparison... 192

13.3 Numbers as a strings ... 194

13.4 Special characters ... 197

13.5 Special printouts ... 202

13.6 Working with characters(programs) .. 206

14 Slices and basic functions .. 210

14.1 Slices .. 211

14.2 Negative indexes ... 214

14.3 Basic functions ... 217

14.4 Functions in string(programs) ... 223

15 While loop ... 225

15.1 While .. 226

15.2 Break command .. 230

15.3 Infinite loop .. 238

15.4 While(programs) ... 241

16 Simple lists .. 244

16.1 Several variables ... 245

16.2 List in a loop ... 248

16.3 Random numbers .. 250

16.4 Lists and random numbers (programs) .. 255

17 Working with strings ... 257

17.1 Nested loop ... 258

17.2 Searching a string.. 261

17.3 Working with strings (programs)... 265

7

Python language

Chapter 1

8

1.1 Python language

🕮 1.1.1

1989 is considered to be the year of the birth of the Python language. It was
introduced by Guido van Rossum, who for many years played a decisive role in
deciding Pythons direction (he gave up leadership in 2018).

Python is a high-level language, meaning it uses selected natural (English) language
words to express commands. Its keywords, commands and control structures were
designed to match the user's mindset on the one hand and the requirements of an
algorithmic language on the other.

The translation of commands to a lower level that the computer understands is
realized only when the program is started.

📝 1.1.2

Writing a program in Python consists of writing commands in the English language.

• Yes
• No

🕮 1.1.3

Python is an interpreted programming language. We cannot usually run the
program we write in it by double-clicking on the icon, but we need a translator -
interpreter to run it. The interpreter evaluates and executes commands step by
step, line by line, command by command.

The interpreter is part of the development environment in every basic installation.
With interpreted source code, we have to remember that running a program doesn't
mean it's error-free, just that they haven't been discovered yet.

Errors appear only when the interpreter comes to a line of code with an error
notation. Therefore, it may happen that the program you create will be functional at
the beginning, but an error and an error message will appear only during the
program's execution.

9

📝 1.1.4

Can a program written in Python be executed even if there are errors in it?

• Yes
• No

🕮 1.1.5

The Python language allows you to write cross-platform applications, which means
that the same program code can be run on portable devices, home computers
(regardless of the operating system), supercomputers, or even various hardware
toys or microcomputers.

Thanks to this, we only need to learn the language once and we can create
applications for practically every type of device.

📝 1.1.6

What types of devices can Python be used on?

• microcomputers
• supercomputers
• smartphones
• personal computers
• laptops

🕮 1.1.7

When writing the source code, it is necessary to remember that Python is a so-
called case sensitive, that is, it is necessary to distinguish between upper and lower
case letters. A language interpreter would evaluate the words

Command, command, COMMAND

or other versions of the entry as different entries.

📝 1.1.8

Select for command

10

Print

options that will certainly perform the same operation.

• Print
• print
• PRINT
• PrinT

📝 1.1.9

Choose the correct statements about Python.

• A program written in Python cannot run on different platforms.
• A program written in Python does not pre-find all the errors in the code

before it runs.
• Python is case sensitive in source code.
• Python does not have a built-in development environment, so we need to

install an external application additionally.

1.2 Development environment on the computer

🕮 1.2.1

As part of the course, we will not need any additional installations or settings, the
web browser will take care of everything. We will be using Python version 3.

However, considering that our goal is to learn to write programs in Python, it would
be convenient to install a simple development environment on your computer that
will allow you to test the operation and outputs of the programs.

The current version of Python is available at http://python.org.

To work in Python on a local computer, it is necessary to select and start one of the
programming environments (shells), for example the IDLE environment, which
contains a set of tools to facilitate writing and running programs.

11

🕮 1.2.2

After installation, we find the Idle program in the system and start it. Usually, the
link to it includes the information that it is Idle Python.

🕮 1.2.3

After starting, a simple window will appear with information about the running
environment, which includes a menu that allows you to create and run programs.

12

An open window provides access to the Python interpreter where code can be
entered and executed directly, but this method is not used when writing longer
programs.

Example of typing commands into the command line.

>>>

Type the following command and press Enter.

print("Welcome to the world of Python")

Pressing Enter created a Python program that displays the greeting "Welcome to
the world of Python".

The print command ensures that the text is printed on the screen.

🕮 1.2.4

As a rule, we save the programs we create in separate files.

To create a new file, we use the command in the menu File -> New File by default.

13

This command will create an empty file into which we can write a program that can
be run later.

🕮 1.2.5

Let's start with a very simple program in which we print some text using the print()
command.

We put the text we want to print between quotation marks or apostrophes and write
it in parentheses.

Our first program might look like this:

print("Hi!")

print("I am Python")

14

🕮 1.2.6

The program must be saved before running. We can do this manually, or the
environment will force us to do it automatically at the first start.

The option File -> Save is used for saving.

15

🕮 1.2.7

We start the program via the command Run -> Run module or by pressing the F5
key.

After the first save (or entering the name of the file with the program), the program
is saved automatically before starting.

🕮 1.2.8

We can see the result of running the program in the main window.

First, information about the start of the program is displayed (with the name under
which we saved it), and then the program starts

RESTART + program name

and then it executes the program's commands - in our case, it prints the two texts
that we assigned to it.

16

The >> sign, which appears under the program output after all commands have
been executed, indicates that the program has finished its activity.

17

Output command

Chapter 2

18

2.1 Print command - print()

🕮 2.1.1

The print() command is used to print text or for executing a simple calculation.

We enter the text that we want to print in brackets and enclose it in quotation
marks.

print("Hello world!")

The command prints on the screen

Hello world!

In the case of calculation, we write "example input" in brackets:

print(16 + 5)

and the programming language processes the request by printing the result:

21

📝 2.1.2

What does the following command print?

print("Hello.")

• Hello.
• "Hello."
• Hello
• ("Hello.")

📝 2.1.3

Complete the program that prints the text Python is great.

_____("_____ _____ _____.")

• Python
• great

19

• print
• is
• English

🕮 2.1.4

When using the print() command, a new line is set for further output after the text in
quotes is printed. Therefore, the next print() command always prints its text on a
new line.

For example, a sequence of commands

print("Hello world!")

print("I am a programmer.")

prints two independent texts below each other.

Hello world!

I am a programmer.

📝 2.1.5

Arrange the commands in the program so that the output has the following form.

Hello.

I am Priscilla.

I believe,

I will teach you

TO PROGRAM

• print("TO PROGRAM")
• print("I will teach you")
• print("Hello.")
• print("I am Priscilla.")
• print("I believe,")

🕮 2.1.6

To display the output with multiple values in one line, you need to separate the
values with a comma.

20

print("Hello world!", "I am a programmer.")

The sequence of commands written in this way prints two independent texts in one
line one after the other. A space will be automatically inserted between the texts.

Heloo world! I am a programmer.

📝 2.1.7

Complete the print() command so that the printed texts are put in one line:

Hello. Today is a beautiful day. The sun is shining.

Program:

print("Hello."_____ "Today is a beautiful day."_____ "The sun

is shining.")

📝 2.1.8

Complete the program so that it prints the text Happiness will come on Tuesday.

__

• ,
• ,
• (
• .
• .
• ,
•)
• "will come"
• ;
• ;
• .
• Wednesday
• ;
• "Happiness"
• "on"
• print
• "Tuesday"

21

🕮 2.1.9

Text in quotation marks, or any sequence of characters or numbers that we will
treat as written text (not a number) is referred to as a string in the programming
language.

The easiest way to identify a string is by placing it between enclosing characters,
quotation marks ("") or apostrophes ('').

📝 2.1.10

Which statements are true?

• the string represents a sequence of characters enclosed by e.g. quotation
marks

• "mum has emma" is a string
• 603 is a string
• 2 is a string

🕮 2.1.11

Python supports two ways of entering strings - enclosing them with quotation
marks " or apostrophes '.

print("Hello world!")

print('Hello world!')

What is it good for?

If we decided to print the text that contains quotation marks, for example:

Ja som "programátor".

then we would have a problem, because the entry

print("I am "a programmer".")

22

would be invalid. Python would only evaluate the text "I am" as the end of the string
and analyze the rest as a new string and look for, for example, a comma as a
separator.

The solution is to use apostrophes - the text that is to be printed starts with an
apostrophe, and unless Python finds a closing apostrophe, it prints the content as
entered.

print('I am "a programmer".')

The opposite version, where we use an apostrophe inside the string, is also
possible.

print("I am 'a programmer'.")

📝 2.1.12

Which of the codes are written incorrectly?

• print("I am "Peter"!")
• print("I am 'Peter"!')
• print("I am 'Peter'!")
• print('I am "Peter"!')

📝 2.1.13

Complete the correct combinations of quotation marks or apostrophes:

print("I am _____very clever'. I hit myself in the forehead

with a hammer._____)

print('In direct speech, sentences are enclosed by a sign

__________);

2.2 Simple calculations

🕮 2.2.1

The print() command provides us with versatile functionality. If we use it without
content, it will print, or skip an empty line.

Napr.

23

print('Hello')

print()

print('Let's count...')

vypíše:

Hello

--- nothing is here - just an empty line ---

Let's count...

čiže:

Hello

Let's count...

📝 2.2.2

Arrange the lines so that the output looks like this:

Hello,

The print command can be used for a variety of things:

printing a text

mathematical calculation

inserting empty lines

• print('printing a text')
• print()
• print('mathematical calculation')
• print('inserting empty lines')
• print('Hello,')
• print('The print command can be used for a variety of things::')
• print()

🕮 2.2.3

The print command can be used not only for text output, but it can also execute
various calculations, e.g.

print(16+7);

first finds the result of the calculation in parentheses and then prints it.

24

We enter the calculation without quotation marks, on the basis of which the system
knows that it is supposed to work with the contents of the brackets as with
numbers and we don't just want to print it in the same form as it is in quotation
marks.

For the entry

print("16+7");

the result would be identical to the text in quotation marks:

16+7

📝 2.2.4

What does the following command print?

print(22+17)

📝 2.2.5

What does the following command print?

print("18+9")

📝 2.2.6

What does the following command print?

print(22 + 17 + 3)

🕮 2.2.7

The basic mathematical operations we use in expressions are

• + for addition, e.g. 10 + 20 (we already know that)
• - for subtraction, e.g. 20 - 8,
• * for multiplication, e.g. 5 * 8, the multiplication sign is represented by an

asterisk.

25

The same rules apply to the use of parentheses in expressions as in mathematics,
i.e. calculation in parentheses takes precedence over multiplication and division,
and these take precedence over addition and subtraction.

Therefore:

print(1 + (4 - 1) * 3 + 2 * 8)

is calculated:

• first we find the result of the calculation in parentheses and multiply it by the
value 3 - calculations in parentheses take precedence,

• then we multiply 2 and 8,
• finally, we add the obtained values.

So the result is 26.

📝 2.2.8

What does the following command print?

print(22 - 17 + 3)

📝 2.2.9

What does the following command print?

print(3 * 2 - 2)

2.3 Programmer's comments

🕮 2.3.1

In programs, we often need to note something down, explain, write a note, organize
thoughts or add comments for later understanding, or for another user or
programmer. Such text is not intended for the program interpreter and must be
ignored, the code will not be executed, as it will only serve as a comment to the
rest of the code.

26

We define the information that the text is supposed to be considered a comment
with the sign #.

The text that is listed after this character in the given line is ignored - if the #
character is listed at the beginning of the line, the entire line is logically ignored.
The informal rule is that there is a space after the # sign.

E.g.

a line for the program output follows

print('Hello world.')

or

print('Hello world.') # this line printed a greeting

print('You are so nice today.') # this line tried to flatter

me

📝 2.3.2

Add characters for comments to the code:

_____ this program will print important informations

print('Attention.')

print('Hello world.') _____ first important information

print('You are so nice today.') _____ second important

information

🕮 2.3.3

Using the comment character, we can only make a one-line comment. If we want to
comment several lines, we must repeat the character in each line.

this is the first line of the comment

this is the second line of the comment

The second type of comments in Python are block comments, which can contain
several lines of code. Such a comment begins and ends with the character """ or '''.

"""This is a block comment

 it can contain several lines."""

27

'''This is also a block comment

 it can also contain several lines.'''

📝 2.3.4

What character is used to insert a multiline comment?

• '''
• #
• //

2.4 My first programs

⌨ 2.4.1 Prvý výpis

Create a program that prints the following text

I use the print command.

⌨ 2.4.2 Trojuholník

Write a program that creates the following triangle from the "o" characters:

o

oo

ooo

oooo

⌨ 2.4.3 Adam a Eva

Create a program that prints the text:

I am 'Adam'. Nice to meet you "Eva".

28

Variables

Chapter 3

29

3.1 Variable

🕮 3.1.1

In the first chapter, we directly wrote out information in the form of texts. We didn't
remember any information, so we couldn't work with it in several parts of the
program.

If we want to remember the value for later or multiple use, we need to use the so-
called variables.

Variables represent a separate place in computer memory where some value can
be remembered for later use. We can use one or a large number of variables in the
program. In order to distinguish between them, each variable must have its own
unique name set by the programmer.

The name of the variable can be practically arbitrary, it is necessary to observe only
a few rules, which we will mention later.

Variable values can change during program execution.

📝 3.1.2

Is the following statement true?

A variable in a program can have any name that is determined by the programmer
based on the rules defined in the given programming language.

• Yes
• No

🕮 3.1.3

A variable is created by executing an assignment command the moment we first
insert a value into it. An assignment command consists of a variable name on the
left side, the "=" operator, and a value (or a calculation that yields a value) on the
right side.

Do premenných budeme spočiatku vkladať číslo alebo text.

n = 10

name = 'python'

30

How will it look in the computer? Executing the command creates a new variable
based on the name entered on the left side and inserts (assigns) the value entered
on the right side into it.

So the name of the variable is a kind of reference to a specific value. In Python, it is
not necessary to indicate in advance whether we will store a number, characters, or
a sequence of characters - strings. Python takes care of setting the variable
correctly automatically. A variable cannot exist without a value.

The Python language interpreter does not care which of the following notations we
use

n = 10

n=10

n= 10

spaces are simply ignored.

However, there are rules for formal arrangement of the source code
(PEP8, https://www.python.org/dev/peps/pep-0008/), which prefer
notation where there is one space on either side of the assignment
statement.

📝 3.1.4

Complete the program so that the value 25 is inserted into the temperature
variable.

temperature _____ 25

📝 3.1.5

Is the following statement true?

In the assignment command, the value located on the right is stored in the variable
with the name on the left. The parts of the assignment statement are joined by the
"=" sign.

• True
• False

https://www.python.org/dev/peps/pep-0008/

31

🕮 3.1.6

The name of the variable can be anything, if we follow a few rules for naming
variables:

The first character of the name must be:

• Alphabet letter (lowercase or uppercase). Letters from the alphabet of
different languages can also be used (but this is not recommended).

• The underscore character "_".

The rest of the variable name can consist of letters, underscore "_" and numbers.

Allowed variable names are e.g.

number

_number

Number

Number_1

number_Second

Unallowed variable names are e.g.

4pieces

#number

According to the PEP8 rules, the recommendation for variable names
is to use lowercase letters and the underscore character.

📝 3.1.7

Can the word 1class be a variable name?

• Yes
• No

🕮 3.1.8

In variable names, the compiler distinguishes between lower and uppercase letters,
therefore the variables myvariable and Myvariable are two different variables.

32

📝 3.1.9

Are the letters used in variable names case sensitive in Python? If not, the variable
"NUMBER" and "number" represent the same variable.

• The variable name is case sensitive.
• The variable name is not case sensitive.

🕮 3.1.10

Variable names cannot be the same as Python keywords.

The list of keywords is as follows:

In the case of incorrect use of the variable name, the translator reacts e.g. with the
following error:

>>> True = 3

SyntaxError: you cannot assign a keyword

📝 3.1.11

Which of the names can be used as a variable name?

• _4num
• num
• num4
• n_u_m
• #num
• 5num

33

• print
• !warning

3.2 Operations with variables

🕮 3.2.1

We already know how to store a value in a variable. We can, of course, also look at
the value stored in the variable.

We will use the well-known print() command, which, in addition to printing the text
in apostrophes or quotation marks, can also print the contents of the variable. We
just need to put its name in parentheses.

print(variable)

We do not enclose the variable name in quotes or apostrophes. Based on the use of
these characters, the translator knows whether to print the content that is in the
variable or the text that we enclosed in quotes.

temperature = 33

print(temperature) # prints 33 - the value that is stored in

the temperature variable

print("temperature") # prints the text temperature

📝 3.2.2

Complete the program so that it prints the value of the variable v.

v = 5

_____(_____)

• print
• "v"
• print:
• v=
• v

34

🕮 3.2.3

We usually don't use variables to just read and print a value, but we can also store
the result of a calculation in them. The notation of a calculation is referred to as an
expression.

For example in the program

x = 10 + 20 - 3 * 7

a common mathematical expression is entered, which is evaluated from left to
right, observing the priority of mathematical operations, where the product (*) takes
precedence over the sum (+) and the difference (-).

In an expression, like in mathematics, parentheses take precedence during
evaluation. For example, in the command

x = 10 + (20 – 3) * 7

the difference is evaluated first, then the product and finally the sum. * takes
precedence over + and -.

We can print the result stored in the x variable

print(x)

The difference between directly printing the result of the calculation using

print(10 + 20 - 3 * 7)

and saving it to a variable is that we only see the result when it is printed, and if it is
saved to a variable, we can use it later.

⌨ 3.2.4

Write a program that stores the result of the following mathematical operation in a
variable

5 + 48 + 3 * 11 - 85

and subsequently prints its content using the print command.

35

📝 3.2.5

What is printed after the execution of the following sequence of commands?

c = 15 - 8 * 3

print(c)

📝 3.2.6

What is printed after the execution of the following sequence of commands?

a = (10 - 7) * 2 + 4 * 3 - (7 - 2)

print(a)

🕮 3.2.7

In addition to the expression consisting only of numerical values (e.g. 5 * 7 + 3), we
can also use variables in the expression on the right side.

For example in the program:

x = 10

y = 20

z = x + y # values 10 + 20 are used instead of variable

names

we first insert values into the x and y variables.

Subsequently, the calculation will take place based on the expression x + y, where
instead of the variables, their values are used - that is, we perform the sum of the
values that are stored in the variables x and y, i.e. 10 + 20.

Finally, the result is inserted into the variable whose name is given on the left side,
i.e. variable z.

Variables listed to the right of the assignment symbol are always replaced by the
value they contain during the calculation and their contents are not changed by this
use.

z = x + y

36

Before the assignment itself, the right side of the assignment command is always
evaluated first, where:

• x is replaced by the current value of the variable (read from the
corresponding memory location),

• the current value in the variable y is added to it,
• the result is stored in the new variable z.

And finally, we can print the result

print(z)

📝 3.2.8

What is printed after the execution of the following sequence of commands?

a = 10

b = 25

c = a + b

print(c)

⌨ 3.2.9 Sum of variables

Write a program that:

• creates a variable a and assigns the value 10 to the variable a
• creates a variable b and assigns the value 17 to the variable b
• print the sum of these two variables

⌨ 3.2.10

Write a program that:

• creates a variable a and assigns the value 5 to the variable a
• creates a variable b and assigns the value 4 to the variable b
• creates a variable c and assigns it the product of the variables a and b
• prints the contents of the variable c

file1.py
#!/usr/local/bin/python

37

create a variable a and assign the value 5 to it

create a variable b and assign the value 4 to it

create a variable c and assign the product a, b to it

print the contents of the variable c

3.3 Variables in expressions

🕮 3.3.1

We know that if we use the name of the variable somewhere other than on the left
side of the assignment expression, then the value that the variable contains is put
in its place. However, we can freely combine directly entered values and variables in
expressions, e.g.:

amount = 100

new_amount = amount - 20

The value 80 will be stored in the new_amount variable after the commands are
executed.

📝 3.3.2

What value will be stored in the variable x after the execution of the following
commands?

a = 10

z = 15

x = a + 15 + z

• 40
• 30
• 15
• 0

38

📝 3.3.3

What value will be stored in the variable c after the calculation is executed?

a = 2

b = 3

c = 2 * (a + b) - a * 3 + b

• 7
• 18
• 1
• 10

🕮 3.3.4

We can often encounter an entry where the name of the same variable appears on
both sides of the assignment command.

poc = 3

print(poc)

poc = poc + 1

print(poc)

The calculation procedure is the same as in the previous cases. The right-hand side
of the assignment commandis evaluated first:

• the current value of the poc variable is read,
• the value 1 is added to it,
• the result of the expression is then stored in the poc variable, rewriting its

original value.

So the value 3 is printed first, it changes and the value 4 is printed in the second
printout.

📝 3.3.5

Arrange the assignment command so that the program prints 5 and 8 below each
other.

39

a = 1

b = 2

• print(a)
• print(b)
• b = 2 * a + b
• a = b - a
• a = a + b

🕮 3.3.6

Just as we could execute the calculation when printing values, we can also execute
it with variables and send not only the values of the variables in the print command,
but also the results of the operations to the output.

Therefore instead of:

a = 15

b = 10

c = a + b

print(c)

we can omit the calculation of the variable c and directly print the sum of the
contents of the two variables.

a = 15

b = 10

print(a+b)

📝 3.3.7

What does the following program print?

a = 3

b = 4

c = 5

print(a + b * c)

⌨ 3.3.8

Write a program that:

40

• creates a variable a and assigns the value 15 to the variable a,
• creates a variable b and assigns the value 40 to the variable b,
• creates a variable c and assigns it the difference of the variables a and b,
• prints the contents of variable c,
• creates a variable d and assigns to it the difference of the product of a and b

with the contents of the variable c
• prints the contents of variable d,
• prints the sum of variables c and d.

file1.py
#!/usr/local/bin/python

create a variable a and assign the value 15 to it

create a variable b and assign the value 40 to it

create variable c and assign it the difference of variables

a and b

print the contents of the variable c

create a variable d and assign to it the difference of the

product of a and b with the contents of the variable c

print the contents of the variable d

print the sum of the variables c and d

⌨ 3.3.9

Write a program that:

• creates a variable a and assigns it 333,
• creates a variable b and assigns it a value 203 smaller - use the calculation,
• prints the value of b,
• creates a variable c and assigns the product of a and b to it,
• creates a variable first and assigns it the value c,
• changes the contents of the variable first by multiplying it by two (puts its

double into the variable first),
• creates a variable second and assigns it the value of the variable first
• changes the content of the variable second by subtracting the product of a

and b from its original content,
• prints the difference of the variables first and second.

41

file1.py
#!/usr/local/bin/python

create variable a and assign it 333,

create a variable b and assign it a value 203 smaller - use

the calculation,

print the value of b,

create a variable c and assign to it the product of a and b,

create the variable first and assign it the value c,

change the content of variable first by multiplying it by

two (puts double of it into variable first),

create a variable second and assign it the value of the

variable first

change the content of the variable second by subtracting the

product of a and b from its original content,

print the difference of the first and second variables

3.4 Output formatting

🕮 3.4.1

If we want to print the values of several variables, it is possible to print them in one
command.

x = 10

y = 20

z = x + y

print(x, y, z)

Prints

10 20 30

42

while the space is filled automatically with the print command.

📝 3.4.2

What does the following program print?

a = 15

b = 10

print(a, b, a * b - a)

• 15 10 135
• 135
• 15, 10, 135
• 10, 15, 135

📝 3.4.3

Variables a, b have set initial values. What is printed after the sequence of
commands is executed?

a = 10

b = 5

a = a + b

b = a - b

a = a - b

print(a, b)

• 5 5
• 0 5
• 5 10
• 10 5

🕮 3.4.4

Let's imagine a program

x = 10

y = 20

print(x, y, x + y)

43

whose output takes the form

10 20 30

However, such output is very brief and the sequence of numbers in the printout may
be unclear to the user. Therefore, it is advisable to combine the printout of variables
with descriptive texts that explain the numbers in more detail, e.g.

x = 25

print('The value of the variable x is', x)

prints:

The value of the variable x is 25

Note that the variable x mentioned in apostrophes is an ordinary string of
characters, so no value is substituted for it. The value is only inserted into the
stand-alone variable name specified as the second parameter of the print function.

📝 3.4.5

What does the following program print?

a = 15

b = 10

print('The result of the sum of a and b is', a + b)

• The result of the sum of a and b is 25
• The result of the sum of a and b is25
• The result of the sum of 10 and 15 is 25
• The result of the sum of 10 10 15 is 25

🕮 3.4.6

If we want to print several variables in combination with several static texts, we
must separate each part of the output with a comma, e.g.:

44

x = 10

y = 20

z = x + y

print(x, '+', y, '=', z)

The result will be as expected

10 + 20 = 30

When constructing the output, do not forget that there should be a space between
the individual parts of the printout - this is added automatically in the printout
thanks to the rules defined for the print command.

📝 3.4.7

Complete the code correctly so that we receive the exact required out.

j = 25

k = 12

print(_____, '__________, __________ '=', _____ - _____)

The required output is

25 - 12 = 13

• j
• k
• '
• -
• j
• k
• k
• j
• +
• ,

📝 3.4.8

45

Choose the correct statement.

• A variable in Python can hold any value, but once it is assigned it must not
change.

• A variable is created after the program is started and is valid throughout the
entire program's run.

• A variable in Python is created after assigning a value to it, and we can use
its value repeatedly in the following part of the program.

⌨ 3.4.9

Write a program that:

• creates a variable a and assigns the value 10 to the variable a,
• creates a variable b and assigns the value 20 to the variable b,
• prints the product of the variables a and b in the form:

The product of 10 and 20 is 200

file1.py
#!/usr/local/bin/python

create a variable a and assign the value 10 to it

create a variable b and assign it a value of 20

print the product of a and b in the form "The product of 10

and 20 is 200"

⌨ 3.4.10

Write a program that:

• creates a variable a and assigns the value 37 to the variable a
• creates a variable b and assigns the value 26 to the variable b,
• prints the results of operations with variables in the form:

súčet: 37 + 26 = 63

rozdiel: 37 - 26 = 11

súčin: 37 * 26 = 962

file1.py

46

#!/usr/local/bin/python

create a variable a and assign the value 37 to it

create a variable b and assign the value 26 to it

provide a printout for the sum

provide a printout for the difference

provide a printout for the product

47

Input command

Chapter 4

48

4.1 Input command

🕮 4.1.1

We usually expect programs to be able to solve the problem for different values.

If we had a program that could only add the values 230 and 180, then instead of
writing it, it would be enough to use a calculator or just the knowledge from
elementary school.

The purpose of the program is to be able to perform the same operation or
sequence of operations with arbitrary values. These must somehow get into the
program without us having to write them directly into the code. We refer to them as
input values, and in order for the program to work with them, it needs to recieve
them from the user and store them in variables.

Operations that provide the loading of values are referred to as input operations.
Initially, it involves entering the desired values from the keyboard and reading them
by the program.

📝 4.1.2

What are the commands that ensure the loading of values from the user to the
program called?

• input
• output
• ongoing

🕮 4.1.3

So far, we have been working with variables that we have previously set to some
specific values. If we wanted to change the inputs, we needed to rewrite the
program. However, we cannot expect such an activity from the user of the program,
and we must teach the program to read input values from the user.

The input() command is used to retrieve data from user input. The command reads
the data entered by the keyboard and confirmed by Enter and returns it in the form
of a text string. The value returned by the input() command can then be stored in a
variable.

The entire entry then has the form:

49

data = input()

Before stopping the program and waiting for the input, it is usually necessary to
inform the user about what we actually expect at the input, e.g.:

print('Enter a name: ')

name = input()

Subsequently, we can work with such a variable.

📝 4.1.4

Which of the entries for data input is correct if we want to insert the entered data
into the variable a?

• input(a)
• a = input()
• input() = a

🕮 4.1.5

Instructions for the user can also be entered in the parentheses of the input()
command.

 name = input('Enter a name: ')

 surname = input('Enter a surname: ')

We can print the variables loaded using the input() command in the same way as
before using the print() command.

print('Hello', name, surname)

Prints the text according to the entered name and surname, e.g.:

Hello Joseph Carrot

50

📝 4.1.6

Complete the program so that it reads the name and surname and outputs:

Hello, your name is Ferko Carrot.

name = _____('Enter a name: ')

surname = _____('Enter a surname: ')

print('Hello, your name is', _____, _____)

⌨ 4.1.7

Complete the program so that it reads the name and age and outputs:

Hello, your name is Ferko and you are 17 years old.

When retrieving data, display the texts 'Enter name: ' and 'Enter age: '.

Prepare the solution to the task on the computer in the Idle environment to see
how the program works and just copy it here.

For example for entry:

Jozef

15

the output will be

Hello, your name is Jozef and you are 15 years old

file1.py
#!/usr/local/bin/python

load name with display text 'Enter name: '

load age with display text 'Enter age: '

load the text in the form Hello, you are Jozef and you are

15 so that you use the content in the variables

4.2 Not a sum like a sum

51

🕮 4.2.1

Let's try the following commands whose purpose is to add two numbers.

a = input('Enter the 1st number: ')

b = input('Enter the 2nd number: ')

print(a + b)

For example, if we entered the values 3 and 2, we would expect to see the value 5.
However, the result is the value 32.

The reason is that the input() command cannot distinguish whether the input is text
or number and returns the value in a more universal form - as a text string.

Since in Python we don't need to define the variables or their type (number or
string) in advance and we leave the type determination to the compiler in the first
step, getting the correct value can be a bit more time consuming...

📝 4.2.2

What will be the result of the following sequence of commands for input values 5
and 7?

a = input()

b = input()

print(b + a)

• 75
• 57
• 12
• 21

⌨ 4.2.3 'Stupid' sum

Write a program that adds two values given as text input (i.e., do not convert them
to numbers).

When retrieving data, display the texts 'Enter 1st value: ' and 'Enter 2nd value: '.

Prepare the solution to the task on the computer in the Idle environment to see
how the program works and just copy it here.

52

For example for entry:

20

15

the output will be

2015

For entry:

mother

winter

the output will be

motherwinter

file1.py
#!/usr/local/bin/python

load the first value with the text display 'Enter 1st value:

', e.g. into the variable first

load the second value with the text display 'Enter 2nd

value: ', e.g. into the variable second

print the result as the 'sum' of the first and second values

🕮 4.2.4

If we are sure that a number will be entered at the input and we want to work with
the read value as a number, we need to convert the read data - change it from a
string to an integer. We do so using the int() command. So the program will look
like this:

text1 = input('Enter 1st number: ') # reads the TEXT entered

on the input

a = int(text1) # changes the originally

entered text to a number

text2 = input('Enter 2nd number: ') # reads the second TEXT

entered at the input

53

b = int(text2) # also changes the second

text to a number

print(a + b) # finds/calculates the

result for numbers

The int(text) entry ensures the transformation of the text into a number and
assigning it to the variables a, b inserts the numerical value returned by the int()
command.

With such values, the sum operation then executes mathematical addition.

If there is text stored in the variables, the "+" operation will combine them, if there is
a number stored in both variables, the "+" operation will perform their mathematical
sum.

Attention, if one value is text and the other numeric, the program throws an error:

print(text1 + d) --- TypeError: must be str, not int

📝 4.2.5

What is the result of the following sequence of commands for input values 5 and 7?

first = input()

second= input()

a = int(first)

b = int(second)

print(b + a)

• 75
• 57
• 12
• 35

⌨ 4.2.6

Write a program that adds two values entered as numbers on the input (i.e.
converts them to numbers after reading them).

When retrieving data, display the texts 'Enter 1st value: ' and 'Enter 2nd value: '.

54

Prepare the solution to the task on the computer in the Idle environment to see
how the program works and just copy it here.

For example for input:

20

15

the output will be

35

For input:

10

-1

the output will be

9

file1.py
#!/usr/local/bin/python

load the first value with the text display 'Enter 1st value:

', e.g. into the text1 variable

convert the first value to a number, e.g. into the variable

a

load the second value with the text display 'Enter 2nd

value: ', e.g. into the text2 variable

convert the second value to a number, e.g. to variable b

print the result as the sum of the first and second numeric

values (obtained after conversion)

📝 4.2.7

Add commands to the source code so that double of the read value is printed:

text = _____()

55

a = _____(_____)

print(2 _____ _____)

• int
• input
• a
• input
• *
• int
• text
• a
• text
• +

4.3 Input(programs)

⌨ 4.3.1 Greeting

Write a program that reads the user's name and then greets him, e.g.:

input: Jozef

output: Hello, Jozef

Display text 'Enter name: ' when input is loaded

⌨ 4.3.2

Write a program that reads the user's name, his job and then prints the information
in the form, e.g.:

input:

Jozef

mason

output: Jozef is mason .

Display text 'Enter name: ' and 'Enter occupation: ' when input is loaded

file1.py

56

#!/usr/local/bin/python

load the name with the text display 'Enter name: ', e.g.

into the variable name

load the second value with the text display 'Enter job: ',

e.g. to the variable job

print the result in the print command

⌨ 4.3.3

Write a program that multiplies two input values entered as numbers (i.e. converts
them to numbers after reading them).

When retrieving data, display the texts 'Enter 1st value: ' and 'Enter 2nd value: '.

Prepare the solution to the task on the computer in the Idle environment to see
how the program works and just copy it here.

For example for the input:

20

15

the output will be

300

For the input:

10

-1

the output will be

-10

file1.py
#!/usr/local/bin/python

load the first value with the text display 'Enter 1st value:

', e.g. into the variable text1

convert the first value to a number, e.g. into the variable

a

57

load the second value with the text display 'Enter 2nd

value: ', e.g. into the variable text2

convert the second value to a number, e.g. to variable b

print the result as the product of the first and second

numerical values (obtained after conversion) - using the sign

*

⌨ 4.3.4 Sum of three numbers

Write a program that adds three values entered as numbers on the input (i.e.
converts them to numbers after reading them).

When using the input() command, for the sake of simplifying the check (and
unnecessary delay due to typos), we will skip displaying the text for the user:

Don't use the notation:

text1 = input('Enter the 1st value:')

but the notation

text1 = input()

Prepare the solution to the task on the computer in the Idle environment to see
how the program works and just copy it here.

For example for the input:

20

15

10

the output will be

45

file1.py
#!/usr/local/bin/python

load the first value, e.g. into the variable text1

58

convert the first value to a number, e.g. into the variable

a

load the second value, e.g. into the variable text2

convert the second value to a number, e.g. into the variable

b

load the third value, e.g. into the variable text3

convert the third value to a number, e.g. into the variable

c

print the result as the sum of the first, second and third

numerical values (obtained after conversion)

⌨ 4.3.5

Load an integer value and print a decuple of it, e.g.:

input : 3

output: 30

input : 5

output: 50

⌨ 4.3.6

The state contributes a fixed amount of money to family for each child. Write a
code that, for the specified number of children, calculates how much of family
allowances will the given family receive and prints this amount. The allowance for
one child is EUR 30.

input : 3

output: 90

input : 8

output: 240

59

⌨ 4.3.7

For the specified length of the side of the square garden, calculate and write how
much mesh is needed to fence it and what its area is. Also follow the order of
outputs - first the fence, then the area, e.g.:

input : 3

output:

fence: 12

area: 9

input : 5

output:

fence: 20

area: 25

file1.py
#!/usr/local/bin/python

load text data from input

convert the text data to a number representing the length of

the side of the garden

calculate the length of the fence

print the length of the fence

calculate the area

print the area

⌨ 4.3.8

During the construction of the pool, it is necessary to purchase tiles that will be
placed on the bottom and side walls that will be spread around the pool.

Tiles are sold by the surface, side walls by the meter. Calculate for the specified
width and length of the pool how many m2 of tiles will be needed to cover the
bottom and how many m of side walls will be needed to cover the perimeter.

At the input, the width and length are listed in separate lines - load each value with a
separate input() command, which always reads the entire content listed in the line.

60

At the output, first indicate the area of the tiles on the bottom, and then the area of
the walls. Separate the values with a space.

input :

3

2

output: 6 10

input :

5

4

output: 20 18

file1.py
#!/usr/local/bin/python

load a text data representing the width

load a text data representing the length

convert data to integer variables

calculate and print first the area, then the perimeter

61

Conditional statement

Chapter 5

62

5.1 Conditional statement

🕮 5.1.1

A sequence of commands that are executed in the order in which they are written in
the program is called sequence.

In such a case, the compiler proceeds by individual commands, and when the
command is executed, it proceeds to the next one.

All the programs we have encountered so far worked in just that way, e.g.:

aa = input('Enter first value')

bb = input('Enter second value')

a = int(aa)

b = int(bb)

print('The sum is:', a + b)

📝 5.1.2

What is the name of an order of commands that are executed in the order in which
they are written?

• sequence
• consequence
• score

🕮 5.1.3

However, most programs do not only contain simple sequences, but very often
need to decide how to proceed further based on the processed data. Branching
gives us the ability to decide and execute other commands based on whether or not
a condition is met.

It consists of a condition and commands that are executed in case of fulfillment
and non-fulfilment of the condition.

The branching command has the following form:

if condition:

 command

napr.:

63

if age < 10:

 print("minor")

if age > 18:

 print("adult")

etc.

The basis of branching is an if statement followed by a condition that must result
either in true or false.

The condition must be followed by a colon.

The colon is followed by commands to be executed if the condition is met. These
commands must be offset from the margin by the same number of spaces.

The size of the offset is not strictly given. However, according to
PEP8, 4 spaces are recommended.

Command, or commands are executed only if the condition is met.

If the condition is not met, the command is not executed and the program
continues with the next command.

📝 5.1.4

Complete the program with a conditional statement so that if the value of the age
variable is greater than 18, the text: "adult" is printed.

txt = input()

age = int(txt)

_____ age > 18_____

 _____("adult")

🕮 5.1.5

In the previous program, we gave an example of incomplete branching, when we
processed only the situation when the condition was met. Quite often, however, we

64

need to treat both situations - when the condition is met and when the condition is
not met. Then we talk about full branching.

In this case, we add an else part to the original form of the command. The
command then has the form:

if condition:

 commands for the fulfilled condition

else:

 commands for the unfulfilled condition

napr.

if age > 18:

 print("adult")

else:

 print("minor")

Both the if and else statements must have the same offset - in this case they start
from the left margin.

If the value of the age variable is greater than 18, the text "adult" is printed,
otherwise (that is, the age is less than or equal to 18) the text "minor" is printed.

📝 5.1.6

Complete the program so that if the value of the variable height is less than 160,
the text: "small" is printed, otherwise "big".

txt = input()

height = _____(txt)

_____ height < 160_____

 print("small_____)

 print("big")

• fi
• ;
• if
• :
• '

65

• int
• ;
• esle
• "
• :
• else

🕮 5.1.7

The part of the program that is executed when the condition is met is called the
positive branch, the part of the program that is executed when the condition is not
met, the negative branch.

if age > 18:

 print("adult") # positive branch

else:

 print("minor") # negative branch

📝 5.1.8

Arrange the lines of source code whose results is the output of the larger number
from the given pair a and b.

a = 20

b = 30

• print(a)
• if a > b:
• print(b)
• else:

📝 5.1.9

What are the parts of a conditional statement containing the statements to be
executed if the condition is met or not met called?

• branches
• conditions
• brackets

66

🕮 5.1.10

Using one command in the positive and one in the negative branch is rather
exceptional, we usually need to use more commands. The fact that several
commands are to be executed in a certain branch is provided by an offset - it
defines the entire block of commands.

if condition:

 command1

 command2

 command3

else:

 command4

 command5

next_code

Commands 1-3 are executed if the condition is met, commands 4-5 are executed if
the condition is not met.

The next code must continue with the same offset as the if and else statements
and will be executed regardless of whether the condition was met or not.

📝 5.1.11

Arrange the source code lines so that commands 5 and 3 are executed if the
condition is met, and commands 1, 2, and 7 are executed otherwise. Let commands
4 and 6 be executed after the branch is processed.

• if condition:
• command2
• command4
• command6
• command5
• command3
• else:
• command1
• command7

67

5.2 Taks with a condition

🕮 5.2.1

So far, we have only used the greater or lesser sign in the condition. However, we
can also compare using other signs:

• == compares whether the values are equal, e.g. a == b
• <= compares whether the value on the left side is less than or equal to the

value on the right side, e.g. c <= 10
• >= compares whether the value on the left side is greater than or equal to the

value on the right side, e.g. c >= 10
• != compares whether the values are not equal, e.g. a != b – the condition is

met if the values are different

In the case of using <= and >= signs, their order must be observed. Using =< will be
evaluated as an error.

📝 5.2.2

Complete the code with the correct characters for comparison:

txt = input()

a = int(txt)

if a _____ 0:

 print("A zero value was entered")

else:

 print("A non-zero value was entered")

print("end")

🕮 5.2.3

Let's test the values of two variables and print whether they are the same or which
one is greater. We actually need to test three options.

a == b

a > b

a < b

Let's try it through a simple if statement.

68

if a == b:

 print(a, b, 'are equal')

if a > b:

 print(a, 'is greater than ', b)

if a < b:

 print(b, 'is greater than ', a)

📝 5.2.4

Complete the code that determines whether the value stored in the a variable is
positive, negative, or zero.

_____ a _____ 0:

 print('zero value')

_____ a > 0:

 print('_____')

_____ a < 0_____

 print('_____')

• else
• positive number
• if
• negative number
• if
• ==
• =
• ->
• :
• else
• if

⌨ 5.2.5 Positive/Negative

Write a program that will print whether the given integer is positive or negative. For
the purposes of this task, consider zero as a positive number.

Input : 1

Output: positive

69

Input : -3

Output: negative

Input : 0

Output: positive

file1.py
#!/usr/local/bin/python

load a value and convert it to a number

process the comparison whether the value is positive

print that it is a positive number

otherwise print that it is a negative number

⌨ 5.2.6 Comparison of numbers

Write a program that, given two given numbers, prints the greater of them. If the
numbers are equal, print "nu,mnumbers are equal".

Input :

3

2

Output: 3

Input :

2

8

Output: 8

Input :

2

2

Output: numbers are equal

file1.py

70

#!/usr/local/bin/python

load the values and convert them to numbers

process the comparison and print the result

process a and b are equal

process a is greater than b

process b is greater than a

⌨ 5.2.7 Part-time job

Write a program that, for a given age, will display whether the given person can
work part-time (can/cannot). A person who is at least 17 years old can have a part-
time job.

Input : 1

Output: cannot

Input : 17

Output: can

Input : 105

Output: can

⌨ 5.2.8 The absolute value of a number

Write a program that prints the absolute value of a given integer.

Input : 0

Output: 0

Input : 3

Output: 3

71

Input : -8

Output: 8

⌨ 5.2.9

Write a program that, for two given numbers, finds (and stores in the variable max)
the larger of them. If they are equal, an arbitrary one of them will be printed. Ensure
the result by printing the contents of the variable max.

Input :

3

2

Output: 3

Input :

2

8

Output: 8

Input :

2

2

Output: 2

5.3 Multiple conditional statement

🕮 5.3.1

Although the previous solution is correct, it makes sense to consider another one
as well.

if a == b:

 print(a, b, 'are equal')

if a > b:

 print(a, 'is larger than ', b)

if a < b:

 print(b, 'is larger than ', a)

72

However, if we look at the code through the eyes of an experienced programmer, it
is inefficient - even if the values are identical and we already have a result after
evaluating the first condition, other conditions are tested unnecessarily.

Let's redesign the solution to make it more efficient.

if a == b:

 print(a, b, 'are equal')

else:

 if a > b:

 print(a, 'is larger than ', b)

 else:

 if a < b:

 print(b, 'is larger than ', a)

This is the correct solution, the condition a > b is tested only if a == b does not hold.
And the condition a < b is tested only if neither a == b nor a < b applies.

However, the entry can be shortened, because we do not have to execute the last
test. Validity takes effect automatically.

if a == b:

 print(a, b, 'are equal')

else:

 if a > b:

 print(a, 'is larger than ', b)

 else:

 print(b, 'is larger than ', a)

📝 5.3.2

Complete a more efficient solution to find out what value is stored in the variable a.

_____ a _____ 0:

 print('zero value')

_____:

 _____ a _____ 0:

 print('positive number')

 _____:

 print('negative number')

• =
• else
• if
• if

73

• else
• if
• ==
• else
• >
• else

🕮 5.3.3

In addition, Python provides an option to shorten this notation as well. There is a
version of the if - elif - else command for successive evaluation of several
conditions.

In case the compiler evaluates any of the conditions as fulfilled, it no longer
evaluates the following el-if branches and continues execution after the if block.

if condition1:

 block of commands

elif condition2:

 block of commands

elif ...

elif ...

elif ...

else:

 block of commands

The number of elif conditions is unlimited. The else branch does not need to be
specified.

In the optimal entry, our solution would look as follows.

if a == b:

 print(a, b, 'are equal')

elif a > b:

 print(a, 'is larger than ', b)

else:

 print(b, 'is larger than ', a)

📝 5.3.4

Complete the code.

74

a = input ('Enter a number')

b = input ('Enter another number')

 print ('Entered numbers are the same.')

 print ('Entered numbers are not the same.')

📝 5.3.5

Complete the solution using the if-elif-else structure.

_____ a _____ 0:

 print('zero value')

_____ a _____ 0:

 print('positive number')

_____:

 print('negative number')

• >
• if
• ==
• else
• elif

📝 5.3.6

What is printed after the program is executed?

x = 5

if (x == 5):

 print('Hi')

 print('Hello')

else:

 print('Cheers')

print('Ciao')

• 'Hi Hello Ciao'
• 'Hi Hello'
• 'Cheers Ciao'

75

📝 5.3.7

What is the result of the given code?

a = 4

b = 10

if a == 0:

 print(b)

else:

 print(a)

• 4
• 10
• 0

📝 5.3.8

Arrange the source code correctly to tell if a number is positive, negative, or zero.

• n = 10
• print(n, 'is negative.')
• if n > 0:
• else:
• elif n < 0:
• print(n, 'is positive.')
• print(n, 'is zero.')

⌨ 5.3.9 Test results

Write a program that, given the average result from the test and the number of
points you have achieved, will print whether you have achieved an above-average,
average or below-average result. The first input value is the average, the second is
the achieved result.

Input:

10

12

Output: above-average

Input:

20

76

18

Output: below-average

Input:

33

33

Output: average

⌨ 5.3.10 A well-deserved salary

Write a program that, given the average salary and your salary, will print out whether
you have above-average, average or below-average earnings and by how much. The
first input value is the average salary, the second is your income.

Input:

1000

1200

Output: 200 above-average

Input:

2000

1600

Output: 400 below-average 400

Input:

1333

1333

Output: average

⌨ 5.3.11 Maximum of three numbers

Write a program that prints the largest of the three entered numbers. If any
numbers are the same, it prints the largest value.

Input:

2

4

6

77

Output: 6

Input:

2

1

2

Output: 2

⌨ 5.3.12 Maximum of four numbers

Write a program that prints the largest of the 4 entered numbers. If any numbers
are the same, it prints the largest value.

Input:

2

3

4

6

Output: 6

Input:

2

2

1

2

Output: 2

file1.py
#!/usr/local/bin/python

#!/usr/local/bin/python

load four values and convert them to numbers

declare the first number as max - put a in the max variable

if the second number is greater than max, store the value of

the second number in max

if the third number is greater than max, store the value of

the third number in max

78

if the fourth number is greater than max, store the value of

the fourth number in max

print the result

79

Loop

Chapter 6

80

6.1 Commands repetition

🕮 6.1.1

Very often we need to repeat part of the algorithm. A record that enables repetition
is reffered to as a loop. For each repetition, it is important what (body of the loop) is
to be repeated and when, for what values, the commands in the body of the loop
are to be executed.

A loop allows a part of a program to be repeated for a given list of values or until a
condition is met, e.g.:

for values: for repetitions 1,2,3,4,5

what: lift a barbell

for values: for coins 10,20,50,10,10

what: add to purse

until when: while there is something on your account

what: buy presents

until when: until you are at the end of the text

what: replace the word five with the number 5

📝 6.1.2

How do we call an entry in a program that allows repetition of actions?

• loop
• branching
• sequence

🕮 6.1.3

Print the text 'Python' 7 times below.

To complete this task, we need to repeat the printout of the value 7 times:

81

print('Python')

print('Python')

print('Python')

print('Python')

print('Python')

print('Python')

print('Python')

The same effect can be achieved by using a loop, which allows the repeating part of
the program (in this case, the printout) to be written into the program only once.

In the repetition definition, we need to specify a group of values for which the
printout is supposed be repeated:

for i in 1, 2, 3, 4, 5, 6, 7:

 print('Python')

When repeating the same activity, it is not important what values we enter, only
their number is important.

📝 6.1.4

How many times will the following loop be executed?

for i in 1, 2, 3, 4, 5, 6:

 print('Winter')

🕮 6.1.5

The number of repetitions of the loop does not depend on the values that are listed
in the group, but on their number.

For example we can provide the task Write "Hello" 5 times below with the following
program:

for i in 1, 2, 3, 4, 5:

 print("Hello")

Even in this case, the variable gradually acquires 5 different values and for each of
them it prints the text "Hello" once. However, the value of the variable i is not used
anywhere.

A loop will fulfill the same role

82

for i in 1, 1, 1, 1, 1:

 print("Hello")

or any other notation with a group of five not necessarily different values.

📝 6.1.6

How many times will the following loop be executed?

for i in 2, 4, 0, 10, 20, 10:

 print(i)

🕮 6.1.7

In general, the definition of a loop takes the form:

for variable in sequence:

 command

For everything to work correctly, it must be true:

1. a sequence must be defined as a sequence of values that we can traverse,
2. there must be a colon at the end of the first line of the loop,
3. commands to be executed must be offset from the margin.

What is a sequence of values? For now, we just need to know that they are comma-
separated values. Each value has its place in the sequence and for the previous
case we needed it in the form of 1, 2, 3, 4, 5, 6, 7.

📝 6.1.8

Which of the following lists can be used to print the greeting 4 times?

for i in ??????:

 print("Good morning")

• 1, 2, 3, 4
• 8, 9, 8, 11
• 0, 1, 2, 3
• 1, 1, 2, 3, 4

83

• 0, 0, 0, 0, 4
• 0, 4

⌨ 6.1.9 Hello

Write a program that prints the word "Hello" 10 times below

Output:

Hello

Hello

Hello

Hello

Hello

Hello

Hello

Hello

Hello

Hello

6.2 Enumerated values

🕮 6.2.1

So far, we have only used the loop to print the same content. However, it also
allows the use of values that are entered sequentially in its header.

Print the values 1-6 below.

To complete this task, we need to repeat the value printout 6 times:

print(1)

print(2)

print(3)

print(4)

print(5)

print(6)

If we want to simplify the task using the loop, it is enough to specify the sequence
of values that the loop is supposed print in its definition:

for i in 1, 2, 3, 4, 5, 6:

 print(i)

84

The loop works in such a way that the variable i acquires the value of the first
element of the sequence and the command is executed, in which the acquired value
of the variable i is printed. Then we return to the beginning of the loop, the variable i
acquires the value of the second element of the sequence and the command is
executed again. This is repeated until all sequence values are used up.

📝 6.2.2

What values will the following cycle print?

for i in 8, 7, 3, 1, 5:

 print(i)

• 8 7 3 1 5
• 8 7 6 5 1
• 5 4 3 2 1
• 1 2 3 4 5

🕮 6.2.3

Write a program that prints 5 lines with the text "I know how to use the loop now."
and in each of them it displays the serial number of the line.

1 I know how to use the loop now.

2 I know how to use the loop now.

3 I know how to use the loop now.

4 I know how to use the loop now.

5 I know how to use the loop now.

The program is relatively simple: we already know that we need to print the values
1-5. So we insert the sequence 1-5 into the definition of the cycle and ensure that
the variable also acquires these values gradually.

for i in 1, 2, 3, 4, 5:

The action to be repeated consists of printing the variable i using the command

print(i)

85

by which we would achieve a printout of values 1-5 below each other.

It is enough for us to add the desired text, which is unchanging, to the changing
numbers:

print(i, 'I know how to use the loop now.')

The loop with the output will therefore have the form:

for i in 1, 2, 3, 4, 5:

 print(i, 'I know how to use the loop now.')

⌨ 6.2.4 Output with serial number

Write an algorithm that prints "Hello" 10 times to the console in the form "Hello - 1
x" and "Hello - 2 x" in the next line... "Hello - 10 x".

Output:

Hello - 1 x

Hello - 2 x

Hello - 3 x

Hello - 4 x

Hello - 5 x

Hello - 6 x

Hello - 7 x

Hello - 8 x

Hello - 9 x

Hello - 10 x

🕮 6.2.5

Write a program that prints the multiples of 1-10 for a given integer value.

We first ask the user for the number whose multiples we want to display.

text = input('Enter an integer from 1 to 10: ')

a = int(text)

For the output, we need to ensure the following form (e.g. for input 5):

1 - 5

2 - 10

3 - 15

86

etc.

In the first line there is a 1-fold, in the second a double, in the third a triple, etc.

The loop with the output will therefore have the form:

for i in 1, 2, 3, 4, 5, 6, 7, 8, 9, 10:

 print(i,'-',a * i)

In this loop, we print the value from the listed sequence and its a-multiple.

📝 6.2.6

Complete the program that prints their double for numbers 5-10 in the form:

5 - 10

6 - 12

etc.

for i _____ 5, _____:

 print(i, _____, _____)

• 5..10
• 6, 7, 8, 9, 10
• '-'
• in
• ' - '
• i * i
• i ++ i
• i
• 5-10
• 6..10
• 6-10
• i * 2
• 6, 7, 8, 10

⌨ 6.2.7 Square

Write a program that for numbers 5-10 prints their square (a * a) in the form:

87

5 - 25

6 - 36

etc.

📝 6.2.8

Complete the program that prints a small multiplication table for the entered
number in the following form:

1 * 5 = 5

2 * 5 = 10

etc.

text = _____('Enter an integer from 1 to 10: ')

a = _____(text)

for i in 1, 2, 3, 4, _____, _____, 7, 8, 9, _____:

 print(_____, '_____', _____, '_____', _____)

• i * a
• 5
• i * i
• get
• *
• a
• 6
• i
• i + i
• .
• i
• int
• 10
• input
• 9
• 0
• input
• =
• +
• a
• 5

88

🕮 6.2.9

Modify the program with the multiplier so that the rows are separated from each
other by a line:

1 * 5 = 5

2 * 5 = 10

etc.

The loop with the output has the form:

a = 5

for i in 1,2,3,4,5,6,7,8,9,10:

 print(i, '*', a, '=', i * a)

to which we need to add the command with the printout "lines". This command is
supposed to be repeated after each row of numbers, so it should be part of the
loop.

We will add it with the same offset as the command that prints the numbers.

for i in 1,2,3,4,5,6,7,8,9,10:

 print(i, '*', a, '=', i * a)

 print('--------------------------')

By setting the same offset of the commands in the loop, we say that all of them
should be repeated within one step of the loop- the loop will go to the next step only
when it executes all commands with the same offset.

For example the entry:

for i in 1,2,3,4,5,6,7,8,9,10:

 print(i, '*', a, '=', i * a)

print('--------------------------')

would end by printing all multiplications and add a "line" at the end.

The entry

for i in 1,2,3,4,5,6,7,8,9,10:

 print(i, '*', a, '=', i * a)

 print('--------------------------')

89

would result in an error because it is not possible to determine which part of the
program the second print() command belongs to.

⌨ 6.2.10 Carpet with pattern I.

Write a program that 'weaves a patterned carpet' - it will alternately write lines with
10 "o" characters and 10 "x" characters.

oooooooooo

xxxxxxxxxx

oooooooooo

xxxxxxxxxx

etc.

Let 20 lines be printed in total.

⌨ 6.2.11 Carpet with pattern II.

Adjust the previous program that 'weaves a patterned carpet' so that after every
pair of lines with 10 "o" and "x" characters, it adds a line with '-'.

oooooooooo

xxxxxxxxxx

oooooooooo

xxxxxxxxxx

oooooooooo

etc.

Let 30 lines be printed in total.

6.3 Generated range

🕮 6.3.1

So that we don't always have to manually write the range of values, just imagine
how long it would take us to list e.g. 100 values, Python offers a number list
generator.

90

Python uses the range() command to generate a list of numbers.

The simplest version of range() is to enter a single parameter - the number of
integers (how many numbers from zero will be in the list).

For example

range(3)

returnas the list of numbers

0, 1, 2

which we can traverse right away.

Using the command itself does nothing, it only creates a sequence, which we can
use directly in the loop.

for i in range(3):

 print(i)

prints:

0

1

2

If we need to repeat an action n times, just generate a list with n values using
range(n).

for i in range(n):

The list generated in this way always starts with the value 0 and ends with the
value n-1.

📝 6.3.2

What number will be the first element in the list produced by range(10)?

📝 6.3.3

What will be the last number of the list generated by the range(15) command.

91

🕮 6.3.4

Sometimes we need to generate a list of values that does not start with zero. It is
enough to add a second parameter to the range() command.

range(start, stop)

• start determines the starting element of the sequence
• stop determines a stop for us, the final element of the sequence, the same

applies as in the simpler version, that this element is no longer inserted into
the list.

z = range(10, 15)

for i in z:

 print(i)

prints the sequence:

10, 11, 12, 13, 14

📝 6.3.5

Complete the parameters of the range() command so that the given list is printed.

15, 16, 17, 18, 19, 20

z = range(_____, _____)

for i in z:

 print(z)

6.4 Stepping in range()

🕮 6.4.1

In the range() command, it is also possible to define a step by which the values in
the list will change by leaps.

range(start, stop, step)

92

The step of the change is determined via the third parameter - step.

for i in range(10, 31, 5):

 print(i)

prints the sequence

10, 15, 20, 25, 30

The same rules still apply to the start and stop parameters - the last
value of the sequence is at least 1 less than the stop value.

📝 6.4.2

Complete the parameters of the range() command so that the given list is printed.

5, 9, 13, 17, 21, 25

for i in range(_____, _____, _____)

 print(i)

• 3
• 31
• 25
• 5
• 6
• 4
• 26
• 4

📝 6.4.3

Which values can be stored in the variable end to generate a list

5, 9, 13, 17, 21, 25

end = ?

z = range(5, end, 4)

93

for i in z:

 print(i)

• 26
• 27
• 28
• 29
• 25
• 30
• 24

🕮 6.4.4

Let's modify our multiplication table problem by using the automatically generated
list.

text = input('Enter an integer from 1 to 10: ')

number = int(text)

for i in range(1, 11):

 print(i, '*', number, '=', i * number)

📝 6.4.5

Complete the code so that the loop prints the squares of the numbers from 1 to 15.

_____ i _____ range(_____, _____)_____

 print('the square of', i, 'is', _____)

• i * i
• 1
• 15
• i + i
• in
• of
• 16
• -
• :
• for
• 0

94

🕮 6.4.6

The step parameter can also have negative values that can be used to create a list
with descending values.

range(20, 15, -1)

creates:

20, 19, 18, 17, 16

For start and stop values, start > stop must apply in this case. The value specified
in the stop will no longer appear in the list.

range(20, 10, -3)

creates:

20, 17, 14, 11

📝 6.4.7

How many values will the list generated by the range() function have?

z = range(100, 0, -10)

📝 6.4.8

Complete the program so that it prints even numbers from 20 to 40.

for i in range(_____,_____,_____):

 print(i)

• 39
• 0
• -
• 19
• 1
• 41
• 2
• 2
• 40
• 20
• 21

95

⌨ 6.4.9 Multiplier

Write a program that prints a small multiplier for a given integer.

Input : -5

Output:

1 * -5 = -5

2 * -5 = -10

3 * -5 = -15

4 * -5 = -20

5 * -5 = -25

6 * -5 = -30

7 * -5 = -35

8 * -5 = -40

9 * -5 = -45

10 * -5 = -50

Input : 5

Output:

1 * 5 = 5

2 * 5 = 10

3 * 5 = 15

4 * 5 = 20

5 * 5 = 25

6 * 5 = 30

7 * 5 = 35

8 * 5 = 40

9 * 5 = 45

10 * 5 = 50

⌨ 6.4.10 Multiples of three

Write a program that, for two given numbers, prints the triples of all the numbers
between them. If the first number is greater than the second, print them in reverse
order.

Input :

5

8

Output:

15

96

18

21

24

Input :

1

-2

Output:

3

0

-3

-6

97

Operations in a loop

Chapter 7

98

7.1 Sum in the loop

📝 7.1.1

What does the following sequence of commands print?

for i in range(5):

 print(i)

 print(5)

• 0 5 1 5 2 5 3 5 4 5
• 0 1 2 3 4 5
• 0 5 1 5 2 5 3 5 4 5 5 5
• 1 5 2 5 3 5 4 5 5 5
• 1 5 2 5 3 5 4 5 5
• generates an error

📝 7.1.2

What does the following sequence of commands print?

for i in range(5):

 print(i)

print(5)

• 0 5 1 5 2 5 3 5 4 5
• 0 1 2 3 4 5
• 0 1 2 3 4 5 5
• 1 2 3 4 5 5
• 1 2 3 4 5
• generates an error

📝 7.1.3

What does the following sequence of commands print?

for i in range(5):

 print(i)

 print(5)

• 0 5 1 5 2 5 3 5 4 5
• 0 1 2 3 4 5

99

• 0 1 2 3 4 5 5
• 1 2 3 4 5 5
• 1 2 3 4 5
• generates an error

🕮 7.1.4

For the given list of amounts spent when shopping in a shopping cetre find out how
much you've spent

Have you spent in individual stores:

12, 16, 33, 8, 21, 17

Use a loop to find out and print the subtotals after each receipt is added.

Our task is to count the listed values and print subtotals, i.e.:

• after counting the first receipt, the amount will be 12,
• after adding the second 12 + 16 = 28,
• after adding the third 28 + 33 = 61,
• etc. till the end of the list.

Repetition consists in adding individual amounts to the sum determined so far. So
we define repetition for individual values as:

for i in 12, 16, 33, 8, 21, 17:

To store the running result, we will use the variable total, which will gradually
increase by the amount that follows in the sequence.

for i in 12, 16, 33, 8, 21, 17:

 total = total + i

Before we use the variable total to add the first value, we need to determine the
initial value. Logically, it has the value 0 before counting in the first receipt:

total = 0

for i in 12, 16, 33, 8, 21, 17:

 total = total + i

In the task, there also is a request to print a running value, so we add:

total = 0

100

for i in 12, 16, 33, 8, 21, 17:

 total = total + i

 print(total)

To show how the loop is progressing and how the values of individual variables
change, a trace table is used, which lists the values of the variables used at each
step of the loop.

i calculation total

 before the beggining of the loop 0

12 total = total + 12, t.j. 0 + 12 12

16 sum = sum + 16, t.j. 12 + 16 28

33 sum = sum + 33, t.j. 28 + 33 61

8 sum = sum + 8, t.j. 61 + 8 69

21 sum = sum + 21, t.j. 69 + 21 90

17 sum = sum + 17, t.j. 90 + 17 107

📝 7.1.5

Complete the program to find the number of visitors to the rope park during the
Rope Climbing Week.

total = _____

for i _____ _____:

 total = _____ _____ i

_____("There was", _____, "visitors.")

• 0
• 12, 0, 50, 17, 3, 3, 45, 91
• total
• int()
• in
• input
• 54, 72, 101, 12, 54, 33, 19
• i
• +
• total
• *
• +
• spolu
• i
• 120, 50, 17, 33, 45, 91
• 1
• total

101

• print
• 2

⌨ 7.1.6

Write a program that, given the amount in our wallet and the entered prices of
individual pieces of sports clothing, determines whether we can buy all the pieces
of clothing. The result of the program will be only a yes/no output.

Load the amount in the wallet with the text: "Enter your amount: ".

The prices of individual pieces of clothing are 120, 50, 17, 33, 45, 91.

E.g. for

Input : 100

Output: no

Input : 1000

Output: yes

file1.py
#!/usr/local/bin/python

load the amount in your wallet with the required text

display and convert it to a number

prepare a variable to store the ongoing amount

find out the total amount of funds needed

check whether you have more money than you need

🕮 7.1.7

Calculate the sum of the first 100 positive numbers.

Our task is to add the values 1 + 2 + 3 + 4 + 5 + 6 + 99 + 100.

We will add the numbers gradually - in a loop that will repeat from 1 to 100 and we
will add each additional value. We will use the variable sum_ to store the temporary
result, which will be incremented by the value stored in i at each step. At the
beginning, it is logically empty - it contains the value 0

sum_ = 0

102

for i in range(1, 101): # last value is supposed to be 100

 sum_ = sum_ + i

print(sum_)

To monitor the activity of the loop, we can create a tracking table.

i calculation sum_

 before the beginning on the loop 0

1 sum_ = sum_ + 1, i.e. 0 + 1 1

2 sum_ = sum_ + 2, i.e. 1 + 2 3

3 sum_ = sum_ + 3, i.e. 3 + 3 6

4 sum_ = sum_ + 4, i.e. 6 + 4 10

...

99 sum_ = sum_ + 99, i.e. 4851 + 99 4950

100 sum_ = sum_ + 100, i.e. 4950 + 100 5050

📝 7.1.8

Arrange the code so that we get the sum of the first n numbers. First do the
conversion to a number then set the variable sum_.

• for i in range(1, n + 1):
• n = int(text)
• text = input('Enter a number: ')
• print('The sum of first', n, 'numbers is', sum_)
• sum_ = 0
• sum_ = sum_ + i

⌨ 7.1.9 The sum of the interval

Write a program that finds the sum of the numbers between two given values.
These are entered at the input by first entering a smaller, then a larger value.

E.g. for

Input:

5

7

Output: 18

103

Input:

10

80

Output: 3195

7.2 Product in the loop

🕮 7.2.1

Now let's have a look at tasks requiring multiplication.

Calculate the product of the first 10 numbers.

It is a multiplication of the numbers 1 * 2 * 3 * 4 * 5 * 6 * 7 * 8 * 9 * 10. In general,
we have to do multiplication in sequence just like addition.

Although we could solve this task by writing the multiplication in a
single command, this is more of an exception as we will see later.

If we break down the individual steps of the calculation, then similarly to the
previous example, we need some "storage" with a neutral value.

product = 1

The starting value in the case of multiplication is the value 1. In the case of the
sum, it was the value 0, the addition of which did not change the result of the sum,
in the case of multiplication it is 1. Indeed, if we used 0 as the starting value, then
by multiplying it by any number, we would again only got a value of 0.

So let's first put the value 1 in the variable product:

product = 1

product = product * 2 # we multiply the initial value by 2 -

1*2=2

product = product * 3 # we add multiplication by 3 - 2*3=6

product = product * 4 # we add multiplication by 4 -

6*4=24...

If we look at the procedure more carefully, we will find a diagram

product = product * i

where i goes from 1 to 10. Be careful with range() we have to start with the value 1,
because multiplying by zero would not get us to different value.

104

And we have a finished program:

product = 1

for i in range(1, 11):

 product = product * i

print(product)

📝 7.2.2

Complete the code so that it calculates the product of numbers between two values
(including threshold values).

text1 = _____('Enter smaller value: ')

text2 = _____('Enter larger value: ')

a = int(text1)

b = int(text2)

product = _____

for i in _____(_____, _____):

 product = _____ _____ i

print('The product of numbers from', a, 'to', b, 'is',

product)

• a+1
• input
• *
• print
• b-1
• a
• print
• input
• =*
• p
• b
• 1
• b + 1
• ==
• product
• a-1
• =
• 0
• "
• range

105

⌨ 7.2.3 Factorial

Write a program that calculates the factorial for a given number n (n! = n.(n-1). ...
.3.2.1). Print the interim result to the console.

Input : 3

Output:

1

2

6

Input : 4

Output:

1

2

6

24

⌨ 7.2.4 Product without multiplication

Write a program that, for two given positive integers, finds the product without
using the multiplication operation.

Input :

5

3

Output: 15

Input :

5

5

Output: 25

Input :

2

5

Output: 10

106

🕮 7.2.5

Multiply the given sequence of numbers. Show the serial number of the numbers in
sequence you are multiplying.

For example for the sequence: 4, 9, 2, 5, 2, the output would look like this:

1 - 4

2 - 36

3 - 72

4 - 360

5 - 720

In order to be able to display which step we are currently in, we need a counter that
we will increase by 1 in each step of the loop. We can name the variable step.

product = 1 # we set a neutral value for

multiplication

step = 0 # we will count how many times the loop

was executed

for i in 4, 9, 2, 5, 2:

 step = step + 1 # the loop is executed again, increase

the step by 1

 product = product * i # multiply

 print(step, '-', product) # print

⌨ 7.2.6 Product of numbers in an interval

Write a program that calculates the product of all integers between two given
values. Ensure that the program displays both the sequence number of the
multiplication and the intermediate result of the product in the individual steps of
the loop during the run.

Input :

5

7

Output:

1 - 5

2 - 30

3 - 210

210

107

Input :

2

5

Output:

1 - 2

2 - 6

3 - 24

4 - 120

120

7.3 Data loading

🕮 7.3.1

Write a program that finds how much you spent on shopping in the last week by
asking for the amounts spent for each day.

In this case, we don't know the purchase values in advance to list them in the
program as enumerated loop values, but we have to get them from the user after
the program starts.

We will use a scheme where the current subtotal will increase with each new value.
Let's go step by step. First, we insert a neutral value - 0 into the variable total, we
haven't inserted any data into the overall package yet.

total = 0

text = input('Enter the amount: ') # we load the amount for

the 1st day

daily_amount = int(text) # convert it to a number

total = total + daily_amount # we add the 1nd day

amount

text = input('Enter the amount: ') # we load the amount for

the 2nd day

daily_amount = int(text) # convert it to a number

total = total + daily_amount # we add the 2nd day

amount

text = input('Enter the amount: ') # we load the amount for

the 3rd day

daily_amount = int(text) # convert it to a number

total = total + daily_amount # we add the 3rd day

amount

108

Two things are important in the following code:

• several commands (steps) are repeated - which is not a problem, we can
repeat any number of commands in the loop

• we use the same variable for loading values from the user (text and
daily_amount) - this approach is also standard - we can use the variable
multiple times to store the value, of course with the fact that the old value is
always overwritten by the new one

text = input('Enter the amount: ') # load the amount

daily_amount = int(text) # convert it to a

number

total = total + daily_amount # add the amount

a túto postupnosť zopakujeme n-krát.

Po načítaní a pripočítaní všetkých súm do úložiska výsledok už len vypíšeme.

total = 0

for i in range(7): # a week has 7 days, we

repeat 7 times

 text = input('Enter the amount: ')

 daily_amount = int(text)

 total = total + daily_amount

print(total, 'was spent in a week.')

📝 7.3.2

Arrange the lines of the program so that for the given number of students in five 1st
year classes, it finds out how many 1st graders attend the school.

• total = total + students
• print('There is', ziakov, 'students in the classes.')
• students = int(text)
• for i in range(5):
• total = 0
• text = input('Enter the number of students: ')

109

⌨ 7.3.3 Missed classes

Write a program to find the number of missed classes for the first half of the year.
Each of the five months of the school semester is entered separately. Let the
output take the form: "X classes were missed."

Input:

5

10

12

3

0

Output: 30 hours were missed.

Input:

2

2

1

0

3

Output:

8

🕮 7.3.4

Get the temperatures for the last n days and calculate their average value. Let the
temperatures be integer values.

In this case, we do not know in advance not only the temperature values, but also
their number. In order to load them, we first need to know their number, which we
will then use as the number of loop repetitions.

text = input('Enter the number of days: ')

n = int(text)

Priemer sa vypočíta ako súčet / počet. Počet hodnôt načítame na začiatku
programu, súčet budeme zvyšovať priebežne načítavaním teplôt v jednotlivé dni.

sum_ = 0

for i in range(n):

 text = input('Enter the temperature: ')

 t = int(text)

 sum_ = sum_ + t

110

Finally, to determine the average, we divide the sum of temperatures by their
number - we use the "/" operator for division.

print('The average temperature in', n, 'days is', sum_/n)

The result is a number with a decimal point, e.g.

5.0

even for integers, Python inform us that the result is generally a real number.

📝 7.3.5

Complete the missing code so that it calculates the grade point average on the
report card.

text = input('Enter the number of grades: ')

number = _____(text)

sum_ = _____

_____ i in _____(_____):

 text = input('Enter a grade: ')

 g = int(text)

 sum_ = sum_ + _____

print('The grade point average is', _____/_____)

• 0
• int
• 1
• z
• sum_
• cycle
• number
• input
• for
• number
• z
• number
• range
• zz
• pp
• sum_

111

⌨ 7.3.6 Average weight of students in class

Write a program that finds the average weight of the students in the class. In the
first step, find out the number of students, in the second, load their weights, and
finally, in the third, calculate and write the average.

Input: 4

50

55

54

60

Output:

54.75

Input: 5

66

82

58

60

71

Output:

67.4

7.4 Loop (programs)

⌨ 7.4.1 The sum of the first n numbers

Write a program to find the sum of the first n natural numbers, the number of which
is given in the input. Print the interim results as well.

Input: 5

Output:

1

3

6

10

15

Input: 4

Output:

112

1

3

6

10

⌨ 7.4.2 Product without multiplication II.

Write a program that finds the product of two given integers (even negative)
without using the multiplication operation.

Input :

-5

3

Output:

-15

Input :

-5

-5

Output:

25

Input :

2

5

Output:

10

113

Data types

Chapter 8

114

8.1 Data types

🕮 8.1.1

Every variable we used so far was defined by a pair:

• the name by which we refer to it,
• data type that determines whether it stores text or a number (these two

types of values are enough for us for now).

When we loaded bdata from the input, we always got it in text form, and if we
wanted to work with it as with numbers, we had to convert it.

📝 8.1.2

Complete the function to convert input from text to integer.

aa = input()

a = _____(aa)

🕮 8.1.3

As we have already mentioned, Python is a language with dynamic type checking,
i.e. there is no need to define data types for variables in advance. Based on the
values, Python itself determines what type of data it is working with when it is
needed.

Some of the most commonly used data types are

• integer - integers, e.g. 10 or 5,
• float - floating point numbers, used to store decimal numbers, e.g. 10.5 or

5.3,
• string - string represented by apostrophes or double quotes, e.g. "Python" or

'Python'.

When writing decimal numbers, we use a decimal point - in this case the comma is
evaluated as an error.

x = 4 # 4 - will be interpreted as data type integer.

y = 4.0 # 4.0 - will be interpreted as a number with a

decimal point, data type float,

z = "4" # "4" - will be interpreted as data type string.

115

📝 8.1.4

For the following assignments, determine the correct data type of the variables

a = 'Anna' # _____

b = 3.15 # _____

c = 4 # _____

d = 'x' # _____

e = 5.0 # _____

f = '1987' # _____

g = 2010 # _____

• integer
• string
• float
• float
• integer
• float
• float
• integer
• string
• string
• string
• integer
• string

🕮 8.1.5

For every variable or expression, we can find out its data type. The type() function is
one of Python's built-in functions that can be used to return information about the
type of a value.

For example, by executing the following commands:

a = 4

print(type(a))

the result is returned

<class 'int'>

which means that the entered value is treated as an integer.

116

By executing the commands:

b = "Python"

print(type(b))

the result is returned

<class 'str'>

which means that the entered value is treated as a string.

We can also execute the entry

print(type("Python"))

which, however, does not really make sense to use in this form, because at first
glance we can see that it is a string.

📝 8.1.6

Complete the code that prints the data type of the variables:

a = 22.1

print(_____(a))

b = 'The mare has a small hip.'

print(_____(b))

📝 8.1.7

What does the following command print?

print(type(3.5))

• <|class 'float'>
• <|class 'int'>
• <|class 'str'>

📝 8.1.8

What does the following command print?

print(type(input('Enter a number: ')))

117

• <|class 'str'>
• <|class 'int'>
• <|class 'float'>

8.2 Conversion

🕮 8.2.1

By acquiring a value, the data type of the variable is determined. In order to perform
operations on the content of variables intended for another data type, we need
operations that can transform data between individual types. Python supports three
basic converting functions that convert one data type into another data type:

• int() - returns a value with int data type,
• str() - returns a value with str data type,
• float() - returns a value with float data type.

The following conversions are supported:

int(10.5) # returns 10

int('69') # returns 69

float(100) # returns 100.0

float('35.53') # returns 35.53

str(24) # returns '24'

str(66.99) # returns '66.99'

📝 8.2.2

What value will be stored in variable x after the conversion?

x = str(3.14)

• "3.14"
• 3.14
• "3,14"
• 3,14

🕮 8.2.3

If the conversion operation fails, the compiler displays an error message.

118

E.g. for:

aa = 'text'

a = int(aa)

is displayed

ValueError: invalid literal for int() with base 10: 'text'

informing about an unacceptable character, or string.

📝 8.2.4

Which of the conversions end successfully?

• a = int(3.14)
• a = float(3.14)
• a = float('3.14')
• a = int('3.14')
• a = int(3,14)

🕮 8.2.5

For two values stored in integer variables, let's get the notation of their subtraction
and store it in the variable result.

For example for 8 and 5 we get the result

8 – 5 = 3

We will use the addition operation to join the strings, the program will look like this:

a = 8

b = 5

result = str(a) + ' - ' + str (b) + ' = ' + str(a - b)

print(result)

From the integer form to the string type, we use the str() function, which can be
used both for a variable and for the result of a mathematical operation.

119

📝 8.2.6

Complete the code so that the result of the program is an output

data 10

p = 'data'

result = p + '_____' + _____(10)

print(result)

📝 8.2.7

By completing the given command, change the entered value from string type to
integer type.

a = '10'

b = _____a_____ + 3

📝 8.2.8

What will be the result of the given code?

p = input("Enter a number")

10 + p

• TypeError: unsupported operand type(s) for +: 'int' and 'str'
• '10+entered value'
• 10+entered value

120

Numeric data types

Chapter 9

121

9.1 Numeric variables

🕮 9.1.1

Variables of numeric type (int and float) are able to store values of numeric type
and execute the following operations with them:

• + (sum) a + b, e.g.: 10 + 3 = 13
• - (difference) a – b, e.g.: 10 - 3 = 7
• * (product) a * b, e.g.: 10 * 3 = 30
• / (quotient) a / b, e.g.: 10 / 4 = 2.5
• // (integer quotient) a // b, e.g.: 10 // 3 = 3, while the decimal part is

neglected
• % (remainder after integer division) a % b, e.g.: 10 % 3 = 1
• ** (power) a ** b, e.g. 5 ** 3 = 125, therefore 5 * 5 * 5

📝 9.1.2

Fill in the correct results for each operation:

100 + 133 = _____

125 - 37 = _____

12 * 13 = _____

15 / 4 = _____

100 // 3 = _____

18 % 5 = _____

1 ** 3 = _____

• 4
• 3
• 0
• 30
• 3
• 166
• 88
• 333
• 1
• 323
• 233
• 4.25
• 33
• 1
• 156

122

• 3.75

📝 9.1.3

What is the result of the following arithmetic expression?

2**3 // (10 - 6)

🕮 9.1.4

Integers have a special operation that returns a remainder when divided. The %
operator is used to calculate it.

E.g.:

print(10 % 3) # result - 1

print(10 % 2) # result - 0

print(15 % 4) # result - 3

print(20 % 7) # result - 6

print(10 % 0) # ZeroDivisionError: integer division or modulo

by zero

In the last case, there was an error - you cannot divide by zero...

📝 9.1.5

What is stored in the variable x after the program ends?

y = 15

z = 4

x = (y // z) ** (y % z)

🕮 9.1.6

Through the modulo operation (%), we can determine whether the entered number
is even or odd. It is valid that for odd numbers the remainder after division by two is
1, for even numbers it is 0.

The program that provides us with this test can take the form of:

123

n = 10

if (n % 2 == 0):

 print(n, 'is even.')

else:

 print(n, 'is odd.')

or

n = 10

if (n % 2 == 1):

 print(n, 'is odd.')

else:

 print(n, 'is even.')

In the programs, we just changed the condition and swapped the contents of the
positive and negative branches.

📝 9.1.7

Fill in the correct results for each operation:

100 % 133 = _____

125 % 20 = _____

12 % 6 = _____

15 // 4 = _____

10 // 4 = _____

18 % 2 = _____

1 % 3 = _____

• 6
• 2
• 5
• 0
• 100
• 2
• 4
• 0
• 5
• 133
• 1
• 1
• 3
• 0
• 4
• 3

124

• 2

🕮 9.1.8

When working with integers, we must not forget negative numbers, which represent
exactly half of all recordable values. We write a negative number using the - sign
before the numerical value.

E.g.:

c = -1

d = 15 + -5

If we want to stay true to mathematical notation, we can enclose a negative value in
parentheses, e.g.:

e = 15 // (-5)

📝 9.1.9

What will be stored in the variable p after the completion of the following steps of
the program?

a = -3

b = 15 // -5

p = a - b

9.2 Abbreviated entry

🕮 9.2.1

In addition to the basic operators, Python has a special abbreviated version for
changing the value of a variable. It is used in entries when we want to change the
original value of a variable by an arbitrary operation. For example the entry

poc = poc + 1

can be shortened to the form

poc += 1

The abbreviated entry could be read as increasing the value of the variable poc by
one.

125

There must be no space between the operation sign and the assignment sign (=).

Similarly, the entry

poc = poc - 3

is equivalent to the entry

poc -= 3

We change the value of the variable poc by subtracting the value 3 from it.

📝 9.2.2

What will be stored in the poc variable after the execution of the following steps:

poc = 10

poc += 7

poc += 4

poc -= 5

🕮 9.2.3

As well as addition and subtraction, we can also enter other operations.

x = x * 10

x *= 10

Increases the value in variable x by a factor of ten.

b = b - 15

b -= 15

Decreases b by 15.

Such abbreviated operators can be used in combination with all basic arithmetic
operators.

126

amount = amount / 2

amount /= 2

Halves the value stored in the amount variable.

amount = amount // 3

amount //= 3

Executes an integer division of the contents of the amount variable by three.

number = number ** 4

number **= 4

It powers the contents of the number variable to the fourth.

📝 9.2.4

What will be stored in the poc variable after the execution of the following steps:

poc = 10

poc *= 7

poc //= 4

poc -= 5

poc //= 6

127

poc **= 3

📝 9.2.5

How would we write the following assignment in abbreviated form?

p = p % 10

📝 9.2.6

What notation can be used as equivalent to the given command?

v = v * 8

• v *= 8
• v ** 8
• v =* 8
• v * 8

📝 9.2.7

Complete the corresponding symbols so that the entry is correct.

a _____ 3 # a = a / 3

b _____ 2 # b = b % 2

🕮 9.2.8

In the abbreviated entry, not only the numerical value may appear on the right-hand
side, but we can also use a variable just as well.

The entry

a += b

means that the value of variable a will be increased by the contents of variable b.

Program

a = 10

b = 5

128

a *= b

print(a)

prints the value 50.

📝 9.2.9

What will be the result of the following program?

a = 2

a += 3

a *= 2

b = 20 % a

b -=2

b += a

print(b)

9.3 Integers(programs)

⌨ 9.3.1 Integer division

Write a program that divides two integers and determines the quotient and
remainder (use operations for integer division). Treat division by zero at the
beginning of the program and if it happens, print: "Cannot divide by zero".
Otherwise, print the quotient and the remainder separated by a space.

Input:

4

5

Output:

0

4

Input:

9

0

Output: Cannot divide by zero

129

⌨ 9.3.2 Triangle

Write a program that checks whether the three entered numbers can be the lengths
of the sides of a triangle. The input contains three integers. If these values can be
the sides of a triangle, print the perimeter of that triangle. Otherwise, print -1.

input : 3

4

5

output: 12

input : 1

2

3

output: -1

⌨ 9.3.3 Even numbers

Write a program that prints even numbers from 1 to n.

Input: 20

Output:

2

4

6

8

10

12

14

16

18

20

⌨ 9.3.4 Prime number

Write code that checks whether the given number greater than 2 is prime. An
integer greater than 2 is entered at the input. If the number is prime, print yes,
otherwise print no.

input : 5

output: yes

130

input : 9

output: no

input : 11

output: yes

⌨ 9.3.5 The number of divisors of the entered number

Write a program that finds and prints the number of divisors for a given number.

Input : 7

Output: 2

Input : 12

Output: 6

Input : 100

Output: 9

⌨ 9.3.6 Perfect number

In number theory, a perfect number is a positive integer equal to the sum of its own
positive divisors, i.e. sum of positive divisors without the number itself. Write a
program that checks whether an entered number is perfect. The input contains a
positive integer.

If the given number is perfect, print the value yes, otherwise, print the value no.

input : 28

output: yes

input : 999

output: no

131

⌨ 9.3.7 Coins + banknotes

Write a program that, for a given integer amount in euros, prints the minimum
number of banknotes and the minimum number of coins that can be used to pay for
this amount, as well as their breakdown in order from the largest to smallest.
Consider also banknotes with a 500 euros value.

input: 3

output:

banknotes: 0

coins: 2

breakdown:

1 x 2

1 x 1

input: 13

output:

banknotes: 1

coins: 2

breakdown:

1 x 10

1 x 2

1 x 1

132

Decimal numbers

Chapter 10

133

10.1 Decimal numbers

🕮 10.1.1

Many task can be solved using integer operations, but there are also problems in
which we need to use decimal numbers. To store decimal (real) numbers, Python
uses the float data type.

The decimal part is separated from the integer by a dot.

5.18

We can recognize the real number in the output by the fact that its decimal part is
displayed. A number with a zero decimal part has it displayed as .0, e.g.

14.0

We inform the compiler that the variable is supposed to be of float type by inserting
a decimal value.

a = 12.5

b = 3.0 # we enter integer as a decimal number

📝 10.1.2

Choose the correctly written decimal numbers:

• 3.1
• 15.8
• 17.0
• 0.59
• 17
• 0,58
• 2,5

🕮 10.1.3

Real numbers are written in a standard format:

3.1415296536, 556.44

134

or in scientific format:

5.5644e2

which means 5,5644 * 102 = 556,44.

📝 10.1.4

Find the correct decimal number for numbers written in scientific format:

1.1234e2 = _____

2.4532e3 = _____

2.4532e4 = _____

2.4532e1 = _____

5.048e0 = _____

3.2e-1 = _____

1.2e-3 = _____

• 245.32
• 11.234
• 5.048
• 0.5048
• 0.12
• 0.012
• 1123.4
• 112.34
• 24.532
• 24532.0
• 0.032
• 3.2
• 50.48
• 0.0012
• 0.32
• 2453.2

📝 10.1.5

Find the correct number written in scientific format for decimal numbers:

11.11 = _____

2.48 = _____

255.32 = _____

2553.2 = _____

135

0.12 = _____

• 1.2e0
• 2.48e0
• 2.5532e4
• 1.111e1
• 2.5532e1
• 2.5532e2
• 1.111e2
• 2.5532e2
• 2.48e1
• 2.5532e3
• 1.111e3
• 1.2e-1
• 1.2e1

🕮 10.1.6

When an integer and a real number type or operation for real numbers are
combined in a calculation, the result is a real number (a number with a decimal
point).

The result of the following code:

a = 10

b = 5

c = a / b

print(c)

is a real number. This fact is presented by printing the result in the form

2.0

📝 10.1.7

What is the result of the activity of the following code?

a = 2

b = 3

c = b // a * b / a

print(c)

• 1.5
• 1,5

136

• 1
• 2.25
• 2,25

📝 10.1.8

What does the following program print?a = 2.0

b = 3

c = a * b

print(c)

🕮 10.1.9

To load a decimal number from the user, we use input() and then transform the text
into a decimal number using the float() function:

aa = input('Enter a number: ')

a = float(aa)

📝 10.1.10

Complete the code for the addition of two decimal numbers:

aa = input('Enter the 1st number: ')

a = _____(aa)

bb = _____('Enter the 2nd number: ')

b = _____(bb)

print(a + b)

10.2 Functions for working with numbers

🕮 10.2.1

We already know that Python can work with values of different types. Each data
type has a set of standard functions with which we can process the values. We call
them built-in functions because we don't need to add any plugins to the program to
use them.

The function processes the value or values that we enter in the brackets (we call
them parameters or arguments) and returns a result that we can work with further,
e.g. print it or put it into a variable.

137

Each data type has its own built-in functions. For example, numeric data types have
the following functions:

• abs() - returns the absolute value of the entered number,
• max() - returns the maximum value from the entered values,
• min() - returns the minimum value from the entered values,
• pow(x, y) - returns x to the power of y, this is the same calculation as x ** y

abs(-3) # result 3

max(2, 5, 6, 8, 1, 3) # result 8

min(2, 5, 6, 8, 1, 3) # result 1

pow(3, 2) # result 9

📝 10.2.2

Complete the function so that the result is correct:

a = -8

print(_____(a)) # prints 8

📝 10.2.3

Complete the function so that the result is correct:

a = 7

b = 2

print(_____(a, b)) # prints 2

🕮 10.2.4

In addition, the float data type has a round() function that processes a decimal
value by rounding it to an integer value.

round(3.45) # result 3

round(5.75) # result 6

round(-1.6) # result -2

📝 10.2.5

Fill in the correct rounding results:

138

a = round(6.8) # result _____

b = round(13.6) # result _____

c = round(3.12) # result _____

d = round(4.51) # result _____

🕮 10.2.6

In Python, .5 values are rounded:

• down if .5 is preceded by an even number, e.g.

round(4.5) # result 4

round(6.5) # result 6

• up if .5 is preceded by an odd number, e.g.

round(5.5) # result 6

round(7.5) # result 8

📝 10.2.7

Fill in the correct rounding results:

a = round(6.5) # result _____

b = round(13.5) # result _____

c = round(3.5) # result _____

d = round(4.5) # result _____

• 4
• 6
• 5
• 14
• 13
• 7
• 3
• 4

📝 10.2.8

Whatis the result of the following program?

a = 10

b = round(a/3*100)/100

139

c = a - b

d = round(c)

print(d)

🕮 10.2.9

For rounding to a specified number of decimal places, an extended version of the
round() function is used, where the second parameter specifies the number of
decimal places to which the value is supposed to be rounded.

pi = 3.14159

pi2 = round(pi, 2)

The result is 3.14

If a negative value is entered, the value is rounded to tens, hundreds, etc. For
example:

round(1234, -1) # result 1230

round(1234, -2) # result 1200

round(1254, -2) # result 1300

round(2854, -3) # result 3000

📝 10.2.10

Fill in the correct results:

round(13.67, 1) # result _____

round(1.865, 2) # result _____

round(136, -1) # result _____

round(387, -2) # result _____

round(3254, -2) # result _____

round(8154, -3) # result _____

• 1.87
• 3250
• 400
• 1.90
• 13.7
• 3300
• 140
• 8000
• 8200

140

• 130
• 13.6
• 14
• 3260
• 1.86
• 390

10.3 Nesting functions

🕮 10.3.1

Despite the fact that we have already used this approach quite naturally several
times, we will explain how functions can be nested within each other.

As we said, each function processes arguments and returns a result that we can
use further, e.g.

x = max(10,20)

print(x)

We can combine this entry into a single command by omitting the assignment of
the result of the max() function to a variable and simply printing the result:

print(max(10,20))

The compiler evaluates this notation by first calculating the maximum of 10 and 20,
returning the result, and using it as an argument for the print command.

We can also use:

a = round(max(5.6, 7.8))

where the max() function is evaluated first and its result subsequently becomes the
argument of the round() function. Then the result is assigned to the variable a.

In this way, we can nest practically any number of functions into each other.

📝 10.3.2

What is the result of the following sequence of commands?

141

a = 10

b = 3.6

c = min(a, round(b * 3))

print(c)

📝 10.3.3

What is the result of the following sequence of functions?

print(round(min(max(3.1, 5, 4.6, 7.8), min(10.8, 15.62, 3.21,

11))))

🕮 10.3.4

Just as mathematical functions, all other functions can also be nested and
processed.

Due to their textual form, we had to carry out the loading of numerical data from the
user in two steps:

aa = input()

a = int(aa)

However, this procedure can be simplified thanks to nesting the input() function in
the int() function that transforms text into a number:

a = int(input())

The process is the same with decimal numbers:

b = float(input())

📝 10.3.5

Complete the code to get inputs:

x = _____(_____()) # loading an integer

y = _____(_____()) # loading an decimal number

• get
• int
• integer

142

• float
• str
• str
• input
• input
• get

10.4 Decimal numbers(programs)

⌨ 10.4.1 The sum of two real numbers

Write a program that, for two real numbers, calculates their sum, rounds it to a
whole number and prints it.

input:

8.2

2.5

output: 11

input:

1.5

3.3

output: 5

⌨ 10.4.2 Seconds

Write a program that reads an integer representing the number of seconds from the
input. Write how many days, hours and minutes it represents. Round the results to 3
decimal places.

Input: 3600

Output:

days: 0.042

hours: 1.0

minutes: 60.0

Input: 500000

Output:

days: 5.787

143

hours: 138.899

minutes: 8333.333

⌨ 10.4.3 BMI calculation

Write a program that, based on the entered weight and height in meters, calculates
the BMI index and prints whether you are overweight or not.

BMI (body mass index) is calculated as the ratio of weight in kilograms to the
square of height in meters.

• BMI < 18,5 - underweight,
• 18,5 <= BMI < 25 - normal weight,
• 25 <= BMI < 30 - overweight,
• BMI > 30 - obesity.

Input :

45

1.70

Output: underweight

Input :

90

1.65

Output: obesity

Input :

80

1.80

Output: normal weight

⌨ 10.4.4 Circle

Write a program that, for an entered radius (decimal number), calculates and prints
the area and circumference of a circle rounded to whole numbers. Let the variable
pi have the value 3.14.

input : 5

144

output: 79 31

input : 4.5

output: 64 28

⌨ 10.4.5 Time to march

Write a program that reads from the input the number of kilometers to the
destination and the expected speed of the tourists. Then it will print how many
hours the march will take.

Input: 21

6

Output: 3.5

Input: 100.5

10

Output: 10.05

⌨ 10.4.6 Arrival

Write a program that reads from the input an integer representing the number of
liters of fuel in the car's tank and a decimal number with information about the fuel
consumption per 100 km.

Then the program will display how many kilometers the fuel in the tank is sufficient
for.

Input: 20

8

Output: 250

Input: 50

5

Output: 1000

145

⌨ 10.4.7 Rate transfer

Write a program that converts an entered number of EUR to USD. The first value will
be the amount in EUR, the second the conversion rate. The output will be the
number of USD that can be obtained for the entered number of EUR

Input: 100

1.1

Output: 110.0 $

Input: 1000

1.008

Output:1008.0 $

146

Boolean expressions

Chapter 11

147

11.1 Boolean expression

🕮 11.1.1

In addition to expressions that result in a number, we often work with expressions
that result in true or false. We refer to these expressions as boolean and we have
already encountered them when using conditions in the if statement.

Although so far we have only compared variables with each other or variables with
values, we can also compare values themselves.

An example can be an entry

if 4 > 0:

 print ('true')

else:

 print('false')

which can be replaced directly with a command

print(4 > 0) # prints True

If the expression in parentheses is true, the result is True, otherwise it is False.

Eg: is it true that 5 - 3 < 0? It's not.

print(5 - 3 < 0) # prints False

Pay attention to the size of the letters. The values true or false are not
boolean values.

📝 11.1.2

Complete the code that tests whether n is positive.

n = 28

print(n _____) # The output is the value _____

• True
• > 0
• true
• false

148

• False
• <| 0
• > 50

📝 11.1.3

Complete the code that tests whether twice n is less than 50.

n = 28

print(2 * n _____) # The result is value _____

• False
• True
• <| 0
• true
• false
• > 50
• < 50

🕮 11.1.4

If we can print the evaluation of an expression, we can also insert it into a variable:

result = 4 > 0

In the code, it is first evaluated whether 4 > 0 and then the True value
corresponding to the truth is inserted into the variable result.

In this code, it is first evaluated whether 4 > a + 5, i.e. 15, and then the False value
corresponding to false is inserted into the variable result.

a = 10

result = 4 > a + 5

📝 11.1.5

What is the result of the program?

a = 7

t = a < 5

print(t)

149

• False
• True

🕮 11.1.6

To store boolean values, we use variables of type boolean (bool). We usually get
their content as a result of comparison, verification of the truth of the condition, etc.

We can verify the condition, whether a > b, by writing it in the if structure:

if a > b

but we can also store the result of the expression evaluation in a variable

a = 10

b = 5

result = a > b

print(result)

If the value of a is greater than b, the value of True is stored in the variable result,
otherwise (less than or equal to), the result variable will contain the value of False
after evaluation.

We can also check the data type of the resulting value.

print(type(result)) # prints <class 'bool'>

📝 11.1.7

Check whether the variable a contains a value of 5 and store the result in the
variable t, whose value wiil be printed.

a = 7

t = a _____ 5

print(t)

🕮 11.1.8

Comparison operators are attached to the boolean type, we will repeat them so we
are complete:

150

• > - is greater than, e.g. a > b
• >= - is greater or equal to, e.g. a >= b
• < - is lesser than, e.g. a < b
• <= - is lesser or equal to, e.g. a <= b
• == - is equal to, e.g. a == b
• != - is not equal, e.g. a != b

Using characters in the wrong order will cause an error (eg: =>, or <>).

📝 11.1.9

Which comparison operators are correct?

• >=
• <|=
• ==
• !=
• <|>
• =>
• =<|

151

11.2 Using expressions

🕮 11.2.1

The result of the comparison can be also used in conditions by first finding the
result of the expression and then using it in the condition, e.g.:

a = 10

b = 5

result = a == b

if result == True:

 print("Values are equal")

else:

 print("Values are different")

Although such a procedure is not standard for simple conditions, it
will help us understand the principle of using boolean expressions.

📝 11.2.2

What does the following program print?

a = 10

b = 5

result = a == (b + b)

if result == true:

 print("values are equal")

else:

 print("values are different")

• ends with an error
• values are equal
• values are different

🕮 11.2.3

The entry

if result == True

we usually write in the form

152

if result

because the evaluation of the condition result == True depends on what value the
variable result has.

Ak je pravdivá,

if result == True

we ask if true is true (True == True) - the result is True.

If the variable contains a false value:

if result == True

we ask if false is true (False == True) - the result is False.

The answer to the condition is actually already contained in the variable result:

• if it contains a true value, the result is True,
• if false, the result is False.

📝 11.2.4

Complete the code so that it prints whether it is a negative or non-negative number
(allow to enter decimal numbers as well).

input_ = input('Enter a number: ')

a = _____(input_)

negative = a _____ 0;

if _____:

 print("negative")

else:

 print("non-negative")

• negative==False
• float
• int
• negative==0
• <
• negative
• zaporne == 0

153

📝 11.2.5

Complete the program to verify whether n is even.

n = 23

print(n % 2 _____ 0)

The output value is

📝 11.2.6

Complete the program to check whether n is non-zero.

n = -6

print(n _____ 0)

The output value is

11.3 Compound conditions

🕮 11.3.1

In the program, we often combine several conditions that can be in different
relationships. We most often encounter situations in which:

• all conditions must apply,
• it is enough if only one of the conditions applies.

According to the entered age of the employee, find out whether he is in productive
age - between 18 and 70 years.

The task can be solved as follows:

age = int(input('Enter the age of an employee: '))

if age >= 18: # whether the first condition is met

 # check whether the age is simultaneously less than the

upper limit

154

 if vek <= 70: # both conditions are met

 print("this employee is in productive age")

📝 11.3.2

Arrange the rows of the program, so that it prints the season of the year that the
entered moth belongs to. Arrange the rows so that they are verified in the order of
spring, summer, autumn, winter.

• if month >= 4:
• if month >= 7:
• if month <= 9:
• if month >= 1:
• print("autumn")
• print("spring")
• if month <= 3:
• month = int(input('Enter the month: '))
• print("winter")
• if month <= 6:
• print("summer")
• if month <= 12:
• if month >= 10:

🕮 11.3.3

Original program:

age = int(input('Enter the age of an employee: '))

if age >= 18:

 if age <= 70:

 print("this employee is in productive age")

will be slightly modified.

A simpler entry allows us to write two verifications into a single compound
condition. The fact that they should apply simultaneously is expressed through the
boolean conjunction and (and simultaneously). This is how we simplify the entry of
two conditional commands by combining them into one compound condition:

age = int(input('Enter the age of an employee: '))

if (age >= 18) and (age <= 70):

 print("this employee is in productuve age")

155

In a compound condition, complete conditions are combined - i.e. variables must
be specified in each subcondition.

Python does not require the use of parentheses when creating
compound conditions, but we recommend them to avoid various
mistakes.

📝 11.3.4

Let´s also modify our second program - complete the program so that it prints the
season of the year for the entered month.

month = int(input('Enter the month: '))

if month >= 4 _____ month <= 6:

 print("spring")

if month >= 7 _____ month <= 9:

 print("summer")

if month >= 10 _____ month <= 12:

 print("autumn")

if month >= 1 _____ month <= 3:

 print("winter")

• and if
• and
• and if
• if
• if
• if
• and
• and
• and if
• and
• if
• and if

🕮 11.3.5

A specific feature of the Python language is the possibility of delimiting a variable
with comparison operators from both sides, which allows us to significantly
shorten the entry of boolean expressions.

Attention, we only do this if the same variable appears in both
conditions, therefore it is not a solution that can be used anytime and
anywhere.

156

The expression

(n >= 0) and (n <= 10)

can be written as

0 <= n <= 10

The entry of our program will take on a new form:

age = int(input('Enter the age of an employee: '))

if (18 <= age <= 70):

 print("this employee is in productive age")

or

if (70 >= age >= 18):

 print("this employee is in productive age")

📝 11.3.6

Arrange the lines of the program which, based on the diameter of the egg given in
millimeters, evaluates the size category the egg belongs to. Verify the average
value in from largest to smallest order.

• print('L')
• if p >= 65:
• elif 65 < p <= 55:
• elif 55 < p <= 45:
• print('S')
• else:
• print('XL')
• print('M')
• p = int(input('Enter the diameter of the egg in millimeters: '))

📝 11.3.7

Adjust the program for the seasons again - complete the program so that it prints
the season that entered month belongs to.

month = int(input('Enter the month: '))

if 4 _____ month _____ 6:

157

 print("spring")

if 7 _____ month _____ 9:

 print("summer")

if 10 _____ month _____ 12:

 print("autumn")

if 1 _____ month _____ 3:

 print("winter")

• <=
• >=
• <=
• >=
• <=
• >=
• <=
• >=
• >=
• <=
• <=
• >=
• >=
• >=
• <=
• <=

📝 11.3.8

Complete the boolean expression so that it tests whether the value of the variable n
belongs to the interval <-5, 5>.

n = 0

print(-5 _____ n _____ 5}

The result is

🕮 11.3.9

In some cases, we require only one of the verified conditions to be met. In such
case, the boolean conjunction or is used.

if (a > 0) or (b < 0)

158

The evaluation of the expression is true if at least one of the conditions is met - i.e.
if a > 0 or b < 0.

If both conditions are met, the expression is also true.

📝 11.3.10

Complete the program so that it prints whether the applicant is entitled to an
allowance, the allowances are intended for persons under 18 and over 70.

age = int(input("Enter the age: "))

if (age _____ 18) _____ (age > _____):

 print("the person is entitled to an allowance")

• >
• 70
• 18
• or
• <
• and

📝 11.3.11

Complete the program so that it pprints that a number is accepted if it is positive or
even.

number = int(input('Enter a number: '))

if (number > _____) _____ (number _____ 2 _____ 0):

 print('accepted')

• or
• >
• /
• 18
• 0
• ==
• <|
• **
• //
• %
• and

159

11.4 Evaluation of the compound expressions

🕮 11.4.1

We achieve the simultaneous validity of several conditions by using the conjunction
and. In case it is sufficient for us to fulfill only one condition from the group listed,
we use the conjunction or.

The use of this pair is not limited to use in the conditional if statement - we can also
use them when working with boolean expressions.

For example the result of the expression stored in the variable c

a = 10

b = 5

c = a > b or b < 0

can be obtained by gradually evaluating the individual parts of the compound
condition. First, we evaluate each part separately:

c = a > b or b < 0

 10 > 5 or 5 < 0

 True or False

the result of a combination of truth values True or False - True.

📝 11.4.2

What is the result of the following program?

a = 10

b = 5

c = a <= b or b < 0

print(c)

• False
• True

🕮 11.4.3

Let's test the calculation for the requirement that the number be both positive and
even.

160

n = 15

Let's test whether the number is positive and even.

n > 0 # the result is True

n % 2 == 0 # the result is False

we connect with the boolean conjunction and

result = (n > 0) and (n % 2 == 0)

 True and False

 False

📝 11.4.4

What is the result of the following program?

a = 1

b = 5

c = a >= b and b > 0

print(c)

• False
• True

🕮 11.4.5

In addition to checking whether the condition is true, it is sometimes convenient to
use the entry: if it is not true, then e.g.:

a = 5

b = 1

zeroDivisor = b == 0 # in this case the result is False

if not(zeroDivisor): # if it is not true that the divisor is

zero

 quotient = a / b

 print(quotient)

else:

 print("Attempting to divide by zero")

161

An entry beginning with the expression not negates the result of the expression or
the content of the variable listed after it - it will make the value True False and vice
versa.

In this case, the zeroDivisor variable contains the value False and the entry in the
condition means:

• if it is not true that the zeroDivisor, then calculate the quotient,
• respectively if zeroDivisor contains the value False, then execute
• respectively if the negated content of the zeroDivisor variable is true, then

execute.

📝 11.4.6

What command do we use to negate the contents of a boolean variable?

• not
• nor
• or
• xor
• no
• now

🕮 11.4.7

The combination of logical expressions and logical variables need not be limited to
only two elements. The evaluation proceeds by first evaluating the expressions in
parentheses, then the negation, and then proceeds from left to right.

E.g.

h1 = False

a = 5

b = 7

result = not(a > b) or (b - 5 < a) and h1 or not(h1)

print(result)

is evaluated as:

not(a > b) or (b - 5 < a) and h1 or not(h1)

not(False) or True and False or not(False)

 True or True and False or True

 True and False or True

162

 False or True

 True

📝 11.4.8

What is the resulting value of the following expression?

a = 1

b = 2

result = (a == 5) and (b < 6) and (a > b)

• False
• True

📝 11.4.9

What is the resulting value of the following expression?

a = 2

b = 2

result = (a == b) and (b > 6) or (2*a > 2*b)

• False
• True

📝 11.4.10

What is the resulting value of the following expression?

k = 2

j = 3

result = (k <= 5) or (j > 6) and (j >= k)

• True
• False

📝 11.4.11

What is the resulting value of the following expression?

163

a = -2

b = 2

result = (a != b) or (b > 6) and not (a > -a)

• True
• False

📝 11.4.12

What is the resulting value of the following expression?

k = 5

j = 6

result = ((k <= 5) and (j > 6)) or not(k > j)

• True
• False

11.5 Boolean expressions(programs)

⌨ 11.5.1 Väčší/menší

Write a program to find out whether the first of two given numbers is less than the
second.

input:

2

4

output: True

input:

5

2

output: False

⌨ 11.5.2 Report card

For the entered average on the report card, write whether the student:

164

• passed with honors - average less than or equal to 1.5;
• did very well - average greater than 1.5 and less than or equal to 2;
• passed - average greater than 2 and less than or equal to 4;
• failed - average more than 4.

Use a dot as a decimal separator (1.3, 2.8, etc.)

Input: 1.5

Output: passed with honors

Input: 4.1

Output: failed

⌨ 11.5.3 Maximum of three numbers

Write a program that prints the largest of the three entered numbers. If all three
numbers are equal, it will print "Numbers are equal".

Input: 2 4 6

Output: 6

Vstup: 2 2 2

Output: Numbers are equal

⌨ 11.5.4 Multiples

Write a program that, for three entered numbers, determines whether any of them is
a multiple of two others. If so, it prints the given number, otherwise it prints False.

Input:

3

2

6

Output: 6

Input:

5

165

2

6

Output: False

⌨ 11.5.5 Interval

Write a program that checks whether the entered number is in the entered interval.
At the beginning of the algorithm, check whether the entered interval is correctly
rotated (eg not 5.2 but 2.5) and if not, adjust it.

The input contains a trio of integer values representing two interval limits and the
entered value.

The output will be a correctly rotated interval, and information on whether the
entered number belongs to the interval.

Input : 5

10

7

Output: <5,10> 7 belongs

Input : 100

20

10

Output: <20,100> 10 does not belong

Input : 30

4

85

Output: <4,30> 85 does not belong

⌨ 11.5.6 Test rating

Write a program that, after entering the percentage of success in the test, prints a
verbal rating according to the following rules

• More than 90 percent: Excellent performance.
• More than 70 percent, or lees than or equal to 90 percent: Great

performance.
• More than 50 percent, or lees than or equal to 70 percent: Good job.

166

• More than 30 percent, or lees than or equal to 50 percent: Not worst, but you
can do better.

• Less than or equal to 30 percent: You need to work on yourself. Next time it
will be better.

E.g.:

Input: 65

Output: Good job.

167

Strings

Chapter 12

168

12.1 String data type

🕮 12.1.1

A string is a data type that allows you to store and work with a group of characters
that usually make up a word or continuous text.

In the program, string is delimited by apostrophes (') or quotation marks (").
Because of them, the compiler knows how to work with the given value.

Napr.

name = 'Adam'

insert the text content Adam into the name variable

For the entry

name = Adam

the compiler would expect a variable called Adam, whose content it would put into
the name variable.

📝 12.1.2

Which characters delimit a text string in Python?

• '
• "
• !
• #
• ()

🕮 12.1.3

We already know that the simplest operation that can be executed on strings is to
concatenate them. This operation is provided by the "+" character, which from two
existing strings creates a new one by appending the contents of the second to the
contents of the first string.

output = 'it' + 'bites'

print(output) # prints itbites

169

We can concatenate any number of strings or variables that contain the string.

a = 'Mama'

b = ' has '

c = 'Ema'

d = a + b + c

print(d) # vypíše Mama has Ema

📝 12.1.4

What will be stored in the variable d after the following program is executed?

a = "Warning"

b = "dark"

c = "!"

d = a + b + c

• Warningdark!
• warning dark
• Warning dark!
• Warning dark !
• WarningDark!

🕮 12.1.5

To concatenate a string and a number, we need to use the conversion of a number
to a string using the str() command.

s = 'result: ' # text

a = 3 # number

b = 7 # number

c = a + b # number

d = s + str(c)

print(d)

In case we would like to use the "+" sign to combine text and number, e.g.

a = "result: " # text

b = 3 # number

c = a + b

170

we get an error message:

TypeError: can only concatenate str (not "int") to str

📝 12.1.6

Complete the program so that you get an output in the form

a + b = c

e.g.

10 + 20 = 30

a = 3 # number

b = 7 # number

c = a + b # number

d = _____(a) + '_____' + _____(b) + ' = ' + _____(c)

print(d)

🕮 12.1.7

The variable type containing a text string is referred to as string.

The command type(variable) returns the value of str:

a = "Python”

print(type(a))

prints

<class 'str'>

📝 12.1.8

Assign the correct types to the variables:

a = 3

b = 7.5

c = "Prague"

d = a == b

print(type(a)) # _____

171

print(type(b)) # _____

print(type(c)) # _____

print(type(d)) # _____

• Bool
• float
• integer
• int
• int
• bool
• Str
• double
• bool
• str
• str

🕮 12.1.9

We also remember that when data is loaded, they all enter the program as text
strings, and for further processing in a different way, it is necessary to convert them
to appropriate values.

print('Enter an integer: ');

input1 = input()

a = int(input1) # convert to an integer

print('Enter a decimal number: ');

input2 = input()

b = float(input2) # convert to a decimal

number

c = a - b

result = 'Difference: ' + str(c) # convert the number to

text

print(result)

📝 12.1.10

Complete the program so that it prints the product of two decimal numbers in a
clear form. For example for inputs: 1.1 and 2.2 will print

1.1 * 2.2 = 2.42

print('Enter 1st decimal number: ');

172

v1 = input()

a = _____(v1)

print('Enter 2nd decimal number: ');

v2 = input()

b = _____(v2)

c = a _____ b

result = _____(a) + ' * ' + _____(b) + ' = ' + _____(c)

print(result)

12.2 String multiplication

🕮 12.2.1

In addition to the sum operation, Python also allows you to use multiplication when
working with strings.

When multiplying, one variable must be of type string and the other of type integer,
e.g.

n = 3

txt = 'uff '

c = n * txt

The result of the multiplication is a text string containing the contents of the text
variable repeated n times in a row.

In this case it is

uff uff uff

Other operations such as division or subtraction are not used on
strings.

📝 12.2.2

What is the result of the following command?

print('ab' * 3)

• ababab
• ab3
• 3ab

173

• aaabbb
• error

📝 12.2.3

What is the result of the following command?

print('ab' + 3)

• error
• ab3
• 3ab
• aaabbb
• ababab

📝 12.2.4

What is the result of the following command?

print(str(5) * 3)

• 555
• 15
• 535353
• 5553
• chyba

📝 12.2.5

What will be the result of the following command?

print(str(5) + 3)

• error
• 53
• 5 3
• '5'3
• 5553

174

📝 12.2.6

What is the result of the following program?

ret = '101'

ret *= 10

print(ret)

📝 12.2.7

Which of the following commands is possible?

x = input()

• print(x + x)
• print(x * x)
• print(x - x)

12.3 Characters in string

🕮 12.3.1

Every variable of the string type allows searching, finding the number of characters,
changing the size of characters, etc.

The simplest operation is to return the number of characters in the stored content.
We get it through the len() command.

data = "Mama"

dlzka = len(data)

print(lenght)

The number of characters contained in the data variable is stored in the length
variable, i.e. in this case 4.

📝 12.3.2

What will be stored in the length variable after the following code is executed?

x = 'python'

175

lenght = len(x)

📝 12.3.3

What does the following code print?

print(len(''))

🕮 12.3.4

Every string consists of characters. Each character has its place in the string, which
is defined by an index. Python counts the elements in any list by starting to count
from zero.

The first character in the string is at position 0, the second at position 1, and so on.
The last character is at a position one less than the total number of characters in
the string.

E.g. for:

data = "Madonna";

characters are distributed in individual positions as follows:

The number of characters in the string is 7, the last character is at the position 6.

📝 12.3.5

Which character is in position 1 in the string?

ret = 'Priscilla'

🕮 12.3.6

Access to characters at individual positions is provided by notation consisting of
the name of the variable followed by square brackets with an index, e.g.:

176

data = 'Python'

first = data[0]

The outputs for the following commands then are:

data = 'Python'

first = data[0]

print(prvy) # prints P

print(data[1]) # prints y

print(data[2]) # prints t

print(data[3]) # prints h

print(data[4]) # prints o

print(data[5]) # prints n

print(data[6]) # prints an error

Notice that the last character of the string has an index one unit smaller than the
length of the entire string, i.e.

last = len(data) - 1

📝 12.3.7

Which character does the following code print?

ret = 'Priscilla'

print(ret[4])

📝 12.3.8

Fill in the universal correct index of the last character.

ret = input()

print(ret__)

• 2
•)
• (
• *
• +
•)
• len

177

•]
• ret
• }
• [
• -
• 1
• {
• (
•]
• [

🕮 12.3.9

If we try to access a character that does not exist,

ret = 'Test'

znak = ret[4]

an error message is displayed.

IndexError: string index out of range

It informs us that we are out of range of the string indexes.

This is a fairly common mistake of a novice programmer.

📝 12.3.10

Ktoré volania pre získanie znaku z reťazca ret možno použiť?

ret = 'Anaconda'

• ret[0]
• ret[7]
• ret[len(ret)-1]
• ret[4]
• ret[8]
• ret[9]
• ret[len(ret)]

178

12.4 Characters iteration

🕮 12.4.1

We can access each character in the string through its index. If we need to go
through all the characters, we usually do so by iterating using the loop.

Let's write the entered word one letter at a time.

ret = input('Enter a string: ')

lenght = len(ret)

for i in range(lenght):

 print(ret[i])

The range(length) command will generate values starting with zero and ending with
length-1, which is exactly the index of the last character we need.

📝 12.4.2

Complete the program that prints all the characters in the string below each other:

ret = input('Enter a string: ')

lenght = _____(ret)

for i in _____(_____)_____

 print(____________________)

• (
•)
• [
• length
• }
•]
•)
• [
•]
• :
• ;
• len
• lenght
• {
• Range
• in
• (
• i
• range

179

• ret

🕮 12.4.3

Write a program that prints the letters in even positions of the string below each
other (characters in position 0, 2, 4, 6, ...)

The procedure is very simple, just adjust the parameters of the previous cycle.

ret = input('Enter a string: ')

lenght = len(ret)

for i in range(0, lenght, 2):

 print(ret[i])

📝 12.4.4

Complete the program that prints letters in odd positions in the entered text
(characters in position 1, 3, 5, ...).

ret = input('Enter a string: ')

lenght = _____(ret)

for i in range(_____, _____, _____):

 print(ret[i])

🕮 12.4.5

In Python, we can use the for loop feature, where instead of generating a range, we
can directly enter a string.

ret = 'Slovakia'

for i in ret:

 print(i)

The loop then works in such a way that at each step of the loop the next character
in the specified string is inserted into the variable i.

The output of the program will be:

S

l

o

v

a

180

k

i

a

We can use this iteration if we want to process only the characters of the string, but
we are not interested in their position.

📝 12.4.6

Complete the code so that we reach the listed output.

ret = _____

for i in _____:

 print(i)

P

o

k

e

m

o

n

12.5 Typical tasks

📝 12.5.1

Write a program that detects how many times the character a is found in the
entered word.

Complete the program that will solve the task:

word = _____('Enter a word: ') # read the word from the input

lenght = _____(word) # find the number of

characters

#in the variable number will be the number of characters found

and - 0 at the beginning

number = 0

for i in _____(lenght): # in the loop we iterate

through the positions from 0 to length-1

181

 if word[i] _____ 'a': # if there is an 'a' in

position i, we increase the number

 number = _____ _____ 1

print('The word cantains',_____,'characters _____a"') # output

📝 12.5.2

We'll repeat the task again, using Python's ability to iterate through the characters
of a word directly in a loop:

Write a program that detects how many times the character a is found in the
entered word.

Complete the program that will solve the task:

word = _____('Enter a word: ') # read the word from the input

number = 0 # number of characters a

found - 0 at the beginning

for i in _____: # in the loopwe go through

the characters of the word

 if _____ == 'a': # if the examined

character is 'a', we increase the number

 number = _____ + 1

print('The word contains',number,'charatcters _____a"') #

output

📝 12.5.3

Write a program that detects how many even and odd digits are in a number read
from the input as a string.

Complete the program:

number = input('Enter a number: ') # read the number from the

input

even = 0 # the number of even and odd

numbers is 0

odd = 0

for i in _____: # we iterate trough the digits

 x = _____(i) # change each character

(digit) to a number

 if x _____ 2 _____ 0: # if the digit is

divisible by 2 it is an even number

 even = even + 1

182

 else: # else odd

 odd = odd + 1

print('The number contains',even,'even and',odd,'odd digits.')

📝 12.5.4

We will repeat the task again by using a compound condition. When reading the
digits 0, 2, 4, 6, and 8, we increase the number of occurrences of even digits,
otherwise the number of odd ones.

Write a program that detects how many even and odd digits are in a number read
from the input as a string.

Complete the program:

number = input('Enter a number: ') # read the number from the

input

even = 0 # the number of both even and

odd numbers is zero

odd = 0

for i in _____: # in the loop we iterate

trough the digitd of the word

 # if the examined character is 0,2,4,6,8 otherwise say 0

or 2 or...

 if i == '0' _____ i == '2' _____ i == '4' _____ i == '6'

_____ i == '8':

 even = even + 1 # increase the number of even

 else: # else odd

 odd = odd + 1

print('The number contains',even,'even and',odd,'odd digits.')

output

• and
• or
• and
• word
• and
• and
• and
• number
• or
• or
• or

183

🕮 12.5.5

Python allows to replace a lengthy notation

if i == '0' or i == '2' or i == '4' or i == '6' or i == '8'

which tests whether the variable has one or the other or the next value, using the in
operator, which tests whether the value is in the list:

if i in '02468':

📝 12.5.6

Write a program that finds out how many vowels there are in the entered word.
Consider only lowercase letters.

Complete the program:

word = input('Enter a word: ') # read the word from the

input

vowels= 0 # the number of vowels is 0 at the

beginning

for i in _____: # in the loop we iterate

trough the characters of the word

 if i _____ _____aeiouy_____: # if the examined

character is in the list of vowels

 vowels = vowels + 1 # increase their number

print('The word contains', vowels, 'vowels.') # output

📝 12.5.7

Write a program that prints a mirror image of the entered word, e.g.:

Mama -> amaM

winter -> retniw

Although later we will also show commands that will simplify this activity, for now
we will make do with a simple loop.

First, we will create a separate variable into which we will insert characters by
inserting the next character in the sequence before the existing string, e.g. for the
word Aladdin, we will proceed as follows:

184

• first we read A and store it in the result (result = "A")
• we read l and store it before the result obtained so far (result = "l" + result,

i.e. "lA")
• we read a and store it before the result obtained so far (result = "a" + result,

i.e. "alA"), etc.

word = input()

mirror = ''

for character in _____:

 # insert the evaluated character before the string obtained

so far

 mirror = _____ + _____

print(mirror)

12.6 Strings(programs)

⌨ 12.6.1 Occurrence of a digit

Write a program to find the number of times the digit '3' is present in the number
entered at the input.

input : 3259873102

output: 2

input : 3333333333

output: 10

⌨ 12.6.2 Digit sum

Write a program that finds the digit sum of an entered number.

Input : 123

Output: 6

Input : 0124

Output: 7

185

Input : 0

Output: 0

⌨ 12.6.3 Number of digits

Write a program to find how many digits are in a string.

input : I have 2 slippers and I am 88 years old.

output: 3

input : 3333333333

output: 10

⌨ 12.6.4 Vowels

Write a program that finds out how many vowels the entered sentence contains.

Consider only characters without long and soft characters.

Consider both lower and upper-case letters.

input : Mama had Ema.

output: 5

input : WARNING, it is freezing.

output: 7

⌨ 12.6.5 Number of words

Write a program that finds out how many words are in the entered sentence.

Input : Mama has ema.

output: 3

186

input : Winter started today: it started snowing in the

morning, it was gloomy at noon, and in the evening we built a

snowman.

output: 22

⌨ 12.6.6 Correction of a text

Write a program that changes all non-numeric characters in the specified string to
the number 1 and prints the changed string.

Input : 57ada87

Output: 5711187

Input : 3.,úôéáá23Â§ô!3

Output: 31111111231113

⌨ 12.6.7 Decryption

Write a program that prints the decrypted text for an encrypted message.

You get the text by selecting every third letter from the input string. An encrypted
message starts with the first letter.

eg. for wtza irnhnbhihjnhjg idp ogjg.

the result is warning dog - everz third letter from the word

187

Characters and special
outputs

Chapter 13

188

13.1 Characters in ASCII

🕮 13.1.1

The basic building element of the string is the character.

We can compare characters based on their order, which resembles the alphabet

 'a' < 'b' < 'c' … < 'z'.

However, it also applies that all uppercase letters are smaller than all lowercase
letters

'A' < 'B' … < 'Z' < 'a' < … < 'z'

This behavior is a consequence of the computer's character encoding. Each
character has its own numerical code, based on which the system knows what form
to give the character.

Characters are usually represented by an ASCII table containing 255 basic
characters. Although alphabets are currently encoded using Unicode/UTF-8
encoding, the first 128 characters are encoded the same way.

Not all characters are displayable, only characters from 32 to 126 are
used in printouts.

ASCII table:

189

📝 13.1.2

Choose the correct statements based on the position of the characters in the ASCII
table:

• 'a'<|'z'
• 'A'<|'Z'
• 'Z'<|'a'
• 'a'<|'A'
• 'a'<|'Z'
• 'A'<|'1'

🕮 13.1.3

How do we find out whether the entered character is lowercase or uppercase?

If the character is present:

• between the first uppercase and the last uppercase character it is a capital
letter,

190

• between the first lowercase and the last lowercase character it is a
lowercase letter.

c = input('Enter a character: ')

if 'a' <= c <= 'z':

 print('lowercase letter')

elif 'A' <= c <= 'Z':

 print('uppercase letter')

else:

 print('it is not a letter')

📝 13.1.4

Complete the code to determine whether the character in the variable c is a digit:

c = input('Enter chracter: ')

if '_____' <= c _____ '_____':

 print('it is a digit')

else:

 print('it is not a digit')

🕮 13.1.5

Thanks to the encoding of characters in the ASCII table, we can determine for each
character its successor and predecessor. A couple of commands help us with this:

• ord() –returns the position of the character in the ASCII table, e.g. ord('A')
returns 65

• chr() – returns the character that is at the specified position, e.g. chr(65)
returns 'A'

📝 13.1.6

Choose the correct command:

returning the position of the character in the ASCII table - _____, e.g. returns 66 for B

returning the character at the specified position - _____, e.g. for 66 it returns the
value B

• ord()

191

• chr()
• getChar()
• inc()
• order()
• ascii()

🕮 13.1.7

For the enetred character, print its predecessor and successor.

We will use the ord() and chr() commands:

• Pomocou ord() zistíme pozíciu znaku v ASCII tabuľke
• To get the predecessor, we use chr() to write a character at a position

smaller by one.
• To get a succesor, we use chr() to write a character at a position one larger.

character = input('Enter a character: ')

pos = ord(character)

print('predecessor: ', chr(pos - 1))

print('successor: ', chr(pos + 1))

📝 13.1.8

What is the output of the command

print(chr(ord('A') + 1))

📝 13.1.9

What is the output of the command

print(chr(ord('d') + 2))

📝 13.1.10

What is the output of the command

print(chr(ord('7') - 2))

192

13.2 Comparison

📝 13.2.1

Character positions are also used when comparing whole words (or more precisely
strings).

We can determine the similarity of the strings through a simple comparison.

What does the following program print?

r1 = 'Mama'

r2 = 'Papa'

if r1 == r2:

 print('same')

else:

 print('different')

• different
• same
• program prints an error

🕮 13.2.2

However, string comparison tells us nothing about which string is alphabetically
larger or smaller.

To determine the lexicographic (alphabetical) comparison, a "classic" comparison
is used, which uses the positions of characters in the ASCII (Unicode) table.

It proceeds in both strings from the first position and when different characters are
encountered, their position in the ASCII table is compared.

The string whose first distinct character has a lower position is smaller than the
second.

For example for 'Mom' and 'Dad' the very first character is different, and therefore:

'Dad' < 'Mom'

For 'Michal' and 'Michaela' the words differ only in the 6th character and 'l' > 'e',
because

'Michal' > 'Michaela'

193

For 'Ivan' and 'Ivana' the first 4 characters are the same and the fifth character no
longer exists in the word 'Ivan'. Since there is nothing less than the character 'a' in
the last position in the word 'Ivana', then:

'Ivan' < 'Ivana'

📝 13.2.3

Choose the correct statement

• 'parent' <| 'teacher'
• 'parent' > 'teacher'
• 'parent' = 'teacher'

📝 13.2.4

Choose the correct statement

• 'Jasmina' > 'Aladin'
• 'Jasmina' <| 'Aladin'
• 'Jasmina' = 'Aladin'

📝 13.2.5

Choose the correct statement

• 'spring' <| 'summer'
• 'spring' > 'summer'
• 'spring' = 'summer'

📝 13.2.6

Choose the correct statement

• 'Daniel' <| 'Daniela'
• 'Daniel' > 'Daniela'
• 'Daniel' = 'Daniela'

194

🕮 13.2.7

Attention, in the case of 'summer' and 'Winter', it applies that

'summer' > 'Winter'

because lowercase letters are placed in higher positions than uppercase ones in
the ASCII table.

📝 13.2.8

Choose the correct statement

• 'aladin' > 'Jasmina'
• 'aladin' <| 'Jasmina'
• 'aladin' = 'Jasmina'

📝 13.2.9

Choose the correct statement

• 'Jasmina' <| 'jasmin'
• 'Jasmina' > 'jasmin'
• 'Jasmina' = 'jasmin'

📝 13.2.10

Choose the correct statement

• 'pear' > 'Pear'
• 'pear' <| 'Pear'
• 'pear' = 'Pear'

13.3 Numbers as a strings

🕮 13.3.1

Although we usually compare numbers based on mathematical rules, there may
also be situations where we compare them lexicographically - like text.

195

Then it is true that

0 < 1 < 2… < 9

whereas we treat individual digits as characters.

Although it is true that

'12' < '13'

it is also true that

'122' < '13'

because the character '2' is at a lower position than the character '3' in the ASCII
table.

When comparing numbers, we must therefore be careful whether we are comparing
numbers in actual numerical form or as text strings.

📝 13.3.2

Choose the correct statement

• '16' <| '20'
• '16' > '20'
• '16' = '20'

📝 13.3.3

Choose the correct statement

• '160' <| '20'
• '160' > '20'
• '160' = '20'

📝 13.3.4

Choose the correct statement

• '110' > '1001'
• '110' <| '1001'

196

• '110' = '1001'

📝 13.3.5

Choose the correct statement

• '333' > '3033'
• '333' <| '3033'
• '333' = '3033'

📝 13.3.6

Choose the correct statement

• 333 <| 3033
• 333 > 3033
• 333 = 3033

📝 13.3.7

What is the result of the following program?

a = 'Dingo'

b = 'Bingo'

print(a > b)

🕮 13.3.8

Find the maximum digit in the entered number. For example for 784541 it will be 8.

Given that the number of digits is relatively limited when using numbers, we will use
a string to load long numbers.

The procedure will be quite simple:

• for the beginning, we declare the smallest possible value, i.e. the value 0, as
the largest digit,

• we will gradually read the values at individual positions of the string (from
beginning to end) and compare them with the largest value found so far,

197

• since the alphabetical order of the digits is the same as their order by size,
we can compare the text.

number = input()

max = '0' # we will work with characters, so max will also

be saved as a character

for digit in the number:

 if max < digit: # if the current digit is greater than the

largest so far

 max = digit # we will remember it

print(max);

📝 13.3.9

Complete the code to find the smallest digit in a number.

number = input()

min = '_____' # set the largest possible value

for digit in _____:

 if min _____ digit:

 min = _____

print(min)

13.4 Special characters

🕮 13.4.1

In addition to regular characters, special characters are sometimes used in
pritnouts. They can be used to print some characters and adjust the layout of the
text.

Typical special characters are:

• \' – inserts an apostrophe into the text,
• \" – inserts quotation marks into the text,
• \\ – inserts a backslash into the text.

When using e.g.:

print("We are starting to learn \"Python\"")

198

prints

We are starting to learn "Python"

We used the quotation marks to delimit the string as well as inside its
content. However, thanks to writing it in the form of \" there was no
error.

📝 13.4.2

Fill in special characters for text output

Characters ' a " are used when working with strings.

print('Characters _____ a _____ are used when working with

strings.')

🕮 13.4.3

The second group of special characters is used when formatting the output:

• \n - newline character, moves the cursor to the beginning of a new line,
• \t – tab, inserts a break that indents the following text at the tab position.

Napr.

print('Hi, \nI am Emil.')

vypíše

Hi,

I am Emil.

The \n character moves the cursor ensuring text output to a new line, and the
output after \n continues on a new line.

📝 13.4.4

199

Add spaces or a newline character to get the following output:

Mother has a:

butter,

ice-cream

and cakes.

print('Mother _____has_____a:_____butter,_____ice-

cream_____and_____cakes.')

• \n
• \n
•
•
• \n
•
•
• \n
• \n
•
•
• \n

🕮 13.4.5

The \t character is used as a tab - it indents the text following it to the intended
nearest tab position.

E.g.

print('Mother: \tteacher')

print('Father: \tclerk')

print('Daughter: \tstudent')

print('Brother: \tstudent')

Zabezpečí výpis:

Mother: teacher

Father: clerk

Daughter: student

Brother: student

200

📝 13.4.6

I am

'Python'

 programmer

Add special symbols to the code to get the above listing.

print("I am_____ _____ Python_____ _____ _____ programmer")

• \n
• \t
• \n
• \'
• \t
• \n
• \'
• \'
• \b
• \"
• \s
• \t
• \s
• \b
• \n

🕮 13.4.7

Sometimes it is necessary to use more tabs for correct indentation.

Note that the tab replaces a maximum of 8 spaces. I.e. the character after the tab
always starts at position 8*x + 1 (9,17,25, etc.).

Napr. pre

print('my dog:\tKejsy')

print('the dog at the neighbors:\tZahraj')

Due to the long text at the beginning of the second line, the output has the form:

my dog: Kejsy

201

the dog at the neighbors: Zahraj

After adding the tab:

print('my dog:\t\tKejsy')

print('the dog at the neighbors:\tZahraj')

we get the desired:

my dog: Kejsy

the dog at the neighbors: Zahraj

📝 13.4.8

Provide the output:

first number: 1258

second number: 2257

line: ----

total: 3515

print('first number:_____1258_____second

number:_____2257_____line:__________----

_____total:__________3515')

• \t
• \n
• \t
• \t
• \t
• \t
• \n
• \n
• \n
• \t
• \t
• \n
• \t

202

13.5 Special printouts

🕮 13.5.1

In the print() command, in addition to the texts printing, we can also use special
settings that allow changing the form of the output.

Let's mention the two most common here:

• sep, determines which character is inserted as a string separator in the
print() command. The default setting is a space.

• end, determines which character is inserted at the end of the written text. By
default, the character \n is set, which is a wrap - moving the cursor to a new
line.

The simplest use is to replace the separator with a line terminator.

print('one', 'two', 'three', sep = '\n')

Strings separated by commas in the command are written on separate lines:

one

two

three

If we enter a semicolon as separator,

print('one', 'two', 'three', sep = ';')

we get:

one;two;three

If necessary, the separator can also contain more characters, e.g. '; '

📝 13.5.2

Complete the print() command to get a printout in the form

203

1*2*3*4

print('1', '2', '3', '4', _____ = '_____)

🕮 13.5.3

The end parameter in the output specifies which character or string is supposed to
be printed after all the text entered in the print() command has been printed.

By default, it is set to \n, which causes each statement to move the cursor to a new
line at the end.

By changing the end parameter, we can ensure that the output cursor does not
move to a new line after each printout. This way, we can print texts from several
commands in one line.

print("Hi", end = ", ")

print("long time no see", end = ", ")

print("how are you?")

Comma + space is used as the termination string in the first two statements...

Hi, long time no see, how are you?

... and the cursor does not move to a new line.

The last printout does not have the end parameter changed, so there will be
delineation, which would be reflected in the next run.

📝 13.5.4

Complete the ending characters of the outputs so that you get the following
statement:

I have to bring: 10 bags of flour, 3 bags of sugar, 480 eggs,

5 liters of water and a large saucepan.

print('I have to bring', _____ = '_____')

print('10 bags of flour', _____ = '_____')

print('3 bags of sugar', _____ = '_____')

print('480 eggs', _____ = '_____')

print('5 liters of water', _____ = '_____')

204

print('and a large saucepan', _____ = '_____')

• ,
• end
• end
• ,
•
• ,
• sep
• ,
• ,
• ,
• sep
• end
• :
• .
• end
• ,
• sep
• end
• :
• sep
• sep
• .
• sep
• end

📝 13.5.5

What is printed on the output? Pay attention to each character of the printout.

print("1","2","3","4", sep = "*", end = "!")

🕮 13.5.6

For some printoutd, the division of the text into immutable (static) strings and
variable values (variables) can complicate the clarity of the notation.

x = 10

y = 20

z = x + y

print('The sum of', x , 'and', y, 'is', z, '.')

205

This seemingly confusing output returns:

The sum of 10 and 20 is 30 .

There is also a space before the period at the end of the sentence, which is not in
accordance with the rules of writing the text

For such structured statements, Python provides a simpler form of notation.

print(f'The sum of {x} and {y} is {z}.')

This notation before the text in quotes or apostrophes itself contains the letter f,
which lets the compiler knows that the content of the following string should be
modified so that instead of the content of the brackets {}, it inserts the value of the
relevant variables.

The result of the output therefore will be:

The sum of 10 and 20 is 30.

Every space and every character entered inside the format string will
also be reflected in the output.

📝 13.5.7

Fill in the correct code so that we receive the exact required output.

j = 25

k = 12

print(_____'_____j_____ - _____k_____ = _____j-k_____')

The required output is

25 - 12 = 13

📝 13.5.8

Print the multiplier for the number entered in the input in the form (e.g. for 5):

206

1*5=5

2*5=10

3*5=15...

Complete the program that ensures the printout in the required form:

text = input('Enter a value: ')

n = _____(text)

for i in range(1,11):

 print(_____'_____*_____=_____i*n_____')

13.6 Working with characters(programs)

⌨ 13.6.1 Word order

Write a program that, for three strings entered on separate lines, finds their
alphabetical order and lists them alphabetically below each other.

Input : Adam

Jano

Eva

Output:

Adam

Eva

Jano

Input : beta

Alfa

Simon

Output:

Alfa

Simon

beta

⌨ 13.6.2 The number of lowercase letters

Write a program that finds the number of lowercase letters in a sentence without
diacritics given as input.

Input: Mama has Ema.

Output: 7

207

⌨ 13.6.3 Printing part of the ASCII table

Write a program that, for two given numeric values, prints the ASCII table
characters located at the positions between them. If the values are outside the
range of 33 and 127, it will print "error". Assume that the first value entered is less
than the second.

Write characters in the form of position, tab, character.

Input :

51

56

Output:

51 3

52 4

53 5

54 6

55 7

56 8

Input : 21

120

Output: error

⌨ 13.6.4 ASCII encoding

Encode the entered text by using their ASCII values instead of characters and
separating them with commas in the output.

Input: Adam

Output: 65,100,97,109

⌨ 13.6.5 ASCII decoding

Write a program that decodes a given word using its ASCII codes.

The input starts with the number of characters to be decoded, followed by an
integer value representing the character code in each line.

Print the decoded string in a line.

208

Input:

4

65

108

101

120

Output: Alex

⌨ 13.6.6 Dictation control

For the typed text submitted by the student, check the number of errors by
comparing it with the teacher's sample word. For the input representing the
student's text in the first line and the teacher's text in the second, write the number
of times the student wrote the wrong character. Before checking the text itself,
check whether the submitted texts have the same number of characters, and if not,
end the solution with the message: "different number of characters".

If the texts are identical, write: "no errors", otherwise "the number of mistakes: x".

input: Word

word

output:

the number of mistakes: 1

input: word

word.

output:

different number of characters

⌨ 13.6.7 Encoding II.

Encode the text by shifting the individual characters two positions to the right in the
ASCII table.

Input: mama

Output: ococ

⌨ 13.6.8 Deleting the numbers

Write a program that replaces digits with dashes in the given string. The letters will
remain unchanged.

209

Input : Hello123

Output: Hello---

Input : 123

Output: ---

Input : hello 0john

Output: hello -john

⌨ 13.6.9 Sum of numbers

Write a program that calculates the sum of the integers appearing in a string. A
decimal number is taken as 2 separate numbers.

Input : We have 12 hens, 54 gooses and 3 dugs.

Output: 69

Input : 12.3,8 9

Output: 32

210

Slices and basic functions

Chapter 14

211

14.1 Slices

🕮 14.1.1

By using the square brackets, we can get to any character in the string. For example
for the string

ret = 'Sagarmatha'

this entry

x = ret[2]

will store character g to the variable x.

In addition to getting one character, we can also read several characters from the
string at once. The entry we refer to as slice is used for this. A slice is created by
specifying a variable name and a definition for a character selection of the form:

x = ret[beginning : end]

The slice limits are determined similarly to generating a list via range(). Unless we
enter otherwise, step is set to 1.

E.g.

ret = 'Sagarmatha'

x = ret[2:4]

print(x)

prints the text ga based on the fact that it starts at position 2 and ends one position
earlier than the specified value for end (so it takes the 3rd character as the last).
Therefore it reads the characters g, a.

📝 14.1.2

What is the result of the following code?

ret = 'Montevideo'

x = ret[3:6]

print(x)

212

📝 14.1.3

Complete the results of the output:

ret = 'Marvel Universe'

print(ret[0:len(ret)]) # prints _____

print(ret[0:6]) # prints _____

print(ret[7:len(ret)]) # prints _____

📝 14.1.4

Complete the correct slice boundaries for the Com output.

ret = 'DC Comics'

print(ret[_____:_____])

🕮 14.1.5

Similar to range(), we can also use a step when cutting. The entry then has the form

x = ret[Beginning : end : step]

E.g. for

ret = '123456789'

x = ret[1 : 8 : 3]

print(x)

258 is printed.

The character selection starts at the 2nd character (position 1 - value 2), moves by
3 (value 5) and again by 3 (value 8) and ends because it has exceeded the value of
the end parameter.

📝 14.1.6

What does the following code print?

ret = '0123456789'

x = ret[2:9:2]

print(x)

213

📝 14.1.7

What does the following code print?

ret = 'Good afternoon!'

x = ret[2:12:4]

print(x)

🕮 14.1.8

If we omit a parameter in the notation of the slice, Python will automatically fill it in.

ret = '0123456789'

print(ret[7:]) # from the character in the position 7 to the

end - 789

print(ret[:6]) # from the beginning to the position 6 -

012345

print(ret[:]) # from beginning to the end

The version with step indication also works.

print(ret[::2]) # the result is 02468

it copies every second character of the string.

📝 14.1.9

Fill in the slice parameters so that the x variable contains the texts mentioned in the
comments:

ret = 'Good afternoon!'

x = ret[_____ : _____ : _____] # noon

ret = '0123456789'

x = ret[_____ : 8 : _____] # 036

📝 14.1.10

What does the following code print?

214

ret = '0123456789'

x = ret[5:]

print(x)

📝 14.1.11

What is stored in the variable x after the following code is executed?

ret = '0123456789'

x = ret[:2] # variable x contains _____

x = ret[::3] # variable x contains _____

14.2 Negative indexes

🕮 14.2.1

In addition to classic indexing, Python also allows indexing with negative values.

Negative indices start numbering from the last character that has an index of -1. We
proceed from the last character to the first, so that the second character from the
end has an index of -2, and so on.

ret = 'Slovakia'

print(ret[-1]) # prints a

print(ret[-2]) # prints i

print(ret[-3]) # prints k

...

print(ret[-8]) # prints S

📝 14.2.2

What character is inserted into the variable x in the following steps of the program?

ret = 'Priscilla'

x = ret[-1] # x contains _____

x = ret[-5] # x contains _____

🕮 14.2.3

Negative values can be also used as part of a slice. They can define the beginning
of the sequence and the end of the sequence. The principle of evaluating such a
slice consists in replacing a negative value with a real index.

215

If the end value is less than the start value, the result is empty.

E.g.

ret = '0123456789'

x = ret[-1 : -3] # it means that it will start on the last

character, i.e. index 9 and ends at the third from the end of

t. j. 7

print(x)

prints an empty string.

However, if we enter:

ret = '0123456789'

x = ret[-3 : -1]

print(x)

the characters from the 3rd from the end (7) to the 1st from the end (9) will be
printed, which will no longer be included in the printout, i.e.: 78

📝 14.2.4

What will the variable x contain after each step?

ret = 'Altavista'

x = ret[-6:-2] # x contains _____

x = ret[-7:] # x contains _____

x = ret[:-5] # x contains _____

🕮 14.2.5

A negative value in a step has a special meaning. In such a case, during the
selection of characters, the procedure is by going from a larger index to a smaller
one. Thus, the index in the first position must be greater than in the second.

E.g.

ret = 'Solomon'

x = ret[5:1:-1]

print(x)

prints omol.

216

📝 14.2.6

What will the variable x contain after each step is executed?

ret = 'Gargantua'

x = ret[4:0:-1] # x contains _____

x = ret[6:2:-1] # x contains _____

x = ret[7:2:-2] # x contains _____

🕮 14.2.7

We can also replace indexes with their negative values

ret = 'Solomon'

x = ret[-2:-6:-1] # starts at the penultimate character and

moves three to the left

print(x)

The output will be omol.

📝 14.2.8

What will the variable x contain after each step is executed?

ret = 'Pantagruel'

x = ret[-2:-4:-1] # x contains _____

x = ret[-5:-8:-1] # x contains _____

x = ret[-1:3:-2] # x contains _____

🕮 14.2.9

If we omit the slice values in the notation and set only a step, Python will complete
them by starting with the last and ending with the first character in the case of a
negative step. It prints the text in reverse order - the result starts from the last
character.

ret = 'Solomon'

x = ret[::-1]

print(x)

217

prints nomoloS.

It always starts generating the result from the last character.

📝 14.2.10

What will the variable x contain after each step is executed?

ret = 'Halikarnas'

x = ret[::-1] # x contains _____

x = ret[::-2] # x contains _____

x = ret[::-3] # x contains _____

14.3 Basic functions

🕮 14.3.1

Let's imagine a test in which we need to verify the correctness of the answer to a
question

How many countries in the world have more than 500,000 inhabitants

Although the answer looks obvious at first glance, the student can answer in
several ways:

2, 02, two, Two, TWO

For short answers, we can enter a condition with all the possibilities that can occur,
but if we think about their complexity, it is better to take a different approach. We
would have to treat:

• all combinations of upper and lower case letters (two, Two, Two, TWO, tWO,
twO, TwO, tWo),

• checking for all numbers of zeros before numbers (2,02,002, etc.)
• checking for unnecessarily entered spaces before or after a word (' 2','2 ')

📝 14.3.2

How many different combinations of uppercase and lowercase letters can be made
in the word three?

218

🕮 14.3.3

If we think about the step-by-step processing of the answer, the step-by-step
processing could consist of the following steps:

• remove spaces before and after the text from the input,
• if the input consists of only digits, convert it to a number and see if it's

correct - leading zeros are ignored in that case,
• convert all letters to the same form - either all lowercase or all uppercase

and compare with the correct answer.

📝 14.3.4

Complete the command that will convert the text to a number:

text1 = input()

a = _____(text1)

🕮 14.3.5

The strip() function provide the removal of spaces from the end and beginning of
the string. This function is used as part of a string variable - we separate it from the
variable name with a period.

ret = ' Mama has Ema at home. '

cleaned = ret.strip() # obsahuje 'Mama has Ema at home.'

The function does not remove spaces from inside the text, only from the edges.

📝 14.3.6

What will be stored in the answer variable after the strip() command is executed?

ret = ' a b c 123 . '

answer = ret.strip()

🕮 14.3.7

In the next step, we should check if the cleaned string consist only of digits.

219

To determine the type of characters that a string contains, we use the following
string functions:

• ret.isdigit() tests whether all characters in the string are digits; if so, it
returns True, otherwise it returns False.

• ret.isalpha() tests whether all characters in a string are letters; if so, it
returns True, otherwise it returns False.

• ret.isalnum() tests whether all characters in a string are letters or numbers; if
so, it returns True, otherwise it returns False. What other characters can be
in the string? For example space, comma, parentheses, etc.

E.g. for

ret = '1.2'

print(ret.isdigit())

False will be printed because the string contains a dot character in addition to
numbers.

For

ret = 'variable4'

print(ret.isalnum())

True will be printed because the string contains only numbers and letters.

Attention, a space is considered a special character - neither a number
nor a letter.

📝 14.3.8

Fill in the correct results for the use of the functions

ret = '012540'

print(ret.isdigit()) # prints _____

ret = 'abCD'

print(ret.isalpha()) # prints _____

print('10.59'.isdigit()) # prints _____

print('a10'.isalpha()) # prints _____

print('a10'.isdigit()) # prints _____

print('a10'.isalnum()) # prints _____

print('Pozor!'.isalpha()) # prints _____

220

print('a b c'.isalnum()) # prints _____

print('3 children'.isalnum()) # prints _____

• True
• True
• False
• False
• False
• False
• False
• False
• False
• True
• True
• False
• True
• False
• True
• True
• False

🕮 14.3.9

In addition to the type, we can also check the case of the letters in the string:

• ret.islower() tests whether all characters in the string are from the set of
lowercase letters,

ret.isupper() tests whether all characters in the string are from the uppercase set.

When executing the function, only letters are checked . Other characters are not
considered, therefore e.g.

ret = 'beta 7'

print(ret.islower())

prints True.

📝 14.3.10

Fill in the correct results for the use of the functions

221

print('Alpha'.islower()) # prints _____

print('BETA'.isupper()) # prints _____

print('BETA'.islower()) # prints _____

print('Var'.isupper()) # prints _____

print('Attention!'.isupper()) # prints _____

• True
• False
• False
• True
• True
• False
• True
• False
• False
• True

🕮 14.3.11

In programs we usually don't waste time by checking whether a string contains all
lowercase or uppercase letters, but we just convert it to lowercase or uppercase.
The lower() and upper() functions are used for this.

ret.lower()returns all letters changed to lowercase as a result. The original string
remains unchanged, e.g.:

ret = 'Asta La Vista'

ret1 = ret.lower()

print(ret) # prints unchanged 'Asta La Vista'

print(ret1) # prints changed 'asta la vista'

ret.upper() returns all uppercase letters as a result. The original string remains
unchanged, e.g.:

ret = 'Asta La Vista'

ret1 = ret.upper()

print(ret) # prints unchanged 'Asta La Vista'

print(ret1) # prints changed 'ASTA LA VISTA'

222

📝 14.3.12

Fill in the correct results for the use of the functions

print('Alpha'.lower()) # prints _____

print('BETA'.upper()) # prints _____

print('BETA'.lower()) # prints _____

print('Var'.upper()) # prints _____

print('POZOR!'.lower()) # prints _____

📝 14.3.13

Since we already know all the necessary functions to handle the task from the
beginning of the lesson, add the correct commands to verify the correctness of the
answer:

print('How many countries in the world have more than 500,000

inhabitants?')

text_o1 = input()

remove spaces before and after the text from the input

text_o2 = text_o1._____()

if the input consists only of digits,

if text_o2._____():

 # I will convert it to a number

 number_o3 = _____(text_o2)

 # and check if it's correct - leading zeros are ignored in

that case

 if cislo_o3 == 2:

 print('correct_____)

 else:

 print('incorrect')

else:

 # the input does not contain only digits

 # convert the string e.g. to lowercase (I could also use

uppercase)

 text_o4 = text_o2._____()

 # compare with the correct answer consisting of lowercase

letters

 if text_o4 == '_____':

 print('correct')

 else:

 print('incorrect')

223

14.4 Functions in string(programs)

⌨ 14.4.1 Comparing the number of digits

Write a program that, for two given strings, prints the number of digits in them and
decides which contains more digits. Use the functions from this chapter.

Input: we have 72 hens

we have 3 rabbits

Output: 2 1 string1

Input: we have 72 hens

we have 3 rabbits and 2 pigs

Output: 2 2 match

⌨ 14.4.2 Upper and lowercase letters

Write a program that checks whether two entered strings are the same - it will not
take their case into consideration, so mama and MaMa represent the same string.
Also make sure to ignore spaces before and after the entered text.

Input: Mother

MOTHER

Output: match

Input: Father

Dad

Output: mismatch

⌨ 14.4.3 Number of letters in the string

Write a program that, for a entered string, finds the number of individual letters (a-z)
in it. The user is required to use lowercase letters. If he also enters capital letters or
numbers, write "error".

The number of letters used is displayed only if the given letter occurs in the string.
The list of characters must be in alphabetical order.

Vstup: mama

Výstup:

224

a-2

m-2

Vstup: winter

Výstup:

e-1

i-1

n-1

r-1

t-1

w-1

225

While loop

Chapter 15

226

15.1 While

🕮 15.1.1

Sometimes when using a loop, we don't know how many times it will need to be
repeated. However, we can determine the condition until when the loop should be
repeated. For example: while you are hungry, eat a cookie.

In such a case, we can ensure the execution of the loop through the while
command and the condition, the fulfillment of which will ensure the execution of
the commands in the body of the loop. Its structure is similar to the if statement.
The difference is that the commands contained in the while loop are repeated until
the condition is met (evaluated as True).

while condition:

 block of commands

📝 15.1.2

What keyword (statement) defines a loop with a condition at the beginning?

• while
• for
• if

🕮 15.1.3

The loop works like this:

1. verifies the validity of the condition
2. if the condition is met, the block of commands is executed,
3. execution will return to point 1.

x = 1

while x < 6:

 print(x)

 x += 1

The output has the form:

1

2

227

3

4

5

Note that in the block of commands, it is necessary to change the variable that is
tested in the condition. If we didn't do that, the condition would be fulfilled all the
time and the loop would go on endlessly. In our case, we had to increase the value
of x by 1.

📝 15.1.4

Write "Hello" 10 times below each other

The task is practically the same as in the case of using the for loop. We can write
any task that requires repetition of commands through any type of loop, and it is up
to us which type of loop we choose.

In this case, the programmer must provide all the operations contained in the for
structure in separate commands:

setting the initial value of the control variable,

• the condition that determines the end of the loop,
• execution of commands in a loop,
• increasing the value of the control variable.

i = _____ # control variable initialization

while i <= _____: # while the condition is met do

 print('Ahoj') # execution of the command

 i = _____ # increasing the counter value

• 1
• i-1
• -1
• 10
• 0
• i + 1
• 11

228

📝 15.1.5

Arrange the code so that the loop outputs the numbers from 0 to n.

n = int(input('Enter n:'))

• print(counter)
• counter += 1
• while counter <= n:
• counter = 0

📝 15.1.6

Complete the code so that 5 dots are printed in one line in a row:

i = 4

_____ i <= _____:

 print('.', _____ = '')

 i = i + 1

🕮 15.1.7

Using the while loop, write even numbers from the interval from 8 to 24 below
each other.

We will print out the contents of the variable whose value will be increased by 2 in
each step of the cycle.

We will execute the activity until the value reaches 24.

number = 8

while number <= 24:

 print(number)

 number = number + 2

We could rewrite the task into a cycle with a known number of repetitions as
follows:

for number in range(8,25,2):

 print(number)

229

📝 15.1.8

Complete the program so that it prints all numbers divisible by ten that are less
than the number entered in the input.

max = int(input('Enter the upper limit: '))

number = 0

_____ number < _____:

 print(_____)

 number = number + _____

🕮 15.1.9

The while loop is referred to as a safe loop, because it is tested before the action is
executed. If the condition is not met at the first verification, the loop commands
may run not even once. For example:

Print all numbers that lie between two integer limits.

lower = 10

upper = 10

i = lower

while i < upper :

 print(i)

 i = i + 1

print('end')

In this case, no number is printed, because the condition is not met during the first
verification - i (10) is not less than the upper (also 10).

For other values of the upper and lower limits, of course, the loop can be executed.

📝 15.1.10

For which pairs of values nothing is printed(that is, the loop does not run)?

a = int(input())

b = int(input())

i = a

while i >= b :

 print(i)

 i = i - 1

230

• 5, 8
• 8, 5
• 5, 5
• 8, 8

15.2 Break command

📝 15.2.1

Complete the program that finds the number of divisors of the entered number
and prints them.

The divisor is the number by which, when we divide the tested number, we get a
remainder of zero. So it makes sence to examine the numbers from 1 to the entered
number.

Let's do a research using a while loop:

a = _____(input('Enter a number: '))

i = _____

number = _____

_____ i _____ a :

 if a _____ i _____ 0:

 print(_____)

 number = _____

 i = i _____ 1

print('The number of divisors is', _____)

• <|
• %
• number
• +
• -
• i
• ==
• *
• 1
• ==
• <=
• >=
• 1
• 0
• >
• number * 2
• number - 1

231

• while
• number + 1
• int

🕮 15.2.2

Sometimes the algorithm is written in such a way that it is convenient to end the
loop earlier than it would end in the "natural" way. The break command is used to
interrupt the loop and continue the execution of commands after the loop.

It can be used both in the while and in the for loop.

for i in range(100):

 if i > 20:

 print('it is too much for me')

 break

 else:

 print(i)

print('end')

The loop prints i values and if it exceeds 20, it ends the loop with the break
command - execution continues with the command after the loop - print('end').

The same entry for the while loop:

i = 0

while i < 100:

 if i > 20:

 print('it is too much for me')

 break

 else:

 print(i)

 i = i + 1

print('end')

📝 15.2.3

What statement terminates a loop regardless of what stage of execution it is
currently in and ensures that the program continues after the loop?

232

📝 15.2.4

Complete the program that determines whether the entered number is a prime
number.

It is true that a number is prime if it has only two divisors, namely 1 and the number
itself. We could solve the problem by counting all its divisors as in the previous
problem.

However, we know that a number is not prime as soon as we find the first divisor
other than 1 or the number itself. Then there is no point in continuing the research,
because it is useless.

However, we must remember the information that we have found a divisor so that
we can write a message to the user at the end of the program based on this
information. If a divisor is found, we store the value 1 in the variable count and end
the execution of the loop. This is done by the break command, which definitively
ends the loop and the program continues with the commands after the loop.

In case the loop that starts with the value 2 and ends by examining a value 1 less
than the enetred number reaches the end without finding another divisor, the value
0 is stored in the variable count.

n = int(input('Enter a number: '))

number = 0

i = 2 # the examination will start from

value 2

while i _____ n: # it will run until i < n

 if n _____ i == 0: # if n is divisible without a

remainder, we have a divisor

 number = 1 # set the count to 1

 _____ # end the execution of the loop

 i = i + 1

here it is continued after the end of the loop or after the

command _____

if number _____ _____:

 print('it is prime number')

else:

 print('it is not prime number')

• %
• 0
• <|=
• continue
• 1
• +

233

• exit
• stop
• continue
• <
• exit
• break
• break
• stop
• ==

🕮 15.2.5

However, the program from the previous task could be also written more simply.
We could write the divisibility condition directly into the loop condition - the cycle
would ensure the increase of the examined value until the remainder after division
was zero. This situation will certainly occur and at the latest it will occur if i has the
value n.

Based on the value of i, we would decide whether the divisor was found before it
reached the value of n.

n = int(input('Enter a number: '))

i = 2 # the examination starts from value 2

while n % i != 0: # until a divisor is found

 i = i + 1 # moving on to explore the next issue

if i == n: # if I got to the number itself, it is a

prime number

 print('it is a primenumber')

else:

 print('it is not a prime number')

📝 15.2.6

Fill in the program that detects whether there is a number divisible by 17 in the
entered interval.

lower = int(input('enter the lower limit: '))

upper = int(input('enter the upper limit: '))

i = _____

while _____ <= _____:

 if i _____ 17 == 0:

 i = i + 1

234

if i > upper:

 print('_____')

else:

 print('_____')

• lower
• if
• lower
• upper
• exit
• while
• upper
• break
• i
• there is
• %
• there is not
• /

📝 15.2.7

Check the correctness of the program that detects whether the character 's' is
present in the entered text string.

We can verify the existence of the character in the condition of the loop, and then,
when the character 's' is found, write that we have found it and end the loop.

ret = input()

i = 0 # examination starts from position 0

while ret[i] != 's': # until the character is found

 if ret[i] == 's': # if the character was found

 print('i have it') # inform the user

 break # end the loop

 i = i + 1

Which of the following statements are true?

• There are no mistakes in the program.
• The program crashes for strings that do not contain the 's' character.
• The program is infinite for some strings.
• The program works flawlessly for words starting with 's'.
• The program works flawlessly for words ending with 's'.

235

📝 15.2.8

The problem in the previous program occurs if we try to read a character at a
position beyond the end of the string. There is no such character and the program
would terminate with an error.

The solution is to evaluate two conditions: we add a condition to check whether we
are not already past the last character:

ret = input()

i = 0

while (i < _____(ret)) _____ (ret[i] _____ 's'):

 i = i + 1 # move to the next character in the string

if i _____ len(ret):

 print('i found')

else:

 print('was not found')

If the loop has been completed, we will find out in what way:

• if i is less than the number of characters in the string, it means that the cycle
ended before the condition that we are past the last character of the string
was true - that is, the character 's' was found

• otherwise, the loop ended if the condition that i < len(ret) was not fulfilled -
that is, the end of the string was reached and nothing was found.

• or
• <|=
• ==
• and
• <
• len
• !=
• >
• if
• >=
• not

🕮 15.2.9

When creating a condition in the loop, you should consider that if i has reached the
value len(ret), then an attempt to read the character ret[i] will end with an error.

ret = input()

236

i = 0

while (i < len(ret)) and (ret[i] != 's'):

 i = i + 1

Therefore, we write the condition by first checking if i < len(ret).

• If yes, the evaluation of the condition continues.
• If not, the evaluation of the condition will end, because the result (of two

conditions that should apply simultaneously) will be False, regardless of the
result of the second part of the condition - so there will be no reading of a
character outside the string.

If parts of the condition were reversed, the program would crash whenever it went
past the last character of the string and tried to compare it to 's'.

📝 15.2.10

Write a program that detects whether a number entered as a string contains the
digits 4 or 8. If so, print which one was found first.

Arrange the conditions correctly and complete the code.

ret = input()

i = 0

while (_____) and (ret[i] != '4') and (_____):

 i = i + 1

if i _____ _____:

 print('was not found')

else:

 print('as first was found the digit',_____)

• ret[i] != '8'
• <|
• len(ret)
• i
• i < len(ret)
• ==
• >
• <|=
• ret[i-1]
• ret[i]

237

📝 15.2.11

And let's try to solve the same problem in another way:

Write a program that determines whether a number entered as a string contains
the digits 4 or 8.

Complete the code:

ret = input()

i = 0

while i < len(ret):

 if (ret[i] _____ '4') _____ (ret[i] _____ '8'):

 print('was found', ret[i])

 i = i _____ 1

if i _____ _____(ret):

 print('was not found')

📝 15.2.12

Previous programs found only the first occurrence of the searched value. Now let's
try to find all occurrences.

Write a program that detects whether a number entered as a string contains the
digit 5 and prints the positions of all its occurrences. If it does not find any
occurrence, it informs the user about it.

In order to have information about whether the value 5 occurred at least once after
the end of the loop, we use a boolean variable. We set it to False at the beginning
and change it to True when 5 occurs. After the end of the loop, we will be able to
identify whether it is necessary to print that it was not found or do nothing (because
the positions of the occurrence of the number 5 have been printed).

Complete the code:

ret = input()

i = 0

found = _____

while i < len(ret):

 if ret[i] _____ '5':

 print('position', i)

 found = _____

 i = i + 1

if _____ found:

238

 print('was not found')

• false
• False
• true
• or
• not
• is
• True
• False
• !=
• ==
• True

15.3 Infinite loop

🕮 15.3.1

Although we have mentioned several times that an infinite loop is undesirable for
program execution, some tasks are easier to write using it and, in a special case,
jump out of it using the break command.

The easiest way to write an always true condition is with True (we don't use the
"calculation" of the condition, but just write the result):

while True:

 command

And the moment we achieve the desired results, we can end the loop.

while True:

 command

 if condition:

 break

📝 15.3.2

Complete the condition so that the loop is infinite:

while _____:

 command

239

🕮 15.3.3

An infinite loop is often used when testing the value of an input variable.

If we want the user to enter a positive integer, we should also check it. In case he
did not fulfill the request, we ask him again and again and again until the program
gets the required value. If the user keeps entering a negative value, we can continue
ad infinitum.

After entering the correct value, we interrupt the cycle and the program continues
after the loop.

while True:

 n = int (input('Enter a positive value: '))

 if n > 0:

 break

print('We can continue')

📝 15.3.4

Complete the program so that it receives a negative value from the user.

while _____:

 n = int (input('Enter negative number: '))

 if n _____ 0:

print('Thanks.')

📝 15.3.5

How many times is the word Python printed?

i = 1

while True:

 print('Python')

 i += 1

 if (i > 10):

 break

🕮 15.3.6

Of course, we can avoid each use of the break command by adding a suitable
condition.

240

We can modify the program for obtaining a positive number as follows:

n = int (input('Enter a positive value: '))

while n <= 0:

 n = int (input('Enter a positive value again: '))

print('We can continue')

We used input loading in two places.

The cycle is activated only if we first entered an incorrect value.

Only the programmer's habits and the clarity of the code decide whether to use the
version with or without the break command.

📝 15.3.7

Complete the program so that it force the user to enter an even number:

n = int(input('Enter an even number: '))

_____ n _____ 2 == _____:

 n = _____(input('Enter an even number again: '))

print('We can continue')

📝 15.3.8

Write a program to find the average marks in an arbitrary subject. We will not enter
the number of marks at the beginning, but we will end the program by entering the
value 0.

Since we don't know the number of grades, we need to use a loop that will keep
being executed until a value of 0 is entered. This value is no longer included in the
average.

In order to be able to calculate the average, we also need to know the number of
grades - we will use a counter.

print('Zadávaj známky.')

sum = _____ # set the starting value for the sum

number = _____ # set the initial value for the number

while _____: # use an infinite loop

 _____ = int(input('Enter the mark: '))

 if mark == _____: # if termination with 0 was entered

 _____ # stop loading

 sum = sum + _____ # add the mark

241

 number = number + _____ # increase the number

print('The average mark is ',sum_____ number)

• /
• sum
• mark
• digit
• 1
• 0
• 1
• break
• 0
• number
• 0
• 0
• mark
• True
• 1

15.4 While(programs)

⌨ 15.4.1 Capital letter search

Write a program that detects as quickly as possible whether there is an uppercase
letter in the given string and prints the position of its first occurrence. If it does not
find any occurrence, it informs the user about it.

input:

attention OSBD

output:

exists: 6

output:

attention winter is coming

input:

does not exist

242

⌨ 15.4.2 Input control

Write a program that finds the greatest common divisor of two positive numbers.
Make sure the program keeps asking for the value again if the user enters a non-
positive number.

input:

10

20

output:

10

input:

-10

-5

6

-6

8

output:

2

⌨ 15.4.3 Najvyšší plat

Write a program that finds the highest value in the salary list of school employees.
The number of employees willing to disclose their salary is not known at the
beginning. We end the loading by entering the value 0.

input:

1100

950

980

1121

830

0

output:

1121

⌨ 15.4.4 Tired tourist

Write a program that, based on the ascents and descents in meters of altitude
expressed as positive and negative values, determines whether the tourist's
destination point is higher or lower than the starting point and by how much. The

243

number of ascents and descents is unknown in advance, the list is terminated by
zero. If there is no height difference between the starting point and the destination
point, a match is displayed.

input:

100

-50

30

-10

-10

0

output:

higher by 60

input:

-50

30

-10

-10

0

output:

lower by 40

244

Simple lists

Chapter 16

245

16.1 Several variables

🕮 16.1.1

Python has its own specifics for working with variables. One of them is the ability to
assign values to multiple variables in one command.

a, b, c = 10, 20, 30

This entry assigns to the first variable (a) the first value given after the "=" sign, i.e.
10, to the second variable (b) the value of 20, etc.

📝 16.1.2

What is printed after this sequence of commands is executed?

x, y = 20, 30

x, y = y, x

print(x, y)

• 30 20
• 20 30
• 20 20
• 30 30
• error

🕮 16.1.3

It is also possible to set multiple variables to the same value in one line.

x = y = z = 0

The assignment goes from right to left, first 0 is assigned to the variable z, then y is
assigned the value z, and at the end z is assigned the value y.

📝 16.1.4

What is printed after this sequence of commands is executed?

a = 10

b = 20

246

c = 30

a, b, c = c, a , b - a

print(a, b, c)

• 30 10 10
• 20 30 10
• 30 20 10
• 10 20 30
• 10 10 30
• 20 10 30
• 10 30 10
• 30 20 20

🕮 16.1.5

When retrieving input from the user, there are frequent situations where we need to
retrieve more than one value. Loading e.g. of three values (names) could look as
follows:

ret1 = input('Enter the 1st name: ')

ret2 = input('Enter the 2nd name: ')

ret3 = input('Enter the 3rd name: ')

However, there is also an option to load all three names at once - by entering them
in one line.

Strings have a split() function that can split text into multiple parts based on the
use of a space. Text

Ivan Michal Zuzana

can be split into 3 different values that are put into three different variables

ret1, ret2, ret3 = 'Ivan Michal Zuzana'.split()

The entire load would then look like this:

ret = input('Enter three names separated by a space: ')

ret1, ret2, ret3 = ret.split()

Attention, if the string is not divided into the correct number of words,
the program will crash.

247

📝 16.1.6

Complete the program code that reads and prints the four input words:

_____ = input('Enter 4 words separated by a space: ')

_____,_____,_____,_____ = ret._____()

print('1st value:',u)

print('2nd value:',o)

print('3rd value:',h)

print('4th value:',m)

• o
• ret
• ret
• m
• m
• h
• split()
• split
• h
• u
• u
• o

🕮 16.1.7

If our list of first names contained persons with multi-word first names (e.g. Milan
Rastislav, Adam Ivan, etc.), using a simple split() would be problematic due to the
large number of spaces.

For such purposes, the split() function also has a form in which we can enter the
dividing character. It can be used as follows:

ret = input('Enter 4 names separated by a comma: ')

a,b,c,d = ret.split(',')

We then enter the input in the form where individual names or double names are
separated by commas. Attention, the space after the comma is counted as a
normal character in this case.

Adam,Beata Anna,Jozef Francis,Ivan

248

📝 16.1.8

Complete the code of the program that determines which of the four entered
words separated by commas at the input has the most characters (assume that
they have a different number of characters).

ret = input('Enter 4 words separated by a comma: ')

a, b, c, d = ret.split_____

max = _____

if len(b) > len(max): # if the 2nd word has more characters

than the current max

 max = _____ # it becomes the new max

if len(c) > len(max): # if the 3rd word has more characters

than the current max

 max = _____ # it becomes the new max

if len(d) > len(max): # if the 4th word has more characters

than the current max

 max = _____ # it becomes the new max

print(_____)

• c
• a
• ()
• d
• b
• split()
• ret
• c
• max
• ''
• b
• d
• (',')
• a
• a

16.2 List in a loop

🕮 16.2.1

We can also loop through string values. This way we can create a list that we can
go through.

249

for kind in 'cat', 'dog', 'fish', 'hamster':

 print('My favourite animal is', kind)

My favourite animal is cat

My favourite animal is dog

My favourite animal is fish

My favourite animal is hamster

📝 16.2.2

Complete the program so that it prints favorite subjects in the following order:

informatics

mathematics

physics

chemistry

for _____ _____ '_____', '_____', '_____', '_____':

 print('My favourite subject is', name)

• string
• in
• name
• for
• informatics
• mathematics
• split(',')
• physics
• split
• i
• chemistry

🕮 16.2.3

Of course, we don't have to print all the values, but we usually process them in the
body of the loop.

for animal in 'cat', 'dog', 'fish', 'hamster':

 if animal == 'dog':

 print('My favourite animal barks')

 if animal == 'fish':

 print('My favourite animal is silent')

250

In this case, only the animal from the list that meets our processing requirements
will be printed.

📝 16.2.4

What does the following program print?

for animal in 'cat', 'dog', 'fish', 'hamster':

 if len(animal) > 5:

 print(animal)

🕮 16.2.5

We will now use the loop's ability to iterate over a list of words and the split()
function's ability to split the input into multiple (list) variables.

If we input a list separated by spaces or commas, we can process each value
separately. The following program reads a line of comma-separated values and
prints each one.

list = input('Enter words separated by a comma: ')

for i in list.split(','):

 print(i)

📝 16.2.6

Complete a program that reads a list of words separated by spaces and for each
one of them prints the number of characters they contain:

list = input('Enter words separated by a space: ')

for _____ in list._____:

 print(word,'-',_____(word))

16.3 Random numbers

🕮 16.3.1

A random number is a useful tool for testing programs or introducing an element of
randomness to a game or programs.

251

We first need to connect the random number generator to the program - import it.
We do so by entering:

import random

which gives us a library (module) allowing to obtain random values.

The first basic function in the module is

random.randrange(end)

which returns a random integer from the list generated by range(), i.e. in the range 0
to end -1.

E.g.

a = random.randrange(20)

inserts one random value from the interval 0-19 into the variable a.

📝 16.3.2

Complete the code so that the program generates a random number from the
interval <0,15>

_____ random

x = _____.randrange(_____)

print(x)

🕮 16.3.3

The random module also includes other functions:

random.randrange(start, end)

Generates a random value from the interval start .. end-1, e.g.

random.randrange(-10, 11)

Generates a random value from -10 to 10.

random.randrange(start, end, step)

252

Selects a random value from the list generated by the range command(start, end,
step), e.g.

random.randrange(-10, 11, 2)

Generates an even random number in the range -10 to 10.

📝 16.3.4

Complete the code so that the program generates a random number from the
interval <10,20>

_____ random

x = _____.randrange(_____,_____)

print(x)

📝 16.3.5

Complete the code so that the program generates a random number from the
interval <-25,25>

import _____

x = random._____(_____, _____)

print(x)

📝 16.3.6

Complete the code so that the program generates a random number from the
interval <-30,30> that is divisible by 5.

import _____

x = random._____(_____, _____, _____)

print(x)

• 29
• range
• 30
• 10
• 5
• random
• -30
• -29
• randrange

253

• 4
• -31
• rand
• 31

🕮 16.3.7

In case we want to generate decimal (real) values, we need to use:

random.random()

which generates a random value from the interval <0.1).

The second option is

random.uniform(star, end)

which generates a random value from the interval <start, end), e.g.

random.uniform(-5.5, 10)

will generate a random number from -5.5 to 10, but will never generate the value 10.

📝 16.3.8

Which values can be printed by the following program?

import random

a = random.uniform(-5, 7)

print(a)

• -5
• 0
• -2.57
• 4.18
• -5.2
• 7
• 7.1

254

🕮 16.3.9

Write a program that generates a random number from 0 to 100 and allows the
user to guess it. After each attempt, it guides him whether the guessed value is
greater or less than his attempt.

import random

searched = random.randrange(0, 101)

print('I think a number from 0 .. 100')

In an infinite loop, we can ask for a guess.

attempt = 0

while True:

 guess = int(input('Your guess: '))

 attempt += 1

After entering the guess, we check whether it matches the number you are looking
for. If so, we print information about a successful guess and end the cycle.

 if guess == searched:

 print(f'You got it right at the {pokus}. attempt.')

 break

otherwise, we tell the user whether their guess was too high or too low and return to
the beginning of the loop.

 else:

 if guess < searched:

 print('Try larger.')

 else:

 print('Try less.')

📝 16.3.10

Arrange the code so that the program randomly generates a number from the range
-10 to 10.

After generating the number, let the program inform whether the selected number
was positive or negative.

When zero is generated, the program ends and reports the number of values
generated.

• elif c < 0:

255

• attempt += 1
• c = random.randint(-10, 10)
• print(f'{c} is positive.')
• else:
• if c > 0:
• import random
• print(f'It took {attempt} generations.')
• break
• print('The zero was selected, we are done.')
• while True:
• attempt = 0
• print(f'{c} is negative.')

16.4 Lists and random numbers (programs)

⌨ 16.4.1 List in line

The input contains 5 integers separated by a comma (-1000 to 1000). Write a
program that prints the smallest one of them.

Input: -10,20,-75,16,8

Output: -75

⌨ 16.4.2 Searching for a name

Find how many times the name entered in the input occurs in a comma-separated
list of names.

Input: Anna,Beta,Anna,Ivan,Jan,Samuel,Peter,Anna,Jan

Anna

Output: 3

⌨ 16.4.3 Highlighting

Write a program that adjusts the entered text so that all words starting with a
capital letter are printed in upper case letters.

Input: dear Andrew, I am writing from Prague.

Output: dear ANDREW, I am writing from PRAGUE.

256

⌨ 16.4.4 Word mirror

Write a program that, for the entered text, modifies all the words by rewriting them
backwards. Attention, not the whole sentence, each word separately.

Input: Dear Andrew, I am writing from Prague.

Output: raeD ,werdnA I ma gnitirw morf .eugarP

⌨ 16.4.5 A random number from 0 to 100 interval

Write a program that generates and prints to the console a random integer from the
interval <0.100>. For example:

Output: 42

⌨ 16.4.6 A random number from the -50 to 50 interval

Generate and print a random integer <-50,50>:

Output (e.g.): -5

⌨ 16.4.7 A random number from the entered interval

Generate and print a random integer for the interval specified by a pair of integer
values on the input separated by a space. Values do not have to be entered in the
order from smaller to larger.

Input: 20 80

Output(e.g.): 61

Input: 22 -68

Output(e.g.): -3

257

Working with strings

Chapter 17

258

17.1 Nested loop

🕮 17.1.1

We can solve many problems using a single loop, but it is not unusual if the solution
requires us to use a loop in the body of another loop. We call the inside loop a
nested loop.

It has the form:

for i in range(10):

 for j in range(5):

 command

However, when combining multiple loops with a known number of repetitions, care
must be taken to ensure that the control variables have different names.

📝 17.1.2

How do you refer to a loop inside another loop?

• nested
• intern
• integrated
• hybrid

🕮 17.1.3

Write a program that prints one character 1 in the first line, two characters 2 in the
second, and so on until 9.

1

22

333

4444

55555

666666

7777777

88888888

999999999

Solving the task requires two different loops:

259

• In the first one, we change the number that is being printed.
• In the second loop, we take this digit and print it. The number of printouts is

the same as the value that is being printed.

This consideration leads to the design of a pair of loops:

for i in range(10): # proceeds from 1 to 9

 for j in range(i): # this line ensures that the printout is

repeated i times

 print(i,end="") # and this printing the value set in the

first loop without breaking a row

 print() # after printing i numbers, breaks a

row

📝 17.1.4

Complete the program that draws a square of stars for the entered n.

n = int(input('enter the parameter: '))

for i in range(_____):

 for j in range(_____):

 print('*',_____='')

 _____()

🕮 17.1.5

Write a program that, for enetred integer values m and n, displays m rows below
each other, with n circles (o) in each row.

m = int(input('enter the number of rows: '))

n = int(input('enter the number of columns: '))

for i in range(m):

 for j in range(n):

 print('o', end = '')

 print()

The solution returns the desired result, but if we look at it in detail, we find that in
the inner loop we always execute the same action - we always print the character
"o" the same number of times.

This operation could be simplified by preparing the entire line (inserting it into a text
variable) and then printing it - we would print each line in one step.

260

The modified code would look like this:

m = int(input('enter the number of rows: '))

n = int(input('enter the number of columns: '))

fill the row variable with n characters

row = ''

for i in range(n):

 row = row + 'o'

print the entire row m times

for i in range(m):

 print(row)

Loops are independent of each other, we may (or may not) use the same control
variable.

In the first case, we execute operations in the loop m x n times, in the second case,
we repeat the assignment to a variable n times and the printout m times - the
resulting number of operations is m+n.

📝 17.1.6

Complete the program so that it creates a triangle from the characters "x" for the
entered n as efficiently as possible.

x

xx

xxx

xxxx

xxxxx

n = int(input('enter the parameter: '))

row = _____

for i in range(n):

 row = _____ + '_____' # add x to the line before the

statement

 print(_____) # always print the content with one

more 'x' character

261

📝 17.1.7

What will be stored in the sum variable after the sequence of commands is
executed?

sum = 0

for i in range(1,3):

 for j in range(1,4):

 sum = sum + i + j

print(sum)

📝 17.1.8

What will be stored in the line variable after the sequence of commands is
executed?

row = ''

for i in range(1,5):

 row = '' + str(i)

 for j in range(1,4):

 row = row + str(j)

print(row)

17.2 Searching a string

🕮 17.2.1

Despite the fact that we know how to work with a specific string character, we
cannot directly change it. So no type assignment is allowed

ret = 'Pokemon'

ret[0] = 'p'

The string belongs to the types whose content cannot be changed after
assignment. They are so-called immutable.

So if we need to change only some characters in the string, we have to create a new
one and assign it to the original one, e.g. if in the sentence:

veta = 'My name is ema little.'

we need to correct the first and last name, we create a new variable into which we
copy the surrounding text and correct the two entered characters, e.g.:

262

sentence = 'My name is ema little.'

sentence1 = sentence[0:11] + 'E' + sentence[12:15] + 'L' +

sentence[16:]

sentence = sentence1

print(sentence)

Alternatively, we don't even have to use another variable, but we can insert the
result directly into the original variable (sentence):

sentence = 'My name is ema little.'

sentence = sentence[0:11] + 'E' + sentence[12:15] + 'L' +

sentence[16:]

print(sentence)

📝 17.2.2

Which operations are allowed to work with the variable ret.

• ret = 'Hello'
• p = ret[3]
• ret[2] = '-'
• ret[0] = 1
• pom = ret[1] + ret[4]
• ret[1] = ret[2]

📝 17.2.3

Replace the numbers written in words with numbers in the sentence:

sentence = 'Three horses with two owners were standing by

house number seven.'

sentence = '_____' + sentence[_____:_____] + '_____' +

sentence[_____:_____] + '_____' + sentence[_____:]

print(sentence)

• 64
• 21
• 3
• 59
• 5
• 2
• 7

263

• 18

🕮 17.2.4

The occurrence of a substring in an existing string is verified by the find() function,
which returns the position at which the searched substring is located.

text = 'Wolfgang Amadeus Mozart'

pos = text.find('ga')

print(pos)

The pos variable will contain the value 4, because at position 4 the beginning of the
searched substring was found for the first time.

If the entered substring does not exist in the string, the value -1 is returned. We can
use this fact to inform the user.

text = 'Wolfgang Amadeus Mozart'

pos = text.find('ba')

if pos == -1:

 print('The substring was not found.')

else:

 print('The substring starts at position', pos, '.')

📝 17.2.5

What will be the result of the following entry?

a = 'Dingo'

b = 'ing'

print(b.find(a))

📝 17.2.6

What will be the result of the following entry?

a = 'Dingo'

b = 'ing'

print(a.find(b))

264

🕮 17.2.7

It is also possible to search the string not from the beginning, but only from the
specified position using a variation of find() with two parameters, where the second
one defines the position from which the search should start.

text = 'Wolfgang Amadeus Mozart'

pos = text.find('a',10)

print(pos)

prints the value 11, which represents the position of the first "a" value from position
10.

📝 17.2.8

What does the following program fragment prints:

text = 'Wolfgang Amadeus Mozart'

pos = text.find('g',5)

print(pos)

🕮 17.2.9

The replace() function is also a useful function, which as a result of its operation
returns a string in which all occurrences of the first substring are replaced by the
second substring. The original string remains unchanged.

It has the form:

ret = 'it rained for five days again'

ret2 = ret.replace('five', '5')

print(ret2)

The string ret is searched for occurrences of the substring five and replaced with
the new 5.

The result is:

it rained for five days again

📝 17.2.10

What will be stored in the string ret2 after executing the following commands?

265

ret = 'there is a fly on the wall'

ret2 = ret.replace('e', 'O')

📝 17.2.11

Doplň kód tak, aby dával výstup:

MaLA has ELA, ELA has LALA

ret = 'Mama has Ema, Ema has mama'

ret2 = ret.replace('_____', '_____')

print(ret2)

📝 17.2.12

Complete the correct commands/functions to get the desired result:

- string ret2 should contain 'mama has ema, ema has mama'

ret = 'Mama ma Emu, Ema ma mamu'

ret2 = ret._____

- string ret2 should contain 'MAMA HAS EMA, EMA HAS MAMA'

ret = 'Mama has Ema, Ema has mama'

ret2 = ret._____

17.3 Working with strings (programs)

⌨ 17.3.1 Sequence of digits

Write a program that prints to the console the number 1 once on the first line, the
number 2 twice on the second line, and so on up to 9, the ninth line will have the
number 9 nine times in a row.

Output:

1

266

22

333

4444

55555

666666

7777777

88888888

999999999

⌨ 17.3.2 A rectangle made of stars

Write a program that, for entered integer values m and n, will display m lines with n
stars in each line.

Input : 2 2

Output:

xx

xx

Input : 2 5

Output:

xxxxx

xxxxx

⌨ 17.3.3 Triangle made of stars

Write a program that reads the number n from the user on input and displays 1 star
in the first line, two stars in the second line, three stars in the third line ... , n stars in
the nth line.

Input : 6

Output:

x

xx

xxx

xxxx

xxxxx

xxxxxx

267

Input : 3

Output:

x

xx

xxx

⌨ 17.3.4 Rectangle frame made of stars

Write a program that displays m lines with n characters to form a rectangle of stars.
The inside of the rectangle will be empty, the stars will be only on the perimeter.

At the beginning of the output, do a delineation, i.e. start the printout on a new line.
Leave one space at the beginning of the line and one between the stars.

Input : 5 5

Output:

 x x x x x

 x x

 x x

 x x

 x x x x x

⌨ 17.3.5 Square printout

Write a program that reads the number n from the input and prints the numbers
from 1 to n*n so that in each row and in each column there are exactly n numbers
that together form a square.

Reserve four spaces for printing each integer variable.

Input : 5

Output:

 1 2 3 4 5

 6 7 8 9 10

 11 12 13 14 15

 16 17 18 19 20

 21 22 23 24 25

⌨ 17.3.6 Compression

Write a program that compresses an entered string of characters. It prints the
character first and then the number of occurrences of consecutive characters.

268

The input is a non-empty string of characters. A list of pairs is printed on the output:
a character and a number representing the length of the sequence of its
occurrences separated by a colon.

Input : 122333444455555444

Output: 1:1 2:2 3:3 4:4 5:5 4:3

Input : aaaaabbbbbbb ooo

Output: a:5 b:7 :2 o:3

⌨ 17.3.7 Numbers to text

Write a program that replaces all single-digit numbers in a text with a word.

Input : I have 1 tent.

Output: I have one tent.

Input : Divide it by 5.

Output: Divide it by five.

Input : 1 and 2.

Output: One and two.

ale:

Input : Divide it by 15.

Output: Divide it by 15.

Input : Ta3 is not supposed to be modified.

Output: Ta3 is not supposed to be modified.

⌨ 17.3.8 Cancellation of diacritics

Write a program that hides all numerical values in the text with the digit 0.

Input : I have 1 tent.

Output: I have 0 tent.

269

Input : Divide it by 5.

Output: Divide it by 0.

⌨ 17.3.9 The most important word

For the entered text, find out which word appears in it the most times. If there are
more such words, write only the one that is closest to the beginning of the text. Pay
attention to characters such as periods and commas, which can distort the result.
Pay attention to the case of the letters.

Input : Ivan is at home. Ivan bought a new cat. Ivan, be

careful.

Output: ivan: 3x

Input : Divide it by 5.

Output: divide: 1x

270

