

PHP Fundamentals

Published on

November 2021

Authors:

Jozef Kapusta | Pedagogical University of Cracow, Poland

Ľubomír Benko | Constantine the Philosopher University in Nitra, Slovakia

Zenón José Hernández-Figueroa | University of Las Palmas de Gran Canaria, Spain

José Daniel González-Domínguez | University of Las Palmas de Gran Canaria, Spain

Juan Carlos Rodríguez-del-Pino | University of Las Palmas de Gran Canaria, Spain

Ján Skalka | Constantine the Philosopher University in Nitra, Slovakia

Dominik Halvoník | Constantine the Philosopher University in Nitra, Slovakia

Arkadiusz Nowakowski | University of Silesia in Katowice, Poland

Tomáš Hála | Mendel University in Brno, Czech Republic

Reviewers:

Martin Drlík | Constantine the Philosopher University in Nitra, Slovakia

Cyril Klimeš | Mendel University in Brno, Czech Republic

Piet Kommers | Helix5, Netherland

Eugenia Smyrnova-Trybulska | University of Silesia in Katowice, Poland

Peter Švec | Teacher.sk, Slovakia

Graphics

Ľubomír Benko | Constantine the Philosopher University in Nitra, Slovakia

David Sabol | Constantine the Philosopher University in Nitra, Slovakia

Erasmus+ FITPED

Work-Based Learning in Future IT Professionals Education

Project 2018-1-SK01-KA203-046382

The European Commission support for the production of this publication does not
constitute an endorsement of the contents which reflects the views only of the authors,
and the Commission cannot be held responsible for any use which may be made of
the information contained therein.

Licence (licence type: Attribution-Non-commercial-No Derivative Works) and may be
used by third parties as long as licensing conditions are observed. Any materials
published under the terms of a CC Licence are clearly identified as such.

All trademarks and brand names mentioned in this publication and all trademarks and
brand names mentioned that may be the intellectual property of third parties are
unconditionally subject to the provisions contained within the relevant law governing
trademarks and other related signs. The mere mention of a trademark or brand name
does not imply that such a trademark or brand name is not protected by the rights of
third parties.

© 2021 Constantine the Philosopher University in Nitra

ISBN 978-80-558-1789-7

Table of Contents

1 PHP Introduction ... 5

1.1 Client-side vs. server-side programming .. 6

1.2 HTTP protocol ... 9

1.3 Useful technologies .. 13

1.4 PHP programming .. 15

2 Strings and Output ... 19

2.1 Strings and echo ... 20

2.2 Comments ... 23

3 Operators .. 27

3.1 Operators ... 28

3.2 Operators (programs)... 33

4 Conditions .. 34

4.1 If/else statement .. 35

4.2 If/else statement (programs) .. 38

4.3 Switch .. 41

4.4 Switch (programs) .. 45

5 Loops .. 49

5.1 For loop .. 50

5.2 For (programs) .. 53

5.3 While and do while loops ... 57

5.4 While (programs) .. 60

6 Logical Expression... 64

6.1 Booleans .. 65

6.2 Booleans (programs) .. 69

7 Arrays .. 71

7.1 Arrays ... 72

7.2 Arrays (programs) .. 77

7.3 Foreach .. 77

7.4 Foreach (programs) .. 82

8 Parsing and Errors ... 85

8.1 Parsing and errors .. 86

8.2 Errors (programs) ... 90

9 Forms .. 92

9.1 Forms and forms elements ... 93

9.2 Forms (programs)... 99

9.3 Submitting a form ... 100

9.4 Submitting a form (programs) ... 104

10 Exercises .. 106

10.1 String and echo I. (programs) .. 107

10.2 String and echo II. (programs) ... 108

10.3 String manipulation (programs) .. 110

11 Functions I. ... 112

11.1 Introduction to functions ... 113

11.2 String functions (1) ... 117

11.3 String functions (2) ... 122

12 Functions II. .. 126

12.1 Array functions ... 127

12.2 Date and time functions ... 129

12.3 Password functions (password_hash, password_verify)................................ 134

13 Cookies and Sessions ... 138

13.1 Cookies .. 139

13.2 Sessions .. 143

14 Files... 147

14.1 Files.. 148

14.2 Files – other functions ... 154

PHP Introduction

Chapter 1

PHP Introduction | FITPED

6

1.1 Client-side vs. server-side programming

🕮 1.1.1

A script, in general, is a series of commands (programs) or instructions executed in
another program or application. Scripting is typical for web applications where
HTML language is a stem. It is basically the only universal language that all web
browsers understand and work with. Because of the relatively limited capabilities of
HTML language, it is often supplemented by scripts (i.e. parts of the code directly
written to the HTML page), but must be interpreted separately.

Two basic principles can be applied for programming web applications. They are
the so-called client-side and server-side programming. The main difference
between the two approaches is in the way scripts are interpreted. Server-side
scripts are interpreted on the server. It means that a language interpreter must be
installed on the server to generate HTML code from the script and send it to the
client. By client, we mean mainly a web browser, i.e. Mozilla Firefox, Opera, etc. In
client-side programming, the entire source code is sent if it is requested by the
client and it is then interpreted using a web browser. Although it may seem at first
glance that it is not important who actually interprets the script, this way of
interpreting significantly limits or favours all operations that can be executed on a
website. In practice, it is necessary to analyze what I expect from the developed
website and then, according to these requirements, choose an appropriate
approach to programming and interpretation.

It should also be noted that the method of interpretation is determined by the
programming language used. Well, if the programmer chooses a programming
language in which will create the functionality of the website, so he actually chose
the way of its interpretation and thus decided to program on the client or server-
side. Technologies that provide searching, interpretation, loading, and displaying a
web page can tell, by the end of the file, how the script should be interpreted.

Given that each approach has many advantages as well as disadvantages, the
current trend is a combination of both approaches.

📝 1.1.2

What approach are we talking about when the source script is interpreted by the
web browser?

• Client-side programming
• Server-side programming

PHP Introduction | FITPED

7

🕮 1.1.3

Both approaches (client vs. server scripting) differ mainly in the following areas:

1. Source code visibility

In server-side programming, the script is interpreted and results in an HTML page.
The user does not see the source code of the script, he can only see the result (web
page), the script is visible only to the servers. In the case of client-side
programming, the web client receives all source code from the server, which then
interprets it. Therefore, the user can easily view the code. This is particularly
appreciated by users learning how to script, as they can learn from real solutions.

2. Code processing

While in client programming web browser is sufficient and moreover, we can also
browse pages with scripts (i.e. from USB, CD, etc.), for scripts written in languages
for programming on the server side it is necessary to connect to the Internet and
connection to the server where the page is with the interpreter (this is automatically
provided by the web browser). Creating local versions of applications that need an
interpreter on a web server is impossible for the average user.

3. Efficiency

In practice, both approaches are often combined. Server-side programming allows
us to create more complicated pages, with the ability to personalize and connect to
a database. However, many problems can be solved directly on the client without
the need to load the server. The advantage of client interpretation is speed, i.e.
operations such as form validation, visual effects, etc. can be solved quickly, as
each client can interpret them alone without a server. Client-side scripting requires
no interaction with the server.

4. Security

Because the code interpreted from the server is sent only as generated HTML when
programming on the server-side, application security is only a question of developer
skill. In the case of client scripts, where practically "the whole world" can see the
source code, security is questionable.

📝 1.1.4

Choose which access is best for the following applications:

(a) I want a simple check to see if the quick form elements are filled.

PHP Introduction | FITPED

8

(b) I need a database connection page with login and password verification.

• Client-side programming
• Server-side programming

🕮 1.1.5

Client-side scripting is performed to interpret and display code that can run on a
web browser without the need to process server-side code. Basically, these types of
scripts are embedded in HTML documents. Client-side scripting can be used to
check a user form for errors before submitting the form, for simple effects, and so
on. Effective client-side scripting can significantly reduce server load.

If we disregard the basic languages that are also realized using a web browser, i.e.
HTML and CSS, so the basic client-side scripting languages are JavaScript. Web
creators and web standards developers must ensure that client-side languages
work properly on every web browser.

📝 1.1.6

Which languages are used for client-side programming?

• JavaScript
• VBScript
• ASP
• PHP
• Python

🕮 1.1.7

Server-side scripting is a programming technique in which the source code
executes and interprets the software installed on the server. Server-side
programming most often solves operations such as customizing a website,
dynamically changing website content, accessing a database, etc.

Server-side scripting creates a communication link between the server and the
client (user). When a browser makes a request to a web page that has an extension
associated with a server language, the web server processes the script before
sending the page to the browser. Script processing often involves extracting
information from the database, simple calculations or selecting the appropriate

PHP Introduction | FITPED

9

content to display to the client. The interpreter creates an HTML page from the
script and sends it to the browser.

Note: In the past, server-side scripting has been implemented by so-called CGI
scripts (Common Gateway Interface). CGI was designed to execute scripts from
programming languages like C++ or Perl on web pages.

Because server programming does not restrict web browsers and is actually a
matter of installing and setting up a particular web server, there is a wide variety of
programming languages now.

The best known of these is probably PHP, which we will deal with in this tutorial.
Other languages are ASP.net, Ruby on Rails, ColdFusion, Python, and so on.

📝 1.1.8

In which approach to web programming can we choose from a variety of
languages?

• Server-side programming
• Client-side programming

1.2 HTTP protocol

🕮 1.2.1

As a typical representative of server-side programming, PHP needs several
technologies for its "normal" functioning. The first and probably the most basic is a
web server. A web server can also be seen as a technical device from a hardware
perspective, but from our - programming - perspective, we can understand a web
server as an application that runs on a computer (server).

A web server is software that understands URLs (web addresses) and HTTP (the
protocol your browser uses to display web pages, an acronym derived from the
Hypertext Transfer Protocol). It is accessible for example through the domain
names of the website (e.g. ukf.sk).

The function of its work is to respond to client requests - web browsers. If the
browser needs a file that is located on a web server (most often a web page that is
an HTML file), the browser requests that file via HTTP. The initial communication is
the lowest level of communication, activation of the domain name system and
finding the server with the necessary IP address. This is followed by
communication between the web client (Firefox, Mozilla, Opera, etc.) and the

PHP Introduction | FITPED

10

webserver. All communication is governed by a set of rules that are determined by
the HTTP protocol. After accepting the request, the webserver (software) looks for
the requested document (if it does not return the pending request with the error
number and description) and sends the document to the requesting browser, even
via HTTP.

📝 1.2.2

What is the set of rules that govern the entire communication between a web
browser and a web server?

• HTTP
• etiquette
• netiquette
• TCP/IP

🕮 1.2.3

Hypertext Transfer Protocol is a protocol for transferring documents between web
servers and clients. It is the primary method of transporting information on the web.
HTTP is a protocol that defines requests and responses between clients and
servers. An HTTP client (referred to as a user agent), like a web browser, typically
begins a request by establishing a TCP connection. The HTTP server waits for the
client to send a request string such as "GET / HTTP / 1.1" (requesting the
webserver start page) followed by a series of headers. Some headers are optional.
After accepting the request, the server sends a response string like "200 OK"
followed by headers along with the message itself, the body of which is the
contents of the requested file, an error message, or other information.

📝 1.2.4

Who sends a web document request within the HTTP protocol?

• Web client
• Web server

🕮 1.2.5

The HTTP protocol is quite simple. It contains basic methods (commands) for page
requests, most commonly used:

PHP Introduction | FITPED

11

• GET - on request a resource/file with its URL
• POST - similar to a GET request, except that a message body is usually

added, containing key-value pairs from the HTML form.
• HEAD - on request a document with no requiring the message body, only

headers. It is used to get metainformation about the document.

In addition to the above commands, the HTTP protocol also includes e.g. PUT,
DELETE, TRACE, OPTIONS, etc.

🕮 1.2.6

Like the social protocol, it defines "behaviour" in a company, HTTP is a set of rules
for "behaviour" and communication in the world of the web. For example, here is the
format of a web page request that is normally sent by web browsers.

GET /docs/index.html HTTP/1.1

Host: www.ukf.sk

Accept: image/gif, image/jpeg, */*

Accept-Language: en-us

Accept-Encoding: gzip, deflate

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1)

(blank line)

When the request message reaches the server, the server can do one of the
following:

• The server finds the requested file in the server's document directory and
returns the requested file to the client.

• The server detects that the client requests a script page, maps the request to
a program saved on the server, executes the program and returns the
program output to the client.

• The request cannot be accepted, the server returns an error message.

The example of an HTTP response message:

HTTP/1.1 200 OK

Date: Sun, 18 Jan 2019 08:56:53 GMT

Server: Apache/2.2.14 (Win32)

Last-Modified: Sat, 20 Nov 2018 07:16:26 GMT

ETag: "10000000565a5-2c-3e94b66c2e680"

Accept-Ranges: bytes

Content-Length: 44

Connection: close

Content-Type: text/html

X-Pad: avoid browser bug

PHP Introduction | FITPED

12

<html><body><h1>It works!</h1></body></html>

📝 1.2.7

Which of the following actions can be performed by the request server:

• Finds the desired file and sends it to the client.
• Sends a script to interpret the related applications and sends the generated

document to the client.
• Sends an error message if it does not find a file.
• If it does not find the file, it gets angry and turns off the entire server.
• If the client does not greet him, he will stop talking to them.

🕮 1.2.8

The first response line of a web server is called the status line, followed by optional
response headers. The status line has the following syntax:

HTTP-version status-code reason-phrase

The status-code is a three-digit number generated by the server that reflects the
result of the request, the reason-phrase provides a brief explanation of the status
code. Common status-code and reason-phrase can be:

HTTP/1.1 200 OK

HTTP/1.0 404 Not Found

HTTP/1.1 403 Forbidden

🕮 1.2.9

The status code is a three-digit number with the first digit characterizing the code
category. It can belong to one of the following categories:

• 1xx (Information): Request received, the server continues the process.
• 2xx (Success): The request has been successfully received and is processed.
• 3xx (Redirection): Further action is required to complete the request.
• 4xx (Client Error): The request contains bad syntax or cannot be processed.
• 5xx (Server Error): Server-side error.

PHP Introduction | FITPED

13

1.3 Useful technologies

🕮 1.3.1

When programming on the server-side, all the web pages or necessary scripts are
located on the webserver. A web server can be understood as a technical device
(computer) or as an application running on a technical device. When creating PHP,
we can rely on the existing web hosting service, when the question of the server as
a device and applications solve the provider for us. The second option is to obtain a
web server (technical equipment) and web server application.

From the currently available web server applications, the most popular are:

• Apache HTTP Server
• Internet Information Services
• Sun Java System Web Server

It is needed to run these applications. Each of these applications has a folder that
is visible, where it finds all the HTML pages and scripts provided by the client. For
Apache HTTP Server, it is the HTDOCS folder (usually found in the web server file
folder). Programmers need to place all their scripts in this folder. Files outside are
not visible to the webserver and therefore not available.

📝 1.3.2

The application Apache HTTP Server belongs to a group of applications called:

• Web server
• FTP server
• Database server
• HTML server
• Applications server

🕮 1.3.3

If we have created HTML pages or PHP pages, we save all such pages in the
webserver folder (in the case of Apache HTTP Server in the HTDOCS folder). To
check the correctness, we can call the domain address (or IP address) of our server
in the web client (Firefox, Opera, Chrome…).

Programmers often do not upload their pages directly to the server but use the
local version of the server directly on their computer to create them. They install a
web server application on their computer, save the scripts in the HTDOCS folder,

PHP Introduction | FITPED

14

and then call the scripts that are created. If the web client and web server are on
the same computer, to call the web pages in the web client is used locahost. That
means that an IP address of 127.0.0.1 or a call to "localhost" is entered in the
browser instead of the domain name to check the created page.

📝 1.3.4

If the webserver and client are located on the same computer/technical device,
what can we type as a URL into the browser?

• localhost
• www.local
• http://computer
• home
• www.home

🕮 1.3.5

The web server application is running on the technical device, and that makes the
technical device the real web server. However, it should be noted that many web
server applications are often running on such a web device, e.g. database server,
FTP server, etc. And even, it is not uncommon to run multiple web server
applications on such a single technical device. Therefore, if a client (web, database,
FTP client, etc.) connects to a technical device, it must specify which server
application it wants to communicate with. For this reason, web applications have a
number called a port. The port specifies the server application. Ports 80 or 8080 are
reserved for the webserver application (of course, other ports can be assigned to
the webserver).

If the user does not specify a port in the URL (most users do not), the web client will
automatically send a request to the server application running under port 80,
because it is reserved for the webserver. If the webserver has a specific port, it
must be specified in the URL address, followed by the port number, such as ":".
http://www.ukf.sk:8080 or http://www.ukf.sk:5555.

📝 1.3.6

We have a web server running on our computer that is configured to port 1234.
What URL will we type into the web client to get a web page from our local
computer?

• localhost:1234

PHP Introduction | FITPED

15

• web:1234
• local
• computer:1234
• 1234

🕮 1.3.7

After typing the URL (or calling localhost) our web browser sends an HTTP request
to a specific HTML page (e.g. GET http://ww.ukf.sk/students.html). Users usually
do not specify a specific page in their request (they only type http://www.ukf.sk).
Each web server has set HTML page names that are searched for and then sent to
the client if the client does not specify a specific page in its request. They are
actually the home pages of each site. These usually (depending on your web server
settings) must be called index.html or default.html. Of course, similar names are
also set in the case of scripts, e.g. for PHP, it is index.php or default.php.

1.4 PHP programming

🕮 1.4.1

PHP is a server-side programming language. Mostly, PHP scripts are embedded in
HTML. It is used to manage dynamic content, databases, session tracking, even to
create entire complex pages, e.g. CMS, E-shop.

Why do I need to create HTML pages dynamically? Imagine a school wanting to
make student lists available on its website. If the creator of the page knew only
HTML, he would create pages prvaci.html, druhaci.html, tretiaci.html, and so on. It
would certainly work perfectly for the first year. For the second year, however,
freshmen.html would have to change to second.html, second.html to third.html,
remove quarter.html, create a new list of first.html, and so on. Obviously, the
laboriousness and frequency of errors in copying and rewriting from databases or
official lists would be high. When e.g. e-shops or more complex information
systems, this approach is practically unimaginable. On the current web, there are
not many so-called static pages, because dynamic pages dominate virtually the
entire site. Those are pages where, depending on the user's request, time, and other
parameters, a page is generated for each user with current content.

📝 1.4.2

What is PHP?

PHP Introduction | FITPED

16

• server-side programming language
• markup language
• content management system
• CGI framework

🕮 1.4.3

PHP is integrated with a number of popular databases including MariaDB,
PostgreSQL, Oracle, Sybase, Informix and Microsoft SQL Server. The language
syntax is based on the C language.

The basic tasks of PHP include:

• PHP performs system functions, e.g. provides work with files in the system,
it can create, open, read, write and close files.

• PHP can process forms, i.e. collect user input, send data via e-mail, view user
calculation data from user data, and more.

• PHP can work with a database, i.e. add, delete, edit database inputs.
• Can access and edit cookies variables.
• PHP can encrypt data and can authenticate website users.

📝 1.4.4

What can PHP not do?

• Play hockey
• Access cookies
• Access database
• Create and delete files
• Read data from web forms

🕮 1.4.5

PHP is designed primarily for dynamic web generation, i.e. for work with HTML. In
most cases, PHP commands are inserted directly into HTML code. The interpreter
must distinguish where the PHP script starts and ends. Therefore, PHP always
starts with the <?php tag and ends with the ?> tag.

Example:

<?php

 //here you can insert PHP commands

PHP Introduction | FITPED

17

?>

🕮 1.4.6

A complete HTML page with PHP scripts can look like this:

<html>

 <title>Hello World program in PHP</title>

 <body>

 <?php

 //here you can insert PHP commands

 ?>

 </body>

</html>

📝 1.4.7

Add the correct characters to insert the PHP script

<html>

 <title>Hello World program in PHP</title>

 <body>

 <_____php

 //here you can insert PHP commands

 _____>

 </body>

</html>

🕮 1.4.8

The first PHP command will be the echo command for us. Use this command to
type the text into a web page. Let's not forget that, like other programming
languages, every PHP text is surrounded by quotes or apostrophes.

<html>

 <title>Hello World program in PHP</title>

 <body>

 <?php

 echo "Hello world";

 ?>

 </body>

PHP Introduction | FITPED

18

</html>

📝 1.4.9

Insert the correct command for output the "First steps" text into a webpage using
PHP.

<html>

 <title>Hello World program in PHP</title>

 <body>

 <?php

 _____ "First steps";

 ?>

 </body>

</html>

🕮 1.4.10

In order to test the created PHP script, it is necessary to take a few more steps.
First, it is necessary to save the created script with the correct file extension. For
PHP files, this is the .php extension. If we use Webhosting, it is sufficient to copy
the created PHP file to Webhosting and display it in the web browser using the
correct address.

In case we use our own solution, i.e. we have a web server (e.g. Apache) on our
computer, it is necessary not only to save the file with the correct extension but
also to save it in the correct directory that is reserved for the webserver. For the
Apache web server, this is the HTDOCS folder. After saving the script in this
directory, we can check the functionality of the script in a web browser. In the URL
field, enter localhost or localhost/script_name.php

Strings and Output

Chapter 2

Strings and Output | FITPED

20

2.1 Strings and echo

🕮 2.1.1

The echo function is a built-in PHP function for listing embedded texts on a web
page. In current PHP, echo is not a typical function, it is rather a language construct
that does not need parenthesis to write parameters.

If we use the echo function to write a text string, we must insert the string in
quotation marks or apostrophes.

 <?php

 echo "PHP is super";

 ?>

📝 2.1.2

Add the PHP code to correctly write the words "wow" including the echo command.

 <?php

 _____ "_____";

 ?>

🕮 2.1.3

Individual echo commands can be called in PHP whenever needed. The condition is
to separate the commands with a semicolon. Inserting a semicolon at the end of
commands is required in multiple languages, not just PHP.

 <?php

 echo "PHP ";

 echo "is ";

 echo "super ";

 ?>

Note that the language interpreter checks the semicolon at the end of the
command/function as the only termination. From the interpreter's perspective, the
following code is also correct:

 <?php

 echo "PHP "; echo "is "; echo "super ";

 ?>

Strings and Output | FITPED

21

However, writing each command/function on a new line is a good practice for
programmers, especially for reasons of clarity and better readability of the source
code.

📝 2.1.4

What character is used in PHP to indicate the termination of an instruction?

• ;
• .
• -
• ,
• ?
• %

🕮 2.1.5

Putting multiple echo commands on separate lines does not mean that even the
output, i.e. listing and website will be in separate rows.

The following code:

 <?php

 echo "PHP ";

 echo "is ";

 echo "super ";

 ?>

will appear on a webpage with the only line:

PHP is super

🕮 2.1.6

The echo command inserts strings into a page that is displayed in a web browser.
HTML code is generated for the user. Typically, HTML tags are inserted into echo
command strings. E.g. tag
 to insert a new line.

 <?php

 echo "PHP
";

 echo "is
";

 echo "super
";

Strings and Output | FITPED

22

 ?>

📝 2.1.7

Which of the following echo commands has the correct syntax?

• echo "<|h1> holiday<|/h1>";
• echo "(<|h1> holiday<|/h1>");
• echo (<|h1> holiday<|/h1>);
• echo <|h1> holiday<|/h1>;

📝 2.1.8

Insert the correct tags for the new line into the echo commands (with the end-of-
command character) in the source code so that the output is formatted as follows:

Hello,

this is echo

result.

Source code:

 <?php

 echo "Hello, _____

 echo "this is _____

 echo "echo
";

 echo "result.";

 ?>

• <|hr>;
•
";
• <|space>;
• n/r/;
• \n\r;
• ";

📝 2.1.9

Like the
 tag, other HTML tags can be inserted into the echo string.

Format “PHP is super” so that the word “super” will appear in bold. Use the
 HTML tag for bold.

Strings and Output | FITPED

23

 <?php

 echo "PHP is _____super_____";

 ?>

2.2 Comments

🕮 2.2.1

Commenting is an important part of every programming language despite that it is
not read as part of the program. Its only purpose is to be read by someone who is
editing or updating the code.

Comments are used to let others know what was done in the code. If you are
working with a group of people or plan to share your code with others, the
comments tell the other programmers what you are doing at each step. This makes
it much easier for them to work with and edit your code if needed.

Comments are used also for yourself to remind you what you did in your code.
Although you may just be writing a shortcode for yourself and don't see the need for
comments, go ahead and add them in any way. Most programmers have
experienced coming back to edit their own work a year or two later and having to
figure out what they did. Comments can remind you of your thoughts when you
wrote the code.

There are several ways to add comments in PHP code which will be introduced in
the following lesson.

🕮 2.2.2

Commenting in PHP is similar to comments that are used in HTML and other
programming languages. PHP supports C, C++ and Unix shell-style commenting.
The PHP comment syntax always begins with a special character sequence and the
whole text that is placed between the characters.

Commenting in HTML is done in the following form:

<!-- HTML tags and words between these characters are taken as

comments -->

The HTML syntax has only one type of comment but the PHP offers a better
variance. Let's focus on one-line (or also known as single-line) comments. These
comments are the most used because they are placed right beside the commands.
The one-line comment tells the interpreter to ignore everything that occurs on that
line to the right of the comment. PHP has two types of one-line commenting. To do

Strings and Output | FITPED

24

a one-line comment you have to type "//" or "#" and all the text to the right will be
ignored by the PHP interpreter.

<?php

echo "Hello, I'm John."; // This is a one-line comment

This is also a comment

?>

📝 2.2.3

Select the right comment command:

• echo "Wof, wof!";
• // echo "Wof, wof!";
• // the dog will bark
• $name = "John";
• // $number = 5;

🕮 2.2.4

There are several ways to add a comment in PHP code. The one-line comment can
be also used in a separate line like shown in the examples:

<?php

echo "Hello, I'm John."

// introduce yourself - this is a comment

echo "Nice to meet you, John."

?>

The alternative use of the sharp "#" character is shown here:

<?php

echo "Hello, I'm John."

introduce yourself - this is also a comment

echo "Nice to meet you, John."

?>

📝 2.2.5

Complete the code that way to print out the following text:

Hello, I'm John!

Strings and Output | FITPED

25

<?php

echo "Hello, I'm John!"; _____ this is a comment using the two

slashes

_____ echo "Nice to meet you!"; this is a comment using the

sharp

?>

🕮 2.2.6

One-line comments have also some issues that can sometimes occur. Because it is
a one-line comment that means that it can end with the end of the line and that the
code on the next line will be executed (if it is not another one-line comment). The
other option to end the one-line comment is the PHP closing tag ?>. If the PHP
closing tag occurs in the same line as the one-line comment then the following
command (after the closing tag) will be executed. Let's look at the following
example:

<?php

// echo "Hello "; ?> echo "I'm John."

This will result in the following printout:

I'm John.

that is because the PHP closing tag closes also the one-line comment.

📝 2.2.7

One-line comments can be written using the characters "//" or "#".

• True
• False

🕮 2.2.8

Similar to HTML comments also in PHP can be used a character sequence to
comment multiple lines or large scope of code. The multiple line PHP comment
begins with "/* " and ends with "*/".

Strings and Output | FITPED

26

<?php

/* This code will print out the greeting to the place

in which I reside on. In other words, the World. */

echo "Hello World!";

/* echo "My name is John!";

echo "No way! My name is Peter!";

*/

?>

📝 2.2.9

Complete the commands to make the comment through all the lines.

<?php

echo "Hello, I'm John.";

 this line contains a comment

 that is three lines long

 and should be closed using the corresponding characters

?>

📝 2.2.10

What will be the output of the following code? Pay attention to the closing of the
comments and PHP. Write the resulting output in one line where each sentence is
separated by a space.

<?php

 // echo "Hello, I'm John.";

 echo "Nice to meet you." # introduction

 /*

 echo "Welcome to our school.";

 echo "It's awesome that you have come here."

 */

 # echo "What subject is your favorite?"; ?> echo "It's Math."

• Nice to meet you. echo "It's Math."
• Nice to meet you.

Operators

Chapter 3

Operators | FITPED

28

3.1 Operators

🕮 3.1.1

Operators are used to performing operations on given values. Using the operators
we can take some values to perform operations and receive results. For example, 2
+ 2 = 4 in this expression ‘+’ is an operator. The expression consists of two values 2
and 2 and performs addition on them to get the result 4.

PHP supports various types of operators:

• Arithmetic Operators
• Logical or Relational Operators
• Comparison Operators
• Conditional Operators
• Assignment Operators
• Spaceship Operators (Introduced in PHP 7)
• Array Operators
• Increment/Decrement Operators
• String Operators

📝 3.1.2

Select the correct result with the operator if the variables are defined as follows:

$a = 4;

$b = 3;

$c = 0;

$d = -6;

Operators | FITPED

29

• $a + $b = 7
• $a - $c = 0
• $c + $a = 4
• $d * $c = 0
• $a +- $b = 4
• $d / $a = -1.5
• $b % $a = 3
• $a * $d = -24
• $c - $d = -6
• $a / $b = 1

🕮 3.1.3

Logical or Relationship operators are used to operate with conditional statements
and expressions. Conditional statements are based on conditions. Also, a condition
can either be met or cannot be met so the result of a conditional statement can
either be true or false.

🕮 3.1.4

The comparison operators are used to compare two elements and outputs the
result in boolean form.

Operators | FITPED

30

🕮 3.1.5

There is an operator called conditional operator. These operators are used to
compare two values and take either of the results simultaneously, depending on
whether the outcome is TRUE or FALSE. These are also used as a shorthand
notation for if…else statement.

🕮 3.1.6

The assignment operators are used to assign values to a different variable, with or
without mid-operations. You have to be cautious of the number of "=". If you want to
compare two values you have to use == and if you assign you to use only one =.

Operators | FITPED

31

🕮 3.1.7

The array operators are used only if you work with arrays. They are similar to the
operators we have already listed but using with arrays they have a little other
functionality.

Operators | FITPED

32

🕮 3.1.8

The string operators are implemented upon strings.

🕮 3.1.9

PHP 7 has introduced a new kind of operator called spaceship operator (). These
operators are used to compare values but instead of returning the boolean result, it
returns integer values. If both the operands are equal, it returns 0. If the right
operand is greater, it returns -1. If the left operand is greater, it returns 1.

📝 3.1.10

Select the correct answer for the following input variables:

Operators | FITPED

33

$a = 10

$b = -5

$c = 3

$d = 10

• $a > $b
• ($a > $b) && ($b > $c)
• $a === $d
• $a != $c
• $c >= $d
• $b <|= $c
• $c-- //result will be 3, and $c takes the value 2
• ($a <|=> $d) === 1

3.2 Operators (programs)

⌨ 3.2.1 Arithmetic operators

Print a comma-separated list of the results of the operations between $x a $y:
addition, subtraction, multiplication, division and modulo.

Input : 4 2

Output: 6,2,8,2,0

⌨ 3.2.2 Set of instructions

Assume you have $x as the input, make the following instruction:

• add 2 to x,
• subtract 4,
• multiply by 5,
• increment value by one,
• divide by 3.

Print the final result.

⌨ 3.2.3 Find the maximum

Find and print the maximum between two variables $x and $y (your input).

Conditions

Chapter 4

Conditions | FITPED

35

4.1 If/else statement

🕮 4.1.1

The conditional statements are also available in PHP like in most programming
languages. Conditions are used to divide the actions that are performed based on
the result of a logical or comparative test. This means you can create test
conditions in the form of expressions that evaluates either true or false. Based on
the results of these tests you can perform certain actions.

There are several statements in PHP that you can use to make decisions:

• the if statement
• the if... else statement
• the if... elseif... else statement
• the switch... case statement

🕮 4.1.2

The if statement

The if statement is used to execute a block of code only if the specified condition
evaluates to true.

if (condition) {

 code to be executed if condition is true;

}

📝 4.1.3

Complete the code that way to print out the following text if the current day is
Friday:

Have a nice weekend!

<?php

$day = date("D");

if($day _____ _____) {

 echo "Have a nice weekend!";

}

?>

Conditions | FITPED

36

🕮 4.1.4

The if... else statement

The if... else statement executes code when a condition is true and another code
when that condition is false.

if (condition) {

 code to be executed if condition is true;

} else {

 code to be executed if condition is false;

}

📝 4.1.5

Complete the code that way to print out the text "Have a nice weekend!" if the
current day is Friday otherwise it will output "Have a nice day!":

<?php

$day = date("D");

_____($day=="Fri") {

 echo "Have a nice weekend!";

} _____ {

 echo "Have a nice day!"

}

?>

🕮 4.1.6

The if... elseif... else statement

If you want to execute some code when one of the several conditions are true use
the elseif statement. Using this statement you can use more than two conditions.

if (condition) {

 code to be executed if this condition is true;

} elseif (condition) {

 code to be executed if this condition is true and the first

is not;

} else {

 code to be executed if all conditions are false;

}

Conditions | FITPED

37

📝 4.1.7

Complete the code that way to print out the text "Good morning!" if the current hour
is less than 10, and "Good day!" if the current time is less than 20. Otherwise, it will
output "Good night!":

<?php

$time = date("H");

if ($time < "10") {

 echo _____;

} _____ ($time < "20") {

 echo "Good day!";

} _____ {

 echo "Good night!";

}

?>

🕮 4.1.8

The conditional/ternary operator

As mentioned in the previous chapter there is also a conditional (or ternary)
operator that provides a shorthand way of writing the if... else statement. The
ternary operator is represented by the question mark ? symbol and it takes three
operands: a condition to check; a result if the condition is met; and a result if the
condition is not met.

statement (condition) ? code to return if true : code to

return if false;

📝 4.1.9

Complete the code that way to print out the text "Have a nice weekend!" if the
current day is Friday otherwise it will output "Have a nice day!". Use the ternary
operator.

<?php

$day = date("D");

echo (_____) _____ "Have a nice weekend!" _____ "Have a nice

day!";

?>

Conditions | FITPED

38

🕮 4.1.10

PHP 7 introduced a new null coalescing operator ?? that can be used as a
shorthand where you need to use a ternary operator in conjunction with isset()
function. To better understand this consider the following line of code:

<?php

$day = isset($_GET['day']) ? $_GET['day'] : "day not

selected";

?>

Using the null coalescing operator the same code could be rewritten following:

<?php

$day = $_GET['day'] ?? "day not selected"

?>

4.2 If/else statement (programs)

⌨ 4.2.1 Checking a year

Write code that realises the following algorithm:

if ($year is not divisible by 4) then (print "common year")

else if ($year is not divisible by 100) then (print "leap

year")

else if ($year is not divisible by 400) then (print "common

year")

else (print "leap year")

⌨ 4.2.2 Comparing two numbers

Write a program that finds and prints the larger of the two different integers,
making sure that the program gives the information if the numbers are matched.

Input : 5 4

Output: higher is number 5

Input : 10 10

Output: both numbers are equal

Conditions | FITPED

39

⌨ 4.2.3 Even and odd numbers

Write a program that finds and prints information whether the number is even or
odd.

Input : 5

Output: odd

Input : 10

Output: even

⌨ 4.2.4 Absolute value

Write a program that will write an absolute value of the given number.

Input : 6

Output: 6

Input : -3

Output: 3

⌨ 4.2.5 Division

Write a program that writes a division of two numbers also with the division
remainder (dr.). Do not forget to deal with the division by zero

Input : 5 4

Output: 1, dr. 1

Input : 10 0

Output: division by zero

⌨ 4.2.6 Maximum of three numbers

Write a program that finds the maximum of three given numbers.

Input : 5 4 7

Output: 7

Input : 10 10 10

Output: 10

Conditions | FITPED

40

⌨ 4.2.7 Time of day

Write a program that returns the time of day (night/day) based on the given hour (1-
12) and time period (a.m./p.m.). Let's assume that the sun sets down and comes
up at 6:00 a.m./p.m.

Input : 5 a.m.

Output: night

Input : 5 p.m.

Output: day

⌨ 4.2.8 Diagnosis

Write a program that will decide whether the given temperature is a fever (>37.5°C),
high fever (>38.5°C) or normal.

Input : 38.8

Output: high fever

Input : 36.7

Output: normal

⌨ 4.2.9 Leap year

Write a program that finds out whether the given year is a leap year. A leap year is a
multiple of 4, and if it is a multiple of 100, it must also be a multiple of 400.

Input : 2012

Output: leap year

Input : 2019

Output: normal year

⌨ 4.2.10 Digits

Write a program that finds whether the given number has a higher digit sum or digit
product.

Input : 111

Output: digit sum

Input : 1234

Conditions | FITPED

41

Output: digit product

⌨ 4.2.11 Similar numbers

Write a program that finds out whether the three given numbers are equal.

Input : 5 4 5

Output: False

Input : 10 10 10

Output: True

4.3 Switch

🕮 4.3.1

The switch statement is used similarly to the if statement but the difference is that
using the switch statement you can perform different actions based on different
conditions. PHP switch statement compares a variable or an expression against
many different values and executes a code block based on the value it equals to.

<?php

switch(variable) {

 case value1:

 code executed when value1 == variable;

 break;

 case value2:

 code executed when value2 == variable;

 break;

 default:

 code executed when variable does not meet any

condition;

 break;

}

?>

🕮 4.3.2

Let's examine the switch statement syntax in more detail.

First, you put a variable or expression that you want to test into the brackets after
the switch statement. Then inside the curly brackets are multiple case constructs
that contain values that are compared with the variable or expression. In case the

Conditions | FITPED

42

value of the variable or expression matches the value in a case construct, the code
block in the corresponding case will be executed. If the value of the variable or
expression does not match any value then the code block in the default constructor
will be executed.

The break statement is used in each case or default construct to exit the entire
switch statement. It is important because if the break is missing then the next
construct will follow.

🕮 4.3.3

It is very important to understand that the switch statement is executed statement
by statement therefore the order of the case construct is very important. If the
value of the variable matches a value in the case construct, PHP will execute code
black in that case construct and ends the switch statement if the case construct
contains the break statement.

📝 4.3.4

Complete the code that way to print out the text based on the random number we
get for the variable.

<?php

$a = rand(0,3);

_____($a) {

 _____ 0: echo 'a = 0';

 break;

 _____: echo 'b = 1';

 break;

 case 2: echo 'c = 2';

 break;

 case 3: echo 'c = 3';

 _____;

}

?>

📝 4.3.5

What will be the output of the following code:

<?php

$a = 1;

Conditions | FITPED

43

switch($a) {

 case 0: echo 'zero';

 break;

 default: echo 'default';

 break;

}

?>

📝 4.3.6

Complete the code to get the correct switch statement:

<?php

$a = 3;

$b = -3;

$c = $a - $b;

_____($c) {

 case -3: echo 'negative';

 case 0: echo 'zero';

 break;

 case 3: echo 'positive';

 break;

 _____: echo 'out of scope';

 break;

}

?>

📝 4.3.7

What will be the output of the following code:

<?php

$a = 3;

$b = -3;

$c = $a - $b;

switch($c) {

 case -6: echo 'negative';

 break;

 case 0: echo 'zero';

 break;

 case 6: echo 'positive';

 break;

Conditions | FITPED

44

 default: echo 'out of scope';

 break;

}

?>

📝 4.3.8

Will the following switch statement output the following text?

one

<?php

$a = 1;

switch($a) {

 case 0: echo 'zero';

 case 1: echo 'one';

 case 2: echo 'two';

 default: echo 'none';

}

?>

• false
• true

🕮 4.3.9

It is also possible to check an expression or condition in the switch statement. This
requires a little bit of an elegant solution. Let's have an example where we want to
find out whether the randomly generated number is from the various intervals. So
we have to assume that the condition is met and that's why we have to say that the
switch statement has to search for a condition that returns true.

Let's see the following example:

<?php

$r = rand(-5,5);

switch(true) {

 case $r < 0: echo 'negative number';

 break;

 case $r == 0: echo 'zero';

 break;

 case $r > 0: echo 'positive number';

 break;

Conditions | FITPED

45

}

?>

📝 4.3.10

Fill up the following code with the correct expressions:

<?php

$r = rand(0,10);

switch(_____) {

 case _____: echo 'zero';

 break;

 case _____: echo 'even number';

 break;

 case $r % 2 != 0: echo 'odd number';

 break;

}

?>

4.4 Switch (programs)

⌨ 4.4.1 Count of even digits

Write a program that finds and prints the number of even digits for a given number.

Input : 15478

Output: 0:0 2:0 4:1 6:0 8:1

Input : 12124225

Output: 0:0 2:4 4:1 6:0 8:0

⌨ 4.4.2 Days per month

Write a program that will write the number of days for a given month (do not take
into account the leap year). Wrong input will result in Output: "wrong month"

Input : 5

Output: 31

Input : 13

Output: wrong month

Conditions | FITPED

46

⌨ 4.4.3 Calculator

Write a program that, based on a mathematical operation (+, -, *, /), finds the sum,
the difference, the product, and the proportion between the two entered numbers.
The input is entered in the order of the mathematical operation and the next line of
the number.

Input : + 5 4

Output: 9

Input : / 3 2

Output: 1

⌨ 4.4.4 Day of month II.

Write a code which for the given number between 1-12 (corresponding to the
number of the month) and the number from the interval 1900-2200 (corresponding
to the number of the year) computes the number of days in this month (1, 3, 5, 7, 8,
10, 12 - 31 days; 4, 6, 9, 11 - 30 days, 2 - 28/29 days). Input is two integer numbers
(month and year). Print number of days in this month. Be aware of leap years. If the
data are out of bound then print -1.

Input : 2 1900

Output: 28

Input : 2 2000

Output: 29

⌨ 4.4.5 Seasons

Write a program that returns for the given month number its corresponding season:

• 3-5 write "SPRING"
• 6-8 write "SUMMER"
• 9-11 write "AUTUMN"
• 12-2 write "WINTER"

If the number is out of range then write "wrong month".

Input : 5

Output: SPRING

Input : 13

Output: wrong month

Conditions | FITPED

47

⌨ 4.4.6 Remaining days

Write a program that will return the remaining days till the end of the month. The
input consists of the actual day and the month.

Input : 2 2

Output: 26

Input : 1 1

Output: 30

⌨ 4.4.7 Age categories

Write a program that reads a person's age and writes whether it is a child (0-11
years old), a teenager (12-18 years old), a young man (19-35 years old), a middle-
aged man (36-60 years old) or an old man (61 and over).

Input : 9

Output: child

Input : 89

Output: old man

⌨ 4.4.8 Equation

Write a code that will compute solution to a system of linear equations of two
variables. Input contains 6 values of type double (a1, b1, c1, a2, b2, c2) as values of
equations- coefficients:

a1 x + b1 y = c1

a2 x + b2 y = c2

Print suitable values of double type:

- if the system has no solution, print 0

- if the system has one solution, print three numbers: 1 and values of x and y

- if the system has an infinite number of solutions, print Infinity

Input : 1 1 1 1 1 2

Output: 0

Input : 2 3 6 4 9 15

Conditions | FITPED

48

Output: 1 1.5 1.0

Input : 1 1 1 1 1 1

Output: Infinity

Loops

Chapter 5

Loops | FITPED

50

5.1 For loop

🕮 5.1.1

During writing code many times happens that you have to write the same code.
Sometimes you have to write similar code and you lose time and have a long code.
Because of that, we do use loops.

Loops are used when you want the same block of code to run over and over again
in a row. Instead of adding several almost equal code lines in a script, we can use
loops to perform a task like this.

The PHP syntax does use various loops:

• for - loops through a block of code a specified number of times
• foreach - loops through a block of code for each element in an array
• while - loops through a block of code as long as the specified condition is

true
• do... while - loops through a block of code once, and then repeats the loop as

long as the specified condition is true

📝 5.1.2

Is the following statement true or false?

Loops in PHP are used to execute the same block of code a specified number of
times.

• true
• false

🕮 5.1.3

The for loop statement is used when you know how many times you want to repeat
a statement or block of statements. If you don't know how many times the code
should run then it is hard to use this loop type.

<?php

for (initialization; condition; increment) {

 code to be executed;

}

?>

Loops | FITPED

51

The parameters in the for statement are following:

• initialization - this part is used to set the start value for the counter of the
number of loop iterations;

• condition - it is evaluated for each loop iteration if the condition is met, the
loop continues, otherwise, it ends;

• increment - this increases the loop counter.

📝 5.1.4

Is the following statement true or false?

The for loop is used when you know in advance how many times the script should
run.

• true
• false

📝 5.1.5

Complete the following code to get the correct syntax.

<?php

_____($i=0; $i<10; _____) {

 echo "$i
";

}

?>

🕮 5.1.6

The for loop statement can be also written without any expressions as long as you
keep the semicolon.

for(;;) {

 code to be executed;

}

If we omit all the expressions in the for loop statement then it is important to
terminate the loop otherwise we get an infinite loop. We can use a simple if
condition. When the condition is met (true) then we terminate the loop using the
break statement.

Loops | FITPED

52

📝 5.1.7

Fill up the following code so that you terminate the loop when the number is higher
than 5.

<?php

for(;;) {

 $i = rand(0,10);

 echo $i . '
';

 if(_____)

 _____;

}

?>

🕮 5.1.8

The other loop type is a foreach loop. The foreach loop works only with arrays or
public properties of an object and is used to loop through each key/value pair in the
array.

foreach ($array as $value) {

 code to be executed;

}

For each loop iteration, the value of the current array element is assigned to value
and the array pointer is moved by one until it reaches the last array element. If you
use the foreach loop statement with other data types, you will get an error.

📝 5.1.9

Fill up the following statement with the correct code.

<?php

$fruit = array("apple", "peach", "pear", "orange");

_____ ($fruit _____ $value) {

 echo "$value
";

}

?>

Loops | FITPED

53

📝 5.1.10

Create a loop that runs from 0 to 100.

<?php

_____($i = 0; _____; $i++) {

 echo $i;

}

?>

5.2 For (programs)

⌨ 5.2.1 Uppercase and Lowercase

Write a program that prints the count of uppercase and lowercase letters and
numbers in a given string.

Input : Hello

Output: Upper: 1, Lower: 4, Numbers: 0

Input : H3LL0

Output: Upper: 3, Lower: 0, Numbers: 2

⌨ 5.2.2 Vowels

Write a program that prints the vowels of a given string.

Input : Hello John

Output: eoo

Input : How are you

Output: oaeou

⌨ 5.2.3 Repeating the output

Write the code that prints 10 times after each other the word "hello"

Input :

Output: hello

hello

hello

hello

Loops | FITPED

54

hello

hello

hello

hello

hello

hello

⌨ 5.2.4 Numbered output

Write the code that prints the word "hello" 10 times with the number of the output.

Output: hello1

hello2

hello3

hello4

hello5

hello6

hello7

hello8

hello9

hello10

⌨ 5.2.5 Sequence of numbers

Write the code that shows the sequence of numbers from 0 to a given number.

Input : 5

Output: 0 1 2 3 4 5

Input : 10

Output: 0 1 2 3 4 5 6 7 8 9 10

⌨ 5.2.6 Sum of numbers

Write the code that returns the sum of the numbers in the interval two given
numbers.

Input : 3 5

Output: 12

Input : 10 15

Output: 75

Loops | FITPED

55

⌨ 5.2.7 Print of sum numbers

Write the code to determine the sum of the first n natural numbers you enter on the
input. Print continuous results on the console.

Input : 5

Output: 1

3

6

10

15

Input : 4

Output: 1

3

6

10

⌨ 5.2.8 Factorial

Write the code that calculates the factorial (n! = n * n-1)* ... *3*2*1) of a given
number. Print the interim result.

Input : 5

Output: 1

2

6

24

120

Input : 3

Output: 1

2

6

⌨ 5.2.9 Fibonacci

Write the code that will compute the nth Fibonacci number according to the
iterative algorithm. Input the integer number n, greater-or-equal 0 and less-or-equal
90. Print the nth Fibonacci number.

Input : 4

Output: 3

Loops | FITPED

56

Input : 1

Output: 1

⌨ 5.2.10 Product of numbers

Write the code that finds out the product of two given numbers without using the
multiplication operation.

Input : 5 4

Output: 20

Input : 10 10

Output: 100

⌨ 5.2.11 Product of interval

Write the code that finds out the product of integers located between two specified
values. Ensure that it displays the variables in each cycle step during the run.

Input : 5 7

Output: 1 - 5

2 - 30

3 - 210

210

Input : 2 5

Output: 1 - 2

2 - 6

3 - 24

4 - 120

120

⌨ 5.2.12 Multiplication table

Write the code that prints a small multiplication table for the given integer.

Input : 5

Output: 1 * 5 = 5

2 * 5 = 10

3 * 5 = 15

4 * 5 = 20

5 * 5 = 25

6 * 5 = 30

Loops | FITPED

57

7 * 5 = 35

8 * 5 = 40

9 * 5 = 45

10 * 5 = 50

Input : -5

Output: 1 * -5 = -5

2 * -5 = -10

3 * -5 = -15

4 * -5 = -20

5 * -5 = -25

6 * -5 = -30

7 * -5 = -35

8 * -5 = -40

9 * -5 = -45

10 * -5 = -50

5.3 While and do while loops

🕮 5.3.1

As was mentioned in the previous lesson during writing code many times happens
that you have to write the same code. Because of that, we do use loops. In the
previous lesson, we worked with for and foreach loops, now we will work with while
loops. Let's remind us what loops are.

Loops are used when you want the same block of code to run over and over again
in a row. Instead of adding several almost equal code lines in a script, we can use
loops to perform a task like this.

The PHP syntax does use various loops:

• for - loops through a block of code a specified number of times
• foreach - loops through a block of code for each element in an array
• while - loops through a block of code as long as the specified condition is

true
• do... while - loops through a block of code once, and then repeats the loop as

long as the specified condition is true

🕮 5.3.2

The while loop executes a block of code as long as the specified condition is met
(true).

Loops | FITPED

58

while (condition is true) {

 code to be executed;

}

If you compare it with the for loop you can see the main difference is in the way of
thinking. When you want to use the for loop you usually have to know how many
times the loop will be repeated. On the other hand, the while loop can be run as
many times as the condition is met.

This specific while loop checks the condition at the beginning of each iteration. If
the condition is not met (false) the loop terminates.

📝 5.3.3

Complete the following code with the correct syntax.

<?php

$seconds = 10;

_____($seconds _____ 0) {

 if($seconds==0) echo "Happy New Year!";

 else echo "The New Year is in ". $seconds . " seconds.";

 $seconds--;

}

?>

📝 5.3.4

Complete the code so that you will calculate the sum of all numbers from 0 to 10.

<?php

$number = 0;

$sum = 0;

_____($number <= 10) {

 $sum += $number;

 _____;

}

echo $sum;

?>

Loops | FITPED

59

📝 5.3.5

Is it true or false?

The following loop will be terminated when the condition is not met. Based on the
code the condition will be certainly false at a specific run.

<?php

$num = 4;

while($num >= 2) {

 echo "The number is: $num
";

 $num++;

}

?>

• false
• true

🕮 5.3.6

The do... while loop will always execute the block of code once and then it will
check the condition at the end. If the condition is met it will repeat the loop while
the condition is true.

do {

 code to be executed;

} while (condition is true);

The difference between the while and do... while statement is where the condition
is tested. The while statement has the condition at the beginning and the do... while
has the condition at the end. This means that the do... while loop will certainly be
run at least once even if the condition is not met at the first run.

📝 5.3.7

Complete the following code with the correct syntax.

<?php

$num = 10;

_____ {

 echo $num.'
';

 $num--;

} _____ ($num > 0);

Loops | FITPED

60

?>

📝 5.3.8

Complete the following code so that you will print the numbers from 1 to 7.

<?php

$num = _____;

do {

 echo $num.'
';

} while (_____);

?>

📝 5.3.9

How many times will be the following loop run? (Number of cycles)

<?php

$num = 0;

do {

 echo "*";

} while ($num > 0);

?>

📝 5.3.10

Is it true or false?

The while or do... while loop can not be used if you don't know the number of
iterations that should be run in the loop.

• false
• true

5.4 While (programs)

⌨ 5.4.1 Decreasing numbers

Write the code that prints the numbers in decreasing order from a given number to
0. Use the while loop.

Loops | FITPED

61

Input : 5

Output: 5

4

3

2

1

0

Input : 10

Output: 10

9

8

7

6

5

4

3

2

1

0

⌨ 5.4.2 Sum of numbers

Write the code that returns the sum of numbers from 0. The given number will be
the upper limit, if the sum of numbers is higher than the given number, print out the
result that is lower than the given number. Use the while loop.

Input : 5

Output: 3

Input : 10

Output: 6

⌨ 5.4.3 Remainder after division

Write the code that writes the remainder after division for the given numbers
without the help of integer division functions and the remainder after division (do
not use / or %). In the case of division by zero, write "Division by zero".

Input : 5 4

Output: 1

Input : 4 0

Output: Division by zero

Loops | FITPED

62

⌨ 5.4.4 Euclid's algorithm

Write the code that will compute the greatest common divisor of two integers using
the subtraction-based version of Euclid's algorithm (which was Euclid's original
version). In addition, the code should compute the smallest common multiple of
these two integers (using the divisor computed within the first step). The input
contains two integer numbers. Print the greatest common divisor and the smallest
common multiple.

Input : 25 40

Output: 5 200

Input : 33 196

Output: 1 6468

⌨ 5.4.5 Product of numbers

Write the code that finds out the product of two given numbers. Do not use the
operation of multiplication!

Input : 5 4

Output: 20

Input : 10 10

Output: 100

⌨ 5.4.6 Even numbers

Write the code that returns the count of even numbers between two given numbers.
Use the while loop.

Input : 5 8

Output: 2

Input : 7 15

Output: 4

⌨ 5.4.7 Digit sum

Write a program that finds out the sum of digits of a given number. Use the while
loop.

Input : 1234

Loops | FITPED

63

Output: 10

Input : 100

Output: 1

⌨ 5.4.8 Number length

Write the code that finds out the length of a given number. Make note that each
given number will end with 0.

Input : 520

Output: 3

Input : 10

Output: 2

⌨ 5.4.9 Factorial

Write the code that calculates the factorial (n!=n*(n-1)* ... *3*2*1) of a given
number. Use the do... while loop.

Input : 5

Output: 120

Input : 2

Output: 2

⌨ 5.4.10 Fuel

Write the code that prints out whether the car has enough fuel. You have a given
fuel and if the car has no fuel inform the user. Use a while loop wherein each
iteration you spend 1 fuel.

Input : 5

Output: You have enough fuel.

You have enough fuel.

You have enough fuel.

You have enough fuel.

You have enough fuel.

You are out of fuel!

Logical Expression

Chapter 6

Logical Expression | FITPED

65

6.1 Booleans

🕮 6.1.1

A boolean variable (also known as a bool) can have a value of either true or false.
To declare a boolean use the constants TRUE and FALSE, which are case-
insensitive.

$a = TRUE;

$b = true;

$c = trUE;

$d = TRue;

// All above variables are true.

$e = FALSE;

$f = false;

$g = faLSE;

$h = False;

// All above variables are false.

🕮 6.1.2

Booleans are typically used to control structures like the if statement, the for loop
and so on. The comparison operators (like the equality ==operator) and logical
operators (like the and operator &&) return a boolean value as a result. We usually
combine control structures and operators together:

// It should display "1.01" if the variable $action equals to

"display_version"

if ($action == "display_version") {

 echo "1.01";

}

// The loop iterates till the condition `$i < 10` is fulfilled

(means it is evaluated as false).

for ($i = 0; $i < 10; $i++) {

 //...

}

The result of displaying a boolean value with the echo function is either 1 (true) or
an empty string (false).

$a = "test";

$b = $a == "test";

$c = $a == "tost";

echo $b; // Output: 1

Logical Expression | FITPED

66

echo $c; // Output:

The operators and structures are presented in other sections of this course.

📝 6.1.3

Assign the correct boolean value to the variables to display: "Fitped" at the Output:

$a = _____;

$b = _____;

$c = _____;

if (($a || $b) && (! $b || $c) && ($b || ! $c) && ! $c) {

 echo "Fitped";

}

📝 6.1.4

Assign the correct boolean value to the variables to display: "Fitped" at the Output:

$a = _____;

$b = _____;

$c = _____;

if ($a || $b && ! $c || ! $b) {

 echo "An wrong answer";

} else {

 echo "Fitped";

}

🕮 6.1.5

In PHP, if a function, operator or control structure requires a boolean, then a passed
value will be automatically converted to it. Moreover, we can covert a value
explicitly with the (bool) or (boolean) cast.

var_dump((bool) ""); // Output: bool(false)

var_dump((boolean) ""); // Output: bool(false)

The rules of the automatic conversion can be tricky, hence it is worth knowing
them. Let's start with non-boolean values that are considered false.

var_dump((bool) ""); // bool(false), an empty string

var_dump((bool) "0"); // bool(false), the string "0"

Logical Expression | FITPED

67

var_dump((bool) 0); // bool(false), the integers 0 and -

0 (zero)

var_dump((bool) 0.0); // bool(false), the floats 0.0 and -

0.0 (zero)

var_dump((bool) array()); // bool(false), an array with zero

elements

var_dump((bool) null); // bool(false), the special type

NULL

Every other value is considered true.

var_dump((bool) "Fitped"); // bool(true)

var_dump((bool) 1); // bool(true)

var_dump((bool) -5); // bool(true)

var_dump((bool) 0.01); // bool(true)

var_dump((bool) array(1)); // bool(true)

Considering the above rules the following code will not display: "Fitped".

if ("a" && 0.0) {

 echo "Fitped";

}

There are more rules, which require introducing more complex concepts, so we do
not mention them here. The interested reader can find more information in the PHP
manual.

📝 6.1.6

Find the output of the following code:

$a = -1;

$b = "false";

$c = "0";

if ($a && $b && $c) {

 echo "Fitped A";

} else {

 echo "Fitped B";

}

📝 6.1.7

Find the output of the following code:

Logical Expression | FITPED

68

$a = "0.0";

$b = "-1";

$c = 0.0;

if ($a && $b && ! $c) {

 echo "Fitped A";

} else {

 echo "Fitped B";

}

🕮 6.1.8

The standard library consists of two functions that are dedicated to booleans. The
first is boolval(mixed $var), which returns the boolean value of the passed variable
(according to the previously mentioned converting rules). The second function
is is_bool(mixed $var), which tests if the passed argument is a boolean.

var_dump(boolval(0)); // bool(false)

var_dump(boolval(1)); // bool(true)

var_dump(boolval("0")); // bool(false)

var_dump(boolval("a")); // bool(true)

$a = true;

$b = false;

$c = 0;

var_dump(is_bool($a)); // bool(true)

var_dump(is_bool($b)); // bool(true)

var_dump(is_bool($c)); // bool(false)

📝 6.1.9

Find the output of the following code:

$a = FaLsE;

$b = "test";

$c = (bool) "0";

if (! $a && boolval($b) && is_bool($c)) {

 echo "Fitped A";

} else {

 echo "Fitped B";

}

Logical Expression | FITPED

69

📝 6.1.10

Which of the following sentences is correct?

• The declaration: "$a = tRUE;" is syntactically invalid.
• The string: "0" is considered as false.
• The string: "0.0" is considered as false.
• The expression: "is_bool(0)" returns false.
• The expression: "boolval(array(0))" returns false.
• The expression: "echo boolval(-0)" returns an empty string.

6.2 Booleans (programs)

⌨ 6.2.1 Are all true? (boolean casting)

Assume you have 3 variables: $a, $b, $c, display the message: "Success" if all
variables are considered as true and display: "Failure" otherwise.

Input : a 1 -4

Output: Success

Input : 0 1 b

Output: Failure

⌨ 6.2.2 Are all true? (boolean casting with a special rule)

Assume you have 3 variables: $a, $b, $c, display the message: "Success" if all
variables are considered as true and display: "Failure" otherwise. BUT add a special
rule, i.e. "0.0" is now considered as false not true (similar to "0").

Input : a 1 -4

Output: Success

Input : 0.0 1 b

Output: Failure

⌨ 6.2.3 Boolean expression

Assume you have 3 input variables: $a, $b, $c, and 3 local variables: $x, $y and $z.
Input variables have two possible values: "AND" and "OR" (strings that should be
converted into && and || operators), whereas local variables are booleans. Your task

Logical Expression | FITPED

70

is to concatenate all variables into a single expression, if the expression is
considered as true, then display "Success" and display: "Failure" otherwise.

The expression has a form: $x $a $y $b ($x $c $z) $a ($y $b $x).

Example 1: if $a="AND", $b="OR" and $c="AND", the concatenated

expression is: true && false || (true && false) && (false ||

false) and the message "Failure" will be displayed.

Example 2: if $a="OR", $b="OR" and $c="OR", the concatenated

expression is: true || false || (true || false) || (false ||

false) and the message: "Success" will be displayed.

assigment_answer.php
<|?php

// your variables, do not remove this line

list($a, $b, $c) = explode(" ", trim(fgets(STDIN)));

// local variables, do not remove those lines

$x = true; $y = false; $z = false;

// write your code here

⌨ 6.2.4 Success if greater

Assume you have 3 variables: $a, $b, $c, display the message: "Success" if $a > $b
> $c and all variables are considered as true, otherwise display "Failure".

Input : 4 3 2

Output: Success

Input : 2 1 0

Output: Failure

⌨ 6.2.5 Vowel validation

Assume you have one variable: $a, display the message: "Success" if the variable
value is a vowel (a, e, i, o, or u, case-insensitively), otherwise display "Failure".

Input : a

Output: Success

Input : c

Output: Failure

Arrays

Chapter 7

Arrays | FITPED

72

7.1 Arrays

🕮 7.1.1

A PHP's array is actually an ordered map, which is a data structure associating
values to keys. If you know the concept of an array from other programming
languages, like C++, you can think about a PHP's array as an ordinary array, list,
hash table, dictionary, collection, stack, queue and so on. As array values can be
other arrays, you can create a tree structure and multidimensional arrays as well.
To sum up, PHP's arrays are multipurpose and provide a convenient method to
store data in applications.

As the scope of this course is very limited, we encourage the interested reader to
find out more information about the above-mentioned data structures.

🕮 7.1.2

An array can be created using the array() constructor or a square brackets [] (which
is more popular nowadays). Both methods take any number of comma-separated
values or keys=>values pairs as arguments. Arrays are mutable, hence they can be
modified dynamically after their creation.

$arr1 = [1,2,3,4,5];

$arr2 = ["a","b","c"];

$arr3 = ["a",1,"c",4];

$arr4 = [1=>"a",2=>"b",3=>"c"];

$arr5 = ["a"=>1,"b"=>2,"c"=>3];

// All above examples can be written with the `array()`

construct.

$arr1 = array(1,2,3,4,5);

// We can add an optional comma at the end of arguments.

$arr1 = [1,2,3,4,5,];

$arr2 = ["a","b","c",];

A value can be of any type, whereas a key need to be either an integer or a string.
Using keys in brackets allow to set and get a value of an array's element.

$arr = []; // an empty array

$arr[0] = "a"; // sets a new value

echo $arr[0]; // gets a value, Output: a

var_dump($arr); // Output: array(1) { [0]=> string(1) "a" }

Arrays | FITPED

73

It is also possible to convert any of the other types, like integer, float, string,
boolean and resource, into arrays.

$arr = (array) "abc";

var_dump($arr); // Output: array(1) { [0]=> string(3) "abc" }

$arr = (array) 1;

var_dump($arr); // Output: array(1) { [0]=> int(1) }

🕮 7.1.3

As we mentioned in the previous part, keys can be either an integer or a string, yet
there is an automatic conversion mechanism that converts invalid data types into
valid ones.

• Strings containing valid decimal integers will be cast to the integer type
(except the numbers preceded by a + sign).

• Floats are converted to integers, which means that the fractional part will be
truncated.

• Booleans are converted to integers: true will be converted to 1 and false to 0.
• The special value null is converted to an empty string.
• Arrays and objects cannot be converted to valid keys.

var_dump(["5"=>1]); // Output: array(1) { [5]=> int(1) }

var_dump(["+5"=>1]); // Output: array(1) { ["+5"]=> int(1) }

var_dump(["-5"=>1]); // Output: array(1) { [-5]=> int(1) }

var_dump(["a"=>1]); // Output: array(1) { ["a"]=> int(1) }

var_dump([0.1=>1]); // Output: array(1) { [0]=> int(1) }

var_dump([3.14=>1]); // Output: array(1) { [3]=> int(1) }

var_dump([false=>1]); // Output: array(1) { [0]=> int(1) }

var_dump([true=>1]); // Output: array(1) { [1]=> int(1) }

var_dump([null=>1]); // Output: array(1) { [""]=> int(1) }

The declaration of keys is optional, if they are not specified, PHP will use the
increment of the largest previously used integer key starting from zero.

var_dump([1,2,3]); // Output: array(3) { [0]=> int(1),

[1]=> int(2), [2]=> int(3) }

var_dump([5=>1,2,3]); // Output: array(3) { [5]=> int(1),

[6]=> int(2), [7]=> int(3) }

var_dump([1,7=>2,3]); // Output: array(3) { [0]=> int(1),

[7]=> int(2), [8]=> int(3) }

var_dump([5=>1,2=>2,3]); // Output: array(3) { [5]=> int(1),

[7]=> int(2), [6]=> int(3) }

Arrays | FITPED

74

Setting a value with an empty bracket (a key is not provided) will add a new element
with the next integer key according to the mentioned above rule.

$arr = ["a" => 1];

$arr[] = 2;

var_dump($arr); // Output: array(2) { ["a"]=> int(1), [0]=>

int(2) }

$arr = [3 => 1];

$arr[] = 2;

var_dump($arr); // Output: array(2) { [3]=> int(1), [4]=>

int(2) }

It is possible to use the same key a few times while creating an array, the value will
be overwritten by the last occurrence.

$arr = [0 => 1, 0 => 2, 0 => 3];

var_dump($arr); // Output: array(1) { [0]=> int(3) }

🕮 7.1.4

An array's element can be accessed using either the array[key] (more popular)
or array{key} syntax.

$arr = ["a"];

echo $arr[0]; // Output: a

echo $arr{0}; // Output: a

We can use more brackets to get access to nested arrays.

$arr = [

 "multi" => [

 "dimensional" => [

 "array" => "a"

]

]

];

echo $arr["multi"]["dimensional"]["array"]; // Output: a

It is possible to array dereference the result of a function or method call directly.

function getArray() {

 return [1, 2, 3];

}

echo getArray()[0]; // Output: 1

Arrays | FITPED

75

If the key does not exist in an array, the special value NULL will be returned.

$arr = [];

var_dump($arr[0]); // Output: NULL

📝 7.1.5

Find the output of the following code:

$arr = [

 5 => "F", "i", 2 => "t", "p", "e", "d"

];

echo $arr[5];

📝 7.1.6

Find the output of the following code:

$arr = [

 1 => "F", 1.5 => "i", 2 => "t", 2.5 => "p", 3 => "e", 3.5

=> "d"

];

echo $arr[2];

📝 7.1.7

Find the output of the following code:

$arr = [

 "1" => "F", "-2" => "i", "+3" => "t", true => "p", -5 =>

"e", "0.5" => "d"

];

echo $arr[0];

echo $arr[1];

Remember that the expression: "echo null;" displays an empty string.

🕮 7.1.8

The count(mixed $array) function returns the number of elements in an array (or
other countable objects).

Arrays | FITPED

76

$arr = [1,2,3];

echo count($arr); // Output: 3

The unset(mixed $var) function removes the key from an array.

$arr = [1,2,3];

unset($arr[1]);

var_dump($arr); // Output: array(2) { [0]=> int(1), [2]=>

int(3) }

The array_merge(array $array1 ...) function merges one or more arrays. If the
arrays have the same string keys, then the later value for that key will overwrite the
previous one. However, if the arrays contain numeric keys, the later value will not
overwrite the original value but will be appended.

$arr1 = ["a" => 1];

$arr2 = ["a" => 2];

var_dump(array_merge($arr1, $arr2)); // Output: array(1) {

["a"]=> int(2) }

$arr1 = [0 => 1];

$arr2 = [0 => 2];

var_dump(array_merge($arr1, $arr2)); // Output: array(2) { 0

=> int(1), 1 => int(2) }

If you want to append elements from the second array to the first array without re-
indexing and with elements overwriting, use the + array union operator.

$arr1 = [0 => 1];

$arr2 = [0 => 2];

var_dump($arr1 + $arr2); // Output: array(1) { 0 => int(2) }

📝 7.1.9

Fill the gaps to display: "Fitped" at the Output:

$arr = [

 _____=> true,

 _____.5 => false,

 false,

];

_____($arr[_____]);

if (_____($arr) === 2 && $arr["a"] && $arr[3] === false) {

 echo "Fitped";

}

Arrays | FITPED

77

📝 7.1.10

Which of the following sentences is correct?

• An array's key can be either a string or integer only.
• The expression: "$arr=[1]; echo $arr{0};" returns the special value NULL.
• The expression: "$arr=["6.5"]; echo $arr[6];" returns an empty string.
• The expression: "[1]+[1]" returns the new array "[1,1]".
• The expression: ' (array) "a b c" ' returns the new array ' ["a","b","c"] '.
• The expression: ' $arr=[null=>1]; echo $arr[""]; ' returns: "1".

7.2 Arrays (programs)

⌨ 7.2.1 Printing an array's value

Assume you have the array $arr, print the value of the third element from the array.

Input : [1,2,3,4,5]

Output: 3

⌨ 7.2.2 Printing an array's keys

Assume you have the array $arr with numerical keys, print the keys (comma-
separated) that values containing the value: 3.

Input : [1,2,3,3,5]

Output: 2,3

7.3 Foreach

🕮 7.3.1

The foreach loop allows iterating over elements of an array (or an object, if it is
traversable). In each iteration, we get access to an array element through a key and
value pair.

$arr = array("a", "b", "c");

foreach ($arr as $value) {

 echo $value;

}

The above code should give you the following Output:

Arrays | FITPED

78

abc

In the above example, keys are skipped but we will see how to use them later. The
foreach loop operates over internal structures of arrays and therefore types of keys
are not important.

🕮 7.3.2

The foreach loop has two syntaxes:

foreach (array_expression as $value) {

 statement

}

foreach (array_expression as $key => $value) {

 statement

}

The use of a key (an index) is what distinguished the second syntax from the
former. In both, we get access to an element's value through the $value variable.
You can use any name for the $key and $value variables but it is a good practice to
give them meaningful names.

$letter = ["p", "h", "p"];

foreach ($letter as $letter) {

 echo $letter;

}

// Output: `php`

foreach ($letter as $key => $letter) {

 echo $key;

}

// Output: `012`

An array expression can be a variable that refers to an array (or a traversable
object) or an array using the array syntax.

foreach (["p", "h", "p"] as $letter) {

 echo $letter;

}

// Output: `php`

You can also use the less popular syntax of the foreach loop.

foreach(["p", "h", "p"] as $letter):

Arrays | FITPED

79

 echo $letter;

endforeach;

// Output: `php`

You can use a break control structure to exit from the foreach loop.

foreach (["p", "h", "p"] as $letter) {

 echo $letter;

 break;

}

// Output: `p`

📝 7.3.3

Fill the gaps with the correct expressions.

$arr = ["a", 1, "c"];

foreach (_____ _____ $value) {

 echo _____;

}

📝 7.3.4

Is it possible to iterate over an array with non-numerical keys using the foreach
loop?

• True
• False

🕮 7.3.5

In each iteration, the foreach loop 'creates' variables, which store a key and value of
the current element. The variables names are provided in the loop syntax. We can
use them to get an element's value, but we cannot modify the original array.

$arr = [0, 1, 2];

foreach ($arr as $value) {

 $value = 3;

}

var_dump($arr); // Output: array(3) { [0]=> int(0), [1]=>

int(1), [2]=> int(2) }

Arrays | FITPED

80

In order to directly modify array elements within the loop precede $value with the
reference symbol &.

$arr = [0, 1, 2];

foreach ($arr as &$value) {

 $value = 3;

}

var_dump($arr); // Output: array(3) { [0]=> int(3), [1]=>

int(3), [2]=> int(3) }

It is worth noting that the reference of a $value and the last array element remain
even after the foreach loop.

$arr = [0, 1, 2];

foreach ($arr as $value) {

}

echo $value; // Output: 2

foreach ($arr as &$value) {

}

$value = 3;

var_dump($arr); // Output: array(3) { [0]=> int(0), [1]=>

int(0), [2]=> int(3) }

🕮 7.3.6

The foreach loop with the additional construct list(...) can be used to 'unpack'
nested arrays into variables.

$arr = [

 ["p", 1], ["h", 2], ["p", 3]

];

foreach ($arr as list($a, $b)) {

 echo $b . $a;

}

// Output: 1p2h3p

📝 7.3.7

Find the output of the following code:

$arr = ["a","b","c"];

foreach ($arr as $key=>$value) {

 $arr[$key] = "d";

}

Arrays | FITPED

81

foreach ($arr as $value) {

 echo $value;

}

📝 7.3.8

Find the output of the following code:

$arr = ["a","b","c"];

foreach ($arr as $key=>&$value) {

 $value=$key;

}

foreach ($arr as $v) {

 echo $v;

}

📝 7.3.9

Fill the gaps to display: "Fitped" at the Output:

$arr = [[1,2],[3,4],[5,6]];

$test = "";

_____ ($arr as _____(_____,_____)) {

 $test .= $a+$b; // strings concatenation

}

if ($test === "3711") {

 echo "Fitped";

}

📝 7.3.10

Which of the following sentences is correct?

• An foreach loop can iterate over arrays only.
• The expression: "$arr=[1,2,3]; foreach($arr as $key) echo $key;" returns:

"012".
• In order to modify an array directly, you need to use the reference symbol &.
• In order to modify an array directly, you need to use the additional construct

list.
• The expression: "$arr=[1,2,3]; foreach($arr as $value); echo $value;" returns:

"3".

Arrays | FITPED

82

7.4 Foreach (programs)

⌨ 7.4.1 Sum of numbers

Assume you have the array $arr, use the foreach loop and print the sum of the
values from the array.

⌨ 7.4.2 Minimum

Assume you have the array $arr, use the foreach loop and print the minimum value
from the array-s values.

⌨ 7.4.3 Maximum

Assume you have the array $arr, use the foreach loop and print the maximum value
from the array-s values.

⌨ 7.4.4 Mean

Assume you have the array $arr, use the foreach loop and print the mean of the
values from the array.

⌨ 7.4.5 Lower than the mean

Assume you have the array $arr, use the foreach loop and print how many values
are lower than the mean of the values.

⌨ 7.4.6 Greater than the mean

Assume you have the array $arr, use the foreach loop and print how many values
are greater than the mean of the values.

Arrays | FITPED

83

⌨ 7.4.7 Two dimensional minimum

Assume you have the two-dimensional array $arr, use the foreach loop and print the
minimum value.

⌨ 7.4.8 Numbers counter

Assume you have the array $arr, use the foreach loop and print how many times
certain numbers are repeated in the array values (comma-separated + hyphen).

⌨ 7.4.9 Checking keys

Assume you have the associative array $arr (i.e. an array with key/value pairs), use
the foreach loop and print the sum of the array-s values that keys are started with
the letter a.

⌨ 7.4.10 Find dollars

Assume you have the array $arr, use the foreach loop and replace all values that are
equal $ with the number 5. Print the new array's elements (comma-separated).

⌨ 7.4.11 Find the largest key

Assume you have the associative array $arr (i.e. an array with key/value pairs), use
the foreach loop and print the largest key.

assigment_answer.php
<|?php

 $input = explode(" ",trim(fgets(STDIN)));

 $keys = eval("return" . $input[0] . ";");

 $values = eval("return" . $input[1] . ";");

 $arr = array_combine($keys, $values);

 // your array, do not remove those lines

 // write your code here

Arrays | FITPED

84

⌨ 7.4.12 Merge arrays

Assume you have two associative arrays $arr1 and $arr2, use the foreach loop to
merge (by index) them, i.e. all elements from the second array replace the first
array-s elements, if only they have the same keys. Print the merged array's elements
(comma-separated).

⌨ 7.4.13 Reverse an array

Assume you have the associative array $arr (i.e. an array with key/value pairs), use
the foreach loop and print the values in the reverse order (comma-separated).

assigment_answer.php
<|?php

 $input = explode(" ",trim(fgets(STDIN)));

$keys = eval("return " . $input[0] . ";");

$values = eval("return " . $input[1] . ";");

$arr = array_combine($keys, $values); // your array, do not

remove those lines

// write your code here

Parsing and Errors

Chapter 8

Parsing and Errors | FITPED

86

8.1 Parsing and errors

🕮 8.1.1

Each error in PHP has a so-called level, which determines the origin of an error and
its meaningfulness (i.e. if an error halts an application or not). Levels are just
integers but we identify them by predefined constants.

Let's begin with the following example:

if $x==1 {

 echo "Fitped";

}

The execution of this code will be halted with the message:

Parse error: syntax error, unexpected '$x'... expecting '('

Of course, I have forgotten to add brackets, which has ended with a parse error. The
parse error (the integer value 4, the constant E_PARSE) is a compile-time error,
which means it occurs during code reading and analysis by the PHP interpreter.
Compile-time errors are due to inaccuracies in code. Parse errors occur when the
syntax of the code is invalid, e.g. missing brackets or a semicolon.

Other examples of compile-time errors are E_COMPILE_ERROR (the integer value
64) and E_COMPILE_WARNING, which are generated by the Zend Scripting Engine
(i.e. the scripting engine that interprets PHP code).

The difference between warning and errors is that the former does not halt
executing, whereas the latter does it. There are also notices, which are like
warnings but indicate only a possibility of an error.

🕮 8.1.2

During the PHP's initial startup two types of errors can be thrown: E_CORE_ERROR
(the integer value 16) and E_CORE_WARNING (the integer value 32). The
occurrence of these errors means that the configuration is invalid and the core of
PHP cannot initialize the engine or the engine itself is broken due to other reasons.

🕮 8.1.3

E_ERROR (the integer value 1), E_WARNING (the integer value 2) and E_NOTICE (the
integer value 8) are run-time errors, which means they occur during execution. All of

Parsing and Errors | FITPED

87

them suggest issues in the source code, e.g. an undeclared variable, memory
allocation problems and so on.

var_dump([] + 1);

// FATAL ERROR Unsupported operand types on line number ...

echo array_merge([], $arr);

// NOTICE Undefined variable: arr on line number ...

// WARNING array_merge(): Argument #2 is not an array on line

number ...

🕮 8.1.4

All error integers values are used to build up a bitmask that specifies which errors
to report. The bitwise operators are used to combine or mask the values,
e.g. E_ERROR (1) | E_PARSE (4) = 5.

To sets which PHP errors should be reported use the error_reporting([int
$level]) function. If the optional $level is not provided, the function returns the
current reporting error level.

There is the special constant E_ALL (the integer value 32767), which means all
errors and warnings.

// Turn off all error reporting.

error_reporting(0);

// Report run-time errors.

error_reporting(E_ERROR | E_WARNING | E_PARSE | E_NOTICE);

// Report all errors except E_NOTICE.

error_reporting(E_ALL & ~E_NOTICE);

// Report all PHP errors.

error_reporting(E_ALL);

You can also set the reporting error level with the ini_set(...) function.

ini_set('error_reporting', E_ALL);

Moreover, with the ini_set function, you can also control errors displaying.

// Determines wheter errors should be printed to the screen.

ini_set('display_errors', '1');

Parsing and Errors | FITPED

88

🕮 8.1.5

You can receive E_DEPRECATED (the integer value 8192) warnings, which are run-
time notices about code that will not work in future versions.

$fn = create_function('$a,$b', 'return "ln($a) + ln($b) = " .

log($a * $b);');

// PHP Deprecated: Function create_function() is deprecated

in ...

🕮 8.1.6

An error can be triggered by a user through the trigger_error(string $error_msg, [,
int $error_type]) function.

if ($divisor == 0) {

 trigger_error("Cannot divide by zero", E_USER_ERROR);

}

The $error type can have the following values: E_USER_ERROR (the integer value
256), E_USER_WARNING (the integer value 512),E_USER_NOTICE (the integer value
1024) and E_USER_DEPRECATED (the integer value 16348).

🕮 8.1.7

Apart from errors displaying, all error messages can be saved in log files (which are
ordinary text files). To turn on this feature, the option log_errors must be set
to 1 (by using the ini_set function).

ini_set('log_errors', '1');

The path to logs is stored as the configuration option error_log. The following code
print out its current value:

echo ini_get("error_log");

There is also the possibility to send a custom message to text logs through
the error_log(string $message ...) function.

error_log("Database not available!");

Parsing and Errors | FITPED

89

🕮 8.1.8

PHP allows us to set (by using the set_error_handler function) a custom error
handler, which is an ordinary function with few arguments (see the example below).
Depending on the boolean value that is returned from the function, the default PHP
error handler will be executed.

function custom_error_handler($errno, $errstr, $errfile,

$errline)

{

 if ($errno == E_USER_ERROR) {

 // Don't execute PHP internal error handler.

 return true;

 }

 // Do execute PHP internal error handler.

 return false;

}

set_error_handler("custom_error_handler"); // Sets a custom

error handler.

🕮 8.1.9

In the previous sections, the function var_dump was used. The function allows
printing the value and type of a variable.

var_dump(1); // Output: int(1)

There is also the possibility of printing all functions call, included/required files and
evaluated code with the function debug_print_backtrace.

function a() {

 b();

}

function b() {

 c();

}

function c(){

 debug_print_backtrace();

}

a();

// Output:

// #0 c() called at ...

// #1 b() called at ...

// #2 a() called at ...

// #3 eval() called at ...

Parsing and Errors | FITPED

90

The above functions are great tools for identifying simple errors in the source code.
Regardless, for more complex applications you should use a debugger.

📝 8.1.10

Which of the following sentences is correct?

• The expression: "error_reporting(E_ALL | ~E_WARNING)" turns on all errors
and warnings except E_WARNING.

• It is possible bypassing the standard PHP error handler.
• The function "error_log" allows saving custom messages in log files.
• The E_DEPRECATED warnings suggest the requirement of changing the

source code in the future.
• Warnings halt execution.
• The E_PARSE errors are run-time errors.

8.2 Errors (programs)

⌨ 8.2.1 Run-time errors

Set the error reporting level to show run-time errors and warnings only.

⌨ 8.2.2 User's errors

Set the error reporting level to show all a user-s errors.

⌨ 8.2.3 No errors

Set the error reporting level to not display any errors and warnings.

⌨ 8.2.4 No errors logging

Turn off errors logging with the function ini_set.

Parsing and Errors | FITPED

91

⌨ 8.2.5 Set a custom error handler

Set the custom_error_handler function as the error handler.

assigment_answer.php
<|?php // do not remove code below

 function custom_error_handler($errno, $errstr, $errfile,

$errline) {

 echo "Success";

}

// write your code here

// do not remove code below

trigger_error("", E_USER_ERROR);

Forms

Chapter 9

Forms | FITPED

93

9.1 Forms and forms elements

🕮 9.1.1

In this short section, HTML forms will be presented, but as distinct from an HTML
course, forms will be generated through PHP's echo function. Of course, they still
will be ordinary HTML tags. This section requires basic knowledge of HTML, hence
it is recommended to take part in an HTML course before.

HTML forms are used for collecting data from a user (e.g. registration data),
afterwards the collected data are posted to a backend application written in PHP
(or some other technologies). The backend application performs required
processing on the passed data, such as validation and saving to a database.

🕮 9.1.2

A form needs to be started with the <form> tag.

echo '<form>';

echo '</form>';

// Output: <form></form>

The form attributes specification:

• the action attribute specifies where to send the form data (the attribute is
optional, if not provided, the data will be processed on the same page).

• the method attribute specifies the HTTP method to use when sending the
form (can be either GET, which is the default value or POST).

• the target attribute specifies the target window or frame, where the response
of the backend application will be displayed.

• the enctype attribute determines how the browser will encode the data
before sending them to the server. There are two possible
values:application/x-www-form-urlencoded (the default value, good for
simple scenarios) and multipart/form-data (used when uploading binary
data, e.g. images, word files).

echo '<form action="index.php" method="get">';

echo '</form>';

In the above example, the data will be sent to the script: index.php, so if the domain
name equals http://www.test.pl, the data will be processed by the
script: http://www.test.pl/index.php.

The difference between the GET and POST methods will be explained in the next
section.

Forms | FITPED

94

📝 9.1.3

Complete the following form code:

echo '<_____ _____="index.php" _____="post">';

echo '</form>';:

🕮 9.1.4

The <input> tag specifies a basic form control for entering single-line user data,
which needs to be used within a <form> element. An input field can vary in many
ways, depending on the type attribute.

echo '<form>';

echo 'Username: <input type="text" name="username">
';

echo 'Password: <input type="password" name="password">
';

echo '<input type="submit" value="Sign in">';

echo '</form>';

The code above will produce the following form:

The input tag's attributes specification:

• the type attribute specifies the type of input control, the default type is text.
• the name attribute specifies a name of the control, which is sent to the

server to be recognized and get the value.
• the value attribute provides an initial value.

The available types are as follows:

• button,
• checkbox,
• color,
• date,
• datetime-local,
• email,
• file,
• hidden,
• image,
• month,

Forms | FITPED

95

• number,
• password,
• radio,
• range,
• reset,
• search,
• submit,
• tel,
• text,
• time,
• url,
• week.

📝 9.1.5

Complete the following input code:

echo '<input _____="text" _____="An initial value">';

🕮 9.1.6

In the previous slide, the general form of the <input> tag was presented. In this part,
we focus on buttons. There are four buttons types: button, reset,image__ and
_submit. The buttons' value attribute contains text that is used as the button's label
(if you do not specify a value, the button will have a default label, chosen by the
user agent, e.g. a browser).

The button type renders as a simple push button, which can be programmed to
control web page functionality.

<form>

 <input type="text">

 <input type="button" value="Just a simple button">

</form>

The reset type renders as a button, which the default click event resets all of the
inputs in the form to their initial values.

<form>

Forms | FITPED

96

 <input type="text">

 <input type="reset">

</form>

The submit type renders as a button, which the default click event submits the form
to the server.

<form>

 <input type="text">

 <input type="submit">

</form>

The image type renders as a submit button, which has a graphical form.

<form>

 <input type="text">

 <input type="image"

src="https://priscilla.fitped.eu/images/my_arrow.svg">

</form>

📝 9.1.7

If you want to submit a form, you should use an input with the type:

• send
• reset
• submit

Forms | FITPED

97

🕮 9.1.8

Read the example:

echo '<form>

echo '<input type="checkbox"> Option A <input type="checkbox">

Option B
';

echo 'Pick your favorite color <input type="color">
';

echo 'Your birthday? <input type="date">
';

echo 'Current local date and time? <input type="datetime-

local">
';

echo 'Email <input type="email">
';

echo 'File <input type="file">
';

echo 'Month and year <input type="month">
';

echo 'Number <input type="number">
';

echo 'Password <input type="password">
';

echo '<input type="radio" name="radio"> Option A <input

type="radio" name="radio"> Option B
';

echo 'Range <input type="range">
';

echo 'Search <input type="search">
';

echo 'Telephone <input type="tel>
';

echo 'Time <input type="time">
';

echo 'Url <input type="url">
';

echo 'Week <input type="week">
';

echo '<input type="submit">';

echo '</form>';

The code above will produce the following form:

Forms | FITPED

98

The available types for inputs and their descriptions are as follows:

• checkbox A check box allowing single values to be selected/deselected.
• color A control for specifying a color.
• date A control for entering a date (year, month, and day, with no time).
• datetime-local A control for entering a date and time, with no time zone.
• email A field for editing an e-mail address.
• file A control that lets the user select a file.
• hidden A control that is not displayed but whose value is submitted to the

server.
• month A control for entering a month and year, with no time zone.
• number A control for entering a number.
• password A single-line text field whose value is obscured.
• radio A radio button, allowing a single value to be selected out of multiple

choices.
• range A control for entering a number whose exact value is not important.
• reset A button that resets the contents of the form to default values.
• search A single-line text field for entering search strings.
• tel A control for entering a telephone number.
• text A single-line text field.
• time A control for entering a time value with no time zone.
• url A field for entering a URL.
• week A control for entering a date consisting of a week-year number and a

week number with no time zone.

Forms | FITPED

99

🕮 9.1.9

The <textarea> tag can hold an unlimited number of characters, and the text
renders in a fixed-width font. The size of the input can be specified by the cols and
rows attributes.

echo '<form>';

echo '<textarea rows="4" cols="50">';

echo '</textarea>
';

echo '<input type="submit">';

echo '</form>';

The result of the code is a set of HTML commands:

<form>

 <textarea rows="4" cols="50"></textarea>

 <input type="submit">

</form>

...and a web page:

📝 9.1.10

Which of the following sentences is correct?

• The attribute that specifies where to send the form data is called action.
• The input's value attribute provides an initial value.
• The input that has the type: image is used for uploading images.
• The input's name attribute is the input's label.
• The type: radio allows selecting out multiple values.
• If you want to hide the input field, you should use the type: hidden.

9.2 Forms (programs)

⌨ 9.2.1 Make a simple form

Make a simple form and put two text inputs and a submit button into it. Ask for the
user's name and address (the names of the fields).

Forms | FITPED

100

⌨ 9.2.2 Make a more complex form

Ask for a name, address, city, state, zip. Make a simple form and put a submit
button into it. Change the submit button label for the text "Place your order".

⌨ 9.2.3 More form controls

Ask for a name, address, city, state, zip and the subscription period (you have two
options: 1 year and 2 years, make those form controls as radio inputs). Make a
simple form and put a submit button into it.

⌨ 9.2.4 Password

Ask for an email and password. Make a simple form and put a submit button into it.
Use the appropriate input types.

⌨ 9.2.5 Textarea

Ask for a name, address, city, state, zip, comment (as a textarea). Make a simple
form and put a submit button into it. Change the submit button label for the text
"Place your order".

9.3 Submitting a form

🕮 9.3.1

After the click of submit button, the form data will be sent to a web server. The data
can be passed with one of two methods: GET and POST. The method is chosen
based on the form tag attribute.

🕮 9.3.2

Both GET and POST methods create an array, i.e. a set of key/value pairs, where
keys are the names of the form controls and values are the input data from the
user.

Forms | FITPED

101

In PHP, the data are available through superglobals arrays $_GET and $_POST,
which means that they are always accessible, regardless of scope - and you can
access them from any function, class or file without having to do anything special.

$_GET is an array of variables passed to the current script via the URL query string,
e.g. "?a=1&b=2".

$_POST is an array of variables passed to the current script via the HTTP POST
method, where the body of the request contains key/value pairs, e.g. "a=1&b=2".

📝 9.3.3

If you want to submit data in the URL query string you should use the _____ method.

• POST
• GET
• SEND

📝 9.3.4

If you want to submit data in the request body of the HTTP, you should use the
_____ method.

• POST
• SEND
• GET

🕮 9.3.5

You need to validate form data to protect your script from malicious code. This
section does not contain any form validation (will be presented in the next section),
it just shows how you can send and retrieve form data.

🕮 9.3.6

Data sent with the GET method are visible to everyone (all variable names and
values are displayed in the URL). GET also has limits on the amount of information
to send. The limitation is about 2000 characters.

Forms | FITPED

102

GET should NEVER be used for sending passwords or other sensitive information!
GET may be used for sending non-sensitive data. The GET method is useful for
sending information like pagination, searching criterion, sorting, filtering, etc.

🕮 9.3.7

Data sent with the POST method are invisible to others (all names/values are
embedded within the body of the HTTP request) and has no limits on the amount of
information to send.

Moreover, POST supports advanced functionality such as support for multi-part
binary input while uploading files to the server. It is recommended to use the POST
method for sending data (almost always).

🕮 9.3.8

Data sent with the GET method are accessible through the $_GET variable, which is
an ordinary array. See the example below:

if (isset($_GET['username'])) {

 echo 'Hello ' . $_GET['username'] . '
';

 echo 'First lastname ' . $_GET['lastname'][0] . '
';

 echo 'Second lastname ' . $_GET['lastname'][1] . '
';

}

echo '<form method="get">';

echo '<input type="text" name="username">
';

echo '<input type="text" name="lastname[0]">
';

echo '<input type="text" name="lastname[1]">
';

echo '<input type="submit">';

echo '</form>';

If you print the $_GET variable (after submitting the form), you should get the
following Output:

var_dump($_GET);

// Output: array(2) { ["username"]=> string(6) "fitped"

["lastname"]=> array(2) { [0]=> string(1) "a" [1]=> string(1)

"b" } }

As you can see, it is possible to create multidimensional arrays with form controls
naming (i.e. lastname[0] and lastname[1]).

Forms | FITPED

103

🕮 9.3.9

Data sent with the POST method are accessible through the $_POST variable, which
is an ordinary array as well. See the example below:

if (isset($_POST['username'])) {

 echo 'Hello ' . $_POST['username'] . '
';

 echo 'First lastname ' . $_POST['lastname'][0] . '
';

 echo 'Second lastname ' . $_POST['lastname'][1] . '
';

}

echo '<form method="post">';

echo '<input type="text" name="username">
';

echo '<input type="text" name="lastname[0]">
';

echo '<input type="text" name="lastname[1]">
';

echo '<input type="submit">';

echo '</form>';

If you print the $_POST variable (after submitting the form), you should get the
following Output:

var_dump($_POST);

// Output: array(2) { ["username"]=> string(6) "fitped"

["lastname"]=> array(2) { [0]=> string(1) "a" [1]=> string(1)

"b" } }

It is possible sending files with the POST method. You need to add the
enctype: multipart/form-data to the form.

The upload files are accessible through the superglobal variable $_FILES. See the
example below:

var_dump($_FILES);

echo '<form method="post" enctype="multipart/form-data">';

echo '<input type="file" name="testfile">
';

echo '<input type="submit">';

echo '</form>';

Forms | FITPED

104

The Output:

array(1) {

 ["testfile"]=> array(5) {

 ["name"]=> string(8) "test.txt"

 ["type"]=> string(10) "text/plain"

 ["tmp_name"]=> string(60) "[...]\Temp\phpF2C1.tmp"

 ["error"]=> int(0)

 ["size"]=> int(0)

 }

}

📝 9.3.10

Which of the following sentences is correct?

• Data sent with the GET method are invisible to others.
• Data sent with the POST method are visible to others.
• The files should be sent with the POST method.
• The files are accessible through the variable $_FILES.
• GET has limits on the amount of information to send.
• It is possible to create multidimensional arrays $_GET and $_POST.

9.4 Submitting a form (programs)

⌨ 9.4.1 GET values

Print as a comma-separated list all values that are passed by the GET method.

assigment_answer.php
<|?php $input = explode(" ",trim(fgets(STDIN)));

$keys = json_decode($input[0],true);

$values = json_decode($input[1],true);

$_GET = array_combine($keys, $values);

// your $_GET input, do not remove those lines

// write your code here

⌨ 9.4.2 GET keys

Print as a comma-separated list all keys (form controls names) that are passed by
the GET method.

Forms | FITPED

105

assigment_answer.php
<|?php

$input = explode(" ",trim(fgets(STDIN)));

$keys = json_decode($input[0],true);

$values = json_decode($input[1],true);

$_GET = array_combine($keys, $values); // your $_GET input, do

not remove those lines

// write your code here

⌨ 9.4.3 POST

Assume you have the following form: Print the message "Success" if the username
is equal "Fitped" and display the message "Failure" otherwise.

assigment_answer.php
<|?php $input = explode(" ",trim(fgets(STDIN)));

$keys = json_decode($input[0],true);

$values = json_decode($input[1],true);

$_POST = array_combine($keys, $values);

// your $_POST input, do not remove those lines

// write your code here

⌨ 9.4.4 GET values - counter

Print the number of the passed values by the GET method.

assigment_answer.php
<|?php

$input = explode(" ",trim(fgets(STDIN)));

$keys = json_decode($input[0],true);

$values = json_decode($input[1],true);

$_GET = array_combine($keys, $values); // your $_GET input, do

not remove those lines

// write your code here

⌨ 9.4.5 Telephones

Assume you have the following form: Print all telephones numbers as a comma-
separated list.

Exercises

Chapter 10

Exercises | FITPED

107

10.1 String and echo I. (programs)

⌨ 10.1.1 First steps - echo I.

Write a PHP script which output will be: "First steps"

Output: First steps

⌨ 10.1.2 First steps - echo II.

Write a PHP script that returns the following: "wow a PHP script"

Input :

Output: wow a PHP script

⌨ 10.1.3 First steps III.

Write a PHP script that gives the following output in separated lines.

Input :PHP

Output:PHP is

a

good

choice

⌨ 10.1.4 Welcome string

Write a PHP script that returns the following output.

Input : Welcome

Output: Welcome in PHP programming!

⌨ 10.1.5 Solar system

Write a PHP script that outputs the first 4 planets in our solar system in new lines in
the following way.

Input :

Output:Mercury

Venus

Earth

Mars

Exercises | FITPED

108

10.2 String and echo II. (programs)

⌨ 10.2.1 Uppercase string

Write a PHP script to transform the input value to all uppercase letters.

Input : abc

Output: ABC

⌨ 10.2.2 Uppercase string

Write a PHP script to make the first character of the input string an uppercase.

Input : abc

Output: Abc

Input : 123

Output: 123

Input : THIS IS PHP

Output: THIS IS PHP

⌨ 10.2.3 Lowercase string

Write a PHP script to transform the input value to all lowercase letters.

Input : ABC

Output: abc

⌨ 10.2.4 Split string

Write a PHP script to split the input string in the following way:

Input : abc

Output: abc

Input : 1111

Output: 111:1

Input : abcabcabc

Output: abc:abc:abc

Exercises | FITPED

109

⌨ 10.2.5 Length of the string

Write a PHP script to return the length of the given string.

Input : abc

Output: 3

Input : 1111

Output: 4

Input : abcabcabc

Output: 9

⌨ 10.2.6 Number of words in the input string

Write a PHP script to return the number of words of the given string.

Input : abc

Output: 1

Input : 1111

Output: 0

Input : abc abcabc

Output: 2

⌨ 10.2.7 Return a reverse string

Write a PHP script to return the reverse of the given string.

Input : abc

Output: cba

Input : 1111

Output: 1111

Input : abc abcabc

Output: cbacba cba

⌨ 10.2.8 Replace string

Replace the "fruits" word to "pizza" in each given input in the following way:

Exercises | FITPED

110

Input : fruitsaregood

Output: pizzaaregood

Input : fruits123

Output: pizza123

⌨ 10.2.9 Repeat a string several times

Write a PHP script to repeat the given string several times:

Input : abc 2

Output: abcabc

Input : bbb 4

Output: bbbbbbbbbbbb

Input : abcabcabc 0

Output:

⌨ 10.2.10 Substring

Write a PHP script that returns the first 3 characters from the given string in the
following way:

Input : abc

Output: abc

Input : 12345

Output: 123

Input : PHP is the best option

Output: PHP

10.3 String manipulation (programs)

⌨ 10.3.1 String concatenation

Concatenate the input strings in the following way.

Input : 5 4

Output: 54

Exercises | FITPED

111

Input : SDA ADS

Output: SDAADS

⌨ 10.3.2 Remove a given part of the string

Write a PHP script to remove a concrete part of the string from the beginning:

Input : abc 2

Output: c

Input : String 4

Output: ng

Input : abcabcabc 0

Output: abcabcabc

⌨ 10.3.3 Comment

Write a PHP script that inserts into comment the given input string and returns an
empty string.

Input : abc

Output:

Input : 123

Output:

Input : this is a PHP script

Output:

Functions I.

Chapter 11

Functions I. | FITPED

113

11.1 Introduction to functions

🕮 11.1.1

Imagine a situation where a programmer e.g. creates the code that calculates a
complex math problem. He would like to use the result of this code (even with other
input values) several times. This is the ideal situation for creating functions.
Functions are used when we need to run the same code multiple times. In addition
to saving space, their main advantage is to make the source code more
transparent.

A function is a block of commands that can be reused in a program. This function
does not execute immediately when the page is loaded. It will be executed only by
calling the function.

The function declaration begins with the function keyword.

function FunctionName(){

 // function code

}

🕮 11.1.2

The function name cannot begin with a special symbol or number. Only letters or
underscores are allowed. It should also be noted that the function name in PHP is
not case-sensitive, there is no difference between uppercase and lowercase letters.

The following script will result in an error and is incorrect. It is actually a double
declaration of the same function.

<?php

 function myfunction(){

 echo 'call: myfunction';

 }

 function MyFunction(){

 echo 'call: MyFunction';

 }

?>

📝 11.1.3

Which of the following is the correct name for the function?

Functions I. | FITPED

114

• _my_function()
• 47function()
• 47_my_function()
• $my_function()

🕮 11.1.4

It should be noted that in real programming, you hardly need to create your own
PHP function since there are already more than 1000 built-in functions created for
different areas and you can call them according to your requirements. Custom
functions, however, are an excellent tool for making the code more transparent and
also a good start for object-oriented programming in PHP.

The work with custom functions consists of two parts:

• Creating your own PHP function.
• Calling a custom PHP function.

It's very easy to create your own PHP function. When creating a function, the entire
function code should be enclosed in {a} brackets.

Suppose you want to create a PHP function that writes a simple message to your
browser when you call it. The following example creates a function called
showGreeting() and then calls it as soon as it is created.

 <?php

 /* Defining a PHP Function */

 function showGreeting() {

 echo "Good morning!";

 }

 /* Calling a PHP Function */

 showGreeting();

?>

📝 11.1.5

What does the following script list in the document?

<?php

 function greeting_for_friend() {

 echo "Hello!";

 }

Functions I. | FITPED

115

 function greeting_formal() {

 echo "Good morning!";

 }

 greeting_for_friend();

?>

• Hello!
• Good morning!

🕮 11.1.6

In PHP, we also have the option to insert parameters inside a function. You can use
as many parameters as you want. These parameters act as variables in your
function.

The following example has two integer parameters, sums them and then writes that
sum together with the comment to the document.

 <?php

 function sumFunction($num1, $num2) {

 $sum = $num1 + $num2;

 echo "Sum of the two numbers is: $sum";

 }

 sumFunction(10, 20);

?>

📝 11.1.7

Enter the correct function name and parameter order to make the following script
work correctly. The age() function will count the number of years for the specified
people and write the result to the document using echo.

<?php

 function _____(_____, _____) {

 $year = 2019;

 echo $fname.' is '.($year-$birth).' years old
';

 }

 age('Miloslav', 1975);

 age('Jarmila', 1992);

Functions I. | FITPED

116

 age('Martina', 1979);

?>

🕮 11.1.8

Typical functions do not usually write their results directly into a document. Their
task is to perform the calculation and send the result to the programmer, who
practically decide how to use it in the script. The return command is used to send
the result of the function.

In the example, we created a currency conversion function, i.e. to calculate how
much EUR we get for USD (US dollar).

<?php

 function usd_to_eur($usd){

 $eur = $usd * 0.9;

 return $eur;

 }

 echo "1 USD = " . usd_to_eur(1) . " EUR
";

 echo "50 USD = " . usd_to_eur(50) . " EUR
";

 echo "1000 USD = " . usd_to_eur(1000) . " EUR
";

?>

📝 11.1.9

Fill in the correct line to send the multiplication() result.

<?php

 function multiplication($number1,$number2){

 $result = $number1 * $number2;

 }

 echo "6 * 12 = " . multiplication(6, 12) . "
";

 echo "7 * 4 = " . multiplication(7, 4) . "
";

 echo "15 * 3 = " . multiplication(15, 3);

?>

Functions I. | FITPED

117

11.2 String functions (1)

🕮 11.2.1

Strings are referred to as the basic data types in PHP. Also, multiple scripts create
string output to the page. There are several useful functions to work with. We have
previously found out that strings are written in quotation marks (") or in
apostrophes (').

Although it appears at first sight that the quotation marks or apostrophes are
identical, they are not. If we use quotation marks, we can use in strings so-called
escape sequence as well as direct calling of variable content. This is not possible
with apostrophes. Apostrophe strings are the simplest, and PHP doesn't add
anything to them. In theory, they should also be slightly faster in processing than
other ways of writing strings.

E.g.:

<?php

 $nick = "Bubba";

 echo "One rainy evening $nick talked with Forrest.
";

 //Output: One rainy evening Bubba talked with Forrest.

 echo 'One rainy evening $nick talked with Forrest.
';

 //Output: One rainy evening $nick talked with Forrest.

?>

📝 11.2.2

Use the correct character for the strings to make the following code correct.

<?php

 $partner1 = 'Bubba';

 $partner2 = 'Gump';

 echo _____The $partner1 $partner2 Shrimp Company_____;

 //Output: The Bubba Gump Shrimp Company

?>

Functions I. | FITPED

118

🕮 11.2.3

In PHP, the situation is solved if we need to write an apostrophe/quote character in
the string. The solution may be or a combination of quotation marks and
apostrophes or the use of a backslash.

<?php

 echo "The character apostrophe (') is important in php

";

 //Output: The character apostrophe (') is important in

php

 echo 'The character apostrophe (\') is important in php

';

 //Output: The character apostrophe (') is important in

php

 ?>

Of course, if the apostrophe character can also be printed, there is a special way of
listing the slash. For slash listing it is necessary to double the slash, i.e. type twice
slash \\

<?php

 echo 'The character slash: \\
';

 echo 'Two slashes: \\ \\
';

?>

These pairs of characters that begin with the backslash \ are called escape
sequences. This is virtually the only limitation of the apostrophic chain. For this
reason, several programmers prefer apostrophes to quotes when working with
strings.

📝 11.2.4

What does the following script show on the screen?

<?php

 echo '\\ \\ \\';

?>

• 3 backslashes
• 6 backslashes
• Nothing
• 2 backslashes

Functions I. | FITPED

119

• only 1 slash

🕮 11.2.5

PHP creators tried to make sure that all characters could be written using quoted
strings. For this reason, is used, the so-called escape sequence. These are the
character sequences that begin with the backslash character \ and allow all
characters to be written. To repeat, we write two backslashes to write a backslash
\\, to write quotations we use \". To write the dollar, we use \$.

Sometimes writing a character in hex code is useful. It is written in pairs of \x
characters and continues with a hexadecimal number. For example, you can type a
space as \x20 in hexadecimal.

E.g.:

<?php

 echo "h\x65llo\040goodbye";

 //Output: hello goodbye

?>

🕮 11.2.6

There are several useful functions for working with strings. Some of the selected
ones will be presented below. The first functions are strtolower() and strtoupper().
They are used to convert all characters of a string to uppercase or lowercase.

<?php

 echo strtolower('FOREST');

 //Output: forest

 echo '
';

 echo strtoupper('Bubba');

 //Output: BUBBA

?>

Similar functions are ucfirst() and lcfirst(), which are used to convert the first
character in a string to uppercase or to convert the first character in a string to a
lowercase letter.

<?php

 echo ucfirst('bubba');

 //Output: Bubba

Functions I. | FITPED

120

 echo '
';

 echo lcfirst('BUBBA');

 //Output: bUBBA

?>

📝 11.2.7

Add the correct functions to the script where the output is:

„RUN, Forrest, RUN!“

<?php

 $first = _____('run');

 $second = _____('run');

 echo $first.', Forest, '.$second.'!';

?>

🕮 11.2.8

Like other programming languages, strings can be accessed as character arrays.
I.e. string can be understood as an array, where each element of the array is a
character with a specified order - index.

In the example, there is the solution of the output of the first and second characters
in the string. Note that the first character has an index of 0, the second has an index
of 1, and so on.

<?php

 $nick = 'Forest';

 echo 'First char: '.$nick[0];

 echo '
';

 echo 'Second char: '.$nick[1];

?>

📝 11.2.9

There is a saved string 'RUN' in the variable $go. Print each letter of the variable into
a new line.

<?php

Functions I. | FITPED

121

 $go = 'RUN';

 echo $go[_____].'
';

 echo $go[_____].'
';

 echo _____.'
';

?>

🕮 11.2.10

When working with indexes it is often a problem to "keep an eye on" the maximum
index, i.e. we cannot enter an index higher than the number of characters in the
string, otherwise, the script will end up with an error. Not only for this problem is the
strlen() function useful. The function is used to calculate the number of characters
in a string. The character spacing is also counted.

<?php

 $go = 'RUN, Forrest, RUN!';

 echo 'String $go have '.strlen($go).' characters.';

?>

📝 11.2.11

Use the strlen() function to determine the number of characters in $nick and write
the first and last characters of the variable.

Remember that the index starts at 0, so the first character has an index of 0.

<?php

 $nick = 'Forest';

 $count = _____($nick);

 echo 'First character: '.$nick[_____];

 echo '
';

 echo 'Last character: '.$nick[_____];

?>

📝 11.2.12

Complete the script to work correctly and the string in the variable $nick will print
each letter (character) of the string to a new line.

<?php

 $nick = 'Forest';

 $count = _____($nick);

Functions I. | FITPED

122

 for($i=0;$i<=$count-1;$i++){

 echo $nick[_____];

 echo '
';

 }

?>

11.3 String functions (2)

🕮 11.3.1

If we know how to "break" strings into an array of characters, it may be useful to
"break" strings into array elements, e.g. the most common case is break sentences
into words. The explode() function is used to convert strings into an array variable.
The function has two mandatory parameters, i.e. a separator, actually a sub-string
to divide the string. The second parameter is the string itself. The last optional
parameter specifies the number of array elements to return.

The example:

<?php

 $sentence = 'My Mama always said you’ve got to put the past

behind you before you can move on.';

 $words = explode(' ', $sentence);

 print_r($words);

?>

Note: In the example, we used the print_r() function. The function displays
information about the variable in a way that is human readable. It is often used to
display the contents of an array or variables where it is not known their data type or
have no information about.

📝 11.3.2

Use the correct function to split the numbers of the variable $numbers into array
elements. Remember to specify the correct separator.

<?php

 $numbers = '0,1,2,3,4,5';

 $arr = _____(',', $numbers);

 print_r($arr);

?>

Functions I. | FITPED

123

📝 11.3.3

What does the following script do?

<?php

 $sentence = 'My Mama always said you’ve got to put the past

behind you before you can move on.';

 $words = explode(' ', $sentence);

 $min = 1000;

 foreach ($words as $word) {

 $len = strlen($word);

 if ($len<$min){

 $min = $len;

 }

 }

 echo $min;

?>

• Calculates and prints the length of the shortest word in the sentence.
• It counts the length of all characters of the sentence and prints them.
• It counts the number of words and prints the count.

🕮 11.3.4

You can use the substr() function to select a part of a string. The function has three
basic parameters. The first is the string itself, the second is the starting point
position, and the third is the number of characters to return.

If the third parameter is not specified, the function returns all characters from the
position specified in the second parameter to the end of the string. It may also be
helpful to set the second parameter as a negative number. In this case, the function
takes the number of characters from the end of the string as the starting point
position.

E.g.:

<?php

 echo substr("Forrest Gump",8)."
";

 //Output: Gump

 echo substr("Forrest Gump",11)."
";

 //Output: p

 echo substr("Forrest Gump",-4)."
";

Functions I. | FITPED

124

 //Output: Gump

 echo substr("Forrest Gump",-1)."
";

 //Output: p

?>

📝 11.3.5

Set the second and third parameters correctly to print only 'rest' with substr()
function.

<?php

 echo substr("Forrest Gump",_____,_____)."
";

 //Output: rest

?>

🕮 11.3.6

When working with text editors, we have discovered the replacement function, i.e.
exchanging part of the string for another. This functionality is provided by PHP
function str_replace(). The function is used to find and replace a substring. The
function accepts three arguments. The first argument is the text to be replaced (i.e.
the text in the original string), the second argument is the replacement text, and the
third argument is the analyzed text.

In the example in 'go, Forrest, go!' we replace the word 'go' with the new word 'run'.
Note that the function executes all replacements, i.e. in our example, it will replace
both occurrences of the word 'go'.

<?php

 $output = str_replace('go','run','go, Forrest, go!');

 echo $output;

 //Output: run, Forrest, run!

?>

📝 11.3.7

Add the correct function and select the correct order of the arguments so that the
function replaces the word 'surprise' with the word 'miracles' in the string saved in
the $sentence variable.

<?php

Functions I. | FITPED

125

 $sentence = 'My mama always told me that surprise happen

every day.';

 $output = _____('_____','_____',$sentence);

 echo $output;

 //Output: My mama always told me that miracles happen every

day.

?>

🕮 11.3.8

The last function we introduce is str_pos(). The function is used to find the position
of the character(s) in the string. This function accepts two arguments. The first is
the searching string, the second is the searched string.

<?php

 $sentence = 'My mama always told me that miracles happen

every day.';

 echo 'The word mama starts at the position:

'.strpos($sentence,'mama');

?>

📝 11.3.9

What will be the output of the following script?

<?php

 $sent= 'My mama always told me that miracles happen every

day.';

 echo strpos($sent, 'miracles');

?>

• 28
• 5
• 3
• 10

Functions II.

Chapter 12

Functions II. | FITPED

127

12.1 Array functions

🕮 12.1.1

Arrays as a data structure, mostly consisting of the same elements, are often used
and very useful in PHP. For this reason, we will continue to pay attention to it. We
have already learned about the basic arrays information in the previous chapters.

First, we want to point out how arrays can be searched as a whole. The first way is
to determine the array size (using the count() function) and use the for a loop.

<?php

 $friends = array("Bubba", "Dan", "Jenny");

 $all = count($friends);

 for($i = 0; $i < $all; $i++) {

 echo $friends[$i];

 echo "
";

 }

?>

📝 12.1.2

Complete the correct script to print the contents (individual elements) of the
numeric array in rows.

<?php

$numbers = array(1,2,3,4,6);

$count_num = count($numbers);

for($i = 0; $i < $count_num; $i++) {

 echo $numbers[_____];

 echo "
";

}

?>

🕮 12.1.3

If we are working with an associative array, we do not know the array indexes, or we
work with an "unknown" array, it is not possible to use the for loop with an index. In
such cases, we can search the array using a foreach loop. Many programmers
prefer this method for the reason of simplicity and avoiding index problems.

Functions II. | FITPED

128

<?php

 $friends = array("Bubba", "Dan", "Jenny");

 foreach($friends as $f) {

 echo $f."
";

 }

 ?>

📝 12.1.4

Complete the correct script to list the contents (individual elements) of the
numbered array in rows. Set the correct variables in the foreach cycle.

<?php

 $numbers = array(1,2,3,4,6);

 foreach(_____ as _____) {

 echo $num."
";

 }

?>

🕮 12.1.5

In the case of associative arrays, we often need to determine not only the value of
an array element but also its index. In the following example, we show an example
of reading both the index and the value of an array element.

<?php

 $birth = array("Miloslav"=>"1975", "Jarmila"=>"1992",

"Martina"=>"1979");

 foreach($birth as $x => $x_value) {

 echo $x . " was born in " . $x_value;

 echo "
";

 }

?>

🕮 12.1.6

A function for sorting array elements - sort() - is a useful function when working
with arrays. For the control statements in the example, we use the print_r()
function, which can format data in variables in a readable way.

<?php

 $friends = array("Jenny", "Bubba", "Dan");

Functions II. | FITPED

129

 //output before sorting

 print_r($friends);

 echo "
";

 //sorting

 sort($friends);

 //array output after sorting

 print_r($friends);

?>

📝 12.1.7

Use the correct function to sort the array elements saved in the $numbers variable.

<?php

 $numbers = array(4,2,5,1,3);

 _____(_____);

 print_r($numbers);

?>

🕮 12.1.8

At the end of this section, we note that the sort() function is used to sort the array
elements ascending, i.e. from A to Z for text values and from the smallest to the
largest for numeric values.

The function of a descending order is rsort(). Its use is the same as for sort().
Similarly, for associative arrays, some functions sort arrays by associative indexes
(ascending and descending) - ksort(), krsort(), or a special function for associative
arrays for sorting by values (ascending and descending) - asort(), arsort().

12.2 Date and time functions

🕮 12.2.1

Any larger information system can handle time data and work with them. Date and
time are so much a part of everyday life that it is easy to work with without thinking.

Functions II. | FITPED

130

PHP provides tools for working with these data structures that make it easy to
manipulate dates or times.

It should be noted that most technologies in computers work with so-called unix
time. This number represents the number of seconds that have passed since
midnight on January 1, 1970. This moment is known as the UNIX epoch and the
number of seconds that have passed is referred to as the timestamp.

The basic function in PHP is the time() function, which displays an integer - the
time stamp of the current date and time.

<?php

 echo time();

?>

The result of the time() function is quite complicated but PHP offers tools to
convert the timestamp into a form more readable for the general user.

📝 12.2.2

Add the correct function to load the current time in unix time format and use it
correctly in the script

<?php

 $stamp = _____();

 echo 'Since 1st January 1970 has passed '.$stamp.'

seconds.';

?>

🕮 12.2.3

The first option to add a readable format for the current time function is the date()
function. The function returns a formatted string representing the date. The
function has two arguments, the first one defines the output format and the second
one is the time stamp.

date(format,timestamp)

The first format parameter of the date() function determines how to format the date
(or time). Here are some of the characters commonly used for dates:

• d - represents the day of the month (01 to 31)
• m - represents the month (01 to 12)
• Y - represents the year (in four digits)

Functions II. | FITPED

131

• l (small 'L') - represents the day of the week

Other characters, such as "/", "." or "-" can be inserted between characters to put
additional formatting.

<?php

 echo "Unix time starts from ".date("Y/m/d",1)."
";

 echo "Unix time starts from ".date("d. m. Y",1)."
";

 echo "Unix time starts from ".date("d-m-Y",1)."
";

 echo "Unix time starts from ".date("l",1);

?>

Note: The second parameter is the time stamp. For number 1, it is the time since
the seconds begin to count in unix time.

📝 12.2.4

Add the correct formatting characters "d", "m" or "Y" to generate the correct output
in the script:

<?php

 echo "Unix time starts in month ".date("_____",1)."
";

 echo "Unix time starts in year ".date("_____",1)."
";

?>

🕮 12.2.5

If the second parameter is omitted in the date() function, the function uses the
current date and time.

The two commands in the example give the same result. In the first one, we used
the time() function as the parameter, in the second the parameter is omitted.

<?php

 echo "Today's date ".date("d. m. Y",time())."
";

 echo "Today's date ".date("d. m. Y")."
";

?>

📝 12.2.6

If you know that the day has 85400 seconds, which command to display
tomorrow's date is correct?

Functions II. | FITPED

132

• echo "Tomorrow will be ".date("d. m. Y",time()+85400);
• echo "Tomorrow will be ".date("d. m. Y",85400);
• echo "Tomorrow will be ".date("d. m. Y",date()+85400);
• echo "Tomorrow will be ".date("d. m. Y",+85400);
• echo "Tomorrow will be ".date("d. m. Y",day()+85400);

🕮 12.2.7

As the date, time can be displayed using the date() function with the time
formatting characters. The most commonly used characters are:

• H - hours- 24-hour format (00 to 23)
• h - hours- 12-hour format with leading zeros (01 to 12)
• i - minutes with leading zeros (00 to 59)
• s - seconds with leading zeros (00 to 59)
• a - the letters am or pm

<?php

 echo "The time is " . date("h:i:s a");

?>

📝 12.2.8

Which of the below commands will output a simple time in the format
hours:minutes (e.g. 14:58), with the time in the 24-hour format (00 to 23).

• echo "The time is " . date("H:i");
• echo "The time is " . date("H:i:s a");
• echo "The time is " . date("h:i:s a");
• echo "The time is " . date("H:i:s");

🕮 12.2.9

The date() function is usually sufficient to display the current time. Complications
may happen if we need to work with a time or date different than the current one.
Recalculating Unix time is very difficult. PHP uses two functions to convert time to
timestamp - unix time. The first is the mktime() function, which converts the
specified date and time (specified in each function parameter) into a timestamp.
The following sequence of parameters must be ordered in the function.

Functions II. | FITPED

133

mktime(hour,minute,second,month,day,year)

E.g.:

<?php

 $d=mktime(18, 00,00, 12, 24, 2019);

 echo "Christmas dinner will start at: " . date("H:i:s

(d.m.Y)", $d);

?>

📝 12.2.10

Add the correct function to print the departure of the bus at 12:14:54pm
(11.07.2020).

<?php

 $d=_____(12, 14, 54, 11, 7, 2020);

 echo "The bus departures: " . date("h:i:sa (d.m.Y)", $d);

?>

🕮 12.2.11

There is an interesting function strtotime(), which is used to convert the English
text date and time into a timestamp. The function accepts a parameter as a string
in English that represents a date and time description, e.g. “now” indicates the
current date.

The example below is an interesting parameter creation for strtotime(). Note,
however, that the function is not perfect, so be sure to always check the strings you
enter.

<?php

 $d=strtotime("14:35 July 10, 2019");

 echo date("Y-m-d H:i:sa", $d). "
";

 $d=strtotime("tomorrow");

 echo date("Y-m-d h:i:sa", $d) . "
";

 $d=strtotime("next Saturday");

 echo date("Y-m-d h:i:sa", $d) . "
";

 $d=strtotime("+3 Months");

Functions II. | FITPED

134

 echo date("Y-m-d h:i:sa", $d) . "
";

?>

🕮 12.2.12

There is also a getdate() function in PHP. An optional parameter of the function is a
timestamp. The function provides an associative string containing date and time
information as a return value. If you omit the time stamp, it works with the current
timestamp returned by the time() function.

The associative string that is the return value of a function has the following
indexes:

• seconds - seconds (0-59)
• minutes - minutes (0 - 59)
• hours - hours (0 - 23)
• mday - day (1 - 31)
• mon - month (1 - 12)
• year - in 4-digit format, e.g. 2019
• weekday - day of the week (e.g. Thursday)
• month - month of the year (e.g. January)

<?php

 $date = getdate();

 echo "Today's date: ".$date['mday'] .

"/".$date['mon']."/".$date['year'];

?>

12.3 Password functions (password_hash,
password_verify)

🕮 12.3.1

PHP, as a server-side scripting language, is responsible for the entire so-called
back-end functionality of the website. Usually, authentication is the most important
part of the web system. This is also the most common case where developers
make mistakes, then it becomes unconsciously vulnerable.

The first problem is the storage and use of user passwords, which can lead to an
unauthorized person gaining access to the database and the entire system is at
risk. When working with passwords it is often used so-called password hashing. It
is a method that encrypts a user password (a string consisting of characters of

Functions II. | FITPED

135

different lengths) into a string with a fixed (same for all passwords) length, adds
random characters, and so on.

🕮 12.3.2

PHP has several functions for password hashing. The first function is md5(), which
calculates the MD5 hash. The function has two parameters, the first is the string to
be encrypted, the second is optional. If it is set to TRUE, the output string will be a
16-character binary format, if FALSE then a 32-character hexadecimal number. This
is also the default setting if we do not specify the second parameter.

<?php

 $pass = "supersecure";

 echo "32 character hex number: ".md5($pass)."
";

?>

Sha1() and hash() have similar functionality but with a different type of hash.

🕮 12.3.3

Another level of security that programmers often use is so-called salt. Salt or
salting passwords is a way to make passwords more secure even when system
users underestimate passwords and use only simple strings as passwords. Salt is
nothing but a long string of different characters entered by the programmer (most
often generated). This tends to be uniform for the whole system. Whenever you
need to work with passwords, the salt programmer adds to a string in which the
password (at the beginning or at the end) is before the use of the selected hash
function.

<?php

 // variable $salt has to be set

 $pass = "supersecure";

 $hash = md5($pass . $salt);

?>

It is important to note that any enhancement of the system “protection” is directly
focused on a certain area of security. Using salt is useful if the user password
database is leaked (stolen). If programmers used salt, unauthorized use of these
passwords is virtually impossible (unless the salt string is stolen). Salt mainly
protects against this type of attack. E.g. it is practically unusable when attacking
the system by generating user (administrator) passwords.

Functions II. | FITPED

136

🕮 12.3.4

Password hash technologies such as MD5 and SHA1 are currently considered older
and weaker, although a large number of developers still use them. The currently
recognized best practice for hash passwords is the so-called bcrypt. However,
working with this password hash can be complicated. There is a password_hash()
function in PHP that simplifies working with hash passwords.

The first parameter is the password string that must be hashed, and the second
parameter specifies the algorithm that should be used to generate the hash. The
default algorithm (PASSWORD_DEFAULT parameter) is currently bcrypt, but a
stronger algorithm may be added as the default algorithm later in the future to
generate a larger string. You can also directly enter PASSWORD_BCRYPT as the
second parameter.

The advantage of this function is that it is the whole API, which e.g. automatically
takes care of adding salt. If you want to work with your own salt string, you can do
so in the third function parameter.

<?php

 $hash = password_hash($password, PASSWORD_DEFAULT);

?>

🕮 12.3.5

At the end of this section, we provide a useful password verification function. The
password_verify() function has two parameters. The first is the password to be
verified (string), the second is the hash. The function returns true if the hash
matches the specified password.

Note that in a real system, a hash is saved in a database and must be retrieved
from the database. In our example, it is typed directly in a string variable.

<?php

 $password = "my_pass";

 $hash =

'$2y$10$fIQf0N1XeSzWqiOCdBPc7e5wp.fbyp9x6FUNbbRULG9eZDqNI.w5q'

;

 if (password_verify($password, $hash)){

 // Success!

 echo "OK";

 }else {

 // Invalid credentials

 echo "Problem";

Functions II. | FITPED

137

 }

 ?>

📝 12.3.6

Enter the correct function and order of parameters to verify that the given password
matches the $pass variable with the hash saved in the $hash variable.

<?php

 $pass = "secrete";

 $hash =

'$2y$10$5Vdma7NrZBqLfbMljFhiWuTiTLIEahwn9Srj8K0zCZNTJboDM18gi'

;

 if (_____(_____, _____)) {

 // Success!

 echo "OK";

 }else{

 // Invalid credentials

 echo "Problem";

 }

 ?>

Cookies and Sessions

Chapter 13

Cookies and Sessions | FITPED

139

13.1 Cookies

🕮 13.1.1

The problem with PHP (as well as other server-side programming languages) is
working with global variables. A larger web application consists of multiple PHP
files, each of which runs separately. And not to be so easy, each file is run and
generated separately for each visitor to the website.

The first option for saving global variables (especially for each user) is so-called
cookies. A cookie is a small text file that a web server saves on a client computer.
Files are saved in a dedicated folder on the user's computer, containing the name of
the web page from which they originated, validity, and set variables (along with
variable values). After the cookie is set, other scripts from the domain can read the
values of the set variables. Cookies can only be read from the domain from which
they were written. For example, a cookie set using http://up.krakow.pl cannot be
read from http://www.up.warsow.pl or http://www.ukf.sk. Therefore, a cookie can
only be visible to the server that created it. Other users cannot see its value.

🕮 13.1.2

Cookies make it easy to use the site, for example, the site remembers that you are
logged in with your nickname and you do not need to re-enter your login information
the next time you load.

Today's world is characterized by connected services on the web. Most websites on
the Internet can also display elements from other domains, most often an ad or
social networking link or traffic measurement tool. These domains can also create
their own cookies. These are referred to as third-party cookies.

Most web browsers have options to disable cookies, third-party cookies, or both. In
this case, PHP scripts must rely on sending global variables by URL or in headers.

📝 13.1.3

What are third-party cookies?

• These are cookies which are places on a page different than the site on
which they are currently located.

• These are cookies that are located in a special folder on the server.
• These are cookies on other servers that have been specially encrypted by a

third party.

Cookies and Sessions | FITPED

140

🕮 13.1.4

We create a cookie using the setcookie() function. Most often this function is
called with three parameters, e.g.:

<?php

 setcookie(“my_variable“, “value”, time() + 15);

 ?>

Using this function call, we set the cookie variable my_value with the value. The last
parameter is the validity of the cookie. To keep order in cookies on client
computers, each variable is set to be valid, i.e. until it is saved on the client
computer. The client computer system has a mechanism that periodically clears an
expired cookie. Most often, the cookie is set using the time() function, which
returns the current date and time. We then add the time in seconds to this value.
The cookie in the example will be deleted after 15 seconds. After this time, we can
no longer read its value.

📝 13.1.5

At what time will the following cookie be deleted?

<?php

 setcookie(“time“, “40”, time() + 60);

 ?>

• 1 minute
• 40 minutes
• 40 seconds
• 60 hours
• 60 days

🕮 13.1.6

Cookies are part of the HTTP header. Therefore, in the PHP script, if cookies are not
set before other outputs, the cookies will not be sent.

This problem can be solved by the use of the so-called output buffering function, or
very simply by following the rule that setcookie() must be used before the <html>
tag.

To modify an existing cookie, setcookie is called again for the same variable.

Cookies and Sessions | FITPED

141

📝 13.1.7

Set the cookie variable “nick” with the value “Bubba” for 2 minutes.

<?php

 _____("_____", "_____", time() + 120);

 ?>

🕮 13.1.8

The setcookie function has several parameters (although we set only the variable
name, value, and expiration time to the standard). All the parameters of the function
are as follows:

setcookie(name, value, expire, path, domain, secure, httponly)

Their meaning is given in the table.

🕮 13.1.9

You can read the cookie value using the $_COOKIE associative array. Obviously, in
this array, we always find the values of the variables set for a particular client, i.e.
web browser. The values in the array can be read by any script (PHP file) that
accesses it from the domain that created it. To display all variables and their
values, we can use the print_r() function, which displays information about the
variable in a readable format. It is often used to list the array where the programmer

Cookies and Sessions | FITPED

142

does not know exactly the indexes or associative index. We can use it to read the
value of a cookie as follows:

<?php

 print_r($_COOKIE);

?>

🕮 13.1.10

In most cases, you do not just need to view the set cookies, but you need to read
and continue to use them. To read a cookie, just enter the cookie variable name in
the $_COOKIE associative array, e.g.

<?php

 echo $_COOKIE[“nick”];

?>

If the script tries to read a cookie that is not created, the script will result in an error.
It is therefore a good practice to check that a cookie is set before using a cookie.
The isset() function returns a boolean return value as a result of checking the
existence of a variable. It is also often used with cookie variables.

<?php

 if(isset($_COOKIE[“nick“])) {

 echo "You are logged as '" . $_COOKIE["nick"] . "'";

 } else {

 echo "Cookie is not created";

 }

 ?>

📝 13.1.11

Verify that the “last name” cookie is created and write the value using the echo
command.

<?php

 if(isset($_COOKIE["_____"])) {

 _____ "Hi '" . $_COOKIE["last_name"];

 }

?>

Cookies and Sessions | FITPED

143

📝 13.1.12

What function do we use to clear a cookie?

• setcookie
• delete_cookie
• cookie_out
• erasecookie

📝 13.1.13

What does the following source code print in the document?

<?php

 setcookie("nick", "bubba", time() + 3600);

 setcookie("age", "32", time() - 3600);

?>

 <html>

 <body>

 <?php

 if(!isset($_COOKIE["age"])) {

 echo "The age is unknown !";

 }else{

 echo "Nick '" . $_COOKIE["nick"] . "' is " .

$_COOKIE["age"];

 }

 ?>

 </body>

 </html>

• The age is unknown
• Nick bubba is 32
• Nothing

13.2 Sessions

🕮 13.2.1

A technology similar to cookies (which even uses cookies to function) is sessions.
A session is a way to store information (in variables) to be used on multiple pages.

Cookies and Sessions | FITPED

144

These are global variables stored on the server. Each session is assigned a unique
ID, which is used to retrieve stored values on the server. Whenever a session is
created, a cookie containing a unique session ID is stored on the user's computer
and returned with each hit. Unlike a cookie, this is a way of storing global variables
on a server; only the ID for accessing these variables is stored on the client.

If the client browser does not support cookies, the unique session ID will work with
the URL. In this case, they are still saving to the server and to access them are used
sessions. Compared to a cookie, a session has the capacity to store larger data.

The session can be used in the following situations:

• To upload values from one page to another.
• In browsers that do not support cookies, that is, as an alternative to cookies.
• For storing global variables in an efficient and secure way compared to

selling them via URL
• For the development of more complex applications, e.g. editing items in the

shopping cart
• in e-shops etc.

📝 13.2.2

What technology is involved if only IDs are saved on client computers and are used
to store other data on the server?

• Sessions
• Cookies
• database

🕮 13.2.3

To start working with sessions, use the session_start() function. Like cookies, this
session function must be preceded by HTML tags.

Next, the work with variables in the session is done using the associative array
$_SESSION.

<?php

 // Start the session

 session_start();

?>

<!DOCTYPE html>

 <html>

 <body>

Cookies and Sessions | FITPED

145

 <?php

 $_SESSION["person"] = "Forest";

 $_SESSION["friend"] = "Bubba";

 ?>

</body>

</html>

📝 13.2.4

In the script, create the wife variable and set its value to "Jenny"

<?php

 // Start the session

 session_start();

?>

<!DOCTYPE html>

<html>

 <body>

 <?php

 $_SESSION["_____"] = "_____";

 ?>

 </body>

</html>

📝 13.2.5

Read the "person" and "wife" variables in the next HTML script.

<?php

 // Start the session

 session_start();

?>

<!DOCTYPE html>

<html>

 <body>

 <?php

 echo $_SESSION["_____"] . "and his wife" .

$_SESSION["_____"];

Cookies and Sessions | FITPED

146

 echo " Just married!";

 ?>

 </body>

</html>

🕮 13.2.6

The session_unset() and session_destroy() functions are used to delete all global
variables.

<?php

 session_start();

?>

<!DOCTYPE html>

<html>

 <body>

 <?php

 // delete all variables session

 session_unset();

 // destroy session

 session_destroy();

 ?>

 </body>

</html>

🕮 13.2.7

Sometimes it is enough to delete only one variable set by session. In this case, we
can use the unset() functions.

<?php

 unset($_SESSION['product']); //destroy product session item

?>

Files

Chapter 14

Files | FITPED

148

14.1 Files

🕮 14.1.1

Files are the basic method of storing data on a server. Instead of the often
complicated work with a database, we can put simple data in files. In the following,
we will focus on working with text files, usually with the type .txt. We will gradually
learn the functions of reading and writing text files.

If we want to work with an existing file, it is a common part of scripts to check if the
file is even at that location, if the file exists. The file_exists() function can do this
check, where we specify the file name as a parameter.

<?php

 $exist = file_exists(“my file“);

?>

📝 14.1.2

Fill in the correct code: if there is a “letter.txt” file, it will output a message with an
echo function.

<?php

if (_____('letter.txt'))

 {

 _____ 'The file exists!';

 }

?>

🕮 14.1.3

There are several functions for working with files, even some of them have similar
functionality. The basic and practically universal function is readfile(), which reads
the text content of the file.

 <?php

 echo readfile('letter.txt');

 ?>

📝 14.1.4

Which function can we use to load a text file?

Files | FITPED

149

• readfile
• view_file
• see_file
• file_readln

📝 14.1.5

Make sure there is a 'letter.txt' file. If it exists, read its contents using readfile().

<?php

if (_____('letter.txt')) {

 _____;

 }

?>

🕮 14.1.6

A similar function, with the same result, is the file_get_contents() function. This
function is also used to read the entire contents of a file but unlike readfile() it does
not display it. Text files use the line separator as "\n" but in HTML it is
. For this
reason, it is mostly used with HMTL <pre> tags, which write contents to HTML
without further formatting.

<?php

 echo "<pre>";

 echo file_get_contents("letter.txt");

 echo "</pre>";

?>

🕮 14.1.7

The functions readfile() or file_get_contents() read the contents of the file as a
whole. There are other functions to read the contents of the file.

We use the fopen() function to start working with the file.

The arguments of the function include the name of the file to be opened in the so-
called mode in which we want to open the file. The result of the fopen() function is
a pointer to an open file.

<?php

 $file = fopen('letter.txt',‘r‘);

?>

Files | FITPED

150

🕮 14.1.8

The fopen() function is used to open a file. In the second parameter, we specify in
which mode we want to open the file.

 We have the following modes to choose from:

• (r) - Opens the file as read-only, reads the file from start. Returns false if it
does not exist.

• (r+) - Opens a file to read and write, reads the file from start. Returns false if
it does not exist.

• (w) - Open the file for writing, start writing from the beginning of the file, if
the file does not exist, attempt to create it, if it exists, delete its original
content.

• (w+) - Opens the file for both read and write, starts writing from the beginning
of the file if it does not exist, tries to create it, if it exists, deletes its original
content.

• (a) - Opens the file for writing, writes to the end of the file, i.e. it is used for
writing, adding information to the file, the original content will be preserved if
the file does not exist, try to create it.

• (a+) - Opens the file for both write and read, writes to the end of the file, i.e. it
is used for writing, adding information to the file, the original content will be
preserved if the file does not exist, try to create it.

📝 14.1.9

What mode is used to open the file, if the file already exists with the contents, we
just want to write more content into the file (we will not read its contents)?

• a
• a+
• w
• w+

🕮 14.1.10

When working with a file, it is necessary to close the file correctly. Closing correctly
ensures that changes to the file are saved. In PHP, closing a file is done using the
fclose() function. The function parameter is a pointer to an open file.

<?php

 $my_file = fopen('letter.txt',‘r‘);

 //work with a file

Files | FITPED

151

 fclose($my_file)

?>

When you include the file existence check function, then the practical work with the
file may look like this.

<?php

 $my_file = 'letter.txt';

 if (file_exists($file_name)){

 $my_file = fopen('letter.txt',‘r‘);

 //work with a file

 fclose($my_file)

 }else{

 echo 'File '.$file_name.' not found!';

 }

?>

The second alternative could be the following script:

<?php

 $file_name = 'letter.txt';

 $my_file = fopen($file_name, "r") or die("Cannot open

file!");

 //work with a file

 fclose($my_file);

 ?>

 The die() function is called if an error occurs. It prints the set error message, and
the message terminates the execution of the script.

📝 14.1.11

Add the correct functions to open and close the file.

<?php

 $file_name = 'letter.txt';

 $file1 = _____($file_name, "r") or die("Cannot open file!");

 //work with a file

 _____(_____);

 ?>

Files | FITPED

152

🕮 14.1.12

The previously mentioned text file reading functions were able to read the entire file
as a single text array. However, we often need to find out where a new line is in the
file (so we can assign it a special format, not just
). For this purpose, fgets() is
used to read the file line by line. Its parameter is a pointer to the file. Each function
call reads one line of the file (the function starts at the beginning of the file, i.e. the
first call is the first line, then the file line pointer moves to the second line, etc.).

<?php

 $sub = fopen('letter.txt', 'r') or die('Cannot open the

file!');

 $line = fgets($sub);

 echo 'The first line: '.$line.'
';

 fclose($sub);

?>

📝 14.1.13

Fill in the script to print the first and second line to the document from the file.

<?php

 $sub = fopen('letter.txt', 'r') or die('Cannot open the

file!');

 $line1 = fgets($sub);

 $line2 = _____(_____);

 echo 'The first line: '.$line1.'
';

 echo 'The second line: '.$line2;

 fclose($sub);

?>

🕮 14.1.14

An unknown number of file lines may be a problem for fgets(). If you try to read a
non-existent line, the script will not work correctly. It is therefore recommended that
we always check that a line exists. The feof() function is known, which checks
whether the end of the file has been reached - End-of-file (EOF). This function is
useful for looping through files whose size (number of lines) is unknown.

<?php

 $file = fopen('letter.txt', 'r') or die("Cannot open the

file!");

 // checking if the end is reached

 while(!feof($file)) {

Files | FITPED

153

 $line = fgets($file);

 echo $line . "
";

 }

 fclose($file);

 ?>

📝 14.1.15

What function is used to determine if we reached the end of a file?

• feof()
• ef()
• end_file()
• end_of_file()

📝 14.1.16

Fill in the correct order of commands to load the contents of the entire text file.

<?php

 $line = fgets($file);

 echo $line . "
";

 ?>

• }
• $file = fopen('letter.txt', 'r') or die('Cannot open the file!');
• fclose($file);
• while(!feof($file)) {

Files | FITPED

154

14.2 Files – other functions

🕮 14.2.1

PHP specifications include using the same function to open a file as well as create
it. This function is fopen(). If you use the fopen() function in mode (a) or (w) on a
file that does not exist, it creates it.

Sometimes an error may occur when creating a file. Then you need to check and
allow access to PHP files to write information to your hard drive.

After the file is created, you need to fill it with content. The fwrite() function is used
to write data to a file. The first parameter of the fwrite() function contains the name
of the file to write data to, and the second parameter is the string to write to.

<?php

 $new_file = fopen("letter.txt", "w") or die("Cannot open

the file!");

 $introduction = "Dear Jenny \n";

 fwrite($new_file, $introduction);

 fclose($new_file);

 ?>

The sign "\n" is a line-end character for text file types.

The fopen function also has a third parameter, the so-called "$length". This
parameter specifies the maximum write length. The parameter is optional, if the
length argument is specified, writing to the file stops when the specified byte size is
reached or the end of the string being written, whichever comes first.

📝 14.2.2

Fill in the correct fwrite() parameters

<?php

 $file = fopen("newcomers.txt", "w") or die("Cannot open the

file!");

 $line = "Bubba\n";

 fwrite(_____, _____);

 fclose($file);

 ?>

Files | FITPED

155

📝 14.2.3

By calling fwrite() again, we can write more lines. Add “Forrest” on the second line
and “Captain Dan” on the third line

<?php

 $file = fopen("newcomers.txt", "w") or die("Cannot create

the file!");

 $line = "Bubba\n";

 fwrite($file, $line);

 $line = " Forrest \n";

 fwrite(_____, _____);

 $line= " Captain Dan \n";

 fwrite(_____, _____);

 fclose($file);

 ?>

🕮 14.2.4

It should be remembered that the way data is written to the file is determined by the
file open mode. When creating a new file, we specify the “w” or “w+” mode. This
mode is also used if the file already exists, but we want to overwrite it, i.e. delete all
of its content and replace it with a new one.

For an existing file to which we write data, we use the mode to open “a” or “a+”.

It is a good practice to separate lines with the "\n" character. However, its use is not
necessary. We add it if we assume that the created file will be opened by users in
other text editors, e.g. in text editors and so on. If the file will be used (written and
read) only PHP scripts with a print to the web browser and we will use a function
different than fgets() for the printing, so we can replace the line end character “\n”
with e.g. tag "
".

🕮 14.2.5

For completeness, we will introduce file operations functions. The first is the copy()
function, which is used to copy files. It has two required parameters, the first
specifies the file path and file name to copy. The second parameter specifies the
path and file name of the newly created file.

Files | FITPED

156

<?php

 copy('letter.txt', 'letter_backup.txt') or die('Cannot copy

the file');

 echo 'The file was successfully copied to letter_backup ';

?>

🕮 14.2.6

The last function is unlink(), which is used to delete a file. Its use can be as follows:

<?php

 if (!unlink("letter_backup.txt")){

 echo "Cannot delete the file";

 }else{

 echo "The file 'letter_backup.txt' was successfully

deleted";

 }

?>

