

Python Intermediate

Published on

November 2021

Authors

Viera Michaličková | Constantine the Philosopher University in Nitra, Slovakia

Zenón José Hernández-Figueroa | University of Las Palmas de Gran Canaria, Spain

José Daniel González-Domínguez | University of Las Palmas de Gran Canaria, Spain

Juan Carlos Rodríguez-del-Pino | University of Las Palmas de Gran Canaria, Spain

Jan Přichystal | Mendel University in Brno, Czech Republic

Kornel Chromiński | University of Silesia in Katowice, Poland

Reviewers

Jozef Kapusta | Pedagogical University of Cracow, Poland

Peter Švec | Teacher.sk, Slovakia

Eugenia Smyrnova-Trybulska | University of Silesia in Katowice, Poland

Piet Kommers | Helix5, Netherland

Graphics

Ľubomír Benko | Constantine the Philosopher University in Nitra, Slovakia

David Sabol | Constantine the Philosopher University in Nitra, Slovakia

Erasmus+ FITPED

Work-Based Learning in Future IT Professionals Education

Project 2018-1-SK01-KA203-046382

The European Commission support for the production of this publication does not
constitute an endorsement of the contents which reflects the views only of the authors,
and the Commission cannot be held responsible for any use which may be made of
the information contained therein.

Licence (licence type: Attribution-Non-commercial-No Derivative Works) and may be
used by third parties as long as licensing conditions are observed. Any materials
published under the terms of a CC Licence are clearly identified as such.

All trademarks and brand names mentioned in this publication and all trademarks and
brand names mentioned that may be the intellectual property of third parties are
unconditionally subject to the provisions contained within the relevant law governing
trademarks and other related signs. The mere mention of a trademark or brand name
does not imply that such a trademark or brand name is not protected by the rights of
third parties.

© 2021 Constantine the Philosopher University in Nitra

ISBN 978-80-558-1784-2

Table of Contents

1 Exceptions .. 5

1.1 Exceptions ... 6

1.2 Exceptions (programs) ... 18

2 Text Files .. 22

2.1 Text Files ... 23

2.2 Text Files (programs) ... 33

3 Introduction to Lists .. 37

3.1 Introduction to Lists ... 38

3.2 Introduction to Lists (programs) ... 45

4 Storing Data in Lists .. 48

4.1 Storing Data in Lists ... 49

4.2 Storing Data in Lists (programs) ... 56

5 Processing Lists (Functions, Methods & Slicing) ... 61

5.1 Processing Lists (Functions, Methods & Slicing) .. 62

5.2 Processing Lists (programs) ... 68

6 Lists as Parameters & Return Values... 71

6.1 Lists as Parameters & Return Values ... 72

6.2 Lists as Parameters & Return Values I. (programs) .. 81

6.3 Lists as Parameters & Return Values II. (programs) ... 84

7 Functions as Values .. 91

7.1 Functions as Values ... 92

7.2 Functions as Values (programs) ... 102

8 Tuples ... 105

8.1 Tuples .. 106

8.2 Tuples (programs) .. 117

9 Lists of Lists ... 121

9.1 Lists of Lists .. 122

9.2 List of Lists (programs) .. 133

10 Sets ... 138

10.1 Sets .. 139

10.2 Sets (programs) .. 146

11 Dictionaries .. 150

11.1 Dictionaries ... 151

11.2 Dictionaries (programs) ... 162

Exceptions

Chapter 1

Exceptions | FITPED

6

1.1 Exceptions

🕮 1.1.1

Let us test the following program, e. g. with the input values 7 and 2:

a = int(input('a: '))

b = int(input('b: '))

print(a // b, a % b)

The Output:

a: 7

b: 2

3 1

Correct results (division and remainder) were calculated.

Now again, but with other input values:

The Output:

 a: 7

 b: 0

 Traceback (most recent call last):

 File ".../test.py", line 3, in <module>

 print(a // b, a % b)

 ZeroDivisionError: integer division or modulo by zero

An runtime error occurred while executing the program as we tried to divide
a number by zero. The program got into an exceptional state (something
unexpected or abnormal has happened), so its execution was stopped. We say, that
an exception was raised. In this case, it was the ZeroDevisionError (we can see it
from the output message).

In general, when a Python program encounters a situation that it cannot cope with,
it raises an exception.

An exception is a Python object that represents an error.

📝 1.1.2

There are many built-in types of errors in Python.

Exceptions | FITPED

7

Match the examples of code with outputs describing a corresponding exception
that was raised:

>>> 123 + 'x'

>>> 5 / 0

>>> 'hallo'[10]

>>> 'abcdef'.index('x')

>>> 123[0]

>>> fun()

>>> open('data.txt')

>>> def fun(): x += 1

>>> fun()

• IndexError: string index out of range
• NameError: name 'fun' is not defined
• UnboundLocalError: local variable 'x' referenced before assignment
• TypeError: unsupported operand type(s) for +: 'int' and 'str'
• ZeroDivisionError: division by zero
• TypeError: 'int' object is not subscriptable
• ValueError: substring not found
• FileNotFoundError: [Errno 2] No such file or directory: 'data.txt'

🕮 1.1.3

The runtime errors are quite common, and our programs should be able to cope
with them.

In our previous simple example, we could check the second value before trying to
divide:

a = int(input('a: '))

b = int(input('b: '))

if b != 0:

 print(a // b, a % b)

else:

 print('division by zero')

Exceptions | FITPED

8

But there is a better way of handling such exceptional states in Python using the try
and except blocks.

If we have some suspicious code that may raise an exception, we can defend our
program by placing the suspicious code in a try block.

The try block is followed by an except block containing code for handling the
problem as elegantly as possible.

When an exception is raised somewhere in the try block, all subsequent commands
in this block are skipped immediately and the flow of execution proceeds in
corresponding except block:

try:

 a = int(input('a: '))

 b = int(input('b: '))

 print(a // b, a % b) # line 1

 print('the results were printed out') # line 2

except ZeroDivisionError:

 print('division by zero') # line 3

The Output:

 a: 7

 b: 0

 division by zero

Notice, that after the exception was raised in line 1, the line 2 was skipped and the
program's flow was passed to line 3 immediately.

📝 1.1.4

In following program, we are reading numbers from a user repreatedly to calculate
and print out their powers.

Complete the code in order to catch ValueError properly:

while True:

 _____:

 x = int(input('next number: '))

 print(x**2)

 _____ ValueError:

 print('Good bye!')

 break

Exceptions | FITPED

9

The output for 4 cases of different user inputs:

x: 1

1

x: 2

4

x: 10

100

x: end

Good bye!

The ValueError is raised in case the input cannot be converted to int.

🕮 1.1.5

We have handled only the ZeroDivisionError so far. But also another exception might
be raised:

What about inputting a string that cannot be converted to an int?

try:

 a = int(input('a: '))

 b = int(input('b: '))

 print(a // b, a % b)

except ZeroDivisionError:

 print('division by zero')

The input and Output:

a: hihi

 Traceback (most recent call last):

 File ".../test.py", line 1, in <module>

 a = int(input('a: '))

 ValueError: invalid literal for int() with base 10: 'hihi'

Now, the ValueError was raised as the input number was an improper parameter for
the int() conversion function.

A single try statement can have multiple except statements. This is useful when the
try block contains statements that may raise different types of exceptions:

try:

 a = int(input('a: '))

 b = int(input('b: '))

Exceptions | FITPED

10

 print(a // b, a % b)

except ValueError:

 print('input numbers must be integers')

except ZeroDivisionError:

 print('division by zero')

When an exception occurs, it is handled in the corresponding except block.

If the exception is of a different type, it is not handled and the program would
terminate.

🕮 1.1.6

Type of the error can be omitted when specifying the except block. In this situation,
all kinds of exception would be caught and handled:

try:

 a = int(input('a: '))

 b = int(input('b: '))

 print(a // b, a % b)

except:

 print('some exception occured')

Or, some specific errors at first, and then catching the other ones:

try:

 a = int(input('a: '))

 b = int(input('b: '))

 print(a // b, a % b)

except ValueError:

 print('input numbers must be integers')

except ZeroDivisionError:

 print('division by zero')

except:

 print('some other type of exception was raised ')

If we need to handle more types of exceptions in a same way, we can specify them
within the same except block. But we have to put them in a tuple:

try:

 a = int(input('a: '))

 b = int(input('b: '))

 print(a // b, a % b)

except (ValueError, ZeroDivisionError):

Exceptions | FITPED

11

 print('input numbers must be integers or division by

zero')

except:

 print('some other type of exception was raised')

📝 1.1.7

Study the exception handling logic for lines of code that would be written within the
try block:

try:

 # some code to execute

except Exception1:

 print('A', end='')

except: Exception2:

 print('B', end='')

except (Exception3, Exception4):

 print('C', end='')

except:

 print('D', end='')

print('E')

• If an Exception4 had been raised, the output would be CE.
• If an Exception1 had been raised, the output would be A.
• If an Exception5 had been raised, the output would be DE.
• Exceptions of the Exception3 and Exception4 types are always raised

together.

🕮 1.1.8

Exceptions are objects representing various types of errors.

The object created as a result of an exceptional state (the exception) contains
information describing the error. We can get access to this object like this:

try:

 a = int(input('a: '))

 b = int(input('b: '))

 print(a // b, a % b)

except Exception as err:

 print('handling an exception: ', err) # the err object

can be printed out

Exceptions | FITPED

12

 print(type(err)) # we can determine

its type

 print(err.args) # the additional

information about the cause is packed in a tuple

The Output:

a: 5

b: 0

handling an exception: integer division or modulo by zero

<class 'ZeroDivisionError'>

('integer division or modulo by zero',)

The err variable is a reference to the actual exception.

The Exception is a type representing a generic exception from which the other types
of exceptions are derived. Later, you will learn how to create your own exceptions.

📝 1.1.9

Compare the following examples:

EXAMPLE 1

try:

 x = 5

 y = 'x'

 print(x + y)

except err as TypeError:

 print(err)

EXAMPLE 2

try:

 x = 5

 y = 'x'

 print(x + y)

except TypeError as err:

 print(err)

The Output:

unsupported operand type(s) for +: 'int' and 'str'

Exceptions | FITPED

13

In both of them, an exception of the TypeError would be raised. Which of the 2
notations of except blocks is correct?

• in EXAMPLE 1
• in EXAMPLE 2

🕮 1.1.10

We have already seen, that a single try statement can have multiple except
statements. We can also provide a generic except clause, which handles any
exception.

Additionaly, after the except block, we can include an else block. The code in the
else block executes if the code in the try block does not raise an exception. It is a
good place for code that does not need the try block's protection.

We can also use a finally block. The finally block is a place to put any code that
must execute, whether the try block raised an exception or not:

try:

 a = int(input('a: '))

 b = int(input('b: '))

except ValueError:

 print('input numbers must be integers')

except ZeroDivisionError:

 print('division by zero')

else:

 print(a // b, a % b)

finally:

 print('this is always printed out')

Notice the output when no exception was raised:

 a: 10

 b: 2

 5 0

 this is always printed out

And the other one, when the b is equal to 0:

a: 10

b: 0

division by zero

this is always printed out

Exceptions | FITPED

14

We will use the finally block later, in more complex, real-world programs, typically in
order to release the allocated resources (e. g. files or network connections).

📝 1.1.11

Match the blocks concerned with exception handling with correct explanations of
their meanings:

try: _____

except: _____

else: _____

finally: _____

• Here goes the code that could cause a problem.
• Here goes the error handling code.
• Here goes the code that is executed if there was no exception.
• Here goes the code that is executed under all circumstances.

🕮 1.1.12

Many of the standard functions or methods that you have already used in your
programs, may raise some kind of exception.

Let us examine the index() method for finding substrings in strings:

my_string = 'Python'

input_string = input('> ')

print(my_string.index(input_string))

The output for the first input case:

> thon

2

The output for the second input case:

> a

Traceback (most recent call last): File ".../test.py", line 3,

in <module>

print(my_string.index(input_string))

Exceptions | FITPED

15

ValueError: substring not found

At first, method returned the index of the substring.

In second case, method raised an exception (ValueError), because the substring
was not found.

This exception could be handled using the try and except blocks:

try:

 my_string = 'Python'

 input_string = input('> ')

 print(my_string.index(input_string))

except ValueError as err:

 print(err)

🕮 1.1.13

When writing our own functions, we should also raise a proper exception when
necessary.

Let us write a short function returning a circle‘s content:

import math

def circle_content(radius):

 return math.pi * radius ** 2

print(circle_content(1)) # 3.141592653589793

print(circle_content(-2)) # 12.566370614359172

In both cases, a result was returned and printed out. But it is obvious, that the
second output is not correct as the radius cannot be a negative number. The
function should inform its caller about not being able to return a correct result:

import math

def circle_content(radius):

 if radius < 0:

 raise ValueError('The radius of a circle cannot be a

negative number.')

 return math.pi * radius ** 2

Let us call the function now, watch the comments with outputs:

Exceptions | FITPED

16

try:

 print(circle_content(1)) # 3.141592653589793

 print(circle_content(-2)) # nothing was printed out,

because of the exception

except ValueError as err:

 print(err) # The radius of a circle

cannot be a negative number.

The raise statement is used for raising an exception of a specified type wherever
the error is identified.

Usually, we put a descriptive string message inside the round brackets (but this is
optional), e. g.:

raise ValueError('the input need to be an integer')

raise ZeroDivisionError('fraction’s denominator is zero')

raise TypeError('bad operand')

raise ValueError

In the very last example of raising the ValueError exception, we did not add a
custom message. But the standard message about the problem's cause is still
available. We can use the exception's reference within the except block.

📝 1.1.14

The raise statement can be written more than once within the same try block.

• True
• False

🕮 1.1.15

The raise statement can be used also alone, without specifying any exception type:

raise

We use this notation to propagate the exception further, to the calling function.

The calling function may

• handle the exception properly (if it contains a suitable except block)
• or the exception is passed further.

Exceptions | FITPED

17

If "no one cares" about handling the existing exception, the Python intepreter will
catch it at least and program will terminate.

In the following example, we try to get an integer number from a user. The user is
allowed to make 3 mistakes.

If a ValueError occurs, the user is informed by printing a message.

After failing for the third time, we raise the ValueError exception to the calling
function (or to the interpreter in this case). The print() command would not be
executed for the third time:

def read_number():

 n = 0

 while True:

 try:

 return int(input('your number: '))

 except ValueError:

 n += 1

 if n >= 3:

 raise

 print('the input is not an integer!')

read_number()

Study the output carefully:

your number: a

the input is not an integer!

your number: b

the input is not an integer!

your number: c

Traceback (most recent call last): File "... /test.py", line

12, in <module>

read_number()

File ".../test.py", line 5, in read_number

return int(input('your number: '))

ValueError: invalid literal for int() with base 10: 'c'

Exceptions | FITPED

18

📝 1.1.16

Study the following program carefully:

def fun1(x=None):

 if x is None:

 raise TypeError

 try:

 y = int(x) + 1

 print(y)

 except ValueError:

 print('ValueError')

 print('Goodbye from fun1()')

def fun2():

 try:

 fun1()

 except:

 raise

 print('Goodbye from fun2()')

fun2()

Choose correct explanation of the program's execution.

• The fun1() is called without a parameter, so the TypeError is raised. This
error is handled by the fun2() function.

• The fun1() is called without a parameter, so the TypeError is raised. But this
error is not handled by the fun2() function.

• The ValueError exception might be raised by the int() function in case the
TypeError is not raised. Such ValueError is handled in the fun1() function.

• The ValueError exception might be raised by the int() function in case the
TypeError is not raised. Such ValueError is not handled in the fun1() function.

1.2 Exceptions (programs)

⌨ 1.2.1 Calculation of Powers

Write code to calculate the appropriate xy for two integers x and y (base and
exponent).

Use the exception mechanism to handle possible error conditions: if user does not
enter an integer, print out the 'ValueError' string.

Exceptions | FITPED

19

Whether or not an exception occurs, always print out the 'bye' string on the last line
of output.

Input :4

5

Output:1024

bye

Input :6

5

Output:7776

bye

Input :xyz

3

Output:ValueError

bye

⌨ 1.2.2 Greatest Common Divisor

Complete the following program to calculate the largest common divisor of two
positive integers.

The program already contains the gcd () function, which implements an algorithm
to calculate the largest common divisor. Be careful, the input arguments must be
positive integers.

Modify the gcd () function as well as the main program to properly handle possible
error conditions:

• user does not enter an integer
• negative number as gcd () input parameter

Use the exception mechanism in your solution.

Input :95

10

Output:5

Input :x123

10

Output:invalid literal for int() with base 10: 'x123'

Input : -38

Exceptions | FITPED

20

26

Output:arguments must be positive integers

start.py
write your code here (finish the solution):

def gcd(a, b):

 """ calculates the greatest common divisor of 2 positive

integers"""

 while a != b:

 if a > b:

 a -= b

 else:

 b -= a

 return a

main program

x = int(input())

y = int(input())

print(gcd(x, y))

⌨ 1.2.3 Fractions

Create a program that reads 2 integers from the input - numerator and denominator
of a fraction.

Compare values of the given numbers and print out the corresponding fraction in
the desired form (as shown in examples below).

Use the exception mechanism to handle possible error conditions - respond the
same for both, ValueError and ZeroDivisionError exceptions by printing out the 'error'
string.

Input :13

1

Output:13

Input :20

3

Output:6 2/3

Input :x123

10

Output:error

Exceptions | FITPED

21

Input :15

15

Output:1

Input :8

0

Output:error

Text Files

Chapter 2

Text Files | FITPED

23

2.1 Text Files

🕮 2.1.1

Real world applications process (read and produce) various data that are saved in
external files. Many of them are texts. The examples of files having a text format
include .txt, .csv, .html.

Text file is a sequence of characters, including the end of line character '\n'.

Or we can think of a text file as a sequence of lines. Then, every line is a sequence
of characters that ends with '\n'. A text file can contain some empty lines as well.

In general, working with files comprises 3 steps:

1. opening a file
2. reading from or writing to the file
3. closing the file

📝 2.1.2

Select all true statements:

• Text files are sequences of lines.
• Text files are sequences of characters.
• Text files could contain lines with 2 occurances of the '\n' character.
• Text files could contain lines having the zero length.

🕮 2.1.3

To open a text file, we call the standard open() function:

f = open('data.txt', 'r')

The open() function has usually 2 string arguments:

• name of the file to open and
• the 'r' in case of opening file for reading.

We can specify an absolute or relative path within the first string. But now we have
assumed that the input file and the Python script are in the same directory.

Text Files | FITPED

24

The open() function returns a reference to the opened file. Or in another words: the
input stream has been opened and file variable f provides necessary connection.

If there is no such file on disk, an exception is raised:

try:

 f = open('data.txt','r')

 print(f.read())

except FileNotFoundError as err:

 print(err)

For non-existing file, the output would be:

[Errno 2] No such file or directory: 'data.txt'

In the third, optional argument, we can specify the file‘s encoding, e. g.:

f = open('data.txt','r', encoding='utf-8')

📝 2.1.4

The open() function will raise an exception. Is it true?

f = open('data.txt', 'r', encoding='utf-8')

• True
• False
• The question cannot be answered.

🕮 2.1.5

First, let us read the following text file

Twinkle, twinkle, little star,

how I wonder what you are.

Up above the world so high,

like a diamond in the sky.

and print it out on the screen:

f = open('poem.txt','r')

print(f.readline()) # 'Twinkle, twinkle, little

star,\n'

Text Files | FITPED

25

With readline() method, we read the first line of a poem.

This method reads and returns one line. The end of the line character is contained
as well. The file object updates actual position in a file after each reading, so the
next call would return the second line:

print(f.readline()) # 'how I wonder what you

are.\n'

After reading all lines, the actual position reaches the end of file.

At the end of a file, readline() method returns '' (an empty string).

To read all lines, we often use the while statement:

f = open('poem.txt','r')

line = f.readline()

while line != '':

 print(line, end='') # the line contains one '\n'

already

 line = f.readline()

Also, this notation is possible:

f = open('poem.txt','r')

line = f.readline()

while line:

 print(line, end='')

 line = f.readline()

After reading all necessary data, the file should be closed immediately:

f.close()

After closing, all the related resources are released and the file is free to be used by
other programs.

📝 2.1.6

What is the output of this program?

f = open('input_file.txt','r')

line = f.readline()

while line != '':

 print(line[::-1], end='')

Text Files | FITPED

26

 line = f.readline()

f.close()

• Each line read from the input file was reversed and printed separately on the
screen.

• One line was printed on the screen. It contained all characters read from the
file, but in reversed order.

• An exception was raised as lines cannot be sliced.

🕮 2.1.7

When reading lines from an input file, it can be useful to see its real contents (all
whitespace characters including end of lines). The repr() function is useful for this
purpose.

f = open('poem.txt','r')

line = f.readline()

while line != '':

 print(repr(line))

 line = f.readline()

f.close()

The Output:

'Twinkle, twinkle, little star,\n'

'How I wonder what you are.\n'

'Up above the world so high, \t\n'

'Like a diamond in the sky.\n'

Notice, that the third line contains more spaces and a tabulator before the final '\n'.

Sometimes, we need to remove all leading and trailing whitespaces before
processing a line. We can use the strip() method for this:

f = open('poem.txt','r')

line = f.readline()

while line != '':

 print(repr(line.strip()))

 line = f.readline()

f.close()

The Output:

'Twinkle, twinkle, little star,'

'How I wonder what you are.'

Text Files | FITPED

27

'Up above the world so high,'

'Like a diamond in the sky.'

Notice, that also the '\n' characters were removed.

The strip() method can have an optional parameter – a string with characters to be
removed. Also the lstrip() and rstrip() variants are available.

📝 2.1.8

Match functions and methods with correct comments explaining some of their
features:

open(): _____

close(): _____

strip(): _____

repr(): _____

readline(): _____

• returns a reference to the opened file
• returns a line read from the opened file
• removes all leading and trailing whitespaces from a string
• helps to explore the real contents of a string
• closes connection with the opened file

🕮 2.1.9

The for loop can be very helpful when processing an input text file.

In case, we know the number of lines, we can repeat the readline() call, e. g. 4 times
to print all 4 lines of the poem:

f = open('poem.txt','r')

for i in range(4):

 print(f.readline(), end='')

f.close()

But the for loop makes the reading process easier also for cases of unknown
number of lines:

Text Files | FITPED

28

f = open('poem.txt','r')

for line in f:

 print(line, end='')

f.close()

📝 2.1.10

The input file contains some URLs of favourite web pages, one per line, e. g.:

www.ukf.sk

www.bbc.com

www.google.sk

Complete the following program correctly in order to count all addresses from
Slovakia:

file = open('urls.txt', 'r')

n = 0

for _____ in _____:

 if line.strip().endswith('.sk'):

 n += 1

print(n)

file.close()

🕮 2.1.11

Sometimes we need to read the contents of an input file as one string:

f = open('poem.txt','r')

text = f.read()

print(len(text)) # total number of characters

print(text) # contents of file

f.close()

The read() method can have an argument – the number of characters to read:

f = open('poem.txt','r')

print(f.read(1)) # first character

print(f.read(5)) # next 5 characters

print(f.read()) # the rest of the file’s contents

f.close()

Text Files | FITPED

29

📝 2.1.12

The input file urls.txt contains 3 lines:

www.ukf.sk

www.bbc.com

www.google.sk

The program to analyse:

file = open('urls.txt', 'r')

print(file.read(3), end='') # line 1

print(file.read(), end='') # line 2

print(file.readline(), end='') # line 3

file.close()

Match numbers of lines containing print statements with correct outputs.

line 1: _____

line 2: _____

line 3: _____

• .ukf.sk\nwww.bbc.com\nwww.google.sk\n
• ''
• www.google.sk
• www

🕮 2.1.13

For writing characters to a text file, writing mode must by specified using the 'w'
string in the open() function’s second argument.

If the file does not exist, it is created as empty.

If the file already exists, its contents is going to be overwritten:

f = open('output.txt','w')

f.write('We are learning\n')

f.write('about using text files\n')

f.write('in Python\n')

f.close()

When using the write() method, all end of lines have to be written explicitly.

Text Files | FITPED

30

The three lines of text could be output to a file also by calling the write() method
once:

f.write('We are learning\nabout using text files\ninPython\n')

f.close()

Be careful and always close the opened files. In case of not closing, you cannot be
sure, whether the output is really saved on a disk.

📝 2.1.14

Choose correct explanation of the program's output for input value n == 5:

import random

fw = open('random_numbers.txt', 'w')

n = int(input('n = '))

for i in range(n):

 fw.write(str(random.randint(1, 9)))

fw.close()

• The output file file contains 5 random numbers in one line.
• There are 5 lines in the output file, each of them contains a random number.
• The str() function cannot be called like this.

🕮 2.1.15

For writing to a text file, the standard print() function is applicable as well.

We can redirect the output from default output stream (usually the screen) to an
external file using an optional argument:

f = open('primes.txt','w')

for x in 2, 3, 5, 7, 11, 13, 17, 19:

 print(f'{x}', end=' ', file = f)

f.close()

The output was written only to the f file now. The primes.txt contains 1 line:

2 3 5 7 11 13 17 19

Text Files | FITPED

31

📝 2.1.16

Choose correct explanation of the following program's Output:

fr = open('input.txt', 'r')

fw = open('output.txt', 'w')

for line in fr:

 if line != '':

 print(line, end='', file=fw)

 print(line, end='')

fr.close()

fw.close()

• The output file contains all non-empty lines from input.txt. All lines read from
the input file were printed out on the screen.

• The output file contains all non-empty lines from input.txt. All these non-
empty lines were printed out on the screen as well.

• All lines from the input file were copied to the output file as well as printed
on the screen.

🕮 2.1.17

When working with files, the with construction is recommended to use:

with open('poem.txt','r', encoding='utf-8') as f:

 for line in f:

 print(line, end='')

The opened file is referenced with variable f. After executing the with block, the file
is closed automatically.

Let us copy the contents of a file. The first file has to be opened for reading, the
second one for writing:

with open('original.txt', 'r') as fr:

 with open('copy.txt', 'w') as fw:

 fw.write(fr.read())

We could enumerate the files to be used also in one line:

with open('original.txt', 'r') as fr, open('copy.txt', 'w') as

fw:

Text Files | FITPED

32

 fw.write(fr.read())

📝 2.1.18

Study the following lines of code:

with open('input.txt', 'r') as fr, open('output.txt', 'w') as

fw:

 for line in fr:

 if line != '':

 print(line[::-1], end='', file=fw)

 print(line[::-1], end='')

 fw.close()

Choose all true statements:

• We forgot to close() the fr file.
• The fw.close() statement is redundant and should be deleted.
• The program copies all non-empty lines from input file to the output file,

reversing them first.
• The program copies all empty lines from input file to the output file, reversing

them first.

🕮 2.1.19

Besides the reading and writing modes, also appending to a file is possible.

Let us assume, that there are already 3 lines saved in names.txt file:

John

Paul

George

We will open this file in the appending mode (notice, that the second argument is
'a'):

file = open('names.txt', 'a')

file.write('Ringo\n')

file.close()

The actual position in file was set to the end of file immediately after opening
it. Then, the fourth line was appended, and the file was closed.

The resulting contents of the names.txt:

Text Files | FITPED

33

John

Paul

George

Ringo

📝 2.1.20

Complete the program correctly to count total number of lines in a file and add this
information to its end:

with open('names.txt', 'r') as f:

 text = f.read()

print(repr(text)) # 'John\nPaul\nRingo\nGeorge\n'

with open('names.txt', _____) as f:

 n = text.count('\n')

 f.write(str(n))

2.2 Text Files (programs)

⌨ 2.2.1 Counting Vowels

Write a program to count all vowels in an input text file. For non-existing files,
handle the FileNotFoundError exception correctly.

Input : textfile1.txt

Output: 21

Input : text2.txt

Output: file not found

textfile1.txt:

This is a test file, contents is not important,

just watch vowels to count.

⌨ 2.2.2 Paying for Text Messages

Write program that calculate the total price of sending file's contents as a series of
SMS messages.

A text message (SMS) can contain maximum of 160 characters. There is a text
saved in an input file. One SMS costs 0.10 Eur.

Text Files | FITPED

34

Be careful and always print out 2 decimals.

Input : textfile1.txt

Output: 0.10

Input : textfile2.txt

Output: 0.20

textfile1.txt:

Hallo mum, i am driving home.

textfile2.txt:

This is a longer message, it has more than 160 characters. So

we have to pay more :-)

This is a longer message, it has more than 160 characters. So

we have to pay more :-)

This is a longer message, it has more than 160 characters. So

we have to pay more :-)

⌨ 2.2.3 Longest and Shortest Lines

Write program that determine the numbers of the longest as well as the shortest
line in a text file.

Be careful about the Output: not the length of a line, but the ordinal number defining
its position in file is needed.

Input : textfile1.txt

Output: 3 2

Input : textfile2.txt

Output: 1 1

textfile1.txt:

The first line is not very short.

The second line is short.

The third line. It is very very very interesting.

textfile2.txt:

This is a line.

This is a line.

This is a line.

This is a line.

Text Files | FITPED

35

⌨ 2.2.4 Filtering Empty Lines

Write program to copy the contents of an input text file to the output, but without
empty lines.

Input : textfile1.txt

Output:

a

b

c

Input : textfile2.txt

Output:

xyz

textfile1.txt:

a

b

c

textfile2.txt:

xyz

⌨ 2.2.5 Happy Birthday

Write program to count persons born in a given month.

Input text file contains a family members - dates of births (one date per line).

Input : textfile1.txt 5

Output: 1

Input : textfile2.txt 2

Output: 2

textfile1.txt:

1.1.1978

31.10.2008

7.5.2010

22.8.1980

Text Files | FITPED

36

textfile2.txt:

4.2.1920

13.2.1922

18.3.1926

17.9.1944

12.1.1944

⌨ 2.2.6 Strong Passwords

Write program to find out the number of strong passwords in a file.

The input text file contains passwords of many users (one per line).

A strong password is longer than 6 characters, contains at least 1 digit, 1 uppercase
and 1 lowercase letter.

Input : textfile1.txt

Output: 2

Input : textfile2.txt

Output: 0

textfile1.txt:

Minmax33

HopkyLupkySupky

CupiLupi7

kukuk

textfile2.txt:

puK12

77hohohohohoho

patmat007

Introduction to Lists

Chapter 3

Introduction to Lists | FITPED

38

3.1 Introduction to Lists

🕮 3.1.1

List is a standard data structure designed for saving and processing sequences of
items.

To create a new list, put comma-separated items between square brackets:

temperatures = [36.5, 36.7, 37.1, 37.1, 37.5, 38.5]

students = ['Augusta Ada', 'Alan Turing', Edsger W. Dijkstra',

'Donald Knuth', 'Niklaus Wirth', 'Ole-Johan Dahl', 'Kristen

Nygaard']

years = [1945, 1969, 1971, 1978, 1980, 1984, 2012, 2015, 2019]

incoming_person = ['Susan', 'Slovakia’, 2019, 52.18, true]

x = 17

y = 9

z = 1989

values = [x, y, z]

As seen above, the items in a list can be of same as well as of different types.

To create an empty list, two statements can be used:

a = []

or

a = list()

For lists, type() function returns the corresponding class name (lists are objects of
the list type):

>>> type(a)

<class 'list'>

📝 3.1.2

Choose all the list variables from the options listed.

• a = [True]
• b = [1, 2, 3, 4, 5, 6, 7]
• c = ['spring', 'summer', 'autumn', 'winter']
• d = list()
• e = [0, 10, 'X', 120.5]

Introduction to Lists | FITPED

39

• f = []

🕮 3.1.3

To access elements in lists, indices are used. Similar to string indices, list indices
start at 0:

a = ['Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday',

'Saturday' , 'Sunday']

print(a[0])

print(a[2])

print(a[-1])

print(a[-2])

print(a[len(a)-1])

When the above code is executed, it produces the following result:

Monday

Wednesday

Sunday

Saturday

Sunday

📝 3.1.4

Choose statements that are not applicable for accessing the 'red' element:

colors = ['red', 'green', 'blue', 'white', 'black']

• colors[len(colors)-1]
• colors[1]
• colors[0]
• ['red', 'green', 'blue', 'white', 'black'][0]

🕮 3.1.5

Two lists can be concatenated using the + operator.

By joining two lists, we create a new, longer one with all the first list’s elements
followed by all the second list’s elements, preserving the original order.

Watch the outputs of following console experiments:

Introduction to Lists | FITPED

40

>>> a = [1, 2, 3, 4, 5, 6]

>>> b = [6, 7, 8]

>>> a + b

[1, 2, 3, 4, 5, 6, 6, 7, 8]

>>> students = ['John', 'Martin']

>>> students = ['Joseph'] + students

>>> students

['Joseph', 'John', 'Martin']

>>> students + []

['Joseph', 'John', 'Martin']

📝 3.1.6

Execute the following lines of code:

list1 = [1] + [2, 3] + [4] + [5] + []

list2 = [1]+ [5] + [2, 3, 4]

print(len(list1) == len(list2))

Fill in the printed value:

🕮 3.1.7

We use the * operator when concatenating the same list repeatedly.

Let us compare the outputs:

>>> languages = ['C', 'Java', 'Python'] + ['C', 'Java',

'Python'] + ['C', 'Java', 'Python']

>>> languages

['C', 'Java', 'Python', 'C', 'Java', 'Python', 'C', 'Java',

'Python']

>>> languages = ['C', 'Java', 'Python'] * 3

>>> languages

['C', 'Java', 'Python', 'C', 'Java', 'Python', 'C', 'Java',

'Python']

Using the * operator makes list initialization easier. E. g. instead of writing 10 times
the same zero value, we can use the following notation:

>>> counters = [0] * 10

>>> counters

[0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

Introduction to Lists | FITPED

41

📝 3.1.8

Execute the following lines of code:

greetings = 4 * ['Hallo']

greetings = greetings + ['Bye'] * 3

print(greetings[len(greetings) // 2])

Write down the correct Output:

🕮 3.1.9

For testing whether a list contains a specific item, we use the in operator:

>>> languages = ['C', 'Java', 'Python']

>>> 'Pascal' in languages

False

>>> 'Python' in languages

True

>>> 'Java' not in languages

False

For strings, we use the in operator to test whether a string contains a specific
substring:

>>> message = 'We can do it'

>>> 'can' in message

True

📝 3.1.10

Execute the following lines of code:

words = ['We', 'can', 'do', 'it']

if ['can','it'] in words:

 print('yes')

else:

 print('no')

Choose all the correct statements:

Introduction to Lists | FITPED

42

• The program’s output is no.
• The words variable is a list that contains just strings.
• The in operator cannot be used in conditions.
• The program’s output is yes.

🕮 3.1.11

We already know that using the + operator combines multiple lists into one.

When processing data in programs, we will often solve the problem of filling the list
with values entered from input.

Let us first consider the individual reading of values, e.g. input strings.

First we prepare an empty list:

a = []

Next, some user enters a string, e. g. 'spring':

user_input = input()

We add a new element to the original list (we join the original list and the one-
element list containing the new element):

a = a + [user_input]

print(a) # Output: ['spring']

The user inputs a next element, e. g. a string 'summer':

user_input = input()

a += [user_input]

print(a) # Output: ['spring', 'summer']

Now, we used a shorter notation for adding a new element to the end of an existing
list using the += operator.

📝 3.1.12

Complete the following program.

First, some user enters a number of elements to be stored in a list. Subsequently,
he enters individual elements (integers), one by one. In the last line, contents of the
numbers list is printed out.

Introduction to Lists | FITPED

43

n = int(input())

numbers _____ _____

for i in range(n):

 numbers_____ [int(_____)]

print(numbers)

Input :

4

10

20

30

40

Output:

[10, 20, 30, 40]

• +
• input()
• []
• =
• +=

🕮 3.1.13

In practical tasks in this course, we will often need to proccess a sequence of input
values that are provided as a single string in which the individual elements are
separated by a specific delimiter (spaces, commas etc.).

Consider an input string:

10,20,30,40

We read it from user and then use the split () string method to get a list of string's
parts representing the input values:

a = input().split(',')

print(a) # Output: ['10','20','30','40']

We can see from the listing above that we have obtained a list of strings from the
split() method. If we need to store them as integers, we must cast all elements to
the int type. A new list of integers will be constructed easily:

user_input = input().split(',')

Introduction to Lists | FITPED

44

a = []

for x in user_Input :

 a += [int(x)]

print(a) # Output: [10, 20, 30, 40]

If we allow users to enter an empty string, we must ensure, that the list that is being
created remains empty as well:

user_input = input().split(',') # for an empty string, we get

the [''] list

a = []

if user_input!= ['']

 for x in user_Input :

 a += [int(x)]

print(a) # Output: []

If we tried to cast the list element [''] into an integer, it would throw an exception.
Therefore, we first checked whether this was the case.

Later we will learn a more practical way of storing values of different types into a
list using the mapping function.

📝 3.1.14

Complete the following program correctly.

First, the user enters a string containing decimal numbers separated by
semicolons. We want to parse this string and save all decimal numbers to a list. If
the input string is empty, we need to create an empty list.

data = _____

user_input = input._____

if user_input != _____

 for x in user_Input :

 data _____ [float(x)]

print(data)

Input :

3.14;12.567;0.77;-23.202

Output:

[3.14, 12.567, 0.77, -23.202]

Introduction to Lists | FITPED

45

• +=
• []
• ['']
• split()
• split(';')

3.2 Introduction to Lists (programs)

⌨ 3.2.1 Sum First and Last Element

Given a list of integers, calculate the sum of its first and last elements.

For empty lists, handle the IndexError exception correctly.

Input : -1,2,3,4,5

Output: 4

Input :

Output: list index out of range

⌨ 3.2.2 Neighbours of an Element

For a non-empty list of integers and a number representing an element's index, print
yes if the selected element is larger than the sum of its two adjacent elements.
Otherwise, print no.

Be careful about the elements, which do not have two neighbours.

Input : 1,2,3,0,7

2

Output: yes

Input : 1,2,3,0,7

3

Output: no

Input : 1,2,3,0,7

0

Output: not enough neighbours

Introduction to Lists | FITPED

46

⌨ 3.2.3 Concatenating

For two lists of integers, create and print a new list of integers that will start and
end with all second's list elements having the contents of the first list 3 times in the
middle.

innput: 1,2

3,4,5

Output: [1, 2, 3, 4, 5, 3, 4, 5, 3, 4, 5, 1, 2]

Input :

0,0

Output: [0, 0, 0, 0, 0, 0]

start.py
do not modify this part of code:

input_list = input().split(',')

a = []

if input_list != ['']:

 for x in input_list:

 a += [int(x)]

input_list = input().split(',')

b = []

if input_list != ['']:

 for x in input_list:

 b += [int(x)]

write your code here:

⌨ 3.2.4 Names in a List

There is a list of names called friends initialized at the beginning of a program.

Read 2 names from a user. Print True (boolean value), if either of the input strings is
a member of the list, False otherwise.

Input : John Robert

Output: True

Input : Sophia Nina

Output: False

Input : George Martin

Output: True

Introduction to Lists | FITPED

47

⌨ 3.2.5 Length of a Password

User will input a non-empty list of passwords (strings).

Print out the length of a password that is saved just in the middle of the given list.

Input : abc123,puk,Valibuk+Miesizelezo7!

Output: 3

Input : puf777,muf1,Muf89,Pascal_2013

Output: 5

Storing Data in Lists

Chapter 4

Storing Data in Lists | FITPED

49

4.1 Storing Data in Lists

🕮 4.1.1

Let us consider the following list:

data = [10, 20, 30, 40]

With this statement, a variable called data has been created in global namespace:

The data variable is of a list type. The list itself consists of 4 variables data[0],
data[1], data[2], data[3], that reference the four int values.

Lists are mutable structures. This means, that lists can be modified as necessary.
By writing the

data[3] = 100

statement, we have changed the last element and assigned the corresponding
variable a new value.

From now, the variable data[3] is referencing the int value 100:

📝 4.1.2

Execute the following program:

Storing Data in Lists | FITPED

50

a = [2, 0, 0, 8]

a[3] = 9

a[2] += 1

a = a * 2

print(a)

and choose correct output.

• [2, 0, 1, 9, 2, 0, 1, 9]
• [4,0,0,16]
• [4,0,2,18]
• [[2, 0, 1, 9], [2, 0, 1, 9]]

🕮 4.1.3

For deleting a specific element from a list, the del statement can be used:

Let us consider the following list:

data = [10, 20, 30, 40]

After executing the following deletion

del data[1]

the list will contain only 3 elements:

Storing Data in Lists | FITPED

51

📝 4.1.4

Execute the following lines of code:

import random

b = [random.randrange(1,10)] * 10

for i in range(5):

 del b[i]

print(b)

Select all correct statements:

• All elements left in the b list are of a same value.
• The program outputs a list with 10 random values.
• The program outputs a list with 5 random values.
• The del statement cannot be applied in this way.

🕮 4.1.5

To iterate through a list of elements, we typically use the for statement. The i
represents an index variable. The len() function returns number of elements in a
list.

Let us consider a list of friends’ names and print out its content:

friends = ['Peter','Paul', 'Michael', 'George', 'John']

for i in range(len(friends)):

 print(f'{i}. {friends[i]}')

The output is:

0. Peter

1. Paul

2. Michael

3. George

4. John

When we are interested only in elements and the indices are not relevant for actual
processing, a shorter notation of iteration might be useful:

for element in friends:

 print(element, end=' ')

Storing Data in Lists | FITPED

52

In this case, we also replaced the newline characters between elements with
spaces, so the output is:

Peter Paul Michael George John

📝 4.1.6

The t list contains a sequence of temperature values.

t = [21, 22, 25, 25, 24, 21, 20]

We need to calculate the average temperature. Compare the following 2 solutions.

SOLUTION 1

sum = 0.0

for i in range(len(t)):

 sum += t[i]

print(f'average temperature is {sum/len(t):.2f}')

SOLUTION 2

sum = 0.0

for x in t:

 sum += x

print(f'average temperature is {sum/len(t):.2f}')

Do they both calculate the correct result?

• True
• False

📝 4.1.7

We want to increment the elements of t list by one.

t = [21, 22, 25, 25, 24, 21, 20]

Consider the following solutions:

SOLUTION 1

for x in t:

 x += 1

Storing Data in Lists | FITPED

53

print(t)

SOLUTION 2

for i in range(len(t)):

 t[i] += 1

print(t)

Do they both calculate the correct result?

• False
• True

🕮 4.1.8

Sometimes we could make use of the enumerate() function to access both, the
index as well as the corresponding value at one time:

friends = ['Peter', 'Paul', 'Michael', 'George', 'John']

for i, element in enumerate(friends):

 print(f'{i}. {element}')

The output is:

0. Peter

1. Paul

2. Michael

3. George

4. John

The enumerate() function sets the element counter to 0, or we can specify the initial
counter value using the start parameter:

for i, element in enumerate(friends, start = 1):

 print(f'{i}. {element}')

The output is:

1. Peter

2. Paul

3. Michael

4. George

5. John

Storing Data in Lists | FITPED

54

📝 4.1.9

Write down the output of the following program:

for i, element in enumerate(['a', 'b', 'c'], start = 1):

 print(i * element, end = ',')

Be careful and do not forget to add the comma character after printing each of the
calculated values!

🕮 4.1.10

List comprehension provides a concise way to create new lists.

It consists of brackets containing an expression followed by a for clause, then zero
or more for or if clauses, e. g.:

[expression for element in list if condition]

[expression for element in list]

With this notation, we get a new list resulting from evaluating the expression in
context of the for and if clauses which follow it.

Here are some examples, whatch carefully the outputs:

>>> [i for i in range(10)]

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

>>> [i ** 2 for i in range(5)]

[0, 1, 4, 9, 16]

First, a list [0] + [1] + [2] + ... + [9] was created.

Then, the expression i ** 2 was evaluated for i = 0, 1, 2, 3, 4. So the int values 20, 21,
22, 23, 24 are in the resulting list.

🕮 4.1.11

List comprehensions can contain complex expressions and nested functions.

Here are some more examples of using list comprehension, watch the outputs
carefully:

import random

Storing Data in Lists | FITPED

55

a = [random.randint(0, 9) for i in range(10)]

print(a)

Output: [4, 4, 9, 7, 4, 1, 0, 0, 3, 6]

words = ['this', 'is', 'a', 'list', 'of', 'words']

b = [word[0].upper() for word in words]

print(b)

Output: ['T', 'I', 'A', 'L', 'O', 'W']

things = ['pen', 'pencil', 'rubber', 'paper']

c = [thing for thing in things if len(thing) > 5]

print(c)

Output: ['pencil', 'rubber']

from math import pi

d = [str(round(pi, i)) for i in range(1, 6)]

print(d)

Output: ['3.1', '3.14', '3.142', '3.1416', '3.14159']

📝 4.1.12

Match the list comprehension notations with their resulting lists (referenced by the
a variable):

a = [0 for i in range(10)]

a == _____

the input file contains just lines longer than 30 characters

lines = open('input.txt', 'r').readlines()

a = [line for line in lines if 0 < len(line) < 10]

a == _____

a = [x * y for x in range(1, 4) for y in range(1, 4)]

a == _____

years = [1945, 1969, 1971, 1980, 1984, 2012, 2015]

a = [y % 100 for y in years]

Storing Data in Lists | FITPED

56

a == _____

• [1, 2, 3, 2, 4, 6, 3, 6, 9]
• [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
• []
• [45, 69, 71, 80, 84, 12, 15]

4.2 Storing Data in Lists (programs)

⌨ 4.2.1 Houses on a Street

There are houses standing on a straight street, one next to another. A list contains
numbers of theirs floors.

Find out if there is a house with a specified number of floors. Print out its position
or that there is no such house on the street.

Input : 1,1,3,2,1,0,2

3

Output: 2

Input : 1,1,3,2,1,0,2

5

Output: there is no such house

⌨ 4.2.2 Numbers Divisible by a Given Number

For a given list of positive integers and a positive integer d, count all the elements
divisible by d.

Input : 3,8,14,33,77,2

7

Output: 2

Input : 13,22,145

10

Output: 0

⌨ 4.2.3 Average Exam Grade

Students have taken an exam from programming. Their grades are saved in a list of
integers. Calculate the average grade.

Storing Data in Lists | FITPED

57

Be careful about processing the empty list correctly as well as always printing 2
decimals.

Input : 1,3,2,5,4

Output: 3.00

Input : 1,2

Output: 1.50

Input :

Output: division by zero

⌨ 4.2.4 Increasing Sequence

If the input list of integers represents a non-decreasing sequence, print a boolean
value True, False otherwise. The input list is not empty.

Input : 1,2,2,5,8,12

Output: True

Input : -1,0,2,3,0,44,99,50

Output: False

Input : 5

Output: True

⌨ 4.2.5 Basketball Players

A non-empty input list contains heights of basketball players standing in a row. Find
the smallest player. Print out the minimum value as well as its index.

Input : 175,175,205,175,167

Output: 167 4

Input : 205,178,178,201

Output: 178 1

Input : 185

Output: 185 0

Storing Data in Lists | FITPED

58

⌨ 4.2.6 Longest Name

A non-empty input list contains names of classmates. Find the one having the
longest name. Print out the maximum length, not the longest name.

Input : John,Paul,Christopher,Peter

Output: 11

Input : Max,Kate,Fred

Output: 4

Input : Steven

Output: 6

⌨ 4.2.7 Shifting

Input list contains integers (0s and 1s). For an integer number k, move each
element in the list k times to the right.

Consider the input list to be a logical circle: When determining new places for
elements, end of the list can be achieved soon. In this case, continue position
counting from the list's beginning.

Print out the list's status after modifying it.

Input : 1,1,0,0,1,0,1

2

Output: [0, 1, 1, 1, 0, 0, 1]

Input : 0,1,1,0

3

Output: [1, 1, 0, 0]

Input :

8

Output: []

⌨ 4.2.8 Dice Throw

An experiment was realized. We were throwing one dice repeatedly and results of
these throws were saved in a list.

Find out which result had the maximum frequency.

Storing Data in Lists | FITPED

59

Input : 4,2,3,1,4,4,4,4,6,1,5,5

Output: 4

Input : 1,2,2,6,3,1,6

Output: 1

Input : 3

Output: 3

⌨ 4.2.9 Arithmetic Sequence

Arithmetic sequence is a sequence of numbers such that the difference between
the consecutive members is constant. Difference here means the second minus the
first. For instance, the sequence 5, 7, 9, 11, 13, 15, . . . is an arithmetic sequence
with common difference of 2.

There are 3 integers given as input values: the first member, the upper bound and
the common difference (always a positive number).

Print out a list containing all members of the arithmetic sequence that is defined by
these numbers.

Input : 5

15

2

Output: [5,7,9,11,13,15]

Input : -3

10

5

Output: [-3,2,7]

⌨ 4.2.10 Filter of Names

Input list contains names of many friends. Print out a list of those names, that
starts with letter 'M' and are shorter than a given number.

Input : John,Paul,Martin,Peter,Max,Mia

4

Output: ['Max','Mia']

Input : George,Archie,Charlotte,Louis

10

Output: []

Storing Data in Lists | FITPED

60

Input : Martin,Maria,Anna

6

Output: ['Maria']

⌨ 4.2.11 Numbers from Interval

Input list contains integers. Print out a list containg all the original list-s elements
that are from a given closed interval.

Input : 1,4,7,8,3,10,12,13,14,15

4

10

Output: [4,7,8,10]

Input : 0,0,1,18,2,-2

-5

5

Output: [0,0,1,2,-2]

⌨ 4.2.12 Signs and Zeros

Input list contains integers. Change their signs to the opposite and remove zeros
from the list.

Print out the list's status after modifying it.

Input : 1,-1,0,7,-4

Output: [-1,1,-7,4]

Input : 0,0,1

Output: [-1]

Processing Lists
(Functions, Methods &

Slicing)

Chapter 5

Processing Lists (Functions, Methods & Slicing) | FITPED

62

5.1 Processing Lists (Functions, Methods & Slicing)

🕮 5.1.1

There are some standard functions in Python that might be very useful when
processing lists:

• len(list) returns the number of elements (its length)
• sum(list) returns the sum of the elements
• max(list) returns the element with maximum value
• min (list) returns the element with minimum value

Of course, in some cases, these functions are not applicable (e. g. summing a list of
other than number elements or searching for maximum in a list with values of
different types) and calling them would lead to an error.

📝 5.1.2

Fill the calls of appropriate functions to calculate correct results:

We need to calculate the average temperature as well as the minimum and
maximum values. The t list contains a sequence of temperature values:

t = [21, 22, 25, 25, 24, 21, 20]

average = _____/len(t)

print(f'avarage: average:.2f')

print('minimum:', _____)

print('maximum:', _____)

🕮 5.1.3

The list() function converts a given sequence of values into a list. The parameter
must be something that is iterable, e. g.:

>>> list(range(1,10))

[1, 2, 3, 4, 5, 6, 7, 8, 9]

>>> list('Python')

['P', 'y', 't', 'h', 'o', 'n']

>>> list()

[]

>>> a = ['milk','bread', 'butter','honey']

>>> b = list(a)

Processing Lists (Functions, Methods & Slicing) | FITPED

63

>>> b

['milk', 'bread', 'butter', 'honey']

In last example, the b list is a copy of the original a list.

 Also when opening a file, result of the open() call can be transformed to a list of
lines:

>>> list(open('input.txt', encoding='utf-8'))

['first line\n', 'second line\n', '\n', 'fourth line\n']

 The following command would raise an exception, as the parameter (int number) is
not iterable:

>>> list(2019)

Traceback (most recent call last):

File "<input>", line 1, in <module>

TypeError: 'int' object is not iterable

📝 5.1.4

The list() function returns a new list with elements copied from the input iterable
parameter.

• True
• False

🕮 5.1.5

In Python, list are objects of the list type and so provide some methods as well.

There are 2 methods that do not change a list’s content:

list.count(x)

returns the number of times x appears in the list.

list.index(x)

returns the index of the x first occurrence (or raises a ValueError if there is no such
item)

list.index(x, start, end)

Processing Lists (Functions, Methods & Slicing) | FITPED

64

returns the index of the x first occurrence, but the search is limited to a particular
subsequence of the list (ranging from the start index to the end-1 index).

In following examples, we put the corresponding outputs into the comments:

fruits = ['banana','apple','pier','cherry','banana','banana']

print(fruits.count('banana')) # 3

print(fruits.index('banana')) # 0

print(fruits.index('banana', 3, len(fruits))) # 4

📝 5.1.6

What will be printed out after executing the following script?

a = list('abcd') * 2

print(len(a))

print(a.count('a'))

print(a.index('b'))

• 8, 2, 1
• 4, 1, 1
• 8, 2, 2
• Nothing, because of a ValueError exception.

🕮 5.1.7

The other list methods are all mutable as they modify lists’ content is some way.

For now, we take a look at methods for adding or removing items:

list.append(x)

adds an item x to the end of the list, its return value is None

list.insert(index, x)

inserts an item x at a given position, index parameter represents the position before
which to insert, its return value is None

list.pop()

removes and returns the last item in the list

Processing Lists (Functions, Methods & Slicing) | FITPED

65

list.pop(index)

removes the item at the given position in the list and returns it

list.remove(x)

removes the first item from the list whose value is equal to x (or raises a ValueError
if there is no such item)

list.clear()

removes all items from the list.

We will see some other list methods later.

In following examples, we put the corresponding outputs into the comments:

fruits = ['banana','apple','pier','cherry','banana','banana']

fruits.append('peach')

print(fruits) # ['banana', 'apple', 'pier',

'cherry', 'banana', 'banana', 'peach']

print(fruits.pop()) # peach

print(fruits.pop(0)) # banana

fruits.insert(0, 'coconut')

fruits.remove('apple')

print(fruits) # ['coconut', 'pier', 'cherry',

'banana', 'banana']

fruits.clear()

print(fruits) # []

🕮 5.1.8

Sometimes, we need to create a new list by appending items to an empty list:

numbers = []

for i in range(1000):

 if i % 3 == 0 and i % 5 == 0:

 numbers.append(i)

The list called numbers contains all integers lower than 1000 that are divisible by 3
and 5.

Processing Lists (Functions, Methods & Slicing) | FITPED

66

📝 5.1.9

Consider the sequence of operations applied on a list.

Match the following lines with current content of the a variable that is being
modified.

a = list(range(1, 6))

a == _____

a.remove(3)

a == _____

a.pop()

a == _____

a.insert(-1, 0)

a == _____

a.append(0)

a == _____

• [1, 2, 0, 4]
• [1, 2, 0, 4, 0]
• [1, 2, 4, 5]
• [1, 2, 3, 4, 5]
• [1, 2, 4]

🕮 5.1.10

Like for Python strings, we can get slices from lists, too.

To index a slice, we use the very same syntax:

list[start : stop : step]

Of course, each of the three parts written between : characters can be omitted. The
step specification is optional (default value is 1).

The slicing operation does not modify the original list. Each slice is a new list.

Processing Lists (Functions, Methods & Slicing) | FITPED

67

Let us examine some examples:

>>> cities = ['Bratislava', 'Warsaw', 'Madrid', 'Praha']

>>> cities[1:3]

['Warsaw','Madrid'] # from element at position

1 to the element at position 2

>>> cities[-3:]

['Warsaw','Madrid', 'Praha'] # from element with index

-3 to the end of the original list

>>> cities[:-1]

['Bratislava','Warsaw', 'Madrid'] # from beginning, to the

element before the last element (its index is -1)

>>> cities[1::2]

['Warsaw', 'Praha'] # first element is at

index 1, the second at index 3

>>> cities[::-1]

['Praha', 'Madrid', 'Warsaw', 'Bratislava'] # all elements,

but in reversed order

📝 5.1.11

Match the slices that would be created from the original list with their correct
notations.

The original lists contains these names:

names = ['Matthew', 'Mark', 'Luke', 'John', 'Francis']

_____ == ['John']

_____ == ['Francis', 'John', 'Luke', 'Mark', 'Matthew']

_____ == ['Matthew', 'Luke', 'Francis']

_____ == ['John', 'Francis']

_____ == ['Matthew', 'Mark', 'Luke']

• names[::-1]
• names[:3:]
• names[3::]
• names[::2]
• names[3:4]

Processing Lists (Functions, Methods & Slicing) | FITPED

68

5.2 Processing Lists (programs)

⌨ 5.2.1 Income I.

Input list contains 12 month earnings achieved by a student during the last year.

Find out, if he/she earned more during first or second half of the year.

Input : 1000,200,300,200,120,100,200,300,200,120,400,500

Output: first

Input : 0,0,0,200,100,100,100,300,200,100,400,0

Output: second

⌨ 5.2.2 Income II.

Input list contains month earnings achieved by a student over a continuous
sequence of months (starting from the beginning of a specific year).

Which months were the most successful ones? Print out a list of their names (not
the indices).

Input : 1000,200,300,200,120,100,200,300,200,120,400,500

Output: ['january']

Input : 0,0,0,400,100,100,100,300,200,100,400,0,0,400

Output: ['april','november','february']

⌨ 5.2.3 Cancelling Bus Lines

First list contains positive integer numbers identifying bus lines in a city.

Second list contains those numbers of bus lines that need to be cancelled (they
have to be removed from the original list). Print out the first list after modifying it.

A bus line that we are trying to cancel may not exist. In such case, an error
message has to be printed.

Input : 1,2,3,4,5,6,7,8

1,5,8

Output: [2,3,4,6,7]

Input : 1,2,3,4,5,6,7,8

1,2,9

Processing Lists (Functions, Methods & Slicing) | FITPED

69

Output: error

start.py
do not modify this part of code:

input_list = input().split(',')

buses = []

if input_list != ['']:

 for x in input_list:

 buses += [int(x)]

input_list = input().split(',')

cancel = []

if input_list != ['']:

 for x in input_list:

 cancel += [int(x)]

write your code here:

⌨ 5.2.4 Removing All Occurences

First list contains positive integer numbers.

Second list contains those numbers from the original list that need to be removed
(all of their occurrences).

Use some standard list functions in your solution. Print out the first list after
modifying it.

Input : 8,1,1,1,1

1

Output: [8]

Input : 6,10,20,30,10,7,8

10,20,30

Output: [6,7,8]

start.py
do not modify this part of code:

input_list = input().split(',')

a = []

if input_list != ['']:

 for x in input_list:

 aaa += [int(x)]

input_list = input().split(',')

Processing Lists (Functions, Methods & Slicing) | FITPED

70

b = []

if input_list != ['']:

 for x in input_list:

 b += [int(x)]

write your code here:

⌨ 5.2.5 Girls or Boys

Input list contains an even number of elements - names of girls and boys. On even
positions, there are girls, on odd positions, there are boys.

For an input value 1, print out a new list containing all girls.

For an input value 2, print out a new list containing all boys.

Preserve the original order of elements.

Input : Anna,Peter,Martha,John,Andrea,Mike

1

Output: ['Anna','Martha','Andrea']

Input : Anna,Peter,Martha,John,Andrea,Mike

2

Output: ['Peter','John','Mike']

⌨ 5.2.6 Cards

A "standard" deck of playing cards consists of 52 cards in each of the 4 suits of
spades, hearts, diamonds, and clubs. Each suit contains 13 cards: Ace, 2, 3, 4, 5, 6, 7,
8, 9, 10, Jack, Queen, King.

There are 2 input lists prepared in this program. For a given suit and a given number
of cards, print out the corresponding sequence of cards.

Input : hearts

3

Output: ['A hearts','2 hearts','3 hearts']

Input : diamonds

7

Output: ['A diamonds','2 diamonds','3 diamonds','4

diamonds','5 diamonds','6 diamonds','7 diamonds']

Lists as Parameters &
Return Values

Chapter 6

Lists as Parameters & Return Values | FITPED

72

6.1 Lists as Parameters & Return Values

🕮 6.1.1

By following assignment:

a = [10, 20, 30, 40]

we set the a variable to reference a list with 4 elements.

One list can be referenced by multiple variables.

E. g. after the assignment:

b = a

there are 2 variables referencing the same list:

This means, that when modifying the content of the a list, the b list is changed as
well (it is the same list):

b[2] = 0

📝 6.1.2

Select all true statements:

Lists as Parameters & Return Values | FITPED

73

• The list structure is mutable.
• Two different lists can be referenced with same variable at the same time.
• A list can be referenced with 10 different variables.
• After executing the assignments: a = [], b = [], both variables reference the

same list in the memory.

🕮 6.1.3

When getting a slice from a list, a new list is always created. The original list is not
modified at all.

Slice notation can be used also at the left side of the assignment command. In this
case, the right side must contain an expression returning some sequence of
elements (not necessary a list). Such assignment to a slice is executed as follows:

• expression at the right side is evaluated and a new list is created
• the new list replaces a sublist defined by the slice

As the contents of list is modified, assigning to a slice is a mutable operation.

Watch carefully some examples:

>>> names = ['Matthew', 'Mark', 'Luke', 'John', 'Francis']

>>> names[1:4] = ['Paul', 'Peter', 'Thomas']

>>> names

['Matthew','Paul', 'Peter', 'Thomas', 'Francis']

Three elements where replaced by another three.

>>> names = ['Matthew', 'Mark', 'Luke', 'John', 'Francis']

>>> names[1:4] = ['Paul', 'Peter']

>>> names

['Matthew', 'Paul', 'Peter', 'Francis']

Three elements were replaced by two.

>>> names[-2:] = ['Andrew', 'James','Philip']

>>> names

['Matthew', 'Paul', 'Andrew', 'James', 'Philip']

The last two elements were replaced by three elements.

>>> names[:2] = []

>>> names

['Andrew', 'James', 'Philip']

Lists as Parameters & Return Values | FITPED

74

The first two elements were deleted (this sublist was replaced by an empty list).

>>> names[:1] = 'Python'

>>> names

['P', 'y', 't', 'h', 'o', 'n', 'James', 'Philip']

The first element was replaced by six elements of a list constructed from a string.

📝 6.1.4

Match each assignment to a slice with its result (current content of the list).

The original list contains 4 strings:

cities = ['Bratislava', 'Warsaw', 'Madrid', 'Praha']

 Do not forget: While executing script shown below, the list cities is being modified:

cities[1:2] = []

cities == _____

cities[1:] = ['Budapest', 'Vienna']

cities == _____

cities[:] = range(1, 11)

cities == _____

cities[::2] = [0] * 5

cities == _____

cities[::] = []

cities == _____

• [0, 2, 0, 4, 0, 6, 0, 8, 0, 10]
• ['Bratislava', 'Madrid', 'Praha']
• ['Bratislava', 'Budapest', 'Vienna']
• [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
• []

Lists as Parameters & Return Values | FITPED

75

🕮 6.1.5

Two lists can be compared using standard relational operators. Comparing is
realized in a string-like way:

• the corresponding elements are compared one at a time until the first
mismatch is found

• the result of comparing these elements is also the result of comparing the
whole lists

• in case the lists are of different length, the shorter one is meant to be lower
• when comparing two elements, these have to comparable (e. g. operators <

and > cannot be applied to compare an integer with a string etc., the == or !=
operator would evaluate correctly)

Let us examine some examples:

>>> a = list(range(1,5)) # [1, 2, 3, 4]

>>> b = list(range(1,5)) # [1, 2, 3, 4]

>>> a == b

True

>>> a != b

False

>>> a[1] = 0

>>> a == b # [1, 0, 3, 4] == [1, 2, 3, 4]

False

>>> a < b # [1, 0, 3, 4] < [1, 2, 3, 4]

True

In the b list, the element with index 1 is greater than the corresponding one from the
first list.

Some more comparisons:

>>> a <= b

True

>>> a > b

False

>>> a >= b

False

>>> [1,2] < b # [1, 2] < [1, 2, 3, 4]

True

The first list with two elements that are equal to the corresponding elements of the
b list, is shorter.

Lists as Parameters & Return Values | FITPED

76

📝 6.1.6

Select all expressions with result True:

• [1, 2, 3] <| [1, 2, 7]
• [1, 2, 3] >= [1, 2]
• [] == list()
• [1, 2, 3] <| [1, 2]
• [1, 2, 3] == ['mother', 'father', 'child']

🕮 6.1.7

When we need to process elements of lists, we often prepare a function with a list
parameter.

The following function finds and returns the maximum value stored in the a list:

def maximum(a):

 m = a[0]

 for i in range(1, len(a)):

 if a[i] > m:

 m = a[i]

 return m

data = [1, 3, 8, 5, 6]

print(maximum(data)) # 8

print(data) # [1, 3, 8, 5, 6]

print(maximum('Python')) # y

Notice, that when calling the function with a string (or some other iterable
structure) as an actual parameter, everything is ok.

The function maximum() returned the greatest character (numerical codes of
characters were compared in this case).

The second function serves for exchanging two elements in a list:

def exchange(a, i, j):

 if 0 <= i < len(a) and 0 <= j < len(a):

 a[i], a[j] = a[j], a[i]

 else:

 raise IndexError

Lists as Parameters & Return Values | FITPED

77

data = [1, 3, 8, 5, 6]

exchange(data, 1, 3)

print(data) # [1, 5, 8, 3, 6]

The a list as a formal parameter references the actual parameter data.

So the data list is changed by the assignments realized within the function.

📝 6.1.8

We want to write a function for deleting all elements from a given list.

Which of the two functions provides correct solution?

def clear1(list):

 list = []

def clear2(list):

 list.clear()

consider results of the following calls

a = list('Python')

print(a) # ['P', 'y', 't', 'h', 'o', 'n']

clear1(a)

print(a)

a = list('Python')

print(a) # ['P', 'y', 't', 'h', 'o','n']

clear2(a)

print(a)

• clear2()
• clear1()

🕮 6.1.9

Besides using lists as parameters in functions, a function can also return a list of
elements.

Consider a function for creating a new list with n elements initialized to a given
value:

Lists as Parameters & Return Values | FITPED

78

def create_list(n, value = 0):

 return [value] * n

print(create_list(10)) # [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

print(create_list(5, -1)) # [-1, -1, -1, -1, -1]

print(create_list(8, None)) # [None, None, None, None, None,

None, None, None]

print(create_list(5, 'Hi')) # ['Hi', 'Hi', 'Hi', 'Hi', 'Hi']

As in Python we do not need to specify an element’s type, the create_list() function
represents a general template for creating lists with elements set to some default
value.

🕮 6.1.10

When writing functions that operate on lists, we must be careful. Sometimes, we
want changes to by applied on the original list (provided in a parameter), but
sometimes not!

Let us compare the following functions for adding a new element at the end of the
list. Both of them return a list with one more element:

def add1(list, element):

 return list + [element]

def add2(list, element):

 list.append(element)

 return list

data = [1, 3, 8, 5, 6]

print(add1(data, 1000)) # [1, 3, 8, 5, 6, 1000]

print(data) # [1, 3, 8, 5, 6]

data = [1, 3, 8, 5, 6]

print(add2(data, 1000)) # [1, 3, 8, 5, 6, 1000]

print(data) # [1, 3, 8, 5, 6, 1000]

We have just seen, that the add1() function returns a new list and does not touch
the actual parameter’s content. The add2() function appends a new element
onto the actual parameter.

So the add1() function is an immutable and the add2() function is a mutable
operation!

Lists as Parameters & Return Values | FITPED

79

📝 6.1.11

We need to reverse the order of elements in a list.

Which of the following functions is a mutable operation?

def f1(a):

 return a[::-1]

def f2(a):

 a[::] = a[::-1]

 return a

def f3(a):

 b = []

 for x in a:

 b = [x] + b

 return b

calling functions with same actual parameters

data = [1, 2, 3, 4, 5]

print(f1(data))

print(data)

data = [1, 2, 3, 4, 5]

print(f2(data))

print(data)

data = [1, 2, 3, 4, 5]

print(f3(data))

print(data)

• f1()
• f2()
• f3()

🕮 6.1.12

There are two useful string methods concerning lists.

The split() method returns a list parsed from a given string .

The join() method takes a list as a parameter and returns a string.

Lists as Parameters & Return Values | FITPED

80

At first about the splitting in more detail:

The split() method can be called without or with parameters (specification of
a delimiter and a maximum number of splits is optional).

Compare the following 3 notations and the output for numbers typed by a user:

user_input = input('Enter 5 numbers: ').split()

print(user_input)

The input string returned by the input() function splits on any whitespaces if the
delimiter parameter is left unspecified:

Enter 5 numbers: 10 20 30 40 50

['10', '20', '30', '40', '50']

user_input = input('Enter 5 numbers: ').split(',')

print(user_input)

The input string was splitted according the specified delimiter (the comma
character):

Enter 5 numbers: 10,20,30,40,50

['10', '20', '30', '40', '50']

user_input = input('Enter 5 numbers: ').split(',', 2)

print(user_input)

The split() method returned a list with 3 elements as the numbers of splits is set to
2.

Enter 5 numbers: 10,20,30,40,50

['10', '20', '30,40,50']

🕮 6.1.13

The join() method returns a string, which is the concatenation of strings in the list
provided by a parameter. The separator between list elements is the string
providing this method.

Study the following examples:

Lists as Parameters & Return Values | FITPED

81

words = ['sun', 'is', 'shining']

message = ' '.join(words)

print(message) # sun is shining

import random

numbers = [str(random.randint(1, 9)) for i in range(5)]

print(numbers) # e. g. ['9', '1', '9',

'3','2']

excercise = '+'.join(numbers)

print(excercise,' = ') # 9 + 1 + 9 + 3 + 2 =

📝 6.1.14

The user will type a sentence in a console and the program will respond by printing
an Output:

output = ' '.join(input('enter your sentence: ').split()[::-

1])

print(output)

What is the output for the following input sentence?

The Earth is my home.

• home. my is Earth The
• The Earth is my home.
• The-1Earth-1is-1my-1home.
• The first line of code is incorrect, an exception would be raised.

6.2 Lists as Parameters & Return Values I. (programs)

⌨ 6.2.1 Counting Occurances

Write function my_count() with two arguments - a list of integer values and a value
to find. Calculate number of the given value's occurances.

Input : 1,1,3,2,1,0,3

3

Output: 2

Input : 1,1,3,2,1,0,2

5

Output: 0

Lists as Parameters & Return Values | FITPED

82

⌨ 6.2.2 Looking for a Position

Write function my_index() with two arguments - a list of integer values and a value
to find. Return the leftmost position of the given value or raise the ValueError
exception if there is no such value.

Input : 1,1,3,2,1,0,3

3

Output: 2

Input : 1,1,3,2,1,0,2

5

Output: ValueError

⌨ 6.2.3 Counting Inversions

Let us assume the following input sequence of integer values:

a0, a1, ..., ai,, an

For the ai element, the number of inversions equals to number of such ak elements,
that k < i and ak > ai.

Write function number_of_inversions() with one argument - a list of integer values.

Return the total number of inversions found while processing all of the values in a
given list.

Input : 1,5,6,3,4,7,0

Output: 10

Input : 1,2,3,4,5

Output: 0

⌨ 6.2.4 Reversing a Sequence

Write 2 versions of a function for reversing the order of values stored in a list.

The my_reverse1() function must be implemented as immutable operation.

The my_reverse2() function must be implemented as mutable operation.

You can assume the following testing code:

Lists as Parameters & Return Values | FITPED

83

print(str(my_reverse1(a)))

print(a)

my_reverse2(a)

print(a)

The examples of inputs and outputs:

Input : 1,2,3,4,5

Output: [5,4,3,2,1]

[1,2,3,4,5]

[5,4,3,2,1]

Input :

Output:[]

[]

[]

⌨ 6.2.5 Inserting into an Ordered Sequence

Write function my_insert() with 2 arguments - an ordered list of integer values and a
value to be inserted into the list. The updated list is returned by the function.

The input list is ordered in ascending order. After inserting a new value, the list
remains sorted.

Input : 1,2,4,5

3

Output: [1,2,3,4,5]

Input :

7

Output: [7]

Input : 2,4,5,7

0

Output: [0,2,4,5,7]

⌨ 6.2.6 Election Winner

The elections are over. The candidates were numbered with integers from 1 to n.
The list a contains choices of all people that have participated actively by choosing
one of the n candidates.

Lists as Parameters & Return Values | FITPED

84

Write function winner_of_elections() with 2 arguments - the number of candidates
and list of choices made by people. The function returns number of the winnining
candidate.

In case the winner cannot be decided exactly, raise a ValueError exception (the
testing program will print out the appropriate string for you)..

Input : 10

1,1,2,1,1,1,1,1,3,5,5,7,8,9

Output: 1

Input : 10

8,8,8,8,8,8,8,8,8

Output: 8

Input : 3

1,1,1,3,2,2,2,3

Output: The elections must be repeated.

⌨ 6.2.7 Merging Two Ordered Sequences

Write function merge() with 2 arguments - 2 lists of integer values. The input lists
are ordered in ascending order.

The function returns a new ordered list containing all elements from both input
lists. The resulting list is also ordered in ascending order.

Input : 1,2,4,5,10

3,6,7

Output: [1,2,3,4,5,6,7,10]

Input :

1,8,12

Output: [1,8,12]

6.3 Lists as Parameters & Return Values II. (programs)

⌨ 6.3.1 From File to List

Write function from_file_to_list() with 1 argument - the name of a text file containing
integer values (one value per line).

The function returns a list contaning all numbers from the input file.

Lists as Parameters & Return Values | FITPED

85

Input : data1.txt

Output: [1,2,3,4,5,6,7,8]

Input : data2.txt

Output: [10,20,30]

data1.txt:

1

2

3

4

5

6

7

8

data2.txt:

10

20

30

⌨ 6.3.2 Union and Intersection

Write 2 functions for creating the union and intersection of two input lists.

The function union() takes two input lists as arguments and returns a new one
containing all of the values found in either of them.

The function intersection() takes two input lists as arguments and returns a new
one containing all of the values found in both of them.

Be careful about order of elements in the resulting list. We are intersted only in
unique values, so any duplicity must be filtred.

Input : 1,1,2,4,5,10

2,3,6,7,10

Output: [1,2,4,5,10,3,6,7,10]

[2,10]

Input :

1,8,12

Output: [1,8,12]

[]

Lists as Parameters & Return Values | FITPED

86

⌨ 6.3.3 Travelling the World I.

We are travelling around the world. Cities are numbered with integers from 1 to n. A
sequence of numbers represents a route that we have made, e. g. when we start in
city 1 and continue to cities 2, 5 and 8, the input list would be: [1,2,5,8].

Sometimes, we can visit the same city more than once. In such situations, we say,
that the route contains a circle.

Write function check_for_circle() with one argument - a list of integer values
representing a sequence of cities visited while travelling.

The function returns True, if a circle was detected, False otherwise.

Input : 1,2,3,4,5,6,3,2,1,2

Output: True

Input : 1,2,3,4,5,8

Output: False

⌨ 6.3.4 Travelling the World II.

We are travelling around the world. Cities are numbered with integers from 1 to n. A
sequence of numbers represents a route that we have made, e. g. when we start in
city 1 and continue to cities 2, 5 and 8, the input list would be: [1,2,5,8].

Sometimes, we can visit the same city more than once. In such situations, we say,
that the route contains a circle.

Write function check_for_circle() with one argument - a list of integer values
representing a sequence of cities visited while travelling.

The function returns a new list representing the first detected circle. In case, the
input sequence does not contain any circles, an empty circle is returned.

Input : 1,2,3,4,5,6,3,2,1,2

Output: [3,4,5,6,3]

Input : 1,2,3,4,5,8

Output: []

⌨ 6.3.5 Merging with Slices

For two lists of integers, create and print a new list of integers constructed as
follows:

Lists as Parameters & Return Values | FITPED

87

On even positions, the resulting list contains elements from the first input list that
are also on even positions. Their order is preserved.

On uneven positions, the resulting list contains elements from the second input list.
Be careful, their other is reversed.

Assume, that the second list always contains exactly the necessary number of
elements.

Notice, that the new list is of the same length as the first input list.

Input : 1,0,1,0,1,0

2,3,4

Output:[1,4,1,3,1,2]

Input : 5,5,23,5,80,5,78,5,3

1,0,0,0

Output:[5,0,23,0,80,0,78,1,3]

Input : 3

Output:[3]

Input :

Output: []

⌨ 6.3.6 Comparing Lists of Words

Compare two lists of words and print out, whether they are the same or not.

In case the inpust lists are not equal, print out the length of matching sublists.

Input : alex,brandon,cecila,daniel

alex,brandon,tom

Output: first 2 words are the same

Input : windows,linux,mac os,android

windows,linux,mac os,android

Output: same sequences of words

Input : a

a,b,c

Output: first word is the same

Lists as Parameters & Return Values | FITPED

88

Input : hogo

fogo

Output: first 0 words are the same

⌨ 6.3.7 Transforming Program's Notation

We program a robot to move in either of the 4 directions using s set of commands:

n (north), s (south), e (east) and w (west).

The input string (watch the examples below) represents a program. The -#-
character serves as a delimiter.

To make code more readable, print out a new notation representing the same
program:

1. In output string, the -#- delimiters are replaced with spaces.
2. Instead of writing the same command repeatedly, the number of repeats is

written before the command itself.

Input : nnnnn#wwww#sss#ww#nn

Output: 5*n 4*w 3*s 2*w 2*n

Input : s

Output: 1*s

⌨ 6.3.8 Shopping

In text files, there ara data about things bought while shopping in a mall.

Each line contains 3 or 4 pieces of data separated by semicolons:

• item name
• number of items bought
• price of 1 item
• ! for 10 % discount

For an input text file given by its name, calculate total sum to pay.

Input : data1.txt

Output: 67.20

Lists as Parameters & Return Values | FITPED

89

Input : data2.txt

Output: 2.00

data1.txt:

a;10;5;!

b;5;1

c;1;12.5

d;2;2.35

data2.txt:

a;1;1

b;1;1

⌨ 6.3.9 Offline Status

In text files, there ara data about users of a social network.

Each line contains multiple pieces of data separated by semicolons:

• person-s name
• dates or periods when the user was offline the whole day

Print out the name of a person with minimum number of offline days.

Be careful about the input lines: When a user's offline period exceeds over the
following month, a new record is always made, e.g. 15.1.-31.1.;1.2.-5.2. means that
some user was offline continuosly from 15.1. to 5.2.

Input : data1.txt

Output: Paul

Input : data2.txt

Output: Linda

Input : data3.txt

Output: empty file

data1.txt:

John;1.5.-17.5.;7.6.

Paul;8.3.;12.3.;15.6.-18.6.

Michael;2.2.-20.2.

Peter;1.5.;8.6.;12.12.;14.12.-31.12

Lists as Parameters & Return Values | FITPED

90

data2.txt:

Maria;1.1.;7.10.-31.10;1.11.-2.11.

Linda;18.5.

Julia;3.5.-18.5.;12.12.-20.12.

data3.txt:

⌨ 6.3.10 Maths Exercises

In text files, simple mathematical exercises for young pupils are prepared. Only
positive integers as operands and 4 basic arithmetic operations are allowed.

The non-empty input list contains results of all the exercises calculated by a pupil.

For an input text file given by its name and a list with a pupil's results, count all the
correct answers.

Input : data1.txt

15,0,140,5

Output: 4

Input : data1.txt

15,1,140,5

Output: 3

data1.txt:

10+5

1-1

7*20

15/3

Functions as Values

Chapter 7

Functions as Values | FITPED

92

7.1 Functions as Values

🕮 7.1.1

Python belongs to those programming languages that support also functional
programming style.

Functions can be

• passed as arguments to other functions,
• returned from other functions as well as
• assigned to variables or stored in data structures.

Let us define 3 functions:

def poly1(x):

 return x ** 2 - 2 * x + 1

def poly2(x):

 return x ** 2 + 2 * x + 1

def poly3(x):

 return x ** 2 - 1

The name of a function is a value, that can be assigned to variables, e. g.:

fun = poly1

From now on, the function poly1() can be called in either of the 2 ways:

fun = poly1 # the fun variable references the poly1

function

a = poly1(10) # calling the poly1 function directly

b = fun(10) # calling the poly1 function, using a variable

print(a, b) # 81 81

The fun variable is of a functional type:

print(type(fun)) # <class 'function'>

📝 7.1.2

One function can be assigned to more variables.

Functions as Values | FITPED

93

• True
• False

🕮 7.1.3

Very often, more functions (references to them) are stored in a data structure, e. g.
a list.

When we have references to functions in a list, functions can be accessed using
indices:

def poly1(x):

 return x ** 2 - 2 * x + 1

def poly2(x):

 return x ** 2 + 2 * x + 1

def poly3(x):

 return x ** 2 - 1

funs = [poly1, poly2, poly3]

x = funs[2](10) # calling the poly3 function

print(x) # 99

In the following example, we choose the index randomly. The selected function is
called with 0 as an actual argument.

x = funs[random.randrange(len(funs))](0)

print(x) # 1 or -1 dependig on the randrange() result

📝 7.1.4

The following program was executed and the output was „a smiling face“.

Complete the last line of code correctly.

def sad(): return ':-('

def happy(): return ':-)'

def surprised(): return ':-O'

moods = [sad, happy, surprised]

print(_____)

Functions as Values | FITPED

94

🕮 7.1.5

Let us consider some simple functions:

def f1(x):

 return x ** 2

def f2(a, b, c):

 return a ** 2 + b ** 2 == c ** 2

def f3(x):

 return x % 100

We call the functions using their names:

print(f1(7)) # 49 (power of 7)

print(f2(3, 4, 5)) # True (3, 4, 5 are sides of

a rectangular triangle)

print(f3(2015)) # 15 (last two digits)

Each of the functions evaluated an expression and returned the calculated value.

🕮 7.1.6

Quite often, such simple functions (having just one line) are not needed to be
named. We can implement them as anonymous using the lambda construction
(writing an lambda expression):

fun = lambda x: x ** 2

print(fun(7)) # 49

fun = lambda a, b, c: a ** 2 + b ** 2 == c ** 2

print(fun(3, 4, 5)) # True

fun = lambda n: n % 100

print(fun(2015)) # 15

Notice the general syntax we use when writing lambda expressions.

Instead of implementing the body of a function:

def function_name(parameters):

 return expression

Functions as Values | FITPED

95

we define an anonymous function:

lambda parameters : expression

In our testing script, the fun variable was used as an auxiliary variable to reference
the individual lambda expressions.

Usually, we do not store references to lambda expressions as they are used directly
at the place, where we write them.

Later, we will see lambda expressions applied when passing anonymous functions
as arguments to other functions.

📝 7.1.7

Complete the lambda expression equivalent to the following function:

def fun(x, y):

 return x * y

f = lambda _____ : x * y

print(f('Python', 2)) # PythonPython

print(f(7, 5)) # 35

print(f([0], 3)) # [0, 0, 0]

🕮 7.1.8

We have already seen, that functions in Python are treated as values (they can be
stored in variables, returned from functions as well as passed as arguments to
other functions). Such first-class functions are a necessity for the functional
programming style, in which the use of higher-order functions is a standard
practice.

A simple example of a higher-ordered function is the standard map() function.

The map() function takes, as its arguments, a function and a list (or some other
iterable structure), and returns an iterable object formed by applying the function to
each element of the list.

The object returned from the map() function can be transformed into a list easily.

Functions as Values | FITPED

96

Let us explore the following situation:

def my_function(str):

 n = 0

 for c in str:

 if c in 'aeiouy':

 n += 1

 return n

a = 'The Big Bang Theory'.split()

print(a) # ['The', 'Big', 'Bang',

'Theory']

print(list(map(len, a))) # [3, 3, 4, 6]

print(list(map(my_function, a))) # [1, 1, 1, 3]

print(list(map(lambda x: x[0], a))) # ['T', 'B', 'B', 'T']

First, for each element of the a list, its length is calculated. The first argument of the
map() function is the standard len() function.

Then, for each element of the a list, the my_function() counts number of vowels. The
my_function() is passed to the map() function as the first argument.

Finally, for each element of the a list, its first character is returned. The lambda
expression represents an anonymous function passed to the map() function.

For mapping purposes, we could also write our own functions, e. g.:

def my_map(fun, a):

 return [fun(element) for element in a]

Compare the following lines of code:

print(my_map(lambda x: x ** 2, [1, 2, 3])) # [1, 4, 9]

print(list(map(lambda x: x ** 2, [1, 2, 3]))) # [1, 4, 9]

In both cases, we passed an anonymous function using lambda expression into the
mapping function as its first argument.

The my_map() function could return the list type object directly, so we did not need
to transform it afterwards.

📝 7.1.9

Here is an example of using the standard map() function in action:

Functions as Values | FITPED

97

user_input = input('Your numbers:')

a = list(map(int, user_input.split()))

print(a)

Select all true statements:

• When user inputs 3 integer numbers separated with spaces, the a will be a
list containing 3 strings.

• When user inputs 3 integer numbers separated with spaces, the a will be a
list containing 3 ints.

• The result of the input() call is a string.
• The first argument of the map() function is an anonymous function.

🕮 7.1.10

The map() function is often used to transform a list of elements to another list of
elements.

But, the resulting object can be iterated also directly:

a = ['The', 'Big', 'Bang', 'Theory']

for e in map(lambda x: x[0], a):

 print(e, end=' ') # T B B T

Thanks to the lambda expression, from each of the string elements, only the first
character was selected.

🕮 7.1.11

The second argument of the map() function could be of any other iterable type.
Watch the examples:

b = range(2015, 2020)

print(b) # range(2015,2020)

represents the sequence: 2015,2016,2017,2018,2019

print(list(map(lambda x: x % 10, b))) # [5, 6, 7, 8, 9]

The elements in b were mapped to their last digit.

print(list(map(int, str(2 ** 10)))) # [1, 0, 2, 4]

The number 2 ** 10 == 1024 was converted to a string '1024' at first in order to map
the individual characters to decimal digits (ints).

Functions as Values | FITPED

98

📝 7.1.12

What does the mystery() function do?

def mystery(x):

 return sum(map(int, str(x)))

print(mystery(2019))

• It sums all digits of a given number, so the result is 12.
• Converts a given number to a list of its digits, so the result is [2,0,1,9].
• It converts a given number into a string by concatenating the '2', '0', '1', '9'.

🕮 7.1.13

Sometimes, we need to remove all elements from a given list that satisfy a specific
condition.

We could prepare the filtering function like this:

def my_filter(fun, a):

 return [element for element in a if fun(element)]

numbers = [48, 5, 7, 1, 22, 10, 13, 80]

print(my_filter(lambda x: x % 2 == 0, numbers)) # [48, 22,

10, 80]

The my_filter() function returned a new list containg the even numbers. Why?

An anonymous function (the lambda expression) was passed into the my_filter()
function and the formal parameter fun was set to reference it.

For uneven numbers, the fun function returns False while constructing the new list,
so the uneven numbers were filtered correctly.

For filtering purposes, we can use the standard filter() function.

Like with map() function, the resulting object is iterable and can be converted to a
list easily:

numbers = [48, 5, 7, 1, 22, 10, 13, 80]

print(list(filter(lambda x: x % 2 == 0, numbers))) # [48,

22, 10, 80]

Functions as Values | FITPED

99

First argument of the filter() function is a function representing the filtering
condition. It has one parameter and returns True or False. In our case, an
anonymous function (the lambda expression) was used.

📝 7.1.14

Check all the elements of the original list that are in the resulting list.

passwords = ['abcd123', 'oxo', 'XyZ1111', 'fun3']

print(list(filter(lambda x: len(x) > 5, passwords)))

• 'abcd123'
• 'oxo'
• 'XyZ1111'
• 'fun3'

🕮 7.1.15

Very often, elements stored in a list have to be sorted in some specific order.

In Python, the sorted() function and the sort() method are available.

The sorting with sorted() and sort() are another examples of passing anonymous
functions (the lambda expressions) as arguments to another functions.

The sorted() function takes a list as its argument and returns a new list with
elements sorted in the ascending order, e. g.:

a = [1, 7, -2, 10, 13, 8, 41, 3]

print(sorted(a)) # [-2, 1, 3, 7, 8, 10,

13, 41]

print(a) # [1, 7, -2, 10, 13, 8,

41, 3]

The original list remained unsorted.

The sorted() function has two optional parameters – reverse and key.

We can require the reversed order like this:

print(sorted(a, reverse = True))

Functions as Values | FITPED

100

print(a) # [41, 13, 10, 8, 7, 3,

1, -2]

We can specify the sorting criterion like this:

print(sorted(a, key = lambda x: x**2))

print(a) # [1, -2, 3, 7, 8, 10,

13, 41]

The key parameter is a function of one argument that transforms each element to
its key while sorting. Instead of elements, their keys are being compared. The
default velue is None (compare the elements directly).

In our case, the numbers were ordered according to their powers.

📝 7.1.16

The following list was sorted using the sorted() function. What is the correct
output?

a = [3, 4, 1, 2]

b = sorted(a, reverse = True)

print(a, b)

• [3, 4, 1, 2] [4, 3, 2, 1]
• [4, 3, 2, 1] [4, 3, 2, 1]
• [3, 4, 1, 2] [1, 2, 3, 4]

🕮 7.1.17

In fact, the sorted() function can be applied on any iterable structure, e. g. on strings
as well:

msg = 'Python'

print(sorted(msg)) # ['P', 'h',

'n', 'o', 't', 'y']

print(sorted(msg, reverse = True)) # ['y', 't',

'o', 'n', 'h', 'P']

print(''.join(sorted(msg, key = str.lower))) # hnoPty

In the very last line of code, the characters were converted to lower case before
comparing. We used the string lower() function as the optional key parameter.

Functions as Values | FITPED

101

📝 7.1.18

The sorted() function is applicable also for tuples.

The output of calling:

print(sorted((7,2,4,1)))

would be

[1, 2, 4, 7]

• True
• False

🕮 7.1.19

Calling the sort() method on a list is a mutable operation.

This method sorts the original list and returns None, e. g.:

years = [1980, 1969, 1971, 1978, 2015, 1945, 2012, 1984]

print(years.sort(key = lambda x: x % 100, reverse = True)) #

None

print(years) #

1984, 1980, 1978, 1971, 1969, 1945, 2015, 2012]

The years are sorted according to their final two digits. The order is reversed.

📝 7.1.20

What is the output of the following program?

names = ['Mathew', 'John', 'Mike', 'Peter', 'Ela', 'George']

names.sort(key = len)

print(names)

• ['Ela', 'John', 'Mike', 'Peter', 'Mathew', 'George']
• ['Mathew', 'John', 'Mike', 'Peter', 'Ela', 'George']
• [3, 4, 4, 5, 6, 6]

Functions as Values | FITPED

102

• None of the options, because the first letters of names do not correspond
with the alphabetic order.

7.2 Functions as Values (programs)

⌨ 7.2.1 Years of Birth

Input list of positive integers represents the birth years of people attending the
same event.

Sort the elements of an input list according to their last two digits.

Print out the list after sorting.

Input : 1969,2003,1978,1980,2015

Output: [2003,2015,1969,1978,1980]

Input : 1999,2098

Output: [2098,1999]

⌨ 7.2.2 Various Criteria for Sorting

Input list of strings may be sorted applying different criteria. These criteria are
saved in a list as lambda expressions (anonymous functions):

criteria = [lambda x: x, lambda x: x[::-1], lambda x: len(x)]

Finish the program for sorting strings according to the following requirements:

• read the input list of strings,
• read an integer number representing a criterion choice,
• print out the sorted list.

Input : aaay,bbz,cx

0

Output: ['aaay','bbz','cx']

Input : aaay,bbz,cx

1

Output: ['cx','aaay','bbz']

Input : aaay,bbz,cx

2

Functions as Values | FITPED

103

Output: ['cx','bbz','aaay']

⌨ 7.2.3 Questionnaire Data

Input text files contain data gathered from questionnaires that were filled by many
respondents.

Respondents were choosing answers by checking an integer number on a scale
from 0 to 6. In each line, there are a respondent's choices to n questions. The
questions are numbered from 0 to n-1.

Read an input file's name and a question's number. Process the input file to find out
how many respondents chose the neutral answer 3 for a given question.

Input : data1.txt

1

Output: 4

Input : data1.txt

6

Output: 0

data1.txt:

0;3;5;4;3;5;5

4;4;0;2;3;3;5

0;3;0;2;3;1;5

2;3;0;2;2;1;5

0;3;0;0;0;1;0

⌨ 7.2.4 Multiplication of Digits

Write function product_of_digits() with one argument - an integer number.

The function multiplies all the input number's digits and returns the resulting
product.

Input : 2019

Output: 0

Input : 1234

Output: 24

Functions as Values | FITPED

104

⌨ 7.2.5 Filtering User Names

Read a list of users' names (strings). Modify this list to contain only strings longer
than 5 characters.

The list has to be ordered in descending order after filtering shorter names.

Print out the list's status after modification.

Input : John,Max,Alexander,Francis,Robert

Output: ['Robert', 'Francis', 'Alexander']

Input : abrakadabra,bububu

Output: ['bububu','abrakadabra']

⌨ 7.2.6 Primes

Correct and finish the following program:

def is_prime(x):

 pass

numbers = input()

print(filter(is_prime(x), numbers))

For a non-empty input list of positive integers, print out a new list containing only
prime numbers.

Do not change the order of elements.

Input : 48 5 7 1 22 10 77 13 80

Output: [5, 7, 13]

Input : 2 27 120

Output: []

Tuples

Chapter 8

Tuples | FITPED

106

8.1 Tuples

🕮 8.1.1

Tuple is another important structured type in Python.

Tuples are very similar to lists as they are ordered collections of elements too. But
unlike lists, tuples are immutable. Once a tuple is created, it cannot be changed.

Tuples are written with round brackets. Elements are separated with commas,
napr.:

>>> point = (100, -75)

>>> point

(100, -75)

>>> type(point)

<class 'tuple'>

The point variable references a tuple of 2 values (its coordinates).

Using the type() function, we can determine type of variable easily.

🕮 8.1.2

Here are some other examples of working with tuples:

>>> team = ('John', 'Peter', 'Paul', 'Michael', 'George')

>>> team

('John', 'Peter', 'Paul', 'Michael', 'George')

>>> print(len(team))

5

>>> print(team[1])

Peter

In above example, we created a tuple of 5 strings (players). We printed out the
tuple’s length as well as the item team[1]. We applied the standard len() function
and indexing.

>>> order = ('T-Shirt', 'red', 'XL', 12.0, 1000, True)

>>> order[2] = 'M'

Traceback (most recent call last):

File "<input>", line 1, in <module>

TypeError: 'tuple' object does not support item assignment

Tuples | FITPED

107

The tuple order consists of 6 elements that are of different types. We tried to
change the element at index 2, but this operation is not supported (as tuples are
immutable).

🕮 8.1.3

By calling the tuple() function, we can make tuples from other sequences, e. g.
strings, lists or ranges:

>>> tuple('Python')

('P', 'y', 't', 'h', 'o', 'n')

>>> tuple([2, 3, 5, 7])

(2, 3, 5, 7)

>>> tuple(range(1, 11))

(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)

📝 8.1.4

Check all the correct statements:

• To access elements of tuples, we use indices.
• The length of a tuple cannot be changed.
• In tuples, all elements must be of a same type.
• The length of a tuple cannot be printed out.

🕮 8.1.5

Let us take a look at some special cases of tuples:

It is possible to define an empty tuple. We can call tuple() or write the () directly.
The length of an empty tuple is 0:

>>> tuple()

()

>> ()

()

>> len(())

0

Sometimes, we may get an empty tuple as a result of calling a function.

Tuples | FITPED

108

🕮 8.1.6

Tuples consisting of the only one element have to be written with a comma:

>>> melody = ('C',)

>>> melody

('C',)

>>> len(melody)

1

>>> type(melody)

<class 'tuple'>

Leaving the comma out, the value would be of a different type:

>>> melody = ('C')

>>> melody

'C'

>>> type(melody)

<class 'str'>

Be careful when working with tuples:

>>> (3.14)

3.14

>>> (3,14)

(3, 14)

First, we used decimal point and a number was created. Then, we did a typo.
Comma after the first digit was interpreted as a separator of two elements in a
tuple.

📝 8.1.7

Check the correct definitions of tuples:

• ()
• (7)
• (5,7)
• (5.3)

Tuples | FITPED

109

🕮 8.1.8

The immutable operations we use for lists are applicable on tuples as well.

Two tuples can be concatenated using the + operator:

>>> (1, 2) + (3, 4)

(1, 2, 3, 4)

The multiple concatenation is possible as well:

>>> (1, 0) * 8

(1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0)

With the in operator, we test the presence of an element:

>>> melody = ('c', 'd', 'e', 'f', 'g')

>>> 'h' in melody

False

Slicing is also supported, e. g.:

>>> melody[:2]

('c', 'd')

>>> melody[::-1]

('g', 'f', 'e', 'd', 'c')

>>> melody[3:]

('f', 'g')

Methods for counting or finding the elements are available:

>>> melody = tuple('cdefg')

>>> melody

('c', 'd', 'e', 'f', 'g')

>>> melody.count('e')

1

>>> melody.index('g')

4

>>> melody.index('h')

Traceback (most recent call last): File "<input>", line 1, in

<module>

ValueError: tuple.index(x): x not in tuple

The standard len(), sum(), min(), max() functions are sometimes useful too.

Tuples | FITPED

110

Tuples are comparable with relational operators (==, !=, <, <=, >, >=) like lists. But the
corresponding elements of tuples must be comparable.

>>> ('Peter', 'Bum', 1970) < ('Peter', 'Bim', 2000)

False

🕮 8.1.9

Tuples are iterable:

primes = (2, 3, 5, 7, 11, 13)

for i in primes:

 print(i, end=' ') # 2 3 5 7 11 13

Sometimes, we need to enumerate all elements of a tuple within the for statement.
In this case, the round brackets are not necessary:

for i in 2, 3, 5, 7, 11, 13:

 print(i, end=' ')

Tuples are often used in multiple assignments, e. g.:

x, y, z = 10, 20, 30

print(x, y, z) # 10, 20, 30

The values on the right side separated with commas make up a tuple of length 3.

🕮 8.1.10

Remember that tuples are immutable, so this is not allowed:

• using del operator (elements cannot be removed),
• adding new elements,
• assigning new values to existing elements.

📝 8.1.11

Match all the print() statements with their correct outputs.

u = (10, 20, 30)

v = (-10, -20, -30)

Tuples | FITPED

111

print(u + v)

print(u * 3)

print(u[:1] + (0,) + v[-1:])

• (30,40,60)
• (10, 0, -30)
• (10, 20, 30, -10, -20, -30)
• (0, 0, 0)
• (10, 20, 30, 10, 20, 30, 10, 20, 30)

🕮 8.1.12

In Python, it is possible to return more than one value from a function. When
returning multiple values, they are all packed into a tuple.

The return values have to be separated with commas, the round bracket are not
required.

The following example shows a function that returns 2 random numbers:

def my_fun(a, b):

 x = random.randrange(a, b)

 y = random.randrange(a, b)

 return x, y

The returned tuple can be used as is, or assigned into the corresponding numbers
of variables:

print(my_fun(1, 10)) # e. g. (7, 4)

m, n = my_fun(1, 10) # e. g. m, n = (2, 5)

print(m, n) # 2 5

Tuples | FITPED

112

🕮 8.1.13

When we do not need all return values, we can use indices.

The function div_mod() returns 2 values packed in a tuple:

def div_mod(a, b):

 return a // b, a % b

First, we will print out the division, after that, the remainder:

result = div_mod(7, 2)

print(result) # (3, 1)

print('division:', result[0]) # division: 3

print('remainder:', result[1]) # remainder: 1

🕮 8.1.14

The following example shows that tuples returned from a function can be
processed as needed:

This function determines all divisors of a number n.

def divisors(n):

 d = ()

 for i in range(1, n + 1):

 if n % i == 0:

 d = d + (i,)

 return d

The returned tuple can be printed out or used in further computations:

print(divisors(12)) # (1, 2, 3, 4, 6, 12)

for i in divisors(12):

 print(i, end=' ') # 1 2 3 4 6 12

x = 13

if len(divisors(x)) == 2:

 print(f'{x} is a prime number') # 13 is a prime number

📝 8.1.15

The following function takes an integer number and returns a tuple of its divisors:

Tuples | FITPED

113

def divisors(n):

 d = ()

 for i in range(1, n + 1):

 if n % i == 0:

 d = d + (i,)

 return d

result = divisors(12)

Match the print() statements with their corresponding outputs:

print(result)

print(len(result))

print(2 in result)

print(sum(result[1:-1]))

• 15
• True
• 6
• (1, 2, 3, 4, 6, 12)

🕮 8.1.16

A variadic function accepts a variable number of arguments. In Python, we can use
tuples to write such functions.

At first, consider the following function for multiplication. It has 4 arguments. There
are default values set for the last 3 of them.

def multiply(a, b=1, c=1, d=1):

 return a * b * c * d

Now, the multiply() function can be called with 1, 2, 3 or 4 arguments:

Tuples | FITPED

114

print(multiply(2)) # 2

print(multiply(2, 3)) # 6

print(multiply(2, 3, 5)) # 30

print(multiply(2, 3, 5, 2)) # 60

print(multiply(2, 3, 5, 2, 7)) # 320? no, this is not

allowed

The multiply() function seems to be quite flexible, but the number of arguments is
limited to 4.

We would like to pass really a variable number of arguments into the function. To
make it possible, we have to use a packed argument when implementing the
function. The packing operator * must be written just before the packed argument,
it is the numbers in this case:

def multiply(*numbers):

 m = 1

 for n in numbers:

 m *= n

 return m

calling a variadic function (passing 1, 3 and 8 arguments)

print(multiply(1)) # 1

print(multiply(4, 8, 2)) # 64

print(multiply(1, 2, 3, 4, 5, 6, 7, 8)) # 40320

All the actual arguments were packed in a tuple. In function, we accessed the
elements of this tuple.

📝 8.1.17

Complete the head of the following function correctly:

def welcome_everybody(shout, _____):

 for p in persons:

 if shout:

 print('HALLO ', p, '!')

 else:

 print('Hallo ', p, '!')

calling the function with various numbers of arguments

welcome_everybody(True, 'Susan')

welcome_everybody(True, 'Susan', 'Kate')

Tuples | FITPED

115

welcome_everybody(False, 'Peter', 'John', 'Joseph', 'George',

'Thomas')

🕮 8.1.18

The get_random_items() function illustrates a situation of having 1 required
positional argument followed by an unknown number of other arguments:

def get_random_items(n, *choices):

 items = ()

 for i in range(n):

 index = random.randrange(len(choices))

 items = items + (choices[index],)

 return items

The above function returns a tuple that is made up of n elements randomly chosen
from the choices argument.

Let us call this function with various arguments. We would like to get:

• 2 numbers randomly chosen from 0, 1, -1,
• 5 numbers randomly chosen from 0, 1, -1,
• 1prime number randomly chosen from the 6 given options,
• 8 characters randomly chosen from 'R', 'G', 'B.

print(get_random_items(2, 0, 1, -1)) # e. g. (1, 0)

print(get_random_items(5, 0, 1, -1)) # e. g. (1, 1,

0, 1, -1)

print(get_random_items(1, 2, 3, 5, 7, 11, 13)) # e. g. (7,)

print(get_random_items(8, 'R', 'G', 'B')) # ('B', 'G',

'B', 'G', 'R', 'R', 'B', 'B')

🕮 8.1.19

Let us examine the variadic get_random_items() function again:

def get_random_items(n, *choices):

 items = ()

 for i in range(n):

 index = random.randrange(len(choices))

 items = items + (choices[index],)

 return items

Tuples | FITPED

116

Let us call this function e. g. with 6 arguments to get 2 random elements. The 5
numbers would be packed in a tuple:

print(get_random_items(2, 1, 3, 5, 7, 9)) # e. g. (3, 9)

What about calling the function like this:

print(get_random_items(2, range(1, 10, 2))) # (range(1, 10,

2), range(1, 10, 2))

Watch the ouput in comment carefully.

Though the range(1, 10, 2) represents the same sequence of numbers as in previous
call (numbers 1, 3, 5, 7, 9), the result is different. In fact, just one argument of the
range type was passed into the function and so the choices parameter was set to
reference a tuple of 1 element.

🕮 8.1.20

To unpack elements from a structure (before passing them into a variadic function
or after getting a structured value from a function), we use the * operator.

Watch the outputs of printing out the values unpacked from structures (a range,
a list and a string):

print(*range(10)) # 1 2 3 4 5 6 7 8 9

print(*['mother', 'father', 'child']) #

mother father child

print(*str(2**30)) # 1 0 7 3 7 4 1 8 2 4

As we have already seen many times, the print() function is also a nice example of
a variadic function. All the values we need to print out are always packed in a tuple
and passed into the function for printing.

🕮 8.1.21

So now, we call the get_random_items() function again, using the unpacking of
values:

def get_random_items(n, *choices):

 items = ()

 for i in range(n):

 index = random.randrange(len(choices))

Tuples | FITPED

117

 items = items + (choices[index],)

 return items

print(get_random_items(2, *range(10)))

e. q. (5, 2)

print(get_random_items(2, *['mother', 'father', 'child']))

e. g. ('mother','mother')

print(get_random_items(2, *str(2**30)))

e. g. ('1', '8')

📝 8.1.22

We want to greet all friends saved in the friends list.

Complete the statement of calling the welcome_everybody() function correctly.

def welcome_everybody(shout, *persons):

 for p in persons:

 if shout:

 print('HALLO ', p, '!')

 else:

 print('Hallo ', p, '!')

friends = ['Julia', 'Kate', 'Simona', 'Natalie']

welcome_everybody(False, _____)

8.2 Tuples (programs)

⌨ 8.2.1 Punctuation

There is a useful constant defined in the standard string module:

string.punctuation = r"""!"#$%&-()*+,-

./:;<=>?@[]^_`{|}~"""

Write the get_punctuation() function with 1 argument - a string to process.

The function returns a tuple containing all the punctuation characters found in the
input string. The order of characters must be preserved.

Input : Hallo world!(1+1=2)

Output: ('!','(','+','=',')')

Input : To pay: 100$ + 10%; teddy@gmail.com

Tuples | FITPED

118

Output: (':','$','+','%',';','@','.')

Input : priscilla

Output: ()

⌨ 8.2.2 All in One

Write the all_in_one() function that accepts variadic number of arguments - strings.

The function returns one string joining all the input strings together. The '#' serves
as a delimiter.

calling the function:

print(all_in_one('mather','father','child','dog','cat'))

Output: mather#father#child#dog#cat

calling the function:

print(all_in_one('Slovakia'))

Output: Slovakia

⌨ 8.2.3 Median and Modus

Write the simple_statistics() function having 2 arguments - an input list of positive
integers and the maximum value that is saved in the input list.

The function returns a tuple with two elements - median and modus of the input
number sequence

actual input parameters: [1,3,1,5,4] 5

Output: (3,1)

actual input parameters: [5,7,1,1,1,2,3,5,5,7,7,7,7,7] 7

Output: (5,7)

actual input parameters: [] None

Output: ()

⌨ 8.2.4 Mission Completed

Imagine you are a captain driving a rocket in a 2D space that is represented by the
Cartesian coordinate system.

Tuples | FITPED

119

The position of a rocket is specified by 2 coordinates (x and y) .Your mission
always starts from center of the coordinate system (where x==0 and y==0).

A plan for a mission is coded with characters representing 4 cardinal points and
integers representing number of steps to make in the appropriate direction.
Consider the input list would contain following values (a mission-s plan):

mission_plan = ['N',3,'W',2,'S',1]

Your rocket will start at 0,0 and than move 3 times to the North (to the position 0,3).
Next, the rocket will move 2 times to the West (to the position -2,3). Finally, you will
move once to the South and so reach the final position -2,2.

Correct the presented solution to work properly, be careful about the following
requirements:

The function must accept a variadic number of arguments (always even number,
whatch the examples below).

The function must return a tuple containing rocket-s coordinates after finishing its
actual mission as well as direct distance from its start position (2 decimals have to
be printed in this case).

Input : N,3,W,2,S,1

Output: -2, 2, 2.83

Input : N,1,W,1,S,10,E,2

Output: 1, -9, 9.06

start.py
import math

correct the following solution:

plan must be a packed argument, not a list!

def go_on_mission(plan):

 x = 0

 y = 0

 for i in range(0, len(plan), 2):

 if plan[i] == 'N':

 y += plan([i + 1])

 elif plan[i] == 'S':

 y -= plan[i + 1]

 elif plan[i] == 'E':

 x += plan[i + 1]

 else:

 x -= plan[i + 1]

Tuples | FITPED

120

 d = math.sqrt(x * x + y * y)

read a mission-s plan

data = input()

call the function, unpack actual argument values from the

data list

pos_x, pos_y, distance = go_on_mission()

print out 3 elements of the returned tuple

print(f'{}, {}, {:.2f}')

Lists of Lists

Chapter 9

Lists of Lists | FITPED

122

9.1 Lists of Lists

🕮 9.1.1

In lists or tuples, sequences of elements are saved. Lists are mutable, tuples are
immutable.

The elements of lists may be of a different type, even a structured type.

Let us define a list of tuple elements:

a = (0, 1)

b = (1, 1)

c = (2, -5)

d = (3, 7)

e = (4, 8)

points = [a, b, c, d, e]

print(points) # [(0, 1), (1, 1), (2, -5), (3, 7),

(4, 8)]

The points variable is a list containing 5 tuples. Each tuple represents a single point
(its coordinates).

We can append new elements to the points list, update elements, delete them or
use slicing:

points.append((5, 0))

points.pop(0)

print(points) # [(1, 1), (2, -5), (3, 7), (4, 8),

(5, 0)]

points[2] = (1000, 1000)

print(points) # [(5, 0), (4, 8), (1000, 1000),

(2, -5), (1, 1)]

print(len(points))

points[:] = points[::-1]

print(points) # [(5, 0), (4, 8), (1000, 1000),

(2, -5), (1, 1)]

We can access the individual elements of a tuple using the second index:

print(points[0]) # (5, 0) - the first tuple in

a list

print(point[0][0]) # 5 - the first element of the

(5,0) tuple

print(point[0][1]) # 0 – the second element of the

(5,0) tuple

Lists of Lists | FITPED

123

Of course, as tuple objects do not support item assignment, the following
command would cause an error:

points[1][0] = 0 #... TypeError: 'tuple' object

does not support item assignment

🕮 9.1.2

What about tuples of tuples? Tuples can contain tuples as elements.

This may be useful in such situations when the number of elements as well as the
elements themselves would not change over time.

points = (a, b, c, d, e)

print(points) # ((0, 1),

(1, 1), (2, -5), (3, 7), (4, 8))

print(points[random.randrange(len(points))]) # e.g. (2, -

5)

To append a new element to the existing points tuple, a new tuple must be created:

points = points + ((1000, 1000),)

print(points) # ((0, 1), (1, 1), (2,-

5), (3, 7), (4, 8), (1000, 1000))

We joined the original points tuple with a tuple containing the new element. The
points variable references a new tuple now.

📝 9.1.3

A list of 3 visitors was created like this:

visitors = [('Susan', 45, 'Slovakia', True), ('Peter', 33,

'Germany', False)]

visitors.append(('Martin', 18, 'Hungary', False))

Match the following lines of code with their explanations:

print(visitors)

for v in visitors:

 print(v)

Lists of Lists | FITPED

124

sum = 0

for v in visitors:

 sum += v[1]

print(f'average age: {sum/len(visitors)}')

for name, age, country, ok in visitors:

 print(f'{name} from {country} is {age} years old.')

• Tuples in the visitors list were unpacked to 4 variables while iterating.
• The list of 3 tuples was printed out in one line.
• Ages of all visitors were sumed and the average was printed out.
• Each element in the visitors list was printed out separately.

🕮 9.1.4

We often need to implement a 2-dimensional structure – a table with rows and
columns (a matrix of values from a mathematical point of view). Such table of
values can be created using lists of lists in Python.

Let us create a list with 3 elements of the list type (a table with 3 rows and 3
columns):

m = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]

Each of the m[0], m[1], m[2] elements are referencing a list having 3 elements (a
row).

The same structure could be created also like this:

>>> row1 = [1, 2, 3]

>>> row2 = [4, 5, 6]

>>> row3 = [7, 8, 9]

>>> m =[row1, row2, row3]

>>> m

>>> [[1, 2, 3],[4, 5, 6], [7, 8, 9]]

Actual number of rows or columns can be determined using the len() function.

The length of the m list represents the number of rows:

Lists of Lists | FITPED

125

print(len(m)) # 3

The length of the m list’s element, e. g. the row m[0], represents the number of
columns:

print(len(m[0])) # 3

The elements of the m structure are accessible via a pair of indices.

The m[i][j] represent a value of the element in row i and column j.

Let us change one of the elements and print the list of lists out:

m[0][0] = 0

print(m) # [[0, 2, 3], [4, 5, 6], [7, 8, 9]]

📝 9.1.5

Check all true statements about the a structure.

a = [[0, 0, 0, 0],[0, 0, 0, 0], [0, 0, 0, 0]]

• The a is a list of lists
• The a[1] is a list of int values.
• The a[2] references the last row of the a table.
• len(a) == len(a[0])

🕮 9.1.6

Consider the same m table as before:

m = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]

To iterate through a table, we typically use the nested for cycles.

 For every row, each of its elements is printed out:

for row in m:

 for x in row:

 print(x, end=' ')

 print()

The same output could be achieved in a shorter way, with help of the unpacking
operator:

Lists of Lists | FITPED

126

for row in m:

 print(*row)

The Output:

1 2 3

4 5 6

7 8 9

Sometimes, it is useful to process the elements of a table using their indices, e. g.:

x = 9

for i in range(len(m)):

 for j in range(len(m[0])):

 m[i][j] = x

 print(m[i][j], end=' ')

 x -= 1

 print()

The Output:

9 8 7

6 5 4

3 2 1

📝 9.1.7

What is the output of following program?

 def print_table(tab):

 for row in tab:

 print(*row)

t1 = ['a'] * 4

t2 = ['b'] * 4

t3 = ['c'] * 4

t = [t1, t2, t3]

t[0][2] = 'x'

print_table(t)

• [[a, a, x, a,], [b, b, b, b], [c, c, c, c]]
• [[a, a, a, a], [b, b, b, b], [x, c, c, c]]
• [[4a, 4a, x, 4a], [4b, 4b, 4b, 4a], [4b, 4c, 4c, 4c]]
• None of the options, the element with such indices does not exist.

Lists of Lists | FITPED

127

🕮 9.1.8

When creating a list of lists, we must be very careful. Lists are mutable. And in lists
of lists, also their elements are mutable.

Watch the result of creating the m table like this:

>>> m = [[0, 0, 0]] * 3

>>> m

[[0, 0, 0], [0, 0, 0], [0, 0, 0]]

There are 3 rows with 3 zeros.

Let us change one of the values:

>>> m[0][0] = -1

>>> m

[[-1, 0, 0], [-1, 0, 0], [-1, 0, 0]]

What happened? The elements m[1][0] and m[2][0] should not be changed.

In fact, with the assignment:

m = [[0, 0, 0]] * 3

we created a list with 3 references to the same list [0, 0, 0], just like this one:

>>> row = [0, 0, 0]

>>> m = [row, row, row]

We can also check the rows for identity easily, e. g.:

>>> m[0] is m[1]

True

🕮 9.1.9

To create a list of lists correctly, first, create an empty list and then, create and
append each of the rows:

>>> m = []

>>> for i in range(3):

>>> m.append([0,0,0])

Now, everything is ok:

Lists of Lists | FITPED

128

>>> m[0][0] = -1

>>> m

[[-1, 0, 0], [0, 0, 0], [0, 0, 0]]

>>> m[0] is m[1]

False

📝 9.1.10

We need a table with 5 rows and 3 columns with all elements initialized to 0.

Which of the following options of creating it are correct?

a)

a = [[0, 0, 0] for i in range(5)]

b)

a = [[0, 0, 0]] * 5

c)

a = []

for i in range(5):

 a.append([0] * 3)

• a
• b
• c

🕮 9.1.11

For creating 2-dimensional structures, such as lists of lists, functions are very
useful:

First, the create_table() takes the size of a table (number of rows and columns) and
an element’s default value.

The created list is returned.

def create_table(m, n, value=0):

 t = []

 for i in range(m):

 t.append([value] * n)

Lists of Lists | FITPED

129

 return t

my_table = create_table(2, 3)

print(my_table) # [[0, 0, 0], [0,0,0]]

my_table = create_table(4, 2, '*')

print(my_table) # [['*', '*'], ['*',

'*'], ['*', '*'], ['*', '*']]

In function create_table2(), the t list with m elements having the None value is
created at first.

The t[i] elements are prepared but not referencing rows yet.

Then, each of the reference is set to the corresponding row of n values within the
for cycle.

def create_table2(m, n, value=0):

 t = [None] * m

 for i in range(m):

 t[i] = [value] * n

 return t

my_table = create_table2(3, 5, 1)

print(my_table) # [[1, 1, 1, 1, 1], [1,

1, 1, 1, 1], [1, 1, 1, 1, 1]]

📝 9.1.12

Which of the two functions creates a copy of a table correctly?

def copy_table1(tab):

 t = []

 for row in tab:

 t.append(row)

 return t

def copy_table2(tab):

 t = []

 for row in tab:

 t.append(list(row))

 return t

m = [[1, 2, 3],[4, 5, 6], [7, 8, 9]]

m1 = copy_table1(m)

m2 = copy_table2(m)

Lists of Lists | FITPED

130

• m1 is a copy of m
• m2 is a copy of m

🕮 9.1.13

A list of lists (or tuples) can be created also using list comprehension notation.

Watch some nice examples, the outputs are in comments:

t = [(i, j) for i in range(2) for j in range(3)]

print(t)

[(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2)]

Notice, that each of the elements is a tuple. There are all possible combinations of i
and j.

t = [[0] * 3 for i in range(4)]

print(t)

[[0, 0, 0], [0, 0, 0], [0, 0, 0], [0, 0, 0]]

Notice, that each of the rows is created separately.

t = [list(str(2 ** i)) for i in range(10)]

print(t)

[['1'], ['2'], ['4'], ['8'], ['1', '6'], ['3', '2'], ['6',

'4'], ['1', '2', '8'], ['2', '5', '6'], ['5', '1', '2']]

Notice, that rows of the list are of different length as the result of 2 ** i is longer for
higher exponent.

import random

t = [[random.randint(0, 9)] * 5 for i in range(3)]

print(t)

e. g. [[8, 8, 8, 8, 8], [2, 2, 2, 2, 2], [7, 7, 7, 7, 7]]

Notice, that all elements in a row have the same random value.

📝 9.1.14

What would be the program's output for the following list of input words?

To be, or not to be, that is the question.

Lists of Lists | FITPED

131

words = input('Your words: ').split()

t = [list(w) for w in words if len(w) > 3]

print(t)

• ['that', 'question.']
• [['t', 'h', 'a', 't'], ['q', 'u', 'e', 's', 't', 'i', 'o', 'n', '.']]
• None of the options is correct, an error would occur.

🕮 9.1.15

There are many situations, when we need a list of lists of various lengths.

For example:

• for numbers, we could have lists of their divisors,
• for graph vertices, we could have lists of their neighbours,
• for days of a week, we could have lists of incoming mails etc.

The following function takes an iterable containing the lengths of future rows as
well as a default element’s value:

def create_table(row_lengths, value=0):

 t = [None] * len(row_lengths)

 for i in range(len(t)):

 t[i] = [value] * row_lengths[i]

 return t

First, the t list containing None values is created. It has the necessary number of
elements = future references to rows.

Next, all of the rows are created separately. Their lengths are taken form the first
parameter.

Let us use the function create_table() in action:

t = create_table((1, 2, 3, 4, 5))

print(t)

[[0],[0,0],[0,0,0],[0,0,0,0],[0,0,0,0,0]]

t = create_table(range(4), 'x'))

print(t)

[[],['x'],['x', 'x'], ['x', 'x', 'x']]

Lists of Lists | FITPED

132

Notice, that range(4) represents a sequence of numbers 0, 1, 2, 3, so the very first
row of t is an empty list.

📝 9.1.16

Compare the following functions:

import random

def create_table1(row_lengths):

 t = [None] * len(row_lengths)

 for i in range(len(t)):

 t[i] = [random.randrange(2)] * row_lengths[i]

 return t

def create_table2(row_lengths):

 t = [None] * len(row_lengths)

 for i in range(len(t)):

 t[i] = [random.randrange(2) for i in

range(row_lengths[i])]

 return t

Match the function calls with correct outputs:

t = create_table1(range(1, 6))

print(t)

t = create_table2(range(1, 6))

print(t)

• [[0], [1, 1], [0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0, 0]]
• [[1], [0, 0], [0, 0, 0], [1, 0, 0, 1], [0, 0, 0, 1, 0]]
• [None, None, None, None, None]

Lists of Lists | FITPED

133

9.2 List of Lists (programs)

⌨ 9.2.1 Matrix Initialization

The input integer number n represent the size of a square matrix.

Create a matrix with n rows and n columns and populate it with values 1..n * n.

Display the initialized matrix as a list of lists in the output.

Input : 3

Output: [[1, 2, 3], [4, 5, 6], [7, 8, 9]]

Input : 2

Output: [[1, 2], [3, 4]]

⌨ 9.2.2 O or X

The input integer number n represents the size of a square matrix n. The n is
greater than 2.

Next, the individual rows of the input matrix are given.

The input matrix contains just values 0 and 1 and represents a black and white
raster image (0 = black pixel, 1 = white pixel).

Write a program that detects whether a black letter O or a black letter X is stored in
a matrix.

Output the correct characters 'O', 'X' (for letters O and X) or '?' in case it's something
else.

Input : 3

0 0 0

0 1 0

0 0 0

Output: O

Input : 3

0 1 0

1 0 1

0 1 0

Output: X

Input : 3

Lists of Lists | FITPED

134

1 0 0

0 0 1

1 0 0

Output: ?

⌨ 9.2.3 The Highest Peak

The m x n matrix contains numbers that represent altitudes of locations on a map.

Determine the coordinates (row and column) of the highest peek.

If there are more places on the map with the highest altitude, print out the
northernmost. If there are more northernmost places with the highest altitude, print
out the easternmost.

First, the dimensions of the matrix m, n are given followed by the individual rows of
the matrix.

Input : 3 4

1 2 1 0

1 0 0 1

1 1 2 0

Output: 0 1

Input : 3 5

2 2 1 0 0

2 2 3 3 0

1 2 3 0 0

Output: 1 3

⌨ 9.2.4 Transforming Images

The input matrix with m rows and n columns contains information about a raster
image of the corresponding size - the numeric color codes of the individual pixels.

Create a program that flips this image along the horizontal or vertical axis.

The input shows the dimensions of the matrix in the first row, followed by the
individual rows of the matrix. The last line of the input contains the type of flip - by
x-axis or y-axis.

Input : 3 4

1,1,1,1

0,1,0,1

1,0,0,1

Lists of Lists | FITPED

135

x

Output: 1,0,0,1

0,1,0,1

1,1,1,1

Input : 3 4

1,1,1,1

0,1,0,1

1,0,0,1

y

Output: 1,1,1,1

1,0,1,0

1,0,0,1

Input : 1 5

1,2,3,4,5

y

Output: 5,4,3,2,1

⌨ 9.2.5 Relationships between Persons

The input square matrix a with n rows and n columns contains information about
mutual relations between n persons numbered 0, 1, ..., n-1.

If a [i] [j] == 1, it means that person i relates to person j.

If a [i] [j] == 0, it means that person i does not relate to person j.

People i and j are friends if and only if they relate to each other.

Create program to find out the person with highest number of friends.

First input number represents the number of persons (matrix size). The following
lines are rows of the matrix.

If there are more people having the same number of friends, print out the person
with a smaller number. Every person is self-related, but we will not count one as
his/her own friend.

Input : 4

1 1 1 0

1 1 1 1

1 1 1 1

0 1 0 1

Output: person 1

Lists of Lists | FITPED

136

Input : 3

1 1 0

0 1 1

1 0 1

Output: no friends

Input : 5

1 0 0 0 1

1 1 1 1 0

0 1 1 1 0

0 1 1 1 1

1 1 1 1 1

Output: person 3

⌨ 9.2.6 Sorting Rows

There are data about charity funders (name, city, donation amount) saved in a
textfile. The file is not empty, each line corresponds to one donor.

Save the input data in a table implemented as a list of lists.

The input consists of a file name and a request to sort the rows of table according
to one of the columns (the sorting criterion is given as a column index).

Print out the table sorted by the specified criteria on the screen.

Input : textfile1.txt

0

Output: Alex,Bratislava,50

Boris,Zilina,10

Francis,Nitra,200

John,Nitra,100

Input : textfile1.txt

2

Output: Boris,Zilina,10

Alex,Bratislava,50

John,Nitra,100

Francis,Nitra,200

textfile1.txt:

John,Nitra,100

Francis,Nitra,200

Alex,Bratislava,50

Lists of Lists | FITPED

137

Boris,Zilina,10

Sets

Chapter 10

Sets | FITPED

139

10.1 Sets

🕮 10.1.1

Python contains a standard data type called set representing a set with features as
we know them from math: elements are not repeated, their order does not matter.

In other words, sets are unordered collections of unique elements.

The elements of a set must be immutable, e. g. strings, numbers, tuples. It is not
possible to have a set of lists, as lists are mutable structures.

We use different methods and set operations when working with sets:

Let us create an empty set and add some elements to it:

>>> m = set()

>> m

set()

>>> m.add('John')

>>> m.add('Paul')

>>> m.add('Francis')

>>> m

{'Paul', 'John', 'Francis'}

Three elements were added to the m set.

As seen in output, this collection does not save any information about the order of
elements.

The set can be defined also by enumerating its elements using braces, e. g.:

>>> m = {'Theresa', 'Diana', 'Maria', 'Anna'}

>>> len(m)

4

The len() function returns the number of elements just like for any other iterable.

🕮 10.1.2

The set() constructor may take an optional argument – any iterable structure from
which the set’s elements are taken:

>> set(range(3))

{0,1,2}

Sets | FITPED

140

>> set('aeiouy')

{'a', 'u', 'i', 'o', 'e', 'y'}

 >>> type(m)

<class set>

By calling the type() function, the set type of the m variable can be verified easily.

Notice, that you cannot create an empty set like this:

>>> m = {}

>>> type(m)

<class 'dict'>

The m is an empty dictionary, not a set. We will work with dictionaries later.

📝 10.1.3

Check all the correct definitions of sets:

• a = {1, 2, 3, 4, 5}
• b = set()
• c = {'Python'}
• e = {(1,2,3),(4, 5, 6)}
• f = set('Python')

🕮 10.1.4

What about trying to add the same value to a set repeatedly, e. g.:

>>> m = {'Theresa', 'Diana', 'Maria', 'Anna'}

>>> m.add('Maria')

>>> m

{'Theresa', 'Maria', 'Anna', 'Diana'}

As seen above, the string 'Maria' was not added again as it is already present in the
set.

A set can be updated with the union of itself and others using the update() method:

>>> m

{'Theresa', 'Maria', 'Anna', 'Diana'}

>>> m2 = {'John', 'Peter', 'Maria'}

>>> m.update(m2)

Sets | FITPED

141

>>> m

{'Theresa', 'Maria', 'Anna', 'Diana', 'Peter', 'John'}

To determine, whether a set contains a specified element, the in operator is
applicable:

>>> 'Anna' in m

True

>>> 'Regina' in m

False

📝 10.1.5

Execute the following script and select the correct Output:

values = [1, 8, 3, 1, 2, 5, 3]

m1 = set()

m2 = set()

for v in values:

 if v in m1:

 m2.add(v)

 else:

 m1.add(v)

print(m2)

• {1, 3}
• {8, 2, 5}
• {1, 8, 3, 2, 5}

🕮 10.1.6

The elements can be removed from a set using its discard() method:

>>> m = set(range(10))

>>> m

{0, 1, 2, 3, 4, 5, 6, 7, 8, 9}

>>> m.discard(5)

>>> m

{0, 1, 2, 3, 4, 6, 7, 8, 9}

Sets | FITPED

142

>>> m.discard(100)

>>> m

{0, 1, 2, 3, 4, 6, 7, 8, 9}

In case, the element is not in the set, nothing is done.

All elements can be removed from set at once calling the clear() method:

>>> m.clear()

>>> m

set()

To test a set for being empty, use one of these comparisons:

>> m == set()

True

>>> len(m) == 0

True

🕮 10.1.7

There are 2 other methods available for removing elements from sets:

The pop() method removes and returns an arbitrary set element and raises KeyError
if the set is empty.

The remove() method removes an element from a set. If the element is not a
member, raises a KeyError.

📝 10.1.8

Execute the sequence of methods calls below.

Match the lines with corresponding explanations of the actual status:

girls = {'Theresa', 'Maria', 'Anna', 'Diana'}

girls.discard('Maria')

girls.pop()

Sets | FITPED

143

girls.remove('Kate')

girls.clear()

girls.pop()

• The element ‘Maria’ was removed.
• The KeyError exception was raised.
• A set with 4 elements was created.
• An arbitrary element, e. g. ‘Diana’ was removed and returned.
• The girls set is empty.
• The KeyError exception was raised.

🕮 10.1.9

To realize the standard set operations easily, set operators are very useful:

>>> a = {1, 2, 3, 4}

>>> b = {4, 5}

>>> a | b

{1, 2, 3, 4, 5}

The | operator returns the union of sets as a new set (all elements that are in either
set).

>>> a & b

{4}

The & operator returns the intersection of two sets as a new set (all elements that
are in both sets)

>>> a – b

{1, 2, 3}

The – operator returns the difference of two sets as a new set (all elements that
are in this set but not the other).

Sets | FITPED

144

>>> a ^ b

{1, 2, 3, 5}

The ^ operator returns the symmetric difference of two sets as a new set (all
elements that are in either set but not in both).

For determining the relations between sets, the relational operators are applicable:

>>> a = {1, 2, 3}

>>> b = {2, 3, 4, 5}

>>> c = set(range(2, 6))

>>> a == b

False

>>> b == c

True

The a and b are not equal as they do not contain same elements, but the b and c do.

>>> b < a

True

The b set is a subset of the a set (The a set contains all elements present in the b
set).

The other operators (!=, <=, >, >=) can be used in a similar way.

If you do not like using the set operators, also methods are available for achieving
the same goal (e. g. union(), intersection(), issubset() etc.). The advantage of using
methods is that they accept any iterable structure as a parameter, e. g.:

a = set('abcd')

b = 'cdefgh'

print(a.intersection(b)) # {'d', 'c'}

print(a & b) this is not applicable, operators work just

with sets

📝 10.1.10

Match the operations on sets with correct outputs.

Sets | FITPED

145

Notice, that before printing, we call the sorted() function in order to order the set
elements (just to make the output more readable). The sorted() function takes an
iterable and returns a list.

First, 2 sets of characters are created:

a = set('abc')

b = set('defg')

And then, the program continues:

c = a | b

print(sorted(c)) # _____

c = a & b

print(sorted(c)) # _____

c = c | {'x'}

print(sorted(c)) # _____

a |= {'d', 'e'}

print(sorted(a)) # _____

print({'a', 'b'} < a) # _____

• True
• ['x']
• ['a', 'b', 'c', 'd', 'e', 'f', 'g']
• ['a', 'b', 'c', 'd', 'e']
• []

🕮 10.1.11

What about indexing or iterating through the elements of a set?

As sets are unordered collections, the indexing takes no meaning and is not
applicable (an exception will occur):

>>> m = set(range(10))

>>> m[2]

Traceback (most recent call last):

 File "<input>", line 1, in <module> TypeError: 'set' object

does not support indexing

 We can use for cycle to get all elements of a set sequentially, but we cannot rely on
any specific order while iterating:

m = {5, 7, 9}

Sets | FITPED

146

for e in m:

 print(e, end=' ')

One of possible outputs: 7 5 9

📝 10.1.12

Study this short program using a set called vowels:

vowels = set('aeiouy')

print(len(vowels))

print(vowels)

 Check all statements that are true for sure.

• The len(vowels) returns 6.
• The index of the last element is len(vowels)-1.
• The set’s elements were printed out in same order as they are specified

within the set() argument.

10.2 Sets (programs)

⌨ 10.2.1 Simple Webmining

Users repeatedly log into a system from different IP addresses. We are interested in
how many different IP addresses it was.

The input file contains in separate lines the IP addresses obtained from a server log
file.

Use the set structure in your solution.

Input : logfile1.txt

Output: 7

logfile1.txt:

62.197.192.174

217.144.26.164

188.167.21.237

178.41.131.165

178.41.131.165

62.197.192.174

Sets | FITPED

147

91.127.210.43

217.144.26.164

176.101.176.92

88.80.227.82

88.80.227.82

88.80.227.82

⌨ 10.2.2 Simple Webmining II.

Users repeatedly log into a system from different IP addresses. Find out the
number of IP addresses from which there was only one access to the system.

The input file contains in separate lines the IP addresses obtained from a server log
file.

Use the set structure in your solution.

Input : logfile1.txt

Output: 3

logfile1.txt:

62.197.192.174

217.144.26.164

188.167.21.237

178.41.131.165

178.41.131.165

62.197.192.174

91.127.210.43

217.144.26.164

176.101.176.92

88.80.227.82

88.80.227.82

88.80.227.82

⌨ 10.2.3 Union and Intersection

Print out the sets that represent the union and intersection of 2 non-empty input
sets of integers.

Be careful and always print out each set's elements in ascending order!

Input : 1 2 3 4

1 2 5

Output: 1 2 3 4 5

Sets | FITPED

148

1 2

Input : 1 2 3 4

5

Output: 1 2 3 4 5

empty set

⌨ 10.2.4 Contest

The input set contains names of students who participated in the competition.

Remove all participants whose name begins with the specified string.

Print out a string containing names of all students who remained in the set.

Be careful and always print out each set's elements in ascending order!

Input : Peter Paul John Patrick Paula

Pa

Output: John Peter

Input : Amanda Ashly Aurel Barbara Betty Billy

xzy

Output: Amanda Ashly Barbara Aurel Billy Betty

⌨ 10.2.5 Brainstorming

Two teams were suggesting names for their software product. Their ideas were
stored in input sets.

Print out all such ideas that were unique to the individual teams (no one from the
other team did not propose the same name).

Be careful and always print out each set's elements in ascending order!

Input : Miranda Priscilla Penelope

Antonia Eugenia Felicia Miranda Octavia Penelope Fabia

Priscilla

Output: Antonia Eugenia Fabia Felicia Octavia

Input : Flip Flop Flap

Flip Flop Flap FantasticEd

Output: FantasticEd

Sets | FITPED

149

⌨ 10.2.6 Vowels in a Word

Write a function that returns number of different vowels (a, e, i, o, u, y) contained in
the input word.

Use the set structure in your solution.

Input : ukulele

Output: 2

Input : lalalala

Output: 1

⌨ 10.2.7 Cartesian Product

Write function cartesian_product (a, b), which returns the Cartesian product of two
sets containing integer numbers - set of all ordered pairs (tuples) whose first
element is from the set a and the second component from the set b.

Be careful when printing the output. It must be a string with elements of the
resulting set sorted in ascending order!

Input : 1 2 3

5 6

Output: (1, 5) (1, 6) (2, 5) (2, 6) (3, 5) (3, 6)

Input : 2

4 6 8 10

Output: (2, 4) (2, 6) (2, 8) (2, 10)

Dictionaries

Chapter 11

Dictionaries | FITPED

151

11.1 Dictionaries

🕮 11.1.1

Another useful data type built into Python is the dictionary.

Dictionaries are sometimes found in other languages as associative arrays. Unlike
sequences, which are indexed by a range of numbers, dictionaries are indexed by
keys, which can be any immutable type (typically strings or numbers).

It is best to think of a dictionary as an unordered set of key: value pairs, with the
requirement that keys are unique.

A pair of braces creates an empty dictionary:

>>> d = {}

>>> d

{}

>>> type(d)

<class 'dict'>

>>> len(d)

0

The dict() constructor can be used to create an empy dictionary as well:

>>> dict()

{}

Remeber, {} is not an empty set.

Placing a comma-separated list of key:value pairs within the braces adds initial
key:value pairs to the dictionary.

Let us create a translation dictionary (from English to Slovak), e. g.:

>>> d = {'mother': 'matka', 'father':'otec', 'house': 'dom',

'car': 'auto'}

>>> d

{'mother': 'matka', 'father': 'otec', 'house': 'dom', 'car':

'auto'}

📝 11.1.2

Match the examples of dictionaries with correct types of keys and values.

Dictionaries | FITPED

152

Example A

In this dictionary, words are mapped to their frequencies in a document:

a = {'and': 10, 'you': 12, 'meeting': 2 }

Example B

In this dictionary, we associate sequences of test results with names of students:

b = {'Peter': [100,75, 99], 'Martin': [77,75, 77]}

Example C

The ids of cards and their owners are saved in the dictionary as key:value pairs:

c = {728: 'Peter Carrot', 27: 'John Cabbage', 140: 'Andrea

Plum'}

• key is a string, value is a list
• key is a string, value is an int
• key is an int, value is a string

🕮 11.1.3

The dict() constructor builds dictionaries also from sequences of key:value pairs:

my_list = [('mother', 'matka'), ('father', 'otec'), ('house',

'dom'), ('car', 'auto')]

d = dict(my_list)

print(d)

{'mother': 'matka', 'father': 'otec', 'house': 'dom', 'car':

'auto'}

In addition, dict comprehensions can be used to create dictionaries from arbitrary
key and value expressions, e. g.:

Dictionaries | FITPED

153

d = {x: x**2 for x in (2, 4, 6)}

print(d)

{2:4, 4:16, 6:36}

When keys are simple strings, it is sometimes easier to specify pairs using keyword
arguments:

d = dict(Michael=77, Peter=66, Patrick=82)

print(d)

{'Michael':77, 'Peter':66, 'Patrick':82}

📝 11.1.4

Match the lines of code with resulting dictionaries.

>>> {x:random.randrange(x) for x in range(1,5)}

>>> dict(A=1, B=1.5, C=2, D=2.5, E=3, FX=4)

>>> dict([(2,'bin'),(8,'oct'), (16, 'hex')])

• {2: 'bin', 8: 'oct', 16: 'hex'}
• {'A': 1, 'B': 1.5, 'C': 2, 'D': 2.5, 'E': 3, 'FX': 4}
• {1: 0, 2: 0, 3: 2, 4: 3}

🕮 11.1.5

The main operations on dictionaries are

• storing a value with some key,
• extracting the value for a given key,
• deleting a key:value pair.

Let us work with a translation dictionary again:

>>> d = {'mother': 'matka', 'father':'otec'}

>>> d['child'] = 'dieta'

>>> d

Dictionaries | FITPED

154

{'mother': 'matka', 'father': 'otec', 'child':'dieta'}

With the assignement d['child']= 'dieta', we added a new key:value pair to the
dictionary.

If you store using a key that is already in use, the old value associated with that key
is forgotten:

>>> d['child']= 'dieťa'

>>> d

{'mother': 'matka', 'father': 'otec', 'child':'dieťa'}

We access values using their keys:

>>> d['mother']

matka

It is an error to extract a value using a non-existent key:

>>> d['dog']

Traceback (most recent call last): File "<input>", line 1, in

<module>

KeyError: 'dog'

To check whether a single key is in dictionary, use the in keyword:

if 'dog' in d:

 print(d['dog'])

Or the KeyError might be useful:

word = input()

try:

 print(d[word])

except KeyError:

 print('Sorry, no such word in dictionary!')

📝 11.1.6

The results of an exam were saved in this dictionary:

t = dict(A=10, B=12, C=8)

t['D']= 9

t['FX'] = 2

Match the following statements and expressions with correct results.

Dictionaries | FITPED

155

print(t)

t['C']

'FX' in t

t['X']

• { 'A':10, 'B':12, 'C':8, 'D':9, 'E':4, 'FX':2}
• True
• 45
• 8
• KeyError

🕮 11.1.7

Sometimes, we need to remove a key:value pair from a dictionary:

>>> d = {'mother': 'matka', 'father':'otec', 'car': 'auto'}

>>> d.pop('mother')

'matka'

>>> d

{'father': 'otec', 'car': 'auto'}

The pop() method removes the value associated with a given key and returns the
value.

Also, the del operator is applicable:

>>> d = {'mother': 'matka', 'father':'otec', 'car': 'auto'}

>>> del d['mother']

>>> d

{'father': 'otec', 'car': 'auto'}

In both cases, the KeyError exception is raised if the given key does not exist.

For removing all pairs at once, the clear() method can be used:

Dictionaries | FITPED

156

>>> d.clear()

>>> d

{}

📝 11.1.8

Select all true statements:

• The pop() method returns an arbitrary value from a dictionary.
• When using del, the KeyError exception might be raised.
• The clear() method makes the dictionary empty.

🕮 11.1.9

Sometimes, it is better to use the get() method for getting a value that is associated
with a given key.

Compare the following situations:

>>> d = {'Slovakia': 'Bratislava', 'Austria': 'Vienna'}

>>> d['Slovakia']

'Bratislava'

>>> d.get('Slovakia')

'Bratislava'

The key is in the dictionary, so the corresponding value was returned.

>>> d = {'Slovakia': 'Bratislava', 'Austria':'Vienna'}

>>> d['Hungary']

Traceback (most recent call last): File "<input>", line 1, in

<module>

KeyError: 'Hungary'

>>> print(d.get('Hungary'))

None

The get() method did not raise a KeyError, the None value was returned.

When calling the get() method, we can specify a default return value as the second
parameter (for the case of key non-existence):

>>> d.get('Hungary', '?')

'?'

Dictionaries | FITPED

157

📝 11.1.10

Execute the following lines of code for 2 different user inputs (first 'C', then 'B').

Match the user inputs with the resulting status of the t dictionary.

t = { 'A': 10, 'C': 8, 'D': 9, 'E': 4, 'FX': 2}

x = input('next student’s result:')

t[x] = t.get(x, 0) + 1

print(t)

x == 'C'

x == 'B'

• { 'A':10, 'B':0, 'C':8, 'D':9, 'E':4, 'FX':2}
• { 'A':10, 'B':1, 'C':8, 'D':9, 'E':4, 'FX':2}
• { 'A':10, 'C':9, 'D':9, 'E':4, 'FX':2}

🕮 11.1.11

Besides retrieving a value using its key, we can get all keys, values or key:values
pairs (items) and iterate through them easily:

t = {'A': 10, 'B': 1, 'C': 8, 'D': 9, 'E': 4, 'FX': 2}

print(t.keys())

print(t.values())

print(t.items())

The Output:

dict_keys(['A', 'B', 'C', 'D', 'E', 'FX'])

dict_values([10, 1, 8, 9, 4, 2])

dict_items([('A', 10), ('B', 1), ('C', 8), ('D', 9), ('E', 4),

('FX', 2)])

All the returned objects seen above are iterable:

for k in t.keys():

 print(k, end=' ') # A B C D E FX

Dictionaries | FITPED

158

for v in t.values():

 print(v, end=' ') # 10 1 8 9 4 2

for k, v in t.items():

 print(k, v)

The Output:

A 10

B 1

C 8

D 9

E 4

FX 2

The same output as above could be produced also like this:

for k in t:

 print(k, t[k])

The returned values of calling the keys(), values() or items() can be converted to
a list.

Performing list(d.keys()) on a dictionary d returns a list of all the keys used in the
dictionary, in arbitrary order.

In case we need it sorted, just use sorted(d.keys()) instead.

📝 11.1.12

Consider a dictionary in which key words and number of their occurrences in
a source file are saved:

d = {'and':10, 'for':2, 'if':8}

Complete the for cycle in order to output all pairs from dictionary on a console:

for k, v in _____:

 print(k, v)

🕮 11.1.13

A dictionary can be an element of a list as well as a value in another dictionary, e.
g.:

Dictionaries | FITPED

159

s1 = {'name': 'Paul Carrot', 'address': {'Street': 'Long',

'number': 13,'city': 'Nitra'} }

s2 = {'name': 'Peter Pier', 'address': {'Street': 'Short',

'number': 21, 'city': 'Nitra'} }

s3 = {'name': 'Patrick Nut', 'address': {'Street': 'Deep',

'number': 77, 'city': 'Nitra'} }

students = [s1, s2, s3]

 We created a list with 3 elements – dictionaries.

 The students[0] element is a dictionary containing 2 key:value pairs:

>>> students[0]['name']

Paul Carrot

>>> students[0] ['address']

{'street': 'Long', 'number': 13, 'city': 'Nitra'}

 The value associated with 'address' key is a dictionary with its own keys:

>>> students[0]['address']['street']

Long

>>> students[0]['address']['number']

13

>>> students[0]['address']['city']

Nitra

📝 11.1.14

Print out the year of a person’ birth:

person = {'name': 'Mathew', 'birthday': {'day': 12,'month':

3,'year': 2000}}

print(person['birthday']_____)

🕮 11.1.15

In Python, keyword arguments are used very often when calling functions:

>>> a = [720, 1006, 2001, 77, 1555, 5002]

>>> sorted(a, key = lambda x: x % 10, reverse = True)

[77, 1006, 1555, 5002, 2001, 720]

The a list was sorted according to last digits of the elements, in descending order
(parameters named key and reverse were used).

Dictionaries | FITPED

160

When using keyword arguments, we are not required to specify them in a function
call (they are optional). In such cases their default values are used, e. g.:

>>> sorted(a, key = lambda x: x % 10)

[720, 2001, 5002, 1555, 1006, 77]

Default value for the reverse argument is False.

We also do not need to remember any specific order of keywords arguments for
functions as they are identified with keywords, e. g.:

>>> sorted(a, reverse = True, key = lambda x: x % 10)

[77, 1006, 1555, 5002, 2001, 720]

The keyword arguments were written in another order, but output is the same.

🕮 11.1.16

What about writing functions having keywords arguments?

If there is a specific number of them, we just enumerate them using pairs of
keywords and default values (after the last positional argument with no default
value), e. g.:

def my_print(item, price=0, available=True):

 print(f'The {item} costs {price} Eur ', end ='')

 if available:

 print('and is available.')

 else:

 print('but is not available.')

Now, we call the function in various ways, watch the commented outputs:

my_print('T-Shirt')

The T-Shirt costs 0 Eur and is available.

my_print('Calendar', price=1.5, available=False)

The Calendar costs 1.5 Eur but is not available.

my_print('Hat', price=12)

The Hat costs 12 Eur and is available.

Dictionaries | FITPED

161

🕮 11.1.17

But what if we do not know the number of keyword arguments in advance or if there
are too many of them?

This situation can be solved easily using the keyword argument packing:

Notice, the ** before the features parameter:

def my_print(item, **features):

 print(f'{item}:')

 for k, v in features.items():

 print(k, v)

The features parameter is a dictionary. We can call its items() method and print out
the pairs of keys and values.

Be careful and do not rely on any specific order as dictionaries are unordered
collections.

Now, we can call the function my_print() with arbitrary number of keyword=value
pairs. They will be packed into a dictionary.

my_print('T-Shirt', color='red', price=10, available=False,

size='XL')

The Output:

T-Shirt:

color red

price 10

available False

size XL

The ** operator serves also for unpacking the keyword arguments from a dictionary
within a function call:

d = {'color':'blue','price':10,'size':'M'}

my_print('T-Shirt',**d)

The Output:

T-Shirt:

color blue

price 10

size M

Dictionaries | FITPED

162

📝 11.1.18

What would be the output of calling this function?

def f(**d):

 print(type(d), end='')

 print(d)

f(name='Peter', age=12)

• <|class 'dict'> {'name': 'Peter', 'age': 12}
• <|class 'dict'> {name: 'Peter', age: 12}
• <|class 'list'> [('name', 'Peter'), ('age', 12)]

11.2 Dictionaries (programs)

⌨ 11.2.1 Frequency Analysis

Analyze text that is stored in the input string. Use the dictionary structure
effectively.

Print out:

• number of different characters found in the text
• sequence of those different characters arranged in ascending order
• number of different characters that appear more than once in the text
• number of occurrences of the specified character

First, the text string is given, Next, one character whose frequency we are interested
in follows.

Input : aaabcccccdeee

a

Output: 5

a,b,c,d,e

3

3

Input : xyz

p

Output: 3

x,y,z

Dictionaries | FITPED

163

0

0

⌨ 11.2.2 Translator

Our program already contains a dictionary for easy translation of words from
English to Slovak. Do not change its content!

Finish the program like this:

Read and translate the input sentence. The sentence is defined as a sequence of
English words written in lowercase letters. The word separator is always a space.

If any of the English words is not in the dictionary, print it in uppercase.

Input : your hat is big

Output: tvoj klobuk je velky

Input : my dog is happy

Output: moj pes je stastny

Input : his cat is nice

Output: HIS CAT je pekny

file1.py
do not modify this line:

d = {'my': 'moj', 'dog': 'pes', 'hat': 'klobuk', 'is': 'je',

'nice': 'pekny', 'your': 'tvoj', 'happy': 'stastny',

 'father': 'otec', 'boy':'chlapec', 'big':'velky', 'and':

'a'}

write your code here:

⌨ 11.2.3 Chemical Calculator

Complete the program to calculate mass of a chemical compound given by its
chemical formula.

Chemical element weights are saved in a text file named elements.csv (we are
interested in the chemical element symbol, which is the second piece of data and
the molecular weight of its atom, which is the last piece of data within the same
line):

Dictionaries | FITPED

164

elements.txt:

Hydrogen,1,H,1.01

Helium,2,He,4.00

Lithium,3,Li,6.94

Beryllium,4,Be,9.01

Boron,5,B,10.81

Carbon,6,C,12.01

Nitrogen,7,N,14.01

Oxygen,8,O,16.00

...

Use dictionary to store masses of the chemical elements.

Read the formula of a compound from the input and print out the molecular mass
of its molecule.

For simplicity, we use the dot symbol as a separator in a formula notation, for
example:

H2SO4 (sulfuric acid) is written as H2.S.O4

To calculate the mass of sulfuric acid, we must add 2x the mass of the hydrogen
atom (H), 1x the mass of the sulfur atom (S) and 4x the mass of the oxygen atom
(O).

If the formula notation cotains an element symbol that does not exist (it is not in
our table), print out an error message.

Input : H2.O

Output: 18.02

Input : C.O2

Output: 44.01

Input : Hi3

Output: error

Input : H2.S.O4

Output: 98.08

start.py
write your code here (complete the follwing program

correctly):

def read_input_file():

 d = {}

Dictionaries | FITPED

165

 # process the input text file named 'elements.csv'

 return d

def count_molecule_mass(formula):

 result = 0.0

 # process the formula given as a string (e. g. 'H2.0' ,

'H2.S.O4' etc.)

 return round(result, 2)

main program

table = read_input_file()

formula = input()

print(count_molecule_mass(formula))

⌨ 11.2.4 Morse Code

A dictionary table is automatically prepared and filled with data from the input file
morse.csv.

In this dictionary, Morse codes are associated with corresponding capital letters of
the English alphabet and digits. Letters or digits are the keys, sequences of dots
and commas represents the values.

Program the get_message () function with 2 parameters: a dictionary mentioned
above and a message written in the Morse code. This function must result in
decoded message.

In the morse input parameter, we use spaces as delimeters of codes. You can
assume, that all messages are one-word.

Input : ... --- ...

Output: SOS

Input : . ..- .-. --- .--. .

Output: EUROPE

morse.csv:

A,.-

B,-...

C,-.-.

D,-..

E,.

F,..-.

G,--.

H,....

Dictionaries | FITPED

166

I,..

J,.---

K,-.-

L,.-..

M,--

N,-.

O,---

P,.--.

Q,--.-

R,.-.

S,...

T,-

U,..-

V,...-

W,.--

X,-..-

Y,-.--

Z,--..

0,-----

1,.----

2,..---

3,...--

4,....-

5,.....

6,-....

7,--...

8,---..

9,----.

⌨ 11.2.5 Access Codes

Employees in a company have got their identification numbers (positive integers).

In order to permit access to a specialized laboratory to a person, an access code
must be assigned to him/her.

In the input file, pairs of data are stored on each line: employee identification
number and his/her access code. Save this data in a dictionary.

Next, read an identification number from the input and cancel access to the lab for
all employees whose identification number is equal or greater than or to the
specified one.(remove all relevant key-value pairs from dictionary).

After updating the dictionary, print out the largest access code that is present in the
dictionary (is assigned to an employee).

Dictionaries | FITPED

167

If the dictionary is empty after deleting elements, print out an 'error' message.

Input : 101

Output: 6955

Input : 10

Output: error

Input : 201

Output: 8541

access_codes.csv

101,5303

10,6955

45,6810

126,8541

201,5881

261,5753

357,2277

156,6559

530,9979

203,8698

⌨ 11.2.6 Divisors

For a given natural number n, generate a dictionary for saving all divisiors of all
numbers from interval <1, n>.

Output the entire dictionary. Divisiors are in ascending order.

Input : 4

Output: {1: [1], 2: [1, 2], 3: [1, 3], 4: [1, 2, 4]}

Input : 7

Output: {1: [1], 2: [1, 2], 3: [1, 3], 4: [1, 2, 4], 5: [1,

5], 6: [1, 2, 3, 6], 7: [1, 7]}

