

Python Fundamentals

Published on

November 2021

Authors

Kornel Chromiński | University of Silesia in Katowice, Poland

Ľubomír Benko | Constantine the Philosopher University in Nitra, Slovakia

Zenón José Hernández-Figueroa | University of Las Palmas de Gran Canaria, Spain

José Daniel González-Domínguez | University of Las Palmas de Gran Canaria, Spain

Juan Carlos Rodríguez-del-Pino | University of Las Palmas de Gran Canaria, Spain

Jan Přichystal | Mendel University in Brno, Czech Republic

Reviewers

Jozef Kapusta | Pedagogical University of Cracow, Poland

Peter Švec | Teacher.sk, Slovakia

Eugenia Smyrnova-Trybulska | University of Silesia in Katowice, Poland

Piet Kommers | Helix5, Netherland

Graphics

Ľubomír Benko | Constantine the Philosopher University in Nitra, Slovakia

David Sabol | Constantine the Philosopher University in Nitra, Slovakia

Erasmus+ FITPED

Work-Based Learning in Future IT Professionals Education

Project 2018-1-SK01-KA203-046382

The European Commission support for the production of this publication does not
constitute an endorsement of the contents which reflects the views only of the authors,
and the Commission cannot be held responsible for any use which may be made of
the information contained therein.

Licence (licence type: Attribution-Non-commercial-No Derivative Works) and may be
used by third parties as long as licensing conditions are observed. Any materials
published under the terms of a CC Licence are clearly identified as such.

All trademarks and brand names mentioned in this publication and all trademarks and
brand names mentioned that may be the intellectual property of third parties are
unconditionally subject to the provisions contained within the relevant law governing
trademarks and other related signs. The mere mention of a trademark or brand name
does not imply that such a trademark or brand name is not protected by the rights of
third parties.

© 2021 Constantine the Philosopher University in Nitra

ISBN 978-80-558-1783-5

Table of Contents

1 Python as Programming Language.. 6

1.1 Python as a programming language .. 7

1.2 Python as a programming language - programs .. 9

2 Types .. 10

2.1 Int, float, str values, type() ... 11

2.2 Int, float, str - operations ... 14

2.3 Types - programs ... 17

3 Variables ... 19

3.1 Variables ... 20

3.2 Variables - programs ... 23

4 Input and Output .. 24

4.1 The print() command ... 25

4.2 The input() command .. 27

4.3 Input and output - programs ... 28

5 Comments .. 30

5.1 Comments .. 31

5.2 Comments - programs ... 32

6 Operators and Functions ... 33

6.1 Type casting ... 34

6.2 Assignment operators ... 35

6.3 Standard functions .. 36

6.4 Multiple assignment .. 38

6.5 Operators and functions - programs .. 39

7 Formatted Output .. 40

7.1 Formatted output ... 41

7.2 Formatted Output - programs ... 43

8 Logic Expression .. 44

8.1 Bool, logic expressions.. 45

8.2 Logic Expression - programs .. 47

9 If Command.. 49

9.1 If - else ... 50

9.2 If - elif - else .. 51

9.3 If ... 52

9.4 If command - programs ... 54

10 Range .. 57

10.1 The range() function .. 58

10.2 The reversed() function ... 59

11 Loops .. 61

11.1 For - in range() .. 62

11.2 For - in values ... 63

11.3 For - in string... 65

11.4 Cycles - programs .. 66

12 Modules .. 68

12.1 Import .. 69

12.2 Random ... 72

12.3 Modules - programs .. 73

13 Loops II. .. 74

13.1 Break and continue .. 75

13.2 Nested cycles ... 76

13.3 Cycles II - programs ... 77

14 While ... 79

14.1 While .. 80

14.2 While true .. 81

14.3 While - programs .. 83

15 Functions .. 84

15.1 Functions without parameters ... 85

15.2 Functions without parameters (programs) ... 87

15.3 Local and global variables with functions .. 89

15.4 Functions with parameters ... 93

15.5 Functions with parameters (programs) .. 96

15.6 Function arguments... 100

15.7 Functions - the return statement .. 102

15.8 Functions - the return statement (programs) ... 106

15.9 Recursive function ... 109

15.10 Docstrings .. 114

16 Namespaces .. 119

16.1 Namespaces... 120

17 Strings... 125

17.1 Introduction to Strings... 126

17.2 Strings (programs) ... 129

17.3 String operations.. 132

17.4 String operations (programs) ... 136

17.5 String functions .. 138

17.6 String functions (programs) ... 145

Python as Programming
Language

Chapter 1

Python as a Programming Language | FITPED

7

1.1 Python as a programming language

🕮 1.1.1

Python is a scripted, interpreted programming language. In Python, we write a script
that is interpreted by an interpreter.

Python was created in the 90s, the name of the language comes from the series
"Monty Python’s Flying Circus". Python is a free high-level programming language
with open source code and an extensive standard library package. Its main idea is
the clarity and readability of the code. Python supports various programming
paradigms, such as object-oriented, imperative, and functional. It has a dynamic file
system and automatic memory management.

Python is an easy-to-use language due to the use of keywords similar to words in
English, and the programs written in it are shorter than their equivalent created in
C++ or Java. Programs written in Python are platform-independent, work equally
well on portable devices, home computers (regardless of what operating system we
have) or supercomputers.

The current version of Python can be downloaded from the language page
(http://python.org)

🕮 1.1.2

Python comes with an integrated IDLE programming environment. The development
environment is a set of tools that make writing programs easier.

In addition to the built-in IDLE environment, there is also a large number of
independent programming environments for writing programs in Python.

Examples include:

• PyCharm,
• Spyder,
• PyScripter,
• Anaconda,
• Pydev.

The choice of programming environment depends on the programmer's
preferences.

Python as a Programming Language | FITPED

8

📝 1.1.3

Python is a language:

• interpreted
• compiled

🕮 1.1.4

To start writing in Python, we need to run one of the development environments, it
can be built-in (Python IDLE).

The window that appears gives us access to PythonShell, we can directly enter and
execute Python code in it (of course, you can also create your own scripts
separately and run them as a whole).

We start to type commands at the prompt:

>>>

For example, enter the following at the prompt:

print("Hello in Python World")

And press enter. This is how you wrote the first Python program to display a
greeting. The print command is used to display on the screen.

Note in Python, the size of letters is important, if we change the letter p to P, the
program will not recognize the command, the result will be an error (can try to make
changes).

📝 1.1.5

In PythonShell, we start to write after:

📝 1.1.6

In Python, the case of the letters in commands is not important.

• True
• False

Python as a Programming Language | FITPED

9

1.2 Python as a programming language - programs

⌨ 1.2.1 First Program

Run a script with output

Hello world

⌨ 1.2.2 Hello

Complete the code so that the message "Hello + Your name" will be displayed

⌨ 1.2.3 Subtracting numbers

Complete the program so that the result of its operation returns the difference of
the numbers given on the input.

E.g.:

Input : 9 5

Output: 4

Types

Chapter 2

Types | FITPED

11

2.1 Int, float, str values, type()

🕮 2.1.1

Python is a language with dynamic type control, which means that there is no need
to define data types in Python.

Python will determine what type of data it is dealing with based on what values the
user or programmer will enter.

• 4 - will be interpreted as an integer
• 4.0 - will be interpreted as a floating point number
• "4" - will be interpreted as a string

🕮 2.1.2

The most commonly used data types are:

Numeric types:

• float - floating point numbers (equivalent to double from C or Java)
• integer - integers
• long integer - integers limited (to the range of numbers) to system resources

Sequential types:

• string - represented by single or double quotation marks ('' or "") e.g. 'Python'
• list - a sequence of data, not necessarily of one type (equivalent to arrays,

except that the data does not have to be of one type) e.g. [1, 2.3, "Python"]
• tuple - works like a letter, except that the data saved cannot be modified, e.g.

(1, 2.3, "Python")
• dictionary - a list of elements indexed using keys (key-value pairs) e.g.

{"first": "1", "second": "2"}

Logical Type

• bool - takes one of two values True or False

📝 2.1.3

Floating point numbers in Python are stored as a type:

• float

Types | FITPED

12

• double
• integer
• long

📝 2.1.4

Indicate the correct creation of dictionary entries:

• {"key1": 3, "key2": 4, 'key3': 5}
• ["key1": 3, "key2": 4, 'key3': 5]
• {"key1" - 3; "key2" - 4; 'key3' - 5}
• [{key1, key2,key3}:{1,2,3}]

📝 2.1.5

Complete the entry so that the data presented is a list:

_____ 2.35, 5.54, 8.98_____

🕮 2.1.6

As part of character strings, we also have special symbols preceded by "\", they are
used to insert special characters such as tabs or newlines. The most popular are:

• \\ - displays one backslash
• \' - single quotation mark
• \" - double quotation marks
• \a - call the system bell (alarm)
• \n - newline character, moves the cursor to begin of newline
• \t - tab

For example:

>>> print("We start \nlearning \t\'Python\'")

We start

learning 'Python'

📝 2.1.7

To insert a tab into a string, you should type:

Types | FITPED

13

📝 2.1.8

Insert the appropriate symbols into the Python code so that you get the following
text:

 I am a

'Python'

 programmer

print("_____ I am a_____ _____ Python

_____ _____ _____ programmer")

🕮 2.1.9

The type() function is one of the built-in Python functions, we can use it to return
information about the type of value. For example, invoking a command:

>>>type(4)

Will return to us:

<class 'int'>

So the entered value is treated as an integer.

And the command

>>>type("Python")

Will return to us:

<class 'str'>

So the entered value is treated as a string

📝 2.1.10

What will return the command:

type(2.31)

• <|class 'float'>
• <|class 'double'>

Types | FITPED

14

• <|class 'integer'>
• <|class 'number'>

📝 2.1.11

Insert the appropriate operator so that the result returned by the code below is
correct:

>>> 5 _____ 5

3125

2.2 Int, float, str - operations

🕮 2.2.1

Python allows you to perform arithmetic operations on both numeric and text
values.

The following operations are available for numerical data:

• Adding two values (the '+' symbol)

>>>3 + 4

7

>>>3.0 + 4.5

7.5

• Subtraction of values (symbol ' -')

>>>4-3

1

>>>4.0-3.5

0.5

• Multiplying values (the '*' symbol)

>>> 4*3

12

>>> 4.0 * 3.0

12.0

• Division of floating values (the symbol '/')

Types | FITPED

15

>>> 4/2

2

>>> 2/4

0.5

• Division of integer values

>>>4//2

2

>>> 2//4

0

• Modulo operation - the rest of the division (symbol '%')

>>> 4%3

1

• Exponentiation (power, symbol '**')

>>> 2**4

16

📝 2.2.2

To get the remainder of dividing two numbers, use the operator

• %
• **
• /
• &

📝 2.2.3

Enter a value that is the result of the Python code presented below

5 // 2

📝 2.2.4

Insert the appropriate operator so that the result returned by the code below is
correct:

>>> 5 _____ 5

Types | FITPED

16

3125

🕮 2.2.5

Python as a calculator - an example:

>>> (((2*3)+6)/4)+8-6*(3%2)

5.0

📝 2.2.6

In Python, the result of dividing two integers is also an integer.

• False
• True

🕮 2.2.7

Python lets you perform operations on a string type

You can use the operator '+' (string + string) to connect strings

>>> "Learn" + "Python"

'Learn Python'

To multiply strings we will use the operator '*' (string * how many times)

>>> "Python" * 3

'PythonPythonPython'

📝 2.2.8

What will be the result of the code execution:

'a'*3+'b'

• 'aaab'
• Error
• 'a3b'
• 'ababab'

Types | FITPED

17

2.3 Types - programs

⌨ 2.3.1 Data type

Complete the code so that it displays the data type stored in variable a.

⌨ 2.3.2 Subtracting numbers

Complete the program so that the result of its operation returns the difference of
the numbers given on the input.

For example:

Input : 9 5

Output: 4

⌨ 2.3.3 Raising to a power

Complete the program so that the power of the numbers given at the input is
returned as a result of its operation.

E.g.

Input : 2 2

Output: 4

⌨ 2.3.4 Division

Complete the program so that the total value from division is returned as the result
of its operation, and the rest from the division of the numbers given at the input.

E.g.

Input : 5 2

Output: 2 1

⌨ 2.3.5 Average speed

Write a program that calculates the average speed of the car based on the length of
the route and travel time.

Types | FITPED

18

E.g.

Input : 300 3.0

Output: 100

⌨ 2.3.6 Average fuel consumption

Write a program that calculates the average fuel consumption per 100 km based on
the given route length and total fuel consumption.

E.g.

Input : 100 5.0

Output: 5.0

⌨ 2.3.7 Triangle area

Write the code that calculates the area of the triangle based on the height and base
length provided and writes it to the variable c

Variables

Chapter 3

Variables | FITPED

20

3.1 Variables

🕮 3.1.1

Variables are simply a separate space in the computer's memory where data can be
stored.

Variables have their unique name set by the programmer.

In Python, you don't need to specify the type of data you want to store in a variable.
Creating a variable is based on assigning a value to it.

📝 3.1.2

In Python, it is necessary to provide the type of data that will be stored in the
variable at the stage of its declaration

• False
• True

🕮 3.1.3

To assign a value to a variable use the operator '='.

On the left side of the operator is the element to which we assign the value, on the
right the value.

The assigned value can be either a direct value (e.g. number), or the value of
another variable, or the result of a mathematical or logical operation.

#creating a new variable

var_1 = 4

var_2 = ‘Python’

var_3 = 3 + 4

var_5 = var_1 + var_3

📝 3.1.4

Which of the following is the correct version of the variable declaration in Python.

• var = 4.5
• var(4.5)

Variables | FITPED

21

• var <|> 4.5
• var ~ 4.5

📝 3.1.5

Is the following variable declaration correct:

var_1 = 5

var_3 = 3

var = var_1 ** var_3

• Yes
• No

🕮 3.1.6

Variable names can be anything, but there are a few rules for the naming of
variables:

• the first character must be the letter of the alphabet (lowercase or
uppercase) or the underscore character '_'. Letters from alphabets of
different languages may also be used (this is not recommended)

#it can be

number

_number

Number

not allowed

9Number

• the rest of the variable name may consist of letters, underscore '_', and
numbers

Number_1

number_Second

• variable names are case sensitive, the variables 'myvariable' and 'Myvariable'
are two different variables

Number ≠ number

Variables | FITPED

22

• the variable cannot exist without a value

>>>number = 4

• variable names cannot be the same as Python keywords

>>> True = 3

SyntaxError: can't assign to keyword

📝 3.1.7

Which of the following variable names are correct:

• _4num
• num
• num4
• n_u_m
• #num
• 5num

📝 3.1.8

In Python, the case of variable names is not important. "NUMBER" and "number" are
the same variables.

• False
• True

🕮 3.1.9

Using the type() function, you can check what type of value is currently stored in the
variable:

>>> number = 3

>>> type(number)

<class 'int'>

>>> string = 'Python'

>>> type(string)

<class 'str'>

Variables | FITPED

23

📝 3.1.10

Calling the command type(2) returns:

• <|class 'int'>
• <|class 'num'>
• Error
• <|class 'float'>

🕮 3.1.11

📝 3.1.12

Which of the following variable names are correct:

• _4num
• num
• num4
• n_u_m
• #num
• 5num

3.2 Variables - programs

⌨ 3.2.1 Variables

Declare variable a and assign the value 3.14 to it.

⌨ 3.2.2 Variable error

Correct the code so that the program starts.

Input and Output

Chapter 4

Input and Output | FITPED

25

4.1 The print() command

🕮 4.1.1

The print() function is used to display the value given in bracket

>>>print(5)

5

>>>var = ‘Python’

>>>print(var)

Python

We separate the next values to display with a comma

>>>string = 'apple'

>>>print('I have ', 3, string)

I have 3 apple

📝 4.1.2

Write the command displaying the value of variable var

>>>var = 5

>>>_____

📝 4.1.3

In the print() command, to display the values of several variables, separate them
with the character:

• ,
• ;
• +
• &

📝 4.1.4

What will be the result of the following command:

print(3*'a')

• 'aaa'

Input and Output | FITPED

26

• '3a'
• TypeError: unsupported operand
• 'a'

🕮 4.1.5

In the print() function we can also put mathematical operations

>>>a=15

>>>b=10

>>>print(a+b)

25

>>>print((a*b)-a)

135

📝 4.1.6

Complete the code so that the displayed result will be correct:

>>> a = 6

>>> b = 7

>>> print((b _____ a)*_____)

2

🕮 4.1.7

The print function can take additional parameters

print(*values, sep=' ', end='\n')

• sep - to set the separator between entered values to display (default
separator is space),

>>>print('Python','is', 'the', 'best', sep=' ')

Python is the best

>>>print('Python', 'is', 'the', 'best', sep=',')

Python,is,the,best

• end - to set the end of display character (default - newline character)

Input and Output | FITPED

27

print('Python', end=' ')

print('is the best', end = ' ')

Python is the best

📝 4.1.8

For the code below to display the string in the following way, what need we enter
the in the print command:

>>> print('a','b','c = 10')

'a*b*c = 10'

• sep = '*'
• end = '*'
• sep = *
• end = *

📝 4.1.9

Complete the following code so that the result of its operation will be correct:

print('value of a ', _____)

print(33)

value of a =33

4.2 The input() command

🕮 4.2.1

The input() function is used to enter data by the user

>>>print('Enter the number:')

>>>a = input()

>>>print(a)

Inside the brackets of the input() function, we can put commands for the user

>>>a = input('Enter the number:')

The value read in using the input() function is treated as a string

Input and Output | FITPED

28

>>>a = input('Enter the number:')

>>>type(a)

<class 'str'>

📝 4.2.2

Indicate the correct version of input()

• a = input()
• input(a)
• input('value of ', a)

📝 4.2.3

What type of value is read using the input() command

• string
• depends on the value we give
• type is set as the command parameter

4.3 Input and output - programs

⌨ 4.3.1 Srea of a circle

Write the code that calculates an area of a circle for a radius entered by the user
(take the value Pi as 3.14).

E.g. The area of a circle is to be displayed on the console.

Input : 2

Output: 12.56

⌨ 4.3.2 User's age

Write the code that will calculate the user's age based on the year of birth and the
current year given by the user

E.g.

Input : 1999 2020

Output: 21

Input and Output | FITPED

29

⌨ 4.3.3 Print separator

Write the code that displays 3 words entered by the user on one line separated by a
comma.

Input : red green blue

Output: red,green,blue

Comments

Chapter 5

Comments | FITPED

31

5.1 Comments

🕮 5.1.1

Comments are part of the code that the Python interpreter omits. The comments
can include a piece of information on what the code does, they are a kind of help
for the programmer.

There are two types of comments in Python.

single-line comments are preceded by a # and continue until the end of the line, for
example

#this is a comment

print ('text') # displaying a message

📝 5.1.2

Insert the appropriate symbol so that the command does not complete

_____print('value of variable a is ', 10)

🕮 5.1.3

There are also comments in Python that can contain several lines, so-called block
comments.

Block comments are preceded and ended with """

"""Is a block comment

 May contain several lines """

📝 5.1.4

To insert a multi-line comment use:

• """
• '''
• ###
• %

Comments | FITPED

32

5.2 Comments - programs

⌨ 5.2.1 First Comment

Insert any code comment.

⌨ 5.2.2 Comments

Comment on the appropriate line of code so that the value of variable b remains
unchanged.

Operators and Functions

Chapter 6

Operators and Functions | FITPED

34

6.1 Type casting

🕮 6.1.1

When using Python, it is sometimes necessary to convert values from one type to
another. An example of this could be using the input() function if we want the user
to give us a number. Input() takes the value as a string (string), to get the number
you need to convert from string to number:

If we entered the code like this:

>>>a = input(‘Give a number’)

>>>3 + a

We will receive information about the incorrect use of the + operator, we cannot
add the string to the number:

TypeError: unsupported operand type(s) for +: 'int' and 'str'

To make the above code work, we have to change the type of the entered value
from the string to the number.

📝 6.1.2

What will return the following code:

>>> var = input(‘Enter a number’)

>>> 10 + var

• TypeError: unsupported operand type(s) for +: 'int' and 'str'
• '10+entered value'
• 10+entered value

🕮 6.1.3

In order to convert types (changes from one type to another), you can use the
function:

• int(a) - an integer will be returned
• float(a) - a floating point number will be returned

>>> a = input ('Enter number')

>>> 3 + int(a) # will work correct

Operators and Functions | FITPED

35

You can also convert the number to a string:

>>>str(5)

‘5’

📝 6.1.4

Enter the command to change the given string value to an integer:

a = '10'

b = _____a_____ + 3

📝 6.1.5

What will be the result of the following code:

>>> str(5)*3

6.2 Assignment operators

🕮 6.2.1

Operators extended assignments are used to shortening the write operation in a
situation where we perform an operation on a variable and assign a new value to
the same variable, that is, instead of using the record:

>>> var = 2

>>> var = var * 5 # multiply the variable var by 5 times and

assign the new value to the variable var

>>> print(var)

10

We can use the shorthand:

>>>var = 2

>>>var *= 5

>>> print(var)

10

📝 6.2.2

Which command will be equivalent to the command:

Operators and Functions | FITPED

36

>>> var = var * 8

• var *= 8
• var ** 8
• var =* 8
• var * 8

🕮 6.2.3

Examples of extended assignment operators:

 =, eg. x=5, equivalent x = x * 5

 x/, eg. x/=5, equivalent x = x / 5

 %=, eg. x%=5, equivalent x = x % 5

 +=, eg. x+=5, equivalent x = x + 5

 -=, eg. x-=5, equivalent x = x - 5

📝 6.2.4

Insert the appropriate symbols:

a _____ 3 #a = a / 3

b _____ 2 #b = b % 2

6.3 Standard functions

🕮 6.3.1

Python has a number of built-in functions that we can use without the need to
import additional modules.

Examples of functions can be included

• abs() - returns the absolute value of a number

>>> abs(-3)

3

• round() - rounds a float value to an integer value

>>> round(-1.5)

-2

Operators and Functions | FITPED

37

>>> round(1.45)

1

• chr() - returns a string consisting of one character of ASCII code, given as a
function parameter

>>> chr(97)

'a'

• len() - returns the length (number of elements) of the variable

>>> len('python')

6

• max() - returns the maximum value of the given values

>>> max(2, 5, 6, 8, 1, 3)

8

• min() - returns the minimum value from the given values

>>> min(2, 5, 6, 8, 1, 3)

1

• pow(x, y) returns x to the power of y

>>> pow(3, 2)

9

📝 6.3.2

To round 1.89 to the total value use the command:

• round(1.89)
• abs(1.89)
• rd(1.89)
• int(1.89)

📝 6.3.3

Insert the command to get the result:

a = -8

print(_____(a))

Operators and Functions | FITPED

38

8

6.4 Multiple assignment

🕮 6.4.1

In Python, you can assign values to several variables at once. Instead of assigning
values to subsequent variables in each line, we can use a simplified notation:

>>>Var1, var2, var3 = 5, 2.9, ‘Python’

>>>print(var1)

5

>>>print(var2)

2.9

>>>print(var3)

‘Python’

>>>var4, var5 = ‘ab’

>>>print(var4)

‘a’

>>>print(var5)

‘b’

We write the names of the variables to which we want to assign values (separate by
comma), and then after the = sign, we give the values in the order corresponding to
the order of the variables.

📝 6.4.2

Enter the value that will be assigned to the variable b

a, b, c = 2, 'd', 8

📝 6.4.3

The result of the following code will be:

a, b = '12'

print((a*2)+b)

• 112
• 1122
• 121212

Operators and Functions | FITPED

39

• 12122

6.5 Operators and functions - programs

⌨ 6.5.1 Assignment operators

Write a program that doubles the variable value given by the input.

Input : 5

Output: 10

⌨ 6.5.2 Word length

Write the code that displays on the console the length of the word entered by the
user in the format "Word x has y characters", where x is the word entered and y is its
length.

Input : Python

Output: Word Python has 6 characters

⌨ 6.5.3 Max value

Write the code that displays the maximum value for 3 values given by the user.

Input : 2 8 4

Output: 8

Formatted Output

Chapter 7

Formatted Output | FITPED

41

7.1 Formatted output

🕮 7.1.1

In Python, we also have the option of formatting the displayed text.

The older type of formatting is based on special characters preceded by the symbol
%

>>>name = 'John'

>>>print('Welcome, %s!' %name)

Welcome John

>>>age = 23

>>>print('%s is %d year old.' %(name, age))

'John is 23 year old.'

📝 7.1.2

Complete the entry so that the code entered is correct

var = 'Sam'

print('Hello %s' _____(var))

🕮 7.1.3

After the % sign, we put information on which type of data we want to display or in
which formations, examples of specifiers include:

• %s - string
• %d - an integer
• %f - floating point number
• %.<x> - floating point number with a fixed number of digits after the dot

(e.g.%. <2>, it will display only two digits after the dot)
• %10s - it means that the text will be displayed occupying a width of 10,

aligned to the right and completed with blank characters to the left if it is
shorter in length; if it is longer, it will be shown as is

• %.5s shorten the string to 5 characters

E.g.:

>>>price = 2.32456

>>>product_name = 'apples'

>>>print('1 kg of %s cost %.2'%(product_name, price))

'1 kg of apples cost 2.32'

Formatted Output | FITPED

42

📝 7.1.4

Is this statement is correct:

price = 9.99

print('Price of product is %s ' %price)

• No
• Yes

📝 7.1.5

Complete the following command to match the displayed result

var = 'String'

print('We shortened the String to _____' %var)

We shortened String to Str

🕮 7.1.6

A newer way to text formatting is the function format()

>>>name = John

>>>print(‘Welcome, {}’.format(name))

‘Welcome John’

>>> age = 23

>>>print(‘{} is {} year old.’.format(name, age))

‘John is 23 year old.’

The newer format also allows you to set the order in which the values in brackets
are displayed

>>>print(‘{1} is {0} year old.’.format(age, name))

‘John is 23 year old.’

Moved the displayed text by 10 spaces

>>>’{:>10}’.format(‘text’)

 Text

Filling the offset with a different character (other than space)

>>>’{:_>10}’.format(‘text’)

__________text

Formatted Output | FITPED

43

Shortening the string

>>>’{:.3}’.format('Python')

Pyt

📝 7.1.7

The correct statement will be:

• print(‘Welcome, {}’.format(name))
• print(‘Welcome, %’.format(name))
• print(‘Welcome, {name}’.format())
• print(‘Welcome, {}’.format{name})

📝 7.1.8

Complete the code so that it works correctly

>>> age = 20

>>> name = 'John'

>>> print('{_____} is _____ years old.'.format(age, name))

'John is 20 years old.'

7.2 Formatted Output - programs

⌨ 7.2.1 Hello

For the name and age entered by the user, display the following text using the
formatted Output:

Input : John 23

Output: Hello John. You are 23 years old.

⌨ 7.2.2 Rectangle area

Write the code that calculates the area of the rectangle, based on the side lengths
entered into the program. The result of the action is to be displayed in the following
format:

Input : 2 5

Output: The area of a rectangle with sides 2 and 5 is 10.

Logic Expression

Chapter 8

Logic Expression | FITPED

45

8.1 Bool, logic expressions

🕮 8.1.1

There is a bool data type in Python that has two values True and False

A bool value is a result of comparing values.

In Python, to compare two values with each other, use the operator '=='

>>> 2==2

True

>>> ’Python’ == ‘Python’

True

>>> ’Python’ == ‘Java’

False

To check if two values are different from each other, the operator '!=' Is used

>>> 2 != 3

True

>>> 2 != 2

False

Operators ''>'' and ''<'' will be used to check if something is bigger or smaller.

>>> 2>3

True

>>> 2<3

False

📝 8.1.2

The operator _____ is used to check if two values are different

📝 8.1.3

The result of the comparison

2 == 2

will be:

Logic Expression | FITPED

46

🕮 8.1.4

You can also check if something is greater than or equal to, or less than or equal to.
The operators ''>='' and ''<='' are used for this.

>>> 2>=2

True

>>>3 <= 2

False

📝 8.1.5

Which entry is correct:

• 2 >= 4
• 2 => 4
• 4 => 2
• 4 <|> 2

🕮 8.1.6

It is also possible to check several conditions at the same time by connecting them
with the appropriate operator

• and returns True if both conditions are true, otherwise, it returns False

>>> 2 > 1 and 3 < 4

True

• or returns True if at least one of the conditions is true

>>> 2 > 1 or 3 < 4

True

>>> 2 > 1 or 3 > 4

True

• not is used to negate the condition if the checked condition is set to True as
a result of the not operator, it will have a False value, if the checked condition
is False, then in combination with not, it will be set to True

>>> not 2 > 3

True

>>> not 2 < 3

False

Logic Expression | FITPED

47

📝 8.1.7

Complete the record to get True as a result

>>> _____ 45 >= 60

True

📝 8.1.8

Complete the record to get True as a result

>>> 3 > 2 _____ 1 < 4

True

>>> 2 == 4 _____ 3 > 2

True

🕮 8.1.9

In Python, there is also an operator that checks if two variables refer to the same
place in memory, this is the operator 'is', and its version negated 'is not'

>>> a = 3

>>> b = 3

>>> c = a

>>>a is b

False

>>> a is c

True

>>>a is not c

False

8.2 Logic Expression - programs

⌨ 8.2.1 Smaller number

Write the code to check if the first of the two numbers given is smaller than the
second.

Input : 2 4

Output: True

Input : 5 2

Logic Expression | FITPED

48

Output: False

⌨ 8.2.2 Number from the range

Write the code that checks if the given number is between 0 and 20.

Input : 5

Output: True

Input : 25

Output: False

If Command

Chapter 9

If Command | FITPED

50

9.1 If - else

🕮 9.1.1

Sometimes there is a need to separate the code into one that will be executed if the
condition is True and one that will be executed if the condition is False.

The if - else statement is used for this

If condition:

 Instructions when the condition is true

else:

 Instructions when the condition is false

Example:

>>> a = input ('Enter a number')

>>> b = input ('Enter the second number')

>>> if a == b:

 print ('the numbers given are equal')

else:

 print ('the numbers given are different')

📝 9.1.2

What will be the result of the following code?

a = 4

b = 'Python'

if a%2 == 0:

 print(b)

else:

 print(a)

• 'Python'
• 4
• 2
• 'Python' 4

If Command | FITPED

51

📝 9.1.3

Complete the code so that the statement inside if executes

a = 5

b = 6

if a _____ b_____

 print(a+b)

9.2 If - elif - else

🕮 9.2.1

Sometimes the if - else statement is not sufficient, for example, if we have more
than one condition. There is a version of the if statement in Python that lets you
check several conditions: if -elif - else.

if condition1:

 Instructions executed when the condition 1 is

true

elif condition2:

 Instructions executed when the condition 2 is

true

else:

 Instructions executed when condition1 and

condition 2 are false

The number of additional conditions is unlimited.

>>> if a == b:

 print ('the numbers given are equal')

elif a> b:

 print ('a is greater than b')

else:

 print ('a is less than b')

📝 9.2.2

Complete the following code:

if a == b:

 print ('the numbers given are equal')

If Command | FITPED

52

_____ a> b:

 print ('a is greater than b')

_____:

 print ('a is less than b')

📝 9.2.3

In Python, you can use the elif statement to split the code into more than two cases
as part of an if statement.

• True
• False

9.3 If

🕮 9.3.1

The if statement allows you to limit the execution of a part of the program to a
situation when we have some condition (or conditions)

If condition:

 Statement_1

Statement_2

Statement_1 will be executed only if the condition is true, Statement_2 will be
executed regardless of the condition

>>> a = 5

>>> b = 6

>>> if a == b:

 print ('numbers are equal')

>>> print ('value a is {} and value of b is {}'. format (a,

b))

 'value a is 5 and value b is 6'

>>> a = 5

>>> b = 5

>>> if a == b:

 print ('numbers are equal')

>>> print ('value a is {} and value of b is {}'. format (a,

b))

If Command | FITPED

53

 'numbers are equal'

 'value a is 5 and value b is 6'

📝 9.3.2

Complete the code:

_____ a%2 == 0 _____

 print(a)

🕮 9.3.3

Within one if statement we can check several conditions using logical operators:

- and both conditions must be true

If a> b and b> c:

 statement_1

- or - one of the conditions must be true

If a> b or b> c:

 statement_1

- not - the second condition cannot be true

If a> b and not a == 4:

 statement_1

Example:

if a> b and a> 0:

print ('a greater than b and a greater than 0')

📝 9.3.4

Complete the code so that the command inside the if statement executes

a = 8

b = 6

if a%2==0 _____ b_____a:

 a = a*b

If Command | FITPED

54

📝 9.3.5

Will the print command execute in the following code?

a = 5

b = 0

if a == 5 and not b == 0:

 print(a*b)

• No
• Yes

9.4 If command - programs

⌨ 9.4.1 Bigger number

Write the code that will display the bigger of two numbers given by the user

Input : 2 4

Output: 4

⌨ 9.4.2 BMI

Write the code that calculates the body mass index BMI. BMI is calculated as
weight[kg] / (height [m] 2).

• BMI in the range 19 - 25 means normal weight
• BMI below 19 means underweight
• BMI over 25 means overweight

The program is to display an appropriate message depending on the BMI value
(correct weight, overweight, underweight)

Input : 75 1.80

Output: correct weight

⌨ 9.4.3 Interval

Write the code to see if the given number is from a given interval. Ensure that the
upper and lower bounds of the interval are correctly entered. The first number given
is always the searched one and then are the interval boundaries followed.

If Command | FITPED

55

Input : 10 2 13

Output: true

Input : 5 15 7

Output: false

⌨ 9.4.4 Similar numbers

Write the code that will decide whether the three given numbers are similar (use
only one condition).

Input : 75 175 48

Output: False

Input : 8 8 8

Output: True

⌨ 9.4.5 Roots of Quadratic Functions

Write the code that will calculate for given factors of the quadratic equation the
roots of the equation.

The program is to display one or two solutions or information about the no solution

Input : 2 5 3

Output: -1.5 -1

Input : 2 4 2

Output: -1

Input : 2 4 3

Output: no solutions

⌨ 9.4.6 Even number

Write the code to check if the given number is an even number.

Input : 8

Output: True

Input : 7

Output: False

If Command | FITPED

56

⌨ 9.4.7 Mathematical operations

Write the code that based on the given math operator (+, -, *, /) will return the sum,
difference, product or division between two given numbers.

Input : + 1 2

Output: 3

Input : * 3 5

Output: 15

Range

Chapter 10

Range | FITPED

58

10.1 The range() function

🕮 10.1.1

The range() function in Python is used to generate a list of numbers.

The simplest range() call is to specify one parameter - number of integers (how
many numbers do we want to get from zero):

range (3) #give a list [0, 1, 2]

Calling range alone will not do anything, only an iterable object will be created

Example of using range ():

print ([a for a in range (3)])

this is equivalent to print ([0, 1, 2])

The list does not have to be iterated from zero, we can call range (start, stop),
where:

Start - An integer value indicating the position from which to start - 0 by default

Stop - means on what position to end

print([a for a in range(10, 15)])

give

[10, 11, 12, 13, 14]

📝 10.1.2

The first element of the list created with the range (10) command will be

📝 10.1.3

The last element of the list created with the range (10, 20) command will be

🕮 10.1.4

In the range () function we can also define the step by which the values in the list
will change (step parameter):

Range | FITPED

59

range (start, stop step)

Example:

print ([a for a in range (0, 11, 2)])

returns even numbers in the range 0-10:

[0, 2, 4, 6, 8, 10]

The step parameter can also take negative values, then we can create a list with
decreasing values, for example:

print ([a for a in range (10, -1, -2)])

[10, 8, 6, 4, 2, 0]

📝 10.1.5

The second element of the list created using the range (10, 20, 3) command will be:

10.2 The reversed() function

🕮 10.2.1

The reversed () function returns the reverse list, given as a parameter reversed
(seq).

Example:

x=[1, 2, 3, 4 , 5, 6, 7, 8 , 9, 10]

list(reversed(x))

[10, 9, 8, 7, 6, 5, 4, 3, 2, 1]

The reversed() function can be used on the tuple, list, string, range.

string

text = 'Python'

print(list(reversed(text)))

tuple

exTuple = ('P', 'y', 't', 'h', 'o', 'n')

print(list(reversed(exTuple)))

range

exRange = range(1, 6)

Range | FITPED

60

print(list(reversed(exRange)))

list

exList = [0, 1, 2, 4, 3, 5]

print(list(reversed(exList)))

['n', 'o', 'h', 't', 'y', 'P']

['n', 'o', 'h', 't', 'y', 'P']

[5, 4, 3, 2, 1]

[5, 3, 4, 2, 1, 0]

📝 10.2.2

What will be the first element of the list created using the following code:

text = 'Python'

print(list(reversed(text)))

Loops

Chapter 11

Loops | FITPED

62

11.1 For - in range()

🕮 11.1.1

Sometimes when writing a program we have to repeat the execution of a piece of
code a certain number of times. To avoid having to copy the same code multiple
times, you can use loops. There are several types of loops in Python.

The for loop allows you to repeat certain code. The for loop repeats a portion of the
program based on a sequence - an ordered list of certain elements.

The overall loop record is as follows:

For iteratingVariable in sequance:

 instructions

The for loop repeats the instruction string inside the loop for each sequence
element in turn. When the end of the sequence is reached, the loop ends.

Instructions executed inside a for loop are indented relative to the for statement
itself.

📝 11.1.2

The correct entry of a for loop in Python is:

• for variable in sequence:
• for sequence:
• for (){}
• for variable:sequence:

🕮 11.1.3

You can use the range() function to create a sequence for the for loop

for i in range(1,6):

 print(i)

1

2

3

4

5

Loops | FITPED

63

Example:

1. i=1;

2. num = int(input("Enter a number:"));

3. for i in range(1,11):

4. print("%d X %d = %d"%(num,i,num*i));

Enter a number:5

5 X 1 = 5

5 X 2 = 10

5 X 3 = 15

5 X 4 = 20

5 X 5 = 25

5 X 6 = 30

5 X 7 = 35

5 X 8 = 40

5 X 9 = 45

5 X 10 = 50

📝 11.1.4

Complete the following for loops:

_____ i _____ range(10)_____

 print(i)

📝 11.1.5

How many times the following loop will be executed:

for i in range(5):

 print(i)

11.2 For - in values

🕮 11.2.1

In a for loop, you can use the values in the loop separated by the comma

for i in 'cat', 'dog', 'fish', 'hamster':

 print('I have a', i)

I have a cat

Loops | FITPED

64

I have a dog

I have a fish

I have a hamster

Or

for i in 2 , 3, 4:

 print('I have', i, 'dogs')

I have 2 dogs

I have 3 dogs

I have 4 dogs

The sequence for the for loop can also be defined before:

animals = ['cat', 'dog', 'fish', 'hamster']

for i in animals:

 print('I have a', i)

I have a cat

I have a dog

I have a fish

I have a hamster

Or

num = [2,3,4]

for i in num:

 print('I have', i, 'dogs')

I have 2 dogs

I have 3 dogs

I have 4 dogs

📝 11.2.2

Is the following for loop statement correct?

for i in [2,3,4]:

 print(i)

• Yes
• No

Loops | FITPED

65

📝 11.2.3

What will appear after executing the following code:

animals = ['cat', 'dog', 'fish', 'hamster']

for i in animals:

 if i == 'fish':

 print('I have a', i)

📝 11.2.4

How many times will the following loop be performed?

for i in 2, 4, 0, 10, 20, 13:

 print(i)

11.3 For - in string

🕮 11.3.1

Using a for loop it is also possible to iterate over characters into a string:

for i in 'Python':

 print(i)

P

y

t

h

o

n

Or

text = 'Python'

for i In text:

 print(i, end=" ")

P y t h o n

📝 11.3.2

Is the following entry correct?

text = 'for loop'

Loops | FITPED

66

for i in text:

 print(i, end="-")

• Yes
• No

11.4 Cycles - programs

⌨ 11.4.1 Displaying range of numbers

Write the code that displays numbers from 1 to the value given by the user.

Input : 3

Output: 1 2 3

⌨ 11.4.2 Even numbers in the range

Write a program that displays even numbers between 2 and the value given by the
user.

Input : 9

Output:

2

4

6

8

⌨ 11.4.3 Word by character

Write the code that displays the word given by the user, character by character:

Input : Python

Output: P

y

t

h

o

n

Loops | FITPED

67

⌨ 11.4.4 Sum of numbers from interval

Write the code that will return the sum of all numbers from a given interval.

Input : 5 10

Output: 45

Input : 8 1

Output: 36

⌨ 11.4.5 Product of numbers from interval

Write the code that will return the product of all numbers from a given interval.

Input : 5 10

Output: 151200

Input : -4 -1

Output: 24

⌨ 11.4.6 Number of divisible numbers

Write the code that will return for a given number the count of divisible numbers in
a given interval. Ensure that the upper and lower bounds of the interval are correctly
entered. The first number given is always the searched one and then are the interval
boundaries followed.

Input : 5 1 25

Output: 5

Input : 2 6 17

Output: 6

⌨ 11.4.7 Word without 'a'

Write the code that will display the word given by the user omitting the letters 'a'

Input : Banana

Output: Bnn

Modules

Chapter 12

Modules | FITPED

69

12.1 Import

🕮 12.1.1

There are a large number of additional modules in Python. Modules are just files
with the .py extension that contain a set of functions. To be able to use the module,
you must import it into our program, use the import command

import module_name

The module is attached to our script as if we had written it ourselves. Thanks to the
use of ready-made modules, we do not have to create part of the function

📝 12.1.2

To import a module, use the command:

🕮 12.1.3

One of the sample modules is the math module, which contains mathematical
functions defined in the C standard

Within the module we have many mathematical functions available, below are some
of the most popular:

import math

x=2.34

print(math.ceil(x)) # Return the smallest integer value

greater than or equal to x

print(math.floor(x))# Return the largest integer value greater

than or equal to x

print(math.modf(x)) # Return the fractional and integer parts

of x

x = -3

print(math.fabs(x))# Return the absolute value of x

x = 4

print(math.log(x, 2)) # Return the logarithm of x to the given

base

print(math.log1p(x)) # Return the natural logarithm (base e)

Modules | FITPED

70

print(math.log10(x)) # Return the base-10 logarithm of x

y = 2

print(math.pow(x, y)) # Return x raised to the power y

print(math.sqrt(x)) # Return the square root of x

print(math.sin(x)) # Return the sine of x radians

print(math.cos(x)) # Return the cosine of x radians

print(math.tan(x)) # Return the tangent of x radians

print(math.degrees(x)) # Convert angle x from radians to

degrees

print(math.radians(x)) # Convert angle x from degrees to

radians

print(math.pi) # The mathematical constant π = 3.141...

print(math.e) # The mathematical constant e = 2.718...

 Output:

3

2

(0.33999999999999986, 2.0)

3.0

2.0

1.6094379124341003

0.6020599913279624

16.0

2.0

📝 12.1.4

To import the math module, use the command

📝 12.1.5

To carry 3 to the power of 4, use the _____(3,4) command.

Modules | FITPED

71

📝 12.1.6

The math.sin(x) command takes the angle value in degrees as the x parameter

• False
• True

🕮 12.1.7

To see what the module contains, we can display the functions that have been
included in it:

Import module

dir(module)

[list of function in module]

Example

Import math

Dir(math)

['__doc__', '__loader__', '__name__', '__package__',

'__spec__', 'acos', 'acosh', 'asin', 'asinh', 'atan', 'atan2',

'atanh', 'ceil', 'copysign', 'cos', 'cosh', 'degrees', 'e',

'erf', 'erfc', 'exp', 'expm1', 'fabs', 'factorial', 'floor',

'fmod', 'frexp', 'fsum', 'gamma', 'gcd', 'hypot', 'inf',

'isclose', 'isfinite', 'isinf', 'isnan', 'ldexp', 'lgamma',

'log', 'log10', 'log1p', 'log2', 'modf', 'nan', 'pi', 'pow',

'radians', 'sin', 'sinh', 'sqrt', 'tan', 'tanh', 'trunc']

To get help on a specific function, use the help command

help(function_name)

Example

Help(math.cos)

Help on built-in function cos in module math:

cos(...)

 cos(x)

 Return the cosine of x (measured in radians).

Modules | FITPED

72

Creating your own modules

In Python, any file with the .py extension can be a module, which means it can be
imported into another script.

📝 12.1.8

To call help for a command from a module, you can use the command:

• help()
• ?operation
• help - operation
• operation?

12.2 Random

🕮 12.2.1

The random module is also a popular module, in which pseudo-random methods for
various types of data have been implemented.

Module Import

import random

The basic functions contained in the module can be included

>>> random.random() # Random float x, 0.0 <= x < 1.0

0.37444887175646646

>>> random.uniform(1, 10) # Random float x, 1.0 <= x < 10.0

1.1800146073117523

>>> random.randint(1, 10) # Integer from 1 to 10, endpoints

included

10

>>> random.randrange(0, 101, 2) # Even integer from 0 to 100

26

>>> random.choice('abcdefghij') # Choose a random element

'c'

>>> items = [1, 2, 3, 4, 5, 6, 7]

>>> random.shuffle(items) # Randomly changes the order of

items in the list

>>> items

Modules | FITPED

73

[7, 3, 2, 5, 6, 4, 1]

>>> random.sample([1, 2, 3, 4, 5], 3) # Choose 3 elements

[4, 1, 5]

📝 12.2.2

Complete the command to generate a random integer from 10-20

random._____(10, 21)

📝 12.2.3

To change the order of items in the list, use the command

• random.shuffle()
• random.reverse()
• random.random()
• random.reorder()

12.3 Modules - programs

⌨ 12.3.1 Circumference of the circle

Write the code that calculates the circumference of a circle for the given radius
value (use the math module for PI values). Round up the result to integer values.

Input : 4

Output: 26

⌨ 12.3.2 Degrees to radians

Write the code converting the angle value in degrees to radians. The result should
be rounded to three decimal places

Input : 80

Output: 1.396

Loops II.

Chapter 13

Loops II. | FITPED

75

13.1 Break and continue

🕮 13.1.1

Loops often need additional commands when you want to stop the loop when a
condition is met or skip one loop. Two additional commands break and continue
are used

The break command terminates the loop

Eg.

for i in range(1,10):

 if (i == 5):

 break

 print(i)

1

2

3

4

The command continue terminates the current iteration of the loop and goes to the
next iteration

Eg.

for i in 'Python':

 if (i == 'h'):

 continue

 print(i, end = " ")

Output:

P y t o n

📝 13.1.2

How many times the following loop will be executed:

for i in range(1,10):

 if(i == 5):

 break

 print(i)

Loops II. | FITPED

76

📝 13.1.3

How many times the print command will be executed in the following loop

for i in range(1,10):

 if(i % 2 == 0):

 continue

 print(i)

13.2 Nested cycles

🕮 13.2.1

A loop can contain one or more other loops - we can create loops inside the loop

For example, try displaying the multiplication table for numbers 1 to 5:

for i in range(1,6):

 for j in range(1,6):

 print(i, 'x', j, '=', i*j, end="; ")

 print('')

Output:

1 x 1 = 1; 1 x 2 = 2; 1 x 3 = 3; 1 x 4 = 4; 1 x 5 = 5;

2 x 1 = 2; 2 x 2 = 4; 2 x 3 = 6; 2 x 4 = 8; 2 x 5 = 10;

3 x 1 = 3; 3 x 2 = 6; 3 x 3 = 9; 3 x 4 = 12; 3 x 5 = 15;

4 x 1 = 4; 4 x 2 = 8; 4 x 3 = 12; 4 x 4 = 16; 4 x 5 = 20;

5 x 1 = 5; 5 x 2 = 10; 5 x 3 = 15; 5 x 4 = 20; 5 x 5 = 25;

🕮 13.2.2

Example two

lists = [['apple', 'banana', 'orange'],[0, 1, 2],[1.1, 2.2,

3.3]]

for list in lists:

 for item in list:

 print(item)

Output:

apple

Loops II. | FITPED

77

banana

orange

0

1

2

1.1

2.2

3.3

13.3 Cycles II - programs

⌨ 13.3.1 Stars

Write the code that will for the given values m and n return m rows where the
interior will be empty and the stars will only be perpendicular. In the code replace
the stars with the character a.

Input : 4 3

Output:

* *

* *

Input : 5 5

Output:

* *

* *

* *

⌨ 13.3.2 Sequence of digits

Write the code that will return the given number in the following sequence:

Input : 3

Output:

1

12

123

Input : 7

Loops II. | FITPED

78

Output:

1

12

123

1234

12345

123456

1234567

⌨ 13.3.3 Sum of numbers

Write the code that calculates the sum of two times the numbers in the range
provided by the user. When the sum will be greater than 100 the program should
stop. The program should omit calculations number 13.

Input : 2 7

Output: 54

Input : 1 120

Output: 100

⌨ 13.3.4 Multiplication table

Write the code that will return the multiplication table (from 1x1 to 10x10).

Input :

Output:

1 2 3 4 5 6 7 8 9 10

2 4 6 8 10 12 14 16 18 20

3 6 9 12 15 18 21 24 27 30

...

While

Chapter 14

While | FITPED

80

14.1 While

🕮 14.1.1

In Python, there is a while loop in addition to the for a loop. The loop syntax is:

while condition:

 instructions

The structure of the while loop resembles an if statement, it differs from it in that
the instructions contained within the while loop are repeated as long as the
condition is met

An example of a while loop displaying numbers from 1 to 10:

>>>x = 1

>>> while x < 11:

 print(x)

 x+=1

Output:

1

2

3

4

5

6

7

8

9

10

In the above example, remember to increase the value of the variable x, otherwise,
we would get an infinite loop, the operation of which would not end, the condition
would always be met.

📝 14.1.2

The correct entry for a while loop in Python is:

• while condition:
• while (condition){}

While | FITPED

81

• while {condition}
• while condition do

📝 14.1.3

How many times the code inside while loop will be executed

>>> x = 8

>>> while x < 11:

 print(x)

 x+=1

🕮 14.1.4

The while loop can also work on lists

>>> x = ['cat', 'dog', 'fish']

>>> while x:

 print(x.pop(-1)) #.pop(-1) removed last element, when

the list is empty, x is false, and the loop terminates

Output:

fish

dog

cat

14.2 While true

🕮 14.2.1

Sometimes it is more convenient to use an infinite loop, i.e. without a condition.
This loop should be served with a break statement, you should never use it if you
don't need to use it;

Infinite loop:

>>> while True:

 Instruction

Example:

While | FITPED

82

>>> while True:

 Print('Python')

Python

Python

….

Python

This loop will not interrupt its operation, the stop condition is missing.

>>> i=1

>>> while True:

 print('Python')

 i += 1

 if (i>10):

 break

This loop will display Python 10 times, after which its execution will be stopped with
the break statement

📝 14.2.2

What command should stop the infinite loop:

while True:

📝 14.2.3

Will the following loop work properly:

i=0

while True:

 print(i*2)

 i=i+1

 if (terms > 10)

 break

• No
• Yes

While | FITPED

83

14.3 While - programs

⌨ 14.3.1 Square

Write the code that reads a positive integer n from the user and then displays on the
screen all the powers of 2 not greater than the number given.

Input : 71

Output: 1

2

4

8

16

32

64

⌨ 14.3.2 Divisible by 7

Write the code displaying numbers divisible by 7 from the range 7 to the given
number

Input : 30

Output: 7

14

21

28

Functions

Chapter 15

Functions | FITPED

85

15.1 Functions without parameters

🕮 15.1.1

The general term function is used to describe a traditional, stateless function that is
invoked without the context of a particular class or an instance of that class. We
use the more specific term method to describe a member function that is invoked
upon a specific object using an object-oriented message passing syntax.

A function is a block of organized, reusable code that is used to perform a single,
related action. Functions provide better modularity for your application and a high
degree of code reusing. Python gives you many built-in functions for use but you
can also create your own functions to fit your specific need.

A function in Python is a logical unit of code containing a sequence of statements
indented under a name given using the “def” keyword. Functions allow you to create
a logical division of a big project into smaller modules. They make your code more
manageable and extensible. While programming, it prevents you from adding
duplicate code and promotes reusability.

🕮 15.1.2

The keyword def is a statement for defining a function in Python. You have to start
every function with the def keyword and specify the function name followed by
brackets and a colon symbol ":".

def my_function():

 statement

The def call creates a function object and assigns it to the given name. It is
possible to further re-assign the same function object to other names. The brackets
can contain parameters but we will discuss the parameters later. This is called a
function without parameters.

📝 15.1.3

What is the keyword used to define a function?

Functions | FITPED

86

🕮 15.1.4

As was told in the previous lesson to define the function we use the keyword def.
Let us now focus on the function body. The statements that form the function body
starts at the next line and must be indented. When the function is called the code in
the function body is run.

def print_hello():

 print('hello')

Then the output would be following when calling the function print_hello() :

hello

📝 15.1.5

Fill in the code to define a function:

_____ hello_world()_____

 print('hello world!')

🕮 15.1.6

Using the function definition we learned how to create a function. We have got a
blueprint that has a name and body with valid Python statements. The next step is
to execute it. This can be done by calling it from the Python script or inside a
function or directly from the Python shell.

def print_hello():

 print('hello')

To call a function, you need to specify the function name.

print_hello()

This will result in the following Output:

hello

📝 15.1.7

Fill in the code to call the created function:

def hello_world():

Functions | FITPED

87

 print('hello world!')

>> _____() #call of the function

15.2 Functions without parameters (programs)

⌨ 15.2.1 Hello World

Write the code that will use a function without parameters and print a standard
programming greeting.

Input :

Output: Hello World

⌨ 15.2.2 Print numbers

Write the code that will use a function without parameters and print the numbers
from 1 to 10 in separate rows.

Input :

Output: 1

2

3

4

5

6

7

8

9

10

⌨ 15.2.3 Sum of 100

Write the code that will use a function without parameters and print the sum of
numbers from 1 to 100.

Input :

Output: 5050

Functions | FITPED

88

⌨ 15.2.4 Draw Rectangle

Write the code that will use a function without parameters and print a rectangle of
4x4 consisting of the characters "o".

Input :

Output:

oooo

oooo

oooo

oooo

⌨ 15.2.5 Draw Triangle

Write the code that will use a function without parameters and print a triangle of
height 5 consisting of the characters "o".

Input :

Output:

o

oo

ooo

oooo

ooooo

⌨ 15.2.6 Draw an Empty Rectangle

Write the code that will use a function without parameters and print an empty
rectangle of 10x10 consisting of the characters "o".

Input :

Output:

oooooooooo

o o

o o

o o

o o

o o

o o

o o

o o

oooooooooo

Functions | FITPED

89

⌨ 15.2.7 Print Name from Input

Write the code that will use a function without parameters and print a greeting for
the name given at the input (read the input inside the function).

Input : John

Output: Hello John

⌨ 15.2.8 Multiplication Table

Write the code that will use a function without parameters and print a multiplication
table for the given number (read the input inside the function).

Input : 7

Output: 1x7=7

2x7=14

3x7=21

4x7=27

5x7=35

6x7=42

7x7=49

8x7=56

9x7=63

10x7=70

15.3 Local and global variables with functions

🕮 15.3.1

When you declare variables inside a function definition, they are not related in any
way to other variables with the same names used outside the function i.e. variable
names are local to the function. This is called the scope of the variable. All variables
have the scope of the block they are declared in starting from the point of definition
of the name.

In the function where we use the defined variable for the first time (we declare it in
the function), the variable stays available only for the function. That means that if
we break the indent of the statements, then the variable cannot be used further. On
the other hand, each function evaluation creates a local namespace that is
manipulated at any level within the function. As a result, variables can be initially
defined at a seemingly lower level of scope than they are eventually used.

Functions | FITPED

90

🕮 15.3.2

Let's look at an example of using local variables inside a function. There are not
many cases that you need a function with only local variables. E.g. define a function
that will print the current date.

import datetime # we need the datetime module

def print_today():

 today = datetime.datetime.now().date

 print(today)

print_today()

The output will be the date when you call this function. It can be 2019-12-12 or any
other day.

📝 15.3.3

What will be the output of the following code?

x = 25

def function():

 x = 0

 print('x is ', x)

function()

print('x is ', x)

• x is 0; x is 25;
• x is 25; x is 25;
• x is 0; x is 0;

🕮 15.3.4

Let's use the last example of printing the current date and let's try to print the
variable today outside of the function.

import datetime # we need the datetime module

def print_today():

Functions | FITPED

91

 today = datetime.datetime.now().date

 print(today)

print_today()

print(today)

In this example, we try to access a local variable defined in the function outside of
the function body. The result of this call will be a NameError:

>> NameError: name 'today' is not defined

The variable today will not hold the value outside of the function. In this case, the
variable is even not defined. Despite that, the names used inside a def do not
conflict with variables outside the def even if there are used the same variable
names elsewhere.

📝 15.3.5

What will be the output of the following code? The random() function will generate a
random number from the interval 0-1.

from random import random

def print_random():

 r = random()

 print(r)

print(r)

• NameError: name 'r' is not defined
• 0.3011016848492

🕮 15.3.6

In Python, the variables assignment can occur at three different places:

• inside a def: the variable is local to the function;
• in an enclosing def: the variable is nonlocal to the nested functions;
• outside all def(s): the variable is global to the entire file.

Functions | FITPED

92

The global keyword is a statement in Python. It makes it possible for the variables
(names) to retain changes that live outside of a def at the top level of a module life.
In a single global statement can be specified one or more names separated by
commas. All the listed names attach to the enclosing module’s scope when
assigned or referenced within the function body.

x = 10

y = 20

def fn() :

 global x

 x = 100

 y = 200

 # a local variable 'y' is assigned and created here

 # whereas, the variable 'x' refers to the global name

fn()

print(x, y)

The resulting output will be following:

100 20

In the above code, x is a global variable that will retain any change in its value made
in the function. Another variable y has local scope and won’t carry forward the
change.

📝 15.3.7

What will be the value of the variable "n" after calling both functions?

n = 0

def function1() :

 n = 1

def function2() :

 global n

 n = 2

>> function1()

>> function2()

>> print(n)

• 2
• 1

Functions | FITPED

93

• 0

15.4 Functions with parameters

🕮 15.4.1

A function can take parameters which are values you supply to the function so that
the function can do something utilising those values. These parameters are just like
variables except that the values of these variables are defined when we call the
function and are already assigned values when the function runs. Parameters are
used when we want to pass data into our function.

Parameters are specified within the pair of parentheses in the function definition,
separated by commas. When we call the function, we supply the values in the same
way. We often use the terms parameters and arguments interchangeably. However,
there is a slight difference between them. Parameters are the variables used in the
function definition whereas arguments are the values we pass to the function
parameters.

def print_text(text):

 print(text)

print("Hello World")

📝 15.4.2

Fill the following code with the correct parameter. The function will print the power
of the given argument.

def print_power(_____):

 print(num*num)

print_power(2)

🕮 15.4.3

When parameters are defined for a function you have to pass an argument.
Otherwise the program will return a TypeError.

def print_text(text):

 print(text)

Functions | FITPED

94

print_text()

This will result in the following error because when we call the function name we
have to pass also the argument with the value.

TypeError: print_text() missing 1 required positional

argument: 'text'

🕮 15.4.4

When declaring a function, we can add as many parameters as we want, we just
need to separate them with commas. In many cases, we need more than just one
parameter. The order in which the arguments are passed corresponds to the order
of the parameters in our function definition.

Also, you have to remember that all of the arguments get assigned to local variable
names once passed to the function. Changing the value of an argument inside a
function does not affect the caller.

def addition(a,b):

 print(a+b)

addition(4,5)

This is an example of a function with more than one parameter.

📝 15.4.5

Fill in the code so that the function will print the number only if it is even.

def even(_____):

 if(n%2==0):

 print(_____)

even(5)

even(_____)

Where the output will be the following:

>> 6

Functions | FITPED

95

🕮 15.4.6

All parameters (arguments) in the Python language are passed by reference. It
means if you change what a parameter refers to within a function, the change also
reflects back in the calling function.

Example:

define the function

def changenames(nameslist):

 nameslist.append(["John","Peter","Carol"]);

 print("Values inside the function: ", nameslist)

 return

now you can call changenames function

nameslist = ["Jack","Jill"];

changenames(nameslist);

print("Values outside the function: ", nameslist)

Here we are maintaining the reference of the passed object and appending values
in the same object. So, this would produce the following result:

>> Values inside the function: ["Jack", "Jill" ["John",

"Peter", "Carol"]]

>> Values outside the function: ["Jack", "Jill" ["John",

"Peter", "Carol"]]

🕮 15.4.7

There is one more example where the argument is being passed by reference and
the reference is being overwritten inside the called function.

define the function

def changenames(nameslist):

 nameslist=["John","Peter","Carol"];

 print("Values inside the function: ", nameslist)

 return

now you can call changenames function

nameslist = ["Jack","Jill"];

changenames(nameslist);

print("Values outside the function: ", nameslist)

Functions | FITPED

96

The parameter nameslist is local to the function changenames. Changing nameslist
within the function does not affect nameslist. The function accomplishes nothing
and finally, this would produce the following result:

>> Values inside the function: ["John", "Peter", "Carol"]

>> Values outside the function: ["Jack", "Jill"]

📝 15.4.8

Fill in the code so that the function does not change the content of the numlist:

def changenumbers(numlist):

 _____[2,3,4]_____

 print("Values inside the function: ", numlist)

 return

numlist = [1,2];

changenumbers(numlist);

print("Values outside the function: ", numlist)

The code will produce the following result:

>> Values inside the function: _____

>> Values outside the function: _____

15.5 Functions with parameters (programs)

⌨ 15.5.1 Even Digits

Write the code that will use a function with a parameter that contains a number
given by the input and print all even digits that are contained in the given number
(read the input outside the function and use it as an argument).

Input : 123456

Output: 2

4

6

⌨ 15.5.2 Odd Digits

Write the code that will use a function with a parameter that contains a number
given by the input and print all odd digits that are contained in the given number
(read the input outside the function and use it as an argument).

Functions | FITPED

97

Input : 123456

Output: 1

3

5

⌨ 15.5.3 Sequence

Write the code that will use a function with a parameter that contains a number
given by the input and print all numbers in the following sequence (read the input
outside the function and use it as an argument).

Input : 3

Output: 1

12

123

Input : 5

Output: 1

12

123

1234

12345

⌨ 15.5.4 Factorial

Write the code that will use a function with a parameter that contains a number
given by the input and print the factorial of the given number (read the input outside
the function and use it as an argument). Factorial is calculated following: n! =
1*2*3*...*(n-2)*(n-1)*n. The factorial of 0 is 1 and the factorial of a negative number
does not exist.

Input : 5

Output: 120

Input : -5

Output: does not exist

⌨ 15.5.5 Maximum of three numbers

Write the code that will use a function with a parameter that contains numbers
given by the input and print the maximum of the given numbers (read the input
outside the function and use it as an argument).

Functions | FITPED

98

Input : 5 3 6

Output: 6

Input : -5 -11 -7

Output: -5

⌨ 15.5.6 Product of numbers

Write the code that will use a function with a parameter that contains numbers
given by the input and print the product of the given numbers (read the input
outside the function and use it as an argument).

Input : 5 3

Output: 15

Input : -5 -11

Output: 55

⌨ 15.5.7 Difference of numbers

Write the code that will use a function with a parameter that contains numbers
given by the input and print the difference of the given numbers (read the input
outside the function and use it as an argument).

Input : 5 3

Output: 2

Input : -5 -11

Output: 6

⌨ 15.5.8 Rectangle

Write the code that will use a function with a parameter that contains numbers
given by the input and print the perimeter and area of the rectangle of the given
numbers that are the sides of the rectangle (read the input outside the function and
use it as an argument).

Input : 5 8

Output: Perimeter is 26 and area is 40

Input : 15 5

Output: Perimeter is 40 and area is 75

Functions | FITPED

99

⌨ 15.5.9 Triangle

Write the code that will use a function with a parameter that contains numbers
given by the input and print the perimeter of the triangle of the given numbers that
are the sides of the triangle (read the input outside the function and use it as an
argument).

Input : 5 8 5

Output: 18

Input : 1 2 3

Output: 6

⌨ 15.5.10 Surface Area and Volume of a Rectangular Prism

Write the code that will use a function with a parameter that contains numbers
given by the input and print the surface area and volume of a rectangular prism
from given sides (read the input outside the function and use it as an argument).

Input : 5 8 6

Output: The surface area is 236 and volume is 240

Input : 15 10 12

Output: The surface area is 900 and volume is 1800

⌨ 15.5.11 Chessboard

Write the code that will use a function with a parameter that contains string given
by the input and prints a grid with the given dimensions m x n and mark them as a
chessboard (x, o) (read the input outside the function and use it as an argument).

Input : 4 4

Output: xoxo

oxox

xoxo

oxox

Input : 2 3

Output: xox

oxo

Functions | FITPED

100

15.6 Function arguments

🕮 15.6.1

You can call a function by using the following types of formal arguments:

• required arguments;
• keyword arguments;
• default arguments.

🕮 15.6.2

Required arguments are the arguments passed to a function in correct positional
order. Here, the number of arguments in the function call should match exactly with
the function definition.

def greeting(name):

 print("Hello ",name)

greeting()

If you want to call a function that requires an argument, you definitely have to pass
one otherwise you will get an error:

TypeError: greeting() takes exactly 1 argument (0 given)

📝 15.6.3

What will be the output of the following code?

def greeting(name):

 print("Hello ",name)

greeting("John")

• Hello John
• TypeError: greeting() takes exactly 1 argument (0 given)

Functions | FITPED

101

🕮 15.6.4

Keyword arguments are related to the function calls. When you use keyword
arguments in a function call, the caller identifies the arguments by the parameter
name.

This allows you to skip arguments or place them out of order because the Python
interpreter is able to use the keywords provided to match the values with
parameters. You can also make keyword calls to the greeting() function in the
following ways:

def greeting(name):

 print("Hello ",name)

greeting(name="Jack")

When the above code is executed, it produces the following result:

>> Hello Jack

The following example gives a more clear picture. Note that the order of
parameters does not matter.

def greetings(name, surname):

 print("Hello ",name," ",surname)

greetings(surname="Silver", name="John")

When the above code is executed, it produces the following result:

>> Hello John Silver

📝 15.6.5

Fill in the code to print the subtraction of the two given number parameters.

def difference(a,b):

 print(_____)

difference(_____7,b=_____)

>> -2

Functions | FITPED

102

🕮 15.6.6

A default argument is an argument that assumes a default value if a value is not
provided in the function call for that argument. The following example gives an idea
on default arguments, it prints default work position if it is not passed:

def employee(name, position="administrative"):

 print("Mr./Mrs. ",name," works at position: ",position)

employee(name="Smith")

employee(position="director",name="Jackson")

When the above code is executed, it produces the following result:

>> Mr./Mrs. Smith works at position: administrative

>> Mr./Mrs. Jackson works at position: director

📝 15.6.7

What will be the output of the following code:

def first_year(name, age=18):

 print("Student ",name," is ",age," years old.")

first_year(name="Pond")

• Student Pond is 18 years old.
• Student Pond is years old.
• Student Pond is 0 years old.
• Student Pond is None years old.
• Student Pond is NULL years old.

15.7 Functions - the return statement

🕮 15.7.1

The statement return [expression] exits within a function, optionally passing back
an expression to the caller. A return statement with no arguments is the same as
return None. All the examples used till now are not returning any value. In Python
functions, you can add the “return” statement to return a value.

def sum(a,b):

Functions | FITPED

103

 res = a+b

 return res

sum(3,5)

>> 8

📝 15.7.2

Fill in the code to return the product of two numbers from the function:

def prod(a,b):

 res = _____

prod(5,10)

>> _____

🕮 15.7.3

As you have already learned the variable by Python is not needed to be defined as
for other languages (e.g. Java, Pascal, ...). This means that you can return any type
of the variable from the function: integer, decimal numbers (float), boolean
(true/false), string.

Usually, the functions return a single value. But if required, Python allows returning
multiple values by using the collection types such as using a tuple or list. This
feature works like the call-by-reference by returning tuples and assigning the results
back to the original argument names in the caller.

def compare(a,b):

 if(a>b):

 res = "a is bigger"

 elif(b>a):

 res = "b is bigger"

 else:

 res = "both numbers are equal"

 return res

compare(3,5)

>> b is bigger

Functions | FITPED

104

📝 15.7.4

Fill in the code to return the information which of the three number parameters is
the smallest from the function:

def mini(a,b,c):

 min = a

 if(b_____min):

 min = _____

 if(c<min):

 return _____

mini(5,10,2)

>> _____

📝 15.7.5

What will be the output of the following function?

def underage(age):

 if(age<18):

 res = True

 else:

 res = False

 return res

print(underage(17))

• True
• False

🕮 15.7.6

In the previous lessons, we worked with functions that did not return any result or
value. Despite that, we could have used the keyword return to end the function or to
return no value in case this happened. So when do we use return None, return and
no return? And is there any difference between these three notations? On the actual
behavior, there is no difference. They all return None and that's it. However, there is
a time and place for all of these.

Functions | FITPED

105

🕮 15.7.7

Using return None

This tells that the function is indeed meant to return a value for later use, and in this
case, it returns None. This value None can then be used elsewhere. return None is
never used if there are no other possible return values from the function.

In the following example, we return a person's mother if the person given is a
human. If it's not a human, we return None since the person doesn't have a mother
(let's suppose it's not an animal or something).

def get_mother(person):

 if is_human(person):

 return person.mother

 else:

 return None

🕮 15.7.8

Using return

This is used for the same reason as break in loops. The return value doesn't matter
and you only want to exit the whole function. It's extremely useful in some places,
even though you don't need it that often.

We have got 10 numbers from 80-90 and we know that one of them is divisible by 7.
We loop through each number one by one to check if the division remainder of the
number is 0. If we hit the correct number, we can just exit the function because we
know there's only one number in the interval of 10 numbers that can be divided by
7. We do not have to check the rest of the numbers. If we do not find the number
divided by 7 we print the info. This could be done in many different ways and this
one is probably no the best way but it's an example of how to use the return to exit
a function.

def find_seven(numbers):

 for num in numbers:

 if(num%7==0):

 print(num)

 return # no need to check rest of the numbers

 print("No such number here")

Note: You should never do a = find_seven(numbers) since the return value is not
meant to be caught.

Functions | FITPED

106

🕮 15.7.9

Using no return at all

This will also return None but that value is not meant to be used or caught. It simply
means that the function ended successfully. It's basically the same as a return in
void functions in languages such as C++ or Java.

In the following example, we set the person's mother's name and then the function
exits after completing successfully.

def set_mother(person, mother):

 if is_human(person):

 person.mother = mother

Note: You should never do a=set_mother(my_person, my_mother) since the return
value is not meant to be caught.

15.8 Functions - the return statement (programs)

⌨ 15.8.1 BMI

Write the code that will create a function with a parameter that contains numbers
given by the input and return the BMI index and return information about your
weight. BMI is calculated as a division of weight (in kg) and the height squared (in
m), where BMI < 18.5 underweight, 18.5 <= BMI < 25 healthy, 25 <= BMI < 30
overweight, BMI > 30 obese. (read the input outside the function and use it as an
argument)

Input : 75 175

Output: healthy

Input : 87 164

Output: obese

⌨ 15.8.2 Absolute value

Write the code that will create a function with a parameter that contains the number
given by the input and return the absolute value of the given number. (read the input
outside the function and use it as an argument)

Input : 75

Output: 75

Functions | FITPED

107

Input : -7

Output: 7

⌨ 15.8.3 Similar numbers

Write the code that will create a function with a parameter that contains numbers
given by the input and return whether the three given numbers are similar. (read the
input outside the function and use it as an argument)

Input : 75 175 48

Output: False

Input : 8 8 8

Output: True

⌨ 15.8.4 Prime numbers

Write the code that will create a function with a parameter that contains numbers
given by the input and return all prime numbers to the given number. (read the input
outside the function and use it as an argument)

Input : 5

Output: 2 3 5

Input : 14

Output: 2 3 5 7 11 13

⌨ 15.8.5 Days of the month

Write the code that will create a function with a parameter that contains numbers
given by the input and for the given month return the count of its days (assume it is
NOT a gap year). (read the input outside the function and use it as an argument)

Input : 2

Output: 28

Input : 14

Output: wrong month

Functions | FITPED

108

⌨ 15.8.6 Math operations

Write the code that will create a function with a parameter that contains numbers
given by the input and return based on the given math operator (+, -, *, /) the sum,
difference, product or division between two given numbers. (read the input outside
the function and use it as an argument)

Input : + 1 2

Output: 3

Input : * 3 5

Output: 15

⌨ 15.8.7 Month name

Write the code that will create a function with a parameter that contains a string
given by the input and return the number of days of a given month name. (read the
input outside the function and use it as an argument)

Input : february

Output: 28

Input : december

Output: 31

⌨ 15.8.8 Seasons

Write the code that will create a function with a parameter that contains the number
given by the input and return the season based on the given month number.

If the number is from the interval <3,5> = "spring"

If the number is from the interval <6,8> = "summer"

If the number is from the interval <9,11> = "autumn"

If the number is from the interval <1,2> or 12 = "winter"

Else return wrong month. (read the input outside the function and use it as an
argument)

Input : 2

Output: winter

Input : 15

Functions | FITPED

109

Output: wrong month

⌨ 15.8.9 Aircraft range

Write the code that will create a function with a parameter that contains numbers
given by the input and return the range of the aircraft from the given velocity and
flight length in hours. (read the input outside the function and use it as an
argument)

Input : 850 4.5

Output: 3825

Input : 900 10

Output: 9000

⌨ 15.8.10 Comparison of two numbers

Write the code that will create a function with a parameter that contains numbers
given by the input and return the bigger number from two given numbers. Make
sure that in case the numbers are equal the program outputs that information.
(read the input outside the function and use it as an argument)

Input : 5 4

Output: Bigger is the number 5

Input : 10 10

Output: Both numbers are equal

15.9 Recursive function

🕮 15.9.1

Recursion is a method of programming or coding a problem, in which a function
calls itself one or more times in its body. Usually, it is returning the return value of
this function call. If a function definition satisfies the condition of recursion, we call
this function a recursive function.

Termination condition: A recursive function has to fulfil an important condition to
be used in a program: it has to terminate. A recursive function terminates, if with
every recursive call the solution of the problem is downsized and moves towards a
base case. A base case is a case, where the problem can be solved without further
recursion. A recursion can end up in an infinite loop if the base case is not met in
the calls.

Functions | FITPED

110

Example:

4! = 4 * 3!

3! = 3 * 2!

2! = 2 * 1

Replacing the calculated values gives us the following expression:

4! = 4 * 3 * 2 * 1

Generally, we can say: Recursion in computer science is a method where the
solution to a problem is based on solving smaller instances of the same problem.

🕮 15.9.2

Now we come to implement the most typical recursion example: the factorial. It's
as easy and elegant as the mathematical definition.

Example:

def factorial(n):

 if n == 1:

 return 1

 else:

 return n * factorial(n-1)

We can track how the function works:

factorial has been called with n = 5

factorial has been called with n = 4

factorial has been called with n = 3

factorial has been called with n = 2

factorial has been called with n = 1

intermediate result for 2 * factorial(1): 2

intermediate result for 3 * factorial(2): 6

intermediate result for 4 * factorial(3): 24

intermediate result for 5 * factorial(4): 120

120

Let's have a look at an iterative version of the factorial function.

def it_factorial(n):

 result = 1

 for i in range(2,n+1):

Functions | FITPED

111

 result *= i

 return result

It is common practice to extend the factorial function for 0 as an argument. It
makes sense to define 0! to be 1 because there is exactly one permutation of zero
objects, i.e. if nothing is to permute, "everything" is left in place. Another reason is
that the number of ways to choose n elements among a set of n is calculated as n!
divided by the product of n! and 0!.

All we have to do to implement this is to change the condition of the if statement:

def factorial(n):

 if n == 0:

 return 1

 else:

 return n * factorial(n-1)

📝 15.9.3

Fill in the code so the function will return the power of n-th of the given number:

def powers(x,n):

 if(n==1):

 return _____

 else:

 return x*_____

🕮 15.9.4

The Fibonacci numbers are the numbers of the following sequence of integer
values:

0,1,1,2,3,5,8,13,21,34,55,89,...

The Fibonacci numbers are defined by:

Fn = Fn-1 + Fn-2 where F0 = 0 and F1 = 1.

The Fibonacci sequence is named after the mathematician Leonardo of Pisa, who is
better known as Fibonacci. In his book "Liber Abaci" (publishes 1202) he introduced
the sequence as an exercise dealing with bunnies. His sequence of the Fibonacci
numbers begins with F1 = 1, while in modern mathematics the sequence starts with
F0 = 0. But this has no effect on the other members of the sequence.

Functions | FITPED

112

The Fibonacci numbers are easy to write as a Python function. It's more or less a
one to one mapping from the mathematical definition:

def fib(n):

 if n == 0:

 return 0

 elif n == 1:

 return 1

 else:

 return fib(n-1) + fib(n-2)

📝 15.9.5

Fill in the code so the function will return the n-th element of the Fibonacci
sequence (the sequence is following: 1, 1, 2, 3, 5, 8, 13, ...):

def fibo(n):

 if(n==1):

 return _____

 elif(n==2):

 return _____

 else:

 return fibo(_____)+_____(n-2)

⌨ 15.9.6 Sum of numbers

Write a code that will create a recursive function with a parameter that contains a
number given by the input and return the sum of numbers from 1 to the given
number. (read the input outside the function and use it as an argument)

Input : 5

Output: 15

Input : 10

Output: 55

⌨ 15.9.7 Product of numbers

Write a code that will create a recursive function with a parameter that contains a
number given by the input and return the product of numbers from 1 to the given
number. (read the input outside the function and use it as an argument)

Input : 5

Functions | FITPED

113

Output: 120

Input : 10

Output: 55

⌨ 15.9.8 Fibonachi sequence

Write a code that will create a recursive function with a parameter that contains a
number given by the input and return the Fibonacci sequence element. (read the
input outside the function and use it as an argument). Fibonacci sequence is
following: 0, 1, 1, 2, 3, 5, 8, 13, 21, ...

Input : 5

Output: 5

Input : 10

Output: 55

⌨ 15.9.9 Sequence I.

Write a code that will create a recursive function with a parameter that contains a
number given by the input and return the sum of the positive integers of n+(n-2)+(n-
4)... (until n-x =< 0). (read the input outside the function and use it as an argument).

Input : 10

Output: 30

Input : 5

Output: 9

⌨ 15.9.10 Sequence II.

Write a code that will create a recursive function with a parameter that contains a
number given by the input and return the sum of the positive integers of (n-1)+(n-
2)+(n-3)... where a0=2, a1=4 and a2=7. (read the input outside the function and use it
as an argument).

Input : 10

Output: 927

Input : 5

Output: 44

Functions | FITPED

114

⌨ 15.9.11 Prime number

Write a code that will create a recursive function with a parameter that contains a
number given by the input and return information whether the given number is a
prime number. (read the input outside the function and use it as an argument). Use
a default argument for the base divisor to check as number 2.

Input : 10

Output: no

Input : 5

Output: yes

15.10 Docstrings

🕮 15.10.1

A documentation string, "docstring", is descriptive text that helps to better
understand the functionality of a class, module, function, or method.

The document and the commentary are similar, but there are a few differences:

• comments are used to describe how the program works, the document
describes what the program should do

• the document is an improved, more logical and more useful version of the
comments

• comments are mainly used to explain unusual parts of the code and can be
useful for fixing bugs and tasks that need to be done

The document (docstring) should look like this:

• begins with a capital letter and ends with a period
• the first line is a short description
• if the document contains multiple lines, the second line is blank and visually

separates the summary from the rest of the description
• the next lines use one or more paragraphs to describe a common call to an

object, its side effects, and so on.

📝 15.10.2

What is the meaning of "docstring"?

• It is used to explain in brief, what a function does.
• It is used to explain in brief, what is Python.
• It is used to describe the programming task.
• It is used to heal the function of errors.

Functions | FITPED

115

🕮 15.10.3

Documents (docstring) are written using triple quotes """This function greets the
user""", directly below the class, method, or function declaration. All functions
should include a docstring that describes their functionality.

Documents are accessible from the (__doc__) attribute for any of the Python objects,
as well as through the built-in help() function, which provides all the necessary
information.

Example of using the docstring attribute and the help() function

def say_hello():

 """Function that returns hello to the user."""

 return "Hello"

print("Usage of __doc__:",say_hello.__doc__)

>> Usage of atribute__doc__: Function that returns hello to

the user.

print("Using help:")

help(say_hello)

>> Using of function help():

>> Help on function say_hello in module __main__:

say_hello()

 Function that returns hello to the user.

📝 15.10.4

What keyword or function do you have to use to obtain the docstring attribute of a
function with the name my_function?

• docstring
• --doc--
• help(my_function)
• sos(my_function)
• __doc__
• my_function(help)

Functions | FITPED

116

📝 15.10.5

Fill in the code to list the docstring attribute.

def say_hi(name):

 """Function that prints a greeting with the name."""

 print("Good Morning ",name)

print("Usage of __doc__:",_____)

>> Usage of __doc__: _____

📝 15.10.6

Fill in the code to list the information about the docstring attribute without the use
of "__doc__" attribute.

def say_hi(name):

 """Function that prints a greeting with the name."""

 print("Good Morning ",name)

>> _____ on function say_hi in module __main__:

say_hi(name)

🕮 15.10.7

One-line documentation

This is a description that is on just one line. The closing quotation marks are on the
same line as the opening quotation marks. It is used in unambiguous cases, with
simple functions.

def diff(a,b):

 """Returns the difference of the arg1 and arg2."""

 return a-b

print(diff.__doc__)

>> Returns the difference of the arg1 and arg2.

Functions | FITPED

117

🕮 15.10.8

Multiline documentation

Multi-line documentation consists of a summary line, just like single-line
documentation, followed by a blank line for better clarity and finally a more detailed
description of the function, method, etc. The summary line is on the same line as
the opening quotes or on a new line.

Example of using multiline documentation

def my_function(arg1):

 """

 Summary line.

 Extended description of function.

 Parameters:

 arg1 (int): Description of arg1

 Returns:

 int: Description of return value

 """

 return arg1

print(my_function.__doc__)

Corresponding Output:

 Summary line.

 Extended description of function.

 Parameters:

 arg1 (int): Description of arg1

 Returns:

 int: Description of return value

🕮 15.10.9

Indentation in documents

The entire document (docstring) is indented in the same way as the quotation marks
on the first line. Documentation processing tools remove the same amount of

Functions | FITPED

118

indentation from the second and subsequent lines of documentation, which is
equal to the minimum indent of all non-empty lines after the first line. Any
indentation in the first line of the docstring (ie up to the first newline) is negligible
and will be removed. The relative indentation of later lines in the documentation is
maintained.

📝 15.10.10

What docstring types can be used for functions?

• one-line
• on-line
• multi-line
• empty-line
• tree-line

Namespaces

Chapter 16

Namespaces | FITPED

120

16.1 Namespaces

🕮 16.1.1

To better understand how local variables really work, you need to understand what
they are and how a namespace works.

Namespaces are collections of identifiers that belong to a specific module, resp.
function. Each module has its own namespace, which means that two different
modules can contain identifiers with the same name. Their distinction is solved by
an entry, within which the module to which the given identifier belongs is
unambiguously determined.

In short, namespace ensures that all names in the program are unique and can be
used without conflicts.

In Python, all identifiers are one of three types:

• local namespace - valid within a function, created when the function is called
and lasts only until the function returns a value

• global namespace - valid within the module (file), is created when the module
is imported into the project and lasts until the script ends

• built-in namespace - identifiers predefined in Python, includes built-in
functions and built-in exception names

When evaluating which identifier to use, local identifiers take precedence over
global and global ones over built-ins.

📝 16.1.2

What does namespace mean?

• It is a system to secure that all the names in the program can be used
without conflict and are unique.

• It is a system to secure that most of the names in the program can be used
without conflict and are unique.

• It is a special type of function.
• It is a system to secure that the names in the program can be duplicate.

🕮 16.1.3

Namespaces help uniquely identify all the names inside a program. However, this
doesn't imply that we can use a variable name anywhere we want. A name also has

Namespaces | FITPED

121

a scope that defines the parts of the program where you could use that name
without using any prefix. Just like namespaces, there are also multiple scopes in a
program. Here is a list of some scopes that can exist during the execution of a
program.

• A local scope, which is the innermost scope that contains a list of local
names available in the current function.

• Scope of all the enclosing functions. The search for a name starts from the
nearest enclosing scope and moves outwards.

• A module-level scope that contains all the global names from the current
module.

• The outermost scope contains a list of all the built-in names. This scope is
searched last to find the name that you referenced.

In the next parts of the lesson, we will use a built-in Python function dir() that
returns a list of names in the current local scope.

📝 16.1.4

Choose which of the following examples represent the namespace.

• Local namespace
• Focusal namespace
• Built-out namespace
• Global namespace
• Space namespace
• Built-in namespace

🕮 16.1.5

The search for a given name starts from the innermost function and then moves
higher and higher until the program can map that name to an object. When no such
name is found in any of the namespaces, the program raises a NameError
exception.

Let's see what will happen if we type dir() into IDLE or any Python IDE:

dir()

The output will be the following:

['__builtins__','__doc__','__loader__','__name__','__package__

','__spec__']

Namespaces | FITPED

122

All these names listed by dir() are available in every Python program.

Let's see the output of the dir() function when we create a variable inside a
function:

a = 1

dir()

The output will be the following:

['__builtins__','__doc__','__loader__','__name__','__package__

','__spec__','a']

def func():

 b = 2

 print(dir())

func()

The output will be following:

['b']

And if we call the dir() function again we get this Output:

['__builtins__','__doc__','__loader__','__name__','__package__

','__spec__','a','func']

The dir() function only outputs the list of names inside the current scope. That's
why inside the scope of func(), there is only one name called b. Calling dir() after
defining func() adds it to the list of names available in the global namespace.

📝 16.1.6

What will be the output of the following code?

def summa(x,y):

 print(dir())

 return x+y

res = summa(4,2)

• ['x', 'y']
• 6

Namespaces | FITPED

123

• ['__builtins__','__doc__','__loader__','__name__','__package__','__spec__','res','su
mma']

• ['__builtins__','__doc__','__loader__','__name__','__package__','__spec__','x','y','re
s','summa']

🕮 16.1.7

List of names inside some nested functions

The code in this block continues from the previous block.

def main_func():

 a = 1

 def nested_func():

 b = 2

 print(dir(), ': names in nested_func')

 c = 3

 nested_func()

 print(dir(), ': names in main_func')

main_func()

This will result in the following Output:

['b'] : names in nested_func

['a', 'c', 'nested_func'] : names in main_func

The above-defined function defines two variables and a function inside the scope of
main_func(). Inside nested_func(), the dir() function only prints the name b. This is
correct as b is the only variable defined there.

Unless explicitly specified by using the global keyword, reassigning a global name
inside a local namespace creates a new local variable with the same name.

📝 16.1.8

Select the correct outputs of the following code:

a = 1

b = 2

def main_func():

 global a

Namespaces | FITPED

124

 a = 3

 b = 4

 def nested_func():

 global a

 a = 5

 b = 6

 print('a inside nested_func :', a)

 print('b inside nested_func :', b)

 nested_func()

 print('a inside main_func :', a)

 print('b inside main_func :', b)

main_func()

print('a outside all functions :', a)

print('b outside all functions :', b)

• a inside nested_func : 5
• a outside all functions : 1
• a inside main_func : 3
• a inside main_func : 5
• a outside all functions : 5
• a inside nested_func : 3
• b outside all functions : 2
• b outside all functions : 6
• b inside main_func : 3
• b inside main_func : 4
• b inside nested_func : 6

Strings

Chapter 17

Strings | FITPED

126

17.1 Introduction to Strings

🕮 17.1.1

Let's review what we learned about string in the previous course. A string is a
sequence of characters. A character is simply a symbol. For example, the English
language has 26 characters. Computers do not deal with characters, they deal with
numbers (binary). Even though you may see characters on your screen, internally it
is stored and manipulated as a combination of 0's and 1's. This conversion of a
character to a number is called encoding, and the reverse process is decoding.
ASCII and Unicode are some of the popular encoding used.

In Python, a string is a sequence of Unicode character. Unicode was introduced to
include every character in all languages and bring uniformity in encoding.

Strings can be created by enclosing characters inside a single quote or double
quotes. Even triple quotes can be used in Python but are generally used to
represent multiline strings and docstrings.

my_name = "Peter"

or it can be written as 'Peter', '''Peter'''

print(my_name)

Triple quotes string can even extend multiple lines:

my_string = """Hello

 world"""

📝 17.1.2

Fill in the code with correct string quotes:

my_string = _____This sentence

 will be longer than a normal

 sentence and you want to print it

 with this formating._____

print(my_string)

🕮 17.1.3

Like many other popular programming languages, strings in Python are arrays of
bytes representing Unicode characters. However, Python does not have a character
data type, a single character is simply a string with a length of 1. Square brackets
can be used to access elements of the string.

Strings | FITPED

127

my_name = "Peter"

print(my_name[1])

The output will be following:

>> e

We can access individual characters using indexing and a range of characters using
slicing. Index starts from 0. Trying to access a character out of the index range will
raise an IndexError. The index must be an integer. We can't use float or other types,
this will result in TypeError.

📝 17.1.4

What will be the output of the following code?

my_str = "Informatics"

print(my_str[5])

• I
• n
• f
• o
• r
• m
• a
• t
• i
• c
• s

🕮 17.1.5

Python allows negative indexing for its sequences. The index of -1 refers to the last
item, -2 to the second last item and so on. We can access a range of items in a
string by using the slicing operator (colon). Slicing can be best visualized by
considering the index to be between the elements as shown below. If we want to
access a range, we need the index that will slice the portion from the string.

print(my_name[-1])

>> r

print(my_name[1:5])

>> eter

Strings | FITPED

128

print(my_name[2:-2])

>> t

📝 17.1.6

What will be the output of the following code?

my_str = "Informatics"

print(my_str[-6])

• I
• n
• f
• o
• r
• m
• a
• t
• i
• c
• s

📝 17.1.7

Fill in the code to get the following Output:

my_str = "Informatics"

print(_____)

>> format

🕮 17.1.8

Strings are immutable. This means that elements of a string cannot be changed
once it has been assigned. We can simply reassign different strings to the same
name.

my_str = "Informatics"

my_str[6] = '4'

>> TypeError: 'str' object does not support item assignment

Strings | FITPED

129

We cannot delete or remove characters from a string. But deleting the string
entirely is possible using the keyword del.

my_str = "Informatics"

del my_str[6]

>> TypeError: 'str' object doesn't support item deletion

del my_str

my_str

>> NameError: name 'my_str' is not defined

17.2 Strings (programs)

⌨ 17.2.1 Second letter

Write the code that will use a function with a parameter that contains a string given
by the input and returns the second letter of the given string (read the input outside
the function and use it as an argument).

Input : Hello World

Output: e

Input : PYTHON

Output: Y

⌨ 17.2.2 Compare two strings

Write the code that will use a function with a parameter that contains strings given
by the input and returns the information whether the two given strings are equal
(read the input outside the function and use it as an argument).

Input : tree

tree

Output: yes

Input : PYTHON

python

Output: no

Strings | FITPED

130

⌨ 17.2.3 Palindrome

Write the code that will use a function with a parameter that contains a string given
by the input and returns the information whether the given string is a palindrome
(read the input outside the function and use it as an argument).

Input : tree

Output: no

Input : toot

Output: yes

⌨ 17.2.4 Incorrect input

Write the code that will use a function with a parameter that contains numbers
given by the input and returns the sum of two given numbers and will deal with an
incorrect input (read the input outside the function and use it as an argument).

Input : 5 7

Output: 12

Input : 4 a

Output: incorrect input

⌨ 17.2.5 Number of digits

Write the code that will use a function with a parameter that contains numbers
given by the input and returns return how many times is a digit in a given number.
(read the input outside the function and use it as an argument).

Input : 5 154265

Output: 2

Input : 1 11154231

Output: 4

⌨ 17.2.6 Maximum digit

Write the code that will use a function with a parameter that contains numbers
given by the input and returns the maximum digit from a given number. (read the
input outside the function and use it as an argument).

Input : 1248556

Strings | FITPED

131

Output: 8

Input : 111111

Output: 1

⌨ 17.2.7 Minimum digit

Write a code that will use a function with a parameter that contains numbers given
by the input and returns the minimum digit from a given number. (read the input
outside the function and use it as an argument).

Input : 1248556

Output: 1

Input : 1101111

Output: 0

⌨ 17.2.8 Mirror image

Write the code that will use a function with a parameter that contains a number
given by the input and returns the mirror image of a given number. (read the input
outside the function and use it as an argument).

Input : 1234

Output: 4321

Input : 110011

Output: 110011

⌨ 17.2.9 Without first and last letter

Write the code that will use a function with a parameter that contains a string given
by the input and returns the string without the first and last letter. (read the input
outside the function and use it as an argument).

Input : alphabet

Output: lphabe

Input : 110011

Output: 1001

Strings | FITPED

132

17.3 String operations

🕮 17.3.1

Joining two or more strings into a single one is called concatenation. The +
operator does this in Python. Simply writing two string literals together also
concatenates them. The * operator can be used to repeat the string a given number
of times.

name = "John"

surname = "Silver"

print('name + surname =',name+surname)

print('name * 5 =',name*5)

The output will be following:

name + surname = JohnSilver

name * 5 = JohnJohnJohnJohnJohn

📝 17.3.2

Fill in the code so to get the following Output:

str1 = "I like "

str2 = "Python"

print(_____)

print(_____)

The output will be following:

I like Python

PythonPythonPython

🕮 17.3.3

If we want to iterate through a string we can use the for loop. Using the loop we can
browse the string by characters or letters. This can be used also to browse a
number to for e.g. calculate the digit sum.

count = 0

for let in 'informatics':

 if(let == 'i'):

 count += 1

print(count,' i letters found')

Strings | FITPED

133

The code will output the following result:

2 i letters found

📝 17.3.4

Fill in the code to calculate the digit sum of the given number:

num = "12345"

digsum = _____

for n in _____:

 digsum_____int(n)

print(_____)

>> 15

🕮 17.3.5

To check if a certain phrase or character is present in a string, we can use the
keywords in or not in. This can be used to browse through the given string without
the use of a loop. It can be used only to compare two strings or better to say that if
a substring is part of the browsed string.

txt = "Have a great day."

is_in = "av" in txt

print(is_in)

The return of the expression using the keyword in is a boolean. This means that the
previous code will generate the following Output:

>> True

The not in keywords work the other way around. If the substring is contained in the
string then it will return False.

txt = "Have a great day."

is_in = "av" not in txt

print(is_in)

>> False

Strings | FITPED

134

📝 17.3.6

Fill in the code so that you will get the following Output:

txt = "Informatics is cool"

res = "oo" _____ txt

print(res)

>> False

🕮 17.3.7

Python in contrast to other programming languages, e.g. Java, does not support
combinations of string and numbers the following way:

age = 18

txt = "I'm "+age+" years old."

print(txt)

This will result in an error message:

>> TypeError: must be str, not int

In Python, we can combine strings and numbers using the format() method. The
method takes the passed arguments, formats them and places them in the string
where the placeholders {} are:

age = 18

txt = "I'm {} years old."

print(txt.format(age))

The output will be following:

>> I'm 18 years old.

🕮 17.3.8

The format() method takes an unlimited number of arguments, and are placed into
the respective placeholders:

age = 26

address = 49

salary = 876

Strings | FITPED

135

txt = "My name is John, I'm {} years old, I work at St. John's

{} and earn {} euros."

print(txt.format(age, address, salary))

The result will be following:

>> My name is John, I'm 26 years old, I work at St. John's 49

and earn 876 euro.

You can use index numbers {0} to be sure the arguments are placed in the correct
placeholders:

salary = 876

age = 26

address = 49

txt = "My name is John, I'm {2} years old, I work at St.

John's {0} and earn {1} euros."

print(txt.format(address, salary, age))

The result will be following:

>> My name is John, I'm 26 years old, I work at St. John's 49

and earn 876 euro.

We can even format strings like the old sprintf() style used in the C programming
language. We use the % operator to accomplish this.

age = 32

print("I am %d years old" %age)

📝 17.3.9

Fill in the code with the correct index of the variables in the text format method:

quant = 2

item = 653

price = 4.99

order = "I want to pay _____ euros for _____ pieces of item

_____."

print(order._____(quant, price, item))

Strings | FITPED

136

🕮 17.3.10

To insert characters that are illegal in a string, use an escape character. An escape
character is a backslash \ followed by the character you want to insert. An example
of an illegal character is a double quote inside a string that is surrounded by double
quotes:

txt = "These so-called "experts" do not know anything."

This will result in an invalid syntax. To fix this issue we will input the backslash
escape character:

txt = "These so-called \"experts\" do not know anything."

Other escape characters used in Python are following:

• single quotes: \'
• backslash: \\
• new line: \n
• carriage return: \r
• tab: \t
• backspace: \b
• form feed: \f

17.4 String operations (programs)

⌨ 17.4.1 Contains a string

Write the code that will use a function with a parameter that contains strings given
by the input and returns the count of how many times the given string is contained
in another given string. (read the input outside the function and use it as an
argument).

Input : ab babababa

Output: 3

Input : dog dosdogsddosg

Output: 1

⌨ 17.4.2 String on the beginning or the end

Write the code that will use a function with a parameter that contains strings given
by the input and returns whether the string is in the beginning or at the end of a
given string. (read the input outside the function and use it as an argument).

Strings | FITPED

137

Input : ab bababab

Output: end

Input : dog dogdosgsddosg

Output: beginning

Input : so dogdosgsddosg

Output: neither

⌨ 17.4.3 Replacing the string

Write the code that will use a function with a parameter that contains strings given
by the input and returns a replaced given string with a given substring. (read the
input outside the function and use it as an argument).

Input : babababa a b

Output: bbbbbbbb

Input : hello e 3

Output: h3llo

⌨ 17.4.4 The most common character

Write the code that will use a function with a parameter that contains a string given
by the input and returns the most common character in the given string. (read the
input outside the function and use it as an argument).

Input : popocatepetl

Output: p

Input : bratislava

Output: a

⌨ 17.4.5 Zero

Write the code that will use a function with a parameter that contains a string given
by the input and returns whether the given string contains a zero. (read the input
outside the function and use it as an argument).

Input : popocatepetl

Output: no zero

Input : 100

Strings | FITPED

138

Output: has zero

⌨ 17.4.6 Odd numbers

Write the code that will use a function with a parameter that contains a string given
by the input and returns the count of odd numbers in a given string and whether it
contains a zero. (read the input outside the function and use it as an argument).

Input : 24168

Output: odd numbers: 1

 no zero

Input : 100

Output: odd numbers: 1

 has zero

17.5 String functions

🕮 17.5.1

Various built-in functions work with strings. Some of the commonly used ones are
enumerate() and len(). The enumerate() function returns an enumerate object. It
contains the index and value of all the items in the string as pairs. This can be
useful for iteration.

Similarly, len() returns the length (number of characters) of the string.

txt = "Informatics"

print(len(txt))

This will result in the following Output:

>> 11

📝 17.5.2

What will be the output of the following code:

txt = "My name is John "

print(len(txt))

• 16
• 12

Strings | FITPED

139

• 15
• 10
• 0

🕮 17.5.3

There are some functions that work with the case of the text in a string. Like we can
change the lowercase to uppercase and vice versa. Also, we can capitalize the first
letter in the string.

It does not matter what the letters are the capitalize() function will convert the first
character to an uppercase letter and other characters will be lowercased. The string
will be not changed in any other way.

txt = "hello World"

print(txt.capitalize())

>> Hello world

The string lower() method converts all uppercase characters in a string into
lowercase characters and returns it. On the other hand, the string upper() method
converts all lowercase characters in a string into uppercase characters and returns
them.

txt = "Hello World"

print(txt.upper())

print(txt.lower())

>> HELLO WORLD

>> hello world

📝 17.5.4

What will be the output of the following code:

txt1 = "I AM CoDING PYTHON!"

txt2 = "I am CoDiNg Python!"

if(txt1.lower() == txt2.lower()):

 print("The strings are same.")

else:

 print("The strings are not same.")

Strings | FITPED

140

📝 17.5.5

What will be the output of the following code:

txt = "i am programming Python."

print(txt.capitalize())

txt2 = "* is an operator."

print(txt.capitalize())

• I am programming python.
• i am programming Python.
• I AM PROGRAMMING PYTHON.
• * is an operator.
• * Is an operator.
• * IS AN OPERATOR.
• i am programming python.

🕮 17.5.6

The other useful functions for string are the following. If you want to convert a
string to a number then it is better first to check whether the string contains only
numerical characters otherwise the conversion would lead to an error. For this
purpose can be used the functions isdigit() or isdecimal().

The isdecimal() method returns True if all characters in a string are decimal
characters. If not, it returns False.

txt = "1234"

print(txt.isdecimal())

>> True

txt = "H3110"

print(txt.isdecimal())

>> False

The isdigit() method returns True if all characters in a string are digits. If not, it
returns False.

txt = "1234"

print(txt.isdigit())

>> True

txt = "H3110"

print(txt.isdigit())

>> False

Strings | FITPED

141

📝 17.5.7

Fill in the code so that you check whether the given string is a number.

txt1 = 'INF0RM4T1CS'

print(txt1._____)

>> False

txt2 = '3167'

print(_____)

>> _____

🕮 17.5.8

In the previous chapter, we dealt with the format of the strings and their
concatenation with another string. This can be done also using a function join() and
we can use another function split() to split a string into two separate strings.

The join() is a string function that returns a string concatenated with the elements
of an iterable. It provides a flexible way to concatenate string. It concatenates each
element of an iterable (such as list, string and tuple) to the string and returns the
concatenated string.

The split() function breaks up a string at the specified separator and returns a list of
strings. About the list, you will learn in the intermediate course. The split() function
takes a maximum of 2 parameters:

• separator (optional): the string splits at the specified separator. If the
separator is not specified, any whitespace (space, newline etc.) string is a
separator.

• maxsplit (optional): the maxsplit defines the maximum number of splits. The
default value of maxsplit is -1, meaning, no limit on the number of splits.

txt= 'I like Python' # splits at space

print(txt.split())

>> ['I', 'like', 'Python']

buy = 'Bread, Cereal, Ham, Cheese' # splits at ','

print(buy.split(', '))

>> ['Bread', 'Cereal', 'Ham', 'Cheese']

📝 17.5.9

Fill in the code to generate the following Output:

keywords = 'java;python;pascal;c++;php'

Strings | FITPED

142

print(keywords._____('_____'))

>> ['java', 'python', 'pascal', 'c++', 'php']

🕮 17.5.10

The strings can be browsed using a for loop that we showed in the previous
chapters. But we can also use functions to find whether a substring is contained
inside a string and we can even replace a part of the string with another one. For
this purpose, we can use the function find() and replace().

The find() function returns the index of the first occurrence of the substring (if
found). If not found, it returns -1. The find() method takes a maximum of three
parameters:

• sub: It's the substring to be searched in the str string
• start and end (optional): substring is searched within str[start:end]

txt = 'I like Python, I like Java, I like PHP'

rsl = txt.find('I like')

print("Substring 'I like':", rsl)

>> Substring 'I like': 0

rsl = txt.find('pascal')

print("Substring 'pascal':", rsl)

>> Substring 'pascal': -1

The replace() function returns a copy of the string where all occurrences of a
substring are replaced with another substring. The replace() function can take a
maximum of 3 parameters:

• old: old substring you want to replace
• new: new substring which would replace the old substring
• count (optional): the number of times you want to replace the old substring

with the new substring

If count is not specified, replace() function replaces all occurrences of the old
substring with the new substring. The replace() function returns a copy of the string
where the old substring is replaced with the new substring. The original string is
unchanged. If the old substring is not found, it returns the copy of the original
string.

txt = 'I like Python, I like Java, I like PHP'

Strings | FITPED

143

print(txt.replace('PHP', 'Pascal'))

>> I like Python, I like Java, I like Pascal

txt = 'I like Python, I like Java, I like PHP'

print(txt.replace('like', 'love', 2))

>> I love Python, I love Java, I like PHP

📝 17.5.11

Fill in the code to get the following result:

if (quote.find('be,') != -1):

 print("Contains substring 'be,'")

else:

 print("Doesn't contain substring")

>>

📝 17.5.12

Fill in the code to generate the following Output:

txt = 'Exam results: John got B, Marry got B, Peter got B,

Barry got B'

print(txt._____('B', 'A', 3))

>> Exam results: John got _____, Marry got _____, Peter got

_____, Barry got _____

🕮 17.5.13

At the most basic level, computers store all information as numbers. To represent
character data, a translation scheme is used which maps each character to its
representative number. The simplest scheme in common use is called ASCII. It
covers the common Latin characters you are probably most accustomed to working
with.

The simplified coding ASCII table contains 255 base symbols (despite that
nowadays are alphabets coded using Unicode/UTF8). The first 32 symbols are
controlling but the others are used often. The characters 'a' and 'A' are not the same
(are not equal).

Strings | FITPED

144

Unicode is an ambitious standard that attempts to provide a numeric code for every
possible character, in every possible language, on every possible platform. Python 3
supports Unicode extensively, including allowing Unicode characters within strings.

As long as you stay in the domain of the common characters, there is little practical
difference between ASCII and Unicode. The chr() function returns a character (a
string) from an integer (represents Unicode code point of the character). On the
other hand, the ord() function returns an integer representing the Unicode
character.

🕮 17.5.14

The chr() function returns a character (a string) from an integer value (represents
Unicode code point of the character). The chr() function takes a single parameter,
an integer value. The chr() returns a character (a string) whose Unicode code point
is the integer value. If the integer value is outside the range, ValueError will be
raised.

print(chr(68))

print(chr(87))

print(chr(103))

>> D

>> W

>> g

Strings | FITPED

145

📝 17.5.15

Fill in the corresponding char integer values to get the following Output:

print(_____)

>> H E L L O

🕮 17.5.16

The ord() function returns an integer representing the Unicode character. The ord()
function takes a single parameter: ch - a Unicode character. By the way, the ord()
function is the inverse of the Python chr() function.

print(ord('D'))

print(ord('a'))

print(ord('7'))

>> 68

>> 97

>> 55

📝 17.5.17

Fill in the corresponding Unicode character values to get the following Output:

print(_____)

>> 35 112 121 116 104 111 110

17.6 String functions (programs)

⌨ 17.6.1 String length

Write the code that will use a function with a parameter that contains a string given
by the input and returns the length of the given string. (read the input outside the
function and use it as an argument).

Input : alphabet

Output: 8

Input : 110011

Output: 6

Strings | FITPED

146

⌨ 17.6.2 Lowercase

Write a code that will use a function with a parameter that contains a string given
by the input and returns the given string in lowercase. (read the input outside the
function and use it as an argument).

Input : PYTHON

Output: python

Input : 100

Output: 100

⌨ 17.6.3 Uppercase

Write the code that will use a function with a parameter that contains a string given
by the input and returns the given string in uppercase. (read the input outside the
function and use it as an argument).

Input : python

Output: PYTHON

Input : 100

Output: 100

⌨ 17.6.4 Number

Write the code that will use a function with a parameter that contains a string given
by the input and returns information whether the given string is a number or not.
(read the input outside the function and use it as an argument).

Input : pyth0n

Output: False

Input : 100

Output: True

⌨ 17.6.5 First occurence

Strings | FITPED

147

Write the code that will use a function with a parameter that contains strings given
by the input and returns information of the first occurrence of a given substring in
the given string. (read the input outside the function and use it as an argument).

Input : I like Python

 like

Output: 2

Input : It is a trap

 a

Output: 6

⌨ 17.6.6 Characters I.

Write the code that will use a function with a parameter that contains a string given
by the input and returns whether the given string is a letter, number or character.
(read the input outside the function and use it as an argument).

Input : a

Output: letter

Input : 4

Output: number

Input : !

Output: character

⌨ 17.6.7 Characters II.

Write the code that will use a function with a parameter that contains a string given
by the input and returns whether the given string is a uppercase or lowercase letter.
If it is not a letter write NaN. (read the input outside the function and use it as an
argument).

Input : a

Output: lowercase

Input : 4

Output: NaN

Input : F

Output: uppercase

Strings | FITPED

148

⌨ 17.6.8 Encoding

Write the code that will use a function with a parameter that contains a string given
by the input and returns the encoded given string so that it will move each letter by
3 digits in the alphabet. For example, Hello will be: H-K, e-h, l-o, l-o, o-r. Make sure
that in case of the end of the aplhabet it will start from the beginning, for example z-
c. (read the input outside the function and use it as an argument).

Input : Hello

Output: Khoor

Input : World

Output: Zruog

⌨ 17.6.9 Vowels

Write the code that will use a function with a parameter that contains a string given
by the input and returns the vowels from the given string (a, e, i, o, u, y). (read the
input outside the function and use it as an argument).

Input : Hello

Output: eo

Input : World

Output: o

⌨ 17.6.10 Vowels

Write the code that will use a function with a parameter that contains a string given
by the input and returns the information whether the word contains the letter "y". If
yes, it will return the count and substitute it with the letter "i". (read the input outside
the function and use it as an argument).

Input : fyto

Output: 1 time

 fito

Input : bit

Output: 0 time

 bit

