

Python Classes

Published on

November 2021

Authors

Zenón José Hernández-Figueroa | University of Las Palmas de Gran Canaria, Spain

José Daniel González-Domínguez | University of Las Palmas de Gran Canaria, Spain

Juan Carlos Rodríguez-del-Pino | University of Las Palmas de Gran Canaria, Spain

Viera Michaličková | Constantine the Philosopher University in Nitra, Slovakia

Jan Přichystal | Mendel University in Brno, Czech Republic

Kornel Chromiński | University of Silesia in Katowice, Poland

Reviewers

Jozef Kapusta | Pedagogical University of Cracow, Poland

Peter Švec | Teacher.sk, Slovakia

Eugenia Smyrnova-Trybulska | University of Silesia in Katowice, Poland

Piet Kommers | Helix5, Netherland

Graphics

Ľubomír Benko | Constantine the Philosopher University in Nitra, Slovakia

David Sabol | Constantine the Philosopher University in Nitra, Slovakia

Erasmus+ FITPED

Work-Based Learning in Future IT Professionals Education

Project 2018-1-SK01-KA203-046382

The European Commission support for the production of this publication does not
constitute an endorsement of the contents which reflects the views only of the authors,
and the Commission cannot be held responsible for any use which may be made of
the information contained therein.

Licence (licence type: Attribution-Non-commercial-No Derivative Works) and may be
used by third parties as long as licensing conditions are observed. Any materials
published under the terms of a CC Licence are clearly identified as such.

All trademarks and brand names mentioned in this publication and all trademarks and
brand names mentioned that may be the intellectual property of third parties are
unconditionally subject to the provisions contained within the relevant law governing
trademarks and other related signs. The mere mention of a trademark or brand name
does not imply that such a trademark or brand name is not protected by the rights of
third parties.

© 2021 Constantine the Philosopher University in Nitra

ISBN 978-80-558-1785-9

Table of Contents

1 Classes and Instances .. 6

1.1 Classes and instances ... 7

1.2 Objects and attributes .. 9

1.3 Initialisation, instance attributes (exercises) ... 12

2 Methods .. 14

2.1 Instance methods ... 15

2.2 Instance methods (exercises) ... 18

2.3 Representing objects as strings .. 21

2.4 Objects to string (exercises) .. 23

3 Encapsulation... 25

3.1 Encapsulation (getters, setters) .. 26

3.2 Encapsulation - property, property decorator ... 31

3.3 Encapsulation (exercises) .. 35

4 Class Attributes ... 39

4.1 Class variables .. 40

4.2 Class methods .. 42

4.3 Class attributes (exercises) ... 45

5 Inheritance .. 51

5.1 Inheritance ... 52

5.2 Inheritance (exercises) ... 57

6 Polymorphism .. 60

6.1 Polymorphism and inherited methods (methods overriding) 61

6.2 Inheritance and method overriding (exercises) ... 64

6.3 Polymorphism and operators (operators overloading) 66

6.4 Operators overloading (exercises) .. 73

6.5 Polymorphism and parameters of a function .. 76

7 Immutable Classes .. 80

7.1 Immutable classes ... 81

7.2 Immutability (exercises)... 87

8 Objects .. 90

8.1 Copying objects .. 91

8.2 Destroying objects .. 96

9 More Inheritance .. 100

9.1 More about inheritance: multiple inheritance, abstract classes 101

10 Iterators and Generators ... 106

10.1 Iterators and generators .. 107

10.2 Iterators (exercises) ... 110

10.3 Generators (exercises) ... 114

11 Custom Exceptions, Assertions ... 116

11.1 Custom exceptions, assertions ... 117

11.2 Custom exceptions, assertions (exercises) ... 120

Classes and Instances

Chapter 1

Classes and Instances | FITPED

7

1.1 Classes and instances

🕮 1.1.1

Classes

In Object Oriented Programming, a class is a blueprint to create data objects.

Classes represent entities or concepts while objects are actual instances of those
concepts. There can be many objects of the same class.

For example, a chair is a concept that stands for "a type of seat. Its primary features
are two pieces of a durable material, attached as back and seat to one another at a
90° or slightly greater angle, with usually the four corners of the horizontal seat
attached in turn to four legs" (Wikipedia). The objects in the photos are actual
instances of the concept "chair".

📝 1.1.2

Classes represent _____ or concepts while objects are actual _____ of those
concepts.

• entities
• instances

Classes and Instances | FITPED

8

🕮 1.1.3

Class definition and instantiation

In Python, a class is created using the reserved word class followed by the name of
the class:

class MyClass:

 """Optional docstring comment"""

 pass

The above example creates an empty class named MyClass. As the example shows,
a class definition could, and should, include an optional docstring comment to
document the class.

To instantiate a class we use a constructor expression formed by the name of the
class followed by curved brackets, as it were a call to a parameterless function
which returns the newly created object:

my_object = MyClass()

In the above example, my_object references an object of type MyClass, i.e., an
instance of MyClass.

📝 1.1.4

Supposing a class named Square exists. How can we create a new object of the
class Square?

• x = new Square()
• x = new Object(Square)
• x = Square()

🕮 1.1.5

Class definition and instantiation (2)

Classes usually include a special function named __init__ to initialize the objects of
the class with some data attributes when they are created.

class MyClass:

 """Optional docstring comment"""

 def __init__(self, value1, value2):

Classes and Instances | FITPED

9

 self.attr1 = value1

 self.attr2 = value2

In the above example, MyClass has an __init__ function which adds two attributes
(attr1 and attr2) when a new object is created. These attributes are initialized with
the values passed as the second and the third parameter of __init__. The first
parameter of __init__ (self) represents the newly created object, to which the
attributes are added.

When a class has an __init__ function, actual values for all parameters of __init__,
except the first, must be provided to the class in the constructor expression when
creating a new object. The first parameter is automatically associated with the new
object.

o1 = MyClass(1, 2)

o2 = MyClass(3, 4)

The above example creates two objects (o1 and o2). The numeric values 1 and 2
are assigned to the attributes attr1 and attr2 of o1, and the values 3 and 4 are
assigned to the attributes attr1 and attr2 of o2.

📝 1.1.6

See the following class:

class Square:

 """a square is a regular quadrilateral (4 equal sides & 4

90º angles)"""

 def __init__(self, side_length):

 self.side_length = side_length

How can we created an object of class Square?

• my_square = Square(10)
• my_square = new Square(10)
• my_square = __init__(Square, 10)

1.2 Objects and attributes

🕮 1.2.1

Objects' attributes

A class defines a new type of object characterized by a set of attributes that may
be data-attributes (variables) or functions (which are known as methods). Data

Classes and Instances | FITPED

10

attributes are used to represent the object's state while methods are used to show
the object's behaviour by operating on its data attributes to access or modify its
state.

For example, if defining a class to represent rectangles we need to establish two
attributes: one for the length and one for the width. Possible methods for a rectangle
could be one to calculate its area or one to "flip" the rectangle exchanging its length
and width.

When instantiating a new object from a class it is initialized with its own instances
of the data attributes specified in the class definition. The methods provided in the
class declaration can then be used on the new object.

In the case of the rectangle example, each new rectangle will have its own length and
width and may be asked to return its area or to "flip".

📝 1.2.2

_____ define new types of objects. An object has a state, represented by a set of
_____ (variables), and shows a behavior provided by a set of functions that operate
on those variables. Functions that are attributes of an object are known as _____

• data attributes
• Classes
• methods
• instances

🕮 1.2.3

Adding attributes dynamically

In Python, attributes can be dynamically added to an object at any time writing the
name of the object following by a dot, the name of the attribute and the assignment
of a value for the new attribute, as in the following example.

o1 = MyClass()

o2 = MyClass()

o1.size = 10

o2.length = 5

In the above example, two objects of the same class MyClass (o1 and o2) are
created. Then the value 10 is assigned to the size attribute of o1 and the value 5 is
assigned to the length attribute of o2. Both attributes are created as a result of
these assignations in case they do not exist.

Classes and Instances | FITPED

11

The so-called "dot notation", i.e., <object name>.<attribute name> is used both to
add new attributes as to access and modify the yet existing ones.

Dynamic addition of attributes could result in objects of the same class having
different attributes and behaviors, as in the previous example. As a blueprint to
create objects, a class should provide all attributes that every object of that class
must have.

For the case of data attributes, this goal can be achieved by defining an
initializer __init__ method which will be called every time the class is instantiated.

📝 1.2.4

The __init__ method...

Select one:

• Is called when a new object is created.
• Initializes the class for use.
• Initializes all the data attributes to zero when called.

🕮 1.2.5

Adding data attributes at initialization time with __init__

Operations used to initialize new objects are usually known as constructors in OOP
terminology. In Python, a special method named __init__ must be added to the class
to initialize the objects. This method is called when a new object is created.

class Rectangle:

 def __init__(self, length, width):

 self.length = length

 self.width = width

The first parameter (self in the above example) represents the object on which the
method operates. In the above example, the __init__ method is used to initialize the
newly created object (self), adding two data attributes (self.length and self.width)
initialized with the correspondent parameters of __init__ (length and width).

When creating an object, values for all the parameters of __init__ must be passed in
the constructor expression, except for the first parameter (self) or any parameter
with a default value.

my_rect = Rectangle(1.0, 2.0)

Classes and Instances | FITPED

12

The __init__ method is not invoked explicitly, but it is called as a result of the
creation of the object. The newly created object is automatically assigned to the
first parameter, which is not explicitly passed in the constructor expression.

📝 1.2.6

What is true?

• When creating a new object, we must pass the arguments for the __init__
method in the constructor expression

• When instantiating a class, we must do an explicit call to the __init__ method
to initialize the new object

1.3 Initialisation, instance attributes (exercises)

⌨ 1.3.1 Rectangle initializer

Implement, in the file rectangle.py, a class named Rectangle having an __init__
method to initialize it. This method must:

1. Accept (apart of the self-argument) two float arguments standing for the
length and the width of a rectangle, in this order.

2. Add to the class Rectangle two attribute variables named length and width
and initialize them with the values of the corresponding arguments.

⌨ 1.3.2 Point initializer

A point on the plane is represented by two coordinates (x, y) relative to some
coordinate axes.

Define a class called Point to create objects that represent a point in the plane. The
x, y coordinates of the point will be stored as attributes of the object; both
attributes will be initialized with the values passed when the object is created so
you have to define an initializer with two parameters (apart of self): the first one to
initialize x attribute and the second one to initialize y attribute (both parameters are
assumed to be int or float numbers).

Example:

 p = Point(3.0, 4.5)

Classes and Instances | FITPED

13

 print("(x = {}, y = {})".format(p.x, p.y)) # Prints "x =

3.0, y = 4.5"

Example:

 p = Point(-8.0, 4)

 print("(x = {}, y = {})".format(p.x, p.y)) # Prints "x = -

8.0, y = 4"

⌨ 1.3.3 Time initializer

Define a class called Time with an initialization method. The objects of Time class
must have two data attributes called hour and minute (the hour attribute is assumed
to be an integer value between 0 and 23, and the minute attribute is assumed to be
an integer value between 0 and 59). Values for both attributes must be passed as
parameters at initialization time (value for the hour attribute first).

Example:

 t1 = Time(12, 0)

 t2 = Time(8, 54)

⌨ 1.3.4 Person initializer

Define a class called Person with an initialization method. The objects of Person
class must have threes data attributes called name, surname, and address. Values
for those attributes must be passed as parameters at initialization time, in the order
name, surname, address.

Example:

 p1 = Person("Anne", "Ricksaw", "Oxford street, 50. London,

England")

 p2 = Person("Peter", "Forstran", "Cooperhills road, 1023",

Los Angeles, USA)

Methods

Chapter 2

Methods | FITPED

15

2.1 Instance methods

🕮 2.1.1

Methods

Objects have methods that operate on their data attributes. Those methods are
known as instance methods and are defined within the class to which the object
belongs.

class Rectangle:

 """A quadrilateral with four right angles"""

 def __init__(self, length, width):

 """Initialize a rectangle with length and width"""

 self.length = length

 self.width = width

 def area(self):

 """Returns the area of the self rectangle"""

 return self.length * self.width

In the above example, two methods are defined for the objects of class Rectangle:
the especial initializer method __init__, and a method named area.

📝 2.1.2

Which is true?

• Methods are declared within the body of a class
• Methods are declared as instances of a class
• Methods are special initializers of a class

🕮 2.1.3

Self

In Python, the methods receive the object on which they operate as their first formal
parameter.

class Rectangle:

 """A quadrilateral with four right angles"""

 def __init__(self, length, width):

Methods | FITPED

16

 """Initialize a rectangle with length and width"""

 self.length = length

 self.width = width

 def area(self):

 """Returns the area of the self rectangle"""

 return self.length * self.width

In the above example, both methods, __init__, and area, have a first parameter
named self that represents the object on which they operate.

The name self is used by convention, though Python lets any name for this first
parameter.

📝 2.1.4

In this method:

 def my_method(self, param1, param2):

 pass

• self represents the object on which the method operates
• self represents the class declaring the method
• self represents the method itself

🕮 2.1.5

Methods invocation

In Python, methods operating on an object are invoked as attributes of that object
using dot notation to bind the method with the object. It is the case for area in the
below example, where the area method returns 50 for r1 and 24 for r2 (both, r1,
and r2, had been created just before):

r1 = Rectangle(10, 5)

r2 = Rectangle(3, 8)

print(r1.area()) # prints 50

x = r2.area()) # assigns 24 to x

The first parameter (the bound object) is omitted when invoking a method, as it is
passed implicitly. When an instance method wants to invoke another method of the
same object, it uses its first parameter to bind the call.

Methods | FITPED

17

class MyClass:

 ...

 def method1(self, a, b):

 ...

 def method2(self, a, b, c):

 ...

 x = self.method1(a, b)

 ...

Invocation of magic methods, as __init__, has their own syntax. In the case
of __init__ it is implicitly called just when the object has been created following the
constructor expression. Many magic methods are called by built-in functions,
although they might also be called directly.

📝 2.1.6

Which is true?

• An instance method requires an object of its class to be created before it can
be called

• Instance methods are called as normal functions unless they are associated
with an object

• An instance method is bound (using a dot) with the class where it is declared

🕮 2.1.7

Magic methods

The __init__ method, used to initialize objects, belongs to a group of Python special
methods known as "magic methods".

class Rectangle:

 def __init__(self, length, width):

 """Initialize a rectangle with length and width"""

 self.length = length

 self.width = width

Magic methods are used to add special features to classes. There are methods to
initialize class instances, methods to get a string representation of an object,
methods to overload arithmetic operators to use them with a new class of objects,
and more.

Methods | FITPED

18

Magic methods have predefined names starting and ending with "__" (two
underscores), and are invoked by special syntax (note that to create a new object
you do not call __init__; you write the constructor expression with the arguments
needed for __init__, and then __init__ is automatically invoked as part of the internal
process to create and initialize the object).

r1 = Rectangle(10, 5)

The __*__ syntax is reserved. We must not use it to name our own custom methods
because any use is subject to breakage without warning in future versions of
Python.

📝 2.1.8

What is true?

• Magic methods are used to add special features to classes
• None of the options is true.
• Magic methods are used to initialize class instances.
• A magic method is any method whose name begins with two leading

underscores.

2.2 Instance methods (exercises)

⌨ 2.2.1 Point coordXY

Objects of the Point class represent points in a plane. A point in a plane is identified
by two coordinates (x, y), which are represented as attributes of the Point class
objects.

Add to the Point class an instance method called coordXY that returns a tuple with
the pair of coordinates (x, y) of the object on which it is applied.

point.py
class Point:

 """A point in a plane"""

 def __init__(self, x, y):

 """A point is initialized with x and y coordinates"""

 self.x = x

 self.y = y

 # Put your code here

Methods | FITPED

19

if __name__ == "__main__":

 # Example of use (not part of the solution)

 p = Point(3.0, 4.5)

 print("(x = {}, y = {})".format(p.x, p.y))

⌨ 2.2.2 Point move

Objects of the Point class represent points in a plane. A point in a plane is identified
by two coordinates (x, y), which are represented as attributes of the Point class
objects.

Add an instance method called move to the Point class. The move method will have
two parameters (apart from self), which will be used to modify the coordinates (x, y)
of the self object (the first parameter will be added to the value of x and the second
to the value of y).

Example:

 p = Point(3.0, 4.5)

 print("(x = {}, y = {})".format(p.x, p.y)) # Prints "x =

3.0, y = 4.5"

 p.move(1.0, -1.0)

 print("(x = {}, y = {})".format(p.x, p.y))# Prints "x =

4.0, y = 3.5"

Example:

 p = Point(0.0, 0.0)

 print("(x = {}, y = {})".format(p.x, p.y)) # Prints "x =

0.0, y = 0.0"

 p.move(1.0, -1.0)

 print("(x = {}, y = {})".format(p.x, p.y))# Prints "x =

1.0, y = -1.0"

point.py
class Point:

 """A point in a plane"""

 def __init__(self, x, y):

 """A point is initialized with x and y coordinates"""

 self.x = x

 self.y = y

 # Put your code here

Methods | FITPED

20

if __name__ == "__main__":

 # Example of use (not part of the solution)

 p = Point(3.0, 4.5)

 print("(x = {}, y = {})".format(p.x, p.y))

 p.move(1.0, -1.0)

 print("(x = {}, y = {})".format(p.x, p.y))

⌨ 2.2.3 Time increase

Add to the Time class an instance method named increase. When called, this
method increments the value of the minute attribute by one, taking into account the
following restrictions:

• when minute's value is equal to 59, if hour's value is less than 23, the increase
method will increment the hour value by one and set the minute value to 0,
but

• if the hour's value is equal to 23, the increase method will set a 0 for both
attributes.

Example:

 t = Time(12, 30)

 print("Hour = {} and minute = {}".format(t.hour, t.minute)

Prints "Hour = 12 and minute = 30"

 t.increase()

 print("Hour = {} and minute = {}".format(t.hour, t.minute)

Prints "Hour = 12 and minute = 31"

Example:

 t = Time(12, 59)

 print("Hour = {} and minute = {}".format(t.hour, t.minute)

Prints "Hour = 12 and minute = 59"

 t.increase()

 print("Hour = {} and minute = {}".format(t.hour, t.minute)

Prints "Hour = 13 and minute = 0"

Example:

 t = Time(23, 59)

 print("Hour = {} and minute = {}".format(t.hour, t.minute)

Prints "Hour = 23 and minute = 59"

 t.increase()

Methods | FITPED

21

 print("Hour = {} and minute = {}".format(t.hour, t.minute)

Prints "Hour = 0 and minute = 0"

mytime.py
class Time:

 """Represents a time"""

 def __init__(self, h, m):

 """Time objects are initialized with hours and

minutes"""

 self.hour = h

 self.minute = m

 # Put your code here

2.3 Representing objects as strings

🕮 2.3.1

Formal string representation

The magic method __repr__ is called by the repr() built-in function when a formal
string representation of an object is required. If possible, this formal representation
should look like a valid expression suitable to create an object with the same value.

class Rational:

 def __init__(self, num_value, den_value):

 self.num = num_value

 self.den = den_value

 def __repr__(self):

 return "Rational({}, {})".format(self.num, self. den)

r1 = Rational(3, 4)

print(repr(r1)) # Prints "Rational(3, 4)"

In the above example, the call to the built-in function repr triggers a call to the
magic method __repr__. If __repr__ was not implemented, a default string would be
return; this string will look like: "<Rational object at 0xb7202a4c>" in which the object
class ("Rational") and its location in memory ("0xb7202a4c") are identified.

📝 2.3.2

What is the name of the built-in function that is used in Python to request a formal
representation of an object as a string?

Methods | FITPED

22

• repr
• __repr__
• print

🕮 2.3.3

Informal string representation

The magic method __str__ is called when an informal string representation of an
object is required.

class Rational:

 def __init__(self, num_value, den_value):

 self.num = num_value

 self.den = den_value

 def __str__(self):

 return self.num.__str__() + "/" + self.den.__str__()

print(r1) # Prints "3/4"

In the above example, the print(r1) statement triggers a call to the built-in
function str(r1), which in turn calls the method r1 .__ str __ (), if implemented, or else
the function repr(r1).

Notice that __str__ is intended to provide a readable representation of the object
while __repr__ is mainly intended for debugging purposes and so must provide a
more informational and unambiguous representation.

📝 2.3.4

Which magic method is intended to provide a more human-readable representation
of an object?

• __str__()
• __repr__()

Methods | FITPED

23

2.4 Objects to string (exercises)

⌨ 2.4.1 Point to string

Objects of the Point class represent points in a plane. A point in a plane is identified
by two coordinates (x, y), which in the Point class objects are represented as
attributes.

Define the magic methods necessary to get both a formal and an informal
representation as a string of an object of the Point class.

The formal representation must have the format "Point (x = x, y = y)", like: "Point (x =
3.5, y = 4.0)". The informal representation will have the format "x, y", like: "3.5, 4.0"

point.py
class Point:

 """A point in a plane"""

 def __init__(self, x, y):

 """A point is initialized with x and y coordinates"""

 self.x = x

 self.y = y

 # Put your code here

if __name__ == "__main__":

 # Example of use (not part of the solution)

 p = Point(3.0, 4.5)

 print("Formal: {}".format(repr(p)))

 print("Informal: {}".format(p))

⌨ 2.4.2 Time to string

Define the magic methods necessary to get both a formal and an informal
representation as a string of an object of the Time class.

The formal representation must have the format "Time(h, m)", like: "Time(x = 9, y =
30)". The informal representation will have the format "hh:mm", like: "09:30"

mytime.py
class Time:

 """Represents a time"""

 def __init__(self, h, m):

Methods | FITPED

24

 """Time objects are initialized with hours and

minutes"""

 self.hour = h

 self.minute = m

 # Put your code here

if __name__ == "__main__":

 # Example of use (not part of the solution)

 t = Time(12, 5)

 print("Formal: {}".format(repr(t)))

 print("Informal: {}".format(t))

⌨ 2.4.3 Person to string

Define the magic methods necessary to get both a formal and an informal
representation as a string of an object of the Person class.

The formal representation must have the format "Person(name, surname)", like
"Person("John", "Doe")". The informal representation will have the format "name
surname", like "John Doe"

person.py
class Person:

 """Represents a person

 Attributes:

 name : str the name of a person

 surname: str the surname of a person

 """

 def __init__(self, name, surname):

 self.name = name

 self.surname = surname

 # Put your code here

if __name__ == "__main__":

 # Example of use (not part of the solution)

 person1 = Person("John", "Doe")

 print("Formal: {}".format(repr(person1)))

 print("Informal: {}".format(person1))

Encapsulation

Chapter 3

Encapsulation | FITPED

26

3.1 Encapsulation (getters, setters)

🕮 3.1.1

Classes as an encapsulation mechanism

Encapsulation is usually defined (e.g. Wikipedia) as a construct that facilitates the
bundling of data with the methods (or other functions) operating on that data.

In Object Oriented Programming, a class groups a set of data attributes and a set of
methods operating on those attributes, so classes are encapsulation mechanisms.

A good encapsulation requires the data attributes of an object being manipulated
only by its own methods. To accomplish this in an effective way, those data
attributes must be hidden from outside agents.

📝 3.1.2

A class is an encapsulation mechanism because...

• facilitates the bundling of data with the methods operating on that data
• is a blueprint to create data objects in a program
• provides methods to implement the behavior of the class's objects

🕮 3.1.3

Information hiding

Information hiding, being the ability to prevent internal data from being accessed by
outer agents, is closely related to encapsulation. Information hiding promotes the
principle of separation of public behavior of an object from the details of its
implementation while encapsulation provides the mechanism to achieve that
principle.

Information hiding identifies two main levels of visibility: public and private; some
programming languages provide additional, intermediate levels, for example,
protected in Java. Usually, private elements can only be accessed by their owner
while public elements can be accessed by everyone. The public elements of a class
compound its interface and provide the way to interact with objects of such class.

Encapsulation | FITPED

27

📝 3.1.4

What is true?

• An interface is composed only of public elements
• Information hiding promotes separation between objects and classes
• Encapsulation is the way to interact with objects

🕮 3.1.5

Hiding attributes in Python

In Python, names starting with two underscores "__", but not ending with two
underscores, represent a private element that cannot be accessed from outside the
class. In the following example, the value attribute is visible (public):

class Natural:

 def __init__(self, number):

 self.value = number

n1 = Natural(10)

print(n1.value)

10

On the contrary, in the following example, the value attribute is hidden(note the two
leading underscores):

class Natural:

 def __init__(self, number):

 self.__value = number

n1 = Natural(10)

Any attempt to access it from outside raises an error.

print(n1.__value)

https://commons.wikimedia.org/wiki/File:CPT-OOP-interfaces.svg

Encapsulation | FITPED

28

Traceback (most recent call last):

File "main.py", line 4, in <module>

 print(n1.__value)

AttributeError: 'Natural' object has no attribute '__value'

By convention, the "_" prefix (single underscore) means "stay away", treat this as it
were private, though it does not provide a real mechanism to prevent unauthorized
access.

📝 3.1.6

Which is true?

• In Python, names that begin, but do not end, with two underscores indicate
private elements

• In Python, names that start with two underscores indicate private elements
• In Python, names that end with two underscore indicate private elements

🕮 3.1.7

Name Mangling

Python really does not have a true mechanism to make an attribute private and
prevent unauthorized access to it. When we name an attribute using two leading
underscores and no more than one trailing underscore Python reinforce privacy
replacing that name by a mangled named formed by adding at its begin the class
name prefixed with a leading underscore. Internally we can use the "normal"
unmangled name which is not visible outside the class, but anyone can access the
attribute from outside using its mangled name.

class Natural:

 def __init__(self, number):

 self.__value = number

n1 = Natural(10)

print(n1._Natural__value) # Correct access using mangled name

print(n1.__value) # Error: __value is hidden

Python deep relies on programmers' responsibility: you can do anything even if you
are advised to not but you do it under your responsibility.

Encapsulation | FITPED

29

The same applies for names beginning with a single underscore: none protection
mechanism is applied, but you are warned that an attribute with such sort of is
intended name for internal use and can be changed without any warning, so if you
use it, it is only your responsibility.

📝 3.1.8

See this code:

class Angle:

 def __init__(self, value):

 self.degrees = value

What is the mangled name for the degrees attribute?

• None
• _Angle__degrees
• __Angle__degrees

🕮 3.1.9

Getters and setters

When we hide an attribute, we can provide methods to access it while ensuring
encapsulation. The methods that are used to "observe" the value of an attribute are
known as "getters", while those that are used to modify them are known as
"setters".

In the following example, a getter (get_value) and a setter (set_value) have been
added to the Natural class. Also, the __init__ method has been modified to use the
setter instead of making a direct assignment.

class Natural:

 def __init__(self, number):

 self.set_value(number)

 def get_value(self):

 return self.__value

 def set_value(self, new_value):

 self.__value = new_value

n1 = Natural(10)

print(n1.get_value())

Encapsulation | FITPED

30

n1.set_value(12)

print(n1.get_value())

10

12

📝 3.1.10

Which is true?

• A getter is a method which returns the value of a private attribute variable.
• A getter is a method which mutates the state of a private attribute variable.
• A setter is a method which returns the value of a private attribute variable.

🕮 3.1.11

Assuming that we provide a getter and a setter for a private variable, we apparently
get the same level of access as if it was a public variable.

class Natural:

 def __init__(self, number):

 self.set_value(number)

 def get_value(self):

 return self.__value

 def set_value(self, new_value):

 self.__value = new_value

The difference is that we can control how its value is modified: a setter is a method
used to control changes to a variable. For example, if we want the
variable value can not take values less than zero, we can modify its setter as in the
following example.

 def set_value(self, new_value):

 self.__value = new_value if new_value >= 0 else 0

In this way, encapsulation prevents an object from entering an erroneous or
inconsistent state due to the undue manipulation of its data attributes, this being
one of its main advantages.

Another advantage is that, by hiding the implementation, it can be changed without
affecting those who are already using the class.

Encapsulation | FITPED

31

📝 3.1.12

A ... is a method used to control changes to a variable.

3.2 Encapsulation - property, property decorator

🕮 3.2.1

Getters and setters syntax drawback

Getters and setters allow controlling the access and modification of private data
attributes avoiding erroneous states.

class Natural:

 def __init__(self, number):

 self.set_value(number)

 def get_value(self):

 return self.__value

 def set_value(self, new_value):

 self.__value = new_value if new_value >= 0 else 0

Using getters and setters requires the access and modification of data attributes to
be done by calls to methods instead of directly accessing-and-modifying the
variables. This introduces a small syntax drawback. To prevent this complication
we will use properties.

n1 = Natural(10)

print(n1.get_value()) # instead of print(n1.value)

n1.set_value(-12) # istead of n1.value = -12

print(n1.get_value()) # instead of print(n1.value)

📝 3.2.2

What is true?

• Properties simplify the use of getters and setters
• Properties replace the use of getters and setters
• Properties complicate the use of getters and setters

Encapsulation | FITPED

32

🕮 3.2.3

The property descriptor

To maintain control of access and modification of data attributes and, at the same
time, use simple syntax, as if there were no setters and getters, we can define a
property, as in the following example:

class Natural:

 def __init__(self, number):

 self.value = number

 def get_value(self):

 return self.__value

 def set_value(self, new_value):

 self.__value = new_value if new_value >= 0 else 0

 value = property(get_value, set_value)

We first write the setter and getter methods operating on a hidden variable and then
use the property descriptor to build a property that can be used as it were a public
variable (the getter and the setter will be called automatically when needed):

n1 = Natural(10)

print(n1.value)

n1.value = -12

print(n1.value)

The property descriptor has four optional arguments:

property(fget=None, fset=None, fdel=None, doc=None)

• fget is a function to get the value of the attribute,
• fset is a function to set the value of the attribute (if omitted we have a read-

only property, else we have a writable one),
• fdel is a function to delete the attribute, and
• doc is a string providing documentation for the property.

📝 3.2.4

What is true?

• If we omit the setter in a property descriptor, we get a read-only property

Encapsulation | FITPED

33

• If we omit the getter in a property descriptor, we get a read-only property
• If we omit the setter in a property descriptor, we get a writable property

🕮 3.2.5

Hiding the getters and setters

class Natural:

 def __init__(self, number):

 self.value = number

 def get_value(self):

 return self.__value

 def set_value(self, new_value):

 self.__value = new_value if new_value >= 0 else 0

 value = property(get_value, set_value)

The above example builds a property to avoid the need for explicitly invoking the
setter and the getter for a hidden variable, but they could be called anyway because
they are public methods.

n1 = Natural(10)

print(n1.get_value()) # instead of print(n1.value)

n1.set_value(-12) # istead of n1.value = -12

print(n1.get_value()) # instead of print(n1.value)

Having two way to do the same thing is not a good idea in programming. To avoid
this dualism, the getter and the setter must become private methods:

class Natural:

 def __init__(self, number):

 self.value = number

 def __get_value(self):

 return self.__value

 def __set_value(self, new_value):

 self.__value = new_value if new_value >= 0 else 0

 value = property(__get_value, __set_value)

Encapsulation | FITPED

34

📝 3.2.6

What is true?

• When we use a property descriptor the getter and the setter should be hidden
• When we use a property descriptor the getter and the setter cannot be

hidden
• When we use a property descriptor the getter, but not the setter, should be

hidden

🕮 3.2.7

@property decorator

The property descriptor is useful to build a property, but there is an easier way to do
that: the @property decorator. We only have to write a getter with the name of the
property and decorate it with the @property decorator.

 @property

 def value(self):

 return self.__value

We can then add a setter with the @<property>.setter decorator:

 @value.setter

 def value(self, new_value):

 self.__value = new_value if new_value >= 0 else 0

📝 3.2.8

What is a correct setter decorator for a property named "feature"?

• @feature.setter
• @setter.feature
• @feature.decorator

Encapsulation | FITPED

35

3.3 Encapsulation (exercises)

⌨ 3.3.1 Point properties

Objects of the Point class represent points in a plane. A point in a plane is identified
by two coordinates (x, y), which in the Point class objects are represented as
attributes.

Make the necessary modifications to the Point class to encapsulate the x and y
attributes, converting them into properties with the same names.

Make sure that these properties only support values of type int or float, so that, if
you try to assign them a value of another type, the TypeError exception is raised.

Note: The predefined function type returns the type of the object that
is passed to it as a parameter and can be used to know if the value
with which it is intended to initialize any of the properties is of the
appropriate type.

point.py
class Point:

 """A point in a plane"""

 def __init__(self, x, y):

 """A point is initialized with x and y coordinates"""

 self.x = x

 self.y = y

 # Put your code here

if __name__ == "__main__":

 # Example of use (not part of the solution)

 p = Point(3.0, 4.5)

 print("(x = {}, y = {})".format(p.x, p.y))

⌨ 3.3.2 Time properties

Make the necessary modifications to the Time class to encapsulate the hour and
minute attributes, converting them into properties with the same names.

You must ensure the property hour only accepts values of type int between 0 and 23
and the property minute values of type int between 0 and 59. If these restrictions
are not met, a ValueError exception must be thrown.

Note: The predefined function type returns the type of the object that
is passed to it as a parameter and can be used to know if the value

Encapsulation | FITPED

36

with which it is intended to initialize any of the properties is of the
appropriate type

mytime.py
class Time:

 """Represents a time"""

 def __init__(self, h, m):

 """Time objects are initialized with hours and

minutes"""

 self.hour = h

 self.minute = m

 # Put your code here

if __name__ == "__main__":

 # Example of use (not part of the solution)

 t = Time(12, 5)

 print("Formal: {}".format(repr(t)))

 print("Informal: {}".format(t))

⌨ 3.3.3 Person properties

Make the necessary modifications to the Person class to encapsulate the name and
surname attributes, converting them into properties with the same names.

You must ensure that both properties only accept non-empty strings as valid
values. If these restrictions are not met, a ValueError exception must be thrown.

Note: The predefined function type returns the type of the object that
is passed to it as a parameter and can be used to know if the value
with which it is intended to initialize any of the properties is of the
appropriate type.

person.py
class Person:

 """Represents a person

 Attributes:

 name : str the name of a person (must have less than

25 characters)

 surname: str the surname of a person (must have less

than 40 characters)

 """

Encapsulation | FITPED

37

 def __init__(self, name, surname):

 self.name = name

 self.surname = surname

 # Put our code here

if __name__ == "__main__":

 # Example of use (not part of the solution)

 person1 = Person("Anne", "Ricksaw")

 print("Name : {}".format(person1.name))

 print("surname: {}".format(person1.surname))

⌨ 3.3.4 Rectangle area property

Add a new read-only property called area to the Rectangle class. This property must
return the area of the object on which it operates. The area of a rectangle is the
product of its length by its width.

rectangle.py
class Rectangle:

 """A rectangle is a quadrilateral with four right angles.

 Alternate sides are equal.

 """

 def __init__(self, length, width):

 """Initialization of Rectangle objects

 length: size of the side that we consider the base

of the rectangle

 width: size of a side perpendicular to lenght's

side

 """

 self.length = length

 self.width = width

 @property

 def length(self):

 """Returns lenght of self"""

 return self.__length

 @length.setter

 def length(self, value):

 """Updates length of self"""

 self.__length = value

Encapsulation | FITPED

38

 @property

 def width(self):

 """Returns width of self"""

 return self.__width

 @width.setter

 def width(self, value):

 """Updates width of self"""

 self.__width = value

 # Put your code here

Class Attributes

Chapter 4

Class Attributes | FITPED

40

4.1 Class variables

🕮 4.1.1

Class Attributes

A class can define class attributes that are shared by all the objects in the class, as
opposed to the instance attributes, of which each object has its own instance.

For example, suppose we are developing a class to represent money that stores
quantities in a base currency (for example, euros) and has methods to return the
equivalent amount in a different currency (dollars, yen, pounds, ...).

Currency Exchange

GBP 0.86008

JPY 126.66

USD 1.13190

The concrete amount stored is, logically, a different one for each object, but the
conversion table that allows translating that amount into different currencies is the
same for all and does not need to be stored in each object, it is more appropriate
having a single copy, shared by all objects as a class attribute. Class attributes can
be both class data attributes (class variables) and class methods.

📝 4.1.2

Which is true?

• A class attribute is shared by all objects in a class
• A class attribute defines the common properties of an object
• A class attribute is replicated in each object of the class

🕮 4.1.3

Declaration of class variables

A class variable is declared in the body of the class, outside any method.

class MyClass:

 cls_attr = 0

 def __init__(self, value1, value2):

Class Attributes | FITPED

41

 self.obj_attr1 = value1

 self.obj_attr2 = value2

In the above example, cls_attr is a class attribute common to all objects of
type MyClass, while obj_attr1 and obj_attr2 are instance attributes and there is a
version of each of them for each object of type MyClass.

📝 4.1.4

Which is true?

• Class variables are declared outside any method
• Class variables are declared in the __init__ method
• Class variables are declared in the __init_class__ method

🕮 4.1.5

Access and modification of class variables

class MyClass:

 cls_attr = 0

 def __init__(self, value1, value2):

 self.obj_attr1 = value1

 self.obj_attr2 = value2

Any object of the class can access the attributes of the class as if they were of its
own...

o1 = MyClass(1, 2)

o2 = MyClass(3, 4)

print(o1.cls_attr) # prints 0

print(o2.cls_attr) # prints 0

... but only the class can change them.

MyClass.cls_attr = 2

print(o1.cls_attr) # prints 2

The class itself can obviously access the attribute:

print(MyClass.cls_attr) # prints 2

Class Attributes | FITPED

42

But if an object intends to change the value of a class variable, a new instance
variable is created for it instead and the object loses the access to the class
variable:

o2.cls_attr = 3

print(o1.cls_attr) # prints 2

print(o2.cls_attr) # prints 3

print(MyClass.cls_attr) # prints 2

📝 4.1.6

Which are true?

• Class variables can be accessed but not modified by any object of the class
• Class variables can be accessed and modified by any object of the class
• Class variables can only be accessed by the class itself
• Class variables can only be modified by the class itself

4.2 Class methods

🕮 4.2.1

Class methods

A class can have class methods which, as the class variables, are bound to the
class itself, not to each object instantiated from it. A class method is distinguished
from an instance method because it is declared using the @classmethod decorator.

class MyClass:

 cls_attr = 0

 def __init__(self, value1, value2):

 self.obj_attr1 = value1

 self.obj_attr2 = value2

 @classmethod

 def sum_cls_attr(cls, value):

 cls.cls_attr += value

As for instance methods, the first parameter of a class method has a special
meant: it represents the class itself. By convention, this first parameter is usually
named cls.

Class Attributes | FITPED

43

Class methods have access to the class variables of their class, and can call other
class methods, but cannot access the instance variables or call the instance
methods because they are not bound to any instance.

📝 4.2.2

Which decorator is used to declare class methods?

• @classmethod
• @class_method
• @Class_method

🕮 4.2.3

Invoking class methods

Class methods are usually invoked as attributes of their class:

MyClass.sum_cls_attr(3)

They can also be called like attributes of an object, but they do not have any access
to the instance attributes of such object:

o1.sum_cls_attr(2)

A class method can invoke another class method through it class parameter:

 @classmethod

 def class_method1(cls, param1, param2):

 ...

 @classmethod

 def class_method2(cls, param1, param2):

 ...

 cls.class_method1(param1, param2)

 ...

An instance method can invoke a class method through the attribute __class__ of
its self-object:

 def instance_method(self):

 self.__class__.class_method1(1, 2)

Class Attributes | FITPED

44

A class method cannot call an instance method because it is not bound to any
instance.

📝 4.2.4

See this code:

class MyClass:

 @classmethod

 def method1(cls, a, b):

 ...

obj = MyClass()

Which of the following are correct ways to call method1?

• MyClass.method1(x, y)
• obj.method1(x, y)
• obj.__class__.method1(x, y)
• MyClass.method1(cls, x, y)

🕮 4.2.5

Uses of class methods

A major use of class methods is to manage the class attributes:

class MyClass:

 cls_attr = 0

 ...

 @classmethod

 def sum_cls_attr(cls, value):

 cls.cls_attr += value

Another important use is like a sort of factory methods to create objects using
different sets of arguments for initialization. For example, suppose we have a class
to represent angles storing its degrees value. It has a degrees attribute which is
initialized with a value passed as a parameter to the __init__ method:

class Angle:

 def __init__(self, value):

 self.degrees = value

Class Attributes | FITPED

45

But what is the matter if we have an angle expressed in radians and we want to
create an Angle object to represent it (of course, internally converted to degrees)?
Python classes can have only one __init__ method. We can use optional parameters
to know that the value parameter is expressed in radians and convert it to degrees,
but this solution is a bit tricky. A better solution is to use a class method as in the
below example:

 @classmethod

 def from_radians(cls, value):

 return cls(value * 180.0 / math.pi) # Converts radians

to degrees

In the below example both angle1 and angle2 represents a 90º angle:

angle1 = Angle(90.0)

angle2 = Angle.from_radians(math.pi / 2)

📝 4.2.6

When is it a good idea to use a class method to instantiate a class?

• When we need to have different ways to initialize objects
• When we need a way to call the __init__ method from inside the class
• When the __init__ method is unavailable

4.3 Class attributes (exercises)

⌨ 4.3.1 Rectangle __live_rectangles

Add to the class Rectangle a class variable named __live_rectangles, initialized with
the value 0, and modify the __init__ method to sum 1 to that variable any time a new
rectangle is created.

rectangle.py
class Rectangle:

 """A quadrilateral with four right angles"""

 def __init__(self, length, width):

 """Initialize a rectangle with length and width"""

 self.length = length

 self.width = width

Class Attributes | FITPED

46

⌨ 4.3.2 Currency exchange_rates

The conver_To method allows obtaining the equivalent value in another currency
according to a pre-established exchange rate. To make the conversion, it is based
on a class variable called exchange_rates, which is a dictionary that stores, for
different currencies, its exchange rate with respect to the euro. This variable has
not yet been added to the class.

Add the class variable exchange_rate to the Currency class, initializing it according
to the following table:

Currency - rate

EUR - 1.0

JPY - 124.83

USD - 1.11918

GBP - 0.85806

currency.py
class Currency:

 """Represents a number of euros and

 can give its equivalent value in other currencies

 """

 ######################

 # Put your code here #

 ######################

 def __init__(self, value = 0):

 """"value is an amount of euros """

 self.value = value

 @property

 def value(self):

 """"value is an amount of euros """

 return self.__value

 @value.setter

 def value(self, value):

 """"value is an amount of euros """

 self.__value = value

Class Attributes | FITPED

47

 def convert_to(self, currency):

 """Returns the equivalent value of self in another

currency

 currency: currency to convert to

 """

 if currency in Currency.exchange_rates:

 return self.value *

Currency.exchange_rates[currency]

 else:

 return None

if __name__ == "__main__":

 # Example of use (not part of the solution)

 c = Currency(10)

 print(c.convert_to("USD"))

 print(c.convert_to("NSN"))

⌨ 4.3.3 Currency rate method

The conver_To method allows obtaining the equivalent value in another currency
according to a pre-established exchange rate. To make the conversion, it is based
on a hidden class variable called __exchange_rates, which is a dictionary that stores,
for different currencies, its exchange rate with respect to the euro.

Add a class method named rate to return the exchange rate for a currency passed
as a string parameter. In case that the __exchange_rates variable does not contain a
key matching with the currency parameter, the rate method will return None

Example:

Currency rate

EUR 1.0

JPY 124.83

USD 1.11918

GBP 0.85806

print(Currency.rate("GBP")) # Prints 0.85806

print(Currency.rate("CAD")) # Prints None

currency.py
class Currency:

 """Represents an amount of euros and

 can give its equivalent value in other currencies

 """

 __exchange_rates = {

 "EUR" : 1.0,

Class Attributes | FITPED

48

 "JPY" : 124.83,

 "USD" : 1.11918,

 "GBP" : 0.85806

 }

 ######################

 # Put your code here #

 ######################

 def __init__(self, value = 0):

 """"value is an amount of euros """

 self.value = value

 @property

 def value(self):

 """"value is an amount of euros """

 return self.__value

 @value.setter

 def value(self, value):

 """"value is an amount of euros """

 self.__value = value

 def convert_to(self, currency):

 """Returns the equivalent value of self in another

currency

 currency: currency to convert to

 """

 rate = self.__cls__.rate(currency)

 return rate if rate == None else self.value * rate

if __name__ == "__main__":

 # Example of use (not part of the solution)

 print(Currency.rate("GBP"))

 print(Currency.rate("CAD"))

⌨ 4.3.4 Currency set_rate method

The conver_To method allows obtaining the equivalent value in another currency
according to a pre-established exchange rate. To make the conversion, it is based
on a hidden class variable called __exchange_rates, which is a dictionary that stores,
for different currencies, its exchange rate with respect to the euro.

Class Attributes | FITPED

49

Add a class method named set_rate to set or update the exchange rate for a
currency passed as a string parameter with a value (float) passed as a second
parameter.

Example:

Currency rate

EUR 1.0

JPY 124.83

USD 1.11918

GBP 0.85806

print(Currency.rate("GBP")) # Prints 0.85806

print(Currency.rate("CAD")) # Prints None

Currency.set_rate("GBP", 0.839)

Currency.set_rate("CAD", 1.51)

print(Currency.rate("GBP") # Prints 0.839

print(Currency.rate("CAD") # Prints 1.51

currency.py
class Currency:

 """Represents an amount of euros and

 can give its equivalent value in other currencies

 """

 __exchange_rates = {

 "EUR" : 1.0,

 "JPY" : 124.83,

 "USD" : 1.11918,

 "GBP" : 0.85806

 }

 ######################

 # Put your code here #

 ######################

 @classmethod

 def rate(cls, currency):

 """Returns exchange rate for currency or None"""

 if currency in Currency.__exchange_rates:

 return Currency.__exchange_rates[currency]

 else:

 return None

 def __init__(self, value = 0):

 """"value is an amount of euros """

Class Attributes | FITPED

50

 self.value = value

 @property

 def value(self):

 """"value is an amount of euros """

 return self.__value

 @value.setter

 def value(self, value):

 """"value is an amount of euros """

 self.__value = value

 def convert_to(self, currency):

 """Returns the equivalent value of self in another

currency

 currency: currency to convert to

 """

 rate = self.__cls__.rate(currency)

 return rate if rate == None else self.value * rate

if __name__ == "__main__":

 # Example of use (not part of the solution)

 print(Currency.rate("GBP"))

 print(Currency.rate("CAD"))

 Currency.set_rate("GBP", 0.839)

 Currency.set_rate("CAD", 1.51)

 print(Currency.rate("GBP"))

 print(Currency.rate("CAD"))

Inheritance

Chapter 5

Inheritance | FITPED

52

5.1 Inheritance

🕮 5.1.1

Inheritance

In Object Oriented Programming, inheritance is a mechanism that allows defining
new classes based on existing classes.

New classes defined in such a way are known as derived classes, or subclasses, of
the base class (the base class is the class from which a derived class derive; it is
also known as the superclass).

Subclasses inherit the features and behaviour from their base class. They usually
can override some of those features and behaviour aspects as well as adding new
ones. The main benefit of inheritance is the reusability: we do not need to write
code to replicate the features of the base class in the derived class.

A real-life example: a bird is a class of animal. Birds have a beak, wings, two legs
(features) and generally fly (behaviour). Ostriches, canaries, and penguins are kinds of
birds. They belong to classes that are subclasses of the class bird. All of them have
beaks, wings and two legs (although very different), but penguins do not fly, they swim
as if they were "flying" underwater (behaviour override). Ostriches do not fly either, but
they run better than most of the birds, which hardly walk. Canaries can fly, an also
they sing very well (and added feature).

📝 5.1.2

What is true?

• Inheritance is a mechanism that allows defining new classes based on
existing classes

• Inheritance is a mechanism that allows defining new objects based on
existing classes

• Inheritance is a mechanism that allows defining new classes based on
existing objects

Inheritance | FITPED

53

🕮 5.1.3

How to inherit in Python

In Python, to express that a class inherits from another we must write the name of
the base class inside curved brackets in the header of the definition of the derived
class, next to the name of the new class, like in the following example:

class ClassTwo(ClassOne): # ClassTwo inherits from ClassOne

Inheritance is transitive, that is, if ClassTwo inherits from ClassOne and
class ClassThree inherits from ClassTwo, then ClassThree inherits indirectly from
ClassOne, through ClassTwo.

class ClassThree(ClassTwo): # ClassThree inherits from

ClassOne, as ClassTwo does

An object of type ClassThree is also of type ClassTwo and of type ClassOne.

📝 5.1.4

What is the correct expression to inherit ClassB from ClassA?

• class ClassB(ClassA):
• class ClassB extends ClassA:
• class ClassA(ClassB):

🕮 5.1.5

The class object

In Python 3.x, all classes implicitly derive from a common base class named object.

class MyClass: # In Python 3.x MyClass inherits from

object

class MyClass(object): # Equivalent declaration in Python 2.x

Automatic inheritance from a common base class is usual in many languages and
is used to provide support to some basic features which all classes must have.

In Python, the inheritance from the object class provides support for class methods,
static methods, properties, defines a Method Resolution Order, and so on.

Inheritance | FITPED

54

📝 5.1.6

In Python, from which class derive all the other classes?

• object
• Object
• Class

🕮 5.1.7

Initialization of derived classes

When writing an initialization method for a derived class we have to call the
initializer of its superclass. We call it using the prefix "super" to reference the
superclass as ClassTwo does in the below example.

class ClassOne(object):

 def __init__(self, attr1_value):

 self.attr1 = attr1_value

 ...

class ClassTwo(ClassOne):

 def __init__(self, attr1_value, attr2_value):

 super().__init__(attr1_value)

 self.attr2 = attr2_value

 ...

In the above example, ClassOne has an initializer with a parameter which is used to
initialize the attr1 attribute. The ClassTwo initializer requires two parameters, one
to be passed to the initializer of ClassOne (its superclass) and another to initialize a
new attribute. The initializer of a derived class must provide the parameters for the
initializer of its superclass, so it must receive those parameters or infer them from
the ones that it receives.

📝 5.1.8

See this classes:

class ClassA:

 def __init__(self, x):

 self.x = x

 ...

Inheritance | FITPED

55

class ClassB(ClassA):

 ...

How can we call the initializer of ClassA from the initializer of ClassB?

• class ClassB(ClassA): def __init__(self, x): super().__init__(x) ...
• class ClassB(ClassA): def __init__(self, x): super().__init__(self, x) ...
• class ClassB(ClassA): def __init__(self, x): super(self).__init__(x) ...

🕮 5.1.9

Subclass' attributes

An object of a derived class is also an object of the base class from which the
subclass derives, so the object has both the attributes defined in the subclass as
the ones defined in the superclass. However, it only can access the public
attributes of the superclass.

class ClassOne:

 def __init__(self, attr1_value):

 self.__attr1 = attr1_value

 def get_attr1(self):

 return self.__attr1

class ClassTwo(ClassOne):

 def __init__(self, attr1_value, attr2_value):

 super().__init__(attr1_value)

 self.__attr2 = attr2_value

 def sum_attributes(self):

 return self.get_attr1() + self.__attr2

In the above examples, the method sum_attributes of ClassTwo can access the
method get_attr1 of ClassOne. but the attribute __attr1 is hidden even though it
exists.

📝 5.1.10

Which is true?

• An object of a derived class has all the attributes defined by the superclass

Inheritance | FITPED

56

• An object of a derived class does not have access to the attributes defined
by the superclass

• An object of a derived class only has the public attributes defined by the
superclass

🕮 5.1.11

Testing real types of instances

When we have objects of different classes and subclasses...

class ClassOne:

 def __init__(self, attr1_value):

 ...

class ClassTwo(ClassOne):

 def __init__(self, attr1_value, attr2_value):

 ...

c1 = ClassOne(1)

c2 = ClassTwo(1, 2)

We can check if an object is an instance of a class using the isinstance function:

print(isinstance(c1, ClassOne)) # Prints True

print(isinstance(c2, ClassOne)) # Prints True

print(isinstance(c1, ClassTwo)) # Prints False

We can know the type/class of an object using the type function or
the __class__ attribute:

print(type(c1)) # Prints <class 'myclass.ClassOne'>

print(c1.__class__) # Prints <class 'myclass.ClassOne'>

And we can know if a class if a subclass of another class using the
function issubclass:

print(issubclass(myclass.ClassTwo, myclass.ClassOne)) # Prints

True

📝 5.1.12

We can check if an object is an instance of a class using the _____ function, we can
know the type/class of an object using the type function or the _____ attribute, and
we can know if a class if a subclass of another class using the _____ function.

Inheritance | FITPED

57

• issubclass
• __class__
• isinstance

5.2 Inheritance (exercises)

⌨ 5.2.1 Stepped counter

The module counter provides a definition for a class named Counter. This class has
a read-only property named count which is assigned a 0 (int) at initialization time.
Initialization of Counter objects does not have any additional requirement. Counter
class also has a method named add_up which increments the value of the count
property by 1 when called.

Example:

 c = Counter()

 print(c.count) # Prints 0

 c.add_up()

 print(c.count) # Prints 1

 c.add_up()

 print(c.count) # Prints 2

You have to define a new class named SteppedCounter which must inherit from
Counter and match the following requirement:

• Initialization of SteppedCounter objects will require, as a parameter, a
positive integer value which will be used to initialize a read-only property
named step.

Example:

 c = SteppedCounter(3)

 print(c.count) # Prints 0

 print(c.step) # Prints 3

 c.add_up()

 print(c.count) # Prints 1

 c.add_up()

 print(c.count) # Prints 2

steppedcounter.py
from counter import Counter

Put your code here

Inheritance | FITPED

58

if __name__ == "__main__":

 # Example of use (not part of the solution)

 c = SteppedCounter(3)

 print(c.count)

 print(c.step)

 c.add_up()

 print(c.count)

⌨ 5.2.2 MobilePoint

The module point provides a definition for a class named Point. Objects of the Point
class represent points in a plane. A point in a plane is identified by two coordinates
(x, y), which are represented as attributes of the Point class objects.

You have to define a new class, named MobilePoint, which must inherit from Point
and add an instance method called move. The move method will have two
parameters (apart from self), which will be used to modify the coordinates (x, y) of
the self object (the first parameter will be added to the value of x and the second to
the value of y).

Example:

 p = MobilePoint(3.0, 4.5)

 print("(x = {}, y = {})".format(p.x, p.y)) # Prints "x =

3.0, y = 4.5"

 p.move(1.0, -1.0)

 print("(x = {}, y = {})".format(p.x, p.y))# Prints "x =

4.0, y = 3.5"

Example:

 p = MobilePoint(0.0, 0.0)

 print("(x = {}, y = {})".format(p.x, p.y)) # Prints "x =

0.0, y = 0.0"

 p.move(1.0, -1.0)

 print("(x = {}, y = {})".format(p.x, p.y))# Prints "x =

1.0, y = -1.0"

mobilepoint.py
from point import Point

Put your code here

Inheritance | FITPED

59

if __name__ == "__main__":

 # Example of use (not part of the solution)

 p = MobilePoint(3.0, 4.5)

 print("(x = {}, y = {})".format(p.x, p.y))

 p.move(1.0, -1.0)

 print("(x = {}, y = {})".format(p.x, p.y))

Polymorphism

Chapter 6

Polymorphism | FITPED

61

6.1 Polymorphism and inherited methods (methods
overriding)

🕮 6.1.1

Polymorphism

Polymorphism is the ability to process objects in a different way, depending on their
types, using a single interface. Operators are a typical case of polymorphism, e.g.,
the same symbol '+' can be used to sum two numbers or concatenate two strings,
giving the proper result for each case:

x = 5 + 10 # 15

greetings = "Hello " + "world" # "Hello world"

In Object Oriented Programming, polymorphism allows treating objects of different
subclasses as instances of their superclasses, calling for each case the proper
method for the object. This means that functions or methods written to operate on
objects of the superclass can also operate on objects of the derived class and treat
them accordingly to their classes. For example, suppose these three classes:

class BaseClass:

 def message(self):

 return "This is a message from BaseClass";

class ClassOne(BaseClass):

 def message(self):

 return "This is a message from ClassOne";

class ClassTwo(BaseClass):

 def message(self):

 return "This is a message from ClassTwo";

And see this function:

def showMessage(obj):

 print(obj.message())

If we pass to the function an object of any of the three classes, the proper message
will be printed:

obj1 = BaseClass()

obj2 = ClassOne()

obj3 = ClassTwo()

Polymorphism | FITPED

62

showMessage(obj1) # Prints "This is a message from BaseClass"

showMessage(obj2) # Prints "This is a message from ClassOne"

showMessage(obj3) # Prints "This is a message from ClassTwo"

Polymorphism deeply relies on method overriding and overloading.

📝 6.1.2

In Object Oriented Programming, what name is given to the ability to process
objects in a different way, depending on their types, using a single interface?

🕮 6.1.3

Method overriding

Method overriding is a mechanism that allows a subclass to provide its own
implementation of a method yet implemented by any of the classes from which it
inherits.

In Python, to override a method a class only needs to provide a method with the
same name. The method provided in this way hides the one available in the
superclass.

class BaseClass:

 def message(self):

 return "This is a message from BaseClass"

class ClassOne(BaseClass):

 def message(self):

 return "This is a message from ClassOne"

When the message method is invoked on an object of type BaseClass the one
defined in BaseClass is run, but when it is invoked on an object of ClassOne, the one
defined in ClassOne is run. The overridden method can be accessed from
inside ClassOne using the super method.

 def message(self):

 return super().message() + " and then a message from

ClassOne"

Polymorphism | FITPED

63

📝 6.1.4

In Python, if a class has a method and we want to override it in a derived class ...

• Just write a method with the same name in the derived class
• You have to write a method with the same name and the decorator

@override
• You must access the superclass method using the super() built-in method

🕮 6.1.5

Polymorphism and magic methods

In Python, polymorphism is frequently used with magic methods. By nature, a magic
method is a special method that a new class should override, writing a new version,
to provide the proper behavior for its instances.

New classes usually override the __init__ method to provide their own initialization
or the __str__ method to provide their own string representation, but any of the
magic methods can be overridden if needed.

Any case, when a magic method is overridden, the implementation available for the
superclass can be accessed from inside the derived class, if needed, using
the super method.

class ClassOne(object):

 def __init__(self, value):

 self.attr1 = value

class ClassTwo(ClassOne):

 def __init__(self, value_1, value_2):

 super().__init__(value_2)

 self.attr1 = value_1

📝 6.1.6

If a class has an initialization method with no parameters other than self and we
want to invoke it from the initialization method of a derived class, what would be
the correct way to do it?

• super () .__ init __ ()
• super () .__ init __ (self)
• self.super () .__ init ()

Polymorphism | FITPED

64

6.2 Inheritance and method overriding (exercises)

⌨ 6.2.1 Stepped counter add_up

The module counter provides a definition for a class named Counter. This class has
a read-only property named count which is assigned a 0 (int) at initialization time.
Initialization of Counter objects does not have any additional requirement. Counter
class also has a method named add_up which increments the value of the count
property by 1 when called.

Example:

 c = Counter()

 print(c.count) # Prints 0

 c.add_up()

 print(c.count) # Prints 1

 c.add_up()

 print(c.count) # Prints 2

The module steppedCounter define a new class named SteppedCounter which
inherits from Counter and match the following requirements:

• Initialization of SteppedCounter objects will require, as a parameter, a
positive integer value which will be used to initialize a read-only property
named step.

You have to modify SteppedCounter to override the add_up method of Counter in
such a way that it will increment the count property by the value of step when
called.

Example:

 c = SteppedCounter(3)

 print(c.count) # Prints 0

 c.add_up()

 print(c.count) # Prints 3

 c.add_up()

 print(c.count) # Prints 6

steppedcounter.py
from counter import Counter

class SteppedCounter(Counter):

 """A counter with a custom step"""

Polymorphism | FITPED

65

 def __init__(self, step):

 super().__init__()

 self.__step = step

 @property

 def step(self):

 """Returns current step value"""

 return self.__step

 # Put your code here

if __name__ == "__main__":

 # Example of use (not part of the solution)

 c = SteppedCounter(3)

 print(c.count)

 c.add_up()

 print(c.count)

⌨ 6.2.2 timeWithSeconds

The mytime module contains the Time class, a class to represent hours and
minutes. The initialization of an object of the Time class requires two parameters:
one for the hours and another for the minutes, in this order. The hours are assumed
to be an integer value between 0 and 23 and the minutes an integer value between
0 and 59.

The Time class also has defined the __str __ method. This method returns the hours
and minutes represented by an object of the Time class using the format "hh:mm".

Example:

 c = Time(8, 23)

 print(c) # Prints "08:23"

You must define a new class, heir to the Time class, called TimeWithSeconds. This
class has the objective of adding seconds to the information stored by the objects
of the Time class.

The initialization of an object of the TimeWithSeconds class requires three
parameters: the hours and minutes, necessary to initialize objects of the Time
class, and the seconds, added by the new class.

The __str __ () method must be also overridden so that it returns the information
stored using the format "hh: mm: ss".

Polymorphism | FITPED

66

Example:

 c = TimeWithSeconds(8, 23, 6)

 print(c) # Prints "08:23:06"

⌨ 6.2.3 Point3D

The point2d module contains the Point2d class, a class to represent points in a
plane. The initialization of an object of the Point2d class requires two parameters:
one for the x coordinate and another for the y coordinate, in this order.

The Point2d class also has a method named coordinates. This method returns a
tuple with the coordinates (x, y) of the point.

Example:

 p = Point2d(8, 23)

 print(p.coordinates()) # Prints (8, 23)

You must define a new class, heir to the Point2d class, called Point3d. This class
will represent points in a tridimensional space.

The initialization of an object of the Point3d class requires three parameters: x and
y coordinates, necessary to initialize objects of the Point2d class, and the
z coordinate, added by the new class.

You must also override the coordinates method of the Point2d class so that it
returns a tuple (x, y, z).

Example:

 p = Point3d(8, 23, 6)

 print(p.coordinates()) # Prints (8, 23, 6)

6.3 Polymorphism and operators (operators
overloading)

🕮 6.3.1

Operators overloading

Operators overloading is a type of polymorphism which enables the same operator
executes in a different way depending on its arguments. For example, the operator

Polymorphism | FITPED

67

'+' is used to sum int numbers, sum float numbers, or concatenate str values
(strings).

In Python, operators can be overloaded to operate on new classes by defining some
specific magic methods. These magic methods can be classified as:

• Comparison magic methods
• Unary operators and functions
• Binary arithmetic operators
• Reflected arithmetic operators

🕮 6.3.2

Comparison operators overloading

The following magic methods could be overloaded for comparison:

__eq__(self, other) .- defines behavior for the equality

operator ==

__ne__(self, other) .- defines behavior for the inequality

operator !=. If __eq__ is defined, __ne__ is defined

implicitly

__lt__(self, other) .- defines behavior for the less-than

operator <

__gt__(self, other) .- defines behavior for the great-than

operator >

__le__(self, other) .- defines behavior for the less-than or

equal operator <=.

__ge__(self, other) .- defines behavior for the great-than or

equal operator >=.

Example:

class Rational:

 def __init__(self, num_value, den_value):

 self.num = num_value

 self.den = den_value

 def __eq__(self, other):

 if type(other) == Rational:

 return self.num * other.den == self.den *

other.num

 else:

 return False

...

Polymorphism | FITPED

68

r1 = Rational(3, 4)

r2 = Rational(6, 8)

print(r1 == r2) # Prints True

If __eq__ had not been defined, the previous example would print false, since it
would compare if the two variables reference the same object. Methods __lt__,
__le__, __gt__, and __ge__ are usually known as rich comparison ordering methods.

Note the question in the implementation of the __eq__ method to know if the object
with which it is being compared is a Rational; Only in that case can you access your
num and den attributes to compare them. In any case, if the other object is not a
Rational, the result is False (two objects of different types cannot be the same).

📝 6.3.3

defines behavior for the equality operator == _____

defines behavior for the inequality operator != _____

defines behavior for the less-than operator < _____

defines behavior for the greater-than operator > _____

defines behavior for the less-than or equal operator <= _____

defines behavior for the greater-than or equal operator >= _____

• __le__(self, other)
• __lt__(self, other)
• __eq__(self, other)
• __gt__(self, other)
• __ne__(self, other)
• __ge__(self, other)

🕮 6.3.4

Total ordering

It is not necessary to implement all of the comparison magic methods to be able to
use all the relational operators. If the class is decorated with the decorator
@functools.total_ordering, it is enough to implement __eq__ and one of the rich
comparison ordering methods __lt__, __le__, __gt__, __ge__. The decorator supplies
the rest.

Polymorphism | FITPED

69

Example:

from functools import total_ordering

@total_ordering

class Rational:

 def __init__(self, num_value, den_value):

 self.num = num_value

 self.den = den_value

 def __eq__(self, other):

 if type(other) == Rational:

 return self.num * other.den == self.den *

other.num

 else:

 return False

 def __lt__(self, other):

 return self.num * other.den < self.den * other.num

Note that in the implementation of the __lt__ magic method we have not asked
about the type of the other object with which it is compared. In the case of equality,
we can affirm that, if the objects are not of the same uncle, they cannot be the
same but how can we decide which one is smaller? We have chosen to let an error
occur in that situation, when trying to use the operation with a data type for which it
is not defined.

📝 6.3.5

What decorator must we use to supply total ordering for a class defining __eq__ and
one or more rich comparison ordering methods?

🕮 6.3.6

Unary operators and functions

__pos__(self) .- implements behavior for the unary operator +

__neg__(self) .- implements behavior for the unary operator -

__abs__(self) .- implements behavior for the abs() function

__invert__(self) .- implements behavior for ~ operator

(bitwise invert)

Polymorphism | FITPED

70

__round__(self, n) .- implements behavior for the round()

function

__floor__(self) .- implements behavior for the floor()

function

__ceil__(self) .- implements behavior for the ceil() function

__trunc__(self) .- implements behavior for the trunc()

function

Example:

class Rational:

 def __init__(self, num_value, den_value):

 self.num = num_value

 self.den = den_value

 def __neg__(self):

 return Rational(-self.num, self.den)

...

r1 = Rational(3, 4)

r2 = -r1 # The same as r2 = Rational(-3, 4)

📝 6.3.7

What magic method implements behavior for the unary operator -

• __neg__(self)
• __minus__(self)
• __invert__(self)

🕮 6.3.8

Binary arithmetic operators

__add__(self, other) .- implements behavior for the addition

operator +

__sub__(self, other) .- implements behavior for the

subtraction operator -

__mul__(self, other) .- implements behavior for the

multiplication operator *

__floordiv__(self, other) .- implements for the integer

division operator //

__div__(self, other) .- implements behavior for the division

operator /

Polymorphism | FITPED

71

__mod__(self, other) .- implements behavior for the modulo

operator %

__divmod__(self, other) .- implements behavior for long

division using the divmod() function

__pow__(self, other[, modulo]) .- implements behavior for the

exponentiation operator **

__lshift__(self, other) .- implements behavior for the left

bitwise shift operator <<

__rshift__(self, other) .- implements behavior for the right

bitwise shift operator >>

__and__(self, other) .- implements behavior for the bitwise

and operator &

__or__(self, other) .- implements behavior for the bitwise or

operator |

__xor__(self, other) .- implements behavior for the bitwise

xor operator ^

Example:

class Rational:

 def __init__(self, num_value, den_value):

 self.num = num_value

 self.den = den_value

 ...

 def __add__(self, other):

 if type(other) == Rational:

 return Rational(

 self.num * other.den + self.den * other.num,

 self.den * other.den

)

 elif type(other) == int:

 return self + Rational(other, other)

📝 6.3.9

Match each operator with the corresponding magic method:

__add__ _____

__mul__ _____

__sub__ _____

__div__ _____

Polymorphism | FITPED

72

• +
• -
• /
• *

🕮 6.3.10

Reflected binary operators

Magic methods for reflected operators are intended for when using an operator
with "swapped operands", that is, other <op> self instead of self <op> other. They
apply when operands are of different types and the left operand does not support
the operator (It has not implemented the corresponding magic method).

Magic methods for reflected operators have the same name as "normal" ones, but
with a leading 'r', for example, being the addition __add__(self, other), its reflected
version is __radd__(self, other).

Example:

class Rational:

 def __init__(self, num_value, den_value):

 self.num = num_value

 self.den = den_value

 ...

 def __add__(self, other):

 if type(other) == Rational:

 return Rational(

 self.num * other.den + self.den * other.num,

 self.den * other.den

)

 elif type(other) == int:

 return self + Rational(other, 1)

 def __radd__(self, other):

 return self + other

📝 6.3.11

What is the name of the magic method for the reflected division operator /?

Polymorphism | FITPED

73

6.4 Operators overloading (exercises)

⌨ 6.4.1 Point sum

Define the proper magic method to implement behavior for the addition operator +.
Sum of two points results in a new point whose coordinates are the sum of the
corresponding coordinates of the summed points: (x1, y1) + (x2, y2) = (x1+ x2, y1 +
y2)

Example:

 p1 = Point(3.0, 4.5)

 p2 = Point(2.5, 3.0)

 p3 = p1 + p2

 print("(x = {}, y = {})".format(p3.x, p3.y)) # Prints "x =

5.5, y = 7.5"

point.py
class Point:

 """A point in a plane"""

 def __init__(self, x, y):

 """A point is initialized with x and y coordinates"""

 self.x = x

 self.y = y

 # Put your code here

if __name__ == "__main__":

 # Example of use (not part of the solution)

 p1 = Point(3.0, 4.5)

 p2 = Point(2.5, 3.0)

 p3 = p1 + p2

 print("(x = {}, y = {})".format(p3.x, p3.y))

⌨ 6.4.2 Rectangle equality

The Rectangle class is designed to create objects that represent rectangles. Add to
the Rectangle class the definition of the appropriate magic method to implement
the behaviour of the equality operator ("="). Two rectangles are considered equal if
they have the same lengths and widths.

rectangle.py
class Rectangle:

 """A quadrilateral with four right angles"""

Polymorphism | FITPED

74

 def __init__(self, length, width):

 """Initialize a rectangle with length and width"""

 self.length = length

 self.width = width

⌨ 6.4.3 Time comparable

Make the necessary modifications to the Time class so that the objects of the Time
class can be compared using any of the comparison operators (<, ==,! =, <=,>,> =).

Given two objects of the Time class, they are equal if their hour and minute
attributes are equal. The one whose hour attribute is less, or equal to the hour
attribute, whose minute attribute is less is smaller.

It is recommended to implement the least possible number of magical methods.

mytime.py
class Time:

 """Represents a time

 Attributes:

 hour: int; must be 0 <|= hour <|= 23

 minute : int; must be 0 <|= minute <|= 59

 """

 def __init__(self, hour, minute):

 """

 Parameters:

 hour : int; value to initialize hour attribute

 minute : int; value to initialize minute attribute

 """

 self.hour = hour

 self.minute = minute

if __name__ == "__main__":

 # Example of use (not part of the solution)

 t1 = Time(12, 30)

 t2 = Time(12, 50)

 print("t1 <| t2? ", t1 <| t2)

 print("t1 = t2? ", t1 == t2)

 print("t1 != t2? ", t1 != t2)

 print("t1 > t2? ", t1 > t2)

 print("t1 <|= t2? ", t1 <|= t2)

Polymorphism | FITPED

75

 print("t1 >= t2? ", t1 >= t2)

⌨ 6.4.4 Rectangle pow

Define the __pow__(self, other) magic method to implement the exponentiation of a
self raised to the other-th power, being other a positive int.

The result must be a new rectangle whose length and width are those of self
multiplied by the other parameter. If the other parameter is not a positive int, the
result will be a new Rectangle with the same length and width than self.

rectangle.py
class Rectangle:

 """A quadrilateral with four right angles

 Attributes:

 length: float or int

 width: float or int

 """

 def __init__(self, length, width):

 self.length = length

 self.width = width

⌨ 6.4.5 Rectangle multiplier

Define the __mul__(self, other) and the __rmul__ (self, other) magic methods to
implement the multiplication of a Rectangle by an int.

The result must be a new rectangle whose length will be that of self multiplied by
the other parameter and whose width will be the same as self. If the other
parameter is not an int, the result will be a new Rectangle with the same length and
width than self.

start.py
from rectangle import Rectangle

r1 = Rectangle(1.0, 2.0)

print("length: {}\nwidth: {}".format(r1.length, r1.width))

r2 = r1 * 2

print("length: {}\nwidth: {}".format(r2.length, r2.width))

Polymorphism | FITPED

76

r2 = 2 * r1

print("length: {}\nwidth: {}".format(r2.length, r2.width))

rectangle.py
class Rectangle:

 """A quadrilateral with four right angles

 Attributes:

 length: float or int

 width: float or int

 """

 def __init__(self, length, width):

 self.length = length

 self.width = width

6.5 Polymorphism and parameters of a function

🕮 6.5.1

Functions (or methods) overloading

Overloading of functions or methods is a type of polymorphism that allows using a
function (or method) name with different arguments in the same namespace. To
achieve this aim, many programming languages allow writing different functions
with the same name but varying the number or types of their arguments. Another
way is functions with optional or default parameters.

Python does not allow two functions having the same name in the same
namespace but it allows optional parameters. Moreover, Python does not require
declaring types for functions arguments, so a function could have different
behavior depending on the real types of the arguments passed to it.

In Python, we have a sort of "polymorphic" functions instead of overloaded
functions. Below example shows a "Hello world" function with an optional
parameter:

def hello(name = None):

 if name != None:

 print("Hello " + name + "!")

 else:

 print("Hello!")

It can be invoked in two way (with and without parameter):

Polymorphism | FITPED

77

hello() # Prints "Hello!"

hello("David") # Prints "Hello David!"

📝 6.5.2

Python allows two functions having the same name in the same namespace as a
form of polymorphism.

• False
• True

🕮 6.5.3

Polymorphism based on default parameters

The following example shows a class Parallelogram with a polymorphic initializer
capable to create any of four possible kinds of parallelograms (square, rectangle,
rhombus, or rhomboid). It is supposed that all parameters are int or float numbers.

class Paralelogram:

 def __init__(self, side1, angle = 90, side2 = None):

 self.side1 = side1

 if side2 == None or side1 == side2:

 if angle != 90:

 self.kind = "rhombus"

 self.angle = angle

 else:

 self.kind = "square"

 else:

 self.side2 = side2

 if angle != 90:

 self.kind = "rhomboid"

 self.angle = angle

Polymorphism | FITPED

78

 else:

 self.kind = "rectangle"

Below are four different way to instantiate a Parallelogram, with one, two or three
arguments:

square = Paralelogram(12)

rhombus = Paralelogram(12, 60)

rectangle = Paralelogram(12, side2 = 8)

rhomboid = Paralelogram(12, 60, 8)

📝 6.5.4

See the following code:

class Paralelogram:

 def __init__(self, side1, angle = 90, side2 = None):

 self.side1 = side1

 if side2 == None or side1 == side2:

 if angle != 90:

 self.kind = "rhombus"

 self.angle = angle

 else:

 self.kind = "square"

 else:

 self.side2 = side2

 if angle != 90:

 self.kind = "rhomboid"

 self.angle = angle

 else:

 self.kind = "rectangle"

What value will print the following command:

print(Paralelogram(8, 90, 8).kind)

• square
• rectangle
• rhombus
• rhomboid

Polymorphism | FITPED

79

🕮 6.5.5

Polymorphism based on types of parameters

The following example shows a function that returns a fraction number or a
complex number, depending on if its arguments are of type int or of type float.

from fractions import Fraction

def numberFunc(number1, number2):

 if type(number1) == int and type(number2) == int:

 return Fraction(number1, number2)

 elif type(number1) == float or type(number2) == float:

 return complex(number1, number2)

Below are three forms of calling the function:

print(numberFunc(1, 2)) # Prints "1/2"

print(numberFunc(1.0, 2.0)) # Prints "(1+2j)"

print(numberFunc("1", "2")) # Prints "None"

📝 6.5.6

See the following code:

from fractions import Fraction

def numberFunc(number1, number2):

 if type(number1) == int and type(number2) == int:

 return Fraction(number1, number2)

 elif type(number1) == float and type(number2) == float:

 return complex(number1, number2)

What value will print the following command:

print(numberFunc(1, 2.0))

• None
• 1/2
• (1+2j)

Immutable Classes

Chapter 7

Immutable Classes | FITPED

81

7.1 Immutable classes

🕮 7.1.1

Immutable classes

An immutable class is designed to create immutable objects. An immutable object
is an object which cannot be modified after its creation. Numbers, strings, and
tuples are examples of Python's built-in immutable objects. Lists and dictionaries
are examples of mutable objects. In Python, objects created by custom classes are
mutable by default.

class Mutable:

 def __init__(self, value1, value2):

 self.attr1 = value1

 self.attr2 = value2

If an object is mutable, we can change the values of its attributes:

mutable_object = Mutable(1, 2) # An object is created with

attr1 = 1 and attr2 = 2

mutable_object.attr1 = 3 # Value of attr1 changes to 3

Also, new attributes can be added to the object:

mutable_object.attr3 = 4 # attr3 is added to the object with

value 4

Attributes can be removed too:

delattr(mutable_object, "attr2") # The object no longer has

the attribute attr2

📝 7.1.2

What is true?

• An immutable class creates immutable objects
• An immutable class cannot be inherited
• An immutable class is a sort of tuple

Immutable Classes | FITPED

82

🕮 7.1.3

Immutable using __setattr__

If we want to avoid the modification of object attributes, we can override
the __setattr__ magic method. This method is automatically called when we attempt
to assign an attribute.

class Immutable:

 ...

 def __setattr__(self, key, value):

 raise AttributeError("Immutable can not be modified")

With this implementation, an error is raised every time assigning an attribute is
attempted. The problem is that the error is raised even if the assignment is done in
the initializer itself.

class Immutable:

 def __init__(self, value1, value2):

 self.attr1 = value1

 self.attr2 = value2

 ...

So we have to modify the initializer to call the __setattr__ of the superclass,
bypassing the local one.

class Immutable:

 def __init__(self, value1, value2):

 super().__setattr__("attr1", value1)

 super().__setattr__("attr2", value2)

 ...

📝 7.1.4

What is true?

• __setattr__ is called when an attribute assignment is attempted
• __setattr__ is called by __init__ when a class is instantiated
• __setattr__ is called every time that an object is created

Immutable Classes | FITPED

83

🕮 7.1.5

Using __slots__.

Override of __setattr__ avoids the "normal" modification of attributes by
assignment.

immutable_object = Immutable(1, 2) # An object is created with

attr1 = 1 and attr2 = 2

immutable_object.attr1 = 3 # Attempt to modify attr1

Traceback (most recent call last):

 File "main.py", line 4, in <module>

 immutable_object.attr1 = 3

 File "/home/p16582/immutable.py", line 9, in __setattr__

 raise AttributeError("Immutable can not be modified")

AttributeError: Immutable can not be modified

But we can yet modify or add attributes using the __dict__ attribute of the object. It
is a default attribute (a dictionary) which stores all the writable attributes of the
object.

immutable_object.__dict__["attr1"] = 4

immutable_object.__dict__["attr3"] = 5

To avoid this shortcoming, we can use __slots__, a namedtuple intended to improve
the performance of objects: using __slots__ deny the creation of __dict__ so saving
space and improve speed.

class Immutable:

 __slots__=("attr1", "attr2")

 ...

Now we no longer can't access __dict__.

immutable_object.__dict__["attr1"] = 4 # Attempt to modify

attr1

Traceback (most recent call last):

 File "main.py", line 7, in <module>

Immutable Classes | FITPED

84

 immutable_object.__dict__["attr1"] = 4

AttributeError: 'Immutable' object has no attribute '__dict__'

📝 7.1.6

Which are true?

• When using __slots__, objects cannot be assigned new variables not listed in
the __slots__ definition

• Variables listed in the __slots__ definition can be assigned if __setAttr__ does
not prevent it

• When using __slots__, we only can add new attributes using the
__dict__attribute

🕮 7.1.7

Avoiding deletion of attributes.

We can override the __setattr__ method to avoid modification of attributes, but they
can yet been deleted if we don't override the __delattr__ method too.

class Immutable:

 ...

 def __delattr__(self, key):

 raise AttributeError(f"Attribute {key} can not be

deleted")

When we do that, any attempt to delete an attribute will raise an error.

delattr(immutable_object, "attr1")

Traceback (most recent call last):

 File "main.py", line 11, in <module>

 delattr(immutable_object, "attr1")

 File "/home/p18545/immutable.py", line 11, in __delattr__

 raise AttributeError("Attribute {} can not be deleted".for

mat(key))

AttributeError: Attribute attr1 can not be deleted

Immutable Classes | FITPED

85

📝 7.1.8

What is true?

• __delattr__ is called when an attribute is attempted to be removed
• __delattr__ is called when an object overrides a superclass' attribute
• __delattr__ is called when we want to avoid deletion of an attribute

🕮 7.1.9

Immutable classes inheriting from tuple

Another way to get an immutable class is inheriting from tuple. Being tuple
immutable, any class inheriting from tuple will be immutable.

class Immutable(tuple):

 def __new__(cls, value1, value2):

 return tuple.__new__(cls, (value1, value2))

 @property

 def attr1(self):

 return self[0]

 @property

 def attr2(self):

 return self[1]

Notice:

• The __new__ magic method is used to create a tuple which stores the values
for the attributes as elements. In Python, __new__ is called at the first stage
of instantiation, it receives the class and the arguments passed to the
constructor expression and uses them to prepare and return the new object
which is then passed to the __init__ method together with those arguments.
The __new__ method is intended mainly to allow subclasses of immutable
types (like int, str, or tuple) to customize instance creation.

• Read-only properties are used to provides a way to access the stored values
by name, as usual for attributes.

A minor drawback of this implementation is that values can be accessed by index,
as elements of a tuple. Is this is a problem, we can override the __getitem__ magic
method, which is intended to implement the access by index to an object.

immutable_object = Immutable(1, 2)

immutable_object.attr2 == immutable_object[1]

Immutable Classes | FITPED

86

A major drawback is that we can add elements to __dict__, although we cannot use
them as regular attributes.

immutable_object.__dict__["attr1"] = 4

print(immutable_object.__dict__["attr1"]) # Prints 4

print(immutable_object.attr1) # Prints 1

📝 7.1.10

What method must we override to avoid access by index when inheriting an
immutable class from tuple?

• __getitem__
• __getelement__
• __itemAt__

🕮 7.1.11

Immutable classes using namedtuple

The simplest way to get an immutable class is using the factory
function namedtuple, intended to create tuples with field names. The field names
are passed as a sequence of strings or a string with field names separated by
whitespaces and/or commas.

from collections import namedtuple

class Immutable(namedtuple("Immutable", "attr1, attr2")):

 ...

Unlike when inheriting from tuple, we don't need to override the __new__ method nor
define any properties. By the other hand, access by index continues being possible
as well as inserting elements into the __dict__ attribute, although we cannot use
them as regular attributes. Instances are created in the usual way:

immutable_object = Immutable(1, 2)

📝 7.1.12

What is true?

• Inheriting from a namedtuple simplifies the definition of immutable classes
• Inheriting from a namedtuple prevents access to the attributes by index

Immutable Classes | FITPED

87

• Inheriting from a namedtuple prevents access to the __dict__ attribute

7.2 Immutability (exercises)

⌨ 7.2.1 Rectangle immutable

Modify the implementation of the Rectangle class to convert it to an immutable
class inheriting from tuple (preferably using namedtuple).

rectangle.py
class Rectangle:

 """A rectangle is a quadrilateral with four right angles.

 Alternate sides are equal.

 """

 def __init__(self, length, width):

 """Initialization of Rectangle objects

 length: size of the larger sides

 width: size of the shorter sides

 """

 self.length = length

 self.width = width

 def area(self):

 """The area of a rectangle is the product of its

length by its width"""

 return self.length * self.width

if __name__ == "__main__":

 # Example of use (not part of the solution)

 r = Rectangle(12, 8)

 print(r.length) # Prints 12

 print(r.width) # Prints 8

 print(r.area()) # Prints 96

⌨ 7.2.2 Point immutable

Modify the implementation of the Point class to convert it to an immutable class
inheriting from tuple (preferably using namedtuple).

Immutable Classes | FITPED

88

point.py
class Point:

 """A point in a plane

 Attributes:

 x: float, x coordinate

 y: float, y coordinate

 """

 def __init__(self, x, y):

 self.x = x

 self.y = y

if __name__ == "__main__":

 # Example of use (not part of the solution)

 p = Point(3.0, 4.5)

 print("(x = {}, y = {})".format(p.x, p.y))

⌨ 7.2.3 Time immutable

Modify the implementation of the Time class to convert it to an immutable class
inheriting from tuple (preferably using namedtuple).

mytime.py
class Time:

 """Represents a time"""

 def __init__(self, hour, minute):

 """Time objects are initialized with hours and

minutes"""

 self.__hour = hour

 self.__minute = minute

 # Hour an minute are readonly properties

 @property

 def hour(self):

 return self.__hour

 @property

 def minute(self):

 return self.__minute

Immutable Classes | FITPED

89

⌨ 7.2.4 Rectangle immutable II.

Modify the implementation of the Rectangle class to convert it to an immutable
class not inheriting from tuple

rectangle.py
class Rectangle:

 """A rectangle is a quadrilateral with four right angles.

 Alternate sides are equal.

 """

 def __init__(self, length, width):

 """Initialization of Rectangle objects

 length: size of the larger sides

 width: size of the shorter sides

 """

 self.length = length

 self.width = width

 def area(self):

 """The area of a rectangle is the product of its

length by its width"""

 return self.length * self.width

if __name__ == "__main__":

 # Example of use (not part of the solution)

 r = Rectangle(12, 8)

 print(r.length) # Prints 12

 print(r.width) # Prints 8

 print(r.area()) # Prints 96

Objects

Chapter 8

Objects | FITPED

91

8.1 Copying objects

🕮 8.1.1

Assignment

In Python, variables are references to objects. When we assign a variable to another
one, the assignment operator "=" copies a reference, so both variables will
reference the same object.

class One:

 pass

class Two:

 pass

class Three:

 def __init__(self, one, two):

 self.one = one

 self.two = two

ref1 = Three(One(), Two())

ref2 = ref1

When managing mutable objects, we may need to get an independent copy of an
object which can be mutated without change the original one. Python provides a
module named copy for this purpose. This module allows two types of copies:
shallow and deep.

📝 8.1.2

When is more useful to make a copy of an object?

• When we are managing mutable objects
• When we are managing immutable objects
• Is equally useful for both mutable or immutable objects

Objects | FITPED

92

🕮 8.1.3

Shallow copy

We can do a shallow copy of an object using the copy function from the copy
module.

import copy

class One:

 pass

class Two:

 pass

class Three:

 def __init__(self, one, two):

 self.one = one

 self.two = two

ref1 = Three(One(), Two())

ref2 = copy.copy(ref1)

When an object has nested references to other objects, shallow copying makes a
copy of the root object and then assigns the nested references, so sharing the
objects referenced by them.

📝 8.1.4

Objects | FITPED

93

A shallow copy does not copy nested objects.

• True
• False

🕮 8.1.5

Deep copy

We can get a deep copy of an object using the deepcopy function from the copy
module.

import copy

class One:

 pass

class Two:

 pass

class Three:

 def __init__(self, one, two):

 self.one = one

 self.two = two

ref1 = Three(One(), Two())

ref2 = copy.deepcopy(ref1)

Objects | FITPED

94

When an object has nested references to other objects, deep copying makes a copy
of the root object and then recursively deep copies the nested objects.

A deep copy may cause a recursive loop when coping compound objects that,
directly or indirectly, contain references to themselves. To prevent
this, deepcopy keeps a dictionary of objects already copied.

📝 8.1.6

Why deep copy keeps a dictionary of objects already copied?

• To prevent recursive loops
• To prevent self-references
• To prevent duplication of shared data

🕮 8.1.7

Magic methods for copying

Python allows customizing both shallow copy and deep copy by defining the
corresponding magic methods.

To customize the shallow copy, we have to define the __copy__ magic method. This
method does not require any additional parameter (only the reference to the object
on which it operates).

To customize the deep copy, we have to define de __deepcopy__ magic method.
This method requires an additional parameter: the dictionary to remember objects
already copied.

Objects | FITPED

95

Customization of deep copy can be useful to prevent the copy of data that are
intended to be shared, so saving memory.

import copy

class Child:

 def __init__(self, value, parent):

 self.value = value

 self.parent = parent

class Parent:

 def __init__(self, self_value = None, child_value = None):

 if self_value != None:

 self.value = self_value # This value is to be

shared between copies

 if child_value != None:

 self.child = Child(child_value, self) # This makes

a circular reference

 def __deepcopy__(self, memo):

 if not str(id(self)) in memo: # Object must be copied

 copy_object = Parent() # A new object to be the

copy of self

 memo[str(id(self))] = copy_object # Register

copy_object as copy of self

 if self.value != None:

 copy_object.value = self.value # This value is

shared

 if self.child != None:

 # child attribute is deep copied

 copy_object.child = copy.deepcopy(self.child,

memo)

 return copy_object

 else: # Object has been copied yet, we return the copy

 return memo[str(id(self))]

ref1 = Parent(1, [2])

ref2 = copy.deepcopy(ref1)

Above example shows how to define __deepcopy__ to prevent duplication of data
intended to be shared (value attribute of the Parent object). The memo argument is
the dictionary to avoid recursive looping, note how we use it to decide if
the Parent object must be copied. Child objects use the default deepcopy.

Objects | FITPED

96

📝 8.1.8

Which method has more parameters?

• __deepcopy__
• __copy__

8.2 Destroying objects

🕮 8.2.1

Reference counting garbage collection

Python uses a reference counting garbage collection algorithm. This means that for
each object there is a counter of the number of references pointing to it. This
counter increases when a new reference is set and decreases when a reference
disappears.

A reference is counted when a variable is assigned the object.

x = MyClass()

y = x

z = x

A reference is discounted when a variable is assigned a different object.

z = MyClass()

Objects | FITPED

97

A reference is discounted too when the del built-in function is invoked. This function
removes a name and decrements the reference counter of the object referenced by
it, but does not remove the object itself.

del(y)

When the reference counter of the object reaches the zero value, the object can be
removed by the garbage collector, but there are no guarantees about the exact
moment this removing will occur.

x = z

Objects | FITPED

98

📝 8.2.2

Which is true?

• Objects in Python have a reference counter
• The built-in function del() removes the object referenced by its parameter
• Calling the built-in function del triggers a call to the garbage collector

🕮 8.2.3

The __del__ magic method

The __del__ magic method is called when an object is about to be destroyed by the
garbage collector, which happens at some (undefined) point after all references to
the object have been deleted. It provides an opportunity to free resources that are
not under the garbage collector control; for example, it could be used to commit
and close a database connection previously opened and used by other methods
during the object's lifetime.

We must take into account some issues:

Objects | FITPED

99

• We do not know when the __del__ method is going to be called. Call, if any,
will occur at any moment after the reference counter of the object reaches
the zero value.

• It could even never be called. If there are circular references among objects
and those objects have a __del__ method, then they can not be removed by
the garbage collector.

• Any exception risen in the __del__ method is ignored.

Knowing these issues, we can use the __del__ method in a safe way if we avoid
circular references and don't worry about the exact moment of its execution.

📝 8.2.4

Which are true?

• The __del__ method sometimes is not called
• The __del__ method is called by the built-in function del
• The __del__ method is called just when the reference counter reaches zero
• The __del__ method is called after the reference counter reaches zero

https://commons.wikimedia.org/wiki/File:Circular_Reference.svg

More Inheritance

Chapter 9

More Inheritance | FITPED

101

9.1 More about inheritance: multiple inheritance,
abstract classes

🕮 9.1.1

Multiple inheritance

A class can inherit from several classes simultaneously:

class WolfMan(Man, Wolf):

 pass

WolfMan class objects would inherit the properties and behavior of both the Man
class and the Wolf class, in addition to adding their own.

📝 9.1.2

What is multiple inheritance?

• A class can inherit from several different classes at the same time
• A class can inherit from a subclass of another class
• A class can be subclass of one and superclass of another simultaneously.

More Inheritance | FITPED

102

🕮 9.1.3

Method Resolution Order

Multiple inheritance is a powerful mechanism, but little is used, and in fact many
object-oriented languages, such as Java, do not offer it because it is very complex
to implement.

When the message method of the Lower class calls the message method of its
superclass What method should be called, that of Intermediate1 or that of
Intermediate2?

The solution varies by language. Python applies an algorithm to calculate the order
of resolution of methods (methods resolution order, mro) whose result can be
known using the class method .mro().

order = Lower.mro()

result:

[

 <class '__main__.Lower'>,

 <class '__main__.Intermediate1'>,

 <class '__main__.Intermediate2'>,

 <class '__main__.Upper'>, <class 'object'>

]

📝 9.1.4

Complete the following instruction by calling the appropriate method to display the
order of resolution of methods of the Lower class:

order = Lower._____

🕮 9.1.5

mro algorithm

To illustrate the algorithm that calculates the methods resolution order (mro) in
Python, we will use the following class hierarchy.

The resolution list, L, of class E (C, D) is calculated as:

L[E(C, D)] = E + merge(L[C(A, B)], L[D(A, B)], [C, D])

More Inheritance | FITPED

103

The mixture is solved with the following algorithm:

1. The first element of the first list is taken; in example L [C] [0]
2. If this element is not in the "queue" of any list, add it to the result and delete

it from the lists to be mixed; if not, try the first item in the following list
("queue" means the sublist consisting of all the elements except the first)

3. Repeat the previous operations until all the elements have passed to the
result or no valid element is found according to the conditions of the
previous point

In our example:

L[E(C, D)] = E + merge(L[C(A, B)], L[D(A, B)], [C, D]) =

 E + merge(C + merge(L[A], L[B], [A, B]), D + merge(L[A],

L[B], [A, B]), [C, D]) =

 E + merge([C, A, B], [D, A, B], [C, D]) =

 E + [C + merge([A, B], [D, A, B], [D])] =

 E + [C + [D + merge([A, B], [A, B])]] =

 E + [C + [D + [A + merge([B], [B])]]] =

 E + [C + [D + [A + [B]]]] = [E, C, D, A, B]

Note that if the order of inheritance in class D had been established as D (B, A), it
could not have been resolved:

L[E(C, D)] = E + merge(L[C(A, B)], L[D(B, A)], [C, D]) =

 E + merge(C + merge(L[A], L[B], [A, B]), D + merge(L[B],

L[A], [A, B]), [C, D]) =

 E + merge([C, A, B], [D, B, A], [C, D]) =

 E + [C + merge([A, B], [D, B, A], [D])] =

 E + [C + [D + merge([A, B], [B, A])]] =

 There is no item that is first in a list and not in the

queue of another!

IMPORTANT: Although not included to simplify the explanation, all lists should end
with the object class, which in Python 3 is the root of any class hierarchy.

📝 9.1.6

Given the following statements:

class A: pass

class B: pass

class C(A,B): pass

More Inheritance | FITPED

104

class D(A,B): pass

class E(C, A): pass

What is the mro list of class E?

• [E, C, A, B, Object]
• [E, C, D, A, B, Object]
• The mro of class E can't be resolved

🕮 9.1.7

Abstract classes

An abstract class is a class that contains abstract methods, which are declared but
not implemented methods. In Python, abstract classes must be derived from the
ABC (Abstract Base Class) class and the abstract methods must be marked with
the @abstractmethod decorator. In the following example the area property is
declared using an abstract method. Note that the mere fact that the method
contains only the pass instruction does not make it abstract:

from abc import ABC, abstractmethod

class Shape(ABC):

 @property

 @abstractmethod

 def area(self): pass

You cannot create objects of an abstract class. Abstract classes only serve to
define a set of methods as a "contract" to which other classes can adhere, how?
declaring heirs of the abstract class, which forces them to implement all the
abstract methods declared in it. The Square class in the following example is a
concrete subclass of the abstract Shape class and can be instantiated:

class Square(Shape):

 def __init__(self, side):

 self.__side = side

 @property

 def area(self):

 return self.__side ** 2

A subclass of an abstract class that does not implement all the abstract methods
declared in that class is still abstract and cannot be instantiated.

More Inheritance | FITPED

105

An abstract class can contain non-abstract methods, as well as other data
attributes.

📝 9.1.8

What is the name of the class from which any abstract class should derive in
Python?

Iterators and Generators

Chapter 10

Iterators and Generators | FITPED

107

10.1 Iterators and generators

🕮 10.1.1

Iterators

In Python, an iterator is an object that returns data, one element at a time. To do
this it must define two magic methods: __iter__ and __next__. The following example
implements a class that allows iterating in a sequence of numbers within a range
and separated by a predefined step.

class MyRange():

 def __init__(self, start=0, stop=0, step = 1):

 self.start = start

 self.stop = stop

 self.step = step

 def __iter__(self):

 self.current = self.start

 return self

 def __next__(self):

 if self.current <= self.stop:

 result = self.current

 self.current += self.step

 return result

 else:

 raise StopIteration

The __init__ method simply sets the parameters for iteration, the __iter__ method
prepares and returns the object to start the iteration, and the __next__ method
returns the current element and moves to the next one. The StopIteration exception
marks the end of the iteration. We can make an infinite iterator if we do not raise
that exception, but we must manage it carefully

A major benefit of iterators is that we can to treat huge datasets, one element at a
time, without waste a big amount of memory storing the whole dataset.

📝 10.1.2

Which is true?

• In Python, an iterator is an object that returns data, one element at a time.
• In Python, an iterator is a sort of loop defined using special magic methods.

Iterators and Generators | FITPED

108

• In Python, an iterator is an object that loops upon a range of numbers,
treating one at a time.

🕮 10.1.3

The built-in functions iter and next

We can use an iterator wherever an iterable object is required, like in a for loop:

for i in MyRange(5, 20, 3):

 print(i) # Prints the sequence 5, 8, 11, 14, 17, 20

For-loops manage iterators by means of two built-in

functions, iter and next, which relies on the corresponding

magic methods __iter__ and __next__. A loop like the

following:for i in MyRange(5, 20, 3):

 print(i)

Really works like:

iter_obj = iter(MyRange(5, 20 ,3)) # iterator is created

while True:

 try:

 i = next(iter_obj) # gets next value

 print(i)

 except StopIteration:

 break # if StopIteration is raised, break from loop

As the above example shows, we can iterate at the pace we want by calling the iter
and next functions directly when necessary.

📝 10.1.4

Which methods must be defined to convert a class in an iterator?

• __iter__
• __next__
• iter
• next

Iterators and Generators | FITPED

109

🕮 10.1.5

Generators

In Python, generators are an easy way to define iterators. They look like normal
functions that replace return statements by yield statements.

def range_generator(start, stop, step = 1):

 current = start

 while current <= stop:

 yield current

 current += step

The first execution of a generator returns an iterator that then can be iterate using
the next function. Each call to next executes the generator function until the
next yield statement. A yield statement pauses the execution of the function and
returns a value. The execution can be resumed later using the next function.

iter_obj = range_generator(3, 20 ,3)

while True:

 try:

 i = next(iter_obj)

 print(i)

 except StopIteration:

 break

Generators can be used wherever an iterator is required, including for-loops.

for i in range_generator(3, 20, 3):

 print(i)

📝 10.1.6

Which statement is required to define a generator?

• yield
• iter
• next

Iterators and Generators | FITPED

110

10.2 Iterators (exercises)

⌨ 10.2.1 Evens iterator

Write an iterator named Evens which returns, one at a time and in ascending order,
all the even numbers greater or equal than 2 and less or equal than a number
passed as a parameter to the initializer.

Example of use:

for i in evens(10):

 print(i)

Output:

2

4

6

8

10

for i in evens(15):

 print(i)

Output:

2

4

6

8

10

12

14

evens.py
class Evens:

 """iterator: returns even numbers from 2 upto a given

limit"""

 def __init__(self, stop):

 """Initialize iteration stop limit"""

 # write your code

 def __iter__(self):

 """Prepare iteration"""

 # write your code

Iterators and Generators | FITPED

111

 def __next__(self):

 """Advance until reach the stop limit"""

 # write your code

if __name__ == "__main__":

 for i in Evens(10):

 print(i)

⌨ 10.2.2 Powers of two iterator

Write an iterator named PowersOfTwo which returns, one at a time and in ascending
order, the first n powers of two.

Example of use:

for i in PowersOfTwo(5):

 print(i)

Output:

0

2

4

16

32

for i in PowersOfTwo(7):

 print(i)

Output:

1

2

4

16

32

64

128

⌨ 10.2.3 Divisors iterator

Complete the Divisors class to turn it into an iterator that returns, one by one and in
ascending order, all the divisors of a positive integer.

Example of use:

Iterators and Generators | FITPED

112

for i in Divisors(5):

 print(i)

Output:

1

5

for i in Divisors(12):

 print(i)

Output:

1

2

3

4

6

12

divisors.py
class Divisors:

 """iterator: Returns, one at a time, the Divisors os a

positive integer"""

 def __init__(self, number):

 """Set number to get its Divisors

 raise ValueError if number is not a positve integer

 """

 if type(number) == int and number > 0:

 self.__number = number

 else:

 raise ValueError("Initalization parameter must be

a positive integer")

 # Put your code here

if __name__ == "__main__":

 for i in Divisors(10):

 print(i)

⌨ 10.2.4 Fibonacci iterator

The Fibonacci sequence is a sequence of numbers such that each number is the
sum of the two preceding ones, starting from 0 and 1. That is:

Iterators and Generators | FITPED

113

F(0) = 0

F(1) = 1

F(n) = F(n-1) + F(n-2)

Complete the Fibonacci class to be an iterator that returns, one by one and in
ascending order, the first n numbers of the Fibonacci sequence, being n a positive
number.

Example of use:

for i in Fibonacci(5):

 print(i)

Output:

0

1

1

2

3

for i in Fibonacci(10):

 print(i)

Output:

0

1

1

2

3

5

8

13

21

34

fibonacci.py
class Fibonacci:

 """iterator: Returns, one at a time, the first n Fibonacci

numbers"""

 def __init__(self, n):

 """Set the stop condition

 """

 if type(n) == int and n > 0:

 self.__n = n

Iterators and Generators | FITPED

114

 else:

 raise ValueError("Initalization parameter must be

a positive integer")

 # Put your code here

if __name__ == "__main__":

 for i in Fibonacci(10):

 print(i)

10.3 Generators (exercises)

⌨ 10.3.1 Divisors generator

Write a generator named Divisors that returns, one by one and in ascending order,
all the divisors of a positive integer.

Example of use:

for i in Divisors(5):

 print(i)

Output:

1

5

for i in Divisors(12):

 print(i)

Output:

1

2

3

4

6

12

⌨ 10.3.2 Fibonacci generator

The Fibonacci sequence is a sequence of numbers such that each number is the
sum of the two preceding ones, starting from 0 and 1. That is:

F(0) = 0

F(1) = 1

Iterators and Generators | FITPED

115

F(n) = F(n-1) + F(n-2)

Define a Fibonacci generator that returns, one by one and in ascending order, the
first n numbers of the Fibonacci sequence, being n a positive number.

Example of use:

for i in Fibonacci(5):

 print(i)

Output:

0

1

1

2

3

for i in Fibonacci(10):

 print(i)

Output:

0

1

1

2

3

5

8

13

21

34

Custom Exceptions,
Assertions

Chapter 11

Custom Exceptions, Assertions | FITPED

117

11.1 Custom exceptions, assertions

🕮 11.1.1

How to define new exceptions

When an abnormal situation occurs during the execution of a program (for example,
an attempt to divide by zero or access a file that does not exist) an exception is
raised. In this context, an exception is a special object that carries information
about the error.

Python has many classes of built-in exceptions, however, there are situations in
which it is necessary to define a new exception class to precisely indicate a type of
error that may arise when executing a program in the context of a specific problem.
An exception class must derive, directly or indirectly, from the built-in
class Exception:

class MyOwnExceptionError(Exception):

 pass

Usually, the classes that represent exceptions are given names that end with the
word "Error", by similarity with the names of the built-in exceptions. Once defined, a
custom exception can be thrown as it is done with a built-in exception:

if condition:

 raise MyOwnExceptionError()

An explanatory error message can be included:

if condition:

 raise MyOwnExceptionError("Error message")

📝 11.1.2

Which is true?

• Custom exception classes must be derived from the built-in Exception class
• Custom exception classes must be given a name ending with the word

"Error"
• Custom exception classes must include an explanatory message when

created

Custom Exceptions, Assertions | FITPED

118

🕮 11.1.3

Customizing custom exceptions

An exception class is like any other class and can include data attributes and
methods, usually for the purpose of providing additional information about the
exception.

class MyOwnExceptionError(Exception):

 def __init__(self, obj, message):

 super().__init__(message)

 self.obj = obj

Although this may be useful at times, the best action is to keep the definition of the
exception as simple as possible.

📝 11.1.4

Exception classes can be defined which do anything any other class can do

• True
• False

🕮 11.1.5

Hierarchies of exceptions

When creating a module that can raise several distinct errors, a common practice is
to create a base class for exceptions defined by that module, and subclass that to
create specific exception classes for different error conditions, so creating a
hierarchy:

class DateError(Exception):

 """Base class for erroneus dates"""

 pass

class MonthError(DateError):

 """Raised when you try to create a date with a month value

 that is not between 1 and 12

 """

 pass

Custom Exceptions, Assertions | FITPED

119

class DayError(DateError):

 """Raised when you try to create a date with a day value

which does not match

 with the month value

 """

In the above example, we have created a custom exception called DateError which
is derived from the Exception class and serves as the base class for our own
hierarchy, composed of the MonthError and DayError exceptions. This hierarchy is
supposed to be used in a module offering a class to represent dates (mm/dd/yyyy).

📝 11.1.6

When creating a module that can raise several distinct errors...

• a common practice is to create a hierarchy for exceptions defined by that
module

• a common practice is to create a single class for exceptions defined by that
module

• a common practice is to create a hierarchy for classes defined by that
module

🕮 11.1.7

Assertions

Assertions are statements that establish a condition that must be true in a point of
a program to continue execution. for example, if we are going to divide two
numbers it must be true that the divisor is not equal to zero.

When the program execution reaches an assertion, the condition is evaluated. If it is
true, the execution continues, else the program stops.

Python has a built-in assert statement to write assertions in a program:

def average(items):

 assert len(items) != 0, "Cannot calculate the average of

an empty list"

 return sum(items) / len(items)

The above example shows a function that calculates the average of the elements of
a list, for which the list must have at least one element.

Custom Exceptions, Assertions | FITPED

120

The assert statement that is just before the calculation of the average ensures that
this condition is met, or the program is stopped by raising
an AssertionError exception.

The assert declaration message is optional. The assert statement is executed only
if the built-in variable __debug__ is true, which is the case unless the Python
interpreter has been launched with the optimization option -o.

The previous example is equivalent to:

def average(items):

 if __debug__:

 if len(items) == 0:

 raise AssertionError("Cannot calculate the average

of an empty list")

 return sum(items) / len(items)

📝 11.1.8

Which is true?

• An assert statement raises an exception when its condition is false
• An assert statement stops the execution of a program when its condition is

true
• An assert statement stops the execution of a program when an exception is

raised

11.2 Custom exceptions, assertions (exercises)

⌨ 11.2.1 Time exceptions

Define, in the file time_exceptions.py, the following hierarchy of exceptions:

Custom Exceptions, Assertions | FITPED

121

mytime.py
import time_exceptions

class Time:

 """Represents a time"""

 def __init__(self, h, m):

 """Time objects are initialized with hours and

minutes"""

 self.hour = h

 self.minute = m

 @property

 def hour(self):

 return self.hour

 @hour.setter

 def hour(self, value):

 if (type(value) == int and value >= 0 and value <|=

23):

 self.__hour = value

 elif type(value) != int:

 raise time_exceptions.HourException

 elif value <| 0:

 raise time_exceptions.HourValueLessThanZero

 elif value > 59:

 raise time_exceptions.HourValueGreaterThan24

 else:

 raise time_exceptions.HourValueException

 @property

 def minute(self):

 return self.minute

 @hour.setter

 def minute(self, value):

 if (type(value) == int and value >= 0 and value <|=

59):

 self.__minute = value

 self.__hour = value

 elif type(value) != int:

 raise time_exceptions.MinuteException

 elif value <| 0:

 raise time_exceptions.MinuteValueLessThanZero

Custom Exceptions, Assertions | FITPED

122

 elif value > 59:

 raise time_exceptions.MinuteValueGreaterThan59

 else:

 raise time_exceptions.MinuteValueException

if __name__ == "__main__":

 # Example of use

 try:

 t = Time(102, 5)

 except time_exceptions.TimeValueException as e:

 print(type(e).__name__, " raised")

⌨ 11.2.2 Time assertions

The mytime module contains the Time class, a class to represent hours and
minutes. The initialization of an object of the Time class requires two parameters:
one for the hours and another for the minutes, in this order. The hours are assumed
to be an integer value between 0 and 23 and the minutes an integer value between
0 and 59.

Modify the setters of the hour and minute properties to assure, using assertions,
that hour is an integer value between 0 and 23 and minute is an integer value
between 0 and 59. In case any of these conditions fails, an AssertionError must be
raised.

mytime.py
class Time:

 """A time with hours and minutes"""

 def __init__(self, h, m):

 self.hour = h

 self.minute = m

 @property

 def hour(self):

 return self.__hour

 @hour.setter

 def hour(self, h):

 self.__hour = h

 @property

 def minute(self):

 return self.__minute

Custom Exceptions, Assertions | FITPED

123

 @minute.setter

 def minute(self, m):

 self.__minute = m

 def __str__(self):

 return str(self.hour).zfill(2) + ":" +

str(self.minute).zfill(2)

if __name__ == "__main__":

 h = Time(24, 12)

⌨ 11.2.3 Fibonacci generator assertions

The Fibonacci sequence is a sequence of numbers such that each number is the
sum of the two preceding ones, starting from 0 and 1. That is:

F(0) = 0

F(1) = 1

F(n) = F(n-1) + F(n-2)

The fibonacci generator returns, one by one and in ascending order, the first n
numbers of the Fibonacci sequence, being n a positive number.

Add assertions to the fibonacci generator to ensure that the input parameter n is of
type int and has a value equal or greater than 0.

fibonacci.py
def fibonacci(n):

 """Returns, one at a time, the first n Fibonacci

numbers"""

 fibo_1 = 0

 yield fibo_1

 if n > 1:

 fibo_2 = 1

 yield fibo_2

 current = 2

 while current <| n:

 current += 1

 current_fibo = fibo_1 + fibo_2

Custom Exceptions, Assertions | FITPED

124

 fibo_1 = fibo_2

 fibo_2 = current_fibo

 yield current_fibo

if __name__ == "__main__":

 # Example of use (Not part of the solution)

 for i in fibonacci(10):

 print(i)

