

C++ Specific

Published on

November 2021

Authors

Jiří Rybička | Mendel University in Brno, Czech Republic

Viera Michaličková | Constantine the Philosopher University in Nitra, Slovakia

Juan Carlos Rodríguez-del-Pino | University of Las Palmas de Gran Canaria, Spain

José Daniel González-Domínguez | University of Las Palmas de Gran Canaria, Spain

Zenón José Hernández-Figueroa | University of Las Palmas de Gran Canaria, Spain

Małgorzata Przybyła-Kasperek | University of Silesia in Katowice, Poland

Reviewers

Anna Stolińska | Pedagogical University of Cracow, Poland

Peter Švec | Teacher.sk, Slovakia

Eugenia Smyrnova-Trybulska | University of Silesia in Katowice, Poland

Piet Kommers | Helix5, Netherland

Graphics

Ľubomír Benko | Constantine the Philosopher University in Nitra, Slovakia

David Sabol | Constantine the Philosopher University in Nitra, Slovakia

Erasmus+ FITPED

Work-Based Learning in Future IT Professionals Education

Project 2018-1-SK01-KA203-046382

The European Commission support for the production of this publication does not
constitute an endorsement of the contents which reflects the views only of the authors,
and the Commission cannot be held responsible for any use which may be made of
the information contained therein.

Licence (licence type: Attribution-Non-commercial-No Derivative Works) and may be
used by third parties as long as licensing conditions are observed. Any materials
published under the terms of a CC Licence are clearly identified as such.

All trademarks and brand names mentioned in this publication and all trademarks and
brand names mentioned that may be the intellectual property of third parties are
unconditionally subject to the provisions contained within the relevant law governing
trademarks and other related signs. The mere mention of a trademark or brand name
does not imply that such a trademark or brand name is not protected by the rights of
third parties.

© 2021 Constantine the Philosopher University in Nitra

ISBN 978-80-558-1781-1

Table of Contents

1 Introduction to C++ .. 4

1.1 OOP introduction .. 5

1.2 C++ non OOP features (1/2) .. 9

1.3 C++ non OOP features (2/2) .. 17

2 Classes and Objects .. 23

2.1 Classes, objects and member functions (1/2) ... 24

2.2 Classes, objects and member functions (2/2) ... 30

2.3 Constructors and destructors.. 39

2.4 Source files organization ... 51

3 Operators .. 59

3.1 Operator overloading .. 60

3.2 Assignment operator and copy constructor... 67

4 Inheritance and Polymorphism... 77

4.1 Inheritance ... 78

4.2 Polymorphism ... 89

5 Templates... 100

5.1 Templates.. 101

6 Exceptions .. 110

6.1 Exceptions ... 111

Introduction to C++

Chapter 1

Introduction to C++ | FITPED

5

1.1 OOP introduction

🕮 1.1.1

Object-oriented programming tries to make the transition from the problem domain
to the programming language as simple as possible, also preventing the existing
relationship between the elements of the real world and its representation on the
computer from being lost.

Object-Oriented Programming (OOP) is based on objects, basic elements that are
used to represent the real world and computer artefacts used in solving the
problem. The type of object is called class. Each object belongs to a class that
determines its structure and behavior. The classes are organized
through inheritance. Inheritance allows you to establish a hierarchy of classes.
The polymorphism enables the use of inheritance to handle objects of different
kinds using the same interface. Sometimes, the classes are organized into
modules.

📝 1.1.2

Object-oriented programming tries to make the transition from the problem domain
to the programming language as simple as possible.

• True
• False

📝 1.1.3

Please, select the correct description:

The _____ are the fundamental elements that are used to represent the real world
and computer artefacts used in solving the problem.

The _____ are types of objects.

The _____ allows establishing a hierarchy of classes.

The _____ enables the use of inheritance to handle objects of different kinds using
the same interface.

• objects
• classes
• polymorphism

Introduction to C++ | FITPED

6

• inheritance

🕮 1.1.4

The objects

Objects are the axis on which Object-Oriented Programming (OOP) is centred. They
are characterized by saving their state and performing operations or functions. Its
state may change due to the action of any of your operations.

📝 1.1.5

When can an object change of state?

• Depends on the change of an external object
• Based on an internal trigger
• Due to the action of any of its operations or functions

🕮 1.1.6

The description of the characteristics and behavior of a type of object is called a
class. The relationship of an object to its class is the same as a variable to its type.
Notice that the concept of class is eminently static while the object is dynamic.

The state of an object is determined by its attributes that are nothing but objects
(variables) of other classes belonging to it.

The operations or functions that are defined in a class are those that objects can
perform. These operations are equivalent to functions or procedures with their
name, their parameters, and, if applicable, their value returned, but with the addition
that they act on a specific object.

📝 1.1.7

The relationship of an object to its class is the same as ...

• a variable to its type
• a variable to its value
• a value to its type
• a type to its value

Introduction to C++ | FITPED

7

🕮 1.1.8

Inheritance is the ability to define new classes from existing ones so that they
present the same characteristics as those, plus new ones. Therefore, inheritance
allows you to create classes that are specializations of others. Notice that
inheritance is not intended to reuse existing classes to save us some lines of code.
Inheritance has a sense of hierarchy of classes at the level of abstraction and
specialization.

📝 1.1.9

Inheritance _____ to create classes that are specializations of others. Notice that
inheritance _____ to reuse existing classes by taking advantage of what a class
provides, _____ some lines of code. Inheritance has a sense of hierarchy of classes
at the level of abstraction and specialization.

• saving us
• allows you
• ignoring
• is not intended

🕮 1.1.10

Polymorphism allows us to use the same interface to handling objects of different
kinds. This mechanism improves the abstraction in the use of objects, allowing a
homogeneous use of different types of objects.

📝 1.1.11

Polymorphism allows you to create classes that are specializations of others

• False
• True

📝 1.1.12

Polymorphism improves the abstraction in the use of objects

Introduction to C++ | FITPED

8

• True
• False

🕮 1.1.13

C++ is a general-purpose language with a certain tendency to system programming
(construction of operating systems, controllers, etc.) that:

• It is compatible with C, improving it in many aspects.
• It supports object-oriented programming.
• It supports genericity or template programming.
• It handles exceptions.
• It has no garbage collector.
• It provides a standard class library, with containers, character strings, I/O,

etc.

📝 1.1.14

C++ features:

It is _____ with C, improving it in many aspects.

It supports _____ programming.

It supports _____ functions and classes.

It handles _____.

It has no _____.

It provides a _____, with containers, character strings, I/O, etc.

• object-oriented
• compatible
• standard class library
• garbage collector
• exceptions
• generic

Introduction to C++ | FITPED

9

1.2 C++ non OOP features (1/2)

🕮 1.2.1

As is clear from its name, C++ is a language that derives from C, one of the most
influential in the computer world. The creator of C++, Bjarne Stroustrup, was clear
from the beginning that to achieve rapid acceptance of the new language, it must
be compatible with its predecessor so that C language programmers could
gradually introduce the new concepts.

C++ not only introduces changes in C to support object-oriented programming. The
creators of C++ take the opportunity to correct defects and improve the undesirable
characteristics of its predecessor.

📝 1.2.2

C++ derives from the C programming language.

• True
• False

📝 1.2.3

Who was the initial creator of C++?

• Dennis Ritchie
• Steve Jobs
• Bjarne Stroustrup
• Richard Stallman

📝 1.2.4

The design of C++ tries to be compatible with C.

• True
• False

Introduction to C++ | FITPED

10

📝 1.2.5

The C++ programming language can be used to develop non-Object-Oriented
Programming code.

• True
• False

🕮 1.2.6

In the C programming language the declaration of a local variable can hide a global
variable with the same name. In the next piece of the program, the global variable
"global_var" is not accessible from the fn() function. C++ allows the use of an "::"
scope operator to explicitly refer to the scope of a variable. In this case, "global_var"
refers to the local variable and "::global_var" refers to the global variable.

Example:

int global_var;

void fn() {

 int global_var;

 global_var = 1; // Refers to the local variable

 ::global_var = 2 // Refers to the global variable

}

📝 1.2.7

Write the correct code to resolve the function "plus"

int value;

int plus(int value) { //return global "value" plus parameter

"value"

 return _____ + value;

}

🕮 1.2.8

The bool type represents the logical type, and the corresponding false and true
literals are added.

Example:

Introduction to C++ | FITPED

11

bool flag = true;

int v [TV];

...

for (int i = 0; i < TV && flag; i ++) {

 if (v[i] == element) flag = false;

 else flag = true;

 // You could have written "flag = !(V [i] == element);"

}

Although this type of data has been added, it is still possible to use the integers as
logical types.

📝 1.2.9

Select the correct keyword for the new boolean type:

• bool
• Bool
• boolean
• Boolean
• logical
• Logical
• BOOLEAN

⌨ 1.2.10 Using bool type

Define a function named "oneTrue" that accepts as the first parameter an array of
bool and second its size. The function returns true if only one boolean in the array is
true and false if not.

🕮 1.2.11

References allow defining alternative names to a variable, object, array element,
and etc. The reference became an alias of another variable that needs to be
initialized to the element they reference. References once initialized cannot be
separated from the variable they refer to and are indistinguishable from it. They
make programming work much more comfortable without the inconvenience of
pointer notation. Passing a variable to a function by reference generates a type of
input and output parameters, which is much clearer than passing it by address.

Introduction to C++ | FITPED

12

The declaration or definition of a reference is made preceding its name of the
character "&". Notice the difference of references with the operator "&" to return the
address of a variable or other "&" uses in C. It should be noted that references must
be initialized. Here are some examples:

int i;

int * pi = & i; // Declare a pointer to i

int & ri = i; // Declare a reference to i

...

// The following three instructions have the same effect

i = 10;

* pi = 10;

ri = 10;

...

// The reference ri cannot be distinguished from i, so the

next instruction is equivalent to "pi = & i"

pi = & ri;

The variable ri is a reference to i, this means that any use of ri has the same effect
as using i. Since ri is an alias of i, ri has exactly the same type as i.

Reference variables are used essentially as past arguments or values returned from
a function.

📝 1.2.12

Pair the uses of & in C++ with its description:

type & name = expr; // expr. must be a lvalue _____

expr1 & expr2 _____

expr1 && expr2 _____

& expr // expr. must be an lvalue _____

• the address-of operator
• bitwise "and" operator
• reference definition
• logical "and" operator

Introduction to C++ | FITPED

13

📝 1.2.13

If we have an array of ints of size 10, select the code to define a reference named
"mid" to the element at index 5.

int vec[10];

• int & mid = v[5];
• int mid = & v[5];
• int mid = v[5];
• int *mid = & v[5];
• int & mid = * v[5];

⌨ 1.2.14 Parameters by reference

Define a void function named "sort2" that accepts two references to float. The
function reorders the two values, leaving the lowest value in the first parameter and
the highest in the second.

🕮 1.2.15

Review content (optional)

The C/C++ language supports passing parameters by value. It is simple: when a
function call is done, parameters defined in the function receives a copy of the
passed values. As the formal parameters act as local variables within the function,
the modifications made to them do not affect the external variables.

int f (int param); // Prototype statement

void g () {

 int arg;

 arg = -3;

 f (arg); //Call

 f (5); //Call

}

int f (int param) { // Definition

 printf ("% d \ n", param);

 param= 10; // Assign the value 10 to param, does not affect

arg

}

Introduction to C++ | FITPED

14

When the variable arg is passed to f, the function receives a copy of the value of arg
that is stored in the param parameter. Any change of param within the body of the
function f does not affect the value of arg at all. The function cannot, therefore,
directly alter the parameter passed by value. Thus, during the execution of function
f, there is the variable arg and the variable param. When the function f ends, the
param variable ceases to exist, and the memory it occupies is released.

🕮 1.2.16

Review content (optional)

When an address is passed to a function, it is called a parameter passed by
address, although in reality, it is only a parameter by value with the value passed
being an address. Through this address, you can access and modify the value of
external variables.

int f (int * param); // Prototype statement

void g () {

 int arg, * pi = & arg;

 arg = -3;

 f (& arg); // Call passing the arg address

 f (pi); // Call passing the value of pi

}

int f (int * param) {// Definition

 printf ("% d \ n", * param);

 // ...

 * param = 10;

 // Assign the value 10 to the address indicated by the

param

 // therefore, 10 is assigned to arg

}

The address of arg (& arg) is passed by value and the function receives a copy of it
in param. The function accesses arg through the address it receives and thus can
access or modify the value of arg.

Notice that a parameter defined as an array is an address, the address of the first
element of the array.

Important! any change in the array parameter affects the passed array. e.g.

int summation(int[] v, int n) { // v is the address of the

first element of the array

 int s = 0;

Introduction to C++ | FITPED

15

 for (int i = 0; i < n ; i++) {

 s = v[i];

 }

 return s;

}

int sumation2(int[] v, int n) { // v is the address of the

first element of the array

 for (int i = 0; i < n - 1 ; i++) {

 v[i + 1] += v[i]; // Change the external array

 }

 return v[n-1];

}

int f() {

 int a[10];

 // ...

 int r = summation(a, 10); // a do not change

 modification(a, 10); // a changes

 // ...

}

🕮 1.2.17

The passing of a variable by reference does that; once the call is made, the formal
parameter becomes an alias of the passed variable, It is, any action taken on the
parameter is being performed on the variable. The main advantages of the pass by
reference with respect to the pass by address are security and simplicity since it is
not necessary to pass or use explicit addresses.

int f (int & parm); // Prototype statement

void g () {

 int arg;

 ...

 f (arg); // Call passing the variable arg

}

int f (int & parm) { // Definition

 printf ("% d \ n", parm);

 // ...

 parm = 10;

 // Assign the value 10 to parm, but parm is the alias of

arg;

 // therefore, modifying parm modifies arg

}

Introduction to C++ | FITPED

16

📝 1.2.18

Select the type of parameter pass for the functions shown

int plus(int a, int b); _____

int swap(int *a, int *b); _____

int swap(int &a, int &b); _____

• Parameters by address
• Parameters by reference
• Parameters by value

📝 1.2.19

We want to develop a swap function that passing two integers, swaps its values.

void swap ([Select]){

 int temp = a;

 a = b;

 b = temp;

}

int main() {

 int v1 = 3;

 int v2 = 4;

 swap (v1, v2);

 if (v1 == 4 && v2 == 3) {

 return 0;

 } else {

 return 1; // Error

 }

}

Select one:

• int & a, int & b
• int a, int b
• int * a, int * b
• int a[], int b[]

Introduction to C++ | FITPED

17

1.3 C++ non OOP features (2/2)

🕮 1.3.1

The type returned by functions may be declared as a reference. This has the
advantage, as in the passing of parameters, that avoid the copy of an object. But it
has the disadvantage that the object itself is being returned. Of course, it is wrong
to return references to local variables of the function, if done, the receiver will get a
variable already deleted.

Example of correct use:

int & min (int & a, int & b) {

 return (a <b)? a: b; // The reference of the minor variable

is returned

}

void f () {

 int i = 3, j = 8;

 min (i, j) = 4; // The value 4 is assigned to the minor

variable

}

📝 1.3.2

Select the functions that return valid references.

Select one or more:

• int & f(int &a) { return a; }
• int & f(int a) { return a; }
• int & f(int &a) { int b = a + 1; return b; }
• int & f(int v[], int size) { return v[size/2]; }

⌨ 1.3.3 Return references

Define a function named "maxArrayElement" that passing an array of integer and its
size, returns a reference to the element of maximum value.

Introduction to C++ | FITPED

18

🕮 1.3.4

In the C++ language, it is possible to have two or more functions with the same
name. This feature allows using a more appropriate name for functions with the
same purpose. When we have several functions with the same name, and there is a
call to one of them, the compiler chooses which function to call during compilation.

The compiler distinguishes between one and another function using the number of
parameters and the type of each one. It is not possible to define two functions with
the same name, with the same amount of parameters and the same types in the
same order. The type of the returned value by the function is not used to
differentiate them.

Example:

#include <stdio.h>

void print (int i, int nd) {

// The * in the format indicates that it is taken as the

displayed size of i nd

 printf ("%*d", nd, i);

}

void print (float f) {

 printf ("%f", f);

}

void print (const char * s) {

 printf ("%s", s);

}

void print () {

 printf ("\n");

}

int main () {

 print ("This is a character string test");

 print();

 print ("A real");

 print (10.0);

 print();

 print ("A two-digit integer");

 print (2.38);

 print();

 return 0;

}

📝 1.3.5

Select the correct functions overloading.

Introduction to C++ | FITPED

19

Select one or more:

• int f(int a); int f(char *a);
• int g(int a); void g(int*a);
• int h(int a); int h(int &a);
• int k(int a); void k(int b);

⌨ 1.3.6 Function overloading

Define two void functions named "sort". The first function accepts two references
to float, and the second function accepts two references to int. These functions
reorder the two values, leaving the lowest value in the first parameter and the
highest in the second.

🕮 1.3.7

C++ allows that parameters passed to a function have a default value. That is, if a
parameter is not specified, it takes a preset value. Default arguments can only be
provided for the last parameters of the function. Example:

float distance (Coordinates a, Coordinates b = {0,0}) {

 Dif coordinates;

 dif.x = a.x-b.x;

 dif.y = a.y-b.y;

 return module (dif);

}

void g () {

 Coordinates r, t;

 ...

 Print (distance (r, t));

 Print (distance (r));

 ...

}

void f (int q, float r, int u = 4, int v = 5, int w = 6);

void h () {

 f (1,2.0,3); // f (1,2.0,3,5,6)

 f (1,2); // f (1,2,4,5,6)

}

void f2 (float r = 0, int u, int v, int w = 6); //Error

The use of default parameters in conjunction with the function overload may
generate ambiguity for the compiler. Example:

Introduction to C++ | FITPED

20

void fn (int a);

void fn (int a, int b = 0);

void function () {

 fn (1,2); // Clearly refers to the second

 fn (1); // Which of the two do you mean?

}

You can define a function that accepts a variable number of parameters, of any
type parameter. This is achieved using the ellipsis (fn (...)). A typical case is the
function printf that accepts any number and type of parameters.

Functions that contain ellipsis may cause ambiguity with the function overload.
Consider the following code:

void fn (int a, ...); // Function # 1

void fn (char * pa, ...); // Function # 2

void fn (int a, int b); // Function # 3

void function () {

 fn (1); // Refers to function # 1

 fn ("my name"); // Refers to function # 2

 fn (1, "my name"); // Refers to function # 1

 fn (1,2); // Does it refer to function # 1 or # 3?

}

📝 1.3.8

Select the correct affirmations about default parameters.

Select one or more:

• are not valid with const parameters.
• are not valid if some parameter at its right has no default value.
• one parameter can have two or more default values.
• may conflict with function overloading.

🕮 1.3.9

There are three different zones of memory where you can create objects or
variables :

Global memory: The variables defined outside functions and classes, and variables
and attributes with the modifier static are located in this zone. The life of the
objects or variables in this zone is identical to that of the program.

Introduction to C++ | FITPED

21

Stack memory: This memory zone stores the parameters and local objects of
functions. These objects and variables exist while the function is in execution.

Dynamic memory (the heap): This memory zone store objects of any type. The
creation and destruction of the objects are under the control of the programmer.

In C, getting and releasing dynamic memory is done manually using library
functions such as malloc and free. C++ adds two operators, new and delete, for
performing these tasks smartly.

📝 1.3.10

Considering this code, select the correct answers.

int base = 5;

int f(int parm) {

 static int ncalls = 0;

 ncalls++;

 int size = parm + base + ncalls;

 int *v = (int *) malloc(size * sizeof int);

 v[0] = 1;

 for (int i=1; i < size; i++) { v[i] = i + v[i-1]; }

 int result = v[size -1];

 free (v);

 return result;

}

Variables in global memory: _____

Variables in the stack: _____

Variables in dynamic memory (the heap): _____

• *v
• *v and i
• base
• parm, ncalls, size, i and result
• parm, size, i, v and result
• parm, size and result
• v
• *v, base and ncalls
• base and ncalls
• v[]

Introduction to C++ | FITPED

22

🕮 1.3.11

The new operator accepts as a parameter the type of the object to be created, and
it returns a pointer to a variable of this type created in dynamic memory; if new
does not find enough free memory to create the object, it returns the NULL pointer.

The delete operator accepts a pointer as the parameter and frees the memory that
it points to. The pointer must have been taken with the operator new.

Example:

int * p;

const int n = 30;

p = new int; // Creation of an integer

delete p; // Destruction of the integer

p = new int [10]; // Creating a vector of 10 integers

delete [] p; // Destruction of the previous vector

p = new int [n]; // Creating a vector of n integers

delete [] p;

📝 1.3.12

Select the correct use of malloc, free, new and delete.

Select one or more:

• int *p = new int; delete p;
• int size = 5; int *p = new int[size]; delete []p;
• int size = 5; int *p = new int[size]; free(p);
• int *p = new int[]; delete p;
• int *p = (int *) malloc(sizeof int); delete p;

⌨ 1.3.13 Using new and delete

Define a void function named "usingNewDelete" that accepts the size of an array of
ints. The function must create an array of ints using new and fill it with the value of
its size, and then the function must destroy the array using delete.

Classes and Objects

Chapter 2

Classes and Objects | FITPED

24

2.1 Classes, objects and member functions (1/2)

🕮 2.1.1

From an external point of view, the characteristics of an object are the functions
that accept and the state it keeps. On the other hand, internally, an object has
attributes, which determine its state, and member functions that act on it. The
attributes of an object are variables inside the object.

There is a correspondence between the external and the internal vision of the
object. An external state of the object is a specific set of values of its attributes. On
the other hand, the execution of a member function of the object can change the
values of its attributes, taking the object to a new state. The member functions of
an object have several alias names: member functions, services, methods, or
messages.

📝 2.1.2

Select the correct affirmation.

• From an external point of view, the characteristics of an object are only the
state it keeps

• From an internal point of view, the characteristics of an object are only the
functions that accept.

• The external vision of the object is independent of the internal one.
• The execution of a member function of the object can change the values of

its attributes, taking the object to a new state

🕮 2.1.3

When an object-based program is running, its objects are entities that behave
according to a predetermined pattern. The classes are the definition of the
characteristics of the objects. The objects are the elements that exist during the
execution of the program. The relationship of an object to its class is similar to the
variable to its type. Notice that the concept of class is mainly static while the object
is dynamic.

📝 2.1.4

The relationship of an object to its class is similar to the variable to its type.

Classes and Objects | FITPED

25

• True
• False

🕮 2.1.5

We can define the Fraction class, and within it, we can declare two integer
attributes, one that represents the numerator and another the denominator. Also, as
member functions, we can define the addition, the multiplication and the division of
two fractions, the conversion from a fraction to a float number, etc. A fraction
instance will be an object of the Fraccion class. The object will be located in
memory and will have two integers as its attributes, the numerator, and the
denominator. For this object, we can call the functions defined in the class, for
example, the inverse fraction, or the conversion to a float number.

📝 2.1.6

Taken into account the class Fraction. Select the correct solution to create some
fractions.

• Create a new class for each needed fraction.
• Alter the class Fraction to keep inside more numerators and denominators.
• Create objects of the class Fraction.
• Add new member functions to the class Fraction.

🕮 2.1.7

The member functions are the actions that objects can perform. Each member
function has a name that must be a valid identifier according to the syntax of the
language used. A member function can take parameters as a standard function;
also, the member function can return a result.

The member function can be public or private. Private member functions are those
that can only be invoked from another member function of the same class, and
cannot be invoked from functions external to the class.

On the other hand, the functions commonly act on an object, but it also is possible
to define member functions that do not need an object. These functions are static
member functions. The static member functions are responsible for carrying out
independent actions that do not act on a current object.

Classes and Objects | FITPED

26

📝 2.1.8

Select the correct affirmation.

• The member functions are enumerated to distinguish one of other.
• A member function does not accept parameters.
• The public member functions do not act on the current object.
• The static member functions do not act on the current object.

🕮 2.1.9

Classes in C++ are declared and defined using the keyword class, struct or union,
then the class name, and followed, enclosed in curly brackets, the definition or
declaration of member functions, and the attributes. The format is as follows:

[class | struct | union] Class_Name {

 Attribute1;

 Attribute2;

 ...

 Member function 1;

 Member function 2;

 ...

};

The notation of the classes is an adaptation of the syntaxis of the struct definition
of the C language. A difference with C is that when defining variables of a struct
type, the keyword struct is no longer necessary with the name of the type. Example:

struct DataType {

 int a;

 int b;

};

struct DataType data; // Correct in C, but incorrect in C++

DataType data; // Correct in C++, but incorrect in C

📝 2.1.10

You can define a class using the keyword(s) _____, then the name, and followed,
enclosed in _____, the definition or declaration of member functions, and the
attributes.

• class, struct or union
• only struct

Classes and Objects | FITPED

27

• angle brackets
• square brackets
• def
• Object
• curly brackets
• brackets
• only class
• parentheses

🕮 2.1.11

Each member function and attribute has an accessibility kind for the rest of the
classes and functions. There are three kinds:

public: Everyone can access and modify the attribute or call the function; It is the
default option for the struct and union keywords.

private: Only members of the same class can read and modify the attributes, and
execute the functions; It is the default option for the class keyword.

protected: Only members of the same class and derived classes (see inheritance)
can read and modify the attributes, and execute the functions.

A difference between struct and class is that the members of a struct are public by
default, while the members of a class are private by default. A common practice is
to use the "struct" keyword for C-like structures that do not implement member
functions or inheritance and to use "class" to hide data in other cases.

Member functions can directly access the attributes of the object for which they are
called. The same is true among member functions: they can call each other without
specifying which object they apply to, this being the object for which the first call
was made. In the example shown below, a MyClass class has a private integer
attribute, called data, and public functions "int getValue()" and "void setValue(int)".

class MyClass {

 int data;

public:

 int getValue() { return data; }

 void setValue(int n) { data = n; }

};

To establish one of the three types of accessibility, you must write the associated
keyword followed by a colon ":". The attributes and functions declared from that
point will have that type of access established.

Classes and Objects | FITPED

28

📝 2.1.12

_____ : Only members of the same class can read and modify the attributes, and
execute the functions. It is the default option for classes.

_____ : Only members of the same class and derived classes (see inheritance) can
read and modify the attributes, and execute the functions.

_____ : Everyone can access and modify the attribute or call the function. It is the
default option for struct and union.

• public
• protected
• private

🕮 2.1.13

All member functions of a class must be declared within it. The definition of a
member function can be done in two ways: inside the class, and it implies its
declaration; or outside the class, but still, the inside declaration is required.

class MyClass {

 int data;

public:

 int getValue() { return data; } // Declare and define

 void setValue(int n); // Only declare

};

void MyClass::setValue(int n) { // Only define

 data = n;

}

A defined member function within the class is assumed as an inline function. In the
previous example, the int getValue() function is inline. An inline function is a
function that the compiler will try to use as a macro. The call to an inline function
will generate the expansión of its code instead of calling the function. The
expansion is done in such a way that the semantics of the action remains.

When defining a member function outside the class, you must use its full name.
The full name of a member function consists of the class name followed by "::" and
the name of the function.

Classes and Objects | FITPED

29

📝 2.1.14

Complete the following sentences taken into account the code.

The member function "setData" is _____ the class. The member function "show" is
_____ the class. The member function "changeName" is _____ the class.

class Student {

private:

 int idNumber; // Student's id number

 char* name; //Student's name

public:

 void setData(char* nam, int idNum);

 void show();

 void changeName(char * nam) {

 delete name;

 name = new char [strlen (nam) +1];

 strcpy (name, nam);

 }

};

void Student::setData(char* nam, int idNum) {

 name = new char [strlen (nam) +1];

 strcpy (name, nam);

 idNumber = idNum;

}

• declared inside and defined outside
• only declared inside
• declared and defined inside

⌨ 2.1.15 Adding getPerimeter function to Rectangle class

Please, add a member function "getPerimeter" to the Rectangle class. The
"getPerimeter" function returns the perimeter of the rectangle. Please, do not
modify the class except by adding the member function requested.

class Rectangle {

public:

 float width;

 float height;

};

Classes and Objects | FITPED

30

⌨ 2.1.16 Encapsulating Rectangle

Please, add the public member functions "setWidth", "setHeight", "getWidth" and
"getHeight" to the Rectangle class and change to "protected" the attributes of the
class.

• setWidth and setHeight: are void functions that accept a float number and
change the corresponding attribute.

• getWidth and getHeight: are float functions that do not take parameters and
return the corresponding attribute.

2.2 Classes, objects and member functions (2/2)

🕮 2.2.1

The objects are defined as a common variable but using the class name as its type.
The access to the member functions or attributes of an object uses the same
syntax that accessing fields of a struct in C. Objects use dot notation "." to access
its attributes and member functions "object.member". Pointers to objects can use
arrows "->" notation as a simplification of dot notation with asterisk
"pointertoobject->member <=> (*pointertoobject).member".

Example:

int main () {

 MyClass object; // Object of the class MyClass

 MyClass *pointer; // Pointer to object of the class MyClass

 MyClass array[10]; // Array of objects of the class MyClass

 MyClass & referenceObject = array[5]; // Reference to

object of the class MyClass

 object.setValue(5);

 array[0].setValue(3);

 pointer = & array[1];

 pointer->setValue(object.getValue());

 referenceObject = * pointer;

 object.data = 3; // Compilation error. the data field is

not accessible

 return 0;

};

📝 2.2.2

Select the correct executable code after this definition of elements.

Classes and Objects | FITPED

31

class MyClass {

 int data;

public:

 int getValue() { return data; } // Declare and define

 void setValue(int n) { data = n; }; // Only declare

};

int main () {

 MyClass object; // Object of the class MyClass

 MyClass *pointer; // Pointer to object of the class MyClass

 MyClass array[10]; // Array of objects of the class MyClass

 MyClass & referenceObject = array[5]; // Reference to

object of the class MyClass

Select one:

• object->setValue(3);
• int v = pointer.getValue();
• pointer->data = 5;
• pointer = & referenceObject;

🕮 2.2.3

The compilation of one C++ source file can contain multiple declarations of a
function, but only one definition of each function or class. You can not define a
class twice in one file, but the class may be repeatedly defined in different source
files (no header file).

The linkage of all compiled C++ source files of a program can include only one
definition of each function or member function. That is, there must be only one
definition of each function (not inline) in the source code of the whole program.

📝 2.2.4

Select the correct answers.

Select one or more:

• The compilation of one C++ source file can not contain multiple declarations
of a function.

• The compilation of one C++ source file can contain multiple definitions of
each function or class.

• A class may be repeatedly defined in different source files.

Classes and Objects | FITPED

32

• The linkage of all compiled C++ source files of a program can include only
one definition of each function or member function.

• There must be only one definition of each function (not inline) in the source
code of the whole program.

⌨ 2.2.5 The header file of the Point class

We have developed a Point class, but we need to separate the declaration from the
definition in a header file ".h" and a body file ".cpp".

class Point {

 int x;

 int y;

public:

 int getX() {return this->x;}

 int getY() {return this->y;}

 void setXY(int x, int y) {

 x = x < 0 ? 0 : x;

 y = y < 0 ? 0 : y;

 this->x = x;

 this->y = y;

 }

};

Please, write the declaration of the Point class in the "point.h" file assuming that all
the member functions will be defined in "point.cpp".

point.h
/* class Point {

 int x;

 int y;

public:

 int getX() {return this->x;}

 int getY() {return this->y;}

 void setXY(int x, int y) {

 x = x <| 0 ? 0 : x;

 y = y <| 0 ? 0 : y;

 this->x = x;

 this->y = y;

 }

};

*/

Classes and Objects | FITPED

33

⌨ 2.2.6 The body file of the Point class

We have developed a Point class, but we need to separate the declaration from the
definition in a header file ".h" and a body file ".cpp".

class Point {

 int x;

 int y;

public:

 int getX() {return this->x;}

 int getY() {return this->y;}

 void setXY(int x, int y) {

 x = x < 0 ? 0 : x;

 y = y < 0 ? 0 : y;

 this->x = x;

 this->y = y;

 }

};

Please, write the definition of the Point class in the "point.cpp" file assuming that no
member functions are defined in the header file "point.h".

point.cpp
/* class Point {

 int x;

 int y;

public:

 int getX() {return this->x;}

 int getY() {return this->y;}

 void setXY(int x, int y) {

 x = x <| 0 ? 0 : x;

 y = y <| 0 ? 0 : y;

 this->x = x;

 this->y = y;

 }

};

*/

🕮 2.2.7

The static modifier can be applied to both attributes and member functions of a
class. In the case of an attribute, it means that you have a single attribute shared by
all objects of the class and exists while the program is running. When applied to a

Classes and Objects | FITPED

34

function, it determines that it can only access static attributes or static functions of
the class. To access static members you can use the usual way or without
specifying an object, but using its full name "classname::static_identifier". The
static member functions do not have the "this" pointer. As shown in the example,
the definition and initialization of static attributes are always done outside the
class.

Below is an example of how to keep a counter of the number of existing objects in a
class using a static attribute. The constructor increases the counter, and the
destructor decreases the counter.

class Node {

 static int counter; // Class member attribute

public:

 Node() { // Constructor

 ...

 conter ++;

 }

 ~ Node() { // Destructor

 ...

 counter --;

 }

 static int getNumberOfObjects() {return counter;};

 ...

}

// The next line must go in a .cpp file as part of the

definition of the class

int Node::counter = 0;

📝 2.2.8

Select the correct answers.

Select one or more:

• The static modifier applied to attributes indicates that the attribute can not
be modified after its initialization.

• When the static modifier is applied to a member function indicates that it
can no modify the attributes.

• To access static members you can use its full name
"classname::static_name".

• The static member functions do not have the "this" pointer.
• The definition and initialization of static attributes are always done outside

the class.

Classes and Objects | FITPED

35

⌨ 2.2.9 Limiting the values of the points

You may have noticed that the setXY member function limits the minimum values
of "x" or "y" to zero. We now want to limit the maximum "x" and "y" values of points
when modified by setXY. Please, add two static int attributes, e.g. maxX and maxY
and modify setXY to add this feature. The default value for these limits is 10000. To
set the maximum values, you must develop a static member function "setMaxXY".

Notice that the static attributes must be declared in the class and defined outside.

class Point {

 int x;

 int y;

public:

 int getX() {return this->x;}

 int getY() {return this->y;}

 void setXY(int x, int y) {

 x = x < 0 ? 0 : x;

 y = y < 0 ? 0 : y;

 this->x = x;

 this->y = y;

 }

};

exercise.cpp
class Point {

 int x;

 int y;

 // Declare here the static atributes

public:

 int getX() {return this->x;}

 int getY() {return this->y;}

 void setXY(int x, int y) {

 x = x <| 0 ? 0 : x;

 y = y <| 0 ? 0 : y;

 // Cut here to maxX and maxY the values of x and y

 this->x = x;

 this->y = y;

 }

 // Declare or define here the static function

};

// Define here the static atributes. Set the initial value to

10000

Classes and Objects | FITPED

36

🕮 2.2.10

In case it is necessary, although it is not very convenient, you can grant access to
other functions or classes to the non-public elements of your class. C++ provides
this possibility by using friend functions and friend classes.

A friend function of a class is one that, without being a member of it, is allowed to
access the non-public elements of the class. Any function, member, or not, of a
class, can be declared a friend of one or several classes. When a class does a
friend function/class declaration, it grants access to all its internal elements.

The following example illustrates the difference between member and friend
functions. The declaration of friend functions breaks the criteria of modularity and
protection of information. The only justification for declaring this type of function is
when it is necessary to access internal elements of two classes at the same time,
or for reasons of comfort in the operators' overload that will be seen later. If the
friend statement applies to a class, all member functions of the class become
friends. The way to declare a function or class friend is by making a declaration of
it, within the class that is given the access permission, preceded by the reserved
word friend.

Example:

class X {

 int a; // Private member

 // The friend statement can be anywhere in the class

 friend void friendFunction(X *, int);

public:

 void memberFunction(int);

};

void X::memberFunction(int i) {a = i;}

void friendFunction(X* o, int i) {

 o->a = i;

}

void f (){

 X obj;

 friendFunction(& obj, 10);

 obj.memberFunction(10);

}

📝 2.2.11

Select the correct answers.

Select one or more:

Classes and Objects | FITPED

37

• A friend function of a class is allowed to access the non-public elements of
that class.

• Any function or member function can be declared friend of one or several
classes.

• A class does a friend function/class declaration to grants access to all its
non-public elements.

• If the friend statement applies to a class, all member functions of the class
become friends.

• The way to declare a function or class friend is by making, within the class
that is given the access permission, a declaration of it preceded by the
reserved word friend.

🕮 2.2.12

The non-static member function has a pointer named "this" that points to the
current object. The "this" pointer can be used to access the object as a whole (*this)
or to disambiguate the collision of attribute names with variable names.

Example:

We have a class called Point, used to represent the coordinates of a point on the
screen. We have defined, as members of the class Point, two integer attributes, x,
and y and functions that allow initializing, displaying, hiding and moving the point.
In this way, the Point class not only serves to save data but also to use correctly
that data.

const int BLACK = 0;

const int WHITE = 0;

void putpixel(int x, int y, int color) {}

class Point {

 int x, y; // Default private

protected:

 void clear(); // Can only be called by member functions and

derived classes

 void write();

public: // From here the declared functions or attributes are

public

 void initialize(int x, int y);

 void moveTo(int x1, int y1);

};

void Point::clear() {putpixel (x, y, BLACK);}

void Point::write() {putpixel (x, y, WHITE);}

Classes and Objects | FITPED

38

void Point::initialize(int x, int y){ // The parameters hide

the attributes

 this-> x = x; // We access the attributes using the "this"

pointer

 this-> y = y;

 write();

}

void Point::moveTo(int x1, int y1) {

 clear();

 x = x1; // We can access the attributes without "this"

because there are no variables that hide them

 y = y1;

 write();

}

int main () {

 Point v[10]; // Declaration an array of objects

 for (int i = 0; i <10; i ++) v [i].initialize(i, 2 * i);

 for (int i = 0; i <10; i ++) v [i].moveTo(i * 2, i * 3);

 return 0;

}

📝 2.2.13

Select the correct answer.

• The "this" pointer can be used to access the object as a whole using "*this".
• The "this" pointer may generate a name collision problem.
• In the static member functions, the "this" pointer is NULL .

⌨ 2.2.14 Fill an array using the this pointer

We want to add a new feature to the class Point that allows filling an array of points
with the values of the current one. The function "fillArray" accepts an array of points
and their size. Please, copy the current point to each element of the array using
"this" (notice that this is a pointer).

class Point {

 int x;

 int y;

public:

 int getX() {return this->x;}

Classes and Objects | FITPED

39

 int getY() {return this->y;}

 void setXY(int x, int y) {

 x = x < 0 ? 0 : x;

 y = y < 0 ? 0 : y;

 this->x = x;

 this->y = y;

 }

};

exercise.cpp
class Point {

 int x;

 int y;

public:

 int getX() {return this->x;}

 int getY() {return this->y;}

 void setXY(int x, int y) {

 x = x <| 0 ? 0 : x;

 y = y <| 0 ? 0 : y;

 this->x = x;

 this->y = y;

 }

 void fillArray(Point a[], int size) {

 // Please, write here the code to fill the array with

the current object

 }

};

2.3 Constructors and destructors

🕮 2.3.1

The attributes of an object must be initialized before being used. Non-initialization
of objects is very dangerous since initial nonsense values can become fatal for
some member functions. C++ provides mechanisms for defining special member
functions called constructors that initialize objects when they are created.

The constructors are procedures with the same name as the class and do not
return any type, even void. A constructor can be overloaded following the same
overload rules of any other function. When an object is created, either global, local,
or in the heap, one of the constructors is called automatically. These procedures
transform a part of memory into a valid object. There may be a constructor without
parameters or that all its parameters have default values. This constructor is

Classes and Objects | FITPED

40

named the default constructor, and the compiler will call it automatically every time
an object of this class is created, and no parameters are specified.

The Student class is shown as an example:

#include <string.h>

class Student {

private:

 int idNumber; // Student's id number

 char* name; //Student's name

public:

 Student(char* nam, int idNum) { // Constructor

 name = new char [strlen (nam) +1];

 strcpy (name, nam);

 idNumber = idNum;

 }

 // ...

};

int main () {

 Student student("Student test", 31); // Constructor called

 // ...

 return 0;

}

📝 2.3.2

Select the correct answers.

Select one or more:

• The constructors are a replacement for the new operator for objects.
• The constructors are procedures do not return any type, even void.
• The constructors can have any name but the class name.
• A constructor can be overloaded following the same overload rules of any

other function.
• After creating an object, the programmer must call a constructor.
• There may be a constructor without parameters or that all its parameters

have default values. This constructor is named the default constructor.

Classes and Objects | FITPED

41

⌨ 2.3.3 Adding constructors to the Point class

Please, add a default constructor that initializes the point coordinates x and y to
zero. Also, add a constructor that initializes the point coordinates x and y. Notice
that one constructor may do the work of the two.

class Point {

 int x;

 int y;

public:

 int getX() {return this->x;}

 int getY() {return this->y;}

 void setXY(int x, int y) {

 x = x < 0 ? 0 : x;

 y = y < 0 ? 0 : y;

 this->x = x;

 this->y = y;

 }

};

exercise.cpp
class Point {

 int x;

 int y;

public:

 // Add here the constructor(s)

 int getX() {return this->x;}

 int getY() {return this->y;}

 void setXY(int x, int y) {

 x = x <| 0 ? 0 : x;

 y = y <| 0 ? 0 : y;

 this->x = x;

 this->y = y;

 }

};

🕮 2.3.4

Some classes may need to "deinitialize" the objects once their life is over. A special
procedure named destructor does this task. The destructor has the same name as
its class but is preceded by a tilde "˜". The destructor is called automatically when:

• An object (in the heap) is removed with the delete operator.

Classes and Objects | FITPED

42

• The scope where an object was created is abandoned. e.g., when a function
ends, the destructor is called for parameters and local variables.

• The main function ends the destructor of global and static objects are called.
• The destructor has no parameters, does not return any type, and cannot be

overloaded.

The student class is shown as an example:

#include <string.h>

class Student {

private:

 int idNumber; // Student's id number

 char* name; //Student's name

public:

 Student(char* nam, int idNum); // Constructor

 ~Student(); // Destructor

 void show();

 void changeName(char * name);

};

Student::Student(char* nam, int idNum) {

 name = new char [strlen (nam) +1];

 strcpy (name, nam);

 idNumber = idNum;

}

Student::˜Student() {

 delete name;

}

int main() {

 Student student("Student test", 31);

 student.show();

 student.changeName("New name");

 student.show();

 return 0;

 // The destructor is automatically called at this point

}

📝 2.3.5

Select the correct answers.

Select one or more:

• The destructor has the same name as its class but preceded by a tilde "˜".

Classes and Objects | FITPED

43

• The destructor is called automatically when an object is removed from the
heap with the function "free()".

• The destructor needs to be called manually for parameters and local
variables.

• When the "main" function ends, the destructor of global and static objects is
automatically called.

• The destructor cannot be overloaded.

⌨ 2.3.6 Adding a destructor to the Point class

We want to know the number of objects of type Point that exists during the
program execution. We have added a static counter and a static function to get this
value (the number of current objects). Please, add a default constructor that
initializes the point coordinates x and y to zero and increments the counter of
objects, also add a destructor that decrements the counter of objects.

class Point {

 int x;

 int y;

 static int counter;

public:

 // Add here the constructor and destructor

 int getX() {return this->x;}

 int getY() {return this->y;}

 void setXY(int x, int y) {

 x = x < 0 ? 0 : x;

 y = y < 0 ? 0 : y;

 this->x = x;

 this->y = y;

 }

 static int getCounter() {

 return counter;

 }

};

int Point::counter = 0;

exercise.cpp
class Point {

 int x;

 int y;

 static int counter;

public:

Classes and Objects | FITPED

44

 // Add here the constructor and destructor

 int getX() {return this->x;}

 int getY() {return this->y;}

 void setXY(int x, int y) {

 x = x <| 0 ? 0 : x;

 y = y <| 0 ? 0 : y;

 this->x = x;

 this->y = y;

 }

 static int getCounter() {

 return counter;

 }

};

int Point::counter = 0;

🕮 2.3.7

It is highly recommended to use only the new and delete operators to manage
objects in the heap. The use of C language allocation and deallocation functions
(malloc, free, etc.) for objects leads to the loss of the automatic and required use of
constructors and destructors.

📝 2.3.8

You can safely mix the use of the new and delete operators, and the "malloc" and
"free" C language functions, for managing objects in the heap.

• False
• True

🕮 2.3.9

The following example shows another definition of the Stack class using a
constructor with a default parameter. Also, the destructor is defined because the
new operator is used to create one of the attributes.

class Stack {

 protected:

 int nelements;

 int maxElements;

Classes and Objects | FITPED

45

 int *vector;

public:

 Stack(int t = 100); // Constructor with one parameter and

default constructor

 ~Stack() {delete vector;} // Destructor to free dynamic

memory

 bool isEmpty() {return nelements == 0;}

 bool isFull() {return nelements == maxElements;}

 void push(int);

 void pop();

 int top();

};

Stack::Stack (int t) {

 vector = new int[t]; // The vector is created by taking

dynamic memory

 nelements = 0;

 maxElements = t;

}

void Stack::push(int i) {vector [nelements ++] = i;}

void Stack::pop() {--nelements;}

int Stack::top() {return vector [nelements-1];}

void f () {

 Stack p; // The constructor is automatically called

 // default value of the parameter

 p.push(3); // The interface is identical, it is not

necessary

 // modify the rest of the code

 p.push(5);

 Stack* pp;

 pp = new Stack(20); // The constructor is called being 20

the value of the parameter

 pp-> push(p.top());

 //...

 delete pp; // The destructor is automatically called for *

pp

} // The destructor is automatically called for p

📝 2.3.10

Select the correct answer about the Stack class.

class Stack {

 protected:

 int nelements;

Classes and Objects | FITPED

46

 int maxElements;

 int *vector;

public:

 Stack(int t = 100); // Constructor with one parameter and

default constructor

 ~Stack() {delete vector;} // Destructor to free dynamic

memory

 bool isEmpty() {return nelements == 0;}

 bool isFull() {return nelements == maxElements;}

 void push(int);

 void pop();

 int top();

};

Stack::Stack (int t) {

 vector = new int[t]; // The vector is created by taking

dynamic memory

 nelements = 0;

 maxElements = t;

}

void Stack::push(int i) {vector [nelements ++] = i;}

void Stack::pop() {--nelements;}

int Stack::top() {return vector [nelements-1];}

void f () {

 Stack p; // The constructor is automatically called

 // default value of the parameter

 p.push(3); // The interface is identical, it is not

necessary

 // modify the rest of the code

 p.push(5);

 Stack* pp;

 pp = new Stack(20); // The constructor is called being 20

the value of the parameter

 pp-> push(p.top());

 //...

 delete pp; // The destructor is automatically called for *

pp

} // The destructor is automatically called for p

• The class Stack has two constructors.
• The member function "push" fails if the stack is full.
• The member function "top" returns 0 if the stack is empty.

Classes and Objects | FITPED

47

🕮 2.3.11

When code contents complex expressions, it is necessary to store intermediate
data that is not accessible. Example:

int f () {..}

void g ()

{

 int x = 0, y = 1, z = 2;

 x = (x-y) / (z + y * x) + y-f ();

 ...

The intermediate values of subexpressions as (x-y), (y * x), f (), etc. must be stored
somewhere. In many cases, the evaluation of arithmetic expressions uses a stack
of evaluation; also, the CPU registers may store temporary results. When these
expressions involve objects from user-defined classes, the same thing happens: the
compiler may construct and destroy hidden objects if necessary. This happens, for
example, in objects returned by a function.

Notice that the "return by value" of a function requires copying the value returned in
a hidden object. The hidden object must be available in the context of the function
call.

There is also the possibility of using unnamed objects that must be used on the fly,
for example, passing it to a function. The format of creating an unnamed object is
equivalent in form to a call to the class constructor. Example:

Point g(Point p) {

 ...

 return p; // return by value

}

void fn() {

 Point p(10.10), r(3,3);

 r = g(p); // You call g, passing the object p, the returned

object (hidden) is asigned

 g(Point(10.20)); // You call g, passing an unnamed object,

the returned object (hidden) is ignored

} // The destructor of p, r and the hidden unnamed object is

called

📝 2.3.12

Hidden objects do not need to be destroyed due they do not affect the program
execution.

Classes and Objects | FITPED

48

• False
• True

🕮 2.3.13

A constructor that accepts a single parameter, specifies a conversion from the type
of the parameter to the type of the class. This automatic conversion is applied
whenever it is needed an object of the class and appears a value of the type of the
parameter of the constructor. The conversion is indeed the creation of an object of
the class using the constructor that accepts that type of parameter.

class Fraction {

 int numerator;

 int denominator;

public:

 Fraction(int n, int d = 1) {

 numerator = n;

 denominator = d;

 }

 Fraction plus(Fraction o) {

 //...

 }

 // ..

};

void f() {

 Fraction f1 = 3; // Equivalent to: Fraction f1(3, 1);

 Fraction f2(3,4);

 f1 = f2.plus(5); // Equivalent to: f1 =

f2.plus(Fraction(5, 1));

}

⌨ 2.3.14 Conversor from Point to Point3D

We have two classes Point and Point3D, and we want to do automatic conversions
from Point to Point3D. The class Point3D has three values x, y, z. When converting
from Point to Point3D, x and y take the same values, and z takes the value zero.
Please, add a constructor to the class Point3D to allow code as following:

Point p;

p.setXY(2,3);

Point3D p3d(p);

Classes and Objects | FITPED

49

Point3D p3d1 = p;

The classes Point and Point3D are as follows:

class Point {

 int x;

 int y;

public:

 int getX() {return this->x;}

 int getY() {return this->y;}

 void setXY(int x, int y) {

 this->x = x < 0 ? 0 : x;

 this->y = y < 0 ? 0 : y;

 }

};

class Point3D {

 int x;

 int y;

 int z;

public:

 Point3D() {

 this->x = 0;

 this->y = 0;

 this->z = 0;

 }

 int getX() {return this->x;}

 int getY() {return this->y;}

 int getZ() {return this->z;}

 void setXYZ(int x, int y, int z) {

 this->x = x < 0 ? 0 : x;

 this->y = y < 0 ? 0 : y;

 this->z = z < 0 ? 0 : z;

 }

};

exercise.cpp
class Point {

 int x;

 int y;

public:

 int getX() {return this->x;}

 int getY() {return this->y;}

 void setXY(int x, int y) {

 this->x = x <| 0 ? 0 : x;

 this->y = y <| 0 ? 0 : y;

Classes and Objects | FITPED

50

 }

};

class Point3D {

 int x;

 int y;

 int z;

public:

 Point3D() {

 this->x = 0;

 this->y = 0;

 this->z = 0;

 }

 // Add here the conversion constructor

 int getX() {return this->x;}

 int getY() {return this->y;}

 int getZ() {return this->z;}

 void setXYZ(int x, int y, int z) {

 this->x = x <| 0 ? 0 : x;

 this->y = y <| 0 ? 0 : y;

 this->z = z <| 0 ? 0 : z;

 }

};

📝 2.3.15

If we add a constructor whose only parameter is "const char *", will the function f()
be valid?

class Fraction {

 int numerator;

 int denominator;

public:

 Fraction(int n, int d = 1) {

 numerator = n;

 denominator = d;

 }

 Fraction(const char *s) {

 // ...

 }

 Fraction plus(Fraction o) {

 //...

Classes and Objects | FITPED

51

 }

 // ...

};

void f() {

 Fraction f1 = 3;

 Fraction f2(3,4);

 f1 = f2.plus("5");

}

• True
• False

2.4 Source files organization

🕮 2.4.1

Medium and large programs need to organize the code and use modularity. In the
case of C++, thanks to the possibility of separate compilation, the different classes,
functions, type definitions, etc. can be distributed in various source files that
function as modules. You can use the following rules to organize the source files in
the form of modules:

The definition of one or more related classes goes in a ".cpp" file. The definition
means the development of member functions outside of classes and the definition
of static attributes.

Each class may be declared in a header file with its name with the extension ".h"; or
maybe located, with other classes, in a header file with the name of the module with
the extension ".h". The class declaration is the "class" keyword with the class body
(class .. {..};).

Classes internal to a module may go declared and defined in a ".cpp" file.

📝 2.4.2

Select the correct affirmation.

• The definition of a class is the development of member functions outside of
classes and the definition of static attributes.

• A class definition goes in a header file.
• A class definition is the "class" keyword with the class body (class .. {..};).

Classes and Objects | FITPED

52

🕮 2.4.3

There are other source file extensions commonly used. For body source files: C, cc,
cxx, and c++. For header files: H, hh, hpp, and h++.

Notice that there is no official extension, and the compiler accepts any extension.

📝 2.4.4

Select the correct affirmations.

• The official extension for C++ source files are "cpp" and "h"
• Common source file extensions for C++ are cpp, C, cc, cxx, and c++
• Common header file extensions for C++ h, H, hh, hpp, and h++

🕮 2.4.5

The purpose of the ".cpp" source files is to be compiled separately. Each ".cpp" file
may be compiled without the compilation or existence of other ".cpp" files. The
program is generated by linking all the compiled ".cpp" files, commonly files with
".o" extension, that compound the program.

The purpose of the ".h" header files is to be included in one or more ".cpp" files to
inform the compiler about the declaration of elements that may be defined
elsewhere. The header files may also contain definitions that can be compiled
multiple times as the definition of inline functions or templates classes.

📝 2.4.6

Select the correct affirmations.

• All ".cpp" files of a program need to be compiled at the same time.
• The program is generated by linking all the compiled header files.
• The purpose of "X.h" header file is to allow the use of elements defined in

"X.cpp" in others ".cpp" or ".h" files.
• The header files may contain declarations of elements that may be defined

elsewhere.

Classes and Objects | FITPED

53

🕮 2.4.7

A definition or declaration of a class or a typedef cannot appear two or more times
in a ".cpp" file. But the inclusion of different header files in a ".cpp" may lead to this
problem. This type of error is avoided by establishing a different macro in each
header file. This macro will act as a flag to know if the header file has already be
included in the current ".cpp" file. Example:

File: db.h

#ifndef INC_DB

#define INC_DB

// Here comes the content of the header file that will be

included only one time

#endif

📝 2.4.8

Preprocessor instructions are used to avoid the multi-inclusion of one header file. A
specific macro is defined in each header file to check if the file has already been
included.

• True
• False

⌨ 2.4.9 Avoiding multidefinition errors in point.h

We have developed a Point class, and we separate the declaration from the
definition of the class. The declaration of the class is at the "point.h" file, and we
found that in some source file that includes twice "point.h" the compilation fails.
Please, add preprocessor instructions to avoid multi-inclusion errors.

class Point {

 int x;

 int y;

public:

 int getX() {return this->x;}

 int getY() {return this->y;}

 void setXY(int, int);

};

Classes and Objects | FITPED

54

🕮 2.4.10

Each source file contain logically related elements. These relationships can be
expressed in C++ using namespaces. A namespace is a mechanism to establish a
related group of language elements as functions, classes, constants, etc. The
namespace format is:

namespace [Space_Name] {

 ... // Declarations and definitions

}

Within the namespace, you can make definitions and declarations of all kinds.
When using an element of a namespace, outside the namespace, we use the
qualifier Space_Name::. Example:

namespace A {

 struct S {...};

 void f(S x) {...}

}

void g() {

 A::S y;

 A::f(y);

}

You can make declarations within the namespace and make the definitions outside,
using the namespace qualifier.

namespace B {

 void f(S x); // Declaration

}

void B::f(S x) { //Definition

}

The "using" statement eliminates the need for a fully qualified name. From the
"using" statement, it is possible to use the element inside the namespace directly
without the qualifier.

Format:

using Space_Name::name;

Example:

void g() {

 using A::f;

 A::S y;

 f(y); // It is A::f

Classes and Objects | FITPED

55

}

With the following format, it is also possible to indicate that all names in a
namespace can be used:

using namespace Space_Name;

Example:

void g() {

 using namespace A;

 S y; // A::S

 f(y); // A::f

}

📝 2.4.11

Select the correct affirmations.

• A namespace is a C++ mechanism to establish a group of logically related
elements.

• To use an element of a namespace, outside the namespace, we can use the
qualifier Space_Name::

• The namespace must contain the full declaration and definition of its
elements.

• The "import" statement eliminates the need for a fully qualified name. From
the "import" statement, it is possible to use the element inside the
namespace directly without the qualifier.

• With the following format, it is also possible to indicate that all names in a
namespace can be used: "using namespace Space_Name;".

⌨ 2.4.12 Using class Rectangle in a namespace

We have developed a Rectangle class inside the namespace "Polygon". Please,
write a function "perimeters" that returns the sum of the perimeter of each
Rectangle in an array. The function accepts an array of pointers to Rectangles and
the size of the array. The class Rectangle has the following declaration:

class Rectangle {

 float width;

 float height;

public:

 Rectangle(float w, float h);

 float getWidth();

Classes and Objects | FITPED

56

 float getHeight();

 float getPerimeter();

};

⌨ 2.4.13 Adding the Point class to a namespace

We have developed the Point class. Please, modify the code to add the class Point
to the namespace "Coordinate".

class Point {

 int x;

 int y;

public:

 Point(int x = 0, int y = 0) {

 setXY(x, y);

 }

 int getX() {return this->x;}

 int getY() {return this->y;}

 void setXY(int x, int y) {

 this->x = x < 0 ? 0 : x;

 this->y = y < 0 ? 0 : y;

 }

};

exercise.cpp
// Modify the code to define the class Point inside namespace

Coordinate

class Point {

 int x;

 int y;

public:

 Point(int x = 0, int y = 0) {

 setXY(x, y);

 }

 int getX() {return this->x;}

 int getY() {return this->y;}

 void setXY(int x, int y) {

 this->x = x <| 0 ? 0 : x;

 this->y = y <| 0 ? 0 : y;

 }

};

Classes and Objects | FITPED

57

🕮 2.4.14

It is possible to define an anonymous namespace in each file. The purpose of these
namespaces is to prevent the elements declared within it from being used outside
its source file. The elements defined in the anonymous namespace can be used
without qualifier within its source file; however, it is not possible to use them from
another file since the unnamed namespace of each source file is considered to be
different.

It is possible to set aliases for namespaces. Format:

namespace aliasname = Space_Name

From this point, it has the same effect to use aliasname or Space_Name.

Namespaces are open in the sense that they can be made up of several separate
declarations of the same namespace, all of which form a single namespace.

Example:

namespace A {

 void f ();

}

...

namespace A {

 void g ();

}

Here, f and g belong to the same namespace. The following recommendations may
be used to construct a namespace correctly:

The definition of a namespace must be in a ".cpp" file with the same name. The
".cpp" file must contain the definition of member functions outside of classes and
the definition of static attributes. All this is enclosed in a namespace.

The interface of each namespace must be in another file with the extension ".h".
The interface would be the class declarations within the namespace.

In the header file ".h" a macro is established to avoid errors in case of multiple
inclusions.

Example:

#ifndef INC__MY_SPACE

#define INC__MY_SPACE

namespace my_space {

 ...

Classes and Objects | FITPED

58

}

#endif

📝 2.4.15

Select the correct affirmations.

• We can use an anonymous namespace to prevent the elements declared
within it from being used from other source files.

• It is possible to set aliases for namespaces. Format: "namespace aliasname
= Space_Name;". From this point, it has the same effect to use one name or
another.

• Namespaces are open in the sense that they can be made up of several
separate declarations of the same namespace, all of which form a single
namespace.

Operators

Chapter 3

Operators | FITPED

60

3.1 Operator overloading

🕮 3.1.1

The C++ programming language allows you to overload most of the existing
operators for the user-defined classes. The operators allow the new classes to
resemble the predefined types in their syntax. It also solves some severe problems
that can occur with the assignment operator if we could not redefine it.

The only operators that cannot be overloaded are: ".", ". *" and "::". The programmer
can not invent new operators or changes the precedence of the existing ones.

The overload of an operator is done by defining a function with the name "operator
operator_symbol". E.g. "operator +". Notice that between "operator" and the
operator_symbol you can write spaces.

📝 3.1.2

The C++ programming language allows the programmer to invent new operators or
changes the precedence of the existing ones.

• False
• True

🕮 3.1.3

The operators can be overloaded in the same way as functions, and, as such, they
can be either as a member function of a class or as a non-member function. If the
operator is defined as a member function of a class, the left operand is the object
to which the function is applied; the other operand will be the parameter passed to
the function. In the case that it is defined as a non-member function, the
parameters will be the operands. In this second case, these functions may be
established as a friend of the class of the operands.

The main difference between the two forms of operators overloading is the
automatic conversion of operands. If the function is a member, it is only possible to
apply automatic converters to the second operand. If the function is not a member
function, automatic conversions can happen for both operands.

In the case of unary operators, member functions without parameters and non-
member functions with a single parameter must be used.

Operators | FITPED

61

📝 3.1.4

Select the correct affirmations.

• The operator overloading must be done with member functions.
• If the operator defined as a member function of a class, the left operand is

the object to which the function is applied.
• Automatic conversions are applied only to parameters of the operator

functions.
• The unary operators cannot be overloaded.

🕮 3.1.5

An example of the use of operator overloading is the Complex class. A complex
number consists of two parts: a real and an imaginary part. The operators
overloading allow adding to the class the common operations over complex
numbers.

The Complex class is as follows:

File "complex.h":

#ifndef INC_COMPLEX

#define INC_COMPLEX

class Complex {

 float imaginary, real;

public:

 Complex (float r = 0, float i = 0) {imaginary = i; real =

r;};

 Complex operator = (Complex c) { // It is not necessary to

overload it in this case

 // The operator = cannot be friend

 imaginary = c.imaginary;

 real = c.real;

 return * this;

 };

 friend Complex operator + (Complex c1, Complex c2) {

 return Complex(c1.real + c2.real, c1.imaginary +

c2.imaginary);

 };

 Complex operator * (Complex c) {

 Complex res;

 res.real = real * c.real - imaginary * c.imaginary;

 res.imaginary = real * c.imaginary + imaginary * c.real;

Operators | FITPED

62

 return res;

 }

};

#endif

void f () {

 Complex c1, c2 (1.1), c3(2), c4(2.1, 3.2);

 c1 = c2 * c3 + (c3 + 8) * c4;

 c2 = 10 + c1; // Equivalent to c2.operator = (operator+

(Complex (10), c1))

 //c4 = 10 * c2; // Error, operator * cannot be applied

since

 // the expression is equivalent to c4.operator =

(10.operator * (c2))

}

📝 3.1.6

Select the valid instructions that can follow the next code.

class Complex {

 float imaginary, real;

public:

 Complex (float r = 0, float i = 0) {imaginary = i; real =

r;};

 friend Complex operator + (Complex c1, Complex c2) {

/*...*/ };

 Complex operator - (Complex c) { /*...*/ };

 Complex operator * (Complex c) { /*...*/ };

};

void f() {

 Complex c1, c2 (1.1), c3(2), c4(2.1, 3.2);

 // Here come the instruction

Select one or more:

• c1 = c2 - c3
• c1 = c2 - 4
• c1 = c3 * c2 - 4
• c1 = 4 - c3 * c2
• c1 = 4 * c2
• c1 = 4 + c2

Operators | FITPED

63

⌨ 3.1.7 Adding operator+ to the Point class as a member function

We have developed a Point class, but we think that it will be a good idea to have a
plus ("+") operation for points. Adding two points will result return a new one with
the x and y coordinates added. Please, add a member function that accepts a point
and returns a new point with x as the two x of the current object and parameter
object added and the same for y.

class Point {

 int x;

 int y;

public:

 Point(int x=0, int y=0) {

 setXY(x, y);

 }

 int getX() {return this->x;}

 int getY() {return this->y;}

 void setXY(int x, int y) {

 this->x = x < 0 ? 0 : x;

 this->y = y < 0 ? 0 : y;

 }

};

exercise.cpp
class Point {

 int x;

 int y;

public:

 Point(int x=0, int y=0) {

 setXY(x, y);

 }

 int getX() {return this->x;}

 int getY() {return this->y;}

 void setXY(int x, int y) {

 this->x = x <| 0 ? 0 : x;

 this->y = y <| 0 ? 0 : y;

 }

 // Add here operator+ member function

};

⌨ 3.1.8 Adding operator+ to the Point class as a non-member function

We have developed a Point class, but we think that it will be a good idea to have a
plus operation for points. Adding two points will result return a new one with the x

Operators | FITPED

64

and y coordinates added. Please, add a non-member function that accepts two
points and returns a new point with x as the two x of the parameters object added
and the same for y.

class Point {

 int x;

 int y;

public:

 Point(int x=0, int y=0) {

 setXY(x, y);

 }

 int getX() {return this->x;}

 int getY() {return this->y;}

 void setXY(int x, int y) {

 this->x = x < 0 ? 0 : x;

 this->y = y < 0 ? 0 : y;

 }

};

exercise.cpp
class Point {

 int x;

 int y;

public:

 Point(int x=0, int y=0) {

 setXY(x, y);

 }

 int getX() {return this->x;}

 int getY() {return this->y;}

 void setXY(int x, int y) {

 this->x = x <| 0 ? 0 : x;

 this->y = y <| 0 ? 0 : y;

 }

};

// Add here operato+ non-member function

🕮 3.1.9

It is possible to establish conversion operators from the class to which it belongs
to another class or another predefined type. The format is a function that does not
specify its returns type, and it has no parameters and whose name is "operator
type".

Example:

Operators | FITPED

65

class Student {

private:

 int idNumber; // Student's id number

 char * name; //Student's name

public:

 operator int() {return idNumber;} // Student to int

converter

 operator char *() {return name;}; // Student to char*

converter

 operator Y(); // Student to the class Y converter

};

void f (Student peter) {

 int i = peter; // i = peter.operator int ()

 char c [100];

 strcpy(c, peter); // strcpy(c, peter.operator char * ())

}

📝 3.1.10

Select the correct functions name.

using namespace std;

class Student {

private:

 int idNumber; // Student's id number

 char * name; //Student's name

public:

 _____ () {return name;};

 _____ () {return idNumber;}

 _____ () { return string("Exp: ") + to_string(idNumber) + "

" + name;};

void f (Student peter) {

 int i = peter; // i = peter.operator int ()

 string peters = peter;

 cout << peters << endl;

}

• operator Y
• operator int
• operator string
• operator char *

Operators | FITPED

66

⌨ 3.1.11 Adding a conversion operator from Point to string

We have developed a Point class, but we think that it will be a good idea to add a
conversion from points to strings. Please, add a conversion operator member
function that returns a string. The string that represents a point is an open
parenthesis, the value of x, a comma, the value of y, and an end parenthesis. For
example, Point(3,5) returns the string "(3,5)". Remember using function to_string to
convert int to string and the operator + to concatenate strings.

class Point {

 int x;

 int y;

public:

 Point(int x=0, int y=0) {

 setXY(x, y);

 }

 int getX() {return this->x;}

 int getY() {return this->y;}

 void setXY(int x, int y) {

 this->x = x < 0 ? 0 : x;

 this->y = y < 0 ? 0 : y;

 }

};

exercise.cpp
class Point {

 int x;

 int y;

public:

 Point(int x=0, int y=0) {

 setXY(x, y);

 }

 int getX() {return this->x;}

 int getY() {return this->y;}

 void setXY(int x, int y) {

 this->x = x <| 0 ? 0 : x;

 this->y = y <| 0 ? 0 : y;

 }

 // Add here operator string member function

};

Operators | FITPED

67

3.2 Assignment operator and copy constructor

🕮 3.2.1

The assignment operator

There is a default assignment operator for each class when no other one is defined.
The default assignment operator does the assignment of each of the attributes of
the right operand on the left operand and returns a reference to the left operand.
There are some situations in which it is essential to overload the assignment
operator for the proper running of the class. Commonly the assignment operator
needs to be overloaded when the class has a destructor. The overloaded
assignment operator may need to replicate the de-initialization process of the
destructor. The assignment operator must be a member of the class; that is, it
cannot be a non-member function, even if it is a friend function.

Example of what the default assignment operator does:

class Complex {

 float imaginary, real;

public:

 Complex (float r = 0, float i = 0) {imaginary = i; real =

r;};

 Complex& operator = (Complex& c) { // Equivalent to the

default assignment operator

 imaginary = c.imaginary;

 real = c.real;

 return * this;

 };

 // ...

};

📝 3.2.2

Select the correct affirmations.

• There is a no default assignment operator for the user-defined classes.
• The default assignment operator does the assignment of each of the

attributes of the right operand on the left operand and returns a reference to
the left operand.

• Commonly the assignment operator needs to be overloaded when the class
has a destructor.

• The assignment operator must be a friend non-member function.

Operators | FITPED

68

🕮 3.2.3

The need for overloading the assignment operator.

class Stack {

protected:

 int nelements;

 int maxElements;

 int *vector;

public:

 Stack (int t = 100) {

 vector = new int [t]; // The vector is created by

taking dynamic memory

 nelements = 0;

 maxElements = t;

 }

 ~Stack () {delete vector;} // Destructor to free dynamic

memory

 void push(int i) { /* ... */ };

 // ...

};

void f(){

 Stack p1, p2(33);

 p1.push(3);

 p1.push(5);

 p2 = p1; // Assign the attributes of one object to

another. Wrong instruction

} // The destructor is automatically called for p1 and p2

Why is the instruction p2 = p1 an erroneous instruction?

It is wrong because the default assignment is not explicitly overloaded, all it does is
assign the attributes of one object in the other. This results in three bad situations:
The assignment changes the value of the attribute "vector", losing the previous
pointer, and doing impossible to free it. The p1 and p2 objects share the same array
of elements and are dependant, everything done in p1 may affect p2 and vice-versa.
The destructor of p2 releases the array it uses. The destructor of p1 automatically
attempts to free the same memory area.

📝 3.2.4

In the following code, why is the instruction p2 = p1 an erroneous instruction?

Operators | FITPED

69

class Stack {

protected:

 int nelements;

 int maxElements;

 int *vector;

public:

 Stack (int t = 100) {

 vector = new int [t];

 nelements = 0;

 maxElements = t;

 }

 ~Stack () {delete vector;}

 void push(int i) { /* ... */ };

 // ...

};

void f(){

 Stack p1, p2(33);

 p1.push(3);

 p1.push(5);

 p2 = p1;

}

Select one or more:

• The assignment changes the value of the attribute p2.vector, losing the
previous pointer.

• The two objects share the same array of elements.
• The destructor will try to releases twice the same array.
• All other answers are erroneous.

🕮 3.2.5

To overload the assignment operator we add a prototype declaration in the Stack
class:

Stack & operator = (const Stack &);

and we define the function outside the class:

Stack & Stack :: operator = (const Stack & s) {

 if (maxElements != s.maxElements) {

 maxElements = s.maxElements;

 delete [] vector;

 vector = new int [maxElements];

Operators | FITPED

70

 }

 nelements = s.nelements;

 for (int i = 0; i < nelements; i ++) vector [i] = s.vector

[i];

 return * this;

}

📝 3.2.6

What line of the assignment operator takes into account the action the destructor
does?

 Stack & Stack :: operator = (const Stack & s) {

1 if (maxElements != s.maxElements) {

2 maxElements = s.maxElements;

3 delete []vector;

4 vector = new int [maxElements];

 }

5 nelements = s.nelements;

6 for (int i = 0; i < nelements; i ++) vector[i] =

s.vector[i];

7 return *this;

 }

🕮 3.2.7

The problem of self-assignment

Often the parameter in the assignment operator is a reference. In this case, when
developing the assignment operator, it is necessary to take into account that the
current object and the parameter may be the same.

Stack p1, p2 ;

...

p1 = maxStack (p1, p2); // Return a reference to the stack

with the largest element

In the previous example, p1 may be assigned to itself, in which case the assignment
operator might not work well. In the implementation shown in the Stack class, there
would be no problem, since we delete the array of the current object only if it is of a
different size than the parameter. If we eliminate this condition, the assignment will
work in all cases except in the self-assignment.

Operators | FITPED

71

📝 3.2.8

What line of the assignment operator avoids the self-assignment problem?

 Stack & Stack :: operator = (const Stack & s) {

1 if (maxElements != s.maxElements) {

2 maxElements = s.maxElements;

3 delete []vector;

4 vector = new int [maxElements];

 }

5 nelements = s.nelements;

6 for (int i = 0; i < nelements; i ++) vector[i] =

s.vector[i];

7 return *this;

 }

⌨ 3.2.9 Adding an assigment operator to the Student class

We have developed a Student class that saves the name and the id of students. We
keep the name as an array of chars. All was correct until we assign Student objects.
Please, resolve the problem by adding an assignment operator. Necessary: you
must use references to pass or return Student to the "operator=" member function.

class Student {

 int id;

 char* name;

public:

 Student(int id, const char* name) {

 this->id = id;

 this->name = new char[strlen(name)+1];

 strcpy(this->name, name);

 }

 ~Student() {delete this->name;}

 const char* getName() {return this->name;}

 int getId() {return this->id;}

};

exercise.cpp
#include <|string.h>

class Student {

 int id;

 char* name;

public:

 Student(int id, const char* name) {

Operators | FITPED

72

 this->id = id;

 this->name = new char[strlen(name)+1];

 strcpy(this->name, name);

 }

 ~Student() {delete this->name;}

 const char* getName() {return this->name;}

 int getId() {return this->id;}

 // Write here the assigment operator

};

🕮 3.2.10

The need for a copy constructor

Parameters of pointers to objects or references work in the usual way. But when
passing objects by value, a copy of the external object is made in the internal one.
Passing each object requires copying each of the attributes of the external object
into the attributes of the internal one. Below is an example of passing an object to a
function by value.

int stackSum(Stack stp) {

 int sum = 0;

 while (! stp.isEmpty()) {

 sum += stp.top();

 stp.pop();

 }

 return sum;

}

void g() {

 Stack stack1;

 stack1.push(3);

 stack1.push(5);

 stack1.push(13);

 int sum;

 sum = stackSum(stack1);

}

Why the instruction "sum = stackSum(stack1);" is wrong?

It is incorrect because the default copy of stack1 in the stp parameter is carried out
by copying the attributes of stack1 in stp, which results in two disastrous
situations:

Operators | FITPED

73

stack1 and stp share the same array, and any possible modification on the array
made by stp may affect stack1. When the execution of the function "sumStack"
ends, the destructor for stp is automatically called, and it releases the array it uses.
After the end of sumStack, stack1 can use the array already freed by stp. Once the
execution of g ends, stack2 is automatically destroyed, trying to free the same array
again.

🕮 3.2.11

The return of objects by value

When a function calls another that returns an object, a temporary and non-visible
object is created. The temporary object exists in the scope of the calling function
and is a copy of the object returned by the called function. The copy constructor will
initialize the new object. The copy constructor is a constructor with only one
parameter of type reference to an object of the same class. The classes that do not
create a copy constructor, have a default one that copies (using the proper copy
constructor) each attribute from the original object to the new one.

Stack generateStack(int n) {

 Stack generated;

 for (int i = 0; i < n; i++) generated.push(i);

 return generated;

}

void g() {

 Stack st;

 st = generateStack(10);

 st.push(3);

 // ...

}

In the previous example, the process is carried out in the following way: when the
execution of "generateStack" ends, the object "generated" is first returned to g,
making a copy over the temporary object that exists in the function "g", and then the
destructor is called for the object "generated". This copy of the object returned
gives two harmful situations:

• The two objects share the same array, and they are not independent.
• The destructor of the object "gen" releases the array used. When the

temporary object is automatically destroyed, it tries to free the same array
again.

Operators | FITPED

74

📝 3.2.12

Select the correct affirmation.

• When a function returns an object, a temporary and non-visible object is
created in the scope of the calling function.

• The copy constructor is a constructor with only one parameter of type
pointer to an object of the same class.

• The classes that do not create a copy constructor have a default one that
assigns each attribute from the original object to the new one.

• The copy constructor is used to speed up the pass of parameters and
returns of objects of a function.

🕮 3.2.13

The copy constructor

In C++, objects are copied when a parameter is passed by value and when an object
is returned from a function. Copies can be handled using the copy constructor. The
copy constructor initializes an object from an existing one by making a copy of it.
The copy-constructor can also be used as a common constructor to initialize an
object from another. The problems raised in the previous example using
parameters by value and the return by value in the Stack class can be solved by
creating a copy constructor as follow:

class Stack {

protected:

 int elements;

 int maxElements;

 int *vector;

public:

 Stack(int t = 10) {

 vector = new int[t];

 elements = 0;

 maxElements = t;

 }

 Stack(const Stack& n); //Copy constructor declaration

 ~Stack(){ delete [] vector;} // Destructor

 Stack & operator=(const Stack &); // Assignment operator

 // ...

};

Stack::Stack(const Stack& n) {

 elements = n.elements;

 maxElements = n.maxElements;

Operators | FITPED

75

 vector = new int [maxElements];

 for (int i = 0; i < elements; i ++) vector[i] =

n.vector[i];

}

📝 3.2.14

Select the correct affirmations.

• The copy constructor must contain the same code that the assignment
operator.

• The copy constructor must always be called explicitly.
• The copy constructor is used automatically when an object is passed by

value, or an object is returned from a function.
• The copy constructor needs to be created when using pointers.

⌨ 3.2.15 Adding a copy constructor to the Student class

We have developed a Student class that saves the name and the id of students. We
keep the name as an array of chars. All was correct until we start passing/returning
Students to functions. Please, resolve the problem by adding a copy constructor.

class Student {

 int id;

 char* name;

public:

 Student(int id, const char* name) {

 this->id = id;

 this->name = new char[strlen(name)+1];

 strcpy(this->name, name);

 }

 ~Student() {delete this->name;}

 const char* getName() {return this->name;}

 int getId() {return this->id;}

};

exercise.cpp
#include <|string.h>

class Student {

 int id;

 char* name;

public:

 Student(int id, const char* name) {

Operators | FITPED

76

 this->id = id;

 this->name = new char[strlen(name)+1];

 strcpy(this->name, name);

 }

 // Write here the copy constructor

 ~Student() {delete this->name;}

 const char* getName() {return this->name;}

 int getId() {return this->id;}

};

Inheritance and
Polymorphism

Chapter 4

Inheritance and Polymorphism | FITPED

78

4.1 Inheritance

🕮 4.1.1

The inheritance

The inheritance is the ability to define new classes from existing ones so that they
present the same characteristics and new others. The inheritance allows you to
create classes that are specializations of another. The new class is called a
subclass or derived class, and the existing class is called the base class.
Subclasses inherit the attributes and member functions of their base class. Also,
they can add new attributes and member functions or redefine inherited functions.

📝 4.1.2

The inheritance is the ability to define a _____ from existing ones. The new class is
called a _____, and the existing class is the _____ of the new one. The new class
inherit the attributes and member functions of their _____, and also, they can add
new attributes or member functions and redefine inherited member functions.

• old class
• father class
• new class
• base class
• base class
• subclass or derived class

🕮 4.1.3

Multiple inheritances

In certain situations, it can be interesting to build a class that heiress of several
classes, giving the multiple inheritances.

Multiple inheritances make sense to build new classes that acquire the
characteristics of several. However, it has the problem of collision of identifiers,
which occurs when different attributes or functions have the same name in more
than one of the base classes. When this happens, there must be a mechanism that
solves that ambiguity, either by prohibiting such inheritances, forcing a name
change on one of them or by establishing a selection rule between them.

Inheritance and Polymorphism | FITPED

79

📝 4.1.4

Multiple inheritances have the problem of collision of identifiers, which occurs
when different attributes or functions have the same name in more than one of the
base classes.

• True
• False

🕮 4.1.5

The inheritance use

The inheritance is a mechanism that allows programmers to reuse and extend
existing code. The inheritance improves the reliability of the programs and
decreases their development time. Programmers use inheritance:

• When different classes belong to more general abstraction. For example, in
the game of chess, pawns, bishops, kings, queens, knights, and rooks are
pieces of the game. Therefore, we can create a base class that has the
common aspects of the pieces of the game, and each type of piece class will
derive from that base class.

• When we need to extend the functionality of a program, and we want to make
minimal modifications to the existing code without breaking the sense of
each class.

The concept of inheritance can be applied in two different ways:

• As a way of representing the natural hierarchy of classes according to an
appropriate taxonomy.

• To reuse existing code, adapting it to new needs by creating a new
specialized class derived from one that already exists.

📝 4.1.6

Select the correct affirmations.

• The inheritance is a mechanism that allows programmers to reuse and
extend existing code.

• The inheritance weakness the reliability of the programs and increase their
development time.

• Programmers create base classes when they realize that different classes
belong to more general abstraction.

Inheritance and Polymorphism | FITPED

80

• Programmers create derived classes when they realize that they need to
extend the functionality of a program, and we want to make minimal
modifications to the existing code without breaking the sense of each class.

🕮 4.1.7

The inheritance in C++

In C++, inheritance allows creating a new class from others. C++ allows multiple
inheritances. If one class inherits from another, the first acquires all the
characteristics of the second. That is, the derived class has all the attributes and
almost all member functions of the base class. Constructors and destructors are
not inherited, although they are called automatically or manually.

The derived class can add new attributes, but not modify or remove existing ones,
and it can also add member functions or replace inherited member functions.

📝 4.1.8

Select the correct affirmations.

• The C++ programming language does not allow multiple inheritance.
• Constructors and destructors are inherited and cannot be overridden.
• The derived class can add new attributes, but not modify or remove existing

ones.
• The derived class can add new member functions or replace the inherited

ones.

🕮 4.1.9

Inheritance and access control (encapsulation)

In C++, it is possible to establish how inheritance affects the type of accessibility of
inherited elements. It can be inherited in a public, protected, or private ways.

• By inheriting "private", the public and protected elements become private for
the derived class, and this is the default option.

• If the inheriting is "protected", then public and protected elements become
protected for the inheriting class.

• When using "public" inheritance, the public and protected elements become
public and protected for the derived class.

Inheritance and Polymorphism | FITPED

81

The private part of the base class is inherited, but it is not possible to access it.

Format:

class Class_name: [public, proteced, private] Base_class1,

 [public, proteced, private] Base_class2, ... {

 ...

};

Example:

class StackUnlimited: public Stack {

 // ...

};

📝 4.1.10

Select the correct affirmation about C++ inheritance.

• The inheritance only can be public or private.
• The default option for Inheritance is public
• The private part of the base class is inherited, and derived class can access

it.
• When using public inheritance, the public and protected elements become

public and protected for the derived class.
• A definition of a derived class in C++ can be "public class StackUnlimited <|-

private Stack { // ... };"

🕮 4.1.11

Inheritance, constructors and destructors

Constructors and destructors are not inherited but are called automatically. The
constructors of the base classes are executed before the constructor body of the
derived class. The destructors of the base classes are executed after the destructor
of the derived class.

If you want to control the pass of parameters to the constructors of the base class,
you must call them before the body of the constructor of the derived class. If a
constructor of a base class is not invoked manually, its default constructor is called
automatically. The format to invoke the constructor of the base class also allows
passing parameters to the constructor of the attributes of the derived class. The
format to invoke the other constructors is as follows:

Inheritance and Polymorphism | FITPED

82

class Class_name: [public, protected, private] Base_class1,

 [public, protected, private] Base_class2,

... {

 Type1 attribute1;

 Type2 attribute2;

 Class_name(...): Base_class1 (...), Base_class2 (...),

attribute1 (...), attribute2 (...), ... {

 // ...

 }

 // ...

};

This format allows us to pass parameters to the base class constructors and
attributes constructors, taking them from the received parameters.

class StackUnlimited: public Stack {

 string name;

public:

 StackUnlimited(string n): Stack(50), name(n) {}

 // ...

};

📝 4.1.12

Select the correct affirmation.

• The constructors and destructors must be called manually.
• The constructors of the base classes are executed after the constructor

body of the derived class.
• The destructors of the base classes are not executed.
• If a constructor of a base class is not invoked manually, its default

constructor will not be called automatically.
• If you want to control the pass of parameters to the constructors of the base

class, you must call them before the body of the constructor of the derived
class.

⌨ 4.1.13 Calling attribute constructors in class constructors

We have developed a class Person, and we need a class Couple with two persons.
We have developed the class Couple partially. Please, add a constructor to the class
Couple that accepts as parameters two strings representing the names of the
persons. The class Person does not have a default constructor, then the attributes

Inheritance and Polymorphism | FITPED

83

"one" and "two" of the class Couple need to be initialized using the constructor that
accepts a string.

Alternative: Taking into account that all classes have a default copy constructor
and that we have an automatic conversion from string to Person, a constructor of
the class Couple for two persons can also be used as a constructor for two strings.

class Person{

 string name;

public:

 Person(string name) {this->name = name;}

 void setName(string name) {this->name = name;}

 string getName() {return this->name;}

};

class Couple{ // Needs a constructor

 Person one;

 Person two;

public:

 Person getPersonOne() {return this->one;}

 Person getPersonTwo() {return this->two;}

};

exercise.cpp
#include "person.h"

class Couple{ // Needs a constructor

 Person one;

 Person two;

public:

 // Write here the constructor

 Person getPersonOne() {return this->one;}

 Person getPersonTwo() {return this->two;}

};

void exampleOfUse() {

 // Couple c("Jane Doe","John Doe");

}

🕮 4.1.14

The redefinition of member functions

In the derived class, you can redefine the member functions inherited from the base
class, which allows you to adapt the existing code to new needs.

Inheritance and Polymorphism | FITPED

84

Example:

class StackUnlimited: public Stack { // Inherited from the

Pila class

public:

 StackUnlimited(int t = 100): Stack(t) {};

 StackUnlimited (const StackUnlimited &);

 StackUnlimited & operator = (const StackUnlimited &);

 bool isFull () {return false;} // The isFull function is

redefined

 void push(int); // The push function is redefined

};

void StackUnlimited::push (int i) {

 if (elements == maxElements) {

 int * nv;

 nv = new int [maxElements * 2];

 for (int j = 0; j < maxElements; j ++) nv[j] =

vector[j];

 delete [] vector;

 vector = nv;

 maxElements *= 2;

 }

 vector [elements ++] = i;

}

📝 4.1.15

You can redefine the member functions inherited from the base class, but you
cannot add new member functions.

• False
• True

⌨ 4.1.16 Creating a new class Worker from Person

We have developed a Person class, a Job class, and we need a Worker class, a
worker is also a person. Please, create a new class Worker that inherited from
Person and have a function setJob and a function getJob to manage the job that the
worker does.

class Person{

 string name;

public:

Inheritance and Polymorphism | FITPED

85

 void setName(string name) {this->name = name;}

 string getName() {return this->name;}

};

class Job{

 string position;

 float salary;

public:

 void setPosition(string position) {this->position =

position;}

 string getPosition() {return this->position;}

 void setSalary(float salary) {this->salary = salary;}

 float getSalary() {return this->salary;}

};

exercise.cpp
class Person{

 string name;

public:

 void setName(string name) {this->name = name;}

 string getName() {return this->name;}

};

class Job{

 string position;

 float salary;

public:

 void setPosition(string position) {this->position =

position;}

 string getPosition() {return this->position;}

 void setSalary(float salary) {this->salary = salary;}

 float getSalary() {return this->salary;}

};

void exampleOfUse() {

 // Worker me;

 // me.setName("JohnDoe");

 Job pjob;

 pjob.setPosition("President");

 pjob.setSalary(100000);

 // me.setJob(pjob);

 Job otherJob;

 // string position = me.getJob().getPosition()

 // float salary = me.getJob().getSalary();

}

Inheritance and Polymorphism | FITPED

86

🕮 4.1.17

The hide of member functions

When a function is redefined or created in a derived class, all functions with the
same name in the base class are hidden in the derived class, even if they do not
match the type or number of parameters. The function of the derived class hides
those of the base class, but they can be called using its full name.

For example, if the Stack class has two functions "push", one "push(int)" that add
one value to the stack and the other "push(int, int)" that adds two values to the
stack when the class StackUnlimited redefine the "push(int)" function hide all the
"push" functions of the base class. The hidden functions still can be called using its
full name: the name of the base class followed by "::" and its name, in this case,
"Stack::push(2, 3)".

📝 4.1.18

When a function is created in a derived class, all functions with the same name in
the base class are hidden in the derived class.

• True
• False

📝 4.1.19

The hidden functions inherited from the base class can not be used in the derived
class.

• False
• True

⌨ 4.1.20 Creating a new class Worker from Person with constructors

We have developed a Person class, a Job class, and we need a Worker class, a
worker is also a person. Please, create a new class Worker that inherited from
Person and have a function setJob and a function getJob to manage the job done
by the worker. The class Person and the class Job has a constructor. Notice that
you must call the constructor of the base class and attributes at the constructor of
the derived class. You can initialize each attribute using "atribute_name(init_value)".

class Person{

Inheritance and Polymorphism | FITPED

87

 string name;

public:

 Person(string name) {this->name = name;}

 void setName(string name) {this->name = name;}

 string getName() {return this->name;}

};

class Job{

 string position;

 float salary;

public:

 Job(string position, float salary) {

 this->position = position;

 this->salary = salary;

 }

 void setPosition(string position) {this->position =

position;}

 string getPosition() {return this->position;}

 void setSalary(float salary) {this->salary = salary;}

 float getSalary() {return this->salary;}

};

exercise.cpp
class Person{

 string name;

public:

 Person(string name) {this->name = name;}

 void setName(string name) {this->name = name;}

 string getName() {return this->name;}

};

class Job{

 string position;

 float salary;

public:

 Job(string position, float salary) {

 this->position = position;

 this->salary = salary;

 }

 void setPosition(string position) {this->position =

position;}

 string getPosition() {return this->position;}

 void setSalary(float salary) {this->salary = salary;}

 float getSalary() {return this->salary;}

};

Inheritance and Polymorphism | FITPED

88

void exampleOfUse() {

 Job pjob("President",1000);

 // Worker me("JohnDoe", pjob);

 // string name = me.getName()

 // string position = me.getJob().getPosition()

 // float salary = me.getJob().getSalary();

}

⌨ 4.1.21 Creating a new class Worker from Person redefining a member
function

We have developed a Person class, a Job class, and we need a Worker class, a
worker is also a person. Please, create a new class Worker that inherited from
Person and have a function setJob and a function getJob to manage the job done
by the worker. The class Person and the class Job has an automatic conversion
function "operator string" that represents the object as a string. Redefine this
function at the Worker class to return the value returned by Person string
concatenate with space and followed by the string representing the job. Remember
that you can use a hidden function using the function preceded by its class name
and "::".

class Person{

 string name;

public:

 void setName(string name) {this->name = name;}

 string getName() {return this->name;}

 operator string() {return "Name: " + this->name;}

};

class Job{

 string position;

 float salary;

public:

 void setPosition(string position) {this->position =

position;}

 string getPosition() {return this->position;}

 void setSalary(float salary) {this->salary = salary;}

 float getSalary() {return this->salary;}

 operator string() {

 return "Position: " + this->position + " Salary: " +

to_string(this->salary);

 }

};

Inheritance and Polymorphism | FITPED

89

exercise.cpp
class Person{

 string name;

public:

 void setName(string name) {this->name = name;}

 string getName() {return this->name;}

 operator string() {return "Name: " + this->name;}

};

class Job{

 string position;

 float salary;

public:

 void setPosition(string position) {this->position =

position;}

 string getPosition() {return this->position;}

 void setSalary(float salary) {this->salary = salary;}

 float getSalary() {return this->salary;}

 operator string() {

 return "Position: " + this->position + " Salary: " +

to_string(this->salary);

 }

};

void exampleOfUse() {

 // Worker me;

 // me.setName("John Doe");

 Job pjob;

 pjob.setPosition("President");

 pjob.setSalary(100000);

 // me.setJob(pjob);

 Job otherJob;

 // string position = me.getJob().getPosition()

 // float salary = me.getJob().getSalary();

}

4.2 Polymorphism

🕮 4.2.1

The polymorphism in C++

The inheritance facilitates the construction of new classes from others already
defined. However, its introduction is more transcendent since it involves

Inheritance and Polymorphism | FITPED

90

polymorphism. This element is essential in object-oriented languages, enhancing
the possibilities of reusability of the software developed.

The polymorphism represents the ability to use objects of different classes through
the same interface. That is, by using a polymorphic variable is possible to use
objects of different classes transparently. The call of a member function with
dynamic binding, using a polymorphic variable, results in calling the corresponding
function of the class to which the object belongs.

The dynamic binding is the mechanism responsible for determining, at runtime,
what function to execute, according to the object involved.

📝 4.2.2

Invoking a member function without dynamic binding, using a polymorphic variable,
results in calling the corresponding function of the class to which the object
belongs.

• False
• True

🕮 4.2.3

Polymorphic variables

In the case of C++, there are two types of polymorphic variables: pointers and
references.

Pointers and references to a base class can point to and reference objects of
derived classes.

Pointers and references can call functions of the objects they point to or reference.
The derived classes can redefine member functions so that depending on the class
of the object, one function or another will be executed. Notice that the object to the
pointer points to, may vary during execution.

📝 4.2.4

What are the polymorphic variables in C++?

Select one:

Inheritance and Polymorphism | FITPED

91

• Pointers and references
• Pointers
• References
• Parameters
• Local variables
• Hidden objects

📝 4.2.5

The polymorphic variables allow accessing objects of derived classes
transparently.

• True
• False

⌨ 4.2.6 Using polymorphism

We have developed classes that represent 3D geometric shapes. We have the class
Cube, Cylinder, and an abstract class Shape3D gathering the common of 3d shapes.

We have an array of pointers to Shape3D. Notice that this means that we have an
array of pointers to objects of any class derived from Shape3D, here Cube, or
Cylinder. We can not create objects of the class Shape3D due it is an abstract class.
Please, write a function called "areaOfBases" that accepts this array and its size.
The function returns the sum of the area of the base of all objects in the array.

#include <cmath>

class Shape3D {

protected:

 float heigth;

public:

 Shape3D(float heigth) {this->heigth = heigth;}

 float getHeigth() {return this->heigth;}

 virtual float getAreaOfBase() = 0; //Pure virtual function

 virtual float getPerimeterOfBase() {return heigth *

getAreaOfBase();}

 virtual float getVolume() {return heigth *

getAreaOfBase();}

};

class Cube: public Shape3D{

public:

Inheritance and Polymorphism | FITPED

92

 Cube(float side): Shape3D(side) {}

 float getAreaOfBase() { return getHeigth() *

getHeigth();}; //Define a function

 float getPerimeterOfBase() {return 4 * getHeigth();}

};

class Cylinder: public Shape3D{

protected:

 float radio;

public:

 Cylinder(float radio, float heigth): Shape3D(heigth) {

this->radio = radio;}

 float getRadio() {return this->radio;}

 float getAreaOfBase() { return M_PI * radio * radio;};

//Define a function

 float getPerimeterOfBase() {return 2 * M_PI * radio;}

};

exercise.cpp
#include "shapes3d.h"

// Write here the function areaOfBases

float exampleOfUse() {

 Shape3D* v[5];

 Cube cu1(3.3), cu2(7.7), cu3(1);

 Cylinder cy1(1, 5), cy2(5.7, 1);

 v[0] = & cu1;

 v[1] = & cy1;

 v[2] = & cu2;

 v[3] = & cy2;

 v[4] = & cu3;

 return areaOfBases(v,5);

}

🕮 4.2.7

Virtual member functions

In C++, for reasons of efficiency, there is a fixed bind and dynamic bind. The fixed
binding resolves the function to call at compile-time. The dynamic binding gets the
function to call at runtime. By default, the calls to functions or procedures are of
fixed bind type, and the member function call is resolved at compile time. Notice

Inheritance and Polymorphism | FITPED

93

that a significant number of modern programming languages are interpreted and
always use dynamic binding.

Establishing the dynamic binding to a member function is done by writing the
modifier "virtual" at the start of its declaration. This statement will indicate that the
dynamic binding will occur for the corresponding function of this class and the
functions redefined in derived classes. When this function is invoked using a
polymorphic variable, the function executed depends on the class of the current
object.

📝 4.2.8

Establishing the dynamic binding to a member function is done by writing the
modifier "virtual" at the start of its declaration.

• True
• False

🕮 4.2.9

Calling a function overloaded or a virtual function

Calling a member function overloaded should not be confused with calling a
member function with polymorphism. In a function overload, the decision of which
function should be called is resolved at compile time according to the number and
the type of the parameters. When using dynamic binding, knowing which function
should be called, is a decision at runtime based on the class to which the current
object belongs.

📝 4.2.10

Select the correct affirmations about calling a member function.

• In function overload in C++, the decision of which function should be called
is resolved at runtime according to the number and the type of the
parameters.

• Using dynamic binding, knowing which function should be called is a
decision at runtime based on the class to which the current object belongs.

Inheritance and Polymorphism | FITPED

94

🕮 4.2.11

When defining a hierarchy of classes, normally, the most basic class has an
interface as generic as possible and defines its functions as virtual, allowing
greater flexibility of use.

The polymorphism can occur in a semi-hidden way when another function of the
same class calls a polymorphic function.

class public Stack { // Base class

 // ...

public:

 virtual bool isFull(); // Called using dynamic binding

 virtual void push(int); // Called using dynamic binding

 // ...

};

class StackUnlimited: public Stack { // Inherited from the

Pila class

public:

 bool isFull () {return false;} // Redefine a virtual

function

 virtual void push(int); // Redefine a virtual function

 // virtual is optional if already used in the base class

};

void usingStack(Stack & st) { // st reference polymorphic

 st.push(1); // Call the push function of the class of st

(Stack or StackUnlimited)

 st.push(2);

 st.push(2);

}

void f() {

 Stack st1(20);

 StackUnlimited st2();

 usingStack(st1);

 usingStack(st2);

}

When a virtual function is redefined in a derived class it is optional to put the virtual
modifier, the new function will be virtual anyway.

📝 4.2.12

Please, indicate the line number that uses a dynamic binding call in the following
code.

Inheritance and Polymorphism | FITPED

95

class public Stack { // Base class

 // ...

public:

 virtual bool isFull(); // Called used dynamic binding

 virtual void push(int); // Called used dynamic binding

 // ...

};

class StackUnlimited: public Stack { // Inherited from the

Pila class

public:

 bool isFull () {return false;} // Redefine a virtual

function

 virtual void push(int); // Redefine a virtual function

 // virtual is optional if alredy used in the base class

};

void usingStack(Stack *st) { // st referece polymorphic

 StackUnlimited localStack();

1 localStack.push(1);

2 st->push(1);

}

void f() {

 Stack st1(20);

 StackUnlimited st2();

3 st2.push(4);

4 usingStack(&st1);

5 usingStack(&st2);

}

🕮 4.2.13

Pure virtual functions. Abstract classes

When a base class represents an abstraction, sometimes, there is not enough
information to implement some member functions. C++ supports this, allowing
member functions declared but not defined. To indicate that a function will not be
defined in this class, its declaration ends with "= 0". These member functions must
be "virtual". These functions are known as "pure virtual functions". A class that has
some "pure virtual function" not defined is an "abstract class". It is not possible to
create objects of an "abstract class" but you can create polymorphic variables that
allow managing objects of derived classes.

For example, we can declare a Figure3D class with some pure virtual functions as
follows:

class Figure3D {

Inheritance and Polymorphism | FITPED

96

 double height;

public:

 static const double PI;

 Figure3D(double height) { setHeight(height); }

 double getHeight() { return height; }

 void setHeight(double height) { this->height = height; }

 virtual double getBaseArea() = 0; // Pure virtual function

 virtual double getBasePerimeter() = 0; // Pure virtual

function

 virtual double getVolume() { return getBaseArea() *

getHeight(); }

};

const double Figure3D::PI = 3.14159265358979323846;

We have two pure virtual functions. Notice that we can call pure virtual functions as
in getVolume()

class Cube: public Figure3D {

public:

 Cube (double height): Figure3D(height){}

 double getBaseArea() { return getHeight() * getHeight();}

 double getBasePerimeter() { return 4 * getHeight();}

};

class Cylinder: public Figure3D {

 double radius;

public:

 Cylinder (double height, double radius): Figure3D(height)

{ this->radius = radius; }

 double getBaseArea() { return PI * radius * radius; }

 double getBasePerimeter() { return 2 * PI * radius; }

};

class Cone: public Figure3D {

 double radius;

public:

 Cone (double height, double radius): Figure3D(height) {

this->radius = radius; }

 double getBaseArea() { return PI * radius * radius; }

 double getBasePerimeter() { return 2 * PI * radius; }

 double getVolumen() { return Figure3D::getVolume() / 3; }

};

📝 4.2.14

Select the correct affirmations.

Inheritance and Polymorphism | FITPED

97

• Pure virtual functions are member functions with the modifier "virtual" that
are declared but not defined.

• To indicate that a function is a "pure virtual function" its declaration ends
with "= 0".

• The class that has some "pure virtual function" is a "virtual class".
• It is possible to create objects of an "abstract class".
• You can create polymorphic variables of an abstract class. This allows

managing objects of derived classes.

⌨ 4.2.15 Creating a class derived from an abstract class

Please, add a class Cone derived from Shape3D. The area of the base of a cone is
2*PI*r. The volume of a cone is (area * height / 3). Notice that a cone is not a
cylinder. The constructor of the Cone must accept the radius and the height (in this
order).

#include <cmath>

class Shape3D {

protected:

 float heigth;

public:

 Shape3D(float heigth) {this->heigth = heigth;}

 float getHeigth() {return this->heigth;}

 virtual float getAreaOfBase() = 0; //Pure virtual function

 virtual float getPerimeterOfBase() {return heigth *

getAreaOfBase();}

 virtual float getVolume() {return heigth *

getAreaOfBase();}

};

⌨ 4.2.16 Creating an abstract class

We want to develop classes that represent pieces of chess. We have started
developing a class Knight and a class Rook. We have found common features.
Please, create a new class called Piece that gathers the common features of all
chess pieces. The class Piece must have all its functions virtual and virtual pure
when needed.

class Knight {

 int posx, posy;

 int color;

public: Knight(

Inheritance and Polymorphism | FITPED

98

 int color) {this->color = color; this->x = 0; this->y =

0;} string getName() {return "Knight";}

 void setPosition(int x, int y) {this->x = x; this->y = y;}

 bool isOnboard() { return x > 0 && x <9 && y > 0 && y <

9;}

 bool canDoMove(int x, int y) {...}

};

class Rook {

 int posx, posy;

 int color;

public: Rook(

 int color) {this->color = color; this->x = 0; this->y =

0;} string getName() {return "Knight";}

 void setPosition(int x, int y) {this->x = x; this->y = y;}

 bool isOnboard() { return x > 0 && x <9 && y > 0 && y <

9;}

 bool canDoMove(int x, int y) {...}

};

exercise.cpp
// Write here the abstract class Piece

/* Do not uncomment

class Knight {

 int posx, posy;

 int color;

public:

 Knight(int color) {this->color = color;this->x = 0;this->y

= 0;}

 string getName() {return "Knight";}

 void setPosition(int x, int y) {this->x = x;this->y = y;}

 bool isOnboard() { return x > 0 && x <|9 && y > 0 && y <|

9;}

 bool canDoMove(int x, int y) {...}

};

class Rook {

 int posx, posy;

 int color;

public:

 Rook(int color) {this->color = color;this->x = 0;this->y =

0;}

 string getName() {return "Knight";}

 void setPosition(int x, int y) {this->x = x;this->y = y;}

Inheritance and Polymorphism | FITPED

99

 bool isOnboard() { return x > 0 && x <|9 && y > 0 && y <|

9;}

 bool canDoMove(int x, int y) {...}

};

*/

Templates

Chapter 5

Templates | FITPED

101

5.1 Templates

🕮 5.1.1

Genericity and parametrization

When developing new functions and classes, you must specify the types of data
involved. In many cases, only by changing the types of data, we would obtain a fully
operational new class or function. Therefore, there are higher-level abstractions
that are independent of the type of data involved.

For example, the process of ordering an array is the same, regardless of the type of
data. It is sufficient that the type of data stored in the array, supports the operations
required during the sorting process, such as comparison, assignment, etc.

Parameterization is the mechanism that languages have for building generic
classes and functions; allowing to write the same code to describe the different
implementations of a class or function in which only some of the types of data that
intervene vary.

📝 5.1.2

Parameterization is the mechanism for building generic classes and functions that
are ready to be used varying the types of data used.

• True
• False

🕮 5.1.3

Parametric functions

The parameterization of functions allows defining an unlimited set of variant
functions for the type of data they process. For example, a single parameterized
function sort() can define a function that orders arrays of any data type.

The format to parameterize a function is:

template <class Type1, class Type2, ...>

Function Definition

Where Type1, Type2, etc. are the parametric names of unspecified data types. All
these types must appear in the function parameters.

Templates | FITPED

102

Example 1:

#include <iostream>

#include <cstdlib>

using namespace std;

template <class T> void swap(T & e1, T & e2) {

 T e;

 e = e2;

 e2 = e1;

 e1 = e;

}

template <class T> void sort (T v[], int n) {

 for (int i = 0; i < n; i ++)

 for (int j = 0; j <(n-i-1); j ++)

 if (v[j] > v[j + 1])

 swap(v[j], v[j + 1]);

}

int main() {

 int v[20];

 float g[20];

 for (int i = 0; i <20; i ++) {

 v[i] = rand();

 g[i] = v[i] / 3.0 * rand();

 }

 sort(v, 20);

 sort(g, 20);

 for (int i = 0; i < 20; i++)

 cout << i << ": " << v[i] << " " << g[i] << endl;

 return 0;

}

📝 5.1.4

Select the valid codes using the swap function.

#include <iostream>

#include <cstdlib>

using namespace std;

template <class T> void swap(T & e1, T & e2) {

 T e;

 e = e2;

 e2 = e1;

 e1 = e;

}

Templates | FITPED

103

Select one or more:

Code A

// ...

string a = "Hello!";

int b = 3;

swap(a, b);

Code B

// ...

string a = "Hello!";

string b = "bye";

swap(a, b);

Code C

// ...

char *a = "Hello!";

char *b = "bye";

swap(a, b);

Code D

struct S {

 int d1;

 int d2;

};

// ...

S a, b;

// ...

swap(a, b);

Code E

struct S {

 int d1;

 int d2;

 S(int p) {d1 = p; d2 = p}

};

// ...

S a(2), b(5);

// ...

swap(a, b);

Templates | FITPED

104

• Code A
• Code B
• Code C
• Code D
• Code E

⌨ 5.1.5 Creating a template function

Please, define a function named "arraySum" that accepts an array of any type and
its size. The function returns the sum of the elements in the array. The type of this
value is the same that the elements in the array.

🕮 5.1.6

The definition of a template function must appear in the ".h" header files, not in the
".cpp" files.

Example 2:

template <class T> T max (T a, T b) {

 return a> b? a: b;

}

Parameterized functions do not generate code until they are explicitly or implicitly
defined with their use.

Example of explicit definition:

void fn () {

 int max(int, int);

 int a = 1, b = 2;

 a = max(a, b);

}

Implicit definition example:

void fn () {

 int a = 1, b = 2;

 char c = 'Z', d = 'A';

 a = max(a, b); // The function max(int, int) is generated

 c = max(c, d); // The function max(char, char) is generated

}

Templates | FITPED

105

⌨ 5.1.7 Creating other template function

Please, define a void template function named "sort3" that accepts three references
to variables of a parametric type. The function reorders the three values, from left
to right.

📝 5.1.8

To allow the use of template functions in other source files, the definition must go
in a ".cpp" file and the declaration in a header file.

• False
• True

🕮 5.1.9

Generic classes

A template or generic class describes a family of classes that varies in some types
of data not specified at the time of its definition.

The format to parameterize a class is:

template <class Type1, class Type2, Type3 param, ...> class

ClassName

Class definition

where Type1, Type2, etc. are the parametric names of unspecified data types. It can
also set values as param of Type3, which will be used as a constant value in the
class.

The declaration and implementation of a parametric class must be placed in a ".h"
header file.

Parametric classes are always explicitly defined, and their name is the class name
followed by the parametric types separated by "," between "<" and ">". Format of use
of a parametric class:

ClassName <Type1, Type2, value of Type3, ...>

When used to reference the class, within the class itself, the names of the formal
parameters are used; when used to define a specific class, the formal parameters
are replaced by real parameters, that is, by real types.

Templates | FITPED

106

The following example defines a Vector template class.

template <class T> class Vector {

private:

 T * v;

public:

 Vector(int length) {v = new T[length];}

 ~Vector() { delete []v;}

 T & operator[] (int index);

};

template <class T>

T & Vector<T>::operator[] (int index) {

 return v[index];

}

Notice that the definition of functions outside the class need
"template<Parameter>" before definition and the name of the class must contain
"<Parameter>".

This class can be used as follows:

int main () {

 Vector<int> ints(20);

 Vector<Complex> complexes(10);

 for (int i = 0; i < 20; i++) ints[i] = i;

 for (int i = 0; i < 10; i++) complexes[i] = Complex(i, i *

2);

 return 0;

}

The first statement creates a Vector<int> class, and then an object of this class is
generated. The second statement defines the Vector<Complex> class and an
object of this class. For the Vector class to be fully functional, the assignment
operator and the copy constructor would have to be added.

📝 5.1.10

Select the correct affirmations.

Affirmation A

The declaration and implementation of a parametric class must be placed in a ".h"
header file.

Templates | FITPED

107

Affirmation B

template <class T> class Vector {

private:

 T * v;

public:

 Vector(int length) {v = new T[length];}

 ~Vector() { delete []v;}

 T & operator[] (int index) { return v[index]; }

};

To use T in Vector, the type T must allow the creation of arrays of Ts, then if T is a
class must have a default constructor.

Affirmation C

template <class T> class Vector {

private:

 T * v;

public:

 Vector(int length) {v = new T[length];}

 ~Vector() { delete []v;}

 T & operator[] (int index) {

 return v[index];

 }

};

The assignment of two objects of type Vector will work correctly.

Affirmation D

template <class T1, class T2> class Pair {

public:

 T1 first;

 T2 second;

};

Pair<int, int> a;

The object "a" of type "Pair<int, int>" can not be created because T1 and T2 must be
different types.

Affirmation E

template <class T, int length> class Vector {

private:

 T v[length];

Templates | FITPED

108

public:

 T & operator[] (int index) {

 if (index < 0 || index >= length) throw "Index out of

bound";

 return v[index];

 }

};

// ...

int main() {

 Vector<int, 10> v;

 v[3] = 4;

 return 0;

}

It Will not compile because the class Vector requires a constructor and a
destructor.

• Affirmation A
• Affirmation B
• Affirmation C
• Affirmation D
• Affirmation E

⌨ 5.1.11 Creating a template class

We have developed a Stack class of integers of limited size. Please, change the
class to be a template class that can keep data of any type. Remember that the
definition of functions outside the class need "template<Parameter>" before the
definition and the name of the class must contain "<Parameter>".

class Stack {

protected:

 int nelements;

 int maxElements;

 int vector;

public:

 Stack(int t = 100); // Constructor with one parameter and

default constructor

 ~Stack() {delete vector;} // Destructor to free dynamic

memory

 bool isEmpty() {return nelements == 0;}

 bool isFull() {return nelements == maxElements;}

 void push(int);

 void pop();

Templates | FITPED

109

 int top();

};

Stack::Stack (int t) {

 vector = new int[t]; // The vector is created by taking

dynamic memory

 nelements = 0;

 maxElements = t;

}

void Stack::push(int i) {vector [nelements ++] = i;}

void Stack::pop() {--nelements;}

int Stack::top() {return vector [nelements-1];}

exercise.cpp
class Stack {

protected:

 int size;

 int maxsize;

 int *vector;

public:

 Stack(int maxsize = 100);

 ~Stack() {delete []vector;}

 bool isEmpty() {return size == 0;}

 bool isFull() {return size == maxsize;}

 void push(int);

 void pop();

 int top();

};

Stack::Stack (int maxsize) {

 this->vector = new int[maxsize];

 this->size = 0;

 this->maxsize = maxsize;

}

void Stack::push(int data) {vector [size ++] = data;}

void Stack::pop() {--size;}

int Stack::top() {return vector [size-1];}

Exceptions

Chapter 6

Exceptions | FITPED

111

6.1 Exceptions

🕮 6.1.1

Exceptions

An exception is an unusual event that affects the execution of a program in an
uncontrolled manner. There are two types, exceptions: hardware and software:

• Hardware exceptions occur when an operation produces an abnormal
condition detected by the operating system. For example, division by zero,
access to a prohibited memory area, etc.

• The software exceptions occur under the decision of the programmer, for
example:

• There is an unexpected result detected by the software. For example,
unexpected values when reading a file.

• You use the wrong parameters calling a function. For example, you try to
calculate the square root of a negative number.

• An internal malfunction of some function is detected.

Notice that if the program resolves an unusual situation executing code where it's
found, then it is not an exception.

Historically, the detection of an exception generated an abnormal program
termination. Instead, the application should go to an execution point where the
program can resolve the problem or the user informed. This process of returning to
a safe location in the code is complex to implement if it is not supplied directly by
the programming language. Today, most programming languages provide
mechanisms to perform this task.

📝 6.1.2

Please, select the situations where you must use exceptions.

Select one or more:

• A function that takes an array to return the minimum value and receives an
array of size zero.

• A function that takes an array to return the sum of its values and receives an
array of size zero.

• A program prints a billing ticket, and the printer fails.
• A function that takes an array to return the sum of its values, but receives a

NULL pointer.
• A function that searches for the number of words in a text file found that is

going to return zero.

Exceptions | FITPED

112

🕮 6.1.3

Exceptions in C++

The C++ exception handling system provides a secure way to return from where the
exception occurs to a safe point in the code. It also establishes exception
managers, that is, code that runs after an exception occurs. After an exception,
objects created in the stack, from the place where the exception was thrown to the
safe return point, are automatically destroyed. The return point is an exception
handler that is executed.

The exception mechanism needs to create a try-block from which execution can
throw an exception. After the try-block, the exception handlers are defined. Each
exception is of a type of data, commonly a class, and each handler manages a type
of exception.

try { // try-block

 // Exceptions can occur inside any function called

}

You must use the throw instruction to launch an exception. The throw instruction
has the format:

throw expression;

The data/object resulting from evaluating the expression will be the data
representing the exception. This data is received as a parameter by the exception
handler.

Exception handlers catch are defined after the try block with the following format:

try { /* ... */ }

catch (type1 parameter) { // type1 is the type of the

exception

 exception management code

}

catch (type2 parameter) { // type2 is the type of the

exception

 exception management code

}

// Execution flow continue here after the try-block or after

executing a handler (catch)

The handler is like a function that receives information from the exception. The
specified type of that parameter determines the type of exception that can accept
the handler.

Exceptions | FITPED

113

📝 6.1.4

Please, select the correct code where exceptions have sense.

Select one or more:

Code A

// ...

try {

 int a = b;

}

catch (Exception e) {

 // ...

}

Code B

int f(int b) {

 if (b < 0) throw Exception();

 // ...

}

// ...

try {

 int a = f(b);

} catch (Exception e) {

 // ...

}

Code C

int f(int b) {

 if (b < 0) throw 3;

 // ...

}

// ...

try {

 int a = f(b);

} catch (int e) {

 // ...

}

Code D

Exceptions | FITPED

114

// ...

try {

 if (b < 0) throw 3;

 b = 2 * b;

} catch (int e) {

 b = b + 2;

}

Code E

int f(int b) {

 if (b < 0) throw Exception();

 // ...

}

int g(int b) {

 return f(b * 2);

}

// ...

try {

 int a = g(b);

}

catch (int e) {

 // ...

} catch (Exception e) {

 // ...

}

• Code A
• Code B
• Code C
• Code D
• Code E

⌨ 6.1.5 Adding exceptions to a class

We have developed a Stack class of integers of limited size. Please, change the
code to detect the wrong use of the class. If you found bad use, you must throw an
exception. You can use the type of exception that you want. Hint: four locations
need to check the parameters or the state of the stack to work correctly.

class Stack {

protected:

 int nelements;

 int maxElements;

Exceptions | FITPED

115

 int vector;

public:

 Stack(int t = 100); // Constructor with one parameter and

default constructor

 ~Stack() {delete [] vector;} // Destructor to free dynamic

memory

 bool isEmpty() {return nelements == 0;}

 bool isFull() {return nelements == maxElements;}

 void push(int);

 void pop();

 int top();

};

Stack::Stack (int t) {

 vector = new int[t]; // The vector is created by taking

dynamic memory

 nelements = 0;

 maxElements = t;

}

void Stack::push(int i) {vector [nelements ++] = i;}

void Stack::pop() {--nelements;}

int Stack::top() {return vector [nelements-1];}

exercise.cpp
class Stack {

protected:

 int size;

 int maxsize;

 int *vector;

public:

 Stack(int maxsize = 100);

 ~Stack() {delete []vector;}

 bool isEmpty() {return size == 0;}

 bool isFull() {return size == maxsize;}

 void push(int);

 void pop();

 int top();

};

Stack::Stack (int maxsize) {

 this->vector = new int[maxsize];

 this->size = 0;

 this->maxsize = maxsize;

}

void Stack::push(int data) {vector [size ++] = data;}

void Stack::pop() {--size;}

Exceptions | FITPED

116

int Stack::top() {return vector [size-1];}

🕮 6.1.6

The management of exceptions

For each try-block, you can have as many handlers as you wish. After an exception,
one handler is executed, if any match the exception.

It is possible that during the execution of a try-block, you enter another try-blocks.
When an exception is thrown, the last try-block is explored. If the type of exception
does not match any handler, the exception goes on with the previous try-block. If
there are no more try-blocks, the program aborts with a message.

After executing the handler, the execution flow goes on after the last handle of the
current try-block. The execution flow does not go on at the point where the
exception was thrown.

📝 6.1.7

Please, select the correct affirmations.

• Each try-block can have only one exception handler.
• When an exception is thrown, and a matching exception handler is not found,

the execution flow returns to the exception point.
• It is possible that during the execution of a try-block, you enter another try-

blocks.
• When an exception is thrown, the last try-block is explored. If the type of the

exception does not match any handler, the exception goes on with the
previous try-block.

• After executing the exception handler, the execution flow goes on after the
last handle of the current try-block.

⌨ 6.1.8 Using try-catch

We have developed a template Array class that allows creating arrays of any type
and size. We control the bad use of the class, throwing two types of exceptions
IndexOutOfBound and ArrayOfNegativeSize.

We have written a function that sorts an object of the Array class, but we are not
sure of its correct functionality. Please, modify the function testSort to print a
message if the sort function throws IndexOutOfBound or ArrayOfNegative. Please,
print the name of the exception.

Exceptions | FITPED

117

class ArrayOfNegativeSize {};

class IndexOutOfBound {};

template <class T> class Array {

 T * v;

 int length;

public:

 Array (int length) {

 if(length < 0) throw ArrayOfNegativeSize();

 this->length = length;

 v = new T[length];

 }

 ~Array () { delete []v;}

 int getLength() { return length; }

 T & operator[] (int index) {

 if (index < 0 || index >= length) throw

IndexOutOfBound();

 return v[index];

 }

};

exercise.cpp
#include "array.h"

#include "sort.h"

template<|class T>

void testSort(Array<|T>& a) {

 // Control here with try-catch the exceptions that

Array<|> can throw.

 // Use cout <|<| name <|<| endl; to print the exception

class name.

 sort(a);

}

