

Java Classes

Published on

November 2021

Authors

Ján Skalka | Constantine the Philosopher University in Nitra, Slovakia

Ľubomír Benko | Constantine the Philosopher University in Nitra, Slovakia

Jaromír Landa | Mendel University in Brno, Czech Republic

Mariusz Boryczka | University of Silesia in Katowice, Poland

Juan Carlos Rodríguez-del-Pino | University of Las Palmas de Gran Canaria, Spain

José Daniel González-Domínguez | University of Las Palmas de Gran Canaria, Spain

Reviewers

Anna Stolińska | Pedagogical University of Cracow, Poland

Peter Švec | Teacher.sk, Slovakia

Eugenia Smyrnova-Trybulska | University of Silesia in Katowice, Poland

Piet Kommers | Helix5, Netherland

Graphics

Ľubomír Benko | Constantine the Philosopher University in Nitra, Slovakia

David Sabol | Constantine the Philosopher University in Nitra, Slovakia

Erasmus+ FITPED

Work-Based Learning in Future IT Professionals Education

Project 2018-1-SK01-KA203-046382

The European Commission support for the production of this publication does not
constitute an endorsement of the contents which reflects the views only of the authors,
and the Commission cannot be held responsible for any use which may be made of
the information contained therein.

Licence (licence type: Attribution-Non-commercial-No Derivative Works) and may be
used by third parties as long as licensing conditions are observed. Any materials
published under the terms of a CC Licence are clearly identified as such.

All trademarks and brand names mentioned in this publication and all trademarks and
brand names mentioned that may be the intellectual property of third parties are
unconditionally subject to the provisions contained within the relevant law governing
trademarks and other related signs. The mere mention of a trademark or brand name
does not imply that such a trademark or brand name is not protected by the rights of
third parties.

© 2021 Constantine the Philosopher University in Nitra

ISBN 978-80-558-1778-1

Table of Contents

1 Introduction to Object Oriented Programming .. 5

1.1 Classes .. 6

1.2 Classes in Java ... 10

1.3 Class definition (programs) ... 15

2 Methods .. 19

2.1 Methods ... 20

2.2 Methods (programs) .. 25

2.3 Parameters .. 28

2.4 Parameters (programs) .. 33

2.5 Functions ... 41

2.6 Functions I. (programs) .. 47

2.7 Functions II. (programs) ... 50

3 Encapsulation... 56

3.1 Encapsulation principle .. 57

3.2 Setters and getters ... 62

3.3 Bulk attributes setup .. 66

3.4 Encapsulation - programs (programs) .. 75

4 Constructors .. 78

4.1 Constructors ... 79

4.2 Constructors usage .. 83

4.3 Constructors (programs) ... 90

5 Class Examples .. 96

5.1 Class examples ... 97

6 More Classes ... 102

6.1 Parameters passed by reference .. 103

6.2 Methods' return value ... 107

6.3 Throw ... 114

6.4 References in fuctions (programs) ... 120

7 Static Variables .. 125

7.1 Static variables.. 126

7.2 Static variables usage .. 130

7.3 Static variables (programs) ... 132

8 Inheritance .. 135

8.1 Preparation .. 136

8.2 Inheritance I. .. 141

8.3 Inheritance II.. 144

8.4 Inheritance (programs) .. 148

9 Polymorphism .. 152

9.1 Concept and principle... 153

9.2 Polymorphism (programs) ... 159

Introduction to Object
Oriented Programming

Chapter 1

Introduction to Object Oriented Programming | FITPED

6

1.1 Classes

🕮 1.1.1

In the 1980s, programming was a complex and challenging activity. The programs
were long and confusing, and each modification required a lot of time and
understanding of the original programmer's thinking.

Object-oriented programming (OOP) came into practice in the 1990s, bringing a
new program organization that follows the real-world layout and clearer code.

The concept is based on an object that represents an element with the features and
capabilities that it provides to the programmer. When writing a program, objects are
created and used as needed, with the programmer not interested in detailing the
object in the first step but concentrating on solving the problem from a human
perspective and assuming that the objects have all the skills he needs for his
program.

📝 1.1.2

True or false? Object-oriented programming follows real-world ordering.

• True
• False

🕮 1.1.3

Object-oriented programming (OOP) focuses on expressing the problem in such a
way that it does not match the programmer's thinking to the programming language
but to the programmer's language.

The programmer uses objects as if they had all the capabilities he needed. If they
do not have them, he will add them as needed and code the details. When designing
a solution, however, thanks to the objects do not need to deal with details but the
problem itself.

Example: We have an Employee object that contains all the necessary information
about the employee, it has the ability to change its salary or marital status, or move
it to another workplace. In the code, the James object can then be manipulated as
follows.

if (businessIsGood) {

 James.changeSalary(+100);

Introduction to Object Oriented Programming | FITPED

7

} else {

 James.changeSalary(-50);

}

// if James got married

if (Wedding) {

 James.changeStatus("married");

 James.changeSalary(+20);

}

 We will only think about the change in status or salary change after we describe
the whole process program behavior.

All the procedures and principles that we have learned are applied and applied
when working with objects.

📝 1.1.4

Which structures can be used for programming in Object-oriented programming?

• sequence
• branching
• cycle
• compound conditions
• arrays

🕮 1.1.5

From the point of view of using a programmer, we can imagine the object as a black
box that has some memory in which it keeps the necessary information and
abilities that we can use.

Memory is a variable and is referred to as attributes in Object-Oriented
Programming terminology.

Object capabilities are described using programming language commands and
represent partial algorithms that solve simple tasks. We call them methods.

📝 1.1.6

Select true statements:

Introduction to Object Oriented Programming | FITPED

8

• Object memory are variables and are referred to as attributes.
• Object capabilities are partial algorithms and are referred to as methods.
• Object memory is a simple algorithm and is called an attribute.
• Object memory are variables and are referred to as methods.
• Object capabilities are partial algorithms and are referred to as attributes.

🕮 1.1.7

The concept of an object is retreating into the background in Java and is replaced
by the terms class and instance.

A class is a rule that determines what objects will be created based on and what
attributes to use. However, it does not yet exist in memory, so its variables cannot
be used or called its methods.

An instance is already a specific object created in memory that provides us with its
attributes and capabilities represented by methods.

The class represents a template that can be used to create instances with different
attributes (appearance, ingredients, quality, etc.)

Class:

Instances:

Introduction to Object Oriented Programming | FITPED

9

A class is a rule that tells what attributes and abilities an instance has.

An instance is already a specific element that HAS characteristics and IS
CAPABLE of performing activities.

📝 1.1.8

Select true statements:

• Class is a prescription that creates instances.
• If we do not have an instance created, we do not have access to the

attributes or methods defined in the class.
• If we have an instance created, we can use both the attributes and methods

defined in the class.
• If we have created a class, we can use both the attributes and methods

defined in the instance in the program.
• An instance is a prescription that generates classes.

📝 1.1.9

Fill in correct terms:

A rule or template that is used to create Java objects is called _____.

An object that contains data and is capable of performing activities in Java is called
_____.

The variable used to store data in an object is called _____.

The partial algorithm representing the capabilities of the object is called _____.

Introduction to Object Oriented Programming | FITPED

10

1.2 Classes in Java

🕮 1.2.1

The simplest example of a class is a class that has only attributes defined and does
not use any methods.

The general declaration:

class ClassName {

 typ1 variableName1;

 typ2 variableName2;

 ...

}

It is established that the class name begins with a capital letter.

📝 1.2.2

What command do we use to define a class?

🕮 1.2.3

Design a Tree class that will have its kind, age, height, and perimeter.

The class name will be Tree and each attribute will be a variable for storing numeric
and text values, such as:

class Tree {

 String type;

 int age;

 double height;

 double perimeter;

}

This structure represents any tree:

Introduction to Object Oriented Programming | FITPED

11

📝 1.2.4

True or false?

Class attributes are represented by variables of any type (both primitive and
reference).

• True
• False

🕮 1.2.5

The class represents only the structure by which instances are created in
memory. To store data about a particular tree, we need to create instances of the
Tree class - a separate instance for each tree.

An instance is just a class variable. We declare it as a variable, its type being a
class. Example:

Tree oak;

To create an instance in memory, you must use the new command followed by
specifying the class (template) to create:

oak = new Tree();

or we can use the declaration with creation in one command:

Tree pine = new Tree();

We will use the new keyword to allocate memory for instances, just as we do with
memory allocation for arrays.

We can create any number of instances of any class in the program.

 public class App {

 public static void main(String[] args) {

Introduction to Object Oriented Programming | FITPED

12

 Strom oak = new Tree();

 Strom pine = new Tree();

 Strom pear = new Tree();

 ...

 }

}

📝 1.2.6

What command do we use to create an instance of any class?

🕮 1.2.7

A class selector - character "." is used to access the class attributes. Allows you to
insert or read content into an instance attribute:

public class App {

 public static void main(String[] args) {

 Tree oak = new Tree();

 oak.type = "deciduous";

 oak.age = 21;

 Tree pine = new Tree();

 pine.type = "coniferous";

 pine.height = 15.2;

 System.out.println("Pine: " + pine.type + " – " +

pine.height);

 }

}

 If some attributes are not set, the default value will be stored (0 for numeric
types).

📝 1.2.8

Fill the code to create the instance and set its attributes.

_____ Person {

 String name;

 int age;

}

Introduction to Object Oriented Programming | FITPED

13

public class App {

 public static void main(String[] args) {

 Person men1 = _____ Person();

 man1_____name = "Peter";

 man1_____age = 25;

 System.out.println(man1.name + ":" + man1.age);

 Person director = _____ Person();

 director_____name = "Paul";

 director_____weight = 120;

 System.out.println(director.name + ":" + director.age);

 }

}

🕮 1.2.9

Manipulation of attributes is the same as for simple variables. We load and write to
them using the dot selector.

Usually, a class is created in a separate file but it is possible to have multiple class
definitions and a start code in the same file.

class Person {

 String name;

 int age;

 double salary;

}

public class App {

 public static void main(String[] args) {

 Person man1 = new Person();

 man1.name = "Peter";

 man1.age = 25;

 man1.age++;

 if (man1.salary < 800) man1.salary = 800;

 ...

 }

}

Introduction to Object Oriented Programming | FITPED

14

📝 1.2.10

Fill in the code. If the car brand is BMW or Audi set the maximum speed to 250,
otherwise set it to 210.

class Car {

 String brand;

 int price;

 int maxSpeed;

}

public class App {

 public static void main(String[] args) {

 Scanner scn = new Scanner(System.in);

 String b = scn.nextLine();

 Car car1 = _____ _____;

 car1.brand = b;

 if ((car1.brand._____("BMW")) _____

(car1.brand._____("Audi")) {

 car1._____ = _____;

 } else {

 car1._____ = 210;

 }

 System.out.println(car1.brand + "have maximal speed " +

car1._____);

 }

}

🕮 1.2.11

In some cases, setting the attributes in the code is unnecessarily lengthy. This is
particularly the case when some attributes have the same default value. In such
cases, we can put the default value into the attributes just as you would when
declaring ordinary variables.

When you create an instance, these values are then set to the appropriate
attributes.

class Employee {

 String name;

 double salary = 998;

 String degree = "Ing.";

}

Introduction to Object Oriented Programming | FITPED

15

In general, it is not appropriate to determine the same value for a name unless we
assume that all of our employees are called Peter or James.

If all newly recruited employees have the same starting salary, it is a good idea to
set it directly in the declaration - saving each line of code after creating each new
instance.

If we assume that employees with a technical university education will be recruited
for the given positions, they are usually Ing. If we hire an employee with a different
title, we will simply overwrite it.

In this case, the code

public class App {

 public static void main(String[] args) {

 Employee new1 = new Employee();

 new1.name = "Carlos";

 System.out.println(new1.name + ", " + new1.degree + " ,

salary: " + new1.salary);

 }

}

will print the following information:

Carlos, Ing., salary: 998

📝 1.2.12

Fill the code so that the newly created Tree instances are set to 2 years old and 0.8
m high.

class Tree {

 String type_____

 int age_____

 double height_____

 double perimeter_____

}

1.3 Class definition (programs)

⌨ 1.3.1 House

Create a House class that will have the following attributes:

Introduction to Object Oriented Programming | FITPED

16

• color - plaster color
• height - the height of the house
• width - width of the house
• rooms - number of rooms

Choose the appropriate data types and set the following default values for the
attributes:

• number of rooms - 5
• width - 10.5

An illustration of creating instances and setting attributes is available in the
MainApp.java file.

MainApp.java
public class MainApp {

 public static void main() {

 // this is just an example usage, this code is not

executed

 House example = new House(); // creates instance

 example.color = "green";

 example.height = 6.2;

 example.width = 12.5;

 example.rooms = 8;

 }

}

⌨ 1.3.2 Tree

Create a Tree class that will have the following attributes:

• name - the name of the tree
• height - the height of the tree
• leafs - whether it has or leaves
• age - age of the tree

Select the data types appropriately and set the following default values for the
attributes:

Introduction to Object Oriented Programming | FITPED

17

• name - elm
• height - 17.8

An illustration of creating instances and setting attributes is available in the
MainApp.java file.

MainApp.java
public class MainApp {

 public static void main() {

 // this is just an example usage, this code is not

executed

 Tree example = new Tree();

 example.name = "maple";

 example.height = 16.2;

 example.leafs = true;

 example.age = 12;

 }

}

⌨ 1.3.3 Person

Create a Person class that will have the following attributes:

• name
• job - occupation
• age - age
• kids - number of children

Select the data types appropriately and set the attributes to the following default
values:

age - 23

number of children - 1

An illustration of creating instances and setting attributes is available in the
MainApp.java file.

Introduction to Object Oriented Programming | FITPED

18

MainApp.java
public class MainApp {

 public static void main() {

 // this is just an example usage, this code is not

executed

 Person example = new Person();

 example.name = "Ivan";

 example.job = "manager";

 example.age = 28;

 example.kids = 2;

 }

}

Methods

Chapter 2

Methods | FITPED

20

2.1 Methods

🕮 2.1.1

The object-oriented concept was to preserve the attributes related to one object
together but mainly to transfer to the object the operations that are performed with
these attributes.

Methods define the abilities and behavior of an object. Methods are designed to
deal with elementary object operations and very often contain one or only a few
command lines. If we need to solve a more complex problem, we simply design a
method that uses the methods already defined.

Some sources state that the number of lines of code in a method should not
exceed 20.

The method can:

• just execute a sequence of commands (sometimes referred to as
a procedure)

• execute a sequence of commands and return a result (referred to as
a function)

📝 2.1.2

How do the methods work?

• the method executes a sequence of commands and can end or return a
result

• the method executes a sequence of commands and ends
• the method executes a sequence of commands and returns the result

🕮 2.1.3

We declare a method in a class body, the method must have its type, name,
optional parameters in brackets, and the commands enclosed in {}:

class MyClass {

 type1 atrribute1;

 type2 attribute2;

 type3 nameOfMethod1() {

 // method code

Methods | FITPED

21

 }

 type4 methodWithParameters(type1 par1, type2 par2) {

 // method code

 }

}

If the method has no parameters, we give it only the name and the empty pair of
brackets "()".

For a method that only executes commands and returns no value, we
specify void as the type. Example:

class Tree {

 String type;

 int age;

 double height;

 void growOld() {

 /* code for increasing the age by one year */

 }

 void growUp() {

 /* code for changing height, for example up by 10 cm */

 }

}

📝 2.1.4

Which parameters are required to define a method?

• return value type
• method name
• parameter or more parameters
• void

🕮 2.1.5

If we use attributes inside a class, we refer to them by their names, we do not use a
selector because the attributes are part of the method and because we cannot refer
to an instance of the class because there is none yet - we write the class code to
create the instance.

Methods | FITPED

22

Fill the code for the Tree class where the growOld() method is called, the age is
increased by 1, where the growUp() method is called, the height is increased by 0.1
m.

class Tree {

 String type;

 int age;

 double height;

 void growOld() {

 age++;

 }

 void growUp() {

 height = height + 0.1;

 }

}

📝 2.1.6

Fill the Car class code where accelerate() method increments the speed by 10 and
in the stop() method sets the speed to 0.

class Car _____

 String brand;

 int speed;

 _____ accelerate _____ {

 speed = speed + _____;

 }

 _____ stop() {

 speed = 0;

 }

}

🕮 2.1.7

Class instances are created by the new command, attributes are referenced by the
selector "." and the methods are called by the selector "." too. Example:

class Tree {

 String type;

 int age;

Methods | FITPED

23

 double height;

 void growOld() {

 age++;

 }

 void growUp() {

 height = height + 0.1;

 }

 void listing() { // add a method to listing the current

state of the instance

 System.out.println(type+ ", " + age +" old, height" +

height + "m ");

 }

}

We create instances from the Tree class and change the attributes of the methods
by calling the methods multiple times.

public class App {

 public static void main(String[] args) {

 Tree pear = new Tree();

 Tree pine = new Tree();

 pear.growOld();

 pear.growUp();

 pear.listing();

 pine.type = "coniferous”;

 pine.growUp();

 pine.growUp();

 pine.listing();

 }

}

📝 2.1.8

Fill in the code that uses Car methods to change attributes and listing.

public class App {

 public static void main(String[] args) {

 Car car1 = new _____();

Methods | FITPED

24

 Car peugeot = new _____();

 car1_____accelerate();

 car1_____accelerate();

 peugeot_____accelerate();

 peugeot_____stop();

 car1_____listing_____;

 }

}

🕮 2.1.9

In the method code, we can call another existing method of that class. For
example, in the case of a tree, it is logical if the tree changes its height as age
increases.

class Tree {

 ...

 void growOld() {

 age++;

 growUp();

 }

 void growUp() {

 height = height + 0.1;

 }

}

The method is called by its name followed by a pair of brackets. We don't use a
selector here like referring to attributes in a class.

📝 2.1.10

Fill the Employee class code to automatically increase salary by 10 EUR when
increasing the period of employment. Secure the salary increase by the already
defined method.

class Employee {

 int _____;

 int periodOfEmployment;

 _____ incSalary() {

 salary = salary + _____;

Methods | FITPED

25

 }

 void incPeriodOfEmployment() {

 periodOfEmployment++;

 _____;

 }

}

2.2 Methods (programs)

⌨ 2.2.1 Greetings

Create a Hello class that will have a sayHello() method. Make sure that the
sayHello() method prints the text

Hello, my friend

An illustration of creating instances and calling methods is available in the
MainApp.java file.

MainApp.java
public class MainApp {

 public static void main() {

 // this is just an example usage, this code is not

executed

 Hello a = new Hello();

 a.sayHello(); /* prints "Hello, my

friend" */

 }

}

⌨ 2.2.2 Greetings text

Design a Greeting class that will have:

• a txt attribute that will contain the greeting method, e.g. "Hi", "Greetings",
"Hello", etc.,

• an output() method that outputs the given greeting and adds an exclamation
mark after it.

Methods | FITPED

26

An illustration of creating instances and calling methods is available in the
MainApp.java file.

For parameters:

txt = "Hello"

will be the result of the output() method:

Hello!

Greeting.java
public class Greeting {

 // create a txt attribute that will contain the greeting

method, e.g. "Hi", "Greetings", "Hello", etc.,

 // an output() method that outputs the given greeting and

adds an exclamation mark after it.

}

MainApp.java
public class MainApp {

 public static void main() {

 // this is just an example usage, this code is not

executed

 Greeting a = new Greeting();

 a.txt = "Hi"; // sets text for greeting

 a.output(); /* prints "Hi!" */

 }

}

⌨ 2.2.3 Framing of the greeting

Design the BorderedGreeting class.

• Let the class contain a txt attribute that will contain the text of the greeting,
e.g. "Hi", "Greetings", "Hello", etc.,

• Add create a symbol attribute containing the character with which the
greeting will be framed, use the char data type.

• Create an output method that prints the given greeting, adds an exclamation
mark after it, and frames it.

Methods | FITPED

27

An illustration of creating instances and calling methods is available in the
MainApp.java file.

For parameters:

txt = "Good day", symbol = "x"

will result:

xxxxxxxxxxx

xGood day!x

xxxxxxxxxxx

BorderedGreeting.java
public class BorderedGreeting {

 // create a txt attribute that contains the text of the

greeting, e.g. "Hi", "Greetings", "Hello", etc.,

 // create a symbol attribute containing the character that

will frame the greeting, use the char data type

 // create an output method that prints the given greeting,

adds an exclamation mark after it and frames it

}

MainApp.java
public class MainApp {

 public static void main() {

 // this is just an example usage, this code is not

executed

 BorderedGreeting a = new BorderedGreeting();

 a.txt = "Cau"; // sets text for greeting

 a.symbol = 'x'; // sets the border char

 a.output(); /* vypise "xxxxx

 xHi!x

 xxxxx" */

 }

}

⌨ 2.2.4 Car

Create a Car class.

Methods | FITPED

28

• Let the class contain a car_type attribute, which will contain the make of the
car,

• Add an integer attribute speed containing the current speed of the car. Let
the speed be initially set to 50.

• Create a faster() method that will increase the car's speed by 10 when called.
• Create a slower() method that, when called, decreases the car's speed by 5.

Make sure to check that the speed does not drop below 0.
• Create an output() method that outputs the current data in the form type:

speed.

An illustration of creating instances and calling methods is available in the
MainApp.java file.

MainApp.java
public class MainApp {

 public static void main() {

 // this is just an example usage, this code is not

executed

 Car example = new Car();

 example.car_type = "Ford";

 example.faster(); // increases speed, current speed is

60

 example.output(); // writes "Ford: 60"

 example.slower();

 example.slower();

 example.slower();

 example.output(); // writes "Ford: 45"

 }

}

2.3 Parameters

🕮 2.3.1

In the Employee class, edit the incSalary() method so that you can determine how
much you want to raise each time you call.

class Employee {

 int salary;

 int jobLength;

Methods | FITPED

29

 void incSalary() {

 salary = salary + 10;

 }

 void incJobLength() {

 jobLength++;

 }

}

Parameters are used to transfer this information to the method. A parameter is a
variable that is declared in the method header and is used to transfer values to that
method from its call point. The form of the parameter is as follows:

 void incSalary(int amount) {

 salary = salary + amount;

 }

and form of calling from the jobLength() method, for example:

 void incJobLength() {

 jobLength++;

 if (jobLength == 10) incSalary(50);

 if (jobLength == 20) incSalary(100);

 }

The call parameter is a specific value or a variable from which its value is taken.

When running the incSalary() method, an integer variable amount is created into
which the value that is part of calling the incSalary() method in
the incJobLength() method is inserted.

The amount variable can be used as a common variable in
the incSalary() method. However, its main purpose is to bring value from another
part of the program into the method.

The variable amount expires upon the termination of the incSalary() method in
which it was declared.

📝 2.3.2

Fill the code so that the incPerimeter() method adds the specified decimal number
to the current perimeter of the tree.

class Tree {

 _____ perimeter;

Methods | FITPED

30

 void incPerimeter(_____ addition_____ {

 perimeter = perimeter + _____};

 }

}

🕮 2.3.3

There is no limit to the number of parameters that enter the method. However, we
must determine the type separately for each parameter.

For example, we will create a Calculator class that will
have sum() and product() methods, listing the result of the sum and the product of
two numbers that enter it as parameters.

class Calculator {

 void sum(int a, int b) {

 System.out.println(a + b);

 }

 void product(int a, int b) {

 System.out.println(a * b);

 }

}

Parameters are separated by a comma, in the method we can execute the
calculation directly in the statement and within the class, and we do not need any
attributes. Parameters in different methods can have the same names, their
existence and validity end with the last statement of the method in which they are
declared.

📝 2.3.4

Fill the code to subtract two integer inputs after starting and calculate the
remainder.

class Calculator2 {

 _____ subtract(_____ x _____ int _____) {

 System.out.println(_____ - y);

 }

Methods | FITPED

31

 _____ remainder(_____ a _____ int _____) {

 System.out.println(a _____ b);

 }

}

🕮 2.3.5

To use the calculator's methods in the program, we need to instantiate it and then
use all of its available methods:

class Calculator {

 void sum(int a, int b) {

 System.out.println(a+b);

 }

 void product(int a, int b) {

 System.out.println(a * b);

 }

}

public class App {

 public static void main(String[] args) {

 Calculator myCal = new Calculator(); // create an

instance

 myCal.sum(10,20); // prints the sum of two entered

numbers

 myCal.sum(5,8); // prints the sum of the other

two numbers

 myCal.product(9,9); // prints the product of

completely different entered numbers

 ...

 }

}

📝 2.3.6

Fill the code so that the program creates an instance of the Multiples class that
prints three times the number 86 and five times the number 189.

Methods | FITPED

32

class Multiples {

 void multiple3(int input) {

 System.out.println(input * 3);

 }

 void multiple5(int vstup) {

 System.out.println(input * 5);

 }

}

public class App {

 public static void main(String[] args) {

 _____ cal = new _____();

 cal._____(86);

 cal_____multiple5_____189_____;

 }

}

🕮 2.3.7

We treat text parameters in the same way as numeric parameters.

Create a Mirror class that in the rotate() method prints a mirror image of the string
specified as its parameter.

The solution is relatively simple, we have already created a mirror image without
using methods.

class Mirror {

 void rotate(String str) {

 String aux = "";

 for(int i = 0; i < str.length(); i++)

 aux = str.substring(i,i+1) + aux; // inserts the

following characters at the start

 System.out.println(aux);

 }

}

Methods | FITPED

33

The rotate() method enters a string to rotate. We treat the variable that represents
this parameter in the same way as any other. We insert a cycle into the body of the
method, in which we copy the string from the end to the auxiliary variable and then
write it.

📝 2.3.8

Add the Counter class, which in the count() method detects and lists the count of
digits in a string that enters it as a parameter.

class Counter {

 _____ count(_____ str) {

 int c = _____;

 for(int i = 0; i < str._____; i++)

 if (str._____(i) >= '0' && str._____(i) <= '9') c++;

 System.out.println(c);

 }

}

📝 2.3.9

Which statements about the parameters are true?

• the parameter exists only during the run of the method in which it is declared
• the parameter is declared in the method header as well as the variable
• if we use multiple parameters in a method, each type must be defined

separately
• parameters are separated by commas in the method header
• parameters are separated by commas when entering (calling a method)
• the parameter is available for the lifetime of the instance
• the parameter cannot be used in a method as a variable because it has a

constant value after it is created
• parameters can only be used in void methods

2.4 Parameters (programs)

⌨ 2.4.1 Calculator

Create a Calculator class that has methods

Methods | FITPED

34

• sum() - adds two integers that enter the method as a parameter and prints
the result,

• division() - divide two integers and print the result as 15 : 3 = 5, remainder 0.
If 0 was specified as the divisor, it will print "Zero cannot be divided by",

• digit_sum() - prints the digit sum of the number specified as a parameter.

An illustration of creating instances and calling methods is presented by the
following procedure:

public static void main(String[] args) {

 Calculator calc = new Calculator();

 calc.sum(2,8); // writes 10

 calc.division(15,4); // writes 15 : 4 = 3, remainder 3

 calc.division(15,0); // writes Zero cannot be divided by

 calc.digit_sum(987); // wriites 24

}

⌨ 2.4.2 Car

In the Car class

public class Car {

 String car_type;

 int speed;

 fuel_consumption;

}

ensure that:

• the speed value is set to 40 when the instance is created,
• by calling the faster() method, increase the current speed by 10, but make

sure that it cannot be higher than 180,
• at the same time as increasing the speed by 10, increase the consumption by

0.5 litres in the addConsumption() method,
• the current state is output via the output() method in the form:

car_type: speed / fuel_consumption

The following procedure illustrates the creation of instances and method calls:

Methods | FITPED

35

public class MainApp {

 public static void main() {

 Car x = new Car(); // creates the instance

 x.car_type = "Ford";

 x.faster(); // increases speed and consumption, current

speed is 40 + 10

 x.output(); // writes "Ford: 50 / 0.5

 x.faster();

 x.output(); // writes "Ford: 60 / 1

 x.addConsumption(); // adds only consumption

 x.output(); // writes "Ford: 60 / 1.5

 }

}

⌨ 2.4.3 Robot

Design a Robot class to represent a robot moving on a 10x10 chessboard in four
directions. The robot will remember its position in the x and y attributes.

• Set the starting position to [4,4].
• Implement the methods left(), right(), up(), down(), which will move the robot

one step in a given direction each time. If the robot tries to exit the
checkerboard, output the text "BOOM" and do not allow it to change position.

• Add an output() method that outputs the robot's position in the form: [x,y]

The following procedure illustrates the creation of instances and method calls:

public class MainApp {

 public static void main(String[] args) {

 Robot r = new Robot();

 r.output(); // writes [4,4]

 r.left();

 r.left();

 r.up();

 r.up();

 r.output(); // writes [2,6]

 r.left();

 r.left();

 r.left(); // writes BOOM

 r.left(); // writes BOOM

 }

}

Methods | FITPED

36

⌨ 2.4.4 Pyramid

Design a Pyramid class that will be able to render a pyramid with the specified
number of floors based on the floor attribute using the * character.

E.g. for floors = 3 it will be of the form:

 *

In addition to rendering the pyramid in the standard form using the classis()
method, add a reversed() method that will reverse the pyramid so that the top row
contains the most elements and the last row contains one.

Add a river() method that renders the pyramid and draws a river below the pyramid
made of "=" characters with the length of the longest line of the pyramid.

 *

=====

The following procedure illustrates the creation of instances and method calls:

public static void main(String[] args) {

 Pyramid p = new Pyramid();

 p.floors = 3;

 p.classic(); // writes:

 /* *

 */

 p.reversed(); // writes:

 /* *****

 *

 */

 p.river(); // writes:

 /* *

 =====

 */

}

Methods | FITPED

37

⌨ 2.4.5 TextProcesor

Create a TextProcessor class, which will work with the text entered as a parameter
of each method and will have methods:

• getLength() - prints the number of characters of the specified string in the
form

The string "xyz" has 3 characters

The string "xyzwer" has 6 characters

The string "x" has 1 character

The string "" has 0 characters

• getDigits() - prints digits from the text by omitting all characters that are not
digits

• getDigitCount() - prints the number of digits from the text
• getSumDigits() - prints the sum of digits from the text
• getNumbers() - prints a comma-separated list of numbers from the text (a

number is a sequence of digits with no other character in between), e.g. for
ma12m3am456aemu7 returns

12,3,456,7

Make sure that the class has a mechanism to count how many operations (method
calls) its instance has performed and use the getOperationsCount() method to list
the number of operations or method calls listed above.

The following procedure illustrates the creation of instances and method calls:

public static void main(String[] args) {

 TextProcesor tp = new TextProcesor();

 tp.getLength("What is the length of this string?");

// writes: The string "What is the length of this string?" has

34 characters

 tp.getDigits("It is necessary 1 to write out 23 digits out

of 123 of this text."); // writes: 123123

 tp.getDigitCount("How many 123 digits is 1 in this 2

text?");// writes: 5

 tp.getSumDigits("What 1 is the 23 sum of 1 of these

digits?");// writes: 7

 tp.getNumbers("List 12 of these 22 numbers. 87");//

writes: 12, 22, 87

 tp.getOperationCount(); // writes the number of operations

performed in this instance: 5

}

Methods | FITPED

38

⌨ 2.4.6 Square

Create a Square class that contains:

• a method to calculate the content of getContent(), with an integer parameter,
which calculates and prints the result in the form: the content of a square
with side 4 is 16.

• a method to calculate the perimeter getCircumference(), with an integer
parameter, which calculates and prints the result in the form: The perimeter
of a square with side 4 is 16.

• method to draw a full square drawFull(), which for the given parameter
draws a full square and under the drawn image prints (calculates) its content
using an existing method

• method for drawing an empty square drawEmpty(), which for the given
parameter draws the outline of the square and under the drawn image prints
(calculates) its perimeter using an existing method.

An illustration of creating instances and calling methods is presented in the
following procedure:

public static void main(String[] args) {

 Square s = new Square();

 s.getContent(10); // writes: The content of a square with

side 10 is 100.

 s.getCircumference(5); // writes: The perimeter of a

square with side 5 is 20.

 s.drawFull(5); // writes:

 /* xxxxx

 xxxxx

 xxxxx

 xxxxx

 xxxxx

 The content of a square with side 5 is 25.

 */

 s.drawEmpty(5);// writes:

 /* xxxxx

 x x

 x x

 x x

 xxxxx

 The perimeter of a square with side 5 is 20.

 */

Methods | FITPED

39

}

⌨ 2.4.7 Drawer

Create a Drawer class that will draw different shapes.

Based on the boolean parameter, ensure that a full (if true) or empty shape (false)
is drawn. The individual methods will have the first parameter to indicate whether
the shape is full or empty, followed by the other necessary integer parameters

• square() draws a full or empty square with the specified character - let the
character be of type String,

• diagonal() draws a diagonal from left to right, in case of an empty shape
draws a full square with the diagonal characters omitted, use "x" as the draw
character.

• rectangle() renders a rectangle, where the first integer parameter represents
the number of rows, the second the number of columns, use "x" as the
rendering character.

• triangle() draws a right-angled isosceles triangle in the form e.g. for 4
characters

xxxx

xxx

xx

x

for empty

xxxx

x x

xx

x

use "x" as the rendering character.

The following procedure illustrates how to create instances and call methods:

public static void main(String[] args) {

 Drawer d = new Drawer();

 d.square(true,"a",5);

 /* writes:

 aaaaa

 aaaaa

 aaaaa

 aaaaa

 aaaaa

Methods | FITPED

40

 */

 d.diagonal(true,4);

 /* writes:

 x

 x

 x

 x

 */

 d.diagonal(false,4);

 /* writes:

 xxx

 x xx

 xx x

 xxx

 */

 d.rectangle(true,2,3);

 /* writes:

 xxx

 xxx

 */

 d.triangle(false,5);

 /* writes:

 xxxxx

 x x

 x x

 xx

 x

 */

}

⌨ 2.4.8 Tickets

Design a Tickets class listing the price of tickets to a specified destination for a
specified number of users.

The class will have a single getData() method that will work as follows:

For a call to getData("Madrid", 5), it will find or find the ticket price for Madrid and
multiply it by 5 (5 people).

The result is printed in the form:

Your x tickets to Madrid cost xxx EUR.

If the destination is not offered, it will print:

Methods | FITPED

41

Tickets to Madrid are not available.

The following destinations and prices are available:

Madrid - 500

Prague - 200

New York - 1200

Amsterdam - 400

Rome - 350

Moscow - 800

Krakow - 450

Paris - 333

Vienna - 800

London - 678

The following procedure illustrates how to create instances and call methods:

public static void main(String[] args) {

 Tickets t = new Tickets();

 t.getData("Moscow", 5); // writes: Your 5 tickets to

Madrid cost 4000 EUR.

 t.getData("Paris", 3); // vypíše: Your 3 tickets to

Madrid cost 999 EUR.

 t.getData("Viena", 19); // vypíše: Your 19 tickets to

Madrid cost 15200 EUR.

 t.getData("Rio", 2); // vypíše: Tickets to Rio are not

available.

}

2.5 Functions

🕮 2.5.1

Much more often than the extract from the method itself, we demand a return of
the result that we can work with. The method that returns the result is often
referred to as a function and must have a data type defined for the return value, just
as with variables.

We generally define a function as a method, but it is necessary to return a value that
we consider to be the result of the return statement.

typ methodName(typParameter p1,....) {

 command1;

Methods | FITPED

42

 ...

 return result;

}

The result must be of the same type as the method type. For example: for an
integer method, a text string (of type String) cannot be returned as a result.

📝 2.5.2

We call a method that returns a result as a result of its activity as:

• function
• procedure
• algorithm

🕮 2.5.3

The simplest example is a method that returns the absolute value of an integer.

The input to the method is an integer parameter whose absolute value we want to
find out, the output will be an absolute value. As we work with integers, the function
will naturally result in an integer.

Method definition:

int abs(int x) {

}

where, as a result, we expect an integer value - the type of method, denoting the
number for which we want to determine the absolute value as x.

The code will be:

int abs(int x) {

 if (x >= 0) result = x; // for non-negative numbers,

the absolute value is the original number

 else result = -x; // for negative numbers, the

absolute value is the opposite return result; //

the result stored in the variable result is returned as a

function result

}

Calling a method within a class where the method is defined will look like this:

Methods | FITPED

43

int b = -100;

int a = abs(b);

or

int c = abs(-58);

📝 2.5.4

Fill the code in a method returning twice the entered integer value:

_____ twice(int a) {

 int result = _____ * a;

 _____ result;

}

and calling:

void test() {

 int m = _____(-20);

}

🕮 2.5.5

We do not need to use a separate variable in the method to calculate the result but
we can also perform the calculation within the return statement - just like a
statement.

int twice (int a) {

 return a*2;

}

📝 2.5.6

Is it necessary to use variables in the body of function?

• no
• yes

Methods | FITPED

44

🕮 2.5.7

We can use the return statement several times in the body of the method,
everything depends on the logic we insert into the method. For example:

int abs(int x) {

 if (x >= 0) return x;

 else return -x;

}

In this way, if we have the result before all the commands in the method body are
executed, we can return the result with the return statement to finish the method;
no further instructions are executed.

Type a method to see if "a" is in the string.

As a result of the method we expect true/false information, so it will be of
the boolean type. The input is a text string to be searched - type String.

boolean isThereA(String str) {

 for(int i = 0; i < str.length(); i++) {

 if (str.charAt(i) == 'a') return true;

 }

 return false;

}

If we find 'a' while searching for a string, we may quit because we know the
answer. If the entire string is searched and the character is not found, return the
function by returning false.

📝 2.5.8

Fill in the code of method to see if the number you entered is 0.

_____ isThereZero(String number) {

 for (int i = 0; i _____ number.length(); i++) {

 if (number._____(i) == _____0_____) _____ true;

 }

 _____ _____;

}

Methods | FITPED

45

🕮 2.5.9

We usually expect a correct result from a return method but a problem may arise if
the result is simply not.

We often examine whether a value is in the list, if so, on what position.

However, the method does not allow the return of two values or two different forms,
for example, occurrence and position or that it does not occur.

Find out the position of the 'a' character in the string.

If a character is in a string, we can return its position. The problem is if the
character is not found in the string. In this case, we must select a return value that
can never occur when a character is found.

This value cannot be 0, because if the character is in the 1st position (index 0) the
result is just 0.

A suitable value is -1 because position -1 does not exist in the string and when
evaluating the result, we can check based on this value whether the search was
successful or not.

int isThereA(String str) {

 for(int i = 0; i < str.length(); i++) {

 if (str.charAt(i) == 'a') return i;

 }

 return -1;

}

and calling:

void test() {

 String s = "Sagarmatha";

 int index = isThereA(s);

 if (index > -1) System.out.println("Contains 'a' on

possition " + index);

 else System.out.println("Not contains 'a' ");

}

Does this not remind you of a function for a String indexOf?

Methods | FITPED

46

📝 2.5.10

Fill the code of method to find out what position of the number entered as a string
is the last zero. Returns -1 if the specified number is not 0.

_____ lastZero(String number) {

 for (int i = number.length() - 1; i _____ 0; i_____) {

 if (number._____(i) == _____0_____) return _____;

 }

 return _____;

}

🕮 2.5.11

You can also use the return command in a void method, which usually handles the
premature termination of the method - the commands after the return command are
not executed because the return command leaves the method.

This use of the return command does not require a return value.

List the numbers in the array until it hits 0 or the end of the array.

void listing(int[] arr) {

 for(int i = 0; i < arr.length; i++) {

 if (arr[i] == 0) return; // if it encounters

0, it stops executing

 // other commands

 // in the method

 System.out.println(arr[i]); // otherwise, it

prints the element

 }

}

📝 2.5.12

Can we use the return command in a void method?

• yes
• no

Methods | FITPED

47

2.6 Functions I. (programs)

⌨ 2.6.1 Addition

In the MyClass class, create a sum() method with two real parameters that returns
the sum of the specified numbers rounded to three decimal places.

The following code shows the usage of the class and its method:

public static void main(String[] args) {

 MyClass mc = new MyClass();

 System.out.println(mc.sum(3.464654,8.2132131)); // writes:

11.678

}

⌨ 2.6.2 Comparison

In the MyClass class, create a getMax() method with two integer parameters that
returns the larger of the two values as an integer as the result of its action. If they
are equal, it will return any one of them.

The following code demonstrates creating instances and calling methods:

public static void main(String[] args) {

 MyClass mc = new MyClass();

 System.out.println(mc.getMax(800,200)); // writes 800

}

⌨ 2.6.3 Product 3

In the MyClass class, create a product() method with three integer parameters that
return the integer product of the specified numbers rounded to tens as the result of
its operation.

E.g. for inputs 5, 7, 9

the result will be 320 (315 rounded to tens)

The following code demonstrates creating instances and calling methods:

 public static void main(String[] args) {

 MyClass mc = new MyClass();

 System.out.println(mc.product(-1,21,33)); // writes -690

}

Methods | FITPED

48

⌨ 2.6.4 Power

In the MyClass class, create a power() method with two integer parameters that
take the value an as the result of its operation an for the specified values a, n

E.g. for inputs 2 and 3, it will be 23 = 8

If the exponent is negative, return the value 0.

The following code demonstrates creating instances and calling methods:

public static void main(String[] args) {

 MyClass mc = new MyClass();

 System.out.println(mc.power(2,5)); // writes 32

 System.out.println(mc.power(2,-5)); // writes 0

}

⌨ 2.6.5 Divisible by 5

In the MyClass class, create a get5() method with an integer parameter that returns
a list of numbers less than or equal to the specified parameter that are divisible by
5.

Let the numbers are separated by commas and the last one be followed by a
period. If a value of 0 is entered, print a dash - "-".

Creating instances and calling methods is presented by the following code:

public static void main(String[] args) {

 MyClass mc = new MyClass();

 System.out.println(mc.get5(21)); // writes: 5,10,15,20.

}

⌨ 2.6.6 Addition and Product

In the MyClass class, create a process() method with two integer parameters that
returns the sum and product of the specified parameters as the result of its
operation.

Return the results placed in rows below each other - the first row will contain the
sum, the second the product.

Creating instances and calling methods is presented by the following code:

Methods | FITPED

49

public static void main(String[] args) {

 MyClass mc = new MyClass();

 System.out.println(mc.process(21,31));

 /* writes:

 52

 651 */

}

⌨ 2.6.7 Row and column

Create methods in the MyClass class:

• row() with an integer parameter, which will return a text string as the result of
its action, containing the specified number of "o" characters stored in the
row after the

• column() with an integer parameter, which will return a text string containing
the specified number of "o" characters stored below it.

Creating instances and calling methods is presented by the following code:

public static void main(String[] args) {

 MyClass mc = new MyClass();

 System.out.println(mc.row(6)); // writes: oooooo

 System.out.println(mc.column(4));

 /* writes:

 o

 o

 o

 o */

}

⌨ 2.6.8 Sequence

In the MyClass class, create a stars() method with an integer parameter that will
return a text string with one "x" character in the first line, two in the second, three in
the third, etc. up to the nth line with n elements.

The following code demonstrates the creation of instances and method calls:

public static void main(String[] args) {

 MyClass mc = new MyClass();

 System.out.println(mc.starts(6));

Methods | FITPED

50

 /* writes:

 x

 xx

 xxx

 xxxx

 xxxxx

 xxxxxx */

}

2.7 Functions II. (programs)

⌨ 2.7.1 Maximum in array

In the MyClass class, create a getMax() method with a parameter of a type integer
array that returns the largest element of the array as the result of its action.

The following procedure illustrates how to create instances and call methods:

public static void main(String[] args) {

 MyClass mc = new MyClass();

 int[] input_array = {2,9,4,6,12,0,7,8};

 System.out.println(mc.getMax(input_array)); // writes 12

}

⌨ 2.7.2 Sum and average of elements in the array

In the MyClass class, create a getData() method with a parameter of a type integer
array that returns the sum of the array elements and the average of the elements in
the array rounded to one decimal place as the result of its operation in the form of a
list below:

sum: 20

avg: 15.3

An illustration of creating instances and calling methods is presented by the
following procedure:

public static void main(String[] args) {

 MyClass mc = new MyClass();

 int[] input_array = {2,9,4,6,12,0,7,8};

 System.out.println(mc.getData(input_array));

 /* writes:

 sum: 48

 avg: 6.0 */

Methods | FITPED

51

}

⌨ 2.7.3 Above-average elements

In the MyClass class, create a getData() method with a parameter of type array of
real values, which returns a comma-separated list of the array's superscript
elements, with a period after the last element of the array as the result of its
operation.

An illustration of creating instances and calling methods is presented by the
following procedure:

public static void main(String[] args) {

 MyClass mc = new MyClass();

 int[] input_array = {2.0,9.0,4.0,6.0,12.0,0.0,7.0,8.0};

 System.out.println(mc.getData(input_array)); // writes:

9.0,12.0.

}

⌨ 2.7.4 Comparison of arrays

In the MyClass class, create a compareData() method with two parameters of the
integer array type that returns a truth value indicating whether the arrays contain
the same elements. The elements can be placed in different positions.

For arrays:

1,2,5

5,2,1

returns the result true

For arrays:

1,2,5,0,3

1,2,5

returns false.

The following procedure illustrates how to create instances and call methods:

public static void main(String[] args) {

 MyClass mc = new MyClass();

 int[] input_array1 = {2,9,4,6,12,0,7,8};

 int[] input_array2 = {2,9,12,4,6,0,7,8};

Methods | FITPED

52

 int[] input_array3 = {2,9,12,4,6,0};

 System.out.println(mc.compareData(input_array1,

input_array2)); // writes true

 System.out.println(mc.compareData(input_array2,

input_array3)); // writes false

}

⌨ 2.7.5 Arranged array?

In the MyClass class, create a getInfo() method with a parameter of type integer
array, which returns a truth value as the result of its action, indicating whether the
elements of the array are arranged in ascending order.

For array:

1,2,5

returns the result true

For array:

1,2,5,0,3

returns false.

The following procedure illustrates the creation of instances and method calls:

public static void main(String[] args) {

 MyClass mc = new MyClass();

 int[] input_array1 = {2,9,14,26,112,200,371,805};

 int[] input_array2 = {2,9,12,4,6,0,7,8};

 System.out.println(mc.getInfo(input_array1)); // writes

true

 System.out.println(mc.getInfo(input_array2)); // writes

false

}

⌨ 2.7.6 Interval?

In the MyClass class, create a compareData() method with three parameters:

• the first parameter will be an integer array

Methods | FITPED

53

• the next two parameters will represent the bounds of the closed interval (it is
not said whether the first value must be greater than the second)

Determine if all elements of the array lie within the interval defined by the second
and third parameters of the method. The result of the method is true if they lie, the
result of the method is false if even one element of the array lies outside the
interval.

E.g., for:

[2,8,9,7,3], 1, 10

is the result:

true

The following procedure illustrates the creation of instances and method calls:

public static void main(String[] args) {

 MyClass mc = new MyClass();

 int[] input_array = {2,9,14,26,10,2,1,8};

 int[] input_array2 = {2,9,12,4,6,0,7,8};

 System.out.println(mc.compareData(input_array1,1,30)); //

writes true

 System.out.println(mc.compareData(input_array2,15,1)); //

writes false

}

⌨ 2.7.7 Position of the longest

In the MyClass class, create a getMax() method with a parameter of type array of
strings, which returns the index of the longest element in the array of strings as the
result of its action which returns the index of the longest element in the array of
strings.

If the array contains multiple equal-length elements with the longest length, return
the index of the one that is earlier in the sequence.

Assume that the array of strings is always non-empty.

E.g., for an array:

Methods | FITPED

54

[Python, Pascal, Java, C, C++]

will output

0

An illustration of creating instances and calling methods is presented by the
following procedure:

public static void main(String[] args) {

 MyClass mc = new MyClass();

 String[] firstArray = {"Python", "Pascal", "Java",

"C","C++"};

 System.out.println(mc.getMax(firstArray)); // writes 0

}

⌨ 2.7.8 Process the array

In the MyClass class, create a process() method with two parameters:

• the first parameter will be an array of integers
• the second is an integer value

Make sure that the process() method returns an array as the result of its operation,
which will have the value sent to the method as the second parameter set instead
of the negative elements. The contents of the original array must remain
unchanged. Do not print the result.

For example, for input:

[1,-2,3,5,-6],10

the output will be

[1,10,3,5,10]

An illustration of creating instances and calling methods is presented by the
following procedure:

public static void main(String[] args) {

Methods | FITPED

55

 public static void main(String[] args) {

 MyClass mc = new MyClass();

 int[] arr1 = {1,-2,3,5,-6};

 int[] arr2 = mc.process(myArray,99));

 /*

 in arr1 will be saved [1,-2,3,5,-6]

 in arr2 will be saved [1,99,3,5,99]

 */

}

Encapsulation

Chapter 3

Encapsulation | FITPED

57

3.1 Encapsulation principle

🕮 3.1.1

We refer to variables that we use in the body of a method as local. They are created
by running the method and disappear after its last statement or after
the return command is executed.

The variables that are available across all methods in a class are actually attributes
- sometimes referred to as class variables.

When creating classes, we try to be independent of other classes and variables that
do not belong to them.

📝 3.1.2

What do we refer to as variables that exist only during the execution of a method in
that class?

• local
• global
• class variables
• static

🕮 3.1.3

When creating a class, we insert logic into the code that copies the real world. For
example, the Employee class describes an employee and the functionalities
necessary to ensure the operations that apply to it.

class Employee {

 String name;

 String function;

 double salary;

 int age;

}

We don't need any methods to get started, just set up the employee's attributes in
the main program body - everything is fine:

Employee emp1 = new Employee();

emp1.name = "Adam";

emp1.salary = 1000;

Encapsulation | FITPED

58

emp1.age = 33;

If we perform the following assignment in the code

emp1.age = -28;

externally, everything is fine. Logic says age is a positive number, so entering a
negative value can cause problems - for example, when calculating the average age
of employees.

A similar problem may arise in an employee's salary variable, which may fall below
the minimum wage or even to negative values by inappropriate operations.

📝 3.1.4

Select operations that conflict with the real world image:

• int salary = -840;
• String surname = "x";
• int age = -11;
• int age = 245;
• int salary = 100;
• int age = 7;
• int age = 0;
• String surname = "Li";
• String surname = "Smith";

🕮 3.1.5

If the attribute value is set to the correct range, the application is
seamless. Otherwise, an error occurs. For example, if we reduce wage payments by
a loan that an employee repays, the operations are in order until the salary falls
below a certain threshold due to the repayment of several loans.

Sometimes the programmer may not realize such situations, the user will apply the
operation automatically and the data will become a form that no longer reflects
reality.

In order to prevent such situations, object-oriented programming uses methods to
modify the attributes. They are usually very simple but they contain a check to
ensure that unrealistic values do not get into the attributes.

For example, the pay cut method:

Encapsulation | FITPED

59

class Employee {

 final int minSalary = 500;

 String name;

 String funnction;

 double salary;

 int age;

void reduceSalary(int amount) {

 if (salary – amount > minSalary) salary = salary – amount;

 else {

 salary = minSalary;

 System.out.println("The salary can no longer be

reduced. I set employee's salary to a minimum" + minSalary);

 }

}

We define a constant for setting the minimum possible salary and do not allow the
current salary to be lowered to the amount below the minSalary. If the difference
between the current salary and the reduction is less than the defined minimum, I
will set the salary to a minimum and inform the user that the salary cannot be
reduced.

The use of the class may take the following form:

...

Employee emp1 = new Employee();

emp1.salary = 1000;

emp1.name = "Adam";

emp1.reduceSalary(300);

emp1.reduceSalary(500);

📝 3.1.6

Fill in the code so that it does not allow the device price to fall below 100€.

_____ Device {

 String title;

 double price;

 void useDiscount(double discount) {

 if (_____ - _____ >= 100) price = price _____ discount;

 else {

 System.out.println("Discount is too big, set

price to 100€");

 price = _____;

Encapsulation | FITPED

60

 }

 }

}

🕮 3.1.7

We should always use methods for responsible attribute setup at the outset,
i.e. with a check on the admissibility of values, not only if we perform an operation
that corresponds to the real-world operation.

Again, an example employee:

class Employee {

 String name;

 int age;

}

and creating an instance:

Employee emp1 = new Employee();

emp1.name = "Adam";

emp1.age = -19;

Now we can assign a value to an attribute at any time, and we can insert any value
that matches the data type used - which is not a good solution.

To ensure that values are checked, it is necessary to ensure that the attributes
cannot be changed directly, but only through methods that check whether the
permissible values are assigned.

To meet this requirement, Java defines access levels for both attributes and
methods. Each attribute and each method can have three access levels:

• public – is available from anywhere within the package/app,
• private – available only from that class the attribute is created, so it can only

be read and changed from the methods of that class,
• protected –available from the class the attribute is created and its

descendants (who are inherited).

The access level is defined by the keyword preceding the type of the variable used.

class Employee {

 private String name;

 private int age;

 public void changeAge(int a) {

Encapsulation | FITPED

61

 if (a > 0) age = a;

 }

}

If no type of availability is specified, it is expected that the public level is set.

📝 3.1.8

Identify the right keywords to define attribute accessibility:

_____ - ensures the availability of methods and attributes from anywhere in the
program

_____ - ensure that methods and attributes are only available from the methods of
the class to which they belong

🕮 3.1.9

For our current needs it is sufficient to use two levels of access:

private – usually set to all attributes, that is, they will no longer be available to read
or write from anywhere in the program except the class methods they belong to.

public class Employee {

 private String name;

 private int age;

 public void changeAge(int a) {

 if (a > 0) age = a;

 }

}

This code:

Employee emp1 = new Employee();

zemp1.name = "Adam";

emp1.age = -19;

it will not be accepted by the precompiler from the second line because
the name attribute is private, so it is unavailable from outside the class.

public – it is usually set for all methods, except for those that do not make sense to
call from outside the class (if they are used, for example, to perform partial

Encapsulation | FITPED

62

operations used in other class methods) as well as the class definitions
themselves.

📝 3.1.10

Select the correct accessibility level and complete the code for:

_____ class Device {

 _____ String title;

 _____ int price;

 _____ void setPrice(int p) {

 if (p > 0) _____ = p;

 }

}

3.2 Setters and getters

🕮 3.2.1

Of course, blocking the availability of attributes from the outside also has
disadvantages. In addition to class methods, you cannot assign or query the
contents of an attribute.

The code

Employee emp1 = new Employee();

...

System.out.println(emp1.name);

will not work because the name attribute is not accessible - its access level is
set to private.

To define classes correctly:

• we need to define a public method for each attribute that sets its value
• we need to define a public method for each attribute that returns its value

The methods that set values are called setters and take the form of:

public void setAtribut(type a) { atribut = a; } // possibly

with the necessary controls

Encapsulation | FITPED

63

Methods that return values are called getters and always have a type that
corresponds to the type of attribute whose value they return and take the form of:

public type getAtribut() { return atribut; }

The form names getAttribute and setAttribute are used, not mandatory.

📝 3.2.2

Fill in the sentence.

The methods used to insert values into attributes are called _____ and have the
accessibility level set to_____.

The methods used to return attribute values are called _____ and their return value
must be of the same type as the attributes they return.

• public
• setters
• getters

🕮 3.2.3

For the Employee class, we could add individual setters and getters as follows:

public class Employee {

 private String name;

 private int age;

 // setters

 public void setAge(int a) { if (a > 0) age = a; }

 public void setName(String n) { name = n;}

 // getters

 public int getAge() { return age; }

 public String getName() { return name;}

}

In some cases of setters, it is necessary to check the contents of the set values, in
others it is not.

Encapsulation | FITPED

64

📝 3.2.4

Fill in the code:

public class Car {

 _____ String brand;

 _____ int maxSpeed;

 public _____ setMaxSpeed(int s) {

 if (s > 0) _____ = s;

 }

 public _____ getmaxSpeed() {

 _____ maxSpeed;

 }

 public _____ setBrand(String b) {

 brand = b;

 }

 public _____ getBrand() {

 _____ brand;

 }

}

🕮 3.2.5

After creating the Employee class, which is defined as follows:

public class Employee {

 private String name;

 private int age;

 // setters

 public void setAge(int a) { if (a > 0) age = a; }

 public void setNeme(String n) { name = n;}

 // getters

 public int getAge() { return age; }

 public String getName() { return name;}

}

we use the setters after creating the instance as follows:

Employee emp1 = new Employee();

emp1.setName("David");

Encapsulation | FITPED

65

emp1.setAge(28);

The use of getters can take the form of:

• inserting a value into variables, for example:

int aux = emp1.getAge();

• use of value in statements or calculations:

double average = (emp1.getAge() + emp2.getAge()) /2;

System.out.println(emp1.getName() + " is old " +

emp1.getAge() + " years");

📝 3.2.6

Fill the code to create an instance, set up, and list the attributes

public class Tree {

 private String title, type;

 private int height;

 public void setTitle(String ttl) { title = ttl;}

 public void setType(String tp) { type = tp;}

 public void setHeight(int h) { if (h>0) height = h;}

 public String getTitle() { return title;}

 public String getType() { return type;}

 public int getHeight() { return height;}

}

Tree tr1 = new Tree();

tr1.setType("deciduous");

tr1.setTitle("linden");

tr1.setHeight(50)

int x = tr1._____();

String ttl = tr1._____Type()

// use variables where attributes are loaded if possible

System.out.println("My tree " + _____.getTitle_____+" is " +

_____ + "and is" + _____} + " m height");

Encapsulation | FITPED

66

🕮 3.2.7

When we write the code, we try to make sure that all the necessary attribute
operations perform only the methods of that class. This makes the class work as a
black box - providing us with the necessary methods without knowing how they are
programmed internally - and we don't care.

In a form in which the class is independent of the surrounding classes and its
attributes are accessible only from the methods of that class or through getters
and setters, we say that the class is encapsulated. The internal activity of the
instance is thus independent of the surrounding environment, which means that the
class can be converted into any program and used as a separate functional unit.

If necessary, we can replace the class at any time with a more in-build performance,
but externally providing the same functionality. The exchange can be done without
affecting the other parts of the program - they will communicate with the new class
using the same methods ...

Encapsulation is the first necessary feature of object-oriented programming and
makes it easy to program programs from finished parts (classes, components,
modules, etc.).

📝 3.2.8

How do we call the properties of classes that allow them to hide their internal
implementation and communicate only through public methods?

3.3 Bulk attributes setup

🕮 3.3.1

While enforcing encapsulation values cannot be assigned directly to attributes but
we must use setters that often check the admissibility of the inserted values.

Calling more to many setters after creating a class unnecessarily lengthens the
code, e.g.:

Tree s = new Tree();

s.setTitle("pine");

s.setAge(12);

s.setHeight(6.5);

etc.

Encapsulation | FITPED

67

It is much easier to make all the necessary settings in one call:

Tree s = new Tree();

s.setValues("pine", 12, 6.5);

where the method in class Tree can have a form of the method where we check the
input values:

class Tree {

 private String title;

 private int age;

 private double height;

 public void setValues(String ititle, int iage, double

iheight) {

 if (ititle.length() > 0) title = ititle;

 if (iage > 0) age = iage;

 if (iheight > 0) height = iheight;

 }

}

📝 3.3.2

Fill in the class and method definition for the default setup of attributes:

class Person {

 private String name;

 private int age;

 private int weight;

 private double height;

 public void setValues(String iname, int iage, int iweight,

double iheight) {

 if (iname._____ > 0) name = iname;

 if (iage > 0) age = iage;

 if (_____ > 0) weight = _____;

 if (iheight _____ 0) height = iheight;

 }

}

and the call:

Person p1 = _____ Person();

p1._____("Michael", 15, 72, 1.75);

Encapsulation | FITPED

68

🕮 3.3.3

If we assume that, in addition to the initial setup, we will also set individual
attributes using setters in the next code, it is more efficient to move the control to
them and the setters from the multi-attribute method just call:

class Tree {

 private String title;

 private int age;

 private double height;

 public void setValue(String ititle, int iage, double

iheight) {

 setTitle(ititle);

 setAge(iage);

 setHeight(iheight);

 }

 public void setTitle(String ititle) {

 if (ititle.length() > 0) title = ititle;

 }

 public void setAge(int iage) {

 if (iage> 0) age = iage;

 }

 public void setHeight(double iheight) {

 if (iheight > 0) height = iheight;

 }

}

📝 3.3.4

Use the setters to set the values of each attribute in the method setValues():

class Person {

 private String name;

 private int weight;

 private double height;

 public void setValues(String iname, int iweight, double

iheight) {

 _____(iname);

 _____(iweight);

Encapsulation | FITPED

69

 _____(iheight);

 }

 public _____ setName(_____ iname) {

 if (iname.length() > 0) name = iname;

 }

 public _____ setWeight(_____ iweight) {

 if (iweight > 0) weight = iweight;

 }

 public _____ setHeight(_____ iheight) {

 if (iheight > 0) height = iheight;

 }

}

🕮 3.3.5

In the previous examples we did not solve the situation when the set value did not
meet the setter condition, e.g.:

public void setName(String iname) {

 if (iname.length() > 0) name = iname;

}

public void setWeight(int iweight) {

 if (iweight > 0) weight = iweight;

}

If the new value did not satisfy the condition (variable more than 0 characters,
weights greater than 0, etc.), the attribute remained unchanged, the user was not
informed that the change was not made.

Although at first glance the class looks unfinished, it is not a mistake, it is only a
definition of class behavior that depends on the decision of the programmer or
class designer.

When creating setters, we can decide that:

• we will ignore the incorrect values and leave the original values in the
attributes, and the apparatus that will prepare the values for our instances
should ensure that they are correct:

public void setWeight(int iweight) {

 if (iweight> 0) weight = iweight;

}

Encapsulation | FITPED

70

• if the value is incorrect, we set the default/base value:

public void setWeight(int iweight) {

 if (iwieght > 0) weight = iweight;

 else weight = 10;

}

What will be the basic value again depends on the programmer or a situation
copying the real world. Here we have chosen 10 as the minimum value we are
willing to accept in reality.

• if the value is incorrect, we set a specific value to reflect that the attribute is
incorrect:

public void setWeight(int iweight) {

 if (iweight > 0) weight = iweight;

 else weight = -1;

}

public void setName(String iname) {

 if (iname.length() > 0) name = iname;

 else name = “not set”; // or name = null

}

A value of -1 is meaningless to the weight, and if we encounter an attribute when
checking the value of an attribute, we can point out in the application that this value
is problematic. Also, this applies to String variables too.

• if we try to enter a value that is outside the allowed range, we will generate
an exception:

public void setNumber(int num) {

 if (num < 10 || num > 100) {

 throw new IllegalArgumentException();

 }

 this.number = num;

}

For each of these alternatives, we may choose to inform the user that the attribute
setup attempt has failed, e.g.:

public void setWeight(int iweight) {

 if (iweight > 0) weight = iweight;

 else {

 System.out.println(“The set weight is not valid, I set

up the default value to 10”);

Encapsulation | FITPED

71

 weight = 10;

 }

}

📝 3.3.6

Fill in the code that will check the validity of the value and warn whether the value
of age is not valid or is under 18 or above 70.

class Person {

 ...

 private int age;

 public void setAge(int _____ {

 if (_____ <= 0) {

 System.out.println("Age contains an invalid value,

default set to 1");

 age = 1;

 _____; // ending the method

 }

 if (_____ < 18) {

 System.out.println("Age is under 18");

 }

 if (_____ > 70) {

 System.out.println("Age is above 70");

 }

 age = iage;

 }

}

📝 3.3.7

Ensure that, if an incorrect parameter value is used, the appropriate values listed in
the notes are set as minimum and maximum for the attributes:

class Person {

 private int height; // min: 100, max: 240

 private int weight; // min: 40, max: 150

 public void setHeight(int h) {

 height = _____;

 if (h < 100) _____ = 100;

 if (h > 240) _____ = 240;

Encapsulation | FITPED

72

 }

 public void setWeight(int w) {

 if (w < 40) _____ = 40;

 if (w > 250) _____ = 250;

 _____ = w;

 }

}

🕮 3.3.8

An alert statement itself when setting an incorrect value has only an informative
value and does not allow you to programmatically respond to an incorrect value.

Again, depending on the situation, we can get information on whether the setpoint
has been set directly from the value-setting method - it is enough to change the
return value type from void to boolean. In this case, however, we are no longer
talking about conventional setter.

If the setting succeeds, it returns true, otherwise it returns false and this can be
handled in the program (usually not handled directly in the method)

class Employee {

 private String name;

 private double salary;

 public boolean setSalery(double s) {

 if (s <= 0) return false;

 salary = s;

 return true;

 }

...

and usage in the class code:

 public void setValues(...., double s) {

 if (setSalary(s)) {

 System.out.println("Salary set on the first try");

 else

 setSalary(500); // we set a default value

 }

 }

}

Encapsulation | FITPED

73

Again, we emphasize that this is only a variant of possible situations and it cannot
be said that one approach is more appropriate than another - it always depends on
the particular situation and custom of the programmer.

📝 3.3.9

Fill in the code so that we get information about whether the value assigned to the
attribute was successful:

class Person {

 private int height; // min: 100, max: 240

 private int weight; // min: 40, max: 150

 public _____ setHeight(int h) {

 if (h < 100 || h > 240) _____ false;

 height = h;

 _____ true;

 }

 public _____ setWeight(int w) {

 if (w _____ 40 && w _____ 250) {

 weight = w;

 return _____;

 }

 return _____;

 }

}

🕮 3.3.10

Parameters that we send to setters or into any methods can also have the same
name as class attributes.

class Person {

 ...

 int weight;

 public void setWeight(int weight) {

 }

}

Encapsulation | FITPED

74

This choice of the name makes it easier to read the program, and we can
distinguish it by using this keyword, which indicates that it is a class attribute or
of instance:

class Person {

 ...

 int weight;

 public void setWeight(int weight) {

 if (weight > 0) this.weight = weight;

 }

}

This is used when we need to distinguish whether it is an instance variable
(attribute) or a local variable that has entered the method as a
parameter. This indicates class/instance affiliation.

For the attribute this is used:

this.weight

for the parameter, it is not used and we access it without this:

weight

If two variables with the same name do not appear in the method and the attribute
identification is unambiguous, we can omit the keyword this (but we can use it too).

📝 3.3.11

Fill in the code to setup the parameters age and salary:

class Employee {

 private String name;

 private double salary;

 private int age;

 public void setSalary(double salary) {

 if (_____ >= 0)

 _____ = _____;

 }

 public void setAge(int age) {

 if (_____ >= 0)

Encapsulation | FITPED

75

 _____ = _____;

 }

}

3.4 Encapsulation - programs (programs)

⌨ 3.4.1 Power

Create a Power class that

• sets the values of its integer attribute using the setValues() method,
• using the getPower3() method to return the third power of its attribute,
• using the getPower() method with one integer parameter returns the

specified power for the number stored in the attribute.

An illustration of creating instances and calling methods is presented by the
following procedure:

public static void main(String[] args) {

 Power p = new Power();

 p.setValues(5); // sets the value to 5

 System.out.println(p.getPower3()) // writes 5 powered by 3

= 125

 System.out.println(p.getPower(2)) // squared of 5= 25

 System.out.println(p.getPower(4)) // writes 4 powered by 5

= 625

}

⌨ 3.4.2 GreetMe

Create a GreetMe class that will have the following available:

• a setGreeting() method that sets an attribute for remembering the greeting
text,

• a greet() method, with a name parameter, that returns a greeting in the form,
e.g.

Hello, Fero!

Encapsulation | FITPED

76

An illustration of creating instances and calling methods is presented by the
following procedure:

public static void main(String[] args) {

 GreetMe g = new GreetMe();

 g.setGreeting("Hello"); // sets greeting to Hello

 System.out.println(g.greet("Ivan")) // writes Hello, Ivan!

 g.setGreeting("Hi"); // sets greeting to Hi

 System.out.println(g.greet("Michael")) // writes Hi,

Michael!

}

⌨ 3.4.3 Prism

Create a Prism class that has three integer attributes to hold the dimensions of the
prism.

• Define a setValues() method that populates the triple of attributes. If any
value is negative or null, set it to 1.

• Define a getCapacity() method that returns the volume of the prism.
• Define a getSurface() method that returns the surface of the prism.

An illustration of creating instances and calling methods is presented by the
following procedure:

public static void main(String[] args) {

 Prism p1 = new Prism();

 p1.setValues(10,20,30); // sets the dimensions of the

prism to the specified values

 Prism p2 = new Prism();

 p2.setValues(10,-20,30); // sets the dimensions of the

prism to the values 10,1,30

 System.out.println(p1.getSurface()) // writes 2200

 System.out.println(p2.getCapacity()) // writes 300

}

⌨ 3.4.4 Tree

Create a Tree class that will have defined:

• integer attributes for age, height and trunk thickness

Encapsulation | FITPED

77

• a setValues() method that will populate the attributes with the specified
values in the order: age, thickness, height. If any of the values are negative,
set its absolute value.

• method growOld(), which:
• increment the age by 1,
• increase the thickness by the value obtained by calculating age * 0.5 + 1 -

taking only the whole part
• increase the height by age/10 - again taking only the whole part

Define getters:

• getAge(), which returns age,
• getWidth(), which returns the thickness of the trunk,
• getHeight(), which returns the height of the tree
• getInfo(), which returns all the information in the form "Age: " + age +

"\nWidth: " + thickness + "\nHeight: " + height

The following procedure illustrates the creation of instances and method calls:

public static void main(String[] args) {

 Tree t = new Tree();

 t.setValues(10,15,30); // sets the age to 10, thickness to

15 and height to 30

 t.growOld();

 t.growOld();

 System.out.println(t.getWidth()); // writes 28

 System.out.println(t.getInfo());

 /* writes:

 Age: 12

 Width: 28

 Height: 32 */

}

Constructors

Chapter 4

Constructors | FITPED

79

4.1 Constructors

🕮 4.1.1

Because of encapsulation in class design, we don't allow direct access to attributes
- we protect them by marking them (private).

However, this does not mean that there is no need to address the default setting
requirements, which are usually a prerequisite for the proper functioning of the
instances created.

Up to now, we have used the following ways to enter initial values:

• assigning a default value in a variable declaration that is a simple solution,
but not sufficient if initialization requires some logic (such as handling an
inappropriate value)

• setters that set only one attribute at a time,
• one method of "setValue" style to which we have sent the input values and

verified them inside.

📝 4.1.2

Choose the right statements:

• setter ensures that the input value is correct
• each getter must contain a return statement
• the attribute setting you cannot use for declaration instead of a full setter
• setter does not ensure that the input value is correct
• the getter does not need to contain a return statement
• the attribute setting for the declaration can be used instead of a full setter

🕮 4.1.3

We usually set the default attribute settings after instantiating, before calling other
methods, such as:

Triangle tr1 = new Triangle();

tr1.setValue(4,3,5);

double area = tr1.getArea();

Sometimes can happen that the programmer omits setting values or sets the
values in the wrong place and the results are then incorrect.

Constructors | FITPED

80

📝 4.1.4

Which number will be the output of the next program?

class Triangle {

 int a = 2;

 int b = 2;

 int c = 2;

 public void setValues(int a , int b, int c) {

 if (a > 0) this.a = a;

 if (b > 0) this.b = b;

 if (c > 0) this.c = c;

 }

 public int getPerimeter() {

 return a + b + c;

 }

}

...

Triangle tr1 = new Triangle();

tr1.setValues(3,-1,0);

System.out.println(tr1.getPerimeter());

🕮 4.1.5

Java is a language that assumes responsibility for minimizing programmer errors,
as well as a mechanism that forces the programmer to enter initial values when
creating an instance.

Java provides us with a mechanism that:

• can ensure the initialization of attributes
• it also creates an instance of the class
• allows you to run other necessary methods when creating an instance

The method of doing this is referred to as a constructor, and we have used it
whenever we created any variable (except primitive type variables), such as:

int[] myArray = new int[2]; // create an

array

Constructors | FITPED

81

FileWriter ff = new FileWriter("data.dat"); // create a

stream

Person man1 = new Person(); // create a

person

When using classes, the constructor has the same name as the class itself
(FileWriter, Person, etc.)

📝 4.1.6

What is the method responsible for creating an instance and initializing its
attributes?

• constructor
• setter
• getter

🕮 4.1.7

The constructor provides memory allocation and a new instance. Up to now, we
have not created our own constructor, we have built-in, which is available in a
simple form as part of each class. Such a constructor has the same name as a
class and only provides memory allocation and setting of default attribute values if
specified in their declaration.

For example, we used it in the following cases:

Person p1 = new Person();

Tree t1 = new Tree();

A constructor is a method that can also contain code. In Java, the method is written
with parameters in parentheses after its name, and if the method has no
parameters, the parentheses are empty. As with
the Person() and Tree() constructors.

In case the programmer does not define his own constructor, the compiler himself
creates a very simple one, which ensures only memory allocation and defines it
itself - without parameters.

In case the programmer creates his own constructor, the system will not create or
allow the use of the base constructor.

Constructors | FITPED

82

📝 4.1.8

Which entries represent the Person class constructor?

• Person()
• setPerson()
• getPerson()
• _Person()
• setParameter(Person)
• Person.setConstructor()

🕮 4.1.9

The constructor is a method that:

• has the same name as the class name
• does not have a return value known to us
• can have any number of parameters
• is used in conjunction with the new command
• in code is part of the class for which it instances

If we do not define a constructor for the Person class, create it as follows:

class Person {

 ...

}

...

 Person p1 = new Person();

If we add for example two parameters to the constructor:

class Person {

 private String name;

 private int weight;

 public Person(String name, int weight) {

 this.name = name;

 if (weight > 40) this.weight = weight;

 else this.weight = 40;

 }

we can no longer use the previous code:

Person p1 = new Person();

Constructors | FITPED

83

but we have to use the created constructor:

Person p1 = new Person("Peter",56);

which executes the commands specified in the constructor body after reserving
space for the instance,

📝 4.1.10

Fill the code where the constructor ensures that the read values are positive.

class Triangle {

 private int a, b, c;

 public _____(int a, int b, int c) {

 if (a _____ 0) this.a = _____; else this.a = 1;

 if (b _____} 0) this.b = _____; else this.b = 1;

 if (c _____ 0) this.c = _____; else this.c = 1;

}

4.2 Constructors usage

🕮 4.2.1

As with the method, other methods can be called in the constructor. So we can use
setters if they are defined in the class:

class Person {

 private String name;

 private int weight;

 private double height;

 public void Person(String name, int weight, double height)

{

 setName(name);

 setWeight(weight);

 setHeight(height);

 }

 public void setName(String name) { if (name.length() >

0) this.name = name; }

Constructors | FITPED

84

 public void setWeight(int weight) { if (weight > 0)

this.weight = weight; }

 public void setHeight(double height) { if (heitht > 0)

this.height = height; }

}

📝 4.2.2

Fill the constructor code that effectively uses the existing method to check the
value and ensure that the sides of the triangle are set to at least 1:

class Triangle {

 private int a, b, c;

 _____ Triangle(int a , int b, int c) {

 this.a = _____(a);

 this.b = _____(b);

 this.c = _____(c);

 }

 public _____ process(int x) {

 if (x > _____) return _____;

 else return _____;

 }

}

🕮 4.2.3

Let's have a Tree class with a constructor initializing all of its attributes:

class Tree {

 private String title;

 private String type;

 private int age;

 private double height;

 public Tree(String title, String type, int age, double

height) {

 if (title.length() > 0) this.title = title;

 if (type.length() > 0) this.type = type;

 if (age > 0) this.age = age;

 if (height > 0) this.height = height;

 }

Constructors | FITPED

85

}

In some situations, we do not need to initialize all attributes or the attributes of the
instances created are set to the same values. We do not need to rewrite the code in
this case but we can add a new constructor.

Each constructor must have the same name as the class its instances, so we will
have multiple constructors with the same name.

To avoid translation problems, it is necessary that the individual constructors differ
in the types, numbers or order of parameters so that the compiler has a clear
indication of which constructor to call when calling the constructor.

Using multiple constructors or multiple methods with the same names that differ in
number and/or type of parameters is called overloading.

📝 4.2.4

Can one class have more constructors?

• yes
• no

📝 4.2.5

Can one class have multiple methods with the same name?

• yes
• no

🕮 4.2.6

Let's add a code for a constructor that will create one-year-old apple trees of
varying heights. This constructor will need a single parameter - height. Other
attributes can be set to fixed values.

class Tree {

 private String title;

 private String type;

 private int age;

 private double height;

Constructors | FITPED

86

 public Tree(double height) {

 if (height > 0) this.height = height;

 title = "apple";

 type = "deciduous";

 age = 1;

 }

 public Tree(String title, String type, int age, double

height) {

 if (title.length() > 0) this.title = title;

 if (type.length() > 0) this.type = type;

 if (age > 0) this.age = age;

 if (height > 0) this.height = height;

 }

}

Now we can choose which constructor to use when creating instances. If we
create a one-year-old apple tree we use a constructor with one
parameter, constructor with all parameters we use at another tree type:

Tree a1 = new Tree(0.82);

Tree a2 = new Tree(1.1);

Tree p1 = new Tree("pine", "coniferous", 3, 2.1);

📝 4.2.7

Fill the code for the two constructors that make up the person: the child and the
adult.

class Person {

 private String name;

 private String education;

 private double salary;

 public _____(String name, String education, double salary)

{ // adult

 this.name = name;

 this.education = education;

 this.salary = salary;

 }

 public _____}(String name) {

// child

Constructors | FITPED

87

 this.name = _____;

 this._____ = "none";

 this._____ = 0;

 }

}

🕮 4.2.8

Constructor and methods communication rules :

• methods are equal
• a method of that class can call any other method in an instance of that class
• the constructor can call other methods as well as other constructors of that

class
• the method can call the constructor only through the new command

An important piece of information for us is the possibility to combine a new and
existing constructor. This allows us to assign values to attributes in one place in
the class.

For example, in a constructor of a Tree that has only one parameter, all we need to
do is call a "complete" constructor with the parameters placed in the correct
positions:

class Tree {

 private String title;

 private String type;

 private int age;

 private double height;

 public Tree (String title, String type, int age, double

height) {

 if (title.length() > 0) this.title = title;

 if (type.length() > 0) this.type = type;

 if (age > 0) this.age = age;

 if (height > 0) this.height = height;

 }

 public Tree(double height) {

 this("apple","deciduous",1 , height); // constructor call

 }

instead of this code:

 public Tree(double height) {

Constructors | FITPED

88

 if (height > 0) this.height = height;

 title = "apple";

 type = "deciduous";

 age = 1;

 }

To call the constructor we used this keyword to represent the instance (and thus its
constructor). We know it from the membership of attributes to an instance.

An important rule is that there must be no other command in the constructor
before calling the constructor. Since the constructor creates an instance, it is
logical that no constructor must be preceded by any command.

📝 4.2.9

Fill the code to call the constructor in the constructor to create a child-type person:

class Person {

 private String name;

 private String education;

 private double salary;

 public _____(String name, String education, double salary)

{ // adult

 this.name = name;

 this.education = education;

 this.salary = salary;

 }

 public _____(String name) {

// child

 _____(_____, "none", 0);

 }

calling:

Person p1 = new Person("Edmond", "PhD.", 2800);

Person child = new _____("Sara");

Constructors | FITPED

89

🕮 4.2.10

In these cases, the constructor with fewer parameters will add some default values
to the non-specified parameters and call the constructor setting for all the
parameters.

public Tree(double height) {

 this("apple","deciduous",1 , height);

}

The opposite approach is also possible. A multi-parameter constructor calls an
existing constructor to check, set and secure the rest of the parameters in its
code. For example:

class Tree {

 private String title = "undef.";

 private String type = "undef.";

 private int age = 1;

 private double height;

 public Tree(double height, double age) {

 if (height > 0) this.height = height;

 else this.height = 0.5;

 if (age > 0) this.age = age;

 else this.age = 1;

 }

 public Tree(String title, String type, int age, double

height) {

 this(height, age);

 this.title = title;

 this.type = type;

 }

}

Again, in this case, the second constructor must be called the first command.

📝 4.2.11

Fill the code to use the existing constructor to adjust the height and weight:

class Person {

 private String name;

 private String education;

Constructors | FITPED

90

 private double height;

 private int weight;

 public _____(String name, String education, double height,

int weight) {

 _____(height, weight);

 this.name = name;

 this.education = education;

 }

 public _____(double height, int weight) {

 if (height >0) this.height = height;

 if (weight > 0) this.weight = weight;

 }

}

4.3 Constructors (programs)

⌨ 4.3.1 Calculator

Create a Calculator class that will return results for numerical calculations with two
integers stored as attributes.

Add a constructor with two parameters that set both attributes. Checks are not
necessary.

Add getters and setters for attributes a and b: getA(), getB(), setA(), setB().

Ensure the following methods are functional:

• sum() - sum of attributes,
• product() - product of attributes,
• difference() - difference of attributes,
• quotient() - integer proportion of attributes, if the second attribute is 0, return

-1 as the result,
• modulo() - remainder when dividing attributes, if the second attribute is 0,

return -1 as result.

The following procedure illustrates the creation of instances and method calls:

public static void main(String[] args) {

 Calculator c = new Calculator(10,20);

 System.out.println(c.sum()); // writes 30

Constructors | FITPED

91

 c.setA(5);

 System.out.println(c.product()); // writes 100

 c.setB(3);

 System.out.println(c.getA()); // writes 5

 System.out.println(c.difference()); // writes 2

 System.out.println(c.quotient()); // writes 1

 System.out.println(c.modulo()); // writes 2

}

⌨ 4.3.2 Stopwatch

Create a Stopwatch class that will have a defined number of hours, minutes and
seconds during which it runs.

Define the following methods:

• A constructor that populates the start state: hours, minutes, seconds in that
order of parameters. If any of the values for minutes or seconds exceed 59,
set them to 0; if the value for hours exceeds 23, set it to 0. If any value is
negative, set it to 0.

• A second constructor, with no parameters, that sets all values to 1,
• a tick() method that increases the running time by 1 second; if the seconds

are 60, increase the minutes by 1 and set the number of seconds to 0; if 60
minutes is reached, set the value to 0 and increase the number of hours; if
the number of hours is 24, set it to 0

• getTime(), which returns the current state of hours, minutes, seconds in the
form:

00:05:17

• i.e. each of the variables will be padded with zeros to two places and the ":"
character will be inserted between the values.

The following procedure illustrates the creation of instances and method calls:

public static void main(String[] args) {

 Stopwatch s = new Stopwatch(10,20,30);

 for (int i = 1; i < 60; i++) s.tick();

 System.out.println(s.getTime()); // writes 10:21:29

 Stopwatch s2 = new Stopwatch();

 s2.tick();

 System.out.println(s2.getTime()); // writes 01:01:02

}

Constructors | FITPED

92

⌨ 4.3.3 Label

Create a Label class that returns a name label for the given first name, last name,
and title before the name stored in the attributes:

Create two constructors:

• A constructor with two parameters sets the first and last name. If either
value is empty, it will set it to "Anonymous", the attribute for the title will be
set to empty.

• A constructor with three parameters will additionally contain a title in the
first position, which if empty will get the value "titled".

Add getter and setter for title: setTitle() and getTitle().

Add a getLabel() method that will return a title of the form title + dot + space +
name + surname based on the attributes.

The following procedure illustrates the creation of instances and method calls:

public static void main(String[] args) {

 Label l1 = new Label("James","Bond");

 System.out.println(l1.getLabel()); // writes James Bond

 Label l2 = new Label("","James","Bond");

 System.out.println(l2.getLabel()); // writes titled. James

Bond

 l2.setTitle("Mr.");

 System.out.println(l2.getLabel()); // writes Mr. James

Bond

}

⌨ 4.3.4 Car

Create a Car class that has information about:

• the make of the car
• registration number (registration number)
• speed (integer value)

Constructors | FITPED

93

Define a constructor that will populate all attributes with the appropriate values in
the order make, license plate, speed. If:

• tag is an empty (or null) value, sets the text "Anonymous"
• The license plate number is an empty (or null) value, it sets XX-000XX
• speed is less than 0, sets 0.

Define a faster() method that will increase the speed by 1 km/h.

Define a slower() method that decrements the speed by 1 km/h. If the slower
method is used at zero speed, it sets the speed value to 0.

Define a stop() method that sets the speed to 0 km/h.

Define a getInfo() method that returns all information in the form: sign +": " + regni+
", " + speed, e.g..:

BMW: AA-101XX, 58

The following procedure illustrates the creation of instances and method calls:

public static void main(String[] args) {

 Car c = new Car("Renault","XX-123AB",12);

 System.out.println(c.getInfo()); // writes Renault: XX-

123AB, 12

 c.faster();c.faster();c.faster();c.faster();

 System.out.println(c.getInfo()); // writes Renault: XX-

123AB, 16

 c.slower();

 System.out.println(c.getInfo()); // writes Renault: XX-

123AB, 15

 c.stop();

 System.out.println(c.getInfo()); // writes Renault: XX-

123AB, 0

}

⌨ 4.3.5 Spider

Create a Spider class that will have defined:

• dimensions of the room where the spider lives rows, columns
• x, y position of the spider
• a character variable (char) that will be used to draw the edges of the room.

Constructors | FITPED

94

Our goal is to place the spider in the room at the specified position, e.g..:

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

x x

x x

x o x

x x

x x

x x

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

where "x" is the bounding box and "o" is the spider marker

The rows and columns, as well as the position of the spider, start counting from 1,
i.e. the coordinate of the upper left corner is [1,1] (the "x" character is placed there).

Define a constructor that populates the number of rows, the number of columns,
the x, y and the delimiter character

• if the number of rows or columns is less than 5, set the small value to 10
• if x or y is on the boundary or outside the room area, set its value to 3 if x is

faulty and its value to 2 if y is faulty.

Define methods left(), right(), up(), down() that will move the spider position by 1
position in the appropriate direction. Let the methods return "OK" if the shift is
successful, if the spider tries to step on the boundary, let its position not change
and return "Ouch!"

Define a getInfo() method that returns the current spider and room situation, see
the image above.

Define a getSpider() method that returns the spider's position in the form: "[" + x +
"," + y + "]"

Define a getDimensions() method that returns the dimensions of the room in the
form of the number of rows + " x " + the number of columns.

The following procedure illustrates how to create instances and call methods:

public static void main(String[] args) {

 // creates a room with 10 rows and 20 columns with borders

"s",

Constructors | FITPED

95

 // and with spidet on [5,6]

 Spider s = new Spider(10,20,5,6,'s');

 s.setValues(10,20,5,10,'s'); // n

 String res = s.left(); // returns OK

 res = s.left(); // returns OK

 res = s.left(); // returns OK

 res = s.left(); // returns OK

 res = s.left(); // returns Au!

 System.out.println(s.getSpider()); // writes [1,6]

 System.out.println(s.getDimensions()); // writes 10x20

}

Class Examples

Chapter 5

Class Examples | FITPED

97

5.1 Class examples

🕮 5.1.1

Create an Animal class that will be able to say hello as the animal.

An attribute that stores the sound of the animal and the greeting() method will
suffice to solve the task.

The constructor is enough for us to set the attribute.

class Animal {

 private String sound;

 public Animal(String sound) {

 this.sound = sound;

 }

 public void greeting() {

 System.out.println(sound);

 }

}

We create instances very easily:

Animal dog = new Animal("woof");

Animal cat = new Animal("meow");

and call the appropriate method for everyone as well:

dog.greeting();

cat.greeting();

📝 5.1.2

Fill in the code with setter and getter for the Animal class:

class Animal {

 private String sound;

 public Animal(String sound) {

 this.sound = sound;

 }

 public _____ setSound(String sound) {

Class Examples | FITPED

98

 _____.sound = sound;

 }

 public _____ getSound() {

 _____ sound;

 }

 public void greeting() {

 System.out.println(sound);

 }

}

🕮 5.1.3

Create a Stopwatch class that will be able to increase the time by one second (tick)
and return/write the time.

The attributes will represent the time represented by seconds, minutes, and hours.

We create a class using two constructors - the first (without parameters) sets the
values to 0, the second (with parameters) allows you to set a specific time.

The setters can be solved by the setTime() method which, after checking the
suitability of the parameters for time, sets the attributes to the specified hours,
minutes and seconds. This method can also be used in the constructor.

We can also replace the triple getters with a method that returns the measured time
in text form.

The key method will be the tick() method, which shifts the time by one second and
provides, minutes and hours if it is necessary.

📝 5.1.4

Fill the code for the default parameter settings and the constructor in
the Stopwatch class.

class Stopwatch {

 _____ int h, m, s;

 public _____() {

 h = _____;

 m = _____;

 s = _____;

Class Examples | FITPED

99

 }

}

📝 5.1.5

Fill the code for the method to set the time parameters and the second constructor
in the Stopwatch class.

class Stopwatch {

...

 public _____(int h, int m, int s) {

 _____(h, m, s);

 }

 public _____ setTime(int h, int m, int s) {

 if (h >= 0 && h < 24) _____.h = h;

 else _____.h = 0;

 if (m >= 0 && m < _____) _____.m = m;

 else _____.m = 0;

 if (s >= 0 && s < _____) _____.h = h;

 else _____.h = 0;

 }

}

📝 5.1.6

Fill the code for the method that returns the current time on the stopwatch:

public _____ getTime() {

 String txt = h + ":" + m + ":" + s;

 _____ txt;

}

📝 5.1.7

Fill the code for the tick() method which shifts the time by one second and
increases the minutes and hours when the count reaches 60.

 public void tick() {

 s_____; // increases the seconds

 if (s == 60) {

 s = 0; // if you exceed 60

seconds, increase the minutes

Class Examples | FITPED

100

 m++;

 if (m _____ 60) {

 m = _____;

 h_____;

 if (h == 24) h = 0;

 }

 }

 }

🕮 5.1.8

Create a Fraction class in which will be possible to:

• create a fraction using the numerator and denominator,
• we can omit the addition of getters and setters for this time,
• the returnFraction() method which returns a fraction in text form n/d
• the reduce() method (reduce a fraction to lowest terms) which reduce the

fraction by first finding the largest common divisor and then dividing the
number above and below the fractional line.

📝 5.1.9

Create a constructor for a fraction that cannot be entered in denominator 0. If the
user enters 0 replace it with 1.

class Fraction {

 _____ int numerator;

 _____ int denominator;

 public _____(int numerator, int denominator) {

 this.numerator = numerator;

 if (denominator _____ 0) _____ = 1;

 this.denominator = denominator;

 }

}

📝 5.1.10

Fill the code for the returnFraction() method which returns the fraction in text
form n/d.

Class Examples | FITPED

101

public _____ returnFraction() {

 _____ numerator + “/” + denominator;

}

📝 5.1.11

Fill the code for the reduce() method which reduces fraction and
the getGCD() method (the greatest common divisor) that finds the greatest
common divisor.

public void reduce() {

 _____ gcd = getGCD(numerator, denominator);

 numerator _____= gcd;

 denominator _____= gcd;

}

private int getGCD(int n, int d) {

 int min = c;

 if (d < min && d _____ 0) min = d;

 for(int i = _____; i > 1; i--)

 if (c _____ i == 0 && d _____ i == 0) _____ i;

 return 1;

}

More Classes

Chapter 6

More Classes | FITPED

103

6.1 Parameters passed by reference

🕮 6.1.1

Parameters of the primitive types that enter the method always create a new
variable named parameter. It can be used as a common variable in a method and
will disappear along with its value when the method ends.

E.g.:

class Test {

 public void listing(int i) {

 i++;

 System.out.println(i);

 }

 public void start() {

 int i = 10;

 listing(i);

 System.out.println(i)

 }

}

In the example calling the start() method prints the following values:

11

10

because the listing() method has changed the copy of variable "i". After completing
the method, we returned to the original variable whose value was set to 10 in
the start() method and unchanged.

📝 6.1.2

How will be the following code output after calling the start() method?

class Test {

 public void output(int i) {

 i = i + 3;

 System.out.print(i);

 }

 public void start() {

 int i = 5;

More Classes | FITPED

104

 output(i);

 System.out.print(++i);

 }

}

🕮 6.1.3

If we want to "get" a calculated value from a method we use a function that can
return the contents of one variable of any type (i.e., an instance filled with multiple
values) as a result. The method must be of the appropriate type, for example:

class Test {

 public int squared(int i) {

 i = i * i;

 return i;

 }

 public void start() {

 int i = 5;

 int s = squared(i);

 System.out.print(i);

 System.out.print(s);

 }

}

The value of the parameter "i" does not change, the calculated value is stored in the
variable "s", where it is returned as the return value of the squared() method.

📝 6.1.4

What will be the output of the following code after calling the method start()?

class Test {

 public int operation(int i, int j) {

 i = i * j;

 return i + j;

 }

 public void start() {

 int i = 5, j = 10;

 int m = operation(i, j);

 System.out.print(i);

 System.out.print(j);

More Classes | FITPED

105

 System.out.print(m);

 }

}

🕮 6.1.5

If we send a variable to the method that is not a primitive but a reference type, a
copy of the content pointed to by the reference variable but only a copy of the
reference variable - pointer, is not created when entering the method.

Changes to the content of the reference variable are then made at the same
location as the variable that was sent to the method.

If we change the content of such a variable in the method, then the changes are
retained even after the method is over.

A special case is the String type, which behaves like a primitive variable, even
though it is a reference type.

📝 6.1.6

For which group of data types will the changes in the variable's content in the
method be reflected in the content of the variables involved in the method call?

• reference
• primitive
• all

More Classes | FITPED

106

• none

🕮 6.1.7

Probably the simplest example of using this behavior is to manipulate the data in
an array.

Create a method that sets all elements to 100 for an integer array specified as a
parameter.

This is a relatively simple operation where the method input is an array with an
unspecified number of elements (the method enters only a reference to the place
where the array has reserved memory). The method sets each value to 100 by
browsing through the elements.

class Test {

 public void setArray(int[] arr) {

 for(int i = 0; i < arr.length; i++)

 arr[i] = 100;

 }

 public void start() {

 int[] arr1 = new int[10];

 setArray(arr1);

 int[] arr2 = new int[6];

 setArray(arr2);

 }

}

We see the importance of this approach when working with multiple arrays -
regardless of the name or number of array elements, all array elements are always
set to the desired value.

📝 6.1.8

Fill the code so that the elements in the array are set to the desired value.

class Test {

 public void setArray(int[] arr, _____ x) {

 for(int i = 0; i < arr._____; i++)

 arr[i] = _____;

 }

More Classes | FITPED

107

 public void start() {

 int[] arr1 = new int[10];

 _____(arr1, 5);

 int[] arr2 = new int[6];

 _____(arr2, 8);

 }

}

📝 6.1.9

Fill the code so that the array is filled with random numbers within the specified
range.

class Test {

 public void setArray(int[] arr, int a, int b) {

 for(int i = 0; i < arr._____; i++)

 arr[i] = (_____) (_____ + Math._____() * (b – a +

1));

 }

 public void start() {

 int[] arr1 = new int[30];

 _____(arr1, -10, 20); // set values from -10 to 20

 }

}

6.2 Methods' return value

🕮 6.2.1

T: Create a method that creates a mirror image from the array specified as a
parameter.

An input to a method is an array, more precisely its reference - if we change the
array values its content will also change where we called the method. The exchange
of elements is mirrored - the first element is exchanged with the last, the second
from the penultimate, etc. up to the middle of the array.

If the array has an even number of elements, then two adjacent elements in the
middle of the array will be replaced, if the number of elements is odd, the middle
element will remain in place. In the loop, we proceed to the middle of the array.

More Classes | FITPED

108

public void mirror(int[] arr) {

 for(int i = 0; i < arr.length / 2; i++) {

 int aux = arr[arr.length - 1 - i]; // i-th

element from the end

 arr[arr.length - 1 - i] = arr[i];

 arr[i] = aux;

 }

}

📝 6.2.2

Fill the method code to arrange the array from largest to smallest.

public void sort(int[] arr) {

 for(int i = 0; i < arr.length; i++) {

 for(int j = _____; j < arr.length - i - 1; _____++) {

 if (arr[j] < arr[_____]) {

 int aux = arr[j];

 arr[j] = arr[_____];

 arr[_____] = aux;

 }

 }

 }

}

🕮 6.2.3

In addition to changing the content of the reference variable, the result can be
returned as well as the result of the method's work.

If we modify the previous task to use a function to solve it, the code will change
only minimally.

T: Create a method that returns a mirror image for an array specified as a
parameter.

The return value of the method will be an integer array.

If we do not want to change the contents of the original array, we can create a new
array in which its elements are already mirrored.

public int[] mirror2(int[] arr) {

// reserve the same number of elements for the new array as

arr

More Classes | FITPED

109

 int arr2[] = new int[arr.length];

 for(int i = 0; i < arr.length; i++) {

 arr2[arr.length - i - 1] = arr[i]; // put the first

element in the last position, etc.

 }

 return arr2; // return the rotated

array as a result

}

and use the return value to populate the array from the call point:

int[] arr1 = new int[9];

setArray(arr1); // filled with random values

int[] myarr = mirror2(arr1); // create a new array by

inserting the inverted array values

 //from the method

📝 6.2.4

Fill a method to return an array containing elements with twice the original array
value.

public _____ twice(int[] arr) {

 int arr2[] = new int[arr._____];

 for(int i = 0; i < arr._____; i++) {

 arr2[_____] = arr[_____] * _____;

 }

 _____ arr2;

}

and the method call:

_____ result = twice(arr1);

🕮 6.2.5

T: Create a method that detects the largest and smallest element of an array in
one run.

Although there are object twins for primitive types (for int - Integer, for double -
Double, etc.) they are not referencing types in the true sense. Values do not change
by reference. They are usually used in places where a primitive variable cannot be
used but an object variant is required.

More Classes | FITPED

110

The first solution may be to create and return an array with two elements, the first
being the minimum and the second the maximum.

public int[] minMax(int[] arr) {

 int min = arr[0];

 int max = arr[0];

 for(int i = 0; i < arr.length; i++) {

 if (arr[i] < min) min = arr[i];

 if (arr[i] > max) max = arr[i];

 }

 int[] res = {min, max}; // create a result

array

 return res; // return the array

}

The call can take the form of:

int res[] = minMax(arr1); // return the result

of the method to the integer array

System.out.println("min: " + res[0]);

System.out.println("max: " + res[1]);

This solution is only suitable if all results are of the same type.

📝 6.2.6

Fill the method code to "output" the contents and the circuit of the circle at once.

public _____ circle(int c) {

 double[] result = new double[_____];

 result[0] = 3.14 * r * r;

 result[1] = 3.14 * 2 * r;

 _____ result;

}

the calling:

double res[] = circle(32);

System.out.println("circuit: " + res[_____]);

System.out.println("contents: " + res[_____]);

More Classes | FITPED

111

🕮 6.2.7

The second solution is to create an instance of the class whose attributes
(including various types) we use to:

• populating a variable (via a parameter called by a reference)
• or to return values (method type will be given class).

To output values through a variable we can proceed as follows:

We define an instance for data output:

class Memory {

 int min;

 int max;

}

and a method in which we find the minimum and maximum for their output using
the reference parameter types Memory.

public void minMax(int[] arr, Memory m) {

 int min = arr[0];

 int max = arr[0];

 for(int i = 0; i < arr.length; i++) {

 if (arr[i] < min) min = arr[i];

 if (arr[i] > max) max = arr[i];

 }

 // assign values to the instance

 m.min = min;

 m.max = max;

}

The call will take the form of:

Memory m = new Memory(); // create an instance

to transfer values

minMax(arr1,p);

System.out.println("min: " + m.min);

System.out.println("max: " + m.max);

where, in the first step, we create an empty instance, populate it in the minMax()
method, and then write it through the public attributes.

More Classes | FITPED

112

If we wanted to be fair, it would be desirable to make the attributes private and to
use getters and setters.

📝 6.2.8

Fill the method code so that one call to get the average and the sum of the array
elements with decimal values.

class Memory {

 _____ sum;

 _____ avg;

}

public void sucmAvg(double[] arr, _____ m) {

 _____ sum = 0;

 for(int i = 0; i < arr.length; i++)

 sum += arr[i];

 m.sum = sum;

 m.avg = sum/_____._____;

}

the calling:

double [] arr1 = new double[10];

setArray(arr1);

Memory m = new Memory();

sumAvg(_____, _____);

🕮 6.2.9

An alternative is to rewrite the method to a form in which the return value is of the
Memory type. The result of the method is saved to a Memory instance.

class Memory {

 double sum;

 double avg;

}

public Memory minMax(int[] arr) {

 int min = arr[0];

 int max = arr[0];

More Classes | FITPED

113

 for(int i = 0; i < arr.length; i++) {

 if (arr[i] < min) min = arr[i];

 if (arr[i] > max) max = arr[i];

 }

 Memory m = new Memory(); //create an instance and

insert values into it

 m.min = min;

 m.max = max;

 return m; //return the populated

instance as a result of the method

}

and finally the call:

Memory m = minMax(arr1);

System.out.println("min: " + m.min);

System.out.println("max: " + m.max);

📝 6.2.10

Fill the method code so that one call to get the average and the sum of the array
elements with decimal values as the return value of the sumAvg() method.

class Memory {

 _____ sum;

 _____ avg;

}

class Memory {

 _____ sum;

 _____ avg;

}

the calling:

double[] arr1 = new double[10];

setArray(arr1);

_____ m = sumAvg(_____);

System.out.println("sum: " + m.sum);

System.out.println("average: " + m.avg);

More Classes | FITPED

114

6.3 Throw

🕮 6.3.1

There are two types of errors/exceptions in Java:

• checked: it is necessary to treat them in code - they include e.g. errors when
working with files

• unchecked: do not need to be treated and are processed after the program
starts - this includes e.g. division by zero, error when converting string to a
number, etc.

Java requires a try - catch - finally structure to catch checked exceptions.

• the try block contains a code that monitors for an error
• the catch block contains a description of the actions to take when an error

occurs. We can set the same behavior for all kinds of errors or perform a
different code for each identified error

• the sequence of the commands to be executed, both in the event of an error
and in the absence of an error, is listed in the finally block.

try {

 sequence of guarded commands

} catch (Exception e) {

 error notification or error resolution code

} finally {

 block of commands to be executed in each case

}

This structure may or may not be used in the case of uncontrolled exceptions. If the
error does not occur the code continues to execute. If the data causes an exception
then the execution of the code is interrupted without try-catch treatment.

📝 6.3.2

Determine the correct order of the keywords used to handle exceptions.

• finally
• try
• catch

More Classes | FITPED

115

📝 6.3.3

Select the correct statements:

• checked exceptions must be handled in the code
• unchecked exceptions need not be handled in the code
• controlled exceptions include e.g. IOException
• uncontrolled exceptions include e.g. NumberFormatException
• checked exceptions need not be handled in the code
• unchecked exceptions must be handled in code
• uncontrolled exceptions include e.g. IOException
• controlled exceptions include e.g. NumberFormatException

🕮 6.3.4

The throw statement is generated by the throw statement, which can be used in
multiple forms.

In simple form, it provides interruption of code execution in the try block and moves
control to the catch block. It does so by creating an exception, and can use:

• exception constructor without parameter, e.g.:

throw new ArithmeticException();

• a constructor with a text parameter that also allows a user-defined error
description, e.g.:

throw new ArithmeticException("attempt to divide by zero");

Example of use:

try {

 int a = 3, b = 0;

 if (b == 0) throw new ArithmeticException("attempt to

divide by zero");

 int c = a/b;

 System.out.println(c);

} catch (NumberFormatException e) {

 System.out.println(e.getMessage());

} catch (ArithmeticException e) {

 System.out.println(e.getMessage());

}

More Classes | FITPED

116

The advantage of using the throw command is that you can enter your own text and
catch the error before it occurs.

The generic exception generation is:

throw new exception_class("error message");

For the mechanism to work properly, the type of exception created must be caught
in the catch branch.

📝 6.3.5

Interrupted performance of the code by using the throw command if the user enters
a negative value or a value over 120 for input. Ensure that the message that was
used in the exception constructor is printed.

Scanner input = new Scanner(System.in);

try {

 int age = input.nextInt();

 if (age < 0) _____ new ArithmeticException("A negative

value for age is not allowed");

 if (age < 18) System.out.println("Child");

 if (age >= 18 && age < 70) System.out.println("Adult");

 if (age >= 70 && age < 120) System.out.println("Senior");

 if (age > 120) throw {1:SA:=new} ArithmeticException("Age

over 120 is not allowed");

} _____ (ArithmeticException e) {

 System.out.println(e._____);

}

🕮 6.3.6

If there is no catch branch for the throw statement, execution of the program at the
exception creation point is interrupted.

Example:

Scanner input = new Scanner(System.in);

int age = input.nextInt();

if (age < 0) throw new ArithmeticException("Ending, the

program is not designed for age < 0");

if (age < 18) System.out.println("Child");

if (age >= 18 && vek < 70) System.out.println("Adult");

More Classes | FITPED

117

if (age >= 70 && vek < 120) System.out.println("Senior");

If you enter a negative value, exit the program with an error:

Exception in thread "main" java.lang.ArithmeticException:

Ending, the program is not designed for age < 0

📝 6.3.7

Fill the program code so that the program ends with an error if an odd value is
entered :

Scanner input = new Scanner(System.in);

System.out.println("Enter an even value!");

int data = input.nextInt();

if (data _____ 2 != 0) _____ _____ ArithmeticException("An odd

value was specified");

System.out.println("Half of the entered value is " + data

_____ 2);

🕮 6.3.8

Generating errors in classes will help us in particular in checking the correct range
of parameters, both in the constructor and in different setters.

To prevent the programmer from using a try-catch block when creating a new class,
you must choose one of the exception classes, which are unchecked exceptions.
The ideal type is IllegalArgumentException.

📝 6.3.9

In which parts of the class does the error generate an error in case of incorrect
values?

• setter
• constructor
• getter
• getInfo – returning instance information

More Classes | FITPED

118

🕮 6.3.10

The same throw statement generates an exception and aborts the execution of
code in any method.

If used in the constructor (the constructor does not end with the last statement),
the instance is not created - this will prevent the generation of instances with
incorrect attributes.

T: Ensure that an IllegalArgumentException exception with a description of the
problem is generated in the Person class constructor in case of a negative age.

public class Person {

 private String name;

 private int age;

 public Person(String name, int age) {

 this.name = name;

 if (age < 0) throw new IllegalArgumentException("age <

0");

 this.age = age;

 }

...

}

Using the following listing in your code:

Person p1 = new Person("Peter", 10);

the instance is created and the program continues.

If we try to create the following instance:

Person p2 = new Person("Anna", -20);

program execution is interrupted with the following listing:

Exception in thread "main" java.lang.IllegalArgumentException:

age < 0

📝 6.3.11

Fill the Employee class code so that an exception is generated if you enter a
negative salary.

More Classes | FITPED

119

public class Employee {

 private String name;

 private int salary;

 public Employee(String name, int salary) {

 _____.name = name;

 if (salary < 0) _____ _____

IllegalArgumentException("Attempt to assign a negative value

for salary");

 _____.salary = salary;

 }

...

}

🕮 6.3.12

If we use an unchecked exception (eg. IllegalArgumentException) then we can (but
do not have to) treat the place where the exception can occur with a try-catch
structure. In this case, the execution of the code is not interrupted but continues
after the catch block.

public class Person {

 private String name;

 private int age;

 public Person(String name, int age) {

 this.name = name;

 if (age < 0) throw new IllegalArgumentException("age <

0");

 this.age = age;

 }

...

}

with calls e.g.:

Person p2;

try {

 p2 = new Person("Anna", -10); // the

constructor generates an exception

}

catch (Exception e) {

 System.out.println(e.getMessage());

}

More Classes | FITPED

120

...

The same method can be used for risk setters.

📝 6.3.13

Fill the class code to handle the situation where a negative value for the salary
variable is sent to the Employee class constructor.

public class Employee {

 private String name;

 private int salary;

 public Employee (String name, int salary) {

 this.name = name;

 if (salary < 0) throw new

IllegalArgumentException("negative salary");

 this.salary = salary;

 }

...

}

Employee e1;

try {

 e1 = new _____("Jacob", -305);

} _____ (Exception e) {

 System.out.println(e._____);

}

6.4 References in fuctions (programs)

⌨ 6.4.1 Same elements of arrays

In the MyClass class, create a compareData() method with two parameters of type
array of strings that returns a list of elements that are in both arrays as the result of
its action.

The elements can be placed in different positions and in the result let them be
listed below each other in alphabetical order.

If an element is listed more than once, let it be listed more than once.

More Classes | FITPED

121

Make sure that the source arrays are untouchable when transferring their
references.

For arrays:

mom, dad, grandma, grandpa, grandma

mama, grandpa, grandma, mama, winter

returns the result in the form:

grandma

grandpa

mama

mama

are the common elements of the arrays:

[mama,dad,grandma,grandpa,grandpa,mama]

[mama,grandpa,grandma,mama,winter]

An illustration of instance creation and method calls is presented by the following
procedure:

public static void main(String[] args) {

 MyClass mc = new MyClass();

 String[] firstArray = {"mama", "dad", "grandma",

"grandpa"};

 String[] secondArray = {"mama", "grandpa", "grandma",

"winter"};

 System.out.println(mc.compareData(firstArray,secondArray))

;

 /* writes:

 grandma

 grandpa

 mama

 mama

 are the common elements of the arrays:

 [mama,dad,grandma,grandpa,mama]

 [mama,grandpa,grandma,mama,winter]

 */

}

⌨ 6.4.2 Student

Create a Student class that will have information about:

More Classes | FITPED

122

• first and last name
• the student's year
• the amount of the scholarship

Define a constructor with first name, last name, year and scholarship amount
(integer), ensuring that the attributes are populated as follows:

• set the first and last name as they came in
• if the year is less than 1, generate an IllegalArgumentException with the text

"too low year of study"
• if the year is greater than 5, generate an IllegalArgumentException with the

text "too high year of study"
• If the scholarship is less than 0, generate an exception:

NumberFormatException with text "negative scholarship"
• If the scholarship is less than 10000, generate an exception:

NumberFormatException with the text "too expensive scholarship"

Define a getInfo() method that returns information about the student in the form of
name, surname, year, sholarship, e.g.:

first name last name, 5th, scholarship EUR

An illustration of creating instances and calling methods is presented by the
following procedure:

public static void main(String[] args) {

 Student s1 = new Student("John","Smith", 2, 5000);

 System.out.println(s1.getInfo()); // writes John Smith,

2., 5000 EUR

 Student s2 = new Student("John","Doe", 8, 5000); //

constructor ends with error: IllegalArgumentException: too

high year of study

 Student s3 = new Student("John","Doe", 2, -5000); //

constructor ends with error: NumberFormatException: negative

scholarship

}

⌨ 6.4.3 Bus

Create a Bus class that will have information about:

More Classes | FITPED

123

• the maximum number of passengers that can fit on the bus
• the current number of passengers,
• the state of the bus - whether it is moving or stationary, in case of movement

it contains the value true
• door status: open/closed - if open, it contains the value true

Define a constructor with one parameter that populates the attributes as follows:

• the maximum number of passengers based on the method parameter, if less
than 10, sets the value to 10.

• sets the current passenger count to 0,
• and let the bus not move and keep the doors open.

Define a constructor with two parameters, where the first parameter is the current
number of passengers and the second is the maximum number of passengers.

• If either of the parameters is negative or the current count is greater than the
maximum count, generate an exception: an IllegalArgumentException with
the text "<0 or too much"

• and keep the bus stationary and the doors open.

Define a closeDoor() method that closes the door.

Define an openDoor() method that opens the door.

Define a move() method that moves the bus, but only if the door is closed.

Define a stop() method that stops the bus.

Define an exiting() method with an integer parameter that provided,

• that the specified parameter is less than or equal to zero does nothing,
• the door is open, let the specified number of passengers off the bus,
• if it wants to discharge more than the current number of passengers, it sets

the current state to 0 and generates an IllegalArgumentException exception
with the text "empty bus"

More Classes | FITPED

124

Define a boarding() method with an integer parameter that provided,

• the specified parameter is less than or equal to zero does nothing,
• that the door is open, adds the specified number of passengers to the

current state,
• if more passengers want to board than can fit on the bus, the current state is

set to full and an IllegalArgumentException is generated with the message
"full bus " + count + " more" where the count is those who didn't fit on the
bus.

Define a getInfo() method that returns information about the bus in the form of
current status/maximum number of people, open/moving, e.g.:

10/45 true/false

An illustration of creating instances and calling methods is presented by the
following procedure:

public static void main(String[] args) {

 Bus b1 = new Bus(30,20); // constructor ends with error:

IllegalArgumentException: <0 or too much

 Bus b2 = new Bus(30,40);

 b2.closeDoor();

 b2.move();

 b2.stop();

 b2.open();

 b2.boarding(10);

 System.out.println(b2.getInfo()); // writes 40/40

true/false

 b2.exiting(50); ends with error IllegalArgumentException:

empty bus

}

Static Variables

Chapter 7

Static Variables | FITPED

126

7.1 Static variables

🕮 7.1.1

T: Create a Bottle class to record the maximum volume, the currently filled
volume, and a unique serial number. Allow adding and removing bottle content.

The class may take the form of:

public class Bottle {

 private int serialNum;

 private int maxVol;

 private int curVol;

 public Bottle(int maxVol, int curVol) {}

 public void addFluid(int vol) {}

 public void takeFluid(int vol) {}

 public String getInfo() {}

}

A new feature is the requirement to ensure the uniqueness of the serial
number. The most sensible thing would be to create a mechanism that can count
the bottles and assign each new number one larger than the previous one.

This information cannot be stored in an instance known to us because every new
instance that is created is the same - it reads the same default values and reserves
the same memory.

We could send the serial number information to the constructor as an additional
parameter but we would need a global variable in the service code to count the
bottles. Such a solution is possible but carries the risk of errors and encapsulation
problems.

📝 7.1.2

How do we define the term encapsulation?

• class independence from surrounding code
• the ability to transfer a class to another program, regardless of code outside

the body
• not using other than public attributes
• not using class attributes
• not using class method

Static Variables | FITPED

127

🕮 7.1.3

In order for our class to be encapsulated (and thus transferable as a whole to other
applications), the serial number allocation mechanism needs to be incorporated
into it.

In addition to the class instance attributes, where each instance has its own
attributes, there are also class attributes that:

• they are common to and independent of, all instances of that class
• they exist before the first instance is created, they are created at program

startup

These attributes are called static and use the static keyword to identify them. It is
referred to as the visibility attribute of a variable or method, such as:

private static int num;

private static void load() {}

The following applies to the static attribute and the static method (also called class
method) due to independence from any instance of the class:

• there is no need to create an instance for their use
• a static method cannot directly refer to instance methods or their attributes

from a class instance, you can call
• static classes and use static attributes
• the static method can use static variables

We use static methods when writing programs from the beginning. These are all the
"commands" that we use without instantiating:

• System.out.print
• Integer.ParseInt
• Math.random

📝 7.1.4

Which keyword is used to define static attributes and methods?

Static Variables | FITPED

128

🕮 7.1.5

To ensure a unique serial number:

• remember the number of bottles created so far
• assign a new number to each newly created one and increase the number

We will use the class attribute to store the serial number because it is a value that
belongs only to the instance and other instances have no reason to access it.

We use a static variable that is common to all instances due to the use of
the static keyword for the number of bottles we create. If one instance changes the
contents of the variable all other instances see the updated value.

The default value that we assign to it is set when the program starts.

The modified class will be:

public class Bottle {

 private int serialNum; // instance

attribute

 private static int count = 0; // common to all

instances

 private int maxVol;

 private int curVol;

...

}

The count attribute is private because it is not required from the outside it is only to
ensure the uniqueness of the serial number and is only handled within the instance.

📝 7.1.6

When is a static variable created and its default value set?

• when running the program
• when creating the first instance of the class to which the static variable

belongs
• every time you create a new instance

Static Variables | FITPED

129

🕮 7.1.7

We will use the current serial number and increase it in the constructor:

public class Bottle {

 private int serNum;

 private static int count = 0;

 private int maxVol;

 private int curVol;

 public Bottle(int mO, int cO) {

 count++; // we increase the

number of created instances

 serNum = count; // we set the serial

number for the current instance

 if (mO > 0) maxVol = mO;

 else maxVol = 1;

 if (cO > 0) curVol = cO;

 else curVol = 0;

 }

...

}

Increase the number of bottles created by one in the code and set a new serial
number.

We use static variables in instance methods by default because they exist since the
program started.

Instance variables cannot be used in static methods because a static method can
be run even if there is no instance yet and a non-existent variable would be used.

In addition, the static method for multiple instances created cannot determine
which one to work with.

📝 7.1.8

For static attributes and static methods:

• there is no need to create an instance for their use
• static method cannot use instance attributes
• the static method can use static variables
• at least one instance must be created to use them
• the static method can directly refer to instance attributes

Static Variables | FITPED

130

• static method cannot use static variables

7.2 Static variables usage

🕮 7.2.1

Create an Account class that is characterized by:

• owner name
• the amount
• interest rate
• account number
• necessary methods.

Ensure:

• account numbers will automatically increase for each new account
• if the interest rate changes, interest on all accounts of that class will change
• each month, the amount on the account shall be 1/12 of the prescribed

interest

We will increase account numbers in the same way as in the previous example by
using the static class attribute to use as a counter. We always raise it in the
constructor and assign that value as the account number to the instance.

The solution of interest rate will be a little differently. If interest_rate were to be
defined as an instance attribute (not a static attribute), any change in interest would
have to change its value in all existing instances. Let's take advantage of the fact
that a static variable is shared by all instances and its change is reflected at once in
all instances. If we define the interest_rate attribute as a static variable, it will be
common to all accounts and changing it in one place will be reflected in all
instances.

📝 7.2.2

Select which attributes will be static:

class Account {

 private ? int accountCount = 0;

Static Variables | FITPED

131

 private ? double interest_rate = 0.5;

 private ? int accountNum;

 private ? String owner;

 private ? double amount;

...

}

• accountCount
• interest_rate
• accountNum
• owner
• amount

📝 7.2.3

Increasing the account number and associating the current account number with
the instance is provided by the constructor. Fill in the method code:

public Account(String owner, double amount) {

 accountCount_____; // increase the

number of accounts

 _____ = _____; // set current number

 this.owner = owner; // set owner

name

 this.amount = amount; // deposit a

primary deposit

}

📝 7.2.4

The interest rate is defined in a static interest_rate variable. It will be changed by a
method that will be static for the following reasons (but not necessary):

• works with a static variable - it is customary to write methods that only work
with a static variable as static,

• you should be able to change/set interest before creating the first account -
the method must be static in this case so that it can be used before the first
instance of the Account class is created.

Fill the code for the static interest rate change method:

Static Variables | FITPED

132

class Account {

 private static int accountCount = 0;

 private static double interest_rate = 0.5;

 private int accountNum;

 private String owner;

 private double amount;

 ...

 _____ void ChangeIR(int interest_rate) {

 if (interest_rate _____ 0) _____ new

IllegalArgumentException("negative interest_rate")

 _____.interest_rate = interest_rate;

 }

}

📝 7.2.5

Suppose the interest_rate calculation is only run once at the end of the month. The
amount will be increased by 1/12 of the interest.

The method works with instance attributes, so it must not be static = it can only
exist after the instance has been created.

Fill the interest_rate calculation code:

_____ void AddMonIR() {

 amount = amount + _____ * interest_rate/12;

}

7.3 Static variables (programs)

⌨ 7.3.1 Passport

Create a Passport class that will handle the production of instances representing
passports.

It will store the owner's name, year of birth, and the serial number of the passport.

Let the class mechanism ensure that the serial number is incremented by 1 for
each new passport, and let it start at 100001.

Define a constructor that:

Static Variables | FITPED

133

• populates the owner and its year of birth (if the owner's name is empty or the
year value is less than 1900, let it set the name to "invalid" and the year of
birth to -1),

• sets the following serial number.

Add a getInfo() method that returns passport information of the form: owner + " (" +
year of birth + "): " + serial number e.g.:

Pear (1995): 100005

An illustration of creating instances and calling methods is presented by the
following procedure:

public static void main(String[] args) {

 Pasport p1 = new Pasport("Mak",1920);

 Pasport p2 = new Pasport("Rak",1840);

 Pasport p3 = new Pasport("Drak",1998);

 System.out.println(p1.getInfo()); // writes Mak (1920):

100001

 System.out.println(p2.getInfo()); // writes invalid:

100002

 System.out.println(p3.getInfo()); // writes Drak (1998):

100003

}

⌨ 7.3.2 Landrover

Create a Landrover class that will cater for the production of expensive cars for
specific customers

• It will have setters and getters defined for the attributes color, serial number
(int), operating system, owner.

• Let the serial number be incremented by 1 for each new car, and let it start at
100.

• The system will work by creating new instances with the color that is
currently set in the system - set the default color to "red"

Define a constructor that:

Static Variables | FITPED

134

• populates the owner and the operating system (if any of the input values are
empty, have it set the text value to "x"),

• sets the serial number and color of the car

Provide a changeColor() method that can change the color so that after the color is
changed, all other manufactured units will in turn use that set color. The color of
already produced cars is not changed.

Add a getOrder() method that returns information about how many in order the car
was produced.

Add a getInfo() method that returns information about the car in the form: owner + "
(" + serioveCislo + "): " + color + ", OS: " + operacnySystem, e.g..:

Pear (203): green, OS: Windows 3.1

An illustration of creating instances and calling methods is presented by the
following procedure:

public static void main(String[] args) {

 Landrover l1 = new Landrover("El Chef","Android Oreo");

 Landrover l2 = new Landrover("El Toro","Android Kit-kat");

 l1.changeColor("pink");

 Landrover l3 = new Landrover("El Cat","Windows Mobile 10");

 System.out.println(l3.getOrder()); // writes 3

 System.out.println(l1.getinfo()); // writes El Chef (100):

red, OS: Android Oreo

 System.out.println(l2.getinfo()); // writes El Toro (101):

red, OS: Android Kit-kat

 System.out.println(l3.getinfo()); // writes El Cat (102):

pink, OS: Windows Mobile 10

}

Inheritance

Chapter 8

Inheritance | FITPED

136

8.1 Preparation

🕮 8.1.1

T: Create an Account class that contains information about:

• account number
• account owner
• current bank account status (balance)

Add methods that allow:

• deposit/accept an amount to account
• withdraw/pay an amount from your account
• list the last 100 operations performed
• print out the account information

Remember that banks charge for each deposit and withdrawal.

📝 8.1.2

We'll need attributes for account number, owner name, amount and fee
amount. The necessary methods will be constructor, deposit and withdrawal, output
of operations information, respective return account information.

The fee will be changed in all accounts at the same time, so it is appropriate that it
is a "common" variable.

In addition, we implement a mechanism for assigning account numbers using a
static variable.

To store statements we will use a matrix with two columns where the first column
will contain the description of the operation or account number and the second
column will contain the amount. If the amount is credited to the account, it will
contain a positive value, if it is debited it will contain a negative value.

Now, according to these considerations add the first definition of the class:

public class Account {

 private int AccNum;

 private String Owner;

Inheritance | FITPED

137

 private double accStatus;

 private _____ operationOutput;

 private _____ int accountCount;

 private _____ double fee = 0.05;

 _____ Account(String owner, double deposit) {}

 public void deposit(double amount) {}

 public void withdraw(double amount) {}

 public void operationOutput() {}

 public String getInfo() {return "";}

 public _____ void feeChange(double f) {}

}

📝 8.1.3

The constructor increases the number of existing accounts and sets the instance
number of the current account. This will create space for 100 account statements.

According to these considerations fill the code:

public Account(String owner, double amount) {

 if (amount < 0) _____ new IlegalArgumentException("negative

deposit");

 accCount_____;

 accNum = _____;

 this.owner = owner;

 accStatus = amount;

 operationOutput = _____ String[_____][100];

}

📝 8.1.4

The method for depositing an account is quite simple. The deposit amount is added
to your account balance and the fee is deducted. The operation is written: the first
parameter is the account from which the deposit was made, or the description of
the operation (e.g. fee, deposit), the second parameter is the deposit amount. In
addition, we will ensure that it is not possible to deposit less than the fee deducted
from the account during the transaction.

According to these considerations fill the code:

public _____ deposit(String accNum, double amount) {

 if (amount > _____){

 accStatus = accStatus + amount - _____;

Inheritance | FITPED

138

 transaction(accNum, amount);

 transaction("fee",-fee);

 }

}

📝 8.1.5

Let's create an override deposit method that will be used if it is a cash deposit. It is
different from the previous method by the number of parameters.

In the method body, we simply call the already implemented deposit() method with
two parameters, the account number replacing with "cash deposit" text.

According to these considerations fill the code:

public void deposit(double amount) {

 _____("cash deposit", _____);

}

📝 8.1.6

Writing operations is relatively simple. The current position of the matrix will
indicate which account has sent or received the finance and the number of entries
will increase. To do this we need to add an instance variable that will remember the
number of operations that were written till now.

The method cannot be called from the outside because writing incorrect values
could compromise integrity. Only class methods use it, so its visibility will
be private.

If we wanted to ensure the correct behavior of the class after exceeding 100
operations in the account, it would be necessary to move the elements of matrix 1
forward and insert a new operation to the last place when exceeding 100 records.

According to these considerations fill the code:

_____ void transaction(String acc, double amount) {

 operationOutput[0][accCount] = acc;

 operationOutput[1][accCount] = Double._____(amount);

 transCount_____;

}

and edit the constructor:

Inheritance | FITPED

139

public Account(String owner, double amount) {

 if (amount < 0) throw _____

IlegalArgumentException(“negative deposit”);

 accCount_____;

 accNum = accCount;

 this.owner = owner;

 accStatus = amount;

 operationOutput = new String[2][100];

 transCount = _____;

 // we will write the initial deposit - no fee

 transaction("deposit",amount);

}

📝 8.1.7

Withdrawal/payment is a stressful operation not only for the real user but also for
our class. The first step is to make sure that the amount can be withdrawn (whether
an account balance is needed and whether we have a fee).

Feedback on a successful/unsuccessful operation must be provided to the user
immediately after attempting to call the operation. We encode it into the Boolean
return value of the method - if the operation succeeds method to
return true otherwise false.

According to these considerations fill the code:

public _____ deposit(String acc, double amount) {

 if ((amount > 0) && (accStatus > amount + fee)) {

 accStatus = accStatus - amount - fee;

 transaction(acc, _____amount);

 transaction("fee", -fee);

 return _____;

 } else

 return _____;

}

📝 8.1.8

Account information displays information about the attributes being retained. In
previous programs, we tried to provide object instance info in the form of a return
value so that a user of our class could decide how to display the data, so fill in the
code in accordance with this practice:

Inheritance | FITPED

140

public _____ getInfo() {

 _____ accNum + ": " + owner + " " + accStatus;

}

📝 8.1.9

The last required ability is to provide a statement of transactions on the
account. The header of the statement is secured by the existing getInfo() method,
and the rest of the data is filled with the list of operations. In this case, we will not
return the value but write it directly to the console.

According to these considerations fill the code:

public _____ operationListing() {

 System.out._____(getInfo());

 for(int i = 0; i < transCount; i++)

 System.out.println(operationOutput[0][_____] + " - " +

OperationOutput[_____][i]);

}

📝 8.1.10

The last unresolved issue is the change of the fee for all existing (even created)
instances. It is necessary to ensure that the content of the static variable fee is
changed.

public class Account {

...

private static double fee = 0.05;

 ...

We can also use the class method (not static) to change it, but it can only be used
when an instance exists.

If we use a static method, its code can be executed before the first instance is
created by specifying the class name and method.

Fill in the code for the static fee changing method:

public _____ void feeChange(_____ fee) {

 if (fee > 0) this.fee = fee;

}

Calling a method before creating the first instance will take the following form, e.g.:

Inheritance | FITPED

141

_____.feeChange(0.02);

📝 8.1.11

Fill the code to verify the functionality of the created class:

public static void main(String[] args) {

 Account._____(0.03); // set the fee to

3 cents

 Account a1 = new _____("Herman", 300);

 a1.deposit(100);

 System.out.println(a1._____); // output the info

of the account

 a1.deposit("123",100);

 a1.withdraw("123",50);

 a1._____(); // output the operations

}

8.2 Inheritance I.

🕮 8.2.1

T: Create a junior account with the same characteristics as the bank account but
ensure that operations on it are free of fee.

We could very easily make adjustments by changing the charge variable to 0 but
this variable is static and would also provide zero value for non-junior accounts.

In addition, the code has a hard-coded insertion of the feed line into statements -
the line would be unnecessarily inserted with zero value.

Given that we already have a number of methods in place and we have a
programmatically secure whole class, making it into a universal form would be
destructive rather than beneficial. Editing a class would also involve modifying all
programs that use it.

We could also copy the whole class and make adjustments in the new one, but if
there was a request to change the common methods, we would have to make the
adjustments in two places (which is ineffective and often flawed).

Inheritance | FITPED

142

Creating a new class based on the existing one without having to rewrite the
existing code allows us to have an object-oriented language feature called
inheritance.

The new class will inherit all characteristics of the original class and if we make
changes to the attributes or methods of the original class, they will immediately be
reflected in the methods of the class derived by inheritance.

The original class is referred to as parent (parent), new as derived, child or heir.

📝 8.2.2

Inheritance allows:

• creating a new class based on an existing class
• automatically translate changes in the parent class into a derived class
• translate the modifications in the derived class into the parent class

🕮 8.2.3

Benefits of inheritance:

• less code in the app, thanks to the ability to download existing code without
copying it

• reusability of existing code - if we want to create a new class and there is
already a class that contains some of the code we need, we can deduce the
new class from the existing class

• less error due to code rewriting in one place - changing the code in the parent
class also affects all derived classes

📝 8.2.4

Inheritance provides us:

• shorter total code in the app
• ability to use existing code without duplicating it
• encapsulation and independence of classes around
• the ability to use multiple attributes

Inheritance | FITPED

143

🕮 8.2.5

Creating a new class based on an existing class means that the derived class will
have the same attributes and all methods as the parent.

This step provides the keyword extends as follows:

public class JuniorAccount extends Account {

 // there will be definitions of new properties and methods

}

We'll add the keyword extends along with the name of the class we will inherit
from. In our case, JuniorAccount is an extension (extends) of the Account class.

This notation creates the same properties and methods for the child as the parent
class, plus we have space to add code to provide new and specific properties.

The thoughtful design of attributes and methods in the parent class is a
prerequisite for simplifying programming - these become part of all derived
classes.

📝 8.2.6

What keyword is creating a derived parent class?

🕮 8.2.7

A class that is derived from another class is called a subclass (also a derived class,
extended class or daughter class).

The class from which a subclass is derived is called a superclass (also a parent
class, base class, parent class or superclass)

Each class has only one direct parent class (simple inheritance), except for
the Object class, which has no superclass.

Any newly created class, unless it is derived from an existing class, is always a
subclass of the Object class.

Classes can be derived from classes that are derived from classes, and so on, up to
the ultimate top-class Object.

Inheritance | FITPED

144

📝 8.2.8

What is the class that is the ancestor of all Java classes?

8.3 Inheritance II.

🕮 8.3.1

public class JuniorAccount extends Account {

 // there will be definitions of new properties and methods

}

There is no constructor defined in the new class. Since there is no user constructor
defined in the child, the constructor is expected without parameters. This is first
searched for in the JuniorAccount class but if not available, then in the parent class
where it was "disabled" because there is a constructor with parameters.

public Account(String owner, double amount) {...}

This step identifies a problem that requires defining a custom constructor.

For our needs, the constructor can have exactly the same parameters as the
constructor in the ancestor and can use the already defined sequence of orders
entered in the bank account.

public JuniorAccount(String owner, double amount) {

 super(owner, amount);

}

The keyword super refers to a superclass (parent class). If the method name is
specified, the method will be called, if it is specified without the method
specification, the ancestor constructor is called.

In this way, we actually call an ancestor constructor with our parameters to take
care of creating an account, filling and depositing the first deposit.

📝 8.3.2

What keyword is used to call the parent constructor?

Inheritance | FITPED

145

🕮 8.3.3

Let's go through each method.

The deposit() method ensures that the amount is added to the account:

public void deposit(String account, double amount) {

 if (amount > fee) {

 accStatus = accStatus + amount - fee; // problem

 transaction(account, amount);

 transaction("fee", -fee);

 }

}

The deposit method is written in such a way that it automatically deducts a fee
from the account which we don't want because we created a new class for that
purpose.

Inheritance allows us not only to add new but also overwrite existing superclass
methods.

A method in a subclass overlaps a method from a parent class if the overlapped
method has the same name, number of parameters of the type and a return type as
the method that overlaps it.

So let's add a method to the JuniorAccount class that, thanks to the same name
and parameters, will replace the method inherited from the Account class.

@Override // an optional tag that indicates that it is an

overlapped method

public void deposit(String acc, double amo) {

 accStatus = accStatus + amo;

 transaction(acc, amo);

}

The method has the same parameters (it does not matter that they have different
names) and if the method is called in the JuniorAccount instance, this method is
used, if the method is called in the Account instance, the original method is used.

When calling the transaction() method, the content of the JuniorAccount class is
first checked, if it does not find the method, it executes the one that is defined in
the superclass.

Inheritance | FITPED

146

📝 8.3.4

What is the order of class browsing when calling a method?

• methods of the Object class
• current class
• parent class
• superclass parent class

🕮 8.3.5

We have defined the classes to meet all safety requirements:

• attributes are private
• methods it does not need, the user does not see

... and this is causing us problems because we do not have access to the deposit()
state variable - its visibility is

class Account {

 ...

 private double state;

 ...

 public void deposit(String u, double s) {

 state = state + s;

 entry(u, s);

 }

}

The private level allows access to the attribute only by methods of that class,
preventing access from other classes but also from children. If you do not want the
attribute to be public but want to make it available to all descendants of the class,
you must set the access level to protected (in the Account).

The same applies to the entry() method, which we call in the deposit() method,
added to the JuniorAccount class.

Inheritance | FITPED

147

📝 8.3.6

Fill the code for the properties of the attributes of each variable in
the Account class:

public class Account {

 _____ int accNum;

 _____ String Owner;

 _____ double accStatus;

 _____ String[][] transaction;

 private _____ int accCount;

 private _____ double fee = 0.05;

 ...

}

🕮 8.3.7

The subclass does not have access to members of the parent class that have
a private access level. When a derived class uses the methods of its parent it has
indirect access to its members.

In our case, the attributes owner, statements, etc. - are private but
the JuniorAccount class is accessed through the methods for
the Account class. E.g.: the constructor for JuniorAccount sent the parameters to
the constructor of the Account class:

class Account {

 ...

 public Account(String owner, double deposit) {}

 if (amount < 0) throw new

IlegalArgumentException(“negative deposit”);

 AccCount++;

 AccNum = AccCount;

 this.owner = owner;

 accStatus = amount;

 transaction = new String[2][100];

 transCount = 0;

 transaction("deposit",amount);

 }

 ...

}

class JuniorAccount extends Account {

 public JuniorAccount(String owner, double amount) {

 super(owner, amount);

 }

Inheritance | FITPED

148

...

}

📝 8.3.8

What keyword is used to make attributes and descendants of a derived class
available?

🕮 8.3.9

In the Java programming language, each class can have one superclass and each
parent class has an unlimited number of subclasses. It is not possible to combine
multiple parents (multiple inheritances) for one class such as in C/C++
languages. However, there are ways to overcome this deficiency.

📝 8.3.10

How many superclasses can a new class be derived from?

• just from one
• from none
• from a maximum of one
• from a maximum of two
• the number is not limited

8.4 Inheritance (programs)

⌨ 8.4.1 Rectangle

Create a Rectangle class that can:

• retrieve positive integers as the dimensions of a rectangle via a constructor.
If any value is less than or equal to zero, set it to 1.

• return the content of the rectangle using the getContent() method
• return the perimeter of the rectangle using the getCircuit() method

In the getDraw() method, return the rectangle drawn using the "o" characters so that
the width is always greater than the height.

Inheritance | FITPED

149

Override the toString() method to return the dimensions of the rectangle in the
form: "a x b: " + a + " x " + b

Create a TurnedRectangle class, which will be derived from the Rectangle class

• will have the same methods,
• The rectangle will be drawn in the getDraw() method so that the width is less

than the height.

An illustration of creating instances and calling methods is presented by the
following procedure:

public static void main(String[] args) {

 Rectangle r1 = new Rectangle(4,2);

 System.out.println(r1.getContent()); // writes 8

 System.out.println(r1.getCircuit()); // writes 12

 System.out.println(r1.toString()); // writes a x b: 4 x 2

 System.out.println(r1.getdraw());

 /* writes

 oooo

 oooo */

 TurnedRectangle r2 = new TurnedRectangle(4,2);

 System.out.println(r2.getContent()); // writes 8

 System.out.println(r2.getCircuit()); // writes 12

 System.out.println(r2.toString()); // writes a x b: 4 x 2

 System.out.println(r2.getdraw());

 /* writes

 oo

 oo

 oo

 oo */

}

⌨ 8.4.2 Animal

Create an Animal class that can:

• store information about the species, the sound the animal makes, the
maximum weight, and the average age of life (integer attributes).

Inheritance | FITPED

150

Create a constructor that populates the attributes with parameters in the order of
species, sound, max weight, and age of survival. If an integer value is less than 1,
set it to 1.

Add getters getSound() and getAge().

Add a sing() method that returns a string containing the sound of the animal 3
times in a row separated by a space, e.g. miau miau miau

Add a toString() method that outputs data in the form:

species: weight/age (sound)

Create a Bird class that is derived from the Animal class

• It will additionally have an attribute informing about the wingspan.

Modify the constructor by adding the wingspan as the last (integer) parameter and
setting it to 1 if its value is less than 1.

Add a toString() method that prints the data in the form:

species: weight/age/dispersion (sound

Create a Fish class, which will be derived from the Animal class

• will additionally have an attribute informing whether it is freshwater or
marine (it will contain either freshwater or marine).

Modify the constructor by adding the type of fish as the last parameter, and if its
value is less than the allowed value, set it to "marine".

Add a toString() method that will use the ancestor method and output the data in
the form:

species: weight/age (sound) - fish type

The following procedure illustrates how to create instances and call methods:

Inheritance | FITPED

151

public static void main(String[] args) {

 Animal a1 = new Animal("bear","brum",300,50);

 System.out.println(a1.sing()); // writes brum brum brum

 System.out.println(a1.toString()); // bear: 300/50 (brum)

 Bird b1 = new Bird("lark","cvrlik",1,10,15);

 System.out.println(b1.getAge()); // inherited from Animal,

writes 10

 System.out.println(b1.toString()); // lark: 1/10/15

(cvrlik)

 Fish f1 = new Fish("trout","hap",2,20,"freshwater");

 System.out.println(f1.sing()); // inherited from Animal,

writes hap hap hap

 System.out.println(f1.toString()); // trout: 2/20 (hap) -

freshwater

}

Polymorphism

Chapter 9

Polymorphism | FITPED

153

9.1 Concept and principle

🕮 9.1.1

The toString() method has a special role in the class hierarchy. Usually, it returns
information about the instance in an understandable form or converts the contents
of the attributes into a string.

We used it for conversion, listing the contents of an error, etc., while its use is in use
and editing the output for a particular class is a programmer's grace. The source of
this method is the Object class, that is, for each class is available
the toString() method.

For example, if you use it for an instance of the Account class defined as follows:

public class Account {

 ...

 private static int accCount = 0;

 ...

}

we get a string in the form:

p01_account.Account@9304b1

which provides information about the package, the class in it and the @ sign of the
(unique) identifier of the instance.

This method seems unlikely to suit us, as we would expect it to replace
the getInfo() method and get account information in a user-friendly form.

If we override this method, coming from the Object class, we can give up on
the getInfo() method.

📝 9.1.2

Add the toString() method code to return information about the Account class
instance.

@Override

public _____ toString() {

 _____ accNum + ": " + owner + " " + accStatus;

}

Polymorphism | FITPED

154

🕮 9.1.3

T: To register customer data, create the Person structure (name, address, birth
year), it is sufficient to define the constructor and the toString() method.

• from the Person class derive the Man class which will also have an income
attribute,

• from the Person class derive the Woman class which will also have height
and number of kids,

• from the Person class derive the Child class which will also have a favorite
toy parameter.

Create a customer list and output the content effectively.

📝 9.1.4

Add code to define the Person class with the constructor and the
redefined toString() method.

public class Person {

 private String name;

 _____ String adress;

 private _____ birth;

 public Person(String name, String adress, int birth) {

 _____.name = name;

 _____.adress = adress;

 _____.birth = birth;

 }

 public _____ toString() {

 _____ name + ": " + adress + ", year of birth.: " +

birth;

 }

}

📝 9.1.5

The Man class has all the attributes of the Person class. Attributes are not
accessed directly, but through methods of the Person class, so there is no problem
that they are private.

Polymorphism | FITPED

155

In the constructor, it fills the attributes through the parent constructor and in the
statement it also uses the parent method to obtain that portion of the attributes
that belong to the Person class.

According to these considerations fill the code:

public class Man _____ Person {

 private int salary;

 public Man(String n, String a, int b, int s) {

 _____(n, a, b);

 salary = s;

 }

 _____ String toString() {

 return _____.toString() + ", salary: " + salary;

 }

}

📝 9.1.6

The same rules apply to the definition of Woman and Child class. Fill in the
following code:

public _____ Woman _____ Person {

 private int height, kids;

 public Woman(String n, String a, int b, int h, int k) {

 _____(n, a, b);

 height = h;

 kids = k;

 }

 public _____ toString() {

 return _____.toString() + ", height: " + height + ";

kids: " + kids;

 }

}

public _____ Child _____ Person {

 private String toy;

 public Child (String n, String a, int b, String t) {

 _____(n, a, b);

 toy = t;

Polymorphism | FITPED

156

 }

 _____ String toString() {

 return _____._____() + ", favorite toy: " + toy;

 }

}

🕮 9.1.7

We will create a customer list that will list all types of people we register.

Each customer comes from the Person class regardless of whether it is an instance
of the Person class or an instance of the derived class. Every customer is therefore
a Person. We can create e.g. an array of people:

Person[] customerList = new Person[10];

However, the specific customer we will be adding to the list is no longer a person
but a male, female or child. Because they were derived from the Person class we
can also treat them as people. The following listing

Man c1 = new Man("Peter", "London", 1990, 1500);

customerList[0] = c1;

is perfectly fine.

You can also fill array elements by directly inserting an instance reference returned
by the constructor:

customerList[1] = new Man("Pete", "Casablanca", 1986, 2000);

customerList[2] = new Woman("Anne", "Paris", 1985, 168, 2);

customerList[3] = new Child("Joan", "Amsterdam", 2010,

"Lego");

Each of the created instances is, except its class instance, also an instance of
the Person class.

📝 9.1.8

The Plant class is given from which the Tree, Flower and Mushroom classes are
derived. Fill the code so that instances created by different constructors can be
stored in a common field.

_____[] list = new _____[10];

Polymorphism | FITPED

157

list[0] = _____ Tree("birch", 10, 100);

list[1] = _____ _____("cornflower", "blue");

list[2] = _____ Mushroom("amanita", "red", "poison");

🕮 9.1.9

The customer list output uses a feature called polymorphism.

for(int i = 0; i < 4; i++) {

 System.out.println(customerList[i].toString());

}

Calling toString() method can do something different for each array element. The
call depends on the type of instance that is stored in the element. Calling a method
with the same name always executes the version of the method that belongs to the
instance being processed. For each type of person different information will be
displayed:

• man: name, address, year of birth, salary
• woman: name, address, year of birth, height, number of kids
• child: name, address, year of birth, favorite toy

Each instance knows its origin and uses the version of the method closest to it ...

📝 9.1.10

Fill the code to list the different characteristics of the Plant class children:

public class Plant {

 private String title;

 public Plant(String title) { _____.title = title; }

 public _____ toString() { _____ title; }

}

public class Tree extends Plant {

 private int age, height;

 public Tree(String title, int age, int height) {

 _____(title);

 this.age = age;

 this.height = _____;

 }

Polymorphism | FITPED

158

 public String toString() {

 return super._____ + ", height: " + height + ", age" +

age;

 }

}

public class Flower extends Plant {

 private String color;

 public Flower(String title, String color) {

 _____(title);

 this.color = color;

 }

 public _____ toString() {

 return _____.toString_____ + ", color: " + color;

 }

}

Output:

_____[] list = new _____[10];

...

for(int i = 0; i < plantCount; i++) {

 System.out.println(list[i]._____);

}

🕮 9.1.11

Polymorphism is a consequence of the implementation of inheritance. The basic
idea of polymorphism is that a child can replace a parent. This practically means
that we can assign a reference to a child instance in the reference variable declared
by the parent type. Thus, every instance can behave as if it were an instance of any
of its superclasses.

Nevertheless, each instance 'knows' its true origin and the body selection method
to be used will only take place at the time of program execution. If it finds the called
method code in its body, it will use it. If not, searches in superclass etc.

As a result, calling a method with the same name for two instances with the same
parent (at different levels of the hierarchy) can perform different activities.

Polymorphism | FITPED

159

📝 9.1.12

Will two different method calls with the same name perform different actions
(command sequences) in the case of such a writer?

MyClass my = list[0];

my.do();

MyClass my = list[1];

my.do();

• yes
• no

9.2 Polymorphism (programs)

⌨ 9.2.1 Person

Create a Person structure to store the name, address, and year of birth of a person
to record customer data.

• Define a constructor that will set the name, address and year of birth,
checking the year of birth to be in the range 1900-2020, if outside this range
let it set the year of birth to 2000.

• Define a toString() method that returns data of the form: name + " (" +
yearBirth + "), " + address.

Derive the Man class from the Person class and add an extra integer attribute to
hold the salary amount.

Modify the constructor so that

• add an integer parameter at the end to represent the salary amount
• use the ancestor constructor
• you will check the salary amount: if it is outside the range of 100-10000, set

it to 0.

Override the toString() method, which

• returns data of the form: name + " (" + yearBirth + "), " + address + ": " +
income + " EUR",

• uses the toString() method on the ancestor.

Polymorphism | FITPED

160

Derive the Woman class from the Person class and add an extra text attribute to
store hair color and an integer attribute to store hair length.

Modify the constructor so that

• add a text parameter at the end to hold the hair colour and an integer
parameter to hold the hair length

• use the ancestor constructor
• check the hair length: if it is less than 0 set it to 1, if it is more than 120 set it

to 120.
• only allow four colors: black, blonde, brown, red, if other input set neutral :)

Override the toString() method which:

• returns data of the form: name + " (" + yearBirth + "), " + address + ", hairs: " +
colorHair + " - " + lengthHair,

• invokes the toString() method on the ancestor.

Derive the Kid class from the Person class and add a text attribute to it storing the
parent's name.

Modify the constructor so that

• use the ancestor constructor

Override the toString() method that:

• returns data of the form: name + " (" + yearBirthday + "), " + address + ",
parent: " + nameFamily

• invokes the toString() method on the ancestor.

Create a CustomerList class that will contain:

• an array of persons as a list into which you will insert customers of type
person (max 20)

• define an attribute that will contain the number of populated elements in the
list

Polymorphism | FITPED

161

Define a constructor without parameters, in which you create an array and set the
count to 0

Add an addMan() method in which you create and add a man to the list. Let the
parameters of the method be the same as in the man constructor - you will use
them when creating the man.

Add an addWoman() method to create and add a woman to the list. Let the method
parameters be the same as in the woman constructor.

Add an addKid() method to create and add a child to the list. Let the method
parameters be the same as in the child constructor.

Add a getList() method in which you use the toString() method to return complete
customer information from the customer list. Let each customer's information be
listed on a separate line.

The following procedure illustrates the creation of instances and method calls:

public static void main(String[] args) {

 Man m = new Man("George", "Kahira", 2026, 3000);

 Woman w = new Woman("Adela", "London", "1990", "black",

160);

 Kid k = new Kid("Adam", "London", 1880, "Ivan");

 System.out.println(m.toString()); // writes: George (2000),

Kahira: 0 EUR

 System.out.println(w.toString()); // writes: Adela (1990),

London, hairs: black - 0

 System.out.println(k.toString()); // writes: Adam (2000),

London, parent: Ivan

 CustomerList cl = new CustomerList();

 cl.addMan("George", "Kahira", 2026, 3000);

 cl.addKid("Adam", "London", 1880, "Ivan");

 cl.addWoman("Adela", "London", "1990", "black", 160);

 System.out.println(cl.getList());

 /* writes

 George (2000), Kahira: 0 EUR

 Adam (2000), London, parent: Ivan

 Adela (1990), London, hairs: black - 0

 */

}

