

The Collection of Practical Assignments

for Students Software Projects

Published on

November 2021

Authors

Ľubomír Benko | Constantine the Philosopher University in Nitra, Slovakia

José Daniel González-Domínguez | University of Las Palmas de Gran Canaria, Spain

Zenón José Hernández-Figueroa | University of Las Palmas de Gran Canaria, Spain

Tomáš Jakúbek | Mendel University in Brno, Czech Republic

Jozef Kapusta | Pedagogical University of Cracow, Poland

Jaromír Landa | Mendel University in Brno, Czech Republic

Juan Carlos Rodríguez-del-Pino | University of Las Palmas de Gran Canaria, Spain

Ján Skalka | Constantine the Philosopher University in Nitra, Slovakia

Peter Švec | Teacher.sk, Slovakia

Pavel Turčínek | Mendel University in Brno, Czech Republic

Reviewers

Anna Stolińska | Pedagogical University of Cracow, Poland

Dušan Junas | Teacher.sk, Slovakia

Cyril Klimeš | Mendel University in Brno, Czech Republic

Piet Kommers | Helix5, Netherland

Eugenia Smyrnova-Trybulska | University of Silesia in Katowice, Poland

Michal Švec | Teacher.sk, Slovakia

Graphics

Marcela Skalková | Teacher.sk, Slovakia

David Sabol | Constantine the Philosopher University in Nitra, Slovakia

Erasmus+ FITPED

Work-Based Learning in Future IT Professionals Education

Project 2018-1-SK01-KA203-046382

The European Commission support for the production of this publication does not constitute an

endorsement of the contents which reflects the views only of the authors, and the Commission cannot

be held responsible for any use which may be made of the information contained therein.

Licence (licence type: Attribution-Non-commercial-No Derivative Works) and may be used by third

parties as long as licensing conditions are observed. Any materials published under the terms of a CC

Licence are clearly identified as such.

All trademarks and brand names mentioned in this publication and all trademarks and brand names

mentioned that may be the intellectual property of third parties are unconditionally subject to the

provisions contained within the relevant law governing trademarks and other related signs. The mere

mention of a trademark or brand name does not imply that such a trademark or brand name is not

protected by the rights of third parties.

© 2021 Constantine the Philosopher University in Nitra

ISBN 978-80-558-1796-5

Table of Contents

INTRODUCTION .. 10

WEB DEVELOPMENT ... 11

WEB GAME .. 12

Available Solutions ... 12

REQUIREMENTS ... 12

Functional Requirements ... 12
Non-functional Requirements .. 12

APPLICATION DESIGN ... 12

Technology and Architecture Selection .. 12

USER INTERFACES .. 12

SOLUTION .. 13

Prepare the environment ... 13
Create motion .. 16
Shot .. 18
Possibilities of other game function ... 18

AUTHENTICATION AND MENU BASED ON USER'S ROLES FOR A WEB APP IN PHP 19

Available Solutions ... 19

REQUIREMENTS ... 19

Functional Requirements ... 19
Non-functional Requirements .. 20
Use Case Diagram ... 20

APPLICATION DESIGN ... 20

Technology and Architecture Selection .. 20
Data Model ... 20
User Interface ... 21

SOLUTION .. 23

Introduction .. 23
Creating and populating the database ... 23
Database class .. 25
Security class .. 26
User class .. 26
View class ... 28
Navigation class .. 29
Home page ... 30
Login page .. 30
Logout page .. 31
CSS .. 31
Source Code.. 33

CREATE, RETRIEVE, UPDATE, DELETE, AND LIST USERS FOR A WEB APP IN PHP............................. 34

Available Solutions ... 34

REQUIREMENTS ... 34

Functional Requirements ... 35
Non-functional Requirements .. 35
Use Cases Diagram ... 35

APPLICATION DESIGN ... 36

Technology and Architecture Selection .. 36
Data Model ... 36
User Interface ... 37

SOLUTION .. 38

Introduction .. 38
Specific database queries and server-side data validation .. 38
List of users ... 42
Add a new user ... 43
View user profile .. 45
Edit user profile .. 46
Delete user account ... 47
Change user password ... 47
Form validation in browser. The example of the add user from. ... 48
Delete user account with Ajax .. 50
Source Code.. 52

CHAT IN VUEJS ... 53

Available Solutions ... 53

REQUIREMENTS ... 53

Functional Requirements ... 53
Non-functional Requirements .. 54
Use Case Diagram ... 54

APPLICATION DESIGN ... 54

Technology and Architecture Selection .. 54
User Interfaces ... 55

SOLUTION .. 56

Introduction .. 56
Clone repository ... 56
Create Vue.js project using Vue CLI .. 57
Project directory description .. 57
Install Vuetify .. 57
Installation of the necessary dependencies ... 58
Vue.js documentation .. 58
Start development mode ... 58
Remove Hello world template.. 58
Vue single file component .. 59
The Vue instance .. 59
SPA development in general .. 59
Creating AppBar component .. 60
Data and props in general .. 61
Props and directives ... 62
Adding router ... 65
Login and register forms... 66
Adding routes ... 68
Adding links .. 69
HTTP client setup .. 70
HTTP requests .. 71

Token manager class .. 73
Login and logout flow ... 74
Room components ... 77
Secured routes ... 82
Message components .. 83

SIMPLE FORMS ... 89

JQUERY ANIMATION .. 90

HAMMER HITTING TURTLE ... 91

MOBILE APPLICATIONS ... 92

TO-DO APPLICATION FOR ANDROID IN JAVA ... 93

Available Solutions ... 93

REQUIREMENTS ... 93

Functional Requirements ... 93
Non-functional Requirements .. 93

APPLICATION DESIGN ... 93

Technology and Architecture Selection .. 93
Data Model ... 94
User Interfaces ... 94

SOLUTION .. 94

Application database .. 94
SharedPreferences ... 97
SplashScreenActivity .. 97
TodoListActivity .. 99
AddEditTaskActivity .. 100
TaskDetailActivity ... 102
Settings Activity .. 103
Working with images .. 104

GOOGLE MAP APPLICATION TEMPLATE ... 106

Available Solutions ... 106

REQUIREMENTS ... 106

Functional Requirements ... 106
Non-functional Requirements .. 106

APPLICATION DESIGN ... 106

Technology and Architecture Selection .. 106
Data Model ... 106
User Interfaces ... 107

SOLUTION .. 107

LocationManager ... 107
MapManager .. 108
MarkerManager ... 109
MapFragment ... 111

TO-DO APPLICATION WITH MAPS .. 115

Available Solutions ... 115

REQUIREMENTS ... 115

Functional Requirements ... 115
Non-functional Requirements .. 115

APPLICATION DESIGN ... 115

Technology and Architecture Selection .. 115
Data Model ... 116
User Interfaces ... 116

SOLUTION .. 116

Design definition .. 116
Fragment .. 117
Navigation chart ... 117
Creation of the database .. 119
Database class .. 120
Implementation of the list of tasks .. 122
Class to display the list ... 123
List of elements .. 124
Adapter ... 125
LayoutManager .. 126
Adding and modifying the task ... 127
Custom Views for the adding of tasks .. 130
Layout ... 130
Class .. 131
BaseClasses ... 132
Use in code ... 134
Dependency injection ... 134
Options menu ... 136

WORKING WITH MAP ... 137

Getting the key from the console ... 138
Map in fragment ... 139

MAP BOX APPLICATION TEMPLATE .. 141

Available Solutions ... 141

REQUIREMENTS ... 141

Functional Requirements ... 141
Non-functional Requirements .. 141

APPLICATION DESIGN ... 141

Technology and Architecture Selection .. 141

SOLUTION .. 142

Connection ... 142
Activation ... 146

POSITION ON THE MAP .. 147

MARKERS ... 149

Area boundary .. 152

DIRECTIONS .. 154

CONCLUSION .. 157

COMPASS .. 158

Available Solutions ... 158

REQUIREMENTS ... 158

Functional Requirements ... 158
Non-functional Requirements .. 158

SENSORS .. 158

Communication with the environment .. 159
Sensor categorization ... 159
List of sensors in the device ... 159

ACCELEROMETER - ACQUISITION OF DATA FROM SENSORS .. 160

Coordinate system ... 161
Principle of accelerometer operation .. 161
Capturing values ... 162
Registration and unregistration ... 164
Reading data from the sensor .. 165
Data interpretation .. 166

GEOMAGNETIC SENSOR ... 167

Compass ... 167

LIGHT SENSOR ... 172

SIMPLE GAME WITH ACCELEROMETER ... 173

STEP DETECTOR ... 174

DATA PROCESSING .. 176

CUSTOMER-PRODUCTS DATA MODEL DEVELOPMENT .. 177

Available Solutions ... 177

REQUIREMENTS ... 178

DATA MODELLING .. 179

ENTITY IDENTIFICATION ... 179

RELATIONSHIP IDENTIFICATION ... 180

ATTRIBUTES .. 187

KNOWLEDGE DISCOVERY FROM LOG FILE .. 191

REQUIREMENTS ... 191

Methodology .. 191

SOLUTION .. 191

Data cleaning .. 191
User/session identification ... 194
Data transformation ... 197
Data analysis ... 200

KNOWLEDGE DISCOVERY USING SEQUENCE PATTERN MINING ... 203

KNOWLEDGE DISCOVERY USING CLUSTER ANALYSIS .. 204

SOURCE CODES ... 205

BIBLIOGRAPHY .. 206

Introduction

A publication that you hold in your hands, or rather, it may be said that you are reading it from your

displays, provides a cross-section view on tasks and projects that:

• illustrates the principles of selected technologies that are currently used in the development

of various types of applications,

• describes the methodologies, procedures, and creation of solutions for some complex

problems solved at the level of development environments or frameworks.

The publication is one of the results of the project Work-Based Learning in Future IT Professionals

Education (ERASMUS+ Programme 2018, KA2, project number: 2018-1-SK01-KA203-046382). It aims

to provide enough skills and information to develop a specific type of application as quickly as

possible.

Tasks, respectively, the projects presented in the publication are divided into three categories, which

copy the skills needed for the application development in the current and probably in the near future

market.

The first category of applications consists of applications designed for the web, with assignments

going from a simple web application through backend PHP applications focused on working with a

database to using the Vue front-end framework to create a complex application.

The second category covers the development of mobile applications, which consists of application

types focused on working with databases, mapping data, and mobile device sensors.

Data-oriented projects complement the publication. One of the projects provides a comprehensive

procedure for designing a large database and the other analytical processing of data from logs, which

reflect the user's activity in the web application environment.

Each assignment contains specifications so that the reader gets the same basis as a developer in a

technology company. For some tasks, the specification is very detailed, in others very brief and

leaves the understanding and processing of the assignment to the developer.

The published projects were selected to prepare students for the system of lifelong learning, which in

the field of IT usually begins, even with excellent university training, immediately after graduating

from university.

The collection thus represents a way to bring university education closer to work-based learning or,

conversely, to apply a work-based learning strategy in university education. Although "collections of

assignments" are not very preferred in recent times, mainly due to the rapid advancement of

technologies, project assignments are formulated to sufficiently separate from the technologies

used, and analogous assignments can be solved within various technologies.

It is appropriate to apply a project approach to solving these problems - the solution of each problem

is a separate project set in the real world through proper technology and based on searching for

information in the web environment.

In addition to the description of the problem and the procedure for solving it, complex source codes

are also available. However, we did not use any storage or versioning system that we require

students and developers to use, but to provide their availability, we decided to publish them directly

on the page of this publication.

WEB

DEVELOPMENT

 12

Web Game

The presented example shows a process of game development with JavaScript.

The web application introduces the basic principles for animation and game development with

JavaScript and jQuery.It shows the traditional shooter game. The gamer is a hunter. The objects are

flying ducks. The game is controlled by a mouse.

Recommended Number of Developers

One.

Available Solutions

There are a lot of similar games. To name some:

• Moorhuhn (https://www.crazygames.com/game/moorhuhn-shooter)

• Moorhuhn Shooter (https://keygames.com/moorhuhn-shooter-game)

Requirements

The application will be created in JavaScript and jQuery. We recommend using some HTML or JS

editor like Sublime Text, Notepad++, Visual Studio Code, etc. The development requires a basic

knowledge of Object-oriented programming and JavaScript.

Functional Requirements

a) The user can move with the pointer on the game environment

b) Flying objects (ducks) will fly in the game environment. The movement will be from right to

left and back from left to right.

c) The user can shot down the flying object (duck) by the right button on the mouse.

d) The user can see the current state of the count of the rifle cartridges.

Non-functional Requirements

a) web browser Firefox or Chrome

b) JavaScript programming language

Application Design

Technology and Architecture Selection

The application is written using the JavaScript programming language.

User Interfaces

The interface and design of selected students' solutions (Bartłomiej Pietras, Damian Serwatka,

Magdalena Mucha, Tymoteusz Bojarski).

https://www.crazygames.com/game/moorhuhn-shooter
https://keygames.com/moorhuhn-shooter-game

 13

Fig. 1 Background examples

Solution

We have to solve the following steps for the development of the web game:

1. Prepare the environment

2. Set the default setting for every duck

3. Create motion

4. Solve shot down of duck

6. Counter of shot-downs

Prepare the environment

All code of game we will create into one HTML file. It is a basic website with an HTML5 structure.

<!DOCTYPE html>

<html>

<head>

</head>

<body>

 14

</body>

</html>

We don't prefer to download and host jQuery myself. We can include it from a CDN (Content

Delivery Network). We add the link to CDN into <head> element.

<script

src="https://ajax.googleapis.com/ajax/libs/jquery/3.1.1/jquery.min.js"></script>

The part <body> of our game is very simple. It contains counter of shot-downs (text information in

<h1> element).

The most important part of our game is the game environment. We create it into one div element.

The id of this element is "space".

We have to create flying objects (ducks). There will be only four objects of ducks together at one

time. If the user shoots down the duck, we show the effect of the shootdown, and we create a new

duck in the previous flying object (and change the coordinates of a new flying object).

We will use 4 <div> elements for ducks with id bird1, bird2, bird3 and bird4.

 <h1>Counter of shot-downs: </h1>

 <div id="space"></div>

 <div id="pointer"></div>

 <p></p>

 <div id="bird1"></div>

 <div id="bird2"></div>

 <div id="bird3"></div>

 <div id="bird4"></div>

We have to create a good look design for elements. We can use CSS to define it.

For a better graphical design, we can replace background-color with background-image and load

some pictures of the environment and flying ducks (animated gif).

Do not forget that CSS style we have to input into the <head> element.

We can see that for all elements we set the style for the cursor. The cursor CSS property sets the type

of mouse cursor, if any, to show when the mouse pointer is over an element. For our game, we can

switch off the cursor and set this style to none.

<style>

 #space{

 width:800px;

 height:600px;

 margin:10px 10px 10px 10px;

 background-color:yellow;

 border:1px solid black;

 /*float:right;*/

 cursor:none;

 }

 #pointer{

 width:10px;

 height:10px;

 background-color:red;

 border:1px solid black;

 position:absolute;

 cursor:none;

 15

 border-radius:50%;

 }

 #bird1,#bird2,#bird3,#bird4{

 width:30px;

 height:30px;

 position:absolute;

 cursor:none;

 background-color:brown;

 }

</style>

Additional source code we will create in jQuery. For this reason, all next code we will add into the

"main" jQuery method $(document).ready()

The first function in $(document).ready() is even listener mousemove. For every mouse move over

the space, we set new coordinates for the pointer (rifle sight). We set it in a simple way by .css

method.

<script>

 $(document).ready(function(){

 $("#space").mousemove(function(event){

 $("#pointer").css("top",event.pageY+"px");

 $("#pointer").css("left",event.pageX+"px");

 });

 });

</script>

Set the default setting for every duck

There are many basic settings for ducks. All settings we add at the beginning of the method

$(document).ready().

At the beginning of our game, we set that all ducks (birds) live. The second important settings are

coordinates for ducks (birds). X-coordinates for the first two ducks are near the left border of the

environment (b1_x = 0; b2_x = 0;), and for the last two ducks are near the left border (b3_x = 800;

b4_x = 800).

We will change only X-coordinates during the game.

We set random Y-coordinates for ducks. We can place ducks with Y-coordinates with the .css()

method.

 16

 var counter = 0;

 var b1_x = 0;

 var b2_x = 0;

 var b3_x = 800;

 var b4_x = 800;

 /* set all bird to live*/

 var b1_live = true;

 var b2_live = true;

 var b3_live = true;

 var b4_live = true;

 var b1_y,b2_y,b3_y,b4_y;

 /* generate random position (top) for 4 birds*/

 b1_y = Math.floor(Math.random()*600);

 b2_y = Math.floor(Math.random()*600);

 b3_y = Math.floor(Math.random()*600);

 b4_y = Math.floor(Math.random()*600);

 $("#bird1").css("top",b1_y);

 $("#bird2").css("top",b2_y);

 $("#bird3").css("top",b3_y);

 $("#bird4").css("top",b4_y);

Create motion

There are a few interesting methods for animation in JavaScript. For the motion in our game, we use

setInterval() method. This method calls a function or evaluates an expression at specified intervals

(in milliseconds).

The setInterval() method will continue calling the function until clearInterval() is called, or the

window is closed.

A simple example of the motion of a bird (div element with square design) is in the following source

code. We use method setInterval(). This method calls its own function game() every 20 milliseconds.

We calculate X-coordinate every 20 milliseconds in this function and we set a new value (new

position) by .css method.

<!DOCTYPE html>

<html>

<head>

<script

src="https://ajax.googleapis.com/ajax/libs/jquery/3.1.1/jquery.min.js"></script>

<style>

 #bird1{

 width:30px;

 height:30px;

 position:absolute;

 cursor:nono;

 background-color:brown;

 }

</style>

<script>

 $(document).ready(function(){

 var b1_x = 0;

 /*Function setInterval() set system to call function game()

 every 20 millisecond*/

 requestId = setInterval(game,20);

 /*every 20 milliseconds will be this function call*/

 17

 function game(){

 /*effect - flying*/

 b1_x += 3;

 $("#bird1").css("left",b1_x+"px");

 }

 });

</script>

</head>

<body>

 <div id="bird1"></div>

</body>

</html>

The motion of ducks in the game is similar to in the previous example. We set method game() with

setInterval(). The method game() is the main method for our game. We have to check if bird1 live. If

yes, we can recalculate X-coordinate for motion from left to right. If the bird1 do not live, we have to

create a fall down effect. We can create it by recalculating Y-coordinate.

Next two conditions (if(b1_x > 800) and condition if(b1_y > 600)) are for checking the collision with

border. The first condition is if the bird1 is at the right border. We just only set X-coordinate to 0 and

set a new position on the left border.

If bird1 is at the bottom of the game environment, it means that bird1 does not live, and the fall

down effect is done. We have to "create" a new bird (duck) into an <div> element with id="bird1"

and set a new coordinates for a new duck. It is important to set bird1 as a live flying object back.

 requestId = setInterval(game,20);

 /*every 20 milliseconds will be this function call*/

 function game(){

 /*effect - flying*/

 if(b1_live){

 b1_x += 3;

 }else{

 b1_y += 5;

 $("#bird1").css("top",b1_y+"px");

 }

 $("#bird1").css("left",b1_x+"px");

 /*if some bird is out of space (environment) for game - left/right*/

 if(b1_x > 800) {

 b1_x = 0;

 $("#bird1").css("top",Math.floor(Math.random()*600));

 }

 if(b1_y > 600){

 b1_live = true;

 //for Y coordinate

 b1_y = Math.floor(Math.random()*600);

 $("#bird1").css("top",b1_y);

 //for X coordinate

 b1_x = 0;

 $("#bird1").css("left",b1_x);

 }

 }

 18

We would like to show examples clearly and simply. For this reason, we create only motion for the

bird1.

Do not forget to create the motion for bird2, bird3 and bird4.

Shot

The main part of our game we solved into game() method. There is a solution for the fall down effect

in this method. It is necessary to check if the duck (bird) is living permanently for effects and

coordinates changing.

We can solve the shot down of duck very simply. We create an event listener for the event click on

the div element for a duck. Essential for use in this method is the set that duck does not live.

 $("#bird1").click(function(){

 b1_live = false;

 counter += 1;

 refresh_counter();

 });

 $("#bird2").click(function(){

 b2_live = false;

 counter += 1;

 refresh_counter();

 });

 $("#bird3").click(function(){

 b3_live = false;

 counter += 1;

 refresh_counter();

 });

 $("#bird4").click(function(){

 b4_live = false;

 counter += 1;

 refresh_counter();

 });

Counter of shot-downs

The last step in our game is the actualization of the counter of shot-downs. We create this counter in

a span element with id="counter".

 function refresh_counter(){

 $("#counter").text(counter);

 }

Possibilities of other game function

The main aim of our example was to show the essential processes for creating a simple game with

jQuery and JavaScript. The main emphasis was on simplicity and clarity. In the following list, we show

the possibilities of other game functions and improvements:

• More ducks - with similar steps, we can generate more ducks (not only 4)

• Random motion of every bird (not only from left to right and right to left)

• Change bird's size - effect for flying in, flying out of position

• Change the size of weapon - change cursor size (!!!other rules for the shot, shot-down)

 19

• Level selector (faster mode, more birds),

• Show the level of a hunter (or count of lives)

Authentication and Menu Based on User's Roles for a Web App in PHP

This task is in the area of web applications. More specifically, it is a PHP1 development of an

authentication system and a role-based menu system for a web application.

The goal is to build an authentication system and a menu for a general-purpose web application. The

development will not release a fully functional application and will not cover any unresolved

problem, but rather will be used to demonstrate and practice the basic concepts of the PHP web

programming language and their application to the development of session-based authentication

systems role-based menus. The task includes PHP components, hypertext markup language (HTML)

pages, forms, sessions, database access, and web application aesthetics design. A basic

authentication system and a menu system for a web application are good examples covering all

these features.

The students will develop an authentication system with the login and logout actions and a basic

menu system aware of the authenticated user’s role. The goal is that students use from scratch some

of the technologies involved in the development of web applications. The application components to

develop will be generic and ready to be adapted for a specific complete application. The

development of components commonly used in many web applications increases the possibility of

applying the acquired knowledge in the future.

Recommended Number of Developers

The number of developers and the time to fulfil the task requirements vary based on the developer's

knowledge of the technology and skills. It is assumed that the student has some knowledge or

experience with PHP, HTML, Cascade Style Sheets (CSS) and Data Bases (DB).

The task is suitable for 1 or 2 junior developers with an estimated 10-12 person-hours duration.

Available Solutions

There are a great number of solutions to this problem on the internet. The proposed task here

highlights the reusability and security.

Requirements

Any integrated development environment (IDE) with support for PHP web development can resolve

the task. If a proper IDE is not available and the task will be developed in the context of a teaching

environment using Moodle, the VPL plugin can be used. A modern web browser is also needed for

development.

Functional Requirements

Main functional requirements:

a) A non-authenticate user can log in with credentials.

1 https://www.php.net

https://www.php.net/

 20

b) The application shows the menu for the user’s role. A non-authenticate user has a special

role.

c) An authenticated user can log out.

Non-functional Requirements

a) PHP 7.2 or higher.

Use Case Diagram

The diagram of use cases is: There are four actors and three specific uses cases. Other use cases are

open as proof of concept.

Fig. 2 Use cases

Application Design

Technology and Architecture Selection

The architecture of the application is simple – it uses a different HTML page for each action

generated on the server-side. The idea is to show students the basic web development technologies.

The use of frameworks or other modern technologies can accelerate the development, hiding what is

happening in the server or even browser. With this approach, the browser shows HTML and sends

forms data and URL requests to the server. The server runs the application responding to the

browser requests, generating HTML pages, and accessing the data storage.

Data Model

The component uses the database table named users showed below. The fields used are common in

tables storing users' data for the intended purpose.

• id. Record identification auto-incremented.

• account. Account name.

• password. Hashed password to access the account

• name. User real name.

 21

• role. The role is an integer with the following interpretation:

o 1 => Admin

o 2 => Staff

o 3 => Client

These roles are enough for a proof of concept.

• email. User email.

• address. User full address.

• mobile. User mobile number.

• Fig. 3 Users DB table

User Interface

The user interface is simple; every page has four zones: header, navigation, content, and footer. The

header shows the name of the application, the page name, and the logo image on the right. The

navigation contents the menu with a horizontal line of options: the home page, the user's role menu

options, and the login or logout menu option. The content shows the page information. The footer

shows the contact and copyright staff.

 22

Fig. 4 Home page for non-authenticated users

Fig. 5 Login page

 23

Fig. 6 Home page for users with the administration role

Solution

Introduction

The next sections describe the development of the web application components, including creating

the database, PHP classes, PHP generated web pages and CSS. Following the idea that the content of

the tutorial must be didactic and serve as a proof of concept, not a development with a result

prepared to be used "as is", its design has prioritized the simplicity of the solution over the full

functionality. Nevertheless, the safety of the generated components has been significantly taken into

account. The description will detail the development of each featured source file justifying its need,

describing how to use it and highlighting the important code. Alternatives to the chosen approach

will also be indicated.

The first of next sections establishes the database management system (DBMS) to be used and

describes how to create a test DB; the following sections show the classes that represent and

supports the development components, some files that generated web pages using the classes, and

finally, the last section will show the CSS.

Creating and populating the database

The creation of the database and the addition of test data are necessary to start testing and using the

components to be created. PHP has multiple frameworks to access databases. For versatility and

simplicity, the PHP Data Objects2 (PDO) extension has been chosen. SQLite3 will be used as BDMS,

but just by changing a parameter of the connection command, another BDMS could be used.

As indicated above, only the "users" table from the database is required for these components. This

table has some common fields, but two of them worth be highlighted:

• role: this field stores the user's role as an integer, could have been designed with a table of

roles and permissions for each role.

2 PDO https://www.php.net/manual/en/book.pdo.php
3 SQLite https://www.sqlite.org/index.html

https://www.php.net/manual/en/book.pdo.php
https://www.sqlite.org/
https://www.php.net/manual/en/book.pdo.php
https://www.sqlite.org/index.html

 24

• password: To avoid passwords compromised in case of unauthorized access to the table,

they are not stored in plain text but cyphered using MD5 hashing.

/*** Create Tables ***/

CREATE TABLE users (

 id INTEGER PRIMARY KEY,

 account NVARCHAR(20) NOT NULL,

 password NVARCHAR(32) NOT NULL,

 name NVARCHAR(200) DEFAULT '',

 role INTEGER DEFAULT 2,

 email NVARCHAR(200) DEFAULT '',

 address NVARCHAR(200) DEFAULT '',

 mobile NVARCHAR(200) DEFAULT ''

);

/*

Roles:

 1 => admin

 2 => staff

 3 => client

Code 1 Creates users table - data_base.sql

Notice the use of hash function md5 of '1' and '2' as the password. For a real app, a better hash

function with salt is recommended, see ‘Safe Password Hashing’4 section on the PHP home page

https://www.php.net/manual/en/faq.passwords.php for more details.

/*** Populate Tables ***/

INSERT INTO users (account, password, name, role) /* password=1 */

 VALUES ('admin', 'c4ca4238a0b923820dcc509a6f75849b',

 'Thepo Werful', 1);

INSERT INTO users (account, password, name, role, email) /* password=1 */

 VALUES ('staff1', 'c4ca4238a0b923820dcc509a6f75849b',

 'Wor Kerall', 2, 'wor.kerall@shop.com');

INSERT INTO users (account, password, name, role, email, address, mobile) /*

password = 1 */

 VALUES ('client1', 'c4ca4238a0b923820dcc509a6f75849b',

 'Findsop Portunities', 3, 'findsop.portunities@gmeil.com',

 'New York City, USA', '621111111');

INSERT INTO users (account, password, name, role, email, address, mobile) /*

password = 2 */

 VALUES ('client2', 'c81e728d9d4c2f636f067f89cc14862c',

 'Iwant Itall', 3, 'iwant.itall@gmeil.com',

 'Paris, France', '621123456');

Code 2 Populates users table - data_base.sql

The VPL users can create an activity and add the "data_base.sql" file to the "execution files", and the

"pre_vpl_run.sh" script showed below. The script will create and populate the database before each

run. The "data_base.sql" file must be marked as "Files to keep when running".

#!/bin/bash

sqlite3 data_base.bin < data_base.sql

Code 3 pre_vpl_run.sh script

4 PHP Safe Password Hashing https://www.php.net/manual/en/faq.passwords.php

https://www.php.net/manual/en/faq.passwords.php
https://www.php.net/manual/en/faq.passwords.php
https://www.php.net/manual/en/faq.passwords.php

 25

Database class

The DB class concentrates on the actions to manage and access the database. The class, not build to

create objects, is a utility class with all its methods static. The methods are as follow:

• get_connection(). This method returns a connection to the app DB with a singleton design

pattern. For each run, it always returns the same object avoiding multiple unneeded

connections to the DB. To connect to other DBMS, change here the $dsn variable.

<?php

class DB {

 private static $connection=null;

 public static function get_connection() {

 if(self::$connection === null){

 $dsn = 'sqlite:' . __DIR__ . '/../data_base.bin';

 self::$connection = new PDO($dsn);

 self::$connection->exec('PRAGMA foreign_keys = ON;');

 self::$connection->exec('PRAGMA encoding="UTF-8";');

 self::$connection->setAttribute(PDO::ATTR_ERRMODE, PDO::ERRMODE_EXCEPTION);

 }

 return self::$connection;

 }

Code 4 DB::get_connection() - db.php

• execute_sql($sql, $parms=null). To simplify the access to the DB using PDO this method

encapsulates the run of a SQL statement and returns a PDOStatement object to access the

data or false if fails. Important: for security reasons the query and the data are separated to

avoid SQL code injection. Never create a SQL statement concatenating data and code.

public static function execute_sql($sql, $parms=null) {

 $db = self::get_connection();

 $ints = $db->prepare ($sql);

 if ($ints->execute($parms)) {

 return $ints;

 }

 return false;

}

Code 5 DB::execute_sql() - db.php

• get_records($sql, $parms=null). This method goes further by returning an array with the

registers obtained by the SQL statement. Each register is an array where each pair of record

field/value is an array key/value. This method is commonly used for SQL "select" statements

that return a small number of registers.

public static function get_records($sql, $parms=null) {

 $ints = self::execute_sql($sql, $parms);

 if ($ints == false) {

 return [];

 }

 $ints->setFetchMode(PDO::FETCH_NAMED);

 return $ints->fetchAll();

}

Code 6 DB::get_records() - db.php

• user_exists($account, $pass). This method returns the registered user data that matches the

account and password provided or returns false if not found. Notice the use of the md5 hash

 26

function on the password to search in the table and the use of '?' instead of the plain data in

the SQL statement avoiding the SQL code injection threat.

public static function user_exists($account, $pass) {

 $param = [$account, md5($pass)];

 $query = 'SELECT * FROM users WHERE account=? and password=?';

 $res = self::get_records($query, $param);

 if (count($res) != 1) {

 return false;

 } else {

 return $res[0];

 }

}

Code 7 DB::user_exists() - db.php

Security class

The roles of a user can be 'admin', 'staff', 'client', or 'non-authenticated'. The Security class provides

the method allowed_roles($roles) that return true if the current user's role is included in the

parameter $roles. The parameter admits one or several roles separated by '|'. Also admits the roles

groups 'all' and 'authenticated'.

This method is key for app security. Each action start must be limited using this method to the user's

roles with the right to do it. A common newbie fail is the idea that not showing a link in the menu is

enough to avoid the use of a function by other users.

<?php

include_once 'user.php';

class Security{

 public static function allowed_roles($roles) {

 $role = User::get_user_role();

 foreach (explode('|', $roles) as $allowed) {

 $allowed = strtolower(trim($allowed));

 if ($role == $allowed) {

 return true;

 }

 if ($allowed == 'all') {

 return true;

 }

 if ($allowed == 'authenticated'

 && $role != 'non-authenticated') {

 return true;

 }

 }

 return false;

 }

}

Code 8 Security::allowed_roles() - security.php

User class

The user utility class groups the methods related to the current user and authentication. This class

provides getting the current user, the current user role, user login, and logout.

 27

The user authentication is done using the $_SESSION super global PHP variable of type array. This

variable, unique for each browser, is saved and restored in each PHP execution, which means that

the values saved in this variable remain from run to run.

The User class provides the following methods:

• start_session(). This method allows calling session_start() with no error if already called. The

call to session_start() is required if using $_SESSION variable. To ensure the existence of the

$_SESSION variable, this method can be called before accessing it.

<?php

include_once 'db.php';

class User{

 public static function start_session() {

 if (session_status() === PHP_SESSION_NONE) {

 session_start();

 }

 }

Code 9 User::start_session() - user.php

• get_logged_user(). This method returns the current user's data as an array, or false if no user

is logged. The user's data is get from the $_SESSION variable.

public static function get_logged_user(){

 self::start_session();

 if (!isset($_SESSION['user'])) return false;

 return $_SESSION['user'];

}

Code 10 User::get_logged_user() - user.php

• get_user_role(). This method returns the authenticated user's role as a string or 'non-

authenticated' if not authenticated.

private static $roles = array(

 1 => 'admin',

 2 => 'staff',

 3 => 'client'

);

public static function get_user_role(){

 $user = self::get_logged_user();

 if ($user == false || ! isset(self::$roles[$user['role']])) {

 return 'non-authenticated';

 } else {

 return self::$roles[$user['role']];

 }

}

Code 11 User::get_user_role() - user.php

• login($account, $pass). If the account and password belong to a registered user, the method

saves the user as authenticated and returns true else return false. The $_SESSION['user']

array element saves the user's data so indicating that there is an authenticated user.

• logout(). This removes the element array $_SESSION['user'] so indicating that there is no

authenticated user.

 public static function login($account, $pass){

 self::start_session();

 $res = DB::user_exists($account, $pass);

 28

 if ($res != false){

 $_SESSION['user'] = $res;

 return true;

 }

 return false;

 }

 public static function logout(){

 self::start_session();

 unset($_SESSION['user']);

 }

}

Code 12 User::login() and User::logout() - user.php

View class

The View class methods allow the construction of the HTML pages of the application that the

browser shows. There is a method that generates the start of the page, another method that

generates the end, and also a method that shows a message on the page. The use of this class is

important to easily generate uniform pages in all parts of the application.

The View class provides the following methods:

• text2html($text). This method takes a text string and returns it but replacing all codes

interpretable as HTML in the text with HTML entities. The resulting string has only text

interpretation. To avoid cross-scripting attacks, the use of this function is required when

showing text on any app page.

<?php

include_once 'navigation.php';

include_once 'security.php';

class View{

 const APP_NAME = 'Web app example';

 public static function text2html($text) {

 return htmlentities($text, ENT_QUOTES, 'UTF-8');

 }

Code 13 View::text2html() - view.php

• start_page($title, $roles). This method shows the initial part of an app HTML page, including

the navigation menu. The title is shown in the header of the page. The method before

showing the page checks if the current user's role matches the required. If the check fails

show a page with a message and stop the script. Including the $role parameter in this

method forces the programmer to indicate the roles that can do the action.

public static function start_page($title, $roles){

 if (! Security::allowed_roles($roles)) {

 $message = 'You are not granted to do this action';

 View::start_page('Problem', 'all');

 View::message($message);

 View::end_page();

 die();

 }

 $title = self::text2html($title);

 $html_head =

 "<!DOCTYPE html>

 <html>

 <head>

 29

 <meta charset=\"utf-8\">

 <link rel=\"stylesheet\" type=\"text/css\" href=\"style.css\">

 <title>$title</title>

 </head>

 ";

 $logo_src ='../image/logo.png';

 $html_body_start =

 "

 <body>

 <header>

 <h1>" .

 self::APP_NAME . ": $title</h1>

 </header>

 ";

 echo $html_head;

 echo $html_body_start;

 Navigation::show_navigation();

}

Code 14 View::start_page() - view.php

• message($text). Shows a message on the page.

• end_page(). Generates the end of the page showing a standard footer.

 public static function message($text){

 $text = View::text2html($text);

 $html = "<div>$text</div>\n";

 echo $html;

 }

 public static function end_page(){

 $html =

 " <footer>Copyrigth FITPED, Contact here</footer>

 </body>

 </html>";

 echo $html;

 }

}

Navigation class

The navigation class allows generating the navigation menu by calling its show_navigation() method.

The menu with a private attribute contains the menu for each role. For each role and array with

key/value, with the key being the text of the menu option and the value the link of the option. The

menu options are added from left to right. If the array key is equal to '--right--', the next menu

options align right.

The show_navigation() method gets the current user's menu based on its role and generate the

menu using , and <a> HTML tags. The menu options align right are get by adding the class

'menu-right' to the corresponding tags.

<?php

include_once 'user.php';

class Navigation{

 private static $menu = array (

 'non-authenticated' => array(

 'Home' => 'index.php', '--right--' => '',

 'Login' => 'login.php'),

 30

 'admin' => array(

 'Home' => 'index.php', 'Users' => 'users.php',

 'Reports' => 'reports.php', 'Products' => 'products.php',

 '--right--' => '', 'Logout' => 'logout.php'),

 'staff' => array(

 'Home' => 'index.php', 'Products' => 'products.php',

 'Shipments' => 'shipments.php', '--right--' => '',

 'Logout' => 'logout.php'),

 'client' => array(

 'Home' => 'index.php', 'Products' => 'products.php',

 'Orders' => 'orders.php', 'Profile' => 'profile.php',

 '--right--' => '', 'Logout' => 'logout.php'),

);

 public static function show_navigation() {

 $role = User::get_user_role();

 $role_menu = self::$menu[$role];

 $clase = '';

 $html = '<nav>';

 foreach ($role_menu as $menu_item => $link) {

 if ($menu_item == '--right--') {

 $clase = "class='menu-right'";

 continue;

 }

 $menu_item = View::text2html($menu_item);

 $html .= "<li $clase>$menu_item";

 }

 $html .= '</nav>';

 echo $html;

 }

}

Code 15 Navigation class - navigation.php

Home page

The classes created make it easy to create pages with a common look. Generating the 'Home page'

requires a few lines of code.

<?php

include_once 'class/view.php';

View::start_page('Home page', 'all');

?>

 <h1>This is a Home page example</h1>

 <?php

View::end_page();

Login page

The login page starts by checking if the own form data has been sent by the browser to check the

account and password. If the checks succeed, the check is done, and a page with a message is shown

with the result. If no form is sent, the login form is generated and showed by the browser. Notice the

request of the HTTP POST method in the form. Newbies may be confused with the behaviour of this

page because, really, there are two pages inside this code. The code can generate the login form or, if

form data is sent, do the login check and generate a page with the result. Notice that for each HTTP

protocol request (link click or form submit), PHP runs the corresponding code and generates a

response without further interaction with the browser.

 31

<?php

include_once 'class/view.php';

include_once 'class/user.php';

include_once 'class/security.php';

if (isset($_POST['account']) && isset($_POST['password'])

 && Security::allowed_roles('non-authenticated')) {

 $logged_in = User::login($_POST['account'], $_POST['password']);

 if ($logged_in) {

 $title = "Logged in";

 $text = "You are logged in user " . user::get_logged_user()['name'];

 } else {

 $title = "Login failed";

 $text = "Error: account or password mismatch";

 }

 View::start_page($title, 'all');

 View::message($text);

 View::end_page();

} else {

 View::start_page('Login', 'non-authenticated');

 ?>

 <form method="POST">

 <label>Account: <input type="text" name="account"></label>

 <label>Pasword: <input type="password" name="password"></label>

 <input type="submit" value="Accept">

 </form>

 <?php

 View::end_page();

}

Code 16 login.php

Logout page

The logout page is easier than the login page, and the main action is to call User::logout(). The rest of

the code checks the user's role and showing the page result. Really this page and login page can be

run with no role control due to the lack of negative effects.

<?php

include_once 'class/view.php';

include_once 'class/user.php';

include_once 'class/security.php';

if (Security::allowed_roles('authenticated')) {

 User::logout();

}

View::start_page('Log out', 'non-authenticated');

View::message('You are logged out');

View::end_page();

Code 17 logout.php

CSS

CSS is an important part of all web design. In this case, all pages generated by the call to

View::start_page() will use a common CSS by including an external file style.css that is shown below.

The style.css file has different parts:

• Navigation: The navigation menu is get by changing the tags <a> inside that <nav>.

The main property changes are for <u> are "list-style-type: none" and "overflow: hidden", for

 "float: left", and for <a> "display: block".

 32

nav ul {

 list-style-type: none;

 margin: 0;

 padding: 0;

 overflow: hidden;

 background-color: #222;

 border-radius: 8px;

 clear: both;

}

nav li {

 float: left;

 text-align: center;

}

.menu-right {

 float: right;

}

nav li a {

 color: white;

 display: block;

 padding: 16px 16px;

 text-decoration: none;

 border-radius: 8px;

}

nav li a:hover {

 background-color: #555;

 color: yellow;

}

• Body, header, and h1: Notice that the image in the header (the logo) floats to the right.

body {

 font-family: Verdana, Helvetica, Arial, sans-serif;

 background-color: #EEE;

 margin: 25px;

}

header img {

 float: right;

 width: 100px;

}

h1{

 color: #666;

 font-size: 1.25em;

}

• Form.

form {

 margin: 2em;

}

 33

input {

 margin: 0.3em;

 border: 2px solid #079292;

 border-radius: 8px;

}

input[type=submit] {

 margin-left: 8em;

 margin-top: 1em;

}

• Message class and footer. The footer is shown fixed at the bottom right of the window by

applying the properties "display: block", "position: absolute", "bottom: 0" and "right: 25px".

.message {

 padding: 16px 16px;

 margin:1em auto 1em auto;

 background-color: #BBB;

 border-radius: 8px;

 text-align: center;

}

footer {

 display: block;

 position: absolute;

 bottom: 0;

 right: 25px;

 padding: 8px 8px;

 margin:1em auto 1em auto;

 background-color: #BBB;

 border-radius: 8px;

 text-align: right;

}

Code 18 style.css

Source Code

The solution source code is available for download from the

FITPED server. The source code organization must follow the

structure shown in Fig. 7. The PHP scripts that generate pages are

in the top directory, the PHP classes files are in the class

subdirectory, and the images are in the image subdirectory.

Fig. 7 Soruce code structure

 34

Create, Retrieve, Update, Delete, and List Users for a Web App in PhP

This task is in the area of web applications. More specifically, it is a PHP5 development of users

accounts management system for a web application. This management system provides listing,

adding, editing, deleting, and changing passwords of users' accounts by users with the admin role.

The goal is to build a users' accounts management system for a general-purpose web application.

The development will not release a fully functional application and will not cover other related

problems as the web page template, the user's authentication, and the menu system6. This tutorial

will be used for describing and practice the basic concepts of Create, Retrieve, Update, and Delete

(CRUD) registers in a database (DB) using the PHP and JavaScript programming languages and their

application to the development of a users' accounts management system for a web application. The

task includes PHP components, hypertext markup language (HTML) pages, forms, database access,

forms checks, and asynchronous requests to the server (AJAX) in JavaScript. A users’ accounts system

for a web application is a good example covering all these features.

The students will develop the users' accounts system with the features of listing, adding, editing,

deleting, and changing passwords of users' accounts aware of the authenticated user’s role. The

development will consider the existence of an already developed programmatic web page template,

authentication system, and menu system. It has the goal that students get skills by developing CRUD

in common data records and using some of the technologies involved in the development of web

applications. On the other hand, the development of components commonly used in many web

applications increases the possibility of applying the knowledge acquired in the future.

The application components to develop will be generic and ready to be adapted for a specific full

application, allowing CRUD of different types of data records.

Recommended Number of Developers

The number of developers and the time to fulfil the task requirements vary based on the developer's

knowledge of the technology and skills. It is assumed that the student has some knowledge or

experience with HTML, databases, PHP, and JavaScript in web development.

The task is suitable for 1 or 2 junior developers with an estimated duration of about 12-16 man-

hours.

Available Solutions

There are a great number of solutions to this type of problem on the internet. The proposed task

here highlights readability, reusability, user-friendly, and security.

Requirements

Any integrated development environment (IDE) with support for PHP and JavaScript web

development can be used to resolve the task. If a proper IDE is not available and the task will be

5 https://www.php.net
6 For more details, see the corresponding tutorial in this book.

https://www.php.net/

 35

developed in the context of a teaching environment using Moodle, the VPL plugin can be used. A

modern web browser is also needed for development.

Functional Requirements

Main functional requirements:

a) List of users.

b) Add a new user.

c) View a user profile.

d) Edit a user profile.

e) Delete a user account.

f) Change a user password.

Non-functional Requirements

a) PHP 7.2 or higher.

b) Modern browser.

Use Cases Diagram

The diagram of use cases is the common one for this type of application component. There is an

actor named Admin with six specific use cases. The other use cases were developed at another

tutorial in this book.

Fig. 8 Use cases

 36

Application Design

Technology and Architecture Selection

The architecture of the application is mainly simple with a different server-generated page for each

use case. Some pages include JavaScript help in the form validation, and one use case uses AJAX. The

idea is to show students the basic web development used for a CRUD component. The use of

frameworks or other modern technologies can accelerate the development, hiding what is happening

on the server or browser side. With this approach, the browser shows HTML, sends forms data and

URL requests to the server, and in several cases, the JavaScript running in the browser can help the

user interface or interact with the server to do actions. The server runs the application by generating

HTML pages for the browser requests, answering AJAX requests, and accessing the data storage.

Data Model

The component uses the database table named users showed below. The fields used are common in

tables storing users' data for the intended purpose.

• id. Record identification auto-incremented.

• account. Account name.

• password. Hashed password to access the account

• name. User real name.

• role. The role is an integer with the following interpretation:

o 1 => Admin

o 2 => Staff

o 3 => Client

These roles are enough for a proof of concept.

• email. User email.

• address. User full address.

• mobile. User mobile number.

Fig. 9 Users DB table

 37

User Interface

The page template is simple; every page has four zones: header, navigation, content, and footer. The

header shows the name of the application, the page name, and the logo image on the right. The

navigation contents the menu with a horizontal line of options: the home page, the user's role menu

options, and the login or logout menu option. The content shows the page information. The footer

shows the contact and copyright hints.

H e a d e r

Content

Menu

Footer

Logo

Fig. 10 Page template

The user iterations for reaching the different Admin use cases are centred on the "List of users" page

that allows adding new users, view, edit and delete a selected user. The "View user" page also allows

edit, delete, or change the password of a selected user.

List of users

Add user

View user

Change user password

Edit user

Delete user

Fig. 11 Login page

 38

Solution

Introduction

The next sections describe the development of the web application components, including the PHP-

generated web pages, specific database queries, data validation, and AJAX requests. Following the

idea that the content of the tutorial must be didactic and serve as a proof of concept, not a

development with a result prepared to be used "as is", its design has prioritized the simplicity of the

solution over the full functionality. Nevertheless, the safety of the generated components has been

significantly taken into account. The description will detail the development of each featured source

file justifying its need, describing how to use it and highlighting the relevant code. Alternatives to the

chosen approach will also be indicated.

The first of the next sections establishes specific database access and data validation in PHP as a base

for implementing related use cases. The following sections show the developments of use cases

without JavaScript use, and finally, the last section will show the use of JavaScript to improve the

user interface.

Specific database queries and server-side data validation

Each use case specific to the admin's role needs database queries that, to reuse and easy use, is

better to encapsulate in methods with a proper name and a clear interface. The use cases need to

get all users, save a new user, get a user by id, update a user register, delete a user register by id, and

update a user password. Also, adding and updating a user needs to validate the size and format of

the related fields. The resulted methods are located in the User class, but locating them in other

classes is also valid.

The proposed User class methods are listed following:

• User::get_all_users(). This method returns all users registered in the system as an array. Each

element in the array contains an array with each field/value of the user record as a key/value

pair. Notice that this method is not appropriated for systems with a large number of users. In

this case, the method may need filters and an output size limit.

 public static function get_all_users(){

 return DB::get_records('SELECT * FROM users');

 }

Code 19 User::get_all_users() - user.php

• User::get_user($id). This method returns the user with the record id specified or false if not

found. This method is used whenever one user's information is need based on their id.

 public static function get_user($id){

 $res = DB::get_records('SELECT * FROM users WHERE id = ?', [$id]);

 if (count($res) == 1) {

 return $res[0];

 } else {

 return false;

 }

 }

Code 20 User::get_user($id) - user.php

• User::check_user_data($data). This method checks if the data for adding or updating a user

record is valid. The method returns true if the data is valid or a string with the problem found

 39

if not. This type of method is needed to guarantee the format and limits of the data to be

saved or updated. Some fields of data must fulfil some format for security reasons as the

minimum size of the account name or the format of the password. Other fields must not

surpass the maximum field size limit due to the generations of DB errors in some DBMS. For

security reasons, this type of method is always needed even when the limits are set on

HTML input tags or JavaScript code is available to validate the format in the browser.

Notice that these barriers are effective for helping the common users to introduce the data

in the correct format but are very easy to overcome for an attacker. When adding a new

user, also method User::check_user_password() must be called.

 public static function check_user_data($data){

 if (strlen($data['account']) < 6 || strlen($data['account']) > 20) {

 return "Account name too short or long, min 6 chars and max 20.";

 }

 if (strlen($data['name']) < 4 || strlen($data['name']) > 32) {

 return "User name too short or long, min 4 chars and max 32";

 }

 if (! in_array($data['role'], ['1', '2', '3'])) {

 return "Invalid role value.";

 }

 $regemail = '/^[^@]{3,}@[^@ \.]{3,}[^@]*\.[^@ \.]{2,}[^@]*$/';

 if ($data['email'] != '' &&

 preg_match($regemail, $data['email']) != 1) {

 return "Invalid user email value.";

 }

 if (strlen($data['email']) > 200) {

 return "User email too large, miximum 200 chars.";

 }

 if (strlen($data['address']) > 200) {

 return "User address too large, miximum 200 chars.";

 }

 if (strlen($data['mobile']) > 200) {

 return "User mobile too large, miximum 200 chars.";

 }

 return true;

 }

Code 21 User::check_user_data($data) - user.php

• User::check_user_password($data). This method checks for the equals of the 'password' and

the 'repeated password' and the minimum password size. The method returns true if the

password is valid or a string with the problem found if not.

 public static function check_user_password($data){

 if ($data['password'] != $data['passwordrep']) {

 return "Passwords mismatch.";

 }

 if (strlen($data['password']) < 8) {

 return "Password too short, minimum 8 chars.";

 }

 return true;

 }

• User::add_user($data). This method tries to add a new user to the 'users' table. The method

returns value “true” if adding succeeds; else returns a string containing a description of the

problem found. To get a correct run, the caller must provide all the needed fields. The

method checks and processes the data and execute the database query:

 40

o Cleans the data by removing (trimming) unneeded spaces at the start and end of the

fields.

o Calls to check_user_data() method.

o Updates 'password' field to save as its md5 hash result.

o Runs and checks the database query. The creation of a unique index with only the

'account' field grants that two users cannot have the same account name.
CREATE UNIQUE INDEX [indexaccount] on [users] ([account]);

 public static function add_user($data) {

 if (($check = self::check_user_password($data)) !== true) {

 return $check;

 }

 $fields = ['account', 'password', 'name',

 'role', 'email', 'address', 'mobile'];

 $cleandata = [];

 foreach ($fields as $field) {

 $cleandata[$field] = trim($data[$field]);

 }

 if (($check = self::check_user_data($cleandata)) !== true) {

 return $check;

 }

 $cleandata['password'] = md5($cleandata['password']);

 $sql = "INSERT INTO users (" . implode(", ", $fields) . ") ";

 $sql .= "VALUES (:" . implode(", :", $fields) . ")";

 try {

 $res = DB::execute_sql($sql, $cleandata);

 } catch(Exception $e) {

 return "Account already exist";

 }

 if ($res->rowCount() == 1) {

 return true;

 }

 return "Unkown error";

 }

Code 22 User::add_user($data) - user.php

• User::update_user($data). This method is similar to add_user() but without updating the

password field. The user's password update is done in a specific method

User::update_user_password($data).

 public static function update_user($data){

 $fields = ['account', 'name', 'role', 'email', 'address', 'mobile'];

 $cleandata = [];

 foreach ($fields as $field) {

 $cleandata[$field] = trim($data[$field]);

 }

 if (($check = self::check_user_data($cleandata)) !== true) {

 return $check;

 }

 $sqlset = '';

 foreach ($fields as $field) {

 if (strlen($sqlset) > 0) $sqlset.= ', ';

 $sqlset .= "$field = :$field";

 }

 $sql = "UPDATE users SET $sqlset WHERE id = :id";

 $cleandata['id'] =$data['id'];

 try {

 $res = DB::execute_sql($sql, $cleandata);

 41

 } catch(Exception $e) {

 return "Account already exist";

 }

 if ($res->rowCount() == 1) {

 return true;

 }

 return "User not found";

 }

Code 23 User::update_user($data) - user.php

• User::update_user_password($data). This method updates a user's account password. The

data parameter is an array containing the 'id', 'password', and 'passwordrep' keys with the

corresponding values. If the method updates the password, then returns true, else it returns

a string containing a description of the problem found.

 public static function update_user_password($data){

 if (($check = self::check_user_password($data)) !== true) {

 return $check;

 }

 $cleandata = array ('id' => $data['id'],

 'password' => md5($data['password']));

 $sql = "UPDATE users SET password = :password WHERE id = :id";

 try {

 $res = DB::execute_sql($sql, $cleandata);

 } catch(Exception $e) {

 return "Internal error";

 }

 if ($res->rowCount() == 1) {

 return true;

 }

 return "User not found";

 }

• User::delete_user($id). This method deletes the user record with the indicated id. If deletes

the user's account, then returns true else, returns a string containing a description of the

problem found.

 public static function delete_user($id){

 $sql = "DELETE FROM users WHERE id = :id";

 $parms = array('id' => $id);

 try {

 $res = DB::execute_sql($sql, $parms);

 } catch(Exception $e) {

 return "Internal error";

 }

 if ($res->rowCount() == 1) {

 return true;

 }

 return "User not found";

 }

Code 24 delete_user($id) - user.php

 42

List of users

This page shows the list of users as a data table. To generate the main content of the page (See Fig.

12), the program does the following steps:

• Show a link to "Add user."

• Get the data calling o User:::get_all_users().

• Shows the table header

• For each user

o Shows user's data as a table row. Notice the use of the View::text2html() function.

o Shows actions on the user as links to corresponding pages. Notice that use query

string in URL to pass the user's id to the page action.

• Shows the end of the table.

Fig. 12 Example of "List of users" page

<?php

include_once 'class/view.php';

View::start_page('Users', 'admin');

echo "Add user";

$users = User::get_all_users();

if (count($users) > 0) {

 $roles = User::get_roles();

 echo "<table><tbody>\n";

 echo "<tr><th>#</th><th>Account</th><th>Role</th><th>Name</th>";

 echo "<th>Email</th><th>Actions</th></tr>\n";

 $sec = 0;

 foreach ($users as $user) {

 $sec++;

 $id = $user['id'];

 echo "<tr>";

 echo "<td>$sec</td>";

 echo "<td>" . View::text2html($user['account']) . "</td>";

 echo "<td>" . $roles[$user['role']] . "</td>";

 echo "<td>" . View::text2html($user['name']) . "</td>";

 echo "<td>" . View::text2html($user['email']) . "</td>";

 echo "<td>";

 echo "View ";

 43

 echo "Edit ";

 echo "Delete";

 echo "</td>";

 echo "</tr>\n";

 }

 echo "</tbody></table>\n";

}

View::end_page();

Code 25 userslist.php

Add a new user

The ‘adduser.php’ program, like all other forms builder programs in this tutorial, does two different

things: if it is detected that the form was sent, process it and shows the result; if not, generate the

page with the form. Newbies may be confused with the behaviour because the program does two

different processes and generates two different pages but not at the same time. The code in

‘adduser.php’ can generate the form to add a new user or, if form data is sent, add a new user and

show the result as a page.

System behaviour:

• When a user clicks on a link to ‘adduser.php’ then the browser sends the URL to the server.

The server runs ‘adduser.php’ the first time generating the form page. The browser shows

the form page to the user (See Fig. 13).

• When the user fills the form and clicks to send the form, the browser sends the same URL

and form data to the server. The server runs ‘adduser.php’ again and processes the sent data

generating a page with a message. The browser shows the generated page (See Fig. 14). The

browser sends the form data to the same URL because the form action attribute is empty.

The browser sends the form data to the URL indicated in the form action attribute, but

empty indicates the current URL.

Notice that for each HTTP protocol request (link click or form submit) PHP runs the corresponding

code and generates a response without further interaction with the browser.

<?php

include_once 'class/view.php';

include_once 'class/user.php';

View::start_page('Add user', 'admin');

// Checks if form data received

$fields = ['account', 'password', 'passwordrep', 'name',

 'role', 'email', 'address', 'mobile'];

$formdata = true;

foreach ($fields as $field) {

 if (! isset($_POST[$field])) {

 $formdata = false;

 break;

 }

}

if ($formdata) {

 $res = User::add_user($_POST);

 if ($res === true) {

 View::message("User '{$_POST['account']}' created");

 } else {

 View::message("Error creating user: $res");

 }

 echo "
";

 44

 echo "Users list";

} else {

 $roles = User::get_roles();

 $starttags = "<label>";

 $midtags = ": <input type=";

 $endtags = "></label>
\n";

 echo "<h1>Form to add a user</h1>";

 echo "<form method='POST'>\n";

 echo "${starttags}Account${midtags}'text' name='account'${endtags}";

 echo "${starttags}Password${midtags}'password' name='password'${endtags}";

 echo "${starttags}Password repeated${midtags}'password'";

 echo " name='passwordrep' ${endtags}";

 echo "${starttags}Name${midtags}'text' name='name' size='40' ${endtags}";

 echo "${starttags}Role: <select name='role'>\n";

 foreach ($roles as $key => $name) {

 echo "<option value='$key'>$name</option>\n";

 }

 echo "</select${endtags}";

 echo "${starttags}Email${midtags}'text' name='email' size='30'${endtags}";

 echo "${starttags}Address${midtags}'text' name='address'";

 echo " size='60' ${endtags}";

 echo "${starttags}Mobile${midtags}'text' name='mobile' ${endtags}";

 echo "";

 echo "<button type='submit'>Add a new user</button>
\n";

 echo "</form>\n";

}

View::end_page();

Code 26 adduser.php

Fig. 13 Example of "Add user" form page

 45

Fig. 14 Example of "Add user" result page

View user profile

The "View user" shows a page containing one user's data (See Fig. 15). The user to show comes with

the request as the query string. PHP converts the URL query string to the $_GET superglobal variable

that the programmer uses to get the user's id. The page also shows links to "edit", "delete", and

"change password" actions on the user account. These links carry the user's id in the query string.

Notice the use of the function View::text2html to avoid problems with especial HTML codes and

cross-scripting threats.

<?php

include_once 'class/view.php';

include_once 'class/user.php';

View::start_page('View user', 'admin');

if (isset($_GET['id'])) {

 $id = $_GET['id'];

 $user = User::get_user($id);

 if ($user !== false) {

 $roles = User::get_roles();

 $userid = View::text2html($id);

 $account = View::text2html($user['account']);

 $role = $roles[$user['role']];

 $name = View::text2html($user['name']);

 $email = View::text2html($user['email']);

 $address = View::text2html($user['address']);

 $mobile = View::text2html($user['mobile']);

 echo "<h1>User data view</h1>";

 echo "Edit\n";

 echo "Delete\n";

 echo "";

 echo "Change password
\n";

 echo "<div class='user-view'>\n";

 echo "id: $userid
\n";

 echo "Account: $account
\n";

 echo "Role: $role
\n";

 echo "Name: $name
\n";

 echo "Email: $email
\n";

 echo "Address: $address
\n";

 echo "Mobile: $mobile
\n";

 echo "</div>\n";

 }

}

 46

echo "
";

echo "Users list";

View::end_page();

Code 27 viewuser.php

Fig. 15 Example of "View user" page

Edit user profile

The "Edit user" case is similar to the "Add user" case, but the password is not updated here. The form

contains the saved user's data values to avoid the user introduces again know data (See Fig. 16). See

the use of View::text2html function again to show the previous data in the form by populating the

value attribute of the input tags. The password is not updated here because the system does not

have the original password because only the hash of the password is saved. See file 'edituser.php' in

the source code for more details.

Fig. 16 Example of "Edit user" page

 47

Delete user account

The "Delete user" buttons go to a delete confirm page (See Fig. 17). The page shows the user's

account and name. The page also contains a form with the user identification hidden to use if the

user confirms the deletion. Notice that the links generate HTTP get requests but the forms that

change data in the system must use the HTTP post method. The delete process gets the user's id

from the $_POST superglobal PHP variable. See file 'deleteuser.php' in the source code for more

details.

Fig. 17 Example of "Delete user" page

Change user password

The "Change user password" button only appears on the view user page and, when clicked, shows a

form to change the password (See Fig. 18). This form asks to repeat the new password but does not

ask to enter the previous password again, as seen on many websites nowadays. Notice that this form

is for the admin role that does not need to know the password to change it, indeed requesting to

enter the old password might be a big problem. See file 'changepassword.php' in the source code for

more details.

Fig. 18 Example of "Change user password" page

 48

Form validation in browser. The example of the add user from.

The in-browse form validation allows checking the characteristic of the data entered by the user

before sending it to the server. The advantage of doing it in-browser is that the user can correct the

problems found without reentering the data. The validation commonly shows the problem

description near the input field (See

Fig. 19 19). The validation must be written in JavaScript and does not eliminate the need for data

validation in the server because it is easy for a hacker to avoid the browser version.

Fig. 19 Example of add user form showing validation warnings

The JavaScript code in this application is in the file "scripts.js" and must be load with the page. To

load the code in all the application Web pages the method View::end_page() includes the HTML code

<script src='scripts.js'></script>. The load at the end of the pages allows the code to access the page

at load-time.

The form validation must be done before data submit and the event 'submit' that the form triggers

before sending the data is perfect for this purpose. This event, in conjunction with the functions

preventDefault() and submit(), allows controlling if send or not the data to the server. The

preventDefault() method of an event avoids programmatically that the default action gets done. For

example, it avoids sending the data to the server when the user clicks on the submit button or avoids

following a link when the user clicks on it. The method submit() of a form in JavaScript submit the

data to the server programmatically.

The validation has some auxiliary functions (See Code 28):

• getWarningTag(name). Returns the object associated with the tag that shows the validation

error message for the input with the name indicated.

• getValue(name). Returns the value in the indicated input.

 49

• check(condition, w_tag, warning). This function sets the message (warning) of validation

error in the w_tag if the condition is true.

function getWarningTag(name) {

 return document.querySelector('#warning_' + name);

}

function getValue(name) {

 var tag = document.querySelector("input[name='" + name + "']");

 return tag.value;

}

function check(condition, w_tag, warning) {

 if (condition) {

 w_tag.innerHTML = warning;

 return true;

 }

 return false;

}

Code 28 Auxiliar functions for form validation - script.js

• validateAddUser(e) is the event handler for the 'submit' event of the form tag. The function

removes the default submit action and checks the data for the specified limits and formats,

and shows a warning for each problem found. Finally, if no problem is found for limits and

formats, the function does the last check, searching if the account name already exists. If the

data pass all checks, the form is submitted.

function validateAddUser(e) {

 e.preventDefault();

 var w_account = getWarningTag('account');

 var w_name = getWarningTag('name');

 var w_password = getWarningTag('password');

 // Cleans previous warning

 w_account.innerHTML = '';

 w_name.innerHTML = '';

 w_password.innerHTML = '';

 // Read input values

 var account = getValue('account');

 var name = getValue('name');

 var password = getValue('password');

 var passwordrep = getValue('passwordrep');

 no_send = false;

 no_send = check(account.length < 6, w_account,

 'Account too short. Minimum 6 chars') || no_send;

 no_send = check(account.length > 20, w_account,

 'Account too slarge. Maximum 20 chars') || no_send;

 no_send = check(name.length < 4, w_name,

 'Name too short. Minimum 4 chars') || no_send;

 no_send = check(name.length > 32, w_name,

 'Name too slarge. Maximum 32 chars') || no_send;

 no_send = check(password != passwordrep, w_password,

 'Passwords mismatch') || no_send;

 no_send = check(password.length < 8, w_password,

 'Passwords too short. Minimum 8 chars') || no_send;

 if (! no_send) {

 var form = document.querySelector('#add-user-form');

 submitIfAccountNotExists(account, form);

 }

}

Code 29 validateAddUser() - scripts.js

 50

• submitIfAccountNotExists(account, form) is the function that call validateAddUser(e) to

submit the form data if account selected not exists. If the account is already in use, the

function shows a warning near the account input field. To check if the account exists, the

function consults the server making an AJAX request. In this case, the function sends the

account name to check in the URL query string to the ajaxaccountexists.php server script and

gets the answer as JSON data.

function submitIfAccountNotExists(account, form) {

 var request= new XMLHttpRequest();

 request.onreadystatechange = function() {

 if(this.readyState == XMLHttpRequest.DONE && this.status == 200) {

 var res= JSON.parse(this.responseText);

 if(res.exist === false) {

 form.submit();

 } else {

 getWarningTag('account').innerHTML = 'Account name already exists';

 }

 }

 };

 queryString = '?account=' + encodeURIComponent(account);

 request.open("get","ajax/ajaxaccountexists.php" + queryString);

 request.send();

}

Code 30 submitIfAccountNotExists(account, form) – scripts.js

The ajaxaccountexists.php server script is the server-side of the AJAX request (See Code 31). This

script gets the account name from the $_GET superglobal variable, consults the database, and

answers the request as an object sent in JSON format. Notice that this PHP script shows plain text

(JSON object) and not an HTML page. The script also checks for the user's role to ensure access

limitations.

<?php

include_once '../class/security.php';

include_once '../class/db.php';

if (Security::allowed_roles('admin') && isset($_GET['account'])) {

 $sql = "SELECT id FROM users WHERE account = ?";

 $parms = [$_GET['account']];

 $result = DB::get_records($sql, $parms);

 $answer = new stdClass();

 $answer->exist = count($result) == 1;

 echo json_encode($answer);

}

Code 31 ajaxaccountexists.php

Delete user account with Ajax

The AJAX requests can have many uses. Another example here is deleting a user account at the "List

of users" page without changing of page. The "delete" links in the "List of users" page are changed to

launch a request to the server by JavaScript instead of changing the page (See Fig. 20).

 51

Fig. 20 Example of deleting a user’s account with AJAX

• deleteAjax(e) is the JavaScript function launched when the user clicks on any of the "delete"

links in the page "List of users". This function uses the event parameter to know the link

where the user clicks (e.target). The HTML page also contains information to help the

function to do its job. The delete link tags contain data with the user's id to delete. The

account name is in an HTML tag with the id attribute named 'account + id', and the 'tr' tag of

the user in the table is also identified by a 'row + id' (See Code 32). The function asks for

delete confirmation, and, if accepted, the function sends the user's id as a JSON object in the

HTTP post method payload. The answer is also received as JSON data. If the server deletes

the user, then the function removes the row with the user's information from the table.

 $id = $user['id'];

 echo "<tr id='row$id'>";

 echo "<td>$sec</td>";

 echo "<td id='account$id'>" . View::text2html($user['account']) . "</td>";

 echo "<td>" . $roles[$user['role']] . "</td>";

 echo "<td>" . View::text2html($user['name']) . "</td>";

 echo "<td>" . View::text2html($user['email']) . "</td>";

 echo "<td>";

 echo "View ";

 echo "Edit ";

 echo "<a data-userid='$id' class='button delete-ajax'>Delete";

 echo "</td>";

 echo "</tr>\n";

Code 32 Partial userslist.php file

function deleteAjax(e) {

 e.preventDefault();

 var id = e.target.dataset.userid;

 var account = document.querySelector('#account' + id).innerHTML;

 if (!confirm("Delete " + account + " account?")) {

 return;

 }

 var request= new XMLHttpRequest();

 request.onreadystatechange = function() {

 if(this.readyState == XMLHttpRequest.DONE && this.status == 200) {

 var res= JSON.parse(this.responseText);

 if(res.deleted === true) {

 var tr = document.querySelector('#row' + id);

 52

 tr.parent.remove(tr);

 }

 }

 };

 request.open("post","ajax/ajaxdeleteuser.php");

 request.send(JSON.stringify({'id': id}));

}

Code 33 deleteAjax(e) - scripts.js

The ajaxadelete.php server script (See Code 34) is the server-side of the delete request and is similar

to ajaxaccountexists.php. This script gets the user's id to delete from a JSON object in the request

payload, delete the user account, and answers the request with an object sent in JSON format.

<?php

include_once '../class/security.php';

include_once '../class/user.php';

if (Security::allowed_roles('admin')) {

 $jsondata = file_get_contents("php://input"); // Read payload

 $data = json_decode($jsondata);

 $answer = new stdClass();

 $answer->deleted = User::delete_user($data->id);

 echo json_encode($answer);

}

Code 34 ajaxdeleteuser.php

The event handlers need to be set for specific tags and event names. An anonymous function at the

end of "scripts.js" sets the handlers by searching for the specific tags and calling to addEventListener

tag method.

(function() {

 var form = document.querySelector('#add-user-form');

 if (form) {

 form.addEventListener('submit', validateAddUser);

 }

 var ajaxs = document.querySelectorAll('.delete-ajax');

 ajaxs.forEach(function(aTag) {

 aTag.addEventListener('click', deleteAjax);

 });

})();

Code 35 The anonymous function that sets the events handlers - scripts.js

Source Code

The solutions source code is available for download from the FITPED

server. The tutorial has two versions of the source code: one of PHP

and the other of PHP with JavaScript. The source code organization

follows the structure shown in Fig. 21. The PHP scripts that generate

pages are in the top directory, the PHP classes files are in the class

subdirectory, the AJAX server-side code scripts are in the ajax

subdirectory, and the images are in the image subdirectory.

Fig. 21 Source code structure

 53

Chat in VueJS

This task is suitable for the area of web applications. More specifically, the development of the

frontend using JavaScript framework Vue.js7.

Create frontend part for web application - internet chat. The application will not cover any

unresolved problem but rather will be used for demonstration and practice the basic concepts of the

Vue.js framework and the development of frontend applications in general. This includes component

design and communication, routing, token authorization and management, operations over local

storage and HTTP requests. The chat application is a good example covering all these features.

The main task of the student is the implementation of the client part (or user interface – UI)

according to the following assignments using the Vue.js framework. The application will

communicate with the server via the REST API interface, which is already prepared and described in

the /server folder (see Solution section below).

The application will allow user registration, login, room creation and chatting. A more detailed

description of the function is also given below.

Recommended Number of Developers

It is assumed that the student has some knowledge or experience with programming (ideally with

JavaScript or other scripting languages). This document will not cover the general basics of

programming or JavaScript syntax.

The project is suitable for one junior developer. The estimated duration is about 14-18 hours.

Available Solutions

Basically, there are many simple applications used for communication in chat rooms. There are

countless such applications available, and it makes no sense to name them here.

Requirements

Any reasonable text editor can be used to develop the application, but I highly recommend Visual

Code8, which is very popular (and free). It will be necessary to have NodeJS9 runtime environment

installed locally on the PC. After installation, it should be possible to list the node and npm versions

in the terminal (commands: node –version and npm --version). A modern web browser

(Google Chrome, Firefox or similar) and favourite terminal will also be very useful in the

development.

Functional Requirements

Main functional requirements:

a) The user can create a new account.

b) The user can log in with credentials.

7 https://vuejs.org/
8 https://code.visualstudio.com/
9 https://nodejs.org/en/

https://vuejs.org/
https://code.visualstudio.com/
https://nodejs.org/en/

 54

c) The browser remembers the logged-in user and automatically logs him in after reloading the

application.

d) The user can see a list of all chat rooms.

e) The user can filter rooms by attribute (title or description).

f) The user is able to create a new room.

g) The user can enter the room and view messages which are regularly updated.

h) The user can see a regularly updated list of room users.

i) The user can send short messages visible to all people in the room.

j) The user can leave the room and visit another one.

Non-functional Requirements

a) Vue.js 2.x. – JavaScript or TypeScript (if someone prefers).

Use Case Diagram

The use case diagram is not necessary for such a simple application. There is only one actor in the

application. He communicates directly with the system. The list of individual use cases is given above.

Application Design

Technology and Architecture Selection

The architecture of the application is designed in a modern way as a single-page application. SPA is a

web application with one HTML page, which is initialized once, and only the necessary content is

changed during further interactions. Almost the entire application runs directly in the client browser,

while the server is mostly used for authentication and as a source or storage of data.

Compared to traditional server-oriented applications, the main difference is the way data is received

and sent after the initial HTTP request. Single-page applications use AJAX (Asynchronous JavaScript

And XML) to transfer data between the server and the client, which are usually in JSON format. This

means that the moment the data reaches the client, the client partially re-renders the HTML page

without having to refresh the entire page. That is why the entire HTML code is not fetched every

time, and this is reflected in the speed of SPA applications.

Vue.js was chosen as the SPA framework (there are alternatives like React10 or Angular11). Vue.js is a

community-managed framework with a very fast learning curve and constantly growing attention of

new developers. It has great documentation, many libraries, and tools, so it is a very suitable choice

for students or beginners in general.

10 https://reactjs.org/
11 https://angular.io/

https://reactjs.org/
https://angular.io/

 55

User Interfaces

 56

Fig. 22 Interface definition

Solution

Introduction

The following text describes a step-by-step tutorial focused on creating a frontend web application in

the Vue.js framework. The basic concepts of this framework, as well as the main features of the

application, will be covered. However, it is practically impossible to cover everything in detail.

Therefore, in the text, you will find links to the official documentation of individual tools or

mentioned features. These links are very useful if you don't understand something or want to know

more. Also, some repeating parts of the code are intentionally omitted to shorten and maintain the

overall readability of the text. But don't worry! The complete solution can be found in the attached

GIT repository, where you can always take a look if something is not clear and also for inspiration. As

this is just a simple demo application, some styling stuff may not be fine-tuned in detail and covered

in the following text. The purpose of the text is to introduce the Vue.js framework, and pixel-perfect

styling of the application is a secondary task in this case. Therefore, I leave the door open to your

own initiative in this direction. I wish you good luck.

Clone repository

In the beginning, it is necessary to clone the GIT repository (link in the next section). The cloned

project contains:

• server folder with the necessary information in the readme.md file. It is important to

follow the instructions to install and run the server locally. After starting the server, it is also

possible to view the Swagger12 documentation. This documentation clearly displays the

server API, and the programmer can see what endpoints are available in the API, what

individual data endpoints expect or return in the response. Again, a description of how to

view this documentation can be found in the readme.md file.

In short, it is a simple NodeJS server that provides a REST API between the created frontend

application and the "database". For simplicity, the server does not connect to any real

database. But instead, it stores all data in memory and forgets them when turned down.

Such a setting does not require any other technical requirements necessary for your

development (database engine, docker, permissions setup etc.) and shares the same

12 https://swagger.io/

https://swagger.io/

 57

requirements as the frontend application. Also, the implementation of the server is not the

subject of this task.

• client_solved folder with a complete implementation of the frontend, which the

participant should obtain by elaborating the following sections.

Create Vue.js project using Vue CLI

Vue CLI13 is a full system for rapid Vue.js development, providing tools for interactive project

scaffolding and many other features. To install Vue CLI globally on a PC, please run:

npm install -g @vue/cli

Please, make sure then that vue –version returns the installed version. Enter the root directory

of cloned repo and run vue create client to create a new Vue.js project called client.

Then select the default preset (Vue 2, babel, eslint) and press enter. After a few seconds (sometimes

a few minutes), a new folder called client is initialized with the default (Hello World!) Vue.js

project. And that's it! You just set up your (probably first) Vue.js project using Vue CLI.

Project directory description

The folder that was created by Vue CLI contains the following files and subfolders:

• /node_modules – the folder where all installed dependencies live,

• /public – favicon and one and only HTML page in the whole SPA project - index.html ,

• /src – source code divided into components,

• babel.config.js – webpack14 configuration,

• package.json & package-json.lock – project description with a list of

dependencies, useful dev scripts (server, build, lint) and eslint15 configuration,

• README.md – description of useful scripts.

Install Vuetify

Vuetify16 is a Vue UI library with beautifully handcrafted material components. It is an open-source

project for building user interfaces for web and mobile applications. Building a friendly application

interface with a great user experience is a skill that requires practice and knowledge. While Vuetify

won’t make you a skilled UX practitioner overnight, it will help provide a solid start to those who are

new in this area.17

Within this assignment, we will use Vuetify as the UI library. Alternatively, if you don't like Vuetify,

there are a lot of18 other UI libraries for Vue.js. If you are a CSS master, you can also continue without

a UI library and write your own styles.

13 https://cli.vuejs.org/
14 https://webpack.js.org/
15 https://eslint.org/
16 https://vuetifyjs.com/en/
17 https://www.sitepoint.com/get-started-vuetify/
18 https://athemes.com/collections/vue-ui-component-libraries/ or https://www.codeinwp.com/blog/vue-ui-
component-libraries/

https://cli.vuejs.org/
https://webpack.js.org/
https://eslint.org/
https://vuetifyjs.com/en/
https://www.sitepoint.com/get-started-vuetify/
https://athemes.com/collections/vue-ui-component-libraries/
https://www.codeinwp.com/blog/vue-ui-component-libraries/
https://www.codeinwp.com/blog/vue-ui-component-libraries/

 58

To instal Vuetify, we will use the Vue CLI plugin (in the root directory):

vue add vuetify

Then select default recommended preset and wait for installation. Great, you just loaded the

preconfigured Vuetify into the project.

Installation of the necessary dependencies

When developing the application, we will need the following libraries:

• vue-router19 – router for Vue.js,

• axios20 – promise based HTTP client.

To install them, we use a npm package manager21 and its command npm install (make sure you

run the command in the /client folder – where package.json is located):

npm install vue-router axios

After the installation is complete, these dependencies must appear in package.json in the

dependencies section.

Vue.js documentation

Vue.js has excellent documentation at https://vuejs.org/v2/guide/. If you come across any problem

or additional question in the process, you will probably find information here. You can also try to use

other dev pages like https://stackoverflow.com/, etc.

Start development mode

To start the application in development mode, run the following command:

npm run serve

If successful, we should see the Hello world application when we open http://localhost:8080 in the

browser. If necessary, we can change the default port (8080) in

package.json>scripts>serve script using the optional --port parameter (e.g. vue-

cli-service serve --port 1234). Development mode includes hot-reloading, so every

time you save a file, the code is automatically recompiled in the background, and the application is

reloaded.

Remove Hello world template

Since we don't need the default Hello world template, it's a good idea to remove it. To do so, we

must:

• delete /src/components/HelloWorld.vue file (there should be an error)

19 https://router.vuejs.org/
20 https://github.com/axios/axios
21 https://www.npmjs.com/

https://vuejs.org/v2/guide/
https://stackoverflow.com/
http://localhost:8080/
https://router.vuejs.org/
https://github.com/axios/axios
https://www.npmjs.com/

 59

• /src/App.vue requires HelloWorld so we need to delete three references there – 1

in template and 2 in script section (import statement and components property

in Vue instance)

Now the application should start working again, and we should see the Vuetify logo in the default

header at the top.

Vue single file component

In the previous step, you first encountered the Vue component. The Vue component is usually

defined in one file (with .vue extension) called single file component22 with three main sections -

template, script, and style:

• template – a template that is recompiled into HTML code. This section is mandatory.

• script – this section defines a Vue instance (component) that is exported so that it can be

used elsewhere. This section is optional.

• style – CSS styles are defined in this section. These styles are applied globally by default.

This behaviour can be undermined by the defined scoped attribute, which will scope the

styles to this component. It is also possible to use any CSS preprocessor (it is necessary to

install it first23) and use a more convenient CSS syntax. This section is also optional in .vue

files.

The Vue instance

Vue object lives in script section in a single file (.vue). When you create a Vue instance, you pass

in an options object. It is a regular vanilla JS object with several reserved keys (e.g., data, methods,

computed, components, etc.) and behaviour. We will see later what options are being talked

about.

SPA development in general

When developing frontend applications, the individual code is divided into separate components.

These components communicate with each other (they move data from parent to child or vice

versa), and it is advisable to keep them reasonably large so that each component solves one specific

behaviour or just displays a small part of the HTML page (so it is not good to implement the whole

app in one component). Medium-sized applications contain dozens of smaller components that are

reusable in many places and configured via the input interface (as will be mentioned later). During

the application life cycle, components are created and destroyed (or hidden). However, in each SPA

frontend framework, there is a "main" component (ancestor of all others), which is always present

and loaded first.

In this case, it is the App.vue component. The App component is the first to load when the

application starts. See the main.js file in which the Vue application (root Vue instance) is created

(new Vue({…})) and rendered into an HTML DOM element with the #app id.

22 https://vuejs.org/v2/guide/single-file-components.html
23 https://cli.vuejs.org/guide/css.html

https://vuejs.org/v2/guide/single-file-components.html
https://cli.vuejs.org/guide/css.html

 60

Creating AppBar component

The App component defines the top bar by default (see template). It is more optimal to move this

bar (with all relevant stuff) to our separate component AppBar. This component will display a top

bar (navbar) with information about the logged user and buttons for login, logout, and register.

To do so, it is necessary to create a new file in the /src/components folder and name it

AppBar.vue. We will add the following code in the new component:

// AppBar.vue

<template>

 <v-app-bar app dense color="primary" dark>

 <v-toolbar-title>Chat application</v-toolbar-title>

 <v-spacer />

 <div>

 <v-btn outlined>

 Logout

 </v-btn>

 </div>

 <div>

 <v-btn outlined>

 Login

 </v-btn>

 <v-btn outlined>

 Registration

 </v-btn>

 </div>

 </v-app-bar>

</template>

<script>

export default {};

</script>

We have just defined the template of our first AppBar component using Vuetify built-in UI

components (elements/components starting with the prefix "v-" come from Vuetify). For a list of all

Vuetify components, see https://vuetifyjs.com/en/components/. As you can see, third-party

components, common HTML elements or our own components are mixed quite normally.

We do not use this component anywhere yet. We want to use it in the App component. Therefore,

we go back to the App component, remove everything between <v-app-bar>…</<v-app-

bar> (including), and import the newly created component instead. To do so, we will use ES6 import

at the top of the script section. Subsequently, we must register this component to the local scope

of the App component (components can also be registered globally24, but this is not best practice).

Therefore, we modify the options of the Vue instance (JS object mentioned earlier) and add

components part to this object. The final version of the App component is:

// App.vue

<template>

 <v-app>

 <app-bar/>

24 https://vuejs.org/v2/guide/components-registration.html

https://vuetifyjs.com/en/components/
https://vuejs.org/v2/guide/components-registration.html

 61

 <v-main>

 </v-main>

 </v-app>

</template>

<script>

import AppBar from "./components/AppBar.vue"

export default {

 name: 'App',

 components: {

 AppBar

 },

 data: () => ({

 //

 }),

};

</script>

For more detailed information about components, please follow official documentation at

https://vuejs.org/v2/guide/components.html.

Data and props in general

Each application works with data. In general, this data represents business logic, and usually, it is

bind to nice templates. In the Vue.js framework, they are stored in the data property of the given

instance. The data property is (in this case) a function that returns an object representing our data.

The component that defines the data can do anything (change, remove etc.) with it (this data is

accessible both in the component's template (directly without this reference – just someData)

and in the JS via Vue.js magic - shortcut this.someData and not this.data.someData).

We'll see it in action in a few moments.

In practice, some data, useful to the entire application, are usually stored outside of components, in

the so-called store (for Vue.js applications most often Vuex25). Vuex creates a global state and

provides management around this state. Individual components have easy access to it and can

mutate state in one place. As this is a more advanced approach, this tutorial will skip it.

For the components to be able to communicate with each other, the props concept is used in Vue.js.

Props resemble the standard attributes of HTML elements. Each parent component can pass data in

any format (string, number, array, function etc.) to the child component via props. The child

component can pull them out of the props and use them. If the child component wants to pass

information to the parent component, it must either trigger (emit) a custom event or call the passed

callback. We'll see props in action in a few moments, but for more information, including simple

examples, I highly recommend reading the documentation26.

25 https://vuex.vuejs.org/
26 https://vuejs.org/v2/guide/components-props.html

https://vuejs.org/v2/guide/components.html
https://vuex.vuejs.org/
https://vuejs.org/v2/guide/components-props.html

 62

Props and directives

Let's add a user to our application. The user will be stored in the data of the main component, which

will distribute it further, e.g. to the AppBar component.

// App.vue

<template>

 <v-app>

 <app-bar :user="user" />

 <v-main> </v-main>

 </v-app>

</template>

<script>

…

 data: () => {

 return {

 user: {

 name: "Tomas"

 },

 };

 },

…

</script>

// AppBar.vue

<template>

 …

 Hello {{ user.name }}

 …

</template>

<script>

export default {

 props: {

 user: {

 type: Object,

 required: false,

 },

 },

};

</script>

What happened? We added mocked user to the data with name attribute and passed whole user

object via props to AppBar component. The AppBar component has a defined interface (optional

props key in the options of every Vue instance) that expects an optional prop named user, which

has type Object (a user is an object because it has several properties such as first name, last name,

id, etc.). There is also a shorthand notation of props (e.g. simple array of strings), but the presented

declaration gives us more control and overview of how data is moved between components.

We used a special syntax (colon), which is the Vue.js directive, to pass user prop. This is shorthand

for v-bind directive. We are saying, please, bind this attribute with some JS data. If we did not use

the v-bind directive (and write just user=”user”), we would pass the string "user" to the

AppBar component. However, when we use v-bind, Vue.js will start interpreting the right side as

 63

JS code. v-bind is just one of many Vue.js directives. We will also use more of them later, and the

whole list (including examples) can be found at https://vuejs.org/v2/guide/syntax.html.

Also, in the AppBar component, we can see how the data from the Vue.js instance is used in the

template. Special “Mustache” syntax is used for this task (double curly braces), and thanks to Vue,

we have all props (as well as data, methods, computed properties etc.) automatically available in the

template, and we can render their value or directly call some method.

We should now see the username displayed in the top bar next to three buttons. These buttons are

always displayed regardless of whether the user is logged in or not. It would be strange if, for

example, an unregistered user had the opportunity to log out, etc. Therefore, we need to hide the

buttons in the template according to whether the user exists. To do this, we will use another

directive v-if, which is used for conditional rendering of elements. Elements that do not meet the

condition defined in v-if are completely removed (destroyed) from the DOM (on the contrary,

another directive v-show only hides such elements using CSS, and thus these elements are not

destroyed what is required in some cases).

// AppBar.vue

<template>

 …

 <div v-if="user != null">

 Hello {{ user.name }}

 <v-btn outlined>

 Logout

 </v-btn>

 </div>

 <div v-else>

 <v-btn outlined>

 Login

 </v-btn>

 <v-btn outlined>

 Registration

 </v-btn>

 </div>

 …

</template>

In the above code, we made the rendering of div elements conditional on user != null. The first

div with the logout button is rendered if the user is defined, the second div with the login and

register buttons is rendered otherwise (v-else directive).

Now let's implement logout logic. After the user logs off, we need to remove the user from the data

in the App component. But how to do it when the logout button is in a different component than the

original source of data? Simply! We will use props again, but this time the communication flow will

have the opposite direction (from the child component to the parent component).

// App.vue

<template>

 <v-app>

 <app-bar :user="user" @logout="doLogout" />

 <v-main> </v-main>

 </v-app>

</template>

https://vuejs.org/v2/guide/syntax.html

 64

<script>

 …

 data: () => {

 return {

 user: {

 name: "Tomas",

 },

 };

 },

 methods: {

 doLogout() {

 this.user = null;

 },

 },

 …

</script>

// AppBar.vue

<template>

 <div v-if="user != null">

 Hello {{ user.name }}

 <v-btn outlined @click="logout">

 Logout

 </v-btn>

 </div>

</template>

<script>

 …

 props: {

 user: {

 type: Object,

 required: false,

 },

 },

 methods: {

 logout() {

 this.$emit("logout");

 },

 },

 …

</script>

Let's start with AppBar component. We added another special directive v-on (abbreviated to @

only) to the logout button. We can use this directive to listen to DOM events27 and run some

JavaScript when they’re triggered. When a user clicks on v-btn component from Vuetify, it creates

click event and emits it upwards. Using the v-on directive, we subscribe (or listen) to this event,

and when that happens, we call our logout function declared in methods (another part of Vue

instance options, in which all functions of the component are defined).

Now we want to do the same here. Emit a new custom event so that the component that is above

the AppBar component can listen to. To do this, we use the special function $emit, which is

27 https://www.w3schools.com/jsref/dom_obj_event.asp

https://www.w3schools.com/jsref/dom_obj_event.asp

 65

available in each component, and emit a custom event called logout (the name is completely

arbitrary). App component listens to logout event and call method, which sets user to null.

Great, now we are able to "logout" the user and adapt the UI accordingly.

Adding router

Cool, we've mastered the basic concept of props, data binding, directives, and now we can look at

adding a router to our application. The router is very useful if there are several subpages (so-called

routes) in the application. We already installed the vue-router using npm package manager at the

beginning, now we are going to use it.

To have a reasonable project structure, we should create a new folder called /router (in /src

directory) for the router and all route views. In the new /src/router directory, we create

router.js file with the following content:

// router.js

import Vue from "vue";

import VueRouter from "vue-router";

Vue.use(VueRouter);

const routes = [];

const router = new VueRouter({

 routes,

 mode: "history",

});

export default router;

// main.js

import Vue from "vue";

import App from "./App.vue";

import vuetify from "./plugins/vuetify";

import router from "./router/router";

Vue.config.productionTip = false;

new Vue({

 vuetify,

 router,

 render: (h) => h(App),

}).$mount("#app");

In the given code, we register the vue-router plugin to the Vue ecosystem and create a new instance

of the router. Then we import this instance into main.js and register it in the application (root Vue

instance).

routes array is still empty; let's fill it! The route is a separate page that the router renders when the

URL matches its path. Let's create a route component for login and registration.

 66

Login and register forms

First, in the /src/router directory, create a new directory for all routes called /views. This

directory will be used to store all route components. In this directory, create Login.vue file with

the following template:

// Login.vue

<template>

 <v-container class="fill-height" fluid>

 <v-row align="center" justify="center">

 <v-col cols="12" sm="8" md="6" lg="4">

 <v-card class="elevation-2">

 <v-toolbar color="default" flat>

 <v-toolbar-title>Login</v-toolbar-title>

 </v-toolbar>

 <v-card-text>

 <v-form v-model="isFormValid">

 <v-text-field

 v-model="email"

 :rules="[rules.required, rules.email]"

 label="Email"

 type="email">

 </v-text-field>

 <v-text-field

 v-model="password"

 :rules="[rules.required]"

 label="Password"

 :append-icon="showPassEye ? 'mdi-eye' : 'mdi-eye-off'"

 :type="showPassEye ? 'text' : 'password'"

 @click:append="showPassEye = !showPassEye"

 class="mt-2">

 </v-text-field>

 <div class="d-flex justify-end mt-2">

 <v-btn

 color="primary"

 text

 @click="doLogin"

 :disabled="!isFormValid">

 Login

 </v-btn>

 </div>

 </v-form>

 </v-card-text>

 </v-card>

 </v-col>

 </v-row>

 </v-container>

</template>

In this template, we basically create an HTML form using v-form component, two text fields using

v-text-field (for email and password) and submit button at the bottom. This is a typical

example of a Vuetify form. The form is wrapped into layout containers with responsive settings.

Submit button is disabled if the form contains errors (see below). Props passing to layout

 67

components are not very important now (their full description can be found in the Vuetify

documentation). But let's look at v-model28 attribute used in both text fields. This is not a typical

prop but another important directive. It creates a two-way binding on a form input element (input,

textarea, checkbox, radiobutton or select) and automatically picks the correct way to update the

element based on the input type. If the value in the data is changed, the value rendered in the

template is also changed automatically. The same goes in the opposite direction – that’s why it's

called two-way data binding. Now let's add a Vue instance for this template.

// Login.vue

<script>

export default {

 name: "Login",

 data() {

 return {

 email: "",

 password: "",

 showPassEye: false,

 isFormValid: false,

 rules: {

 required: (value) => !!value || "Required",

 email: (v) => /.+@.+/.test(v) || "E-mail must be valid",

 },

 };

 },

 methods: {

 doLogin() {

 console.log("Clicked login");

 },

 },

};

</script>

The entered values from the user in input elements are stored in the email and password data

properties, and they are updated via two-way data binding (v-model directive mentioned before).

showPassEye tracks whether the user wants to show raw password, rules define the rules for

v-text-field validation (the rules were created according to Vuetify docs), and isFormValid

holds the current validation state of the whole form. The doLogin method has also been added in

methods section. This function is called from the template after pressing the submit button. For

now, it only prints the debug text to the console.

Register.vue component will be created in a very similar way - it is necessary to add a form

with individual inputs, add a submit button and wrap it all in a responsive layout. For brevity, this

step will be omitted in this text, and you can try to implement it by yourself. Of course, you can

always find the solution in the folder with the finished project. When registering a new user, it will be

necessary to fill in the following information: email, name, surname, gender (“male”, “female”,

or “other”) and password. All information is required, and without it, you will not be able to submit

the form.

28 https://vuejs.org/v2/guide/forms.html

https://vuejs.org/v2/guide/forms.html

 68

Adding routes

Cool, I assume that in the previous step, you created two routes components for login and register.

But you probably haven't seen these components in action yet because we haven't used them

anywhere. Let's add them to the list of all routes.

// router.js

…

import Login from "./views/Login.vue";

import Register from "./views/Register.vue";

import Home from "./views/Home.vue";

import NotFound from "./views/NotFound.vue";

…

const routes = [

 {path: "/login", component: Login, name: "login"},

 {path: "/register", component: Register, name: "register"},

 {path: "", component: Home, name: "home"},

 {path: "*", component: NotFound, name: "notFound"},

];

…

export default router;

// App.vue

<template>

 <v-app>

 <app-bar … />

 <v-main>

 <router-view></router-view>

 </v-main>

 </v-app>

</template>

…

Do you remember the empty array of routes? Now we have filled it with four routes. Each route has

several configuration options. You can find a list of all in official docs29, and we only need three so far:

• path – a string that equals the path of the current route and URL address in the browser,

• component – the component that the router should render if the path matches,

• name – sometimes, it is more convenient to identify a route with a name, especially when

linking to a route or performing navigations.

Login and Register components created recently are probably known to you, but what about

the others?

• Home – this component is rendered if there is no relative path in the URL (e.g. only

http://localhost:8080). As it is basically the home page of your application (the user visits it

first), I will leave the design entirely to your feelings. Of course, you may find inspiration in

provided solution.

• NotFound – this component is rendered if no previous route is matched (note * in path).

For these cases, I added a simple 404 page with the following template. In this template, you

can see how to load a local image stored in the /assets folder and also how to apply

29 https://router.vuejs.org/guide/

http://localhost:8080/
https://router.vuejs.org/guide/

 69

simple CSS styles that are scoped to a given component. Also, note that this component is a

dummy - the .vue file does not contain a script section, so the component only displays

HTML elements without JavaScript logic.

// NotFound.vue

<template>

 <div class="page-not-found">

 <v-container>

 <v-layout wrap row align-center>

 <v-flex class="mb-5">

 <v-img :src="require('../../assets/404image.png')"

 contain height="250"></v-img>

 </v-flex>

 <v-flex class="text-xs-center">

 <div class="text-h3">

 Page not found.

 </div>

 <div class="text-subtitle-2 mt-2">

 The page you are trying to get never existed in this reality, or has

 migrated to a parallel universe. Try going back to home page and

 repeat your action.

 </div>

 <v-btn flat color="primary" exact class="mt-4" to="/">

 Homepage

 </v-btn>

 </v-flex>

 </v-layout>

 </v-container>

 </div>

</template>

<style scoped>

.page-not-found {

 padding-top: 10rem;

 margin-bottom: 5rem;

}

</style>

The router still does not render route components. We have to say exactly where these route

components should be rendered. To do this, we have to use the router-view component and

insert it in the appropriate place in the App component template (as mentioned above).

Great! Now we should have a completed router. If we put http://localhost:8080/login in the URL, we

should see the login form (similarly for registration). If we just type http://localhost:8080, the home

page should be rendered. If we write random text after the base URL (e.g. "abcd"), we should be

redirected to a 404 page.

Adding links

Let's go back to our first AppBar component. There are login and register buttons, which are not

working yet. And also the logo. Let's get them working!

Links within the application can be solved in several ways. In the NotFound component, we used

props to on v-btn component from Vuetify, and we declare that we want to set location to “/”

after click (v-btn wraps the functionality of router when it is used with to attribute). In addition,

http://localhost:8080/login
http://localhost:8080/

 70

there is a router-link component from vue-router that gives us more options. The following

code shows both ways in action.

// AppBar.vue

<template>

 <v-app-bar app dense color="primary" dark>

 <router-link :to="{ name: 'home' }" exact tag="button">

 <v-toolbar-title>Chat application</v-toolbar-title>

 </router-link>

 <v-spacer />

 <div v-if="user != null">

 Hello {{ user.name }}

 <v-btn outlined @click="logout">

 Logout

 </v-btn>

 </div>

 <div v-else>

 <v-btn class="mr-2" outlined :to="{ name: 'login' }"

 active-class="active" exact>

 Login

 </v-btn>

 <v-btn outlined :to="{ name: 'register' }" active-class="active" exact>

 Registration

 </v-btn>

 </div>

 </v-app-bar>

</template>

 …

<style scoped>

.active {

 background: #6c08d1;

}

</style>

Props to get a JS object according to which the router decides. active-class defines the CSS

class that should be set for a given element if the current URL matches the given path. Thanks to this,

it is possible to beautifully highlight the currently displayed subpage in the navigation. exact props

only specify that the match with the URL must be completely accurate (e.g. path "/" partially matches

all other paths and therefore, without using exact, the active-class would be applied every

time in that case).

HTTP client setup

It's time to connect our frontend to the prepared backend. First, we have to start the server

(according to the instructions in readme.md in /server directory). If the backend is up and

running, we can continue.

We will create a new folder /src/code for some JavaScript code (helpers, constants etc.) shared

across the entire application. In this folder, add file http-common.js and constants.js with

the following content:

// http-common.js

import axios from "axios";

import { API_URL } from "./constants";

 71

export const axiosInstance = axios.create({

 baseURL: API_URL,

});

// constants.js

export const API_URL = "http://localhost:3333";

In the file with constants, we defined the base API URL taken from the readme.md file in the

/server folder. All HTTP requests made by the application will be directed to this address. In the

second file, we created an axios instance. We installed the Axios library at the beginning, so now we

can import it. This HTTP client is very popular, but of course, there are other great alternatives30 as

well as native APIs (e.g. fetch31 or XMLHttpRequest32). Using a single instance is very useful

because we can easily set in one place how requests are sent and responses are processed. In this

case, we set the baseURL, which we import from constants.js.

Now we have to decide how we will use this axios instance. In general, we have two options: import

this file at each necessary place (component) or register it on the Vue prototype and thus make it

available globally to all components. Both solutions are suitable; I will choose the second one. It is

enough to add the following two lines in the main.js file.

// main.js

…

import { axiosInstance } from "./code/http-common";

…

Vue.prototype.$http = axiosInstance;

...

Excellent! Now we can access this HTTP client via this.$http in each component.

HTTP requests

Let's go back to the login and register forms. Although they look amazing, they do not store data on

the backend yet. Communication with the server and asynchronous operations, in general, will be

the subject in this section.

The term asynchronous refers to two or more objects or events not existing or happening at the

same time (or multiple related things happening without waiting for the previous one to complete)33.

Many Web API features now use asynchronous code to run, especially those that access or fetch

some kind of resource from an external device, such as fetching a file from the network, accessing a

database and returning data from it, accessing a video stream from a web cam, or broadcasting the

display to a VR headset. When you fetch an image from a server, you can't return the result

immediately. That means that the following (pseudocode) wouldn't work: 34

 let response = fetch('myImage.png'); // fetch is asynchronous

30 https://github.com/request/request/issues/3143
31 https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API
32 https://developer.mozilla.org/en-US/docs/Web/API/XMLHttpRequest
33 https://developer.mozilla.org/en-US/docs/Glossary/Asynchronous
34 https://developer.mozilla.org/en-US/docs/Learn/JavaScript/Asynchronous/Introducing

https://github.com/request/request/issues/3143
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API
https://developer.mozilla.org/en-US/docs/Web/API/XMLHttpRequest
https://developer.mozilla.org/en-US/docs/Glossary/Asynchronous
https://developer.mozilla.org/en-US/docs/Learn/JavaScript/Asynchronous/Introducing

 72

 let blob = response.blob();

 // display your image blob in the UI somehow

That's because you don't know how long the image will take to download, so when you come to run

the second line, it will throw an error (possibly intermittently, possibly every time) because the

response is not yet available. Instead, you need your code to wait until the response is returned

before it tries to do anything else to it. There are two main types of asynchronous code style you'll

come across in JavaScript code, old-style callbacks and newer promise-style code. We will use

promises.

Let's add an asynchronous request to the login endpoint. We have to modify doLogin function in

Login component:

// Login.vue

…

<template>

…

 </v-form>

 </v-card-text>

 <v-alert v-if="error != null" type="error" dismissible>{{ error }}</v-alert>

 </v-card>

…

</template>

<script>

…

 async doLogin() {

 this.error = null;

 const payload = { email: this.email, password: this.password };

 try {

 const response = await this.$http.post("/auth/login", payload);

 const { token } = response.data;

 console.log(token);

 } catch (e) {

 this.error = e?.response?.data?.message ?? "An unexpected error occurred.";

 }

 },

…

</script>

What happened here? We have prepared payload data in the format expected by BE (see Swagger

documentation). Then we added a try-catch block to catch errors when the HTTP request is

processed by the backend. Then using this.$http (our Axios instance), we created a POST

request (the data is sent to BE and BE has an endpoint for the POST method), where we passed two

parameters - endpoint URL (this string is pasted after the baseURL defined when creating the Axios

instance) and payload data. To handle the promise, we used the async-await35 construct

(ECMAScript 2017). This is a newer notation for promises that acts as syntactic sugar on top of

promises, making asynchronous code easier to write and to read afterwards. They make async code

look more like old-school synchronous code, so they're well worth learning.

If the request is successful, BE sends a user token in the response, which is just written to the console

for now. A token is a long string (e.g. eyJhbGciOiJIUzI1NiI…Orvz26BV6PM8A) that encodes

35 https://developer.mozilla.org/en-US/docs/Learn/JavaScript/Asynchronous/Async_await

https://developer.mozilla.org/en-US/docs/Learn/JavaScript/Asynchronous/Async_await

 73

basic user information and serves to authorize and authenticate the user. This token is unique to the

logged user (generated by BE), and after any token change, the token becomes invalid, and BE does

not allow the user to read or write data anymore. That token is valid for two days. Specifically, it is a

JWT token and can be decoded on the http://jwt.io page.

If the request fails, the code falls into the catch block. In this block, we try to read the error

message sent from the server, and we also add a feedback message if BE does not return anything.

We set this message to data property error (error is defined in the data object as well), and in

the template we conditionally render the v-alert component from Vuetify with the error text

using the v-if directive. This alert is displayed if the user has entered the wrong login credentials

and immediately knows what is happening.

Use the same approach to create an HTTP request for registration in Register component. The

request will differ by the URL of the endpoint (because we want to register and not log in) and

payload data.

Token manager class

In the previous step, we received a token from the backend. From now we must attach this token to

each (secured) endpoint in the request header. BE will always extract this token from the request

header and verify its validity. So far, we are only writing the token to the console, but we are going to

change it now and add a special TokenManager class.

Let's add a string constant export const LS_TOKEN_KEY = "chat_token"; to constants.js that

will be used as a key in LS. In the future, we can use this key to find a token in LS. Now let's create a

new file in /code/token-manager.js and implement the following class:

// token-manager.js

import { axiosInstance } from "./http-common";

import { LS_TOKEN_KEY } from "./constants";

export class TokenManager {

 token = null;

 setToken(token) {

 this.token = token;

 axiosInstance.defaults.headers["Authorization"] = `Bearer ${token}`;

 localStorage.setItem(LS_TOKEN_KEY, token);

 }

 logout() {

 this.token = null;

 delete axiosInstance.defaults.headers["Authorization"];

 localStorage.removeItem(LS_TOKEN_KEY);

 }

 renew() {

 const token = localStorage.getItem(LS_TOKEN_KEY);

 if (token) {

 this.setToken(token);

 }

 }

 getPayload() {

 if (this.token) {

 const parts = this.token.split(".");

 const rawToken = decodeURIComponent(escape(atob(parts[1])));

 return JSON.parse(rawToken);

 }

http://jwt.io/

 74

 return null;

 }

 isUserLogged() {

 return this.token != null;

 }

}

This class solves two things at the same time:

1. add/remove a token from request headers,

2. save/delete token to local storage of the browser.

The first is more or less clear - for authentication. We haven't solved the second feature yet. The

local storage (LS)36 interface provides access to a particular domain's storage data. It allows, for

example, the addition, modification, or deletion of stored data items. While data stored in JavaScript

is automatically lost after reloading, data stored in LS can only be deleted by an application (or

manually by a user) and so usually persists even after closing the browser. We use this storage to

store the received token. As soon as the application receives a new token from BE, it stores this

token in LS. When the user visits the application again (or just refreshes the page), the token is read

from the LS, and the user does not have to log in again.

The class has several methods on which you can notice how to work with Axios headers and
localStorage. There is also a method for decoding a JWT token.

Finally, we need to instantiate this class. We will do this in the main.js file, from where we then

export a new instance so that it can be used in other parts of the application as well. Do not forget to

call the renew() function after creation, which will try to renew the user from the LS. This action

must be performed at the application startup, and the main.js file is the first loaded JavaScript file.

// main.js

…

import { TokenManager } from "./code/token-manager";

Vue.prototype.$http = axiosInstance;

export const tokenManager = new TokenManager();

tokenManager.renew();

...

Login and logout flow

In the previous steps, we implemented a bunch of things in the background. Now let's implement the

login and logout flow and use the created TokenManager class.

First, let's add a new route component /router/views/Rooms, which will be a dummy for now.

// Rooms.vue

<template>

 <div>Rooms component</div>

</template>

36 https://developer.mozilla.org/en-US/docs/Web/API/Window/localStorage

https://developer.mozilla.org/en-US/docs/Web/API/Window/localStorage

 75

Let's add this route among the others.

// router.js

import Rooms from "./views/Rooms.vue";

const routes = [

…

 { path: "/rooms", component: Rooms, name: "rooms" },

…

];

Well done! Now let's go back to the Login component and complete the doLogin method as

follows:

// Login.vue

<script>

import { tokenManager } from "../../main";

…

try {

 const response = await this.$http.post("/auth/login", payload);

 const { token } = response.data;

 tokenManager.setToken(token);

 const userData = tokenManager.getPayload();

 this.$emit("userLogged", userData);

 this.$router.push({ name: "rooms" });

} catch (e) {

…

After logging in, we will save obtained token in the tokenManager (imported at the beginning).

Then we read the user data from the token and use Vue.js $emit function to create the

userLogged event, where we pass user data as a second parameter. After logging in, we want to

automatically redirect the user to the page with all rooms. To be able to do routing from JS, we have

to use this.$router object, which is available globally and using its push() method, we will

add a rooms route to the top of the history stack.

Now, if you try to log in with the correct credentials, you will be automatically redirected to the

Rooms component, and you will see its template. Cool, isn't it?

Login works for us. Now let's go back to the App component and implement the following features:

• display the name of the current user in the AppBar component,

• logout logic.

As you can see in the code below, we modified the template of the App component. On the

router-view component, we listen to userLogged event (emitted by the nested Login

component) and at the same time pass the user props so that the user data is available in all view

components rendered by the router (it will be useful later).

We set the data property user to null by default (no user exists at the time the application is

started). Besides the fact that the doLogout() function resets the data property user, it has to do

two more things:

 76

• call tokenManager.logout() function to remove a token from LS and HTTP requests,

• redirect the user to the login page.

// App.vue

<template>

 <v-app>

 <app-bar :user="user" @logout="doLogout" />

 <v-main>

 <router-view @userLogged="onUserLog" :user="user"></router-view>

 </v-main>

 </v-app>

</template>

<script>

import { tokenManager } from "./main";

…

data: () => {

 return {

 user: null,

 };

},

methods: {

 doLogout() {

 this.user = null;

 tokenManager.logout();

 this.$router.push({ name: "login" });

 },

 onUserLog(userData) {

 this.user = userData;

 },

},

mounted() {

 this.user = tokenManager.getPayload();

},

…

Okay, the Login component performs the login, and the token is stored in the tokenManager.

Now we need to store the user data also in the Vue application, specifically in the reactive data of

this App component. That's why we added the onUserLog() function.

The last function, mounted(), is a special Vue.js function that is part of the life cycle37 of every Vue

component. Each Vue instance goes through a series of initialization steps when it’s created - for

example, it needs to set up data observation, compile the template, mount the instance to the DOM,

and update the DOM when data changes. Along the way, it also runs functions called lifecycle hooks,

giving users the opportunity to add their own code at specific stages.

Exactly when the component is mounted, we want reactive data property user to be automatically

initialized with information from the non-reactive tokenManager. If the user exists in the LS, it was

already renewed (the renew() function in main.js), and now the App component only reads

this information and saves it to reactive data. If the user does not exist, the tokenManager

37 https://vuejs.org/v2/guide/instance.html#Instance-Lifecycle-Hooks

https://vuejs.org/v2/guide/instance.html#Instance-Lifecycle-Hooks

 77

returns null, so the user property will be reset to default. Note that lifecycle hooks are registered

directly in the options of each Vue instance (and not in the methods section).

So the login and logout flow is finished, and you can test it. The user can now log in. After refreshing

the page, he stays logged in (the token is in the LS of the browser), and after logging out, the user is

redirected to the login page (the token is removed from the LS).

Room components

Now let's try to implement the design and functionality of rooms components. In total, we will add

five new components. Main Rooms component fetches the list of all rooms from BE and renders

them in the template after creation (lifecycle hook). The room list will be fetched at regular

intervals to reflect changes on BE. The rooms can be searched by name and description

(RoomsFilters component). This search will only be implemented on the FE side. We also want

to be able to create a new room (NewRoom component). And finally, when a user clicks on a room in

room list (Room component), he enters it (RoomDetail component).

// Rooms.vue

<template>

 <v-container fluid class="pt-16">

 <v-row align="center" justify="center">

 <v-col cols="12" sm="10" md="7" lg="6">

 <div class="text-h2 text--disabled mb-16">Chat rooms</div>

 <v-alert v-if="error != null" type="error">

 <div>{{ error }}</div>

 <v-btn class="mt-6" @click="initFetchingInterval">Try again</v-btn>

 </v-alert>

 <div v-else>

 <rooms-filters :onFilterChange="setFilter"></rooms-filters>

 <v-expansion-panels multiple popout v-if="filteredRooms.length">

 <room v-for="room in filteredRooms" :key="room.id" :room="room"></room>

 </v-expansion-panels>

 <div class="text-subtitle-2" v-else>No room found.</div>

 </div>

 <new-room @onNewRoom="addNewRoom"></new-room>

 </v-col>

 </v-row>

 </v-container>

</template>

<script>

import RoomsFilters from "../../components/RoomsFilters.vue";

import Room from "../../components/Room.vue";

import NewRoom from "../../components/NewRoom.vue";

import { UPDATE_INTERVAL_MS } from "../../code/constants";

export default {

 components: {

 RoomsFilters,

 Room,

 NewRoom,

 },

 data() {

 return {

 rooms: [],

 timer: null,

 78

 error: null,

 filter: "",

 };

 },

 computed: {

 filteredRooms() {

 const filter = this.filter.toLowerCase();

 return this.rooms.filter((room) => room.title.toLowerCase().includes(filter)

 || room.description.toLowerCase().includes(filter));

 },

 },

 methods: {

 async loadAllRooms() {

 this.error = null;

 try {

 const response = await this.$http.get("/rooms");

 this.rooms = response.data;

 } catch (e) {

 this.error = e?.response?.data?.message ?? "An unexpected error occurred.";

 clearInterval(this.timer);

 }

 },

 initFetchingInterval() {

 this.loadAllRooms();

 this.timer = setInterval(this.loadAllRooms, UPDATE_INTERVAL_MS * 5);

 },

 setFilter(filter) {

 this.filter = filter ?? "";

 },

 addNewRoom(newRoom) {

 this.rooms.push(newRoom);

 },

 },

 mounted() {

 this.initFetchingInterval();

 },

 beforeDestroy() {

 clearInterval(this.timer);

 },

};

</script>

As you can see, the code is already quite long. The number of lines in the Vue.js component is often

larger, which is due to the object syntax of the Vue instance. For a better view, I recommend looking

at the source code in GIT.

In the Rooms component, we have added a mounted hook, which initializes the interval for regular

fetching all rooms. This interval should then be cleared using the clearInterval() method, so

this HTTP request is not called after the component is destroyed (beforeDestroy hook). Fetched

rooms are stored in the data property rooms. There are two new features:

• v-for directive38 – is used to iterate objects in Vue templates. The directive gets an array

(or also a classical object) and will repeatedly render the element on which it was used (in

38 https://vuejs.org/v2/guide/list.html

https://vuejs.org/v2/guide/list.html

 79

this case, the Room component – for each room from the database). When using this

directive, the props key must also be set, which Vue uses to identify the element and

optimize changes. This key should be unique in the given array (in our case, the room id).

• computed properties39 – is a very handy concept that optimizes the execution of changes in

a Vue instance. computed properties are used in the same way as classic data properties;

the difference is in the background. computed properties enable you to create a property

that can be used to modify, manipulate, and display data within your components in a

readable and efficient manner. You can use computed properties to calculate and display

values based on a value or set of values in the data model. It can also have some custom logic

that is cached based on its dependencies, meaning it doesn’t reload but does have a

dependency that changes, allowing it to somewhat listen to changes and act accordingly.40

Also, note how we imported other custom Room components and used them in the template.

// RoomsFilters.vue

<template>

 <v-row justify="end">

 <v-col sm="6" md="6">

 <v-text-field

 label="Rooms filter"

 placeholder="Filter by name or description"

 filled rounded dense clearable

 @input="onFilterChange"> </v-text-field>

 </v-col>

 </v-row>

</template>

<script>

export default {

 props: {

 onFilterChange: {

 type: Function,

 required: true,

 },

 },

};

</script>

RoomsFilter is a dummy component that has a template and expects one prop – a callback,

which is called after each keyboard press in the v-text-field component (input event is used

for this use case). The text that the user writes is passed via callback to the parent component, which

further processes it (see Rooms component above).

And what does the Room component look like? Let's take a look!

// Room.vue

<template>

 <v-expansion-panel>

 <v-expansion-panel-header>

 <v-row no-gutters>

39 https://vuejs.org/v2/guide/computed.html
40 https://blog.logrocket.com/understanding-computed-properties-in-vue-js/

https://vuejs.org/v2/guide/computed.html
https://blog.logrocket.com/understanding-computed-properties-in-vue-js/

 80

 <v-col cols="6">

 {{ room.title }}

 </v-col>

 <v-col cols="6" class="text--secondary">

 <v-fade-transition leave-absolute>

 <v-row no-gutters style="width: 100%">

 <v-col cols="6">

 {{ new Date(room.created).toLocaleDateString() }} </v-col>

 <v-col cols="6"> {{ room.totalUsers }} users </v-col>

 </v-row>

 </v-fade-transition>

 </v-col>

 </v-row>

 </v-expansion-panel-header>

 <v-expansion-panel-content>

 <div class="text--secondary">

 {{ room.description }}

 </div>

 <v-row justify="end">

 <v-btn text color="primary"

 :to="{ name: 'roomDetail', params: { id: room.id } }">

 Enter

 </v-btn>

 </v-row>

 </v-expansion-panel-content>

 </v-expansion-panel>

</template>

<script>

export default {

 props: {

 room: {

 type: Object,

 required: true,

 },

 },

};

</script>

The Room component is also dummy and display room information in a list of all rooms. The

component gets room props, reads the necessary properties (title, description, created

date, total number of active users) and displays them in the template. The component is

rendered as an expansion panel from Vuetify, and there is a button to enter the room. Note that

when routing to a specific room, we also pass one parameter – the room ID. This ID will appear in the

URL. But before that, we need to add a new route component RoomDetail, to the router and

specify dynamic parameter id. Don't forget to add the RoomDetail component to the /views

directory (source code will be shown later in this text).

// router.js

…

{ path: "/rooms/:id", component: RoomDetail, name: "roomDetail" },

...

 81

The NewRoom component displays a form to fill in information about the new room (its title and

description). After confirmation, a POST request is sent to the server, the room is stored in the

database, and we should see a newly created room among the other rooms.

// NewRoom.vue

<template>

 <div class="mt-8">

 <div v-if="!formVisible" class="text-center">

 <v-btn fab medium elevation="2" @click="formVisible = true">

 <v-icon dark>

 mdi-plus

 </v-icon>

 </v-btn>

 </div>

 <v-card v-else elevation="2">

 <v-card-title>Create new room</v-card-title>

 <v-card-subtitle>You will be the admin of the new room.</v-card-subtitle>

 <v-card-text>

 <v-form v-model="isFormValid">

 <v-text-field v-model="title"

 :rules="[rules.required]" label="Room title" outlined>

 </v-text-field>

 <v-text-field v-model="description"

 :rules="[rules.required]" label="Room description" outlined>

 </v-text-field>

 </v-form>

 </v-card-text>

 <v-card-actions>

 <v-btn text color="error" @click="resetForm">

 Cancel

 </v-btn>

 <v-btn text @click="createNewRoom" :disabled="!isFormValid">

 Create

 </v-btn>

 </v-card-actions>

 </v-card>

 </div>

</template>

<script>

export default {

 data: () => {

 return {

 title: "",

 description: "",

 formVisible: false,

 isFormValid: false,

 rules: {

 required: (value) => !!value || "Required.",

 },

 };

 },

 methods: {

 resetForm() {

 this.title = "";

 this.description = "";

 this.isFormValid = false;

 this.formVisible = false;

 82

 },

 async createNewRoom() {

 const payload = { description: this.description, title: this.title };

 try {

 const response = await this.$http.post("/rooms", payload);

 const newRoom = response.data;

 this.$emit("onNewRoom", newRoom);

 this.resetForm();

 } catch (e) {

 // TODO: handle errors

 }

 },

 },

};

</script>

Secured routes

Whew, that was a lot of work, but we're getting close to the finals. Try the following experiment. Log

the user out of the application, delete the token from LS and try entering

http://localhost:8080/rooms or http://localhost:8080/rooms/some-real-room-id directly in the URL.

The application will let you in, and the components will be loaded even though the user is logged out.

Ok, the backend is secured and won't return data in this case, but what if it wasn't or there was static

information (not from BE)? Anyone from the internet could access these pages and read our content

without a login. We have to fix this now using secured routes. Let's go to the router configuration file

one last time and make the following changes:

// router.js

…

const routes = [

 { path: "/login", component: Login, name: "login" },

 { path: "/register", component: Register, name: "register" },

 { path: "/rooms", component: Rooms, name: "rooms", meta: { requiresAuth: true }},

 { path: "/rooms/:id", component: RoomDetail, name: "roomDetail",

 meta: { requiresAuth: true } },

 { path: "", component: Home, name: "home" },

 { path: "*", component: NotFound, name: "notFound" },

];

const router = new VueRouter({

 routes,

 mode: "history",

});

router.beforeEach((to, from, next) => {

 if (to.meta && to.meta.requiresAuth) {

 if (tokenManager.isUserLogged()) {

 next();

 } else {

 next({ name: "login" });

 }

 } else {

 next();

 }

});

http://localhost:8080/rooms
http://localhost:8080/rooms/some-real-room-id

 83

As you can see, we added meta information to some routes that it is a route requiring

authentication. Then we added a global router guard41 that works as follows. If the route to be

displayed requires authentication and the tokenManager doesn't know about any logged user, the

routing is redirected to the login page. In other cases, navigation is allowed (next() method

without parameters). With this setup, we also secured the routes on the frontend. If you repeat the

previous experiment again, you will be unsuccessful.

Message components

The last thing we have left is the chatting components – displaying messages (Messages) and users

in the room (RoomUsers) and a component for sending a new message (NewMessage). Let's get

right into it.

// RoomDetail.vue

<template>

 <v-container fluid class="pt-16">

 <v-row align="center" justify="center">

 <v-col cols="12" sm="10" md="7" lg="6">

 <div v-if="room != null">

 <div class="text-h2 text--disabled mb-16">

 <v-btn icon :to="{ name: 'rooms' }" class="mr-5 mb-2">

 <v-icon>mdi-arrow-left</v-icon>

 </v-btn>

 {{ room.title }}

 </div>

 <div>

 <messages :roomId="room.id" :userId="user.sub"></messages>

 </div>

 </div>

 </v-col>

 </v-row>

 </v-container>

</template>

<script>

import Messages from "../../components/Messages.vue";

export default {

 components: { Messages },

 props: {

 user: Object,

 },

 data() {

 return {

 room: null,

 };

 },

 methods: {

 async loadRoomDetail(id) {

 try {

 const response = await this.$http.get(`/rooms/${id}`);

 this.room = response.data;

 } catch (e) {

 // TODO: handle errors

41 https://router.vuejs.org/guide/advanced/navigation-guards.html

https://router.vuejs.org/guide/advanced/navigation-guards.html

 84

 }

 },

 },

 mounted() {

 const id = this.$route.params.id;

 this.loadRoomDetail(id);

 },

};

</script>

Message components are rendered in the room detail component (code above). As already several

times, when the RoomDetail component is mounted, the information about the room is fetched

from BE. Notice how the ID of the current room is obtained. If this route component could not be

accessed directly via URL, then it would be enough for the component to get the room ID via props.

However, since this is a route component, and the user can revive it by typing the URL directly into

the browser (and not only via clicks in the application), it is necessary to get the ID from the URL. This

is done using the $route object, which like $router is globally available. This component

displays the room name and the Messages component, which displays the chat. See the following

code.

// Messages.vue

<template>

 <div>

 <room-users :roomId="roomId" class="mb-5"></room-users>

 <v-card max-width="100%" max-height="480" min-height="480"

 class="mx-auto overflow-y-auto" ref="messages">

 <v-list v-if="messages.length" three-line>

 <template v-for="(message, i) in messages">

 <v-divider v-if="i !== 0" inset :key="i"></v-divider>

 <v-list-item :key="message.id">

 <v-list-item-avatar>

 <v-img

 :src="`https://avatars.dicebear.com/api/avataaars/${message.userId}.svg`">

 </v-img>

 </v-list-item-avatar>

 <v-list-item-content>

 <v-list-item-title>{{ message.message }}</v-list-item-title>

 <v-list-item-subtitle>

 {{ message.userFullName }}

 ·

 {{ new Date(message.created).toLocaleString() }}

 </v-list-item-subtitle>

 </v-list-item-content>

 </v-list-item>

 </template>

 </v-list>

 <div v-else class="py-16">

 <div class="text--disabled text-center">

 No messages yet. Write something!

 </div>

 </div>

 85

 </v-card>

 <new-message :roomId="roomId" @onNewMessage="addNewMessage"></new-message>

 </div>

</template>

<script>

import NewMessage from "./NewMessage.vue";

import RoomUsers from "./RoomUsers.vue";

import { UPDATE_INTERVAL_MS } from "../code/constants";

export default {

 components: { NewMessage, RoomUsers },

 props: {

 roomId: {

 type: String,

 required: true,

 },

 userId: {

 type: String,

 required: true,

 },

 },

 data() {

 return {

 messages: [],

 timer: null,

 };

 },

 methods: {

 async loadMessages() {

 try {

 const response = await this.$http.get(`/rooms/${this.roomId}/messages`);

 const hasNewMessages = response.data.length != this.messages.length;

 this.messages = response.data;

 if (hasNewMessages) {

 this.scrollToBottom();

 }

 } catch (err) {

 // TODO: handle errors

 }

 },

 addNewMessage(newMessage) {

 this.messages.push(newMessage);

 this.scrollToBottom();

 },

 scrollToBottom() {

 const el = this.$refs.messages?.$el;

 if (el != null) {

 setTimeout(() => el.scrollTo({ top: el.scrollHeight, behavior: "smooth", bl

ock: "end" }));

 }

 },

 },

 mounted() {

 this.loadMessages();

 this.timer = setInterval(this.loadMessages, UPDATE_INTERVAL_MS * 2);

 },

 beforeDestroy() {

 clearInterval(this.timer);

 86

 },

};

</script>

The messages component fetches messages in the room at regular intervals. If a new message has

been added in the meantime, the scrollToBottom() function scrolls the message container to

the bottom so that the new message is visible. The messages are displayed using the Vuetify v-

list component. The messages component also renders two of our components - the list of users

(at the top) and input for writing messages (at the bottom).

RoomUsers component can look like:

// RoomUsers.vue

<template>

 <div>

 <v-sheet class="mx-auto" max-width="100%">

 <div class="text-subtitle-2 mb-2">Active users ({{ users.length }})</div>

 <v-slide-group multiple show-arrows>

 <v-slide-item v-for="user in users" :key="user.id">

 <div class="d-flex flex-column align-center">

 <v-img

 :src="`https://avatars.dicebear.com/api/avataaars/${user.id}.svg`"

 max-height="60" max-width="60">

 </v-img>

 <v-btn class="mx-2" active-class="purple white--text" depressed

 text small>

 {{ user.name }} {{ user.surname }}

 </v-btn>

 </div>

 </v-slide-item>

 <div v-if="!users.length">

 <div class="text-subtitle-1 text--disabled mb-2 text-center">

 Waiting for users...

 </div>

 </div>

 </v-slide-group>

 </v-sheet>

 </div>

</template>

<script>

import { UPDATE_INTERVAL_MS } from "../code/constants";

export default {

 props: {

 roomId: {

 type: String,

 required: true,

 },

 },

 data() {

 return {

 users: [],

 timer: null,

 };

 },

 methods: {

 87

 async loadUsers() {

 try {

 const response = await this.$http.get(`/rooms/${this.roomId}/users`);

 this.users = response.data;

 } catch (err) {

 // TODO: handle errors

 }

 },

 },

 mounted() {

 this.loadUsers();

 this.timer = setInterval(this.loadUsers, UPDATE_INTERVAL_MS * 2);

 },

 beforeDestroy() {

 clearInterval(this.timer);

 },

};

</script>

The RoomUsers component works the same as the previous one. mounted hook sets the interval

for fetching a list of users in the room. The users are rendered via the Vuetify component v-slide-

group, which displays the items in a horizontal slide element.

We generate an avatar for each user via the freely available API https://avatars.dicebear.com. This

service generates pretty nice images based on the seed. We send there a user ID that is unique, and

therefore the service generates the same avatar for this ID every time.

And the last but not least component is NewMessage:

// NewMessage.vue

<template>

 <v-card max-width="100%" class="mx-auto">

 <v-text-field

 v-model="message" filled hide-details

 clear-icon="mdi-close-circle" clearable label="Message"

 type="text" append-icon="mdi-send"

 @click:append="sendMessage" @keypress.enter="sendMessage">

 </v-text-field>

 </v-card>

</template>

<script>

export default {

 props: {

 roomId: {

 type: String,

 required: true,

 },

 },

 data() {

 return {

 message: "",

 };

 },

 methods: {

 async sendMessage() {

 if (!this.message) {

https://avatars.dicebear.com/

 88

 return;

 }

 const payload = {

 message: this.message,

 };

 try {

 const response =

 await this.$http.post(`/rooms/${this.roomId}/messages`, payload);

 this.$emit("onNewMessage", response.data);

 this.message = "";

 } catch (e) {

 // TODO: handle errors

 }

 },

 },

};

</script>

This component renders one text field into which the user writes his message. After clicking on send

icon (@click event) or pressing enter (@keypress event), the text is sent to BE, and the

component emits the server response with the new message.

And that's all! You should now be able to register and login two different users (each in a different

browser or via an incognito mode). Also, create a room or enter an already created one. Both users

should be displayed in the list, and these users can communicate comfortably with each other using

chat components.

 89

Simple Forms

Create a simple HTML page with two inputs, button and element h1, similar to the next code:

First name: <input id="first_name“ />

Last name: <input id="last_name“ />

<button id="hello">Hello</button>

<h1 id = "result"></h1>

• Get input from the user (name and surname) and combine that with the string "Hello".

• Show a simple message that greeting you.

• Show the message like the content of element h1.

Create a simple HTML page with input Range and element h1, similar to the next code:

<input type="range" max="100" min="1" value="12" id="range">

<h1 id="heading">JQuery</h1>

• Create functionality for changing the font size of element h1. Font size will change after

changing the value in Range input. Font size will depend on the value of Range input.

• Insert some images, and create functionality for image size changing (width and height). It

will depend on the Range input.

 90

JQuery Animation

The jQuery animate() method is used to create custom animations. The required params parameter

defines the CSS properties to be animated.

Create a rectangle on the page and add two buttons – “move to the right” and “move to the left”,

similar to the next code:

<style type="text/css">

div{

 background:#98bf21;

 height:100px;

 width:100px;

 position:absolute;}

</style>

<button>Start Animation</button>

<div></div>

• For the button "move to the right" create an effect for moving the rectangle to the right, and

for the button "move to the left" create a movement to the left.

 91

Hammer Hitting Turtle

Create an online "hammer hitting turtle" game with jQuery.

• Select and use the JavaScript method: requestAnimationFrame() or setInterval() for updating

state of game before the next repaint.

• Hammer hit will be a mouse click event.

• Do not forget to create a "counter of the true hits" in your game.

• It is not necessary to create a beautiful graphical design for the game. Turtles and hummer

could be coloured squares only.

MOBILE

APPLICATIONS

 93

To-do Application for Android in Java

The presented example shows a mobile application for Android. The mobile application serves as a

productivity tool and allows users to insert their tasks. Users can associate tasks with dates and

locations. Users can also modify the tasks and delete them. When they are done with the task, it can

be marked as resolved using the checkbox.

Recommended Number of Developers

Individual.

Available Solutions

There are a lot of similar solutions. To name some:

• Todoist (https://play.google.com/store/apps/details?id=com.todoist)

• Google Tasks

(https://play.google.com/store/apps/details?id=com.google.android.apps.tasks)

• Any.do (https://play.google.com/store/apps/details?id=com.anydo)

However, these solutions are much more advanced.

Requirements

The application will be created in Android Studio. Here is an installation guide for Windows

(https://developer.android.com/studio/install). The application is developed using the Kotlin

programming language. The development requires a basic knowledge of Object-oriented

programming.

Functional Requirements

a) The application will show a list of current tasks of the user in the list.

b) The user can add a new task.

c) The user can modify an existing task.

d) The user can delete an existing task.

e) Each task has a description, date and image.

f) Image can be captured by the internal camera, selected from the camera or selected from

internal storage.

Non-functional Requirements

a) Android 6.0 and higher.

b) All tasks must be available after the application is closed and again opened.

c) Java programming language

Application Design

Technology and Architecture Selection

The application is written using the Java programming language. It shows an older but still valid of

creating a user interface using activities. The application also shows basic access to the database

using the SQLiteOpenHelper class.

https://play.google.com/store/apps/details?id=com.todoist
https://play.google.com/store/apps/details?id=com.google.android.apps.tasks
https://play.google.com/store/apps/details?id=com.anydo
https://developer.android.com/studio/install

 94

Data Model

Fig. 23 Data model

User Interfaces

Fig. 24 Interface definition

Solution

Application database

The database is done using the SQLiteOpenHelper class. It is a basic class for defining the database

structure. Nowadays, there are many libraries to provide better access to the database. The most

popular is Room. However, it is still important to know how the database works.

On Android, we will be using the SQLite database. It is very similar to SQL. However, it does not have

a full range of functions.

The database is created by inheriting from the SQLiteOpenHelper class. When we inherit from the

SQLiteOpenHelper class, we need to override two methods:

• onCreate - called only once when the app is run for the first time.

• onUpgrade - called every time the database number increases.

public class TodoDatabaseHelper extends SQLiteOpenHelper {

 private static final int DATABASE_VERSION = 1;

 95

 private static final String DATABASE_NAME = "todo_db";

 public TodoDatabaseHelper(Context context) {

 super(context, DATABASE_NAME, null, DATABASE_VERSION);

 }

 @Override

 public void onCreate(SQLiteDatabase db) {

 db.execSQL(TaskDatabaseScheme.CREATE_TASKS_TABLE);

 }

 @Override

 public void onUpgrade(SQLiteDatabase db, int oldVersion, int newVersion) {

 db.execSQL(TaskDatabaseScheme.DELETE_TASKS);

 onCreate(db);

 }

}

In the constructor, we provide the name of the database and the database number. In the onCreate

method, the CREATE TABLE query is performed.

In a previous code, we are using the TaskDatabaseScheme file. This file contains the definition of the

operations over the database. It also contains the definition of the columns and the query to delete

the entire table.

public interface TaskDatabaseScheme extends BaseColumns {

 String TABLE_NAME = "tasks";

 String COLUMN_TITLE = "title";

 String COLUMN_DESCRIPTION = "description";

 String COLUMN_TASK_DONE = "task_done";

 String COLUMN_DUE_DATE = "due_date";

 String COLUMN_IMAGE = "image";

 String CREATE_TASKS_TABLE =

 "CREATE TABLE " + TABLE_NAME + " (" +

 _ID + " INTEGER PRIMARY KEY," +

 COLUMN_TITLE + " TEXT," +

 COLUMN_DESCRIPTION + " TEXT," +

 COLUMN_DUE_DATE + " TEXT," +

 COLUMN_TASK_DONE + " INTEGER," +

 COLUMN_IMAGE + " TEXT" +

 ")";

 String DELETE_TASKS =

 "DROP TABLE IF EXISTS " + TABLE_NAME;

}

The access to the database, we will use the Dao pattern. Firstly, we define the interface representing

the operations over the database.

public interface ITasksDao {

 void addTask(Task newTask);

 ArrayList<Task> getAllTasks();

 ArrayList<Task> getAllUndoneTasks();

 Task getTaskByID(long id);

 void updateTask(Task task);

 96

 void deleteTask(Task task);

 void markTaskDone(long taskID, boolean done);

}

Next, we implement the interface. To save the task to the database, we need to convert it to the

ContentValues object. The method taskToContentValues serves this purpose.

private ContentValues taskToContentValues(Task task) {

 ContentValues contentValues = new ContentValues();

 contentValues.put(TaskDatabaseScheme.COLUMN_TITLE,task.getTitle());

 contentValues.put(TaskDatabaseScheme.COLUMN_DESCRIPTION,task.getDescription());

 contentValues.put(TaskDatabaseScheme.COLUMN_DUE_DATE,task.getDueDate());

 contentValues.put(TaskDatabaseScheme.COLUMN_IMAGE,task.getImage());

 if (task.isDone()) {

 contentValues.put(TaskDatabaseScheme.COLUMN_TASK_DONE, 1);

 } else {

 contentValues.put(TaskDatabaseScheme.COLUMN_TASK_DONE, 0);

 }

 return contentValues;

}

To read the data from the database, we use the Cursor class. Cursor gives us a view of the result of

the specific request. The method cursorToTask converts one row in the cursor to the task.

private Task cursorToTask(Cursor cursor) {

 Task task = new Task();

 task.setId(cursor.getLong(cursor.getColumnIndex(TaskDatabaseScheme._ID)));

 task.setTitle(cursor.getString(cursor.getColumnIndex(

 TaskDatabaseScheme.COLUMN_TITLE)));

 task.setDescription(cursor.getString(cursor.getColumnIndex(

 TaskDatabaseScheme.COLUMN_DESCRIPTION)));

 task.setDueDate(cursor.getString(cursor.getColumnIndex(

 TaskDatabaseScheme.COLUMN_DUE_DATE)));

 task.setImage(cursor.getString(cursor.getColumnIndex(

 TaskDatabaseScheme.COLUMN_IMAGE)));

 int taskDone =

 cursor.getInt(cursor.getColumnIndex(TaskDatabaseScheme.COLUMN_TASK_DONE));

 if (taskDone == 1){

 task.setDone(true);

 } else {

 task.setDone(false);

 }

 return task;

}

The last step is the operations itself. Let’s mention one as an example. The inserting of the new task

is performed in addTask method. First, the instance of the database is created. Then, the writable

object of the database is saved into the database variable. This object is then used to insert the

ContentValues class into the database. The last operation is closing the database so we can later

access it again.

public void addTask(Task newTask) {

 TodoDatabaseHelper databaseHelper = new TodoDatabaseHelper(context);

 97

 if (databaseHelper != null) {

 SQLiteDatabase database = databaseHelper.getWritableDatabase();

 try {

 long id = database.insert(

 TaskDatabaseScheme.TABLE_NAME,

 null,

 taskToContentValues(newTask));

 newTask.setId(id);

 } finally {

 database.close();

 }

 }

}

SharedPreferences

The database is the best way to store large amounts of data. However, if we need to save just a

single value, it is not necessary to create a database for it. One way to store single values is

SharedPreferences class. The class saves the values to an internal XML file.

To initialize the SharedPreferences class, we need the name of the file. An application can have

multiple SharedPreferences files.

Part of SplashScreenActivity is an introduction to the application. The introduction should be run only

the first time the application is opened. Each time the application is opened, we check if it is run for

the first time using the isRunForFirstTime method.

public class SharedPreferencesManager {

 private static final String FILENAME = "todosp";

 private static SharedPreferences getSharedPreferences(Context context){

 return context.getSharedPreferences(FILENAME, Context.MODE_PRIVATE);

 }

 @SuppressLint("ApplySharedPref")

 public static void saveFirstRun(Context context){

 SharedPreferences.Editor editor = getSharedPreferences(context).edit();

 editor.putBoolean(SharedPreferencesConstants.FIRST_RUN, false);

 editor.commit();

 }

 public static boolean isRunForFirstTime(Context context){

 SharedPreferences sharedPreferences = getSharedPreferences(context);

 return sharedPreferences

 .getBoolean(SharedPreferencesConstants.FIRST_RUN, true);

 }

}

SplashScreenActivity

SplashScreenActivity is the first activity that is run. It consists of two parts. The first part shows the

logo of the application. The second part is an application introduction. Showing a logo is done using

the styles of the application. Firstly, we create a drawable file (splash_screen_background.xml). This

file will represent the background of the application.

 98

<?xml version="1.0" encoding="utf-8"?>

<layer-list xmlns:android="http://schemas.android.com/apk/res/android">

 <item

 android:drawable="@color/colorWhite"/>

 <item

 android:gravity="center"

 android:drawable="@drawable/logo_round" />

</layer-list>

Next, we use this file in style defined specifically for this activity.

<style name="SplashScreenTheme" parent="Theme.AppCompat.NoActionBar">

 <item name="android:windowBackground">@drawable/splash_screen_background</item>

</style>

The next part is setting the style in the AndroidManifest.xml file.

<activity

 android:name=".activities.SplashScreenActivity"

 android:label="@string/app_name"

 android:theme="@style/SplashScreenTheme"

 android:screenOrientation="portrait">

 <intent-filter>

 <action android:name="android.intent.action.MAIN" />

 <category android:name="android.intent.category.LAUNCHER" />

 </intent-filter>

</activity>

And that is it. However, for the Splash screen to work properly, we do not use the method

setContentView in the onCreate method of the activity.

The second part of the activity is the application introduction. We are going to use the AppIntro

library (https://github.com/apl-devs/AppIntro). The AppIntro is implemented by inheriting from the

AppIntro class. Then, in onCreate method, if the application is run for the first time, the appintro

slides are configured and shown. Otherwise, we continue to the list of tasks.

if (SharedPreferencesManager.isRunForFirstTime(this)){

 SliderPage page1 = new SliderPage();

 page1.setTitle(getString(R.string.app_name));

 page1.setDescription(getString(R.string.help_1));

 page1.setBgColor(ContextCompat.getColor(this, R.color.colorPrimary));

 page1.setImageDrawable(R.drawable.todo_1);

 SliderPage page2 = new SliderPage();

 page2.setTitle(getString(R.string.app_name));

 page2.setDescription(getString(R.string.help_2));

 page2.setBgColor(ContextCompat.getColor(this, R.color.colorPrimaryDark));

 page2.setImageDrawable(R.drawable.todo_2);

 addSlide(AppIntroFragment.newInstance(page1));

 addSlide(AppIntroFragment.newInstance(page2));

 setBarColor(ContextCompat.getColor(this, R.color.colorAccent));

 setSeparatorColor(ContextCompat.getColor(this, android.R.color.white));

 setDoneText(getString(R.string.done));

 setSkipText(getString(R.string.skip));

https://github.com/apl-devs/AppIntro

 99

 showSkipButton(true);

 setProgressButtonEnabled(true);

} else {

 continueToApp();

}

TodoListActivity

The main activity of the application is the activity with the list of tasks. In the centre of this activity is

a method for setting the list.

private void setList(ArrayList<Task> newListOfTasks){

 listOfTasks.clear();

 listOfTasks.addAll(newListOfTasks);

 if (adapter == null) {

 adapter = new TasksListAdapter(listOfTasks);

 RecyclerView.LayoutManager layoutManager = new LinearLayoutManager(this);

 recyclerView.setLayoutManager(layoutManager);

 DividerItemDecoration dividerItemDecoration

 = new DividerItemDecoration(recyclerView.getContext(),

 RecyclerView.VERTICAL);

 recyclerView.addItemDecoration(dividerItemDecoration);

 recyclerView.setAdapter(adapter);

 } else {

 adapter.notifyDataSetChanged();

 }

}

In this method, we clear an old list of tasks; then, if the adapter class was not previously created, we

create the instance of the adapter and set the adapter and LayoutManager to the RecyclerView. The

line as a divider is also added. If the adapter already exists, we just notify it to refresh.

Another important part of this activity is the refreshList method. It decides if all tasks should be

shown. If yes, it loads all tasks from the database. If not, it loads only the tasks that are not done.

private void refreshList(){

 if (!showAllTasks){

 setList(taskDao.getAllUndoneTasks());

 } else {

 setList(taskDao.getAllTasks());

 }

}

A typical usage can be seen in the onActivityResult method. If we are returning from the adding of a

new task, then the list is refreshed. The list is also refreshed when returning from the task detail

because, from the detail, we can navigate to the update of the task, or the task can be deleted.

@Override

protected void onActivityResult(int requestCode, int resultCode, Intent data) {

 super.onActivityResult(requestCode, resultCode, data);

 if (requestCode == ADD_TASK_REQUEST_CODE && resultCode == RESULT_OK){

 refreshList();

 }

 if (requestCode == TASK_DETAIL_REQUEST_CODE){

 refreshList();

 100

 }

}

As mentioned in a previous part, the user is able to control what list of tasks will be shown. It can be

either all tasks or just unfinished tasks. The control is done by button on the toolbar and its

associated onClick method.

public void showDoneTasks(MenuItem item) {

 showAllTasks = !showAllTasks;

 refreshList();

 if (!showAllTasks){

 showAllTasksMenuItem.setIcon(R.drawable.ic_check_box_white);

 } else {

 showAllTasksMenuItem.setIcon(R.drawable.ic_check_box_outline_white);

 }

}

The method refreshes the list and also changes the icon of the MenuItem.

AddEditTaskActivity

The most complex activity of the application is AddEditTaskActivity. The functions of the activity can

be split into two parts—the management of the data and the work with images. The work with

images will be described in the last part of this tutorial.

The first part is very straightforward. Firstly, we decide if the activity is for adding a new task or for

updating an existing task. This is done in the onCreate method. Based on the value of the id, we

determine the state and also set the title on the toolbar.

taskDao = new TaskDao(this);

id = getIntent().getLongExtra(IntentConstants.INTENT_ID, -1);

if (savedInstanceState != null){

 task = (Task) savedInstanceState.getSerializable(TASK);

} else {

 if (id != -1) {

 task = taskDao.getTaskByID(id);

 getSupportActionBar().setTitle(

 getString(R.string.title_activity_edit_task));

 } else {

 task = new Task();

 task.setDueDate(DateUtility.getCurrentDate());

 getSupportActionBar().setTitle(

 getString(R.string.title_activity_add_task));

 }

}

The next part is setting the View values from the Task object loaded from the database. A very

important part is using the addTextChangeListener method of the TextView. This way, the task title

and description are updated at the moment when the user changes the text inputs.

private void setGUIValues(){

 dueDateButton.setText(task.getDueDate());

 101

 if (id != -1) {

 titleTextInputLayout.getEditText().setText(task.getTitle());

 descriptionTextInputLayout.getEditText().setText(task.getDescription());

 dueDateButton.setText(task.getDueDate());

 }

 titleTextInputLayout.getEditText().addTextChangedListener(new TextWatcher() {

 @Override

 public void beforeTextChanged(CharSequence s, int start,

 int count, int after) {

 }

 @Override

 public void onTextChanged(CharSequence s, int start, int before, int count){

 task.setTitle(s.toString());

 }

 @Override

 public void afterTextChanged(Editable s) {

 }

 });

 descriptionTextInputLayout.getEditText().addTextChangedListener(

 new TextWatcher() {

 @Override

 public void beforeTextChanged(CharSequence s, int start,

 int count, int after) {

 }

 @Override

 public void onTextChanged(CharSequence s, int start, int before, int count) {

 task.setDescription(s.toString());

 }

 @Override

 public void afterTextChanged(Editable s) {

 }

 });

}

Once the activity is visible to the user and the user makes changes, we need to save those changes to

the database. Before saving, we need to test if the task title was filled. If so, we can proceed to

inserting a new task or updating existing ones. If a new task is inserted of existing updated, the Toast

is shown to the user, and the activity is finished.

public void save(MenuItem item) {

 boolean everythingOK = true;

 if (titleTextInputLayout.getEditText().getText().toString().trim().equals("")){

 titleTextInputLayout.setError(getString(R.string.no_title_hint));

 everythingOK = false;

 }

 if (everythingOK) {

 if (id == -1) {

 taskDao.addTask(task);

 Toast.makeText(AddEditTaskActivity.this, R.string.new_task_created,

 102

 Toast.LENGTH_SHORT).show();

 setResult(RESULT_OK);

 finish();

 } else {

 task.setTitle(titleTextInputLayout.getEditText().getText().

 toString().trim());

 task.setDescription(descriptionTextInputLayout.getEditText().getText().

 toString().trim());

 taskDao.updateTask(task);

 Toast.makeText(AddEditTaskActivity.this, R.string.task_updated,

 Toast.LENGTH_SHORT).show();

 setResult(RESULT_OK);

 finish();

 }

 }

}

TaskDetailActivity

The TaskDetailActivity provides basic information about the task. It shows all the properties. The first

part of the activity is getting the task from the database.

taskDao = new TaskDao(this);

id = getIntent().getLongExtra(IntentConstants.INTENT_ID, -1);

task = taskDao.getTaskByID(id);

setGUIValues();

As a final step, we will set the task values to the views using the setGUIValues() method.

private void setGUIValues(){

 titleTextView.setText(task.getTitle());

 if (task.getDescription() != null && !task.getDescription().equals("")) {

 descriptionTextView.setText(task.getDescription());

 } else {

 descriptionTextView.setText(R.string.no_description);

 }

 dueDateTextView.setText(task.getDueDate());

 if (task.getImage() != null){

 Picasso.get().load(new File(getFilesDir().toString(),

 task.getImage())).resize(1500, 1500).centerCrop().into(imageView);

 } else {

 imageContainer.setVisibility(View.GONE);

 }

}

The purpose of the detail activity is also to provide the user with an option to either delete the task

or run the update of the task. The update is done using the AddEditTaskActivity. These two

operations are performed by two menu onClick methods defined in menu_task_detail.xml file.

Delete operation removes the task from the database and finishes the current activity.

public void delete(MenuItem item) {

 taskDao.deleteTask(task);

 Toast.makeText(this, R.string.task_deleted, Toast.LENGTH_LONG).show();

 finish();

}

 103

The edit runs the AddEditTaskActivity activity.
public void edit(MenuItem item) {

 Intent intent = AddEditTaskActivity.createIntent(this, task.getId());

 startActivityForResult(intent, EDIT_TASK_REQUEST_CODE);

}

Settings Activity

The SettingsActivity is the simplest activity of the entire application. The activity shows the version of

the application.

public class SettingsActivity extends AppCompatActivity {

 private TextView appVersion;

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_settings);

 Toolbar toolbar = findViewById(R.id.toolbar);

 setSupportActionBar(toolbar);

 getSupportActionBar().setDisplayHomeAsUpEnabled(true);

 toolbar.setNavigationOnClickListener(new View.OnClickListener() {

 @Override

 public void onClick(View v) {

 finish();

 }

 });

 appVersion = findViewById(R.id.app_version);

 try {

 String versionName = getPackageManager()

 .getPackageInfo(getPackageName(), 0).versionName;

 appVersion.setText(versionName);

 } catch (PackageManager.NameNotFoundException e) {

 e.printStackTrace();

 }

 }

}

The application version always consists of version code and version name. These are defined in the

build.gradle file for the module.

versionCode 1

versionName "1.0"

VersionCode is an internal identification of the version. When we want to create a new version, we

need to increase the code. On the other hand, the versionName is an external identification of the

version. This is what will be visible to the user. It is a string, so It can contain basically anything.

 104

Working with images

The last important part of this tutorial is working with images. In the AddEditTaskActivity, the user

has the option to add an image to the Task. There are three options to get the image:

• Device camera

• Photo gallery

• Device storage

The choosing of the option is done in the dialogue created in showSelectImageSourceDialog method.

Let’s look at the first option, capturing the image from the camera.

private void captureImageFromCamera(){

 Intent takePictureIntent = new Intent(MediaStore.ACTION_IMAGE_CAPTURE);

 if (takePictureIntent.resolveActivity(getPackageManager()) != null) {

 try {

 photoFile = FileUtility.createImageFile(this);

 } catch (IOException ex) {

 ex.printStackTrace();

 }

 if (photoFile != null) {

 Uri photoURI = FileProvider.getUriForFile(this,

 "cz.mendelu.pef.fileprovider",

 photoFile);

 takePictureIntent.putExtra(MediaStore.EXTRA_OUTPUT, photoURI);

 startActivityForResult(takePictureIntent, REQUEST_IMAGE_CAPTURE);

 }

 }

}

The starting of the camera is done using the Intent class. At the beginning of the method, we need to

test if there is any camera present in the device (resolveActivity method). Then, an empty image file

is created. We then pass the URI of the image to the intent, and the camera will fill this image with

the captured data. However, the image is not visible to external applications, such as the camera. We

need to grand camera access to the file using FileProvider. In order for the File Provider to work, it

needs to be specified in AndroidManifest.xml file.

<provider

 android:name="androidx.core.content.FileProvider"

 android:authorities="cz.mendelu.pef.fileprovider"

 android:exported="false"

 android:grantUriPermissions="true">

 <meta-data

 android:name="android.support.FILE_PROVIDER_PATHS"

 android:resource="@xml/paths" />

</provider>

Once the image is captured with a camera, we need to process it in the onActivityResult method.

if (requestCode == REQUEST_IMAGE_CAPTURE && resultCode == RESULT_OK){

 task.setImage(photoFile.getName());

 Picasso.get().load(photoFile).resize(1500, 1500).centerCrop().into(imageView);

 deleteImageButton.setVisibility(View.VISIBLE);

}

 105

Image is set to the task and loaded to the ImageView class using Picasso library.

The second option is choosing the image from the gallery. The operation is again done using the

Intent class; however, we also need to check for permission to access external storage. If we do not

have permission, we need to request it.

private void selectImageFromGallery(){

 if (PermissionUtility.checkPermissions(this)) {

 Intent intent = new Intent();

 intent.setType("image/*");

 intent.putExtra(Intent.EXTRA_LOCAL_ONLY, true);

 intent.setAction(Intent.ACTION_GET_CONTENT);

 startActivityForResult(Intent.createChooser(intent,

 getString(R.string.select_image)), GALLERY_IMAGE_REQUEST_CODE);

 } else {

 PermissionUtility.requestPermissions(AddEditTaskActivity.this,

 PERMISSION_SELECT_FROM_GALLERY_REQUEST_CODE);

 }

}

Once we open the gallery, we need to process the result in the onActivityResult method. However, it

is much more difficult than with the image from the camera. The biggest problem is getting the

correct address of the image. For this purpose, we need to use the FileUtility class. In this class, the

method getRealPath returns us the path of the image that can be saved to the database but, more

importantly, accessed in code. The next part is copying the image to our own internal storage and

finally loading it into the ImageView.

if (requestCode == GALLERY_IMAGE_REQUEST_CODE && resultCode == RESULT_OK){

 Uri uri = data.getData();

 String path = FileUtility.getRealPath(this, uri);

 File sourceFile = new File(path);

 File destinationFile = new File(getFilesDir(), sourceFile.getName());

 try {

 FileUtility.copy(sourceFile, destinationFile);

 } catch (IOException e) {

 e.printStackTrace();

 }

 task.setImage(destinationFile.getName());

 // load the image with picasso

 Picasso.get().load(uri).resize(1500, 1500).centerCrop().into(imageView);

 // show delete button.

 deleteImageButton.setVisibility(View.VISIBLE);

}

The last option is selecting an image from the external storage. This option is almost the same as the

previous one. The only main difference is in the usage of Intent class. The Intent class is created with

a parameter.

Intent intent = new Intent(Intent.ACTION_GET_CONTENT);

 106

Google Map Application Template

The presented application serves as a template for working with a Google Map on the Android

operating system. Many applications contain the map, so it is a very important part of the

development.

Recommended Number of Developers

Individual.

Available Solutions

The are many common map applications. However, in the context of this application, it is not

necessary to mention them. The presented application is for study purposes only.

Requirements

The application allows users to add places in the form of markers to the map. The place can be added

either by clicking on the map, clicking on a button or by moving the device in the real world.

Functional Requirements

a) The application will show a list of places on the map.

b) Each place has latitude, longitude and an id.

c) The user can add a new place by touching the map.

d) The user can add a new place by clicking on a FloatingActionButton.

e) The user can add a new place by moving the device. The place will be added every 10

seconds.

f) The user can update the existing place by dragging a marker.

g) The user can delete an existing place by clicking on the marker.

h) The user can zoom to all places by clicking on the FloatingActionButton.

i) The application will save and restore the map camera position.

Non-functional Requirements

a) Android 6.0 and higher.

b) All places must be available after an application is closed and again opened.

c) MVVM architecture.

d) Use of Navigation Component for navigation.

e) Kotlin programming language.

Application Design

Technology and Architecture Selection

The application is written in MVVM architecture, which is a recommended architecture for Android

application development. The application uses Navigation Component with fragments to show the

user interface. As a database, the Room library is used.

Data Model

The data model consists of a single class Place. It is defined by its latitude and longitude.

 107

Fig. 25 Simple data model definition

User Interfaces

Fig. 26 Interface definition

Solution

The core of the application consists of 3 classes that take care of the operations around the map. The

classes are:

• LocationManager

• MapManager

• MarkerManager

LocationManager

LocationManager class serves as a utility for accessing the device location. It uses the

FusedLocationProviderClient, which allows developers to access location data. The location manager

provides two main ways to access the location. The first is getting the current location. The second is

 108

through location updates. Every X millisecond, the location of the device is provided and passed to

LocationCallback class. The location updates also need to be stopped when the user does not need

the location updates anymore.

class LocationManager(private val activity: FragmentActivity) {

 private var fusedLocationProviderClient: FusedLocationProviderClient

 init {

 fusedLocationProviderClient = FusedLocationProviderClient(activity)

 }

 @SuppressLint("MissingPermission")

 fun getCurrentLocation(listener: OnSuccessListener<Location>) {

 fusedLocationProviderClient.lastLocation

 .addOnSuccessListener(listener)

 }

 @SuppressLint("MissingPermission")

 fun startLocationUpdates(interval: Long, locationCallBack: LocationCallback) {

 val locationRequest = LocationRequest.create()

 locationRequest.priority = LocationRequest.PRIORITY_HIGH_ACCURACY

 locationRequest.fastestInterval = interval

 locationRequest.interval = interval

 fusedLocationProviderClient.requestLocationUpdates(

 locationRequest,

 locationCallBack,

 Looper.getMainLooper()

)

 }

 fun stopLocationUpdates(locationCallBack: LocationCallback) {

 fusedLocationProviderClient.removeLocationUpdates(locationCallBack)

 }

}

The method startLocationUpdates allows us to start location updates in the specified interval.

Method stopLocationUpdates stop them.

MapManager

The second important class is MapManager. This class provides some basic operations with a map

and also allows us to retrieve the last known map state using DataStoreManager class.

class MapManager {

 private val dataStoreManager = DataStoreManager(MyApplication.appContext)

 fun getSavedMapPosition() = dataStoreManager.cameraPosition

 suspend fun saveMapPosition(cameraPosition: CameraPosition){

 dataStoreManager.saveMapState(cameraPosition)

 }

 109

 fun zoomToAllPlaces(googleMap: GoogleMap, places: List<Place>){

 val builder = LatLngBounds.Builder()

 for (place in places){

 builder.include(LatLng(place.latitude!!, place.longitude!!))

 }

 googleMap.animateCamera(

 CameraUpdateFactory.newLatLngBounds(builder.build(), 100))

 }

 fun zoomToLocation(googleMap: GoogleMap, location: LatLng){

 googleMap.animateCamera(CameraUpdateFactory.newLatLngZoom(location, 16.0f))

 }

}

It contains two methods for the manipulation of the camera in the virtual map. The method

zoomToLocation takes a specific location and animates the camera to that location. On the other

hand, the method zoomToAllPlaces takes a list of places as a parameter and zooms the camera so

that all the places are visible in the visible region of the map.

The second part of the class is retrieving and saving the map state. The virtual map camera has its

position. The position is defined by the CameraPosition class. Method getSavedMapPosition returns

the camera position previously saved. Method saveMapPosition save the camera position when the

user leaves the MapFragment to navigate elsewhere.

MarkerManager

The last important class is MarkerManager. The first crucial part of the class is this line:

private val markers: HashMap<Long, Marker> = hashMapOf()

It allows us to save the markers added to the map. The important part about the objects added to

the map is that once we add any object to the map, we cannot retrieve it later. So, the only way to

work with them later is to save their instances. Saving them into the HashMap has many advantages,

e.g. an easy way to retrieve a specific object based on its id.

The method addMarkerToMap is responsible for creating a Marker based on the Place object. Firstly,

the MarkerOptions is created. MarkerOptions class defines the properties of the Marker. Each object

added to the map has its options class, e.g. Polygon has PolygonOptions.

fun addMarkerToMap(context: Activity, map: GoogleMap, place: Place) {

 if (!markers.containsKey(place.id!!)) {

 val options = MarkerOptions()

 options.position(LatLng(place.latitude!!, place.longitude!!))

 options.icon(

 BitmapDescriptorFactory.fromBitmap(createCustomMarkerBitmap(

 context, place.id!!))

)

 options.anchor(0.5f, 0.5f)

 options.draggable(true)

 val marker = map.addMarker(options)

 marker!!.tag = place.id

 markers.put(place.id!!, marker)

 110

 }

}

Once the MarkerOptions is defined, we add the marker to the map using the addMarker method.

Now comes the most important part. We need to be able to distinguish markers from each other to

identify them.

marker!!.tag = place.id

We can save the id of the place to the marker tag.

The last operation is saving the marker to our Hashmap.

markers.put(place.id!!, marker)

One very common operation with a marker is creating the marker from a custom layout. It means

that the marker can look like anything we want. We can accomplish it using the

createCustomMarkerBitmap method. The method inflates our layout and converts it to the Bitmap

needed for marker creation.

private fun createCustomMarkerBitmap(context: Activity, id: Long): Bitmap {

 val markerView = LayoutInflater.from(context).inflate(

 R.layout.marker_layout, null)

 val textView = markerView.findViewById<TextView>(R.id.markerIdTV)

 textView.text = id.toString()

 val displayMetrics = DisplayMetrics()

 context.windowManager.defaultDisplay.getMetrics(displayMetrics)

 markerView.measure(displayMetrics.widthPixels, displayMetrics.heightPixels)

 markerView.layout(0, 0, displayMetrics.widthPixels,

 displayMetrics.heightPixels)

 markerView.buildDrawingCache()

 val bitmap = Bitmap.createBitmap(

 markerView.getMeasuredWidth(),

 markerView.getMeasuredHeight(),

 Bitmap.Config.ARGB_8888

)

 val canvas = Canvas(bitmap)

 markerView.draw(canvas)

 return bitmap

}

The last method of the MarkerManager class is removeMarker. This method removes a specific

marker from the map and also from our map of markers.

fun removeMarker(id: Long){

 if (markers.containsKey(id)) {

 val marker = markers.get(id)

 marker!!.remove()

 markers.remove(id)

 }

}

 111

MapFragment

The most important fragment of the application is MapFragment. The MapFragment contains an

instance of the map, which is loaded at the fragmented startup. It all starts with the initViews

method.

override fun initViews() {

 locationManager = LocationManager(requireActivity())

 mapManager = MapManager()

 markerManager = MarkerManager()

 val mapFragment = childFragmentManager.findFragmentById(R.id.map)

 as SupportMapFragment?

 mapFragment?.getMapAsync(callback)

 binding.currentLocationFAB.setOnClickListener {

 if (PermissionUtility.checkLocationPermission(requireActivity())){

 addPointToCurrentLocation()

 } else {

 PermissionUtility.requestLocationPermission(requireActivity(),

 LOCATION_PERMISSION_REQUEST_CODE)

 }

 }

 binding.locationUpdatesFAB.setOnClickListener {

 if (!viewModel.trackingLocation) {

 if (PermissionUtility.checkLocationPermission(requireActivity())) {

 startLocationUpdates()

 } else {

 PermissionUtility.requestLocationPermission(requireActivity(),

 LOCATION_UPDATES_PERMISSION_REQUEST_CODE)

 }

 } else {

 viewModel.trackingLocation = false

 setLocationUpdatesFAB()

 locationManager.stopLocationUpdates(locationCallback)

 }

 }

 binding.zoomToAllFab.setOnClickListener {

 if (viewModel.places.size > 0){

 mapManager.zoomToAllPlaces(googleMap, viewModel.places)

 }

 }

}

Firstly, the manager classes are initialized. Then the map fragment is initialized. The map fragment is

loaded asynchronously, which means we have to wait for it to load. Next, all the floating action

buttons have their onClick methods set. The fragment contains three buttons:

• currentLocationFAB – places a marker at the current user location.

• locationUpdatesFAB – starts or stops location updates.

• zoomToAllFab – moves the map so that all the places are visible.

 112

The next important part of the method is the OnMapReadyCallback.

@SuppressLint("MissingPermission")

private val callback = OnMapReadyCallback { googleMap ->

 this.googleMap = googleMap

 lifecycleScope.launch {

 mapManager.getSavedMapPosition().collect {

 googleMap.moveCamera(CameraUpdateFactory.newCameraPosition(it))

 }

 }

 googleMap.setOnMarkerDragListener(this)

 googleMap.setOnMarkerClickListener(this)

 googleMap.setOnMapClickListener(this)

 if (PermissionUtility.checkLocationPermission(requireActivity())){

 googleMap.isMyLocationEnabled = true

 }

 viewModel.getAll().observe(viewLifecycleOwner, Observer {

 viewModel.places.clear()

 viewModel.places.addAll(it)

 for (place in it){

 markerManager.addMarkerToMap(requireActivity(), googleMap, place)

 }

 })

}

In the beginning, when the map is loaded, it sets the previous position of the virtual camera. This

way, the user never loses the camera position, and the map is zoomed in at the last position. Next,

the appropriate listeners are set. We are using three of them:

• setOnMarkerDragListener – detects the drag event of the marker.

• setOnMarkerClickListener – detects the touch event on the marker.

• setOnMapClickListener – detect the touch event on the map.

The next part allows the map to use the current user location, and in the end, we load all places from

the database. Please note that we are loading the places after the map is initialized.

In the previous step, we have set three listeners to the map. Let’s look at their methods.

When the user finishes dragging the marker, it saves the new marker position to the database.

override fun onMarkerDragEnd(p0: Marker) {

 lifecycleScope.launch {

 val id = p0.tag as Long

 val place = viewModel.findById(id)

 place.latitude = p0.position.latitude

 place.longitude = p0.position.longitude

 viewModel.update(place)

 }

}

When the user clicks on the marker, it opens an AlertDialog, which ask the user to delete the marker.

If the user agrees to delete it, it removes the marker from the map and deletes it from the database.

 113

override fun onMarkerClick(p0: Marker): Boolean {

 val builder = AlertDialog.Builder(requireContext())

 val id = p0!!.tag as Long

 val dialog = builder.setTitle(getString(R.string.delete_dialog_title))

 .setMessage(getString(R.string.delete_dialog_message))

 .setPositiveButton(getString(R.string.delete), object :

 DialogInterface.OnClickListener{

 override fun onClick(dialog: DialogInterface?, which: Int) {

 dialog?.dismiss()

 lifecycleScope.launch {

 viewModel.delete(id)

 }

 markerManager.removeMarker(id)

 }

 }).setNegativeButton(getString(R.string.cancel), object :

 DialogInterface.OnClickListener{

 override fun onClick(dialog: DialogInterface?, which: Int) {

 dialog?.dismiss()

 }

 }).create()

 dialog.show()

 return true

}

The last onClick method is onMapClick. When the user touches the map, it opens a new fragment to

add a new place to the database.

override fun onMapClick(p0: LatLng) {

 val action = MapFragmentDirections.actionMapToAddPlace(

 p0!!.latitude.toFloat(),p0.longitude.toFloat())

 findNavController().navigate(action)

}

Now, let’s look at other methods in the MapFragment. When the view is destroyed, the map position

is saved so it can be retrieved the next time the MapFragment is active.

override fun onDestroyView() {

 super.onDestroyView()

 lifecycleScope.launch {

 mapManager.saveMapPosition(googleMap.cameraPosition)

 }

}

The method starts location updates and also manages the state of the Floating action button.

private fun startLocationUpdates(){

 viewModel.trackingLocation = true

 setLocationUpdatesFAB()

 locationManager.startLocationUpdates(10000, locationCallback)

}

Opens the AddPlaceFragment so that a user can add a place to his current position.

private fun addPointToCurrentLocation(){

 locationManager.getCurrentLocation(object : OnSuccessListener<Location>{

 114

 override fun onSuccess(p0: Location?) {

 val action = MapFragmentDirections.actionMapToAddPlace(

 p0!!.latitude.toFloat(),p0.longitude.toFloat())

 findNavController().navigate(action)

 }

 })

}

The two last important methods are onPause and onResume. In onPause, when the fragment is going

to the background, the location updates, if they are performed, are stopped. In onResume, if the

location updates were active, they are started again. This way, the application behaves consistently

during location updates.

override fun onPause() {

 super.onPause()

 if (viewModel.trackingLocation) {

 locationManager.stopLocationUpdates(locationCallback)

 }

}

override fun onResume() {

 super.onResume()

 if (viewModel.trackingLocation){

 startLocationUpdates()

 }

}

 115

To-do Application with Maps

The presented example shows a mobile application for Android. The mobile application serves as a

productivity tool and allows users to insert their tasks. Users can associate tasks with dates and

locations. Users can also modify the tasks and delete them. When the user is done with the task, it

can be marked as resolved using the checkbox.

Recommended Number of Developers

Individual.

Available Solutions

There are a lot of similar solutions. To name some:

• Todoist (https://play.google.com/store/apps/details?id=com.todoist)

• Google Tasks

(https://play.google.com/store/apps/details?id=com.google.android.apps.tasks)

• Any.do (https://play.google.com/store/apps/details?id=com.anydo)

However, these solutions are much more advanced and use synchronization with the server.

Requirements

The application will be created in Android Studio. Here is an installation guide for Windows

(https://developer.android.com/studio/install). The application is developed using the Kotlin

programming language. The development requires a basic knowledge of Object-oriented

programming.

Functional Requirements

a) The application will show a list of current tasks of the user in the list.

b) The user can add a new task.

c) The user can modify the existing task.

d) The user can delete the existing task.

e) Each task has a description, date and location.

f) The location is selected using Google Maps Android SDK.

Non-functional Requirements

a) Android 6.0 and higher.

b) All tasks must be available after the application is closed and again opened.

c) MVVM architecture.

d) Use of Navigation Component for navigation.

Application Design

Technology and Architecture Selection

The application is written in MVVM architecture, which is a recommended architecture for Android

application development. The application uses Navigation Component with fragments to show the

user interface. As a database, the Room library is used.

https://play.google.com/store/apps/details?id=com.todoist
https://play.google.com/store/apps/details?id=com.google.android.apps.tasks
https://play.google.com/store/apps/details?id=com.anydo
https://developer.android.com/studio/install

 116

Data Model

The data model for the application is very simple. It contains one class Task. The task has id, text,

date, done indicator and latitude and longitude.

Fig. 27 Data model

User Interfaces

Fig. 28 Interface definition

Solution

Design definition

The first step is the creation of a user interface with navigation. The user interface uses Navigation

Component for the navigation.

The basis of navigation is several elements, which together create smooth navigation. It consists of

three parts:

• element fragment in layout - It serves as a container for other fragments.

• navigation chart - NavGraph. Defines from where the user is navigated and which

fragment will be displayed, for example, after clicking on the button.

• fragments - specific classes of fragments, which we will navigate between.

 117

Fragment

When creating a new project, we can find the fragment element in the content_main.xml file. This

element serves as a container for all fragments displayed in this activity.

<fragment

 android:id="@+id/nav_host_fragment"

 android:name="androidx.navigation.fragment.NavHostFragment"

 android:layout_width="0dp"

 android:layout_height="0dp"

 app:defaultNavHost="true"

 app:layout_constraintBottom_toBottomOf="parent"

 app:layout_constraintLeft_toLeftOf="parent"

 app:layout_constraintRight_toRightOf="parent"

 app:layout_constraintTop_toTopOf="parent"

 app:navGraph="@navigation/nav_graph" />

It has two important features:

• name - the name of the class that serves as a container for fragments.

• navGraph - a link to the navigation graph, i.e. a file with the definition of navigation.

Navigation chart

Another element is the navigation chart. You can find it in the layout/navigation folder. You will

usually find one file (nav_graph.xml) in this folder, but there may be more, especially if you use

multiple navigation sources.

<?xml version="1.0" encoding="utf-8"?>

<navigation xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:app="http://schemas.android.com/apk/res-auto"

 xmlns:tools="http://schemas.android.com/tools"

 android:id="@+id/nav_graph"

 app:startDestination="@id/taskListFragment">

 <fragment

 android:id="@+id/taskListFragment"

 android:name="sk.example.fitped.todo.fitpedtodo.ui.fragments.TaskListFragment"

 android:label="@string/app_name"

 tools:layout="@layout/fragment_task_list">

 <action

 android:id="@+id/action_list_to_add"

 app:destination="@id/addTaskFragment" />

 </fragment>

 <fragment

 android:id="@+id/addTaskFragment"

 android:name="sk.example.fitped.todo.fitpedtodo.ui.fragments.AddTaskFragment"

 tools:layout="@layout/fragment_add_task">

 <action

 android:id="@+id/action_add_to_map"

 app:destination="@id/mapsFragment" />

 </fragment>

 118

 <fragment

 android:id="@+id/mapsFragment"

 android:name="sk.example.fitped.todo.fitpedtodo.ui.fragments.MapsFragment"

 android:label="@string/location"

 tools:layout="@layout/fragment_maps">

 </fragment>

</navigation>

You can see that:

• There are three fragments, TaskListFragment, AddTaskFragment and MapsFragment.

Each fragment has a name, a label, an id, and a layout (which layout to create when

creating the fragment).

• Two fragments have actions. The action represents the action to take, that is, the

navigation that can be performed. TaskListFragment can navigate to AddTaskFragment,

and AddTaskFragment can navigate to MapsFragment.

• Action always contains its id, destination.

Caution: If you want to navigate somewhere where it is not defined, the application will crash.

To avoid casting problems with navigation, it is a good idea to use the Safe Args Gradle plugin. This

will ensure the generation of special classes that will be used for navigation. The generation and

transmission of arguments are automated, and errors can no longer occur.

The first step is to define the attributes directly in the navigation chart. The AddTaskFragment will

look like this:

<fragment

 android:id="@+id/addTaskFragment"

 android:name="sk.example.fitped.todo.fitpedtodo.ui.fragments.AddTaskFragment"

 tools:layout="@layout/fragment_add_task">

 <argument

 android:name="id"

 app:argType="long"

 android:defaultValue="-1L"

 />

 <action

 android:id="@+id/action_add_to_map"

 app:destination="@id/mapsFragment" />

</fragment>

In the code, the navigation to adding will look like this:

val action = TaskListFragmentDirections.actionListToAdd()

findNavController().navigate(action)

and the navigation to update will look like this:

val action = TaskListFragmentDirections.actionListToAdd(

 taskList.get(holder.adapterPosition).id!!)

findNavController().navigate(action)

 119

A class with a Directions suffix was generated. It contains a method representing action, and it

requires the task id as an argument.

Be careful; if the Directions class is not generated, try the Build/Rebuild project. If you want more

arguments, just add them to the navigation chart.

Creation of the database

There are several ways to store data on a mobile device, and a database is one of them. Android uses

the SQLite database. SQLite is basically a traditional SQL database but has a smaller number of

functions. This means that some more advanced operations cannot be performed in it.

In the past, when it was necessary to work with a database, it was accessed directly. This means that

SELECTs were performed directly on the database, data were manually INSERTED, etc.…

Fortunately, these times are gone. The disadvantage was that great emphasis was placed on the

accuracy of the queries. A small mistake in the name was enough, and everything was wrong. It often

took a very long time to find such a mistake.

Room library

The Room library has become a lifeline for developers. The library represents an abstract layer above

the database and allows you to access the database much more efficiently and, above all, more

easily.

The database using the Room library consists of three parts:

• Database class - this class inherits from the RoomDatabase class and contains a list of tables

(database entities). It also contains a version of the database. More on that later.

• Entities - an entity is basically a class that we store in a database, e.g. Person, Car.

• Dao - an interface that contains methods for working with a specific entity.

Entity

An entity represents a single database table. The table has columns that have their own data types.

Let's have the Task class. The task has a name, id and a couple more columns. The id is the primary

key. We mark the entity only with the annotation @Entity. The individual columns are then

annotated using @ColumnInfo. Annotation @ColumnInfo may not even be there. In this case, the

variable name is named differently.

@Entity(tableName = "tasks")

data class Task(@ColumnInfo(name = "text") var text: String) {

 @PrimaryKey(autoGenerate = true)

 @ColumnInfo(name = "id")

 var id: Long? = null

 @ColumnInfo(name = "date")

 var date: Long? = null

 @ColumnInfo(name = "done")

 var done: Boolean = false

 @ColumnInfo(name = "latitude")

 120

 var latitude: Double? = null

 @ColumnInfo(name = "longitude")

 var longitude: Double? = null

 fun hasLocation(): Boolean = latitude != null && longitude != null

}

Dao (Data Access Object)

Dao is a design pattern used to specify a unified interface through which we access the database.

With the help of the Room library, this means that we can easily work with the database. All you

have to do is mark the interface with the @Dao annotation. Note that the interface has no

implementation. The room takes care of that for you.

@Dao

interface TasksDao {

 @Query("SELECT * FROM tasks")

 fun getAll(): LiveData<MutableList<Task>>

 @Query("SELECT * FROM tasks WHERE id = :id")

 suspend fun findById(id : Long): Task

 @Insert

 suspend fun insert(task: Task): Long

 @Update

 suspend fun update(task: Task)

 @Delete

 suspend fun delete(task: Task)

 @Query("UPDATE tasks SET done = :done WHERE id = :id")

 suspend fun markAsDone(id: Long, done: Boolean)

}

Database class

The last part consists of the database class itself. It is responsible for defining the database. The

Singleton design pattern is commonly used to access the database. Thanks to it, we always access

one single instance of the database.

@Database(entities = [Task::class], version = 1, exportSchema = true)

abstract class TasksDatabase : RoomDatabase() {

 abstract fun tasksDao(): TasksDao

 companion object {

 private var INSTANCE: TasksDatabase? = null

 fun getDatabase(context: Context): TasksDatabase {

 if (INSTANCE == null) {

 synchronized(TasksDatabase::class.java) {

 if (INSTANCE == null) {

 INSTANCE = Room.databaseBuilder(

 context.applicationContext,

 TasksDatabase::class.java, "tasks_database"

 121

).build()

 }

 }

 }

 return INSTANCE!!

 }

 }

}

Each database has a version. The version tells you what specific state the database is in this time. If

the model class changes, the migration needs to be performed. More here:

https://developer.android.com/training/data-storage/room/migrating-db-versions.

Because we are using the MVVM architecture, we also need to define the Repository classes, which

serves as a mediator between ViewModel and Dao class.

Fig. 29 MVVM architecture. Source: https://developer.android.com/jetpack/guide

The first part is the repository interface. It defines public methods which will be used to access the

database.

interface ITasksLocalRepository {

 fun getAll(): LiveData<MutableList<Task>>

 suspend fun findById(id : Long): Task

 suspend fun insert(task: Task): Long

 suspend fun update(task: Task)

 suspend fun delete(task: Task)

https://developer.android.com/training/data-storage/room/migrating-db-versions

 122

 suspend fun markAsDone(id: Long, done: Boolean)

}

The second part is the implementation of the interface.

class TasksLocalRepositoryImpl (private val tasksDao: TasksDao) :

ITasksLocalRepository {

 private var getAllLiveData: LiveData<MutableList<Task>> = tasksDao.getAll()

 override fun getAll(): LiveData<MutableList<Task>> {

 return getAllLiveData

 }

 override suspend fun findById(id: Long): Task {

 return tasksDao.findById(id)

 }

 override suspend fun insert(task: Task): Long {

 return tasksDao.insert(task)

 }

 override suspend fun update(task: Task) {

 tasksDao.update(task)

 }

 override suspend fun delete(task: Task) {

 tasksDao.delete(task)

 }

 override suspend fun markAsDone(id: Long, done: Boolean) {

 tasksDao.markAsDone(id, done)

 }

}

The repository class is than used in the ViewModel class.

class TaskListViewModel(private val taskRepository: TasksLocalRepositoryImpl) :

BaseViewModel() {

 fun getAll(): LiveData<MutableList<Task>> {

 return taskRepository.getAll()

 }

 suspend fun markAsDone(id: Long, done: Boolean){

 taskRepository.markAsDone(id, done)

 }

}

This allows us complete access to the database through the repository design pattern.

Implementation of the list of tasks

If we want to work with lists, we basically have two options:

 123

• ListView

• RecyclerView

These are classes in the OS that can display a list of items. ListView is an older implementation, which

we will not deal with. Although it still has its use (e.g. for creating Widgets), it is not as powerful as

RecyclerView.

What do we need for the list?

1. RecyclerView. We define the class directly in the XML layout.

2. One list item. A class contains data.

3. Definition of the appearance of each line (layout)

4. List of elements

5. ViewHolder - class containing links to View (e.g. TextView)

6. Adapter - the class responsible for displaying the list.

7. LayoutManager - class responsible for the way the list is displayed (vertical, horizontal)

8. Put everything together

Class to display the list

Insert the RecyclerView class directly in the place where we want to display the list. E.g. to the

content_main.xml file. The class has an id, thanks to which we identify it in the code. That's enough

for now.

<androidx.recyclerview.widget.RecyclerView

 android:id="@+id/recyclerView"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 android:paddingTop="@dimen/base_indentation"

 android:paddingBottom="@dimen/base_indentation"

 android:clipToPadding="true"/>

One list item

This is a class that maintains data. For example, our Task class.

Defines the appearance of each line

In the res/layout folder we will create a new file row_task_list.xml.

<androidx.constraintlayout.widget.ConstraintLayout

xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:app="http://schemas.android.com/apk/res-auto"

 android:layout_width="match_parent"

 android:layout_height="wrap_content">

 <CheckBox

 android:id="@+id/checkbox"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 app:layout_constraintBottom_toBottomOf="parent"

 app:layout_constraintStart_toStartOf="parent"

 app:layout_constraintTop_toTopOf="parent"

 android:layout_marginStart="@dimen/base_indentation"

 124

 />

 <LinearLayout

 android:id="@+id/taskRowContent"

 android:layout_width="0dp"

 android:layout_height="wrap_content"

 android:orientation="vertical"

 app:layout_constraintBottom_toBottomOf="parent"

 app:layout_constraintEnd_toEndOf="parent"

 app:layout_constraintStart_toEndOf="@id/checkbox"

 app:layout_constraintTop_toTopOf="parent"

 android:layout_marginEnd="@dimen/base_indentation"

 >

 <TextView

 android:id="@+id/taskName"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:ellipsize="end"

 android:maxLines="2"

 android:textColor="@android:color/black"

 android:textAppearance="@style/TextAppearance.AppCompat.Subhead"/>

 <LinearLayout

 android:id="@+id/dateContainer"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:orientation="horizontal"

 android:layout_marginTop="@dimen/half_indentation"

 >

 <ImageView

 android:layout_width="24dp"

 android:layout_height="24dp"

 android:contentDescription="@null"

 android:layout_gravity="center_vertical"

 android:src="@drawable/ic_date"

 app:tint="@android:color/darker_gray" />

 <TextView

 android:id="@+id/taskDate"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_gravity="center_vertical"

 android:layout_marginStart="@dimen/half_indentation"

 android:textAppearance="@style/TextAppearance.AppCompat.Body1"

 android:textColor="@android:color/darker_gray"

 />

 </LinearLayout>

 </LinearLayout>

</androidx.constraintlayout.widget.ConstraintLayout>

List of elements

This is a specific list of elements. Directly as an attribute of our fragment. Note two details:

• There is only one list. We will use it everywhere for this list of items.

 125

• The list is initially initialized. It can only be in the empty/with elements state. Thanks to

that, we won't have to deal with NPE (NullPointerException)

private val taskList: MutableList<Task> = mutableListOf()

private lateinit var layoutManager: LinearLayoutManager

private lateinit var tasksAdapter: TasksAdapter

ViewHolder

ViewHolder is a class serving as a container for our Views, which are defined in the layout line. We

must keep all the Views that we declare for the row in the ViewHolder.

inner class TaskViewHolder(val binding: RowTaskListBinding) :

RecyclerView.ViewHolder(binding.root)

ViewHolder is often declared as part of an adapter. But it can also be in a separate file. Each

ViewHolder inherits from the RecyclerView.ViewHolder class, which needs a View to initialize. This

represents a single line (the entire initialized layout).

Adapter

The adapter is the most important class for the list. It is a class where we declare what should

happen when rendering a list.

inner class TasksAdapter : RecyclerView.Adapter<TasksAdapter.TaskViewHolder>() {

 override fun onCreateViewHolder(parent: ViewGroup,

 viewType: Int): TaskViewHolder {

 return TaskViewHolder(RowTaskListBinding.inflate(

 LayoutInflater.from(parent.context), parent, false))

 }

 override fun onBindViewHolder(holder: TaskViewHolder, position: Int) {

 val task = taskList.get(position)

 holder.binding.taskName.text = task.text

 task.date?.let {

 holder.binding.dateContainer.visibility = View.VISIBLE

 holder.binding.taskDate.text = DateUtils.getDateString(it)

 }?:kotlin.run {

 holder.binding.dateContainer.visibility = View.GONE

 }

 holder.binding.checkbox.isChecked = task.done

 holder.binding.checkbox.setOnCheckedChangeListener(

 object : CompoundButton.OnCheckedChangeListener {

 override fun onCheckedChanged(p0: CompoundButton?, p1: Boolean) {

 lifecycleScope.launch {

 viewModel.markAsDone(taskList.get(holder.adapterPosition).id!!,

 !task.done)

 }

 }

 })

 holder.binding.root.setOnClickListener {

 val action = TaskListFragmentDirections.actionListToAdd(

 taskList.get(holder.adapterPosition).id!!)

 findNavController().navigate(action)

 126

 }

 }

 override fun getItemCount() = taskList.size

 inner class TaskViewHolder(val binding: RowTaskListBinding) :

 RecyclerView.ViewHolder(binding.root)

}

The adapter has three methods:

• onCreateViewHolder - creates an instance of the ViewHolder class. It's called once.

• getItemCount - returns the number of list items. The adapter must always have a finite

number of elements. It is not possible not to know how many elements the list currently

has.

• onBindViewHolder - the most important method. Here we influence what each line will

look like. We display text, set View states. This method is called for each line whenever it

is displayed. Even if we move to the end of the list and return to the beginning.

LayoutManager

The layout manager is responsible for calculating the space that each row will have on the screen.

The basic implementation is the LinearLayoutManager class, which is either a vertical or horizontal

list.

Put everything together

The last step is putting everything together. What we need to do:

• initialize the adapter

• initialize the LayoutManager

• fill the field (we can do it only after initialization, basically at any time).

Let's see what our fragment will look like:

tasksAdapter = TasksAdapter()

layoutManager = LinearLayoutManager(requireContext())

binding.recyclerView.layoutManager = layoutManager

binding.recyclerView.adapter = tasksAdapter

viewModel.getAll().observe(viewLifecycleOwner, object : Observer<MutableList<Task>>

{

 override fun onChanged(t: MutableList<Task>?) {

 t?.let {

 val diffCallback = TaskDiffUtils(taskList, t)

 val diffResult = DiffUtil.calculateDiff(diffCallback)

 diffResult.dispatchUpdatesTo(tasksAdapter)

 taskList.clear()

 taskList.addAll(t)

 }

 }

})

DiffUtils

But what if we need to refresh the list. The best way is using the DiffUtils. In the past, programmers

created this themselves. Google responded by creating the DiffUtils class. This class automatically

detects what has changed and refreshes the list.

 127

inner class TaskDiffUtils(private val oldList: MutableList<Task>,

 private val newList: MutableList<Task>) : DiffUtil.Callback() {

 override fun areItemsTheSame(oldItemPosition: Int, newItemPosition: Int):

 Boolean {

 return oldList[oldItemPosition].id == newList[newItemPosition].id

 }

 override fun areContentsTheSame(oldItemPosition: Int, newItemPosition: Int):

 Boolean {

 return oldList[oldItemPosition].text == newList[newItemPosition].text

 && oldList[oldItemPosition].date == newList[newItemPosition].date

 }

 override fun getOldListSize() = oldList.size

 override fun getNewListSize() = newList.size

}

Using the areContentsTheSame and areItemsTheSame methods, we say whether the lists or the

items at the same position are identical. If so, it is not necessary to refresh them. All you have to do is

identify each line; for example, we will use the name here.

Adding and modifying the task

The fragment for AddTaskFragment will be used to add a new task but also to update existing. The

reason is simple. Most of the code will be the same. The basic declaration of the fragment looks like

this.

class AddTaskFragment : BaseFragment<FragmentAddTaskBinding,

 AddTaskViewModel>(AddTaskViewModel::class) {

 private val arguments: AddTaskFragmentArgs by navArgs()

 override val bindingInflater: (LayoutInflater) -> FragmentAddTaskBinding

 get() = FragmentAddTaskBinding::inflate

 override fun initViews() {

 }

}

However, it also contains a lot of methods. Let’s go through them one by one.

The method initViews is responsible for the initialization of the fragment. In the beginning, the id is

loaded from arguments. If the id is not null, it means we are updating the task. The data are loaded

from the database, and the layout views are filled. If the id is null, we are adding a new task.

The last two parts of the method process the location send from the MapsFragment.

override fun initViews() {

 viewModel.id = if (arguments.id != -1L) arguments.id else null

 viewModel.id?.let {

 setToolbarTitle(getString(R.string.update_task))

 setHasOptionsMenu(true)

 lifecycleScope.launch {

 viewModel.task = viewModel.findById(it)

 }.invokeOnCompletion {

 fillLayout()

 }

 128

 }?: kotlin.run {

 setToolbarTitle(getString(R.string.add_task))

 fillLayout()

 }

 setInteractionListeners()

 binding.saveButton.setOnClickListener {

 saveTask()

 }

 findNavController().currentBackStackEntry?.savedStateHandle

 ?.getLiveData<Double>(LiveDataConstants.LATITUDE)?.observe(

 viewLifecycleOwner, androidx.lifecycle.Observer {

 viewModel.task.latitude = it

 setLocation()

 findNavController().currentBackStackEntry?.savedStateHandle?.

 remove<Double>(LiveDataConstants.LATITUDE)

 })

 findNavController().currentBackStackEntry?.savedStateHandle

 ?.getLiveData<Double>(LiveDataConstants.LONGITUDE)?.observe(

 viewLifecycleOwner, androidx.lifecycle.Observer {

 viewModel.task.longitude = it

 setLocation()

 findNavController().currentBackStackEntry?.savedStateHandle?.

 remove<Double>(LiveDataConstants.LONGITUDE)

 })

}

Method fillLayout is responsible for setting all values to the Views. We set the text, the date and the

location.

private fun fillLayout(){

 viewModel.task.text.let {

 binding.taskName.text = it

 }

 setDate()

 setLocation()

}

The next part is setting interaction listeners. It means managing the buttons and their clicks.

private fun setInteractionListeners(){

 binding.dateInfoView.setOnClickListener(object : View.OnClickListener{

 override fun onClick(p0: View?) {

 openDatePicker()

 }

 })

 binding.dateInfoView.setOnClearButtonListener(object : View.OnClickListener{

 override fun onClick(p0: View?) {

 binding.dateInfoView.setValue(getString(R.string.not_set))

 binding.dateInfoView.hideClearButton()

 viewModel.task.date = null

 }

 })

 binding.mapInfoView.setOnClearButtonListener(object : View.OnClickListener{

 129

 override fun onClick(v: View?) {

 viewModel.task.latitude = null

 viewModel.task.longitude = null

 setLocation()

 }

 })

 binding.mapInfoView.setOnClickListener({

 var direction: NavDirections? = null

 if (viewModel.task.hasLocation()) {

 direction = AddTaskFragmentDirections.actionAddToMap(

 viewModel.task.latitude!!.toFloat(),

 viewModel.task.longitude!!.toFloat())

 } else {

 direction = AddTaskFragmentDirections.actionAddToMap()

 }

 findNavController().navigate(direction)

 })

}

A very important part is saving the task to the database. We are either inserting a new task or

updating the existing one. First, the input text is checked. If it is not empty, the saving can proceed.

private fun saveTask() {

 val text = binding.taskName.text

 if (!text.isEmpty()) {

 lifecycleScope.launch {

 viewModel.task.text = text

 viewModel.id?.let {

 viewModel.update(viewModel.task)

 }?: kotlin.run {

 viewModel.insert(viewModel.task)

 }

 }.invokeOnCompletion {

 finishCurrentFragment()

 }

 } else {

 binding.taskName.setError(getString(R.string.fill_in_the_text))

 }

}

The last important method is openDatePicker. This method allows users to choose the date. Firstly,

the currently selected date is sent to the dialogue using the Calendar class. Then, the dialogue is

opened, and the result date is saved to the ViewModel.

private fun openDatePicker(){

 val calendar = Calendar.getInstance()

 viewModel.task.date?.let {

 calendar.timeInMillis = it

 }

 val y = calendar.get(Calendar.YEAR)

 val m = calendar.get(Calendar.MONTH)

 val d = calendar.get(Calendar.DAY_OF_MONTH)

 val datePickerDialog = DatePickerDialog(requireContext(),

 130

 object : DatePickerDialog.OnDateSetListener {

 override fun onDateSet(view: DatePicker?, year: Int,

 monthOfYear: Int, dayOfMonth: Int) {

 viewModel.task.date = DateUtils.getUnixTime(year, monthOfYear, dayOfMonth)

 setDate()

 }

 }, y, m, d)

 datePickerDialog.show()

}

Custom Views for the adding of tasks

The best way to optimize the user interface is to create your own View. It means making a child of

the View class (or a child of a child of the View class).

Basically, we make our own element for Layouts.

Creating your own View is the key to creating an effective UI. Imagine that you have an element that

will be repeated over and over in many places in the application. It is not effective to copy the same

element to different places. Much better is to encapsulate it inside the view.

When creating our own View, we need three things:

• Layout - layout definition. What the element will look like.

• Class - code of our View.

• Attribute definitions - elements in layouts have attributes. We can also add our own

elements.

Layout

The layout is simple. This is a separate layout file.

<?xml version="1.0" encoding="utf-8"?>

<androidx.constraintlayout.widget.ConstraintLayout

xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:app="http://schemas.android.com/apk/res-auto"

 android:layout_width="match_parent"

 android:layout_height="wrap_content"

 >

 <com.google.android.material.textfield.TextInputLayout

 android:id="@+id/textInputLayout"

 android:layout_width="match_parent"

 android:layout_height="wrap_content"

 app:layout_constraintLeft_toLeftOf="parent"

 app:layout_constraintTop_toTopOf="parent"

 app:errorEnabled="true"

 >

 <com.google.android.material.textfield.TextInputEditText

 android:id="@+id/textInputEditText"

 android:layout_width="match_parent"

 android:layout_height="wrap_content"

 android:maxLength="500"

 android:inputType="text"

 android:maxLines="1"

 android:background="@android:color/transparent"

 131

 />

 </com.google.android.material.textfield.TextInputLayout>

</androidx.constraintlayout.widget.ConstraintLayout>

Definition of attributes

The definition of attributes is another part of creating a custom view. In the values folder, we will

create a new file values_text_input.xml. We define attributes in it:

<?xml version="1.0" encoding="utf-8"?>

<resources>

 <declare-styleable name="TextInputView">

 <attr name="hint" format="string"/>

 </declare-styleable>

</resources>

The attribute always has a name and a format. The format, in this case, is a string, but it can also be

colour, reference and more. The name is the name of the class.

Class

Creating a class is just about creating a new class file. Our View inherits in FrameLayout.

class TextInputView @JvmOverloads constructor(

 context: Context, attrs: AttributeSet? = null, defStyleAttr: Int = 0

) : FrameLayout(context, attrs, defStyleAttr) {

 init {

 init(context, attrs, defStyleAttr)

 }

 private lateinit var binding: ViewTextInputBinding

 internal var text: String

 get() = binding.textInputEditText.text.toString()

 set(text) {

 binding.textInputEditText.setText(text)

 }

 private fun init(context: Context, attrs: AttributeSet?, defStyle: Int?) {

 binding = ViewTextInputBinding.inflate(LayoutInflater.from(context), this,

 true)

 if (attrs != null && defStyle != null) {

 loadAttributes(attrs, defStyle)

 }

 }

 private fun loadAttributes(attrs: AttributeSet, defStyle: Int?){

 val a = context.obtainStyledAttributes(

 attrs,

 R.styleable.TextInputView, 0, 0

)

 val hint = a.getString(R.styleable.TextInputView_hint)

 binding.textInputLayout.setHint(hint)

 a.recycle()

 }

 132

 fun setError(error: String?){

 binding.textInputLayout.error = error

 }

}

Notice a few things in the code:

• Constructors - View is initialized via three constructors. These are created automatically

using @JvmOverloads.

• We use ViewBinding.

• In the loadAttributes() method, we load the attributes. Attributes can be of different

types by definition.

• After finishing the work with attributes, we have to call the recycle() method.

Use in the application

When we finish our own View, we can use it in the layout file.

<sk.example.fitped.todo.fitpedtodo.views.TextInputView

 android:id="@+id/taskName"

 android:layout_width="match_parent"

 android:layout_height="wrap_content"

 android:layout_marginStart="@dimen/base_indentation"

 android:layout_marginEnd="@dimen/base_indentation"

 android:layout_marginTop="@dimen/base_indentation"

 app:hint="Text"/>

Creating your own View has one undeniable advantage. You are preparing for the future. In many

cases, you know exactly what the UI will look like, but often not. It can happen that you have a text

box in many places in the application, and suddenly both the appearance and its logic change. Thanks

to its own View, making changes is very simple and fast.

BaseClasses

One of the principles of development is code reusability. If we keep doing the same operation over

and over again, it's easier to put them in a separate class, classes and then just use those.

On Android, you will come across an approach that advises you to define the base classes of common

objects, so-called Base Classes. There are usually some operations that are repeating. In our

application, they are:

• Fragment - fragment initialization, ViewBinding initialization, ViewModel initialization

• Activity - initialization of ViewBinding, initialization of the navigation component

• ViewHolder - initialization of ViewBinding

• ViewModel - maintaining the state of activity after rotating the device

• View - initialization of own View

The point of these classes is simple. If something happens again, let's put it in them. Imagine that you

always need to set a toolbar title in a snippet. Therefore, you will make a base fragment, others will

inherit from it, and each fragment will be able to control the toolbar.

There are many forms of these classes. We will look at one specific, namely a fragment.

 133

abstract class BaseFragment<B : ViewBinding,

 VM : ViewModel>(viewModelClass: KClass<VM>) : Fragment(){

 protected abstract val bindingInflater: (LayoutInflater) -> B

 private var baseBinding: ViewBinding? = null

 protected val binding: B

 get() = baseBinding as B

 val viewModel: VM by lazy { getViewModel(null, viewModelClass) }

 abstract fun initViews()

 override fun onCreateView(inflater: LayoutInflater, container: ViewGroup?,

 savedInstanceState: Bundle?): View? {

 baseBinding = bindingInflater(inflater)

 initViews()

 return baseBinding!!.root

 }

 override fun onDestroy() {

 super.onDestroy()

 baseBinding = null

 }

 fun finishCurrentFragment(){

 requireActivity().runOnUiThread {

 hideKeyboard()

 Navigation.findNavController(binding.root).popBackStack()

 }

 }

 fun hideKeyboard() {

 activity?.let {

 val inputManager: InputMethodManager = it.getSystemService(

 Context.INPUT_METHOD_SERVICE) as InputMethodManager

 val currentFocusedView: View? = requireActivity().currentFocus

 if (currentFocusedView != null) {

 inputManager.hideSoftInputFromWindow(

 currentFocusedView.getWindowToken(),

 InputMethodManager.HIDE_NOT_ALWAYS

)

 }

 }

 }

 fun setToolbarTitle(title: String){

 (requireActivity() as AppCompatActivity?)!!.supportActionBar!!.

 title = title

 }

}

Attention: This class uses the concept of Dependency injection in the form of the getViewModel

method.

You always need ViewBinding and ViewModel in your own fragments. BaseFragment is a generic

class to which we can send any ViewModel and any ViewBinding, and it always initializes them. It also

has an abstract initViews method that will be called when onCreateView() is called.

 134

And last but not least, it will take care of the correct removal of the ViewBinding.

Use in code

When we create a new fragment, we just inherit from the BaseFragment. The huge advantage of

BaseFragment lies in its reusability, code clarity and, last but not least, extensibility.

class AddTaskFragment : BaseFragment<FragmentAddTaskBinding,

 AddTaskViewModel>(AddTaskViewModel::class) {

 override val bindingInflater: (LayoutInflater) -> FragmentAddTaskBinding

 get() = FragmentAddTaskBinding::inflate

 override fun initViews() {

 }

}

Dependency injection

Dependency injection is a design pattern that allows us to instantiate a class outside of where we

need it and then inject it into that place.

Dependency injection has a huge number of benefits. Thanks to it:

• the code becomes cleaner,

• the code becomes reusable,

• is easy to refactor and make changes,

• and is easier to test.

Dependency injection extremely simplifies the entire code. We no longer have to create new

instances of various other classes in each class, but we simply pass them where the instance is

needed. This beautifully solves various dependency issues.

There are many frameworks for DI. We will use Koin.

Koin

The Koin framework works with modules. Let's look at the basic use. According to the MVVM

architecture, we have ViewModels. ViewModels contain Repositories and are in fragments.

Repositories contain Dao objects. To get to Dao, we need a database object. As can be seen,

We will create four modules:

• DatabaseModule - a module that returns an instance of the database.

• DaoModule - a module that returns an instance of Dao classes.

• RepositoryModule - module responsible for returning Repository classes.

• ViewModelModule - a module that returns instances of ViewModels.

For Koin to work, we need to add it in the gradle file:

implementation "org.koin:koin-android:2.2.2"

implementation "org.koin:koin-android-scope:2.2.2"

implementation "org.koin:koin-android-viewmodel:2.2.2"

implementation "org.koin:koin-android-ext:2.2.2"

 135

Subsequently, we can create modules. We always create an ordinary file without any class

declaration.

DatabaseModule

val databaseModule = module {

 fun provideDatabase(): TasksDatabase =

 TasksDatabase.getDatabase(TaskApplication.appContext)

 single {

 provideDatabase()

 }

}

In the database module, we create a method that returns an instance of the database. In order to

inject it somewhere, we define a scope single in which the method we created is called. And now, if

we want an instance of the database somewhere, we can inject it.

For DI to work, we need to define it in our Application class:

class TaskApplication : Application() {

 override fun onCreate() {

 super.onCreate()

 startKoin {

 appContext = applicationContext!!

 androidLogger(Level.ERROR)

 androidContext(appContext)

 modules(

 databaseModule,

 viewModelModule,

 daoModule,

 repositoryModule

)

 }

 }

 companion object {

 @SuppressLint("StaticFieldLeak")

 lateinit var appContext: Context

 private set

 }

}

DaoModule

Dao module works with a database. We have a method for obtaining the Dao class. However, we

need a database instance in the constructor. The get() method solves this for us. This is really

enough, and the entire database instance is sent to the provideTasksDao() method.

val daoModule = module {

 fun provideTasksDao(database: TasksDatabase): TasksDao = database.tasksDao()

 single {

 provideTasksDao(get())

 }

}

 136

RepositoryModule

Another module is the Repository. It is responsible for instantiating the repository class.

val repositoryModule = module {

 fun provideLocalTaskRepository(dao: TasksDao): TasksLocalRepositoryImpl {

 return TasksLocalRepositoryImpl(dao)

 }

 single { provideLocalTaskRepository(get()) }

}

The repository needs Dao. Dao needs a database. Thanks to DI, everything is created automatically.

As you can see, Dao is sent directly to the repository:

class TasksLocalRepositoryImpl(private val tasksDao: TasksDao) :

 ITasksLocalRepository {}

ViewModelModule

val viewModelModule = module {

 viewModel { TaskListViewModel(get()) }

 viewModel { AddTaskViewModel(get()) }

 viewModel { MapsViewModel() }

}

The last module is ViewModelModule. It is responsible for creating ViewModels. ViewModel needs a

Repository, so it has it in the constructor:

class AddTaskViewModel(val taskRepository: TasksLocalRepositoryImpl) :

 BaseViewModel()

Options menu

There are a lot of menus in Android OS. The most common use is for the buttons on the right side of

the Toolbar, or for bottom navigation (BottomNavigationView) or for the so-called hamburger menu.

Let's take a look at the menu on the Toolbar. The menu can be either part of the activity or part of a

fragment.

Menu in fragment with NavigationComponent

If you use NavigationComponent in your project, using the menu is the same as for the activity. The

menu as part of the fragment consists of three parts. The first is an XML file defining menu items. The

second is menu initialization, and the last is the method for detecting clicks on a menu item.

The XML file can be found in the res/menu folder.

For each menu item, we can define several properties:

• id - identifier.

• title - item text. It will be displayed if no icon is specified.

 137

• showAsAction - how the menu will be displayed. Whether always, or whenever there is a

space, or never, and thus hides under the familiar three dots in the right corner of the

Toolbar.

• icon - menu item icon.

The next part is the use of the menu in the code, its initialization:

override fun onCreateOptionsMenu(menu: Menu, inflater: MenuInflater) {

 requireActivity().menuInflater.inflate(R.menu.menu_location, menu)

 super.onCreateOptionsMenu(menu, inflater)

}

The last part is then to verify if the item was clicked.

override fun onOptionsItemSelected(item: MenuItem): Boolean {

 return when (item.itemId) {

 R.id.action_done -> {

 // do the magic

 return true

 }

 else -> super.onOptionsItemSelected(item)

 }

}

For the menu to work in a fragment, it is important to call one method in the onCreateView method:

setHasOptionsMenu(true)

If we only have a static menu that does not change, we only need the methods we have already

used. However, if we need to change the menu dynamically based on how the fragment behaves

(e.g. hide some items), we cannot do it in the onCreateOptionsMenu method, but we must do it in

the onPrepareOptionsMenu method. Only after calling the onPrepareOptionsMenu method do we

know that the menu is initialized and can edit it.

Working with map

If you want to display something on the map in Android OS, there is no better choice than Google

Maps. Other SDKs usually build on a standard Google map, and the result is not always usable.

However, I would also mention alternatives:

• Mapbox

• ArcGIS

Let's take a look at how to add Google Maps to our application. The easiest way is to add it via the

wizard. We use the NavigationComponent, so let's create a new fragment with a map. However, the

new map activity will work the same way.

When you create a new map snippet, one additional file is created at the same time -

google_maps_api.xml in the values folder.

<resources>

 <string name="google_maps_key" templateMergeStrategy="preserve"

 translatable="false">YOUR KEY HERE</string>

</resources>

For a map to work, three things are important:

 138

• SHA-1 - Certificate for your instance of Android Studio.

• Package name - your package.

• YOUR_CODE_HERE - here we insert the generated API key from the console (see below).

Getting the key from the console

You'll find everything you need on the Google API Administration page. Two operations are required

to get the map up and running. First, you need to create a key, and then you need to activate Maps

SDK for Android.

In the APIs & Services - Credentials section, click on CREATE CREDENTIALS and then select the API

Key here.

Fig. 30 API key initialisation

A new key will be created for you then you need to click on RESTRICT KEY. Now select Android apps

and enter your package and SHA-1 in the Restrict usage to your Android apps field.

Fig. 31 Restrict key

Click on DONE and SAVE. Then paste the generated key into the google_maps_api.xml file.

Then, in the Library section, find Maps SDK for Android and click on ENABLE.

 139

Fig. 32 Final step

Map in fragment

The generated fragment is only the basic fragment. But remember that we use our fragments as

descendants of the BaseFragment. Therefore, we need to create a ViewModel for the map and make

MapsFragment a child of the BaseFragment class.

class MapsFragment: BaseFragment <FragmentMapsBinding, MapsViewModel>

 (MapsViewModel :: class), GoogleMap.OnMarkerDragListener,

 GoogleMap.OnMarkerClickListener

{

 private val arguments: MapsFragmentArgs by navArgs ()

 private lateinit var map: GoogleMap

 private val callback = OnMapReadyCallback {googleMap ->

 map = googleMap

 }

 override fun onViewCreated (view: View, savedInstanceState: Bundle?) {

 super.onViewCreated (view, savedInstanceState)

 val mapFragment = childFragmentManager.findFragmentById (R.id.map)

 as SupportMapFragment?

 mapFragment? .getMapAsync (callback)

 }

 override val bindingInflater: (LayoutInflater) -> FragmentMapsBinding

 get () = FragmentMapsBinding :: inflate

 override fun initViews () {

 }

}

The map is loaded asynchronously using the getMapAsync method. Once the map is loaded, a

callback, the onMapReady method, is called.

Attention: You cannot add objects to it until the map is loaded.

 140

It is now possible to add more operations. In general, you can do the following things with a map:

• add objects,

• change the map type,

• move with a virtual camera,

• add an object to the map.

The easiest way is to add a Marker, i.e., a point from the map. Let's look at a method to add a marker

to the map.

private fun loadMapData(){

 val position: LatLng

 if (viewModel.latitude != null && viewModel.longitude != null){

 position = LatLng(viewModel.latitude!!.toDouble(),

 viewModel.longitude!!.toDouble())

 } else {

 position = LatLng(DEFAULT_LATITUDE, DEFAULT_LONGITUDE)

 }

 val markerOptions: MarkerOptions = MarkerOptions().position(position).

 draggable(true).title("Experiment")

 var marker: Marker = map.addMarker(markerOptions)

 map.moveCamera(CameraUpdateFactory.newLatLng(position))

}

To create a Marker, you need to create a MarkerOptions class. It controls where the point is, but also

how it looks. Subsequently, the Marker is created and returned by the method.

Caution: save the instance returned by the addMarker method. It can be useful for later

processing.

Change the map background

Changing the background map is easy. Just call the method:

map.setMapType (GoogleMap.MAP_TYPE_HYBRID);

The variants are:

public static final int MAP_TYPE_NONE = 0;

public static final int MAP_TYPE_NORMAL = 1;

public static final int MAP_TYPE_SATELLITE = 2;

public static final int MAP_TYPE_TERRAIN = 3;

 141

Map Box Application Template

The presented application serves as a template for working with a MapBox on the Android operating

system using Java language.

Recommended Number of Developers

Individual.

Available Solutions

The are many common map applications; MapBox is a suitable component for many applications

with a better price-performance ratio than Google Maps. The application presents a simple

implementation of this technology and its features.

Requirements

Functional Requirements

a) The application will show a list of typical map functionalities.

b) The user can run different features from starting the activity.

c) The user can use all implemented user features in the MapBox environment.

d) The application presents the Geo-json approach.

Non-functional Requirements

a) Android 5.0 and higher.

b) Java programming language.

Application Design

Technology and Architecture Selection

Google Maps is just one of the existing services for providing map content. It may be the majority,

but the charging policy in recent years has forced programmers to look for alternative solutions

based on the different rules.

The offer of services for map reading and processing in March 2020 was as follow:

 142

Fig. 33 Policy of Map component developers

In addition to choosing from existing operators, there are also options for hosting your own

"streaming" servers with open-source map sources.

Solution

Connection

As an alternative service, we chose MapBox for the purpose of creating mobile applications. Reasons

to choose this service were:

• one of the cheapest solutions for small projects

• support for satellite and map display

• Android, iOS, web, Unity support

• popularity

• easy integration into the application

• evolving platform

• well-prepared tutorial + examples

The principle of using all external services is very similar. As with Google Maps, we also need to get

an API key first with MapBox.

We can start by https://account.mapbox.com/auth/signup/ and gradually go through the individual

steps:

https://account.mapbox.com/auth/signup/

 143

Fig. 34 Welcome screen to create a token

In the beginning, we create a project and define the required functionality with the ability to limit the

use of the token to a single URL.

Fig. 35 Definition of functionalities

The created token can then be copied to applications.

 144

Fig. 36 List of created tokens

After obtaining a token for use in Android, three application steps/modifications are required. You

can also find the current description at https://docs.mapbox.com/android/maps/overview/. In the

text, we use images from this description page to show that the process is really very simple.

The first step is to connect the project to an address with MapBox. We connect by inserting a pair of

dependencies into the gradle files. We can see the placement of the text in the sections in the

picture.

Fig. 37 Writing dependencies to build files (settings)

We will add the permissions to access the location to the manifest:

https://docs.mapbox.com/android/maps/overview/

 145

Fig. 38 Adding permissions to the manifest

Let's take the last step of the procedure as a guide only - there are different ways to use MapBox,

and we will show other procedures as well.

Fig. 39 Offer ways to use MapBox in a project on the provider's website

 146

Activation

Task:
Create an application that allows you to run Mapbox in
independent activity.

The map display element is the MapView element, which we can place in the activity. We set the size

for the entire width and height of the activity in which it is placed and named it so that it can be

identified in the java code.

<?xml version="1.0" encoding="utf-8"?>

<androidx.constraintlayout.widget.ConstraintLayout

 xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:tools="http://schemas.android.com/tools"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 tools:context=".MapActivity1">

 <com.mapbox.mapboxsdk.maps.MapView

 android:id="@+id/mapView"

 android:layout_width="match_parent"

 android:layout_height="match_parent" />

</androidx.constraintlayout.widget.ConstraintLayout>

We operate on a very similar principle to Google Maps. In this case, we will add the callback directly

to the onCreate() method, and we will not define it as a separate method - we do not need to use the

interface defined in the activity.

public class MapActivity1 extends AppCompatActivity {

 // component for working with the map

 private MapView mapView;

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 // before loading xml, an instance is created to work with the map –

 // the API token / key is small

 Mapbox.getInstance(this, "pk.eyJ1IjoiaxxxxxxxxMu-1vUHckPANv5ccCq8Lw");

 147

 // loading design

 setContentView(R.layout.activity_map1);

 mapView = findViewById(R.id.mapView);

 // call the event when creating the map

 mapView.onCreate(savedInstanceState);

 // similar to an async task that loads a map

 // and calls onMapReady when finished

 mapView.getMapAsync(new OnMapReadyCallback() {

 @Override

 public void onMapReady(@NonNull MapboxMap mapboxMap){

 mapboxMap.setStyle(Style.MAPBOX_STREETS,

 new Style.OnStyleLoaded() {

 @Override

 // similar to an async task, for loading a style,

 // executes the body code when finished

 public void onStyleLoaded(@NonNull Style style){

 // The map is ready, the map layout is loaded

 }

 });

 }

 });

 }

}

The first application is ready and works in the

emulator without the need to install system images

with Google Play (which Google Maps requires).

Position on the map

Task:

Present different ways to display data on a map.

Set to the Constantine the Philosopher University

in Nitra (CPU or UKF) position.

Once again, we will create the main activity, from

which we will run individual tasks, which will be

added as part of the presentation of MapBox

functionalities.

 148

Fig. 40 Example of an introduction activity

For the first task, we will present three different appearance styles. We send these styles selected

using radiobuttons to the imaging activity. Based on the style, the type of map data is selected and

send to the user view in the application.

Clicking on the MAP button starts the process of preparing the content, which is then downloaded to

the map activity, and the content is adapted accordingly.

public void onMapClick2(View view) {

 Intent i = new Intent(this, MapActivity2.class);

 String mapType = Style.MAPBOX_STREETS;

 RadioButton rb = (RadioButton) findViewById(R.id.radioButton2);

 if (rb.isChecked()) mapType = Style.OUTDOORS;

 rb = (RadioButton) findViewById(R.id.radioButton3);

 if (rb.isChecked()) mapType = Style.SATELLITE;

 i.putExtra("style", mapType);

 startActivity(i);

}

Style is a class that defines individual styles as constants of type String. We will send the selected

style and, therefore, only read it in the map activity. In this case, we will use dynamic content

creation of the activity - similarly to the creation of Canvas => xml activity in principle we do not even

need.

public class MapActivity2 extends AppCompatActivity {

 private MapView mapView;

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 Mapbox.getInstance(this, "pk.xxx");

 // we set the camera to our position and zoom in

 // we only prepare the settings

 MapboxMapOptions options = MapboxMapOptions.createFromAttributes(

 this, null) // používame builder a „.“

 .camera(new CameraPosition.Builder()

 .target(new LatLng(48.308526, 18.091698))

 149

 .zoom(16)

 .build());

 // create a mapview based on the settings

 mapView = new MapView(this, options);

 mapView.onCreate(savedInstanceState);

 // we load the contents of the map with an asynchronous task

 mapView.getMapAsync(new OnMapReadyCallback() {

 @Override

 public void onMapReady(@NonNull MapboxMap mapboxMap) {

 Intent i = getIntent();

 String mapStyle = i.getStringExtra("style");

 mapboxMap.setStyle(mapStyle, new Style.OnStyleLoaded() {

 @Override

 public void onStyleLoaded(@NonNull Style style) {

 // we can perform other operations after loading

 }

 });

 }

 });

 // we will set the map as the content of the created activity

 setContentView(mapView);

 }

}

We will send the look (style) of the map to the activity via intent. Our goal is to set and zoom the map

to a specific position. We can make this setting before loading the map and apply it when loading -

the result will be a more efficient (= faster) loading of the required content.

Again, we have asynchronous methods in which we respond to:

• the situation when the map is ready (onMapReady)

• the situation when a style is recorded / ready (onStyleLoaded)

Markers

Task:
Use markers on the map to identify important

places.

The simplicity of using markers in MapBox has

ended in previous versions of Android.

Currently, there is a group of Managers to

provide displaying various objects and

graphics in different layers:

• positive: we can do anything on individual layers (custom icons, custom graphics),

• negative: the code is a bit longer and sometimes a little bit difficult to understand.

In order to use a more modern approach, it is necessary to add a library with annotations to the

dependencies in build.gradle(Module.app).

 150

...

dependencies {

 implementation fileTree(dir: 'libs', include: ['*.jar'])

 implementation 'com.mapbox.mapboxsdk:mapbox-android-sdk:9.1.0'

 implementation 'com.mapbox.mapboxsdk:mapbox-android-plugin-annotation-v9:0.8.0'

 implementation 'androidx.appcompat:appcompat:1.1.0'

 implementation 'androidx.constraintlayout:constraintlayout:1.1.3'

 testImplementation 'junit:junit:4.12'

 androidTestImplementation 'androidx.test.ext:junit:1.1.1'

 androidTestImplementation 'androidx.test.espresso:espresso-core:3.2.0'

}

In this case, we will not use dynamic creation of the layout in the code but in the xml file. We insert

the view into the xml to display the map (com.mapbox.mapboxsdk.maps.MapView), and we will

access it from the activity - we can also set the position and zoom of the map.

<?xml version="1.0" encoding="utf-8"?>

<androidx.constraintlayout.widget.ConstraintLayout

xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:app="http://schemas.android.com/apk/res-auto"

 xmlns:mapbox="http://schemas.android.com/apk/res-auto"

 xmlns:tools="http://schemas.android.com/tools"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 tools:context=".MapActivity3">

 <com.mapbox.mapboxsdk.maps.MapView

 android:id="@+id/mapView"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 mapbox:mapbox_cameraTargetLat="48.308526"

 mapbox:mapbox_cameraTargetLng="18.091698"

 mapbox:mapbox_cameraZoom="14"

 />

</androidx.constraintlayout.widget.ConstraintLayout>

If we use in the component settings belonging to MapBox - not android: but mapbox: prefix, it is

necessary to specify the definition of the MapBox in the layout settings (line 5). We will also show an

alternative approach to writing java code:

• we will not insert the method for callback into onCreate(); we will create it as a separate one

somewhere in the activity code,

• an interface needs to be implemented on the activity OnMapReadyCallback.

public class MapActivity3 extends AppCompatActivity implements OnMapReadyCallback {

 private MapView mapView;

 // private MapboxMap mapboxMap;

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 Mapbox.getInstance(this, "pk.xxx");

 151

 setContentView(R.layout.activity_map3);

 // Initialisation of MapView

 mapView = findViewById(R.id.mapView);

 mapView.onCreate(savedInstanceState);

 mapView.getMapAsync(this);

 }

 @Override

 public void onMapReady(@NonNull final MapboxMap mapboxMap) {

 ...

 }

}

After preparing the map, we can:

• set the style and after setting the style

• …use an outdated/deprecated method addMarker()

• to display a marker with a CPU (UKF) caption at the CPU position

@Override

public void onMapReady(@NonNull final MapboxMap mapboxMap) {

 mapboxMap.setStyle(Style.MAPBOX_STREETS, new Style.OnStyleLoaded() {

 @Override

 public void onStyleLoaded(@NonNull Style style) {

 mapboxMap.addMarker(new MarkerOptions()

 .position(new LatLng(48.308526, 18.091698))

 .title("CPU"));

 }

 }

}

Or in a new way: we will use SymbolManager to create icons on the map. When created, the icon

will be placed on the map to the position that we entered when creating the manager.

public void onMapReady(@NonNull final MapboxMap mapboxMap) {

 mapboxMap.setStyle(Style.MAPBOX_STREETS, new Style.OnStyleLoaded() {

 @Override

 public void onStyleLoaded(@NonNull Style style) {

 SymbolManager symbolManager = new SymbolManager(

 mapView, mapboxMap, style);

 // we set the icons so that they do not interfere with each other

 symbolManager.setIconAllowOverlap(true);

 symbolManager.setIconIgnorePlacement(true);

 // we will add the fire station icon to the position with the zoom

 Symbol symbol = symbolManager.create(new SymbolOptions()

 .withLatLng(new LatLng(48.308520,

18.093))

 .withIconImage("fire-station-15")

 .withIconSize(2.0f));

 152

 }

 });

}

Area boundary

Task:
Define the boundary of the area (e.g. with a rectangle).

The map view in the activity will remain set and zoomed to our central point.

<?xml version="1.0" encoding="utf-8"?>

<androidx.constraintlayout.widget.ConstraintLayout

xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:app="http://schemas.android.com/apk/res-auto"

 xmlns:tools="http://schemas.android.com/tools"

 xmlns:mapbox="http://schemas.android.com/apk/res-auto"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 tools:context=".MapActivity4">

 <com.mapbox.mapboxsdk.maps.MapView

 android:id="@+id/mapView"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 mapbox:mapbox_cameraTargetLat="48.308526"

 mapbox:mapbox_cameraTargetLng="18.091698"

 mapbox:mapbox_cameraZoom="14"

 />

</androidx.constraintlayout.widget.ConstraintLayout>

The initialization of the activity is the same as in the previous case, and we only add a list of boundary

points.

public class MapActivity4 extends AppCompatActivity implements OnMapReadyCallback

{

 private MapView mapView;

 List<Point> myArea;

 153

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 Mapbox.getInstance(this, "pk.xxx");

 setContentView(R.layout.activity_map4);

 naplnBody();

 // Initialisation of mapView

 mapView = findViewById(R.id.mapView);

 mapView.onCreate(savedInstanceState);

 mapView.getMapAsync(this);

 }

 private void naplnBody() {

 // create list

 myArea = new ArrayList();

 myArea.add(Point.fromLngLat(18.088, 48.307));

 myArea.add(Point.fromLngLat(18.088, 48.3095));

 myArea.add(Point.fromLngLat(18.095, 48.3095));

 myArea.add(Point.fromLngLat(18.095, 48.307));

 myArea.add(Point.fromLngLat(18.088, 48.307));

 }

After the style loading, a new layer will be created in the callback. We will set the content properties

for it.

@Override

public void onMapReady(@NonNull final MapboxMap mapboxMap) {

 mapboxMap.setStyle(Style.MAPBOX_STREETS, new Style.OnStyleLoaded() {

 @Override

 public void onStyleLoaded(@NonNull Style style) {

 // new layer with dashed line

 style.addLayer(new LineLayer

 ("linelayer", "line-source").withProperties(

 PropertyFactory.lineDasharray(new Float[] {0.1f, 2f}),

 PropertyFactory.lineCap(Property.LINE_CAP_ROUND),

 PropertyFactory.lineJoin(Property.LINE_JOIN_ROUND),

 PropertyFactory.lineWidth(5f),

 PropertyFactory.lineColor(Color.parseColor("#e55e5e"))

));

 ...

We will place lines in this layer - we will create an object GeoJsonSource, which is the source for

objects plotted on the map - the created field is transformed into geo-data.

 ...

 // array transformation to geodata

 style.addSource(new GeoJsonSource("line-source",

 FeatureCollection.fromFeatures(new Feature[]

 {Feature.fromGeometry(

 LineString.fromLngLats(myArea)

)})));

 }

});

 154

Directions

Task:
Find the path between two points.

Fig. 41 From start position to the destination

Path finder is one of the advanced features that require machine time to count and generate a result

according to the user's current requirements. It is available in the Directions package, which uses a

different API set, so you need to add it to the dependencies in build.gradle(Module.app).

dependencies {

 implementation fileTree(dir: 'libs', include: ['*.jar'])

 implementation 'com.mapbox.mapboxsdk:mapbox-android-sdk:9.1.0'

 implementation 'com.mapbox.mapboxsdk:mapbox-android-plugin-annotation-v9:0.8.0'

 implementation 'com.mapbox.mapboxsdk:mapbox-sdk-services:5.1.0'

 implementation 'androidx.appcompat:appcompat:1.1.0'

 implementation 'androidx.constraintlayout:constraintlayout:1.1.3'

 testImplementation 'junit:junit:4.12'

 androidTestImplementation 'androidx.test.ext:junit:1.1.1'

 androidTestImplementation 'androidx.test.espresso:espresso-core:3.2.0'

}

When creating an application, you may encounter a problem with the versions of SDKs and the Java

version, and it has been stated that only versions from Android N above are supported. By adding

compiler settings (in build.gradle(Module.app)) is the problem solved.

apply plugin: 'com.android.application'

android {

 compileSdkVersion 29

 buildToolsVersion "29.0.3"

 compileOptions {

 sourceCompatibility JavaVersion.VERSION_1_8

 targetCompatibility JavaVersion.VERSION_1_8

 }

 155

In the first step we define constants for layers and basic objects for working with the map.

public class MapActivity5 extends AppCompatActivity implements OnMapReadyCallback {

 private static final String ROUTE_LAYER_ID = "route-layer-id";

 private static final String ROUTE_SOURCE_ID = "route-source-id";

 private static final String ICON_SOURCE_ID = "icon-source-id";

 private MapView mapView;

 private DirectionsRoute currentRoute;

 private MapboxDirections client;

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 Mapbox.getInstance(this, "pk.xxx");

 setContentView(R.layout.activity_map5);

 // map view

 mapView = findViewById(R.id.mapView);

 mapView.onCreate(savedInstanceState);

 mapView.getMapAsync(this);

 }

After obtaining the map, we define the beginning and end of the route. The documentation states

that more than 20 transition points can be defined. We will prepare a format for the query and a

layer for rendering

@Override

public void onMapReady(@NonNull final MapboxMap mapboxMap) {

 mapboxMap.setStyle(Style.MAPBOX_STREETS, new Style.OnStyleLoaded() {

 @Override

 public void onStyleLoaded(@NonNull Style style) {

 // start a end

 Point origin = Point.fromLngLat(18.090272, 48.307561);

 Point destination = Point.fromLngLat(18.094539, 48.312398);

 // prepare the geodata to get the path

 initSource(style, origin, destination);

 // prepare layer for drawing

 initLayers(style);

 // get directions from the Mapbox Directions API

 getRoute(mapboxMap, origin, destination);

 }

 });

}

The initSource() method ensures that the start and end position data settings are placed in the

loadedMapStyle variable (object).

private void initSource(@NonNull Style loadedMapStyle, Point origin, Point

destination) {

 loadedMapStyle.addSource(new GeoJsonSource(ROUTE_SOURCE_ID));

 GeoJsonSource iconGeoJsonSource = new GeoJsonSource(ICON_SOURCE_ID,

 156

 FeatureCollection.fromFeatures(new Feature[] {

 Feature.fromGeometry(Point.fromLngLat(origin.longitude(),

 origin.latitude())),

 Feature.fromGeometry(Point.fromLngLat(destination.longitude(),

 destination.latitude()))}));

 loadedMapStyle.addSource(iconGeoJsonSource);

}

The initLayers() method defines a new layer and in it the parameters for the drawn line, respectively

layer of lines. The information goes back to the map settings via the loadedMapStyle object.

private void initLayers(@NonNull Style loadedMapStyle) {

 LineLayer routeLayer = new LineLayer(ROUTE_LAYER_ID, ROUTE_SOURCE_ID);

 // Adds LineLayer to the maps. This layer displays the directions route.

 routeLayer.setProperties(

 lineCap(Property.LINE_CAP_ROUND),

 lineJoin(Property.LINE_JOIN_ROUND),

 lineWidth(5f),

 lineColor(Color.parseColor("#FF0000"))

);

 loadedMapStyle.addLayer(routeLayer);

}

The getRoute() method is key to getting the information you need. It creates a request for data

return, and at this point, it is possible to configure whether it should be a route for pedestrians,

cyclists or cars.

private void getRoute(final MapboxMap mapboxMap, Point origin, Point destination) {

 client = MapboxDirections.builder()

 .origin(origin)

 .destination(destination)

 .overview(DirectionsCriteria.OVERVIEW_FULL)

 .profile(DirectionsCriteria.PROFILE_DRIVING)

 .accessToken(getString(R.string.access_token))

 .build();

...

It asks for data with an asynchronous request. If there is an empty result or a result without

positions, we will terminate; otherwise, the result is a path – currentRoute, in which we can find out,

for example, length.

client.enqueueCall(new Callback<DirectionsResponse>() {

 @Override

 public void onResponse(Call<DirectionsResponse> call,

 Response<DirectionsResponse> response) {

 // if it does not return any result, the termination

 if (response.body() == null) {

 return;

 } else if (response.body().routes().size() < 1) {

 return;

 }

 // starting point

 currentRoute = response.body().routes().get(0);

 157

 // for illustration - distance

 Toast.makeText(MapActivity5.this, "distance: " + currentRoute.distance(),

 Toast.LENGTH_SHORT).show();

If the process is finished correctly, mapboxMap still exists, so after loading the style, we get access to

the source for drawing lines and send lines from CurrentRoute to the drawing process/method.

if (mapboxMap != null) {

 mapboxMap.getStyle(new Style.OnStyleLoaded() {

 @Override

 public void onStyleLoaded(@NonNull Style style) {

 // Loads and updates the source showing the route

 GeoJsonSource source = style.getSourceAs(ROUTE_SOURCE_ID);

 // Creates a LineString sequence with route geometry

 // resets the GeoJSON source for the LineLayer route source

 if (source != null) {

 source.setGeoJson(LineString.fromPolyline(

 currentRoute.geometry(),

 PRECISION_6));

 }

 }

 });

}

Finally, we need to implement the method onFailure for client.enqueuCall.

 @Override

 public void onFailure(Call<DirectionsResponse> call,

 Throwable throwable) {

 Toast.makeText(MapActivity5.this, "Error: " +

 throwable.getMessage(), Toast.LENGTH_SHORT).show();

 }

 });

}

Conclusion

Using MapBox, we can create the same applications as using Google Maps, and especially in the case

of finding a route, the procedure was much simpler.

MapBox provides a number of other features; in many ways, it is currently easier to work with than

with Google Maps. Among other things, it allows you to create and insert into the map source

various types of objects that can be shared with the community.

MapBox also supports the web, and so it is a suitable tool for creating your own applications on

multiple platforms.

 158

Compass

Create a compass for the smartphone.

The application presents the basic principles of using sensors, reading data from sensors and

following processing. An integrated mathematical apparatus is also used to calculate the triaxial

rotation of a mobile device, on the basis of which it is possible to identify not only the position but

also the orientation of the device.

This approach is widely used in a variety of map applications, from simple geolocation games to

augmented reality applications.

Recommended Number of Developers

Individual.

Available Solutions

There are a few simple applications focused on geomagnetic sensor use. This chapter presents the

complexity of the problem solution.

Requirements

Functional Requirements

a) The application will show a sensor list of the smartphone and identify the existence and type

of sensors.

b) The user can identify the north pole position using graphical elements in the system.

Non-functional Requirements

a) Android 5.0 and higher.

b) Java programming language.

Sensors

Sensors are a communication element by which devices can sense the parameters of the

environment or manipulation the device. Today, thanks to the expansion of the IoT area, sensors are

an affordable and inexpensive tool for extending the functionality of any device. Thanks to the

minimization of their size, they can be integrated into devices such as watches, pieces of jewellery,

markers or used in their own device designs (robot, toy car, drone, etc.).

The sensors can send the acquired data directly via the elements of the device in which they are

integrated, or they can transmit them using one of the wireless technologies.

A common requirement of practice is to create a network of sensors that collect data at multiple

locations and send it to one collection location.

The quality, types and capabilities of sensors integrated into mobile devices are gradually improving,

and today a common smartphone is equipped with a number of miniature sensors, many of which

required a separate single-purpose device a few years ago.

 159

Communication with the environment

Perception of the environment is an essential element of the survival of living things. People (or more

precisely, animals) is able to use all five of their senses:

• sight - allows you to read and then decode textual and/or pictorial information

• hearing - allows you to recognize sounds,

• touch - provides feelings represented by touches,

allows identification of shapes and perception of

temperature or cold,

• smell - allows you to perceive the smell in the

environment in which the animal is currently,

• taste - allows identifying on the basis of taste

receptors the characteristics of perception of the

surface or interior of the object.

The Android operating system is able to obtain information from the environment that people

cannot perceive. Typical sensed characteristics are, in addition to image and sound, e.g.,

temperature, humidity, movement, position of the

north magnetic pole, position within the GPS system.

Access to sensors or, in general, to elements that read or convey information from the environment

or provide communication in the environment can be obtained:

• using existing resources providing the necessary interfaces - we use ready-made activities

that we call via intents (mail, camera),

• creating our own functions and interfaces, where we need to gain access to the relevant

devices and capture (stream) messages with the content, they convey (camera, microphone,

accelerometer, pedometer, etc.).

Sensor categorization

Most Android devices have built-in sensors capable of measuring movement, orientation or

environmental parameters (pressure, temperature, etc.).

Sensors as devices are generally divided into:

• motion – sensors identifying changes due to motion (hardware: accelerometer, gyroscope;

software: gravity, linear acceleration, rotation vector),

• environmental – sensors identifying changes in the environment (light sensor, humidity,

temperature, pressure sensor), where the integration of sensors existence depends on the

device,

• position – position sensors (hardware: geomagnetic field sensor/compass).

List of sensors in the device

Task:

Create an application that displays a list of sensors on your device.

 160

To process data from sensors, the application uses SensorManager, which makes available the

system service to initialise various sensors in devices. By default, it is defined in the activity for which

we want to make sensor data available.

The list of sensors is provided by the getSensorList() method, which returns a list of sensors with

name, version, manufacturer and possibly other parameters.

In a simple program, we just have them written into a text component:

@Override

protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_main);

 SensorManager mSensorManager =

 (SensorManager) getSystemService(SENSOR_SERVICE);

 List<Sensor> mList = mSensorManager.getSensorList(Sensor.TYPE_ALL);

 TextView tv1 = (TextView) findViewById(R.id.textView);

 for (int i = 1; i < mList.size(); i++) {

 tv1.append("\n" + mList.get(i).getName() + "\n" +

 mList.get(i).getVendor() + "\n" + mList.get(i).getVersion());

 }

 }

}

Identifying the existence of sensors during the run (at startup) of the

application can modify the behaviour of the application - add new

functions, faster control, or, conversely, the absence of sensors

replace their functionality with "manual" (non-sensors) methods.

In the case of missing sensors, we can also decide not to run the

application or make a completely different alternative functionally

and visually available instead of the full version.

Fig. 42 List of sensors

Accelerometer - acquisition of data from sensors

We will show the way of working with sensors and the principle of data acquisition on the

accelerometer. The accelerometer is the basic and the most used device when working with sensors.

The accelerometer responds to acceleration - a change in movement in any direction. To identify this

ability, it uses a piezoelectric phenomenon, where it measures the voltage generated by the

microscopic crystals, which moves with any movement, creating pressure between them that

generates a voltage (in each direction).

 161

Fig. 43 Accelerometer principle (source: https://www.pc-control.co.uk/accelerometers.htm)

Coordinate system

Many motion sensors express their state relative to a three-dimensional coordinate system. The

coordinate system is fixed for each device regardless of its angle of rotation.

Smartphones have a coordinate system defined as is presented in Figure 44; tablets usually rotated

90°. The systems are thus adapted to the most frequently used rotation of the device.

Fig. 44 Coordinate system for a smartphone

Be careful: the coordinate system does not change even when the device is rotated.

Principle of accelerometer operation

The accelerometer is constantly affected by gravitational acceleration

• if we point it to the centre of the earth in the y-direction, this value is theoretically 9.81, and

the other values are 0

• if we turn the device upwards, the gravitational acceleration acts in the z-direction

• if we ideally rotate (place) it on the side edge, the acceleration acts in the x-direction.

https://www.pc-control.co.uk/accelerometers.htm

 162

Fig. 45 The direction of gravitational acceleration at different positions of the smartphone

All other positions distribute g between the individual directions; the value in each direction is non-

zero and less than 9.81.

Any movement, more precisely its change, changes the actual values returned by the accelerometer,

and thus it can be identified that the device is in motion:

• if I grab the phone and move it, there is an acceleration detected

• If I run at a constant speed with the phone (after starting up), no change occurs

• only when I stop will the opposite acceleration value be identified

Earth gravity in the form of gravitational acceleration (g) acts on the device constantly, which is

used in various applications and games.

Capturing values

Task:

View the values provided by the accelerometer and observe their changes at rest and as you move

the device.

The structure of all applications using sensors is practically identical:

• the application needs to implement an interface SensorEventListener to be able to read data

from sensors

• this interface requires the implementation of methods:

o onSensorChanged – when the sensor data changes,

o onAccuracyChanged – if the accuracy changes, it is used for some types of sensors

that are calibrated to return the result with better accuracy (usually, the method is

empty).

public class MainActivity extends AppCompatActivity

implements SensorEventListener {

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_main);

 }

 @Override

 public void onSensorChanged(SensorEvent event) {

 163

 }

 @Override

 public void onAccuracyChanged(Sensor sensor, int accuracy) {

 }

}

In order for the application to obtain data from the sensor, it needs to register its listener.

• Registration ensures constant reception of data from the sensor to the application.

• Unregister ensures termination of data reception by the application/activity.

It is good practice to receive data from sensors only when the activity is in the foreground and when

data is overlapped by another activity, pause data reception.

• In the case of simultaneous reception of data by different activities, the system could very

easily become overloaded,

• however, there are also cases where it is appropriate to choose a different approach.

The activity life cycle provides us several places where the registration to receive data from the

sensor can be turned on and off.

The best time to register is onResume(), which takes place when the activity becomes active and

comes to the forefront of the activity stack.

An event onPause() is appropriate to stop receiving data for any reason that causes the activity to go

into the background.

The subsequent return of activity to the foreground invokes onResume() again and thus ensures that

data reception is switched on again (registration with the listener).

 164

Fig. 46 Activity life cycle (source: https://www.geeksforgeeks.org/activity-lifecycle-in-android-with-demo-app/)

Registration and unregistration

When registering the sensor, we enter the listener, sensor and frequency of reading data. The

frequency is optimized for different types of applications and represents the speed (frequency) of

querying the data (e.g., for SENSOR_DELAY_UI, SENSOR_DELAY_GAME)

We already know that we need to work with sensors SensorManager and its initialization.

Then in the onCreate() method, we get access to the accelerometer and insert it into the variable

with the aim to access it further.

In the onResume() and onPause() methods, we provide registration and unregistration for receiving

data from the sensor.

public class MainActivity extends AppCompatActivity

implements SensorEventListener {

 private SensorManager sManager; // sensor access manager

 Sensor accelerometer; // my sensor - now accelerometer

 165

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_main);

 // getting a manager

 sManager = (SensorManager)getSystemService(SENSOR_SERVICE);

 // getting a sensor

 accelerometer =

 sManager.getDefaultSensor(Sensor.TYPE_ACCELEROMETER);

 }

 protected void onResume() { // registration for sensor data collection

 super.onResume();

 sManager.registerListener(this, accelerometer,

 SensorManager.SENSOR_DELAY_UI);

 }

 protected void onPause() { // end data collection from the sensor

 super.onPause();

 sManager.unregisterListener(this);

 }

}

Reading data from the sensor

At this point, the system is ready to read data from the sensor. In the onSensorChanged() method,

we provide to print a list of values at each data delivery. You can find out from the manual for the

sensor what data comes from the sensor and in what structure it is. It is true that they are stored in

the array values.

@Override

public void onSensorChanged(SensorEvent event) {

 float ax,ay,az; // zrýchlenie v každom smere

 // we only monitor the accelerometer

 if (event.sensor.getType() == Sensor.TYPE_ACCELEROMETER){

 // the expected values come as the first three values in the variable

 // representing the event

 ax = event.values[0];

 ay = event.values[1];

 az = event.values[2];

 // we just print them

 TextView tv = (TextView) findViewById(R.id.textView);

 tv.setText("X = " + ax + "\n Y = " + ay +"\n Z = " + az);

 }

}

While when using an emulator, the values are somewhere around the expected ones, in the case of a

physical device, the ulcers also change constantly when the device is at rest.

 166

Fig. 47 Values obtained from the accelerometer in the emulator

In the case of a physical device, and if the device is oriented by default, the values are somewhere

around:

• x = 0 m/s2

• y = 9,81 m/s2

• z = 0 m/s2

but they are constantly changing due to natural movements, uneven surfaces, noise, etc.

Data interpretation

The data we obtain from the accelerometer represents the current state of the device in all

directions and usually does not reflect changes compared to the device at rest. If we stop moving

after moving the device by a constant speed, we cannot identify whether we stopped or moved in

the opposite direction (the accelerometer in the direction of the x-axis only returns a negative value).

In addition, the data that comes from the sensors is often skewed by various influences and can

sometimes be inaccurate. The obtained values are often harmonised (or filtered) to prepare

trustworthy data:

• often averages a certain number of changes or

• low-pass filter - goes through low values and reduces the amplitude of values higher than the

defined value

• high-pass filter - goes through high values and reduces the amplitude of values lower than

the defined value.

 167

Geomagnetic sensor

A magnetic field sensor or compass is a sensor that can identify the position of the north magnetic

pole.

The magnetic field sensor usually does not work exactly inside the building because it is very

sensitive to any metal objects or electromagnetic fields in its nearby. To verify the correct

functionality of the application, we recommend using an open space without ambient

interference.

The sensor is included in most current smartphones and can be found under various names:

magnetometer, magnetic field sensor, compass, etc.

While an accelerometer measures acceleration, a magnetometer measures the impact or the

intensity of the magnetic field in µT, and it is a necessary element in determining the orientation of

the device.

Fig. 48 Device orientation and direction of the magnetic field at the equator

Compass

Task:

Create an application in which the compass image will show the user where the north is.

To be able to identify the direction of the magnetic field, it is also necessary to have information

about the position of the device towards gravity because the position of the north in the viewed

image is also determined by the rotation of the device.

We can already get information about the rotation of the device with respect to gravity from the

accelerometer.

 168

Fig. 49 Different rotation of the device and only one north

Thus, a functional and accurate compass can only be constructed as a combination of data from a

magnetometer and an accelerometer.

A rotary matrix is used to processing the measured data. The rotary matrix is obtained via the built-in

function SensorManager.getRotationMatrix(), into which the data from both sensors is entered. If

the matrix generation finishes successfully, we gain data representing all directions of rotation in the

first three values of the matrix: azimuth, pitch, and roll. Finally, we can display these values

graphically on the smartphone.

Each subsequent rotation of the device will cause a subsequent recalculation so that our compass

will always process the current values.

Fig. 50 Device rotation options and rotary matrix for individual axes

So we will create an activity in which we will place the image. To display the image, we will use the

ImageView component and add a descriptive TextView. This TextView will display the loaded and

calculated angle.

 169

Fig. 51 Placing an image into resources and code

We will rotate the image in the code so that the marked arrow points north. We will remember the

current rotation angle in the variable currentDegree with the goal to animate the rotation from the

original to the new rotation angle.

In the activity, we define the necessary attributes, and in the onCreate() method, we initialize them.

public class MainActivity extends AppCompatActivity

 implements SensorEventListener {

 private ImageView image; // view for image

 // current rotation value

 private float currentDegree = 0f;

 private SensorManager mSensorManager; // sensor manager

 Sensor accelerometer;

 Sensor magnetometer;

 TextView tvStupne; // view

 // array for an accelometer

 float[] mGravity = null;

 // array for a magnetometer

 float[] mGeomagnetic = null;

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_main);

 image = (ImageView) findViewById(R.id.imageView);

 tvStupne = (TextView) findViewById(R.id.textView); // TextView

 mSensorManager = (SensorManager)

 getSystemService(SENSOR_SERVICE);

 accelerometer =

 mSensorManager.getDefaultSensor(Sensor.TYPE_ACCELEROMETER);

 magnetometer =

 170

 mSensorManager.getDefaultSensor(Sensor.TYPE_MAGNETIC_FIELD);

 }

We perform the following operations in the onSensorChanged() method:

• we read data from the accelerometer

• we read data from the magnetometer

• since the data does not arrive at once, we must read it and remember it in a variable (array)

defined at the class level; when we have read both values, we start the conversion and

display the result.

The conversion consists in filling the rotation matrix (R) and a tilt matrix (I) based on the three-

dimensional vectors we obtained from the sensors. It is used for filling

SensorManager.getRotationMatrix(R, I, mGravity, mGeomagnetic);

From the obtained matrices, we will use only a three-dimensional orientation vector, which we

convert to the angle of rotation of the compass image and then we rotate this image. Finally, we

remember the current angle of rotation. We always express the angle as a positive value, so we add

360 degrees to it and convert it to the basic angle (% 360).

public void onSensorChanged(SensorEvent event) {

 if (event.sensor.getType() == Sensor.TYPE_ACCELEROMETER)

 mGravity = event.values;

 if (event.sensor.getType() == Sensor.TYPE_MAGNETIC_FIELD)

 mGeomagnetic = event.values;

 if (mGravity != null && mGeomagnetic != null) {

 float R[] = new float[9];

 float I[] = new float[9];

 boolean success =

 SensorManager.getRotationMatrix(R, I, mGravity, mGeomagnetic);

 if (success) {

 float orientation[] = new float[3];

 SensorManager.getOrientation(R, orientation);

 float azimut = orientation[0]; // contains: azimuth, pitch, roll

 float degree = (float)(Math.toDegrees(azimut) + 360) % 360;

 tvStupne.setText(""+degree);

 RotateAnimation ra = new RotateAnimation(

 currentDegree,

 -degree,

 Animation.RELATIVE_TO_SELF, 0.5f,

 Animation.RELATIVE_TO_SELF, 0.5f);

 // duration in milliseconds

 ra.setDuration(210);

 ra.setFillAfter(true);

 // start animation

 image.startAnimation(ra);

 currentDegree = -degree;

 }

 }

 }

 171

An interesting element of the operating system is animation. There are several types of pre-built

animation templates in the Android OS. We will use rotating animation for our needs –

RotateAnimation. The animation is always created first, and its parameters are defined. After

setting, it is applied to the object and run.

 RotateAnimation ra = new RotateAnimation(

 currentDegree,

 -degree,

 Animation.RELATIVE_TO_SELF, 0.5f,

 Animation.RELATIVE_TO_SELF, 0.5f);

 // duration in milliseconds

 ra.setDuration(210);

 ra.setFillAfter(true);

 // start animation

 image.startAnimation(ra);

The rotating animation starts the animation from one angle of rotation to the other. Our animation

starts at the angle to which the compass image was last rotated (currentDegree) and ended at an

angle that has been calculated based on the tilt of the device (-degree). The image is currently

rotated to the angle defined in currentDegree, so the change gives the impression that it is a rotation

from the current rotation.

The last four parameters define the position of the point around which it will rotate:

RELATIVE_TO_SELF means with respect to the object we are rotating, and 0.5 represents in both

cases the centre of the object.

Using setDuration() we set the animation duration in milliseconds.

Parameter setFillAfter() defines whether the final form of the object should remain displayed after

rotation or not.

Finally, we run the created animation over any object (view), in our case, of course, over the image.

 172

Light sensor

The luminance sensor is one of the basic sensors included in most common devices.

Returns the value of luminosity in lux, and access to it is the same as for other sensors. It is identified

by the TYPE_LIGHT constant.

public void onSensorChanged(SensorEvent event) {

 Sensor mySensor = event.sensor;

 if (mySensor.getType() == Sensor.TYPE_LIGHT) {

 TextView t = (TextView) findViewById(R.id.textView);

 float newLight = event.values[0];

Create an application that notifies the smartphone with a sound (triggered an alarm) in the event of

a large immediate change in lighting, either an increase or decrease in brightness.

 173

Simple Game with Accelerometer

Create an application that will be a variant of the flappy-bird application.

The player's goal is to fly through a changing environment consisting of obstacles displayed from

above and below.

The flying object passes through an environment in which it moves up and down to avoid obstacles

by tilting the device.

 174

Step Detector

The accelerometer can be used not only to determine the current acceleration of the device, but also

more complex operations can be identified based on the sequence of changes in the accelerometer

values.

An example is the identification of a smartphone shake or the function of a pedometer, which since

version 4.4 behaves as a separate sensor.

Using the sensors, create a pedometer capable of tracking device user activity:

• within a day

• within a week

• within days of the month

• the best day of a year

• average results of the week, month, year, etc.

Alternatives to Google Play may be a good example of an app (e.g. Samsung Health):

A suitable sensor for solving the problem is StepDetector.

This sensor counts the steps for the application since the first user registration. It resets only by the

boot of the device. The big advantage is that we can read it at any time, and the application does not

have to be run while the sensor is running. Each application can access it after launching and then

display the current status (number of identified steps).

@Override

public void onSensorChanged(SensorEvent event) {

 Sensor sensor = event.sensor;

 float[] values = event.values;

 int value = -1;

 175

 if (values.length > 0) {

 value = (int) values[0];

 }

 if (sensor.getType() == Sensor.TYPE_STEP_COUNTER)

 k1.setText("Step Counter: " + value);

}

DATA

PROCESSING

 177

Customer-Products Data Model Development

Every second there is an incredible increase of data today. More data were generated for 2014 and

2015 than for the entire previous duration of humanity (Marr, 2015). This, of course, entails great

demands on their storage and processing. The increase in the volume of data is unimaginable for the

average person. Nowadays, we are used to the concept of Big Data. There are many interpretations

of this concept. But in a way, it follows that it is the amount of data that makes it difficult to process

it in real-time.

Where does all that data come from? Is it because companies are storing more and more data about

their activities? A paper dealing with exponential data growth was published on the

insidebigdata.com server in February 2017 (insidebigdata.com, 2017). Among other things, this

article deals with the estimation of how the growth of data and their structure will develop from

2020, as you can see in Figure 1. So it is not mainly company data, but data from various sensors, but

also data on people.

Fig. 52 Estimation of data growth and their structure (insidebigdata.com, 2017)

The issue of data processing in the field of information technology is certainly no newcomer, but it is

quite clear that there are still many opportunities to find employment in this area. Maybe even more

than in previous years. The term Data Science is one of the other modern concepts that are already

common today. But before you can call yourself a data scientist and be able to process unimaginable

volumes of data, you need to focus on the basics on which you can build your data career.

One of the basics is to understand data models and gain the skill to design a database to store all

the necessary data.

Recommended Number of Developers

To create a database model, you can be alone; however, a small team of two or three members can

be useful. It’s always good to discuss your ideas with someone else.

Available Solutions

There are a lot of tutorials that can help you to learn how to develop a database model. Just use

youtube or google and write a Data modelling tutorial. You will find many possibilities.

 178

Requirements

The creation of the data model is based on the requirements, which are usually entered in the form

of a scenario. The scenario describes in plain text what data needs to be stored. The challenge for

data model designers is to understand what is important in the text. When designing a database, it is

not customary to set functional requirements, as is often the case with other types of applications.

The following scenario is an example of input from a customer.

Nowadays, according to some authorities, it is necessary to register everything electronically, so we

have no choice but to start recording everything consistently. When I do something as a business

owner, I do it properly. This means that I want more than just sales records from the newly created

system. I would like the system to focus on products, suppliers, employees, customers, and

everything related to our tavern. I will try to describe here how it works with us:

We buy input raw materials from various suppliers. We only take first-class quality. Some of the

purchased products are only resold with the appropriate margin; some are used for the production

of our products. For all of them, we want to know who is the supplier, when it was delivered, in what

quantity and how much it cost. The amount of raw materials is measured in units (meat in kg, milk in

l, rolls in pieces). We know the name and address of the suppliers, and for some, we also know the

phone, email, and contact person (name and surname). We can also write a note for each supplier.

From what we buy, we cook meals, however, also just put something for sale. Our basic food and

beverage menu are quite unchangeable, but I would like every change to be recorded and traceable,

including the price. On weekdays we prepare a lunch menu for our guests. It is only served from

11:00 until the stock is sold out for the day. I emphasize once again that I want to be able to look at

what the offer was that day, maybe two years back. The food and beverage menu is divided into

categories. These categories can be nested (eg food -> main -> meat -> pork). We also distinguish the

type of offer, i.e. whether it is a permanent offer, special, or menu.

According to the law, for everything we sell, we have to record what allergens it contains, so it should

also be included there.

Several chefs take part in the preparation of meals for each shift. There is one main one for each

shift. In the production of food, it is necessary to record how much of a given shift was consumed

raw materials and how many individual meals were sold. It would be ideal for determining how many

ingredients were needed to produce a particular food, but in my experience, this is unrealistic.

Other employees are involved in the service. He/she always holds one of the functions within a given

shift. He/she is either a waiter, or he/she's behind a bar. The worker behind the bar prepares drinks

for the waiters but can also sell them directly to customers. The waiter is always assigned certain

tables for a given shift, which he/she has to take care of and from which he then receives money to

spend. Spending at the bar is cashed by the bartender. I always want to know who received the

money.

Regular customers have their account with us, and if they spend more than two hundred euros in the

previous month, they have a ten per cent discount the following month. That is why we want to

record with regular customers what they bought from us. Of course, I need to record all our sales,

regardless of whether or not it is a regular customer.

I'm thinking about introducing happy hours. For example, that Monday from 16:00 to 19:00 would be

a discount. Are you able to figure out how to record it for me?

 179

Data modelling

Data modelling is a process that aims to create a data model. The data model describes the data and

its structure. Data can be viewed from three levels.

The first is the external view. It is sometimes referred to as an application or user view of data. It is

the view of the regular user who is not interested in deeper connections between data. He/she is

usually just their consumer. As an example, imagine an online store customer. He/she sees a range of

products. When he/she chooses one and adds it to the cart and then pays, he/she does not care at all

how the data is organized in the e-shop, where it is stored, etc. It only consumes their content. An

example of such a model is the above scenario.

The second view is called logical or conceptual. Some authors define a difference between the logical

and conceptual views. The logical one is more detailed. In both cases, however, it is a matter of

identifying important objects of interest and the relationships between them. It does not solve its

own implementation. It covers current needs with the possibility of further development. For

example, with an online store, it would be a matter of identifying important objects, such as

products, categories, customers, orders, and more. In addition, it is necessary to recognize the

interrelationships between these objects.

The third view is the physical view. This view looks at how data is stored. It is a design proposal for

implementation in a specific database (or other) system. It contains tables, object structures, and

integrity constraints. For example, a saving process in Excel uses workbooks, sheets, columns, cells,

etc., in a relational database system using tables, indexes, integrity constraints, etc. Perhaps there is

no need for an example with an online store.

This case study will focus on logical modelling. For the modelling, Barker’s notation will be used.

Entity identification

Before embarking on identifying entities, it is important to understand what entity is. An entity can

be likened to a class in object-oriented programming. It generalizes the real-world elements about

which data needs to be stored. Specific occurrences are referred to as instances. An example of an

entity can be sports and instances of football, archery, volleyball, etc.

Are you able to recognize an instance and an entity? How about a "dog"? Is it an instance of an

entity? What do you think?

You cannot tell from one word. It always depends on the context. If you are creating a data model for

a dog shelter, it is very likely that the dog will be an entity and will have its instances (specific dogs in

the shelter). A dog, on the other hand, maybe an instance of an animal entity in some other model. It

is, therefore, necessary to look at the problem as a whole.

Entities are characterized by their attributes. For example, an entity sport can have the attributes

name, number of players, and whether it takes place outdoors or indoors.

Attributes are used to specify entities in more detail and thus allow the individual instances of a

given entity to be distinguished from each other. Attributes describe the properties of entities in

more detail. Each attribute quantifies, qualifies, classifies, or refines the relevant entity.

Attributes may also be related to integrity constraints. These are additional rules for ensuring the

conformity of the model with the modelled reality. More about integrity constraints will be written

later.

 180

In data modelling, the first task is to identify entities. These act as nouns. However, nouns can also be

instances or attributes. So when identifying entities, it is important to think carefully about what an

entity is, what an instance is, and what an attribute is. Before you continue reading, try to identify

entities in this scenario. It can help you highlight nouns.

Here is a possible list of entities in alphabetical order:

• address,

• allergen,

• category,

• customer,

• discount,

• employee,

• ingredient,

• job position,

• offer,

• offer type,

• product,

• raw material,

• raw material consumption,

• raw materials purchase,

• sale,

• sales item,

• shift,

• supplier,

• table,

• unit,

• work classification.

If you have it differently, it does not mean that it is wrong. This is one of the possibilities. Entities are

usually named in a single number. In the model, entities are represented by rectangles.

Relationship identification

Another important part of the data model represented by an entity-relationship diagram is the

relationships between entities. Identifying relationships may not be easy, especially when there are

many entities. It is easy to forget a relationship. To prevent this situation, there is a tool called a

matrix diagram. A matrix diagram is a table that has entity names in both row and column headers.

 181

You can see this in the following example.

 ad
d

re
ss

al
le

rg
en

ca
te

go
ry

cu
st

o
m

er

d
is

co
u

n
t

em
p

lo
ye

e

in
gr

ed
ie

n
t

jo
b

 p
o

si
ti

o
n

o
ff

er

o
ff

er
 t

yp
e

p
ro

d
u

ct

ra
w

 m
at

e
ri

al

ra
w

 m
at

e
ri

al
 c

o
n

su
m

p
ti

o
n

ra
w

 m
at

e
ri

al
 p

u
rc

h
as

e

sa
le

sa
le

 it
e

m

sh
if

t

su
p

p
lie

r

ta
b

le

u
n

it

w
o

rk
 c

la
ss

if
ic

at
io

n

address

allergen

category

customer

discount

employee

ingredient

job position

offer

offer type

product

raw material

raw material consumption

raw material purchase

sale

sale item

shift

supplier

table

unit

work classification

When you identify relationships between entities using a matrix diagram, you go through the

individual cells and ask questions. Is there a relationship between the entity in the row and the entity

in the column? If so, name it. Relationships are usually expressed by verbs. It is important to realize

that a relationship has two names. Entity A has a relationship with Entity B, but Entity B has a

relationship with Entity A as well. Both may have different names. Let's look at an example. We will

not go through the whole table now, but we will show it on a subset of it to make it clearer. Let's use

entities product, raw material, category, and ingredients. The empty matrix diagram with these

entities looks like this table.

 product raw material category ingredient

product

 182

 product raw material category ingredient

raw material

category

ingredient

Let’s start asking! Does a product have a relationship with another product? There is no such

relationship so leave this cell empty.

Next question: Does a product have a relationship with raw material? Now we could say yes. The

product consists of raw materials. However, you must be really careful. There is also the entity

ingredient. This entity states that raw material is an ingredient for a product. So even there is a

relationship between a product and a raw material, we will not put it in the matrix diagram because

we want to have only direct relationships.

Let’s continue! Is there a relationship between a product and a category? Finally, we can say yes.

How should the relationship be named? What about a product is categorized by category? As was

already stated, we need two names for each relationship. We can use a category to categorize a

product.

The last question involving the entity product is: Does a product have a relationship with an

ingredient? It is obvious that it does. A product consists of ingredients, and an ingredient is a part of

a product.

After these four questions, the matrix diagram will look like this.

 product raw material category ingredient

product is categorized by consists of

raw material

category categorizes

ingredient is a part of

Now, we do not need to care about the entity product. We solved all its relationships. As you can

see, only three entities left to take care of them. So, does a raw material have a relationship with a

raw material? The answer is no.

Is there a relationship between raw material and a category? Again no. The last question, including

the entity raw material, is: Does a raw material have a relationship with an ingredient? Now, we can

 183

say yes. The raw material is an ingredient, and an ingredient is a raw material. The word "is" is not a

very good name for a relationship. If you can come up with something else, use it. However,

sometimes there is no other meaningful possibility.

We move forward with this matrix diagram.

 product raw material category ingredient

product is categorized by consists of

raw material is an

category categorizes

ingredient is a part of is a

Let's finish it up. Does a category have a relationship with a category? From previous entities, it might

seem that entity does not have a relationship with itself. Usually, it doesn't. However, there are some

cases when it does. In the scenario, you can read: "The food and beverage menu is divided into

categories. These categories can be nested (eg food -> main -> meat -> pork)." If categories can be

nested, that means there can be subcategories. So, there is a relationship between the two

categories. One is superior, and the other subordinate to the first. There is a little problem. How to

write two names into one cell? You can either split the cell or use a slash.

 Is there a relationship between a category and an ingredient? No, there isn't. Is there a relationship

between an ingredient and an ingredient? No, there isn't.

 product raw material category ingredient

product is categorized by consists of

raw material is an

category categorizes is superior to

subordinates to

ingredient is a part of is a

We finished our small matrix diagram. Easy, isn't it? Now you can practice on the big one.

To finish the big one will take a little bit of time. However, you'll surely make it. Here is an example of

how it can be done. Instead of the names of the constraints in the matrix, you will find only X. The

matrix with all the names of the constraints would not fit here.

 184

 ad
d

re
ss

al
le

rg
en

ca
te

go
ry

cu
st

o
m

er

d
is

co
u

n
t

em
p

lo
ye

e

in
gr

ed
ie

n
ts

jo
b

 p
o

si
ti

o
n

o
ff

er

o
ff

er
 t

yp
e

p
ro

d
u

ct

ra
w

 m
at

e
ri

al

ra
w

 m
at

e
ri

al
 c

o
n

su
m

p
ti

o
n

ra
w

 m
at

e
ri

al
 p

u
rc

h
as

e

sa
le

sa
le

 it
e

m

sh
if

t

su
p

p
lie

r

ta
b

le

u
n

it

w
o

rk
 c

la
ss

if
ic

at
io

n

address X X
allergen X
category X X
customer X X
discount X
employee X X

ingredients X X
job position X

offer X X
offer type X
product X X X X
raw material X X X X X
raw material consumption X X
raw material purchase X X
sale X X X

sale item X X
shift X X

supplier X X
table X

unit X
work classification X X X X X

Relationships between entities are specified outside their names by whether they are mandatory or

optional for instances of those entities. This is called relationship optionality. Next, for instances of

entities in a relationship, it is determined by how many instances of other entities they can be in a

relationship. This is called the cardinality of the relationship.

It is, therefore, necessary to determine cardinality and selectivity for each relationship. This can be

achieved through questions. For optionality, we ask: Must the instance of entity A have a relationship

with the instance of entity B? The obligation must be determined from the opposite side. Does the

entity B entity have to relate to the entity A instance? Using the example from the scenario, let's

determine the selectivity of the relationship between the product and category entities.

• Does each product have to be categorized by category?

• Does each category have to categorize a product?

Let's say that each product must be a categorized category, and a category can categorize a product.

 185

In the resulting model, the relationships are represented by lines. If the relationship is mandatory for

instances of the entity, the line is solid. If the relationship is optional, then the line is dashed.

When determining cardinalities, there are three options to choose from:

• 1: 1,

• 1: N,

• N: M.

You can find out cardinality with suitable questions.

• How many instances of entity B can be in a relationship with an instance of entity A? With

one or more?

• How many instances of entity A can be in a relationship with an instance of entity B? With

one or more?

In the case of relationships between product and category entities, we ask the following questions:

• How many categories can one product be categorized? One or more?

• How many products can one category categorize? One or more?

The scenario shows that a product is included in one category, but a category can include multiple

products. This is a 1: N cardinality.

In the model, the cardinality is represented by a single toe or crow’s foot.

For a better understanding, a language called ERDish was created. The two sentences clearly describe

the relationship between the two entities. The syntax is as follows:

1. Each

2. Entity A

3. Optionality (must be/may be)

4. Relationship name

5. Cardinality (one and only one/ one or more)

6. Entity B

and also in the opposite direction.

Let's create ERDish sentences for the relationship between product and category entities.

1. Each

2. product

3. must be

4. categorized by

5. one and only one

6. category.

single toe crow's foot

 186

And from the other side.

1. Each

2. category

3. may

4. categorize

5. one or more

6. products.

So now we have two sentences that describe the relationship between two entities, product and

category.

Each product must be categorized by one and only one category.

Each category may categorize one or more products.

With the help of ERDish sentences, you will clarify everything you need about a given relationship, in

addition to a form that almost everyone will understand. Everything important is clarified, so it is

possible to bring the relationship into the model.

Let's create ERDish sentences for restore of relations from our small matrix diagram.

PRODUCT – INGREDIENT

Each product must consist of one or more ingredients.

Each ingredient must be part of one and only one product.

RAW MATERIAL – INGREDIENT

Each raw material must be one or more ingredients.

Each ingredient must be one and only one raw material.

CATEGORY – CATEGORY

Each category may be superior to one or more categories.

Each category may be subordinated to one and only one category.

Now we can transfer these sentences into the model.

 187

Attributes

In order to be able to specify entities in more detail, and thus to enable the individual instances of a

given entity to be distinguished from each other, the entities have their attributes. Attributes

describe the properties of entities in more detail. The individual attributes quantify, qualify, classify

or refine the relevant entity.

The attribute takes exactly one value (number, character string, date, image, sound, etc.) of the

respective domain (a subset of values of a certain data type) - e.g. age is an integer from 0 to 120.

However, the logical model does not deal with the domain much. Attributes may also be related to

integrity constraints. These are additional rules to ensure the compliance of the model with the

modelled reality (e.g. the date of order fulfilment must be greater than or equal to the date of order

acceptance).

However, attributes are distinguished not only by the domain but also by whether each instance of

the entity must have a value for the attribute. It is talked about whether the attribute is mandatory

or optional. The optionality of individual attributes again depends on the input scenario. When you

look for attributes in the scenario, you again need to choose between nouns. For nouns, it will be

decided here whether it is an entity or an attribute. However, some nouns may also represent

instances or may not play any role in the model.

When modelling, it is necessary to agree on the rules of what the model will look like so that

everyone understands its meaning. The notation is called notation. There are several notations for

creating data models, and it cannot be said that one of them would play a primary role. As

mentioned in the introduction, this case study will use Baker's notation.

As we already know, in this notation, entities are denoted as rectangles. The first line contains the

name of the entity. It is usually written in a singular number. The following lines list the attributes,

including their optionality. If the attribute is required, it has an asterisk in front of it. If it is optional, it

has a circle in front of it. So let’s add attributes to the four entities from our small diagram.

 188

That wasn’t so difficult, was it? However, don’t you miss anything? Each instance of a given entity

needs to be uniquely identified in order to work with it. Identifiers are used for this.

An identifier is an attribute or combination of attributes that uniquely distinguish one instance from

another. It is a unique identifier for just one instance. It is often used the abbreviation UID. If the

identifier is composed, it is a combination of multiple attributes. This is the case when one attribute

is not sufficient for identification.

In some cases, it is not possible to create an identifier even by combining all the attributes of an

entity. In such cases, an artificial identifier comes into play. A numeric attribute (natural number) is

usually chosen as an artificial identifier. Such an attribute is most often named as an id or in

combination with the name of an entity.

There are also cases where the entity has more identifiers. One of them is chosen as the primary. The

others are referred to as candidate (secondary) identifiers. An artificial identifier is created even in

cases where another identifier exists, but for certain reasons, it is not suitable as a primary identifier.

When an entity is created, it must always have a primary identifier specified. It is necessary to be

able to unambiguously distinguish one instance from another in order to be able to work with the

given instance (select, edit, delete). The primary identifier must therefore be a mandatory attribute.

If it is composed of several attributes, all of them must be mandatory. Secondary attributes can also

be marked as optional.

As part of the design of the data model, it is necessary to record the facts about identifiers. A grid is

used for the primary identifier. U is used for other unique identifiers.

So let's add identifiers.

 189

All name attributes can be marked as unique. What good would two categories (raw materials,

products) of the same name be for? Nevertheless, it is advisable to introduce an artificial primary

identifier here. It is from a practical point of view. Relationships are represented by transferring the

primary identifier of the source entity to the destination. If, for example, the product name changed,

a change would have to be made to all instances of the ingredients entity. This way, the change can

be made in one place.

It seems to you that the ingredient entity does not have a primary identifier. If you look closely, you

will see that vertical lines have been added to the lines representing the relationships. These

determine that the transmitted foreign identifiers become part of the primary identifier. Thus, the

ingredient entity has a primary identifier composed of a raw material identifier and a product

identifier. It does not make sense to have a given raw material twice in one product. Just determine

the amount.

Unlike other notations, this notation does not display transmitted foreign identifiers. It may be

confusing at first, but you get used to it. For example, an ingredient entity has three attributes

(raw_material_id, product_id, and amount).

So now it's up to you to try to complete the whole model. The principle has already been explained.

Then you can compare your solution with model one. Just because it doesn't match one hundred per

cent doesn't mean you're wrong. There may be more suitable solutions. This is just one of them.

The experience takes you to be able to design a data model correctly. The more models you create

and put into practice, the better and easier they will be for you to create.

This cannot be said to be the only way to proceed. Everyone has to figure out for themselves what

suits them. Someone first assigns attributes to entities and then resolves relationships. That is also

one of the possibilities. It is ideal for working in a team and discussing the design. When two or more

agree, they are more likely to make sense. By designing the model itself, you will not know if it is

badly designed. You will find out this only during its implementation. Designing it correctly will save

teachers a lot of time repairing it.

 190

For designing a data model, it is important to have abstract thinking and a good imagination. But

even so, you will not achieve the championship until after several attempts. Experience is very

important here.

 191

Knowledge Discovery from Log File

The presented example shows the complex process that has to be done to discover knowledge from

a log file. The log file came from a university web server and was used as source data. The log file is in

standard log file format. The source web server contained information on any logged event on a

website. The results of this task will be interesting rules of behaviour of web users obtained using

association analysis.

Recommended Number of Developers

Individual.

Requirements

The log file was obtained from a university web server. This dataset has to be preprocessed and

analysed using data mining methods, for this will be used the Python programming language using

the Jupyter Notebook. We will require to import the pandas data analysis library for preprocessing

and the MLxtend library for association analysis.

Methodology

The application was made following several steps:

1. Data acquisition – defining the observed variables in the log file from the point of viewing the

necessary data (IP address, date and time of access, URL, UserAgent);

2. Data preprocessing – consists of multiple steps to obtain data matrix without ambiguous

data:

a. Data cleaning – removing the access to images, videos, javascript, css and similar

files. Also removing the accesses of the robots of search engines;

b. User identification – identifying users based on the IP address and UserAgent;

c. Session identification – identifying sessions using a fixed time window – an estimate

based on a quartile range that is not affected by extreme values, e.g. Q3 + 1.5Q,

where Q3 is the upper quartile (75th percentile), and Q is the quartile range (mean

50% of the values). In other words, if we consider the time spent on the site to be a

remote value, a new session begins;

3. Data analysis – searching for behavioural patterns of web users using association analysis.

4. Understanding the data.

Solution

The work will be done according to the methodology and supplemented with the source code.

The first step is to import all of the libraries that will be used during the process.

import pandas as pd

from mlxtend.frequent_patterns import apriori, association_rules, fpgrowth

Data cleaning

Next will be the examination of the log file. We load the log file to the pandas dataframe and create a

header. The standardized log file consists of IP address, cookie, user information, datetime and time

zone, requested site, request code, bytes, referrer and user agent.

 192

columns = ['IP', 'Cookie', 'User', 'Datetime', 'TMZ', 'Request', 'ReturnCode',

'Bytes', 'Referrer', 'UserAgent']

df = pd.read_csv('Log_file.log', header=None, names=columns, sep=' ')

Using the head function of the dataframe we can see the first five rows of the dataframe and correct

any mistakes done in the header.

df.head()

Following that is the most important part, to clean the data and remove unnecessary access to the

web portal. Log files are typical in that they contain a considerable amount of irrelevant data that can

corrupt the analysis of the data, so it is necessary to delete this data already in the data preparation

phase. Data cleaning aims to delete records, i.e. links that are not essential to the behaviour of web

users. Such links mainly include approaches to:

• picture,

• flash videos,

• cursor icons

• javascript,

• style.

The usual procedure for identifying such records involves identification based on the extension (*

.jpg, * .jpeg, * .bmp, * .png, * .gif, * .css, * .js, * .flw, * .swf, * .cur , * .rss, * .ico, * .xml, fonts and the

like). Even if only one page is loaded, all these requests are written to the log file.

suffix = (".jpg", ".jpeg", ".png", ".gif", ".bmp", ".css", ".flv", ".ico", ".swf",

".rss", ".xml", ".cur", ".js", ".json", ".svg", ".woff", ".eot", ".font", "POST",

"HEAD", ".JPG")

for s in suffix:

 df.drop(df[df['Request'].str.contains(s)].index, inplace=True)

In addition to the GET request, other HTTP protocol requests are written to the log file, such as 4xx /

5xx return or status codes, which identify the client/server error that needs to be cleared.

The HTTP status code is part of the server response header for the client request. Specifies how the

response was processed by the server - whether the request was processed positively, negatively, or

an error occurred. The next step is for the client to interpret and respond to the response status

code.

 193

The status code is three decimal numbers, where the first number specifies the category of the

answer and the remaining numbers specify it in more detail:

• 1xx Information,

• 2xx Successful,

• 3xx Redirect,

• 4xx Client error,

• 5xx Server error.

df.drop(df.loc[df.ReturnCode >= 400].index, inplace = True)

df.drop(df.loc[df.ReturnCode < 200].index, inplace = True)

The next step in data preparation is to clean the data from accesses by search engine robots such as

Google, Yahoo, Bing, etc. Because robots access the web portal sequentially, it is not appropriate to

include their activity in the study of user behaviour.

The robots are detected either based on their identification in the User-Agent field or based on an IP

address that can be compared with the robot database, which can be found, for example, at

www.robotstxt.org. Identification of search engine robots can be performed using:

• keyword bot, spider, crawl, robot,

• hidden link access,

• robots.txt accesses.

First, we will identify the IP addresses that accessed the robots.txt file. We save the IP addresses to a

list and use it in another iteration to remove these accesses from the log file.

robotstxt = df[df['Request'].str.contains("robots.txt")]

ips = robotstxt['IP']

for ip in ips:

 df.drop(df[df['IP'].str.contains(ip)].index, inplace=True)

Next, we can use again the keywords used by the search engine robots to identify robots in the User-

Agent column. This column contains the information about the used web browser and operating

system. The search engines often use their names in this column.

df.drop(df[df['UserAgent'].str.contains('bot')].index, inplace=True)

df.drop(df[df['UserAgent'].str.contains('crawl')].index, inplace=True)

df.drop(df[df['UserAgent'].str.contains('spider')].index, inplace=True)

Here we could end with the data cleaning. However, it is recommended to check the cleaned log file

to whether it does not contain some unnecessary data that is not usually cleaned. We will use a

simple frequency table and look at the Request column. Pandas offers a crosstabulation function

where if we input one column, it will create a frequency table.

req_tab = pd.crosstab(index=df['Request'], columns="count")

req_tab = req_tab.sort_values(by=["count"], ascending=False)

req_tab.head(15)

http://www.robotstxt.org/

 194

We will look at the 15 most frequent requests.

The table shows that there are two strange requests. The most frequent is a navbar page. This page

seems like it is loaded by each web page as part of a build-up. This is an access that we do not want

to have in our analysis, so we will also remove all the accesses to the navbar. Next on the third place

is a request that seems like a cron job. This could be an automated script for backup or antivirus that

checks the web portal. These accesses can also be removed as it is very unlikely that these accesses

were made by web visitors.

df.drop(df[df['Request'].str.contains('navbar')].index, inplace=True)

df.drop(df[df['Request'].str.contains('cron')].index, inplace=True)

User/session identification

Firstly, we will focus on the dummy variables that we will use in the next phases of data preparation.

These are mainly time-based variables or other variables that are needed for the later phase of data

analysis (for example, distinguishing user access, etc.). The first essential variable is a variable

representing the date and time of access to the web portal. Thanks to this variable, we can later

identify individual user sessions. It usually has a date and time format, and because the webserver

can handle different format settings, the formats may differ. For example, the source data date fields

are in the format YYYY / MM / DD, and the target date fields are in the format MM-DD-YYYY. It is

necessary to unify these formats. To unify the formats, we will use the so-called UNIXtime and use

the transformation to convert the date field of the source data to the corresponding target format.

UNIXtime (also known as Epoch time, POSIX time, seconds since Epoch, or UNIX Epoch time) is a time

point description system. It is the number of seconds that have elapsed since the Unix era, minus the

leap seconds; the Unix epoch is dated January 1, 1970 00:00:00 UTC; leap seconds are ignored, with a

leap second having the same Unix time as the second before it, and each day is considered to be

exactly 86 400 seconds long. Thanks to this approach, Unix time is not a true expression of UTC.

We will create two user functions getMonthNum and parseDateToUnix, to obtain the UNIXtime from

the Datetime column.

import datetime

 195

def getMonthNum(month):

 return {

 'Jan': 1,

 'Feb': 2,

 'Mar': 3,

 'Apr': 4,

 'May': 5,

 'Jun': 6,

 'Jul': 7,

 'Aug': 8,

 'Sep': 9,

 'Oct': 10,

 'Nov': 11,

 'Dec': 12

 }.get(month, -1)

def parseDateToUnix(dat):

 day = dat[1:3]

 month = getMonthNum(dat[4:7])

 year = dat[8:12]

 hour = dat[13:15]

 minute = dat[16:18]

 second = dat[19:21]

 return datetime.datetime(int(year), int(month), int(day), int(hour),

int(minute), int(second)).timestamp()

Now we can use a lambda function and create a new column (variable) called UNIXtime in our

dataframe.

df['Unixtime'] = df.apply(lambda row: parseDateToUnix(row['Datetime']), axis=1)

Another dummy variable that we will need is the time spent on the page, i.e. length of time spent on

the page. It is mainly used to identify sessions, and it is used to refer to this variable as length. When

creating the length variable, it is necessary to start from the Unix time stamp and have a log file

sorted according to the following fields:

• IP address,

• UserAgent,

• UNIXtime.

df = df.sort_values(by=["IP", "UserAgent", "Unixtime"])

This will ensure sequential follow-up of the approaches of individual visitors. The log file primarily

records anonymous user data, but there is a problem with uniquely identifying the site visitor. In the

analysis, it is not necessary to know the specific identity of the user but to be able to distinguish

between individual users. The assumption that an IP address is sufficient to identify a user is

incorrect because there can be multiple users behind one IP address. Because the IP address is not a

sufficient parameter to identify the user, it is necessary to combine several methods, such as using

the Cookie field or a combination of the IP address with the User-Agent field. Several heuristic

methods mainly use a combination of an IP address with a User-Agent field. If the IP address

changes, it is clear that it is a new user. If the IP address is the same, the User-Agent field is

compared, and if there is a change, a new user is identified. Otherwise, it is the same user.

 196

user = []

ip_before = "null"

agent_before = "null"

usid = 1

for ip,agent in zip(df['IP'], df['UserAgent']):

 if ip_before!="null":

 if ip_before==ip and agent_before==agent:

 user.append(usid)

 else:

 usid+=1

 user.append(usid)

 else:

 user.append(usid)

 ip_before = ip

 agent_before = agent

df['UserID'] = user

We will create the length variable by going through the whole log file and comparing two consecutive

records. If there are equal IP addresses and also a User Agent in two consecutive records, we can

read the Unix access times between these two records. In this way, we get the time spent on the

page of the first record.

The time spent on the site is always positive! It is advisable to choose the upper limit of the so-called

time window, and we assume that if the time between two visited pages is greater than, for

example, 1 hour, then it will be a new visit. We can choose the size of the time window according to

the needs of the web portal.

length = []

unxtm_before = -1

usr_before = -1

for unxtm,usr in zip(df['Unixtime'],df['UserID']):

 if usr_before!=-1:

 if usr==usr_before:

 unx_dif = unxtm-unxtm_before

 if unx_dif<=3600:

 length.append(unx_dif)

 else:

 length.append(None)

 else:

 length.append(None)

 unxtm_before = unxtm

 usr_before = usr

length.append(None)

df['Length'] = length

A user can visit a specific page multiple times, in which case a multiple session (visit) is recorded for

each user in the log file. However, to work with data, we need to distinguish individual sessions, to

divide the individual approaches of each user into separate sessions. This is done by session

identification, which is one of the most important steps in data preprocessing. Sessions can also be

distinguished by time. The simplest method is if we consider a session to be a series of clicks over

 197

some time - a time window, e.g. in 10 minutes, 30 minutes, etc. The duration of the session must not

exceed the value of the time window.

An alternative to a fixed time window is an estimate based on a quartile range that is not affected by

extreme values, e.g. Q3 + 1.5Q where Q3 is the upper quartile (75th percentile) and Q is the quartile

range (mean 50% of the values). In other words, if we consider the time spent on the site to be a

remote value, a new session begins.

uppQ = sdf['Length'].quantile(0.75)

lowQ = sdf['Length'].quantile(0.25)

Q = uppQ + 1.5 * (uppQ-lowQ)

When we have calculated the quartile range, we can use it as a cutoff time of the time window and

identify sessions for the users.

sttQ = []

usr_before = -1

length_before = -1

stQ = 1

for length,usr in zip(df['Length'],df['UserID']):

 if usr_before!=-1:

 if usr==usr_before:

 if length_before<=Q:

 sttQ.append(stQ)

 else:

 stQ+=1

 sttQ.append(stQ)

 else:

 stQ+=1

 sttQ.append(stQ)

 else:

 sttQ.append(stQ)

 usr_before = usr

 length_before = length

df['STT_Q'] = sttQ

The raw log file started with more than 250 000 rows. After the data cleaning phase remained in the

dataframe only 20 000 rows, this shows the importance of data preprocessing as the raw log file

contained a lot of unnecessary data for our analysis. We have identified around 4 000 users that

accessed the web portal and around 8 000 sessions.

Data transformation

Before we can obtain any relevant knowledge from our log file, we need to transform the data into a

more appropriate format. We want to examine the accessed web pages, but there are many various

pages and sub-pages. This would result in small frequencies of accesses, and nothing interesting

would come out of the analysis. We need to create a new variable (column) that will represent a web

category. The logic can be simple: we take the name of the page after the first slash in the request

variable. If there is a request only to a slash, that means it is the homepage of the web portal.

def parseCategory(req):

 if req == "GET / HTTP/1.1":

 return "home"

 strng = req.split("/")

 198

 if len(strng)>2:

 out = strng[1].replace(" HTTP","")

 if out=="en":

 return "home"

 else:

 return out

df['Category']= df.apply(lambda row: parseCategory(row['Request']), axis=1)

Once again we should examine the created variable and for that, we use a frequency table.

req_tab = pd.crosstab(index=df['Category'], columns="count")

req_tab = req_tab.sort_values(by=["count"], ascending=False)

req_tab.head(15)

From the table, we can see that there is a maximum of 10 categories that have more access.

The other categories can be joined into one category named other.

def updateCategory(cat):

 if(cat=="verejnost" or cat=="home" or cat=="fakulty-a-sucasti" or

 cat=="univerzita" or cat=="images" or cat=="prijimacie-konanie" or

 cat=="studium" or cat=="media-a-marketing" or cat=="administrator" or

 cat=="component"):

 return cat

 else:

 return "other"

df['Category'] = df.apply(lambda row: updateCategory(row['Category']), axis=1)

 199

Now we can check how many unique categories we have using a unique function.

df.Category.unique()

We can see that now we have only 11 categories that we will analyse.

Finally, we are getting closer to the data analysis. We need to consolidate the items into 1

transaction per row with each web category one-hot encoded. First, we will transpose the accessed

web categories into columns. This way we get the accessed web categories for each session in one

row.

sess = df.sort_values('STT_Q').groupby('STT_Q')['Category'].apply(lambda df:

 df.reset_index(drop=True)).unstack()

Next, we take the unique web categories that will be used to create the one-hot encoded items.

items = df.Category.unique()

Now we are ready to create the one-hot encoding that will be needed for the association analysis.

itemset = set(items)

encoded_vals = []

for index, row in sess.iterrows():

 rowset = set(row)

 labels = {}

 uncommons = list(itemset - rowset)

 commons = list(itemset.intersection(rowset))

 for uc in uncommons:

 labels[uc] = 0

 for com in commons:

 labels[com] = 1

 encoded_vals.append(labels)

encoded_vals[0]

ohe_df = pd.DataFrame(encoded_vals)

 200

Data analysis

Association analysis is relatively light on the math concepts and easy to explain to non-technical

people. It is a good start for certain cases of data exploration and can point the way for a deeper dive

into the data using other approaches.

Support is the relative frequency that the rules show up. In many instances, you may want to look for

high support to make sure it is a useful relationship. However, there may be instances where low

support is useful if you are trying to find “hidden” relationships.

Confidence is a measure of the reliability of the rule. Confidence of 0.5 would mean that in 50% of

the cases where two categories were accessed, the session also included other categories. For

product recommendations, a 50% confidence may be perfectly acceptable, but in a medical situation,

this level may not be high enough.

Lift is the ratio of the observed support to that expected if the two rules were independent. The basic

rule of thumb is that a lift value close to 1 means the rules were completely independent. Lift values

> 1 are generally more “interesting” and could be indicative of a useful rule pattern.

One final note related to the data: this analysis requires that all the data for a session be included in

1 row, and the items should be one-hot encoded.

We have everything ready from our log file and only need to import the library used for association

analysis.

from mlxtend.frequent_patterns import apriori, association_rules

Apriori is an algorithm for frequent itemset mining and association rule learning over relational

databases. It proceeds by identifying the frequent individual items in the database and extending

them to larger and larger item sets as long as those item sets appear sufficiently often in the

database. The frequent itemsets determined by Apriori can be used to determine association rules

which highlight general trends in the database: this has applications in domains such as market

basket analysis. Apriori algorithm is the perfect algorithm to start with association analysis as it is not

just easy to understand and interpret but also to implement. Python has many libraries for apriori

implementation. One can also implement the algorithm from scratch. But as there are many

solutions, we will use the library MLxtend. This library has a beautiful implementation of apriori, and

it also allows to extract the association rules from the result.

Apriori module from MLxtend library provides fast and efficient apriori implementation. The model

will generate frequent itemsets. The output is a data frame with support for each itemset.

freq_items = apriori(ohe_df, min_support=0.01, use_colnames=True, verbose=1)

freq_items = freq_items.sort_values(by=["support"], ascending=False)

freq_items.head()

 201

We generated the frequent itemsets and sorted them based on the support to see the most frequent

web categories.

The most accessed web category is the home page, and then the next most accessed are categories

public (verejnost), other, university (univerzita) and faculty (fakulty-a-sucasti). In the final step, we

will find the association rules for the frequent itemsets. Let us look at the rules based on the lift,

where we would like to see the rules that have the minimum support of 0.01. This will generate rules

that can be interesting for our interpretation.

rules = association_rules(freq_items, metric="support", min_threshold=0.01)

rules = rules.sort_values(by=["support"], ascending=False)

rules.head()

We obtained 28 rules and selected the 5 with the highest support. As we can see, the support of the

rules is not so high. Despite that, we can see that there is a pattern. Home page and faculty web

category are the most accessed combination of web categories. Also, the visitors tend to access in

their sessions more often the web category university with the combination of the home page.

On the other hand, if we consider another metric of the lift and sort the rules based on the lift value,

we can see different rules.

The higher the lift value, the more likely are the two categories together in the session. We can see

that the images category is often with the public category. This can mean that the public category

contains information about some activities or events that lead to pages with image galleries.

 202

The association analysis offers fast results and a nice insight into the examined data. For further

analysis, we could have compared two types of users based on the IP addresses and look for

differences in their behaviour. The nice aspect of association analysis is that it is easy to run and

relatively easy to interpret. If we did not have access to MLxtend and this association analysis, it

would be exceedingly difficult to find these patterns using basic Excel analysis. With python and

MLxtend, the analysis process is relatively straightforward, and since you are in python, you have

access to all the additional visualization techniques and data analysis tools in the python ecosystem.

 203

Knowledge Discovery using Sequence Pattern Mining

Analyse the behaviour of web users using another data mining method – sequence pattern mining.

The source web server contains information that is stored in a log file that has to be preprocessed

based on the previous assignment (data cleaning, user/session identification, data transformation).

Use the sequential analysis (sequence pattern mining) to obtain rules of behaviour of web users. The

difference of this data analysis method is that sequential analysis looks for time-ordered association

patterns. The accessed web categories are ordered based on time sequence resulting in a sequence

rule. This way, you can discover the most used paths of the web user on the webserver. The obtained

results can help the web administrator to reorganize the structure of the web portal to improve the

user experience.

This assignment should be solved using the Python programming language using the Jupyter

Notebook. You will require to import the pandas data analysis library for preprocessing and the

scikit-learn library for sequence pattern mining.

 204

Knowledge Discovery using Cluster Analysis

Analyse the behaviour of web users using another data mining method – cluster analysis. Use the log

file from the previous assignments and prepare it in a similar way (data cleaning, user/session

identification, data transformation). The aim is to identify web categories that are often accessed in

the sessions by web visitors. First, use the Elbow method or the Silhouette score to identify the

number of clusters needed for the algorithm (you can choose one of the mentioned methods to

obtain the results). Next, use the KMeans algorithm to create the clusters and divide the web

categories into clusters. The last step is the clusters visualization using the dendrogram.

This assignment should be solved using the Python programming language using the Jupyter

Notebook. You will require to import the pandas data analysis library for preprocessing and the

scikit-learn library for cluster analysis.

 205

Source Codes

WEB DEVELOPMENT

Web Game

- Web_development/WebGame.zip

Authentication And Menu Based on User's Roles for a Web App In PHP

- Web_development/Web_PHP_login_roles-solution.zip

Create, Retrieve, Update, Delete, and List Users for a Web App in PHP

- Web_development/PHP_Web_App_Users_CRUD-solution.zip

- Web_development/PHP+JavaScript_Web_App_Users_CRUD-solution.zip

Chat in VueJS

- Web_development/fitped-chat-app-8c685fbe94a2.zip

MOBILE APPLICATIONS

To-Do Application for Android in Java

- Mobile_applications/fitped-todo-java-master.zip

Google Map Application Template

- Mobile_applications/fitped-map-master.zip

To-Do Application with Maps

- Mobile_applications/fitped-todo-kotlin-master.zip

Map Box Application Template

- Mobile_applications/fitped-MapBox-java.zip

Compass

- Mobile_applications/sensor_list.zip

- Mobile_applications/Accelerator.zip

- Mobile_applications/Compass.zip

DATA PROCESSING

Customer-Products Data Model Development

- N/A

Knowledge Discovery from Log File

- /Datamining/Fitped-data-mining-main.zip

 206

Bibliography

[1] http://androidexample.com/LISTVIEW/index.php?view=article_discription&aid=65&aaid=90

[2] http://blog.bawa.com/2013/11/create-your-own-simple-pedometer.html

[3] http://coderzpassion.com/android-working-camera2-api/

[4] http://lucasr.org/2012/04/05/performance-tips-for-androids-listview/

[5] http://luugiathuy.com/2011/02/android-java-bluetooth/

[6] http://manojprasaddevelopers.blogspot.sk/2012/02/bluetooth-data-transfer-example.html

[7] http://slideplayer.com/slide/11642897/

[8] http://startandroid.ru/en/lessons/complete-list/241-lesson-28-extras-passing-data-using-

intent.html

[9] http://toomanytutorials.blogspot.sk/2015/03/scanning-for-bluetooth-devices-in.html

[10] http://tutlane.com/tutorial/android/android-bluetooth-with-examples

[11] http://www.androidhive.info/2011/10/android-listview-tutorial/

[12] http://www.codepool.biz/take-a-photo-from-android-camera-and-upload-it-to-a-remote-

php-server.html

[13] http://www.devexchanges.info/2016/10/simple-bluetooth-chat-application-in.html

[14] http://www.dis.uniroma1.it/~beraldi/PSD_014/slides/6_Services_OK.pdf

[15] http://www.i-programmer.info/programming/android/7849-android-adventures-listview-

and-adapters.html

[16] http://www.javacodegeeks.com/2013/09/android-listview-with-adapter-example.html

[17] http://www.londatiga.net/it/programming/android/how-to-programmatically-pair-or-

unpair-android-bluetooth-device/

[18] http://www.londatiga.net/it/programming/android/how-to-programmatically-scan-or-

discover-android-bluetooth-device/

[19] http://www.outware.com.au/insights/which-direction-am-i-facing-using-the-sensors-on-

your-android-phone-to-record-where-you-are-facing/

[20] http://www.posterus.sk/?p=10653

[21] http://www.raywenderlich.com/78574/android-tutorial-for-beginners-part-1

[22] http://www.softengine.sk/android/doc/clanok19.doc

[23] http://www.theappguruz.com/blog/to-allow-two-way-text-chat-over-bluetooth-in-android

[24] http://www.vogella.com/articles/AndroidListView/article.html#androidlists

[25] http://www.vogella.com/tutorials/AndroidBroadcastReceiver/article.html

[26] http://www.vogella.com/tutorials/AndroidCamera/article.html

[27] http://www.zdrojak.cz/clanky/vyvijime-pro-android-prvni-krucky/

[28] http://www.zdrojak.cz/clanky/vyvijime-pro-android-zaciname/

[29] http://zatackcoder.com/android-camera-2-api-example-without-preview/

[30] https://android.googlesource.com/platform/development/+/25b6aed7b2e01ce7bdc0dfa1a7

9eaf009ad178fe/samples/BluetoothChat/src/com/example/android/BluetoothChat

[31] https://androidkennel.org/android-camera-access-tutorial/

[32] https://angular.io/

[33] https://athemes.com/collections/vue-ui-component-libraries/ or

https://www.codeinwp.com/blog/vue-ui-component-libraries/

[34] https://blog.logrocket.com/understanding-computed-properties-in-vue-js/

[35] https://cli.vuejs.org/

[36] https://cli.vuejs.org/guide/css.html

[37] https://code.tutsplus.com/tutorials/android-quick-look-bluetoothadapter--mobile-7813

[38] https://code.visualstudio.com/

 207

[39] https://developer.android.com/

[40] https://developer.android.com/guide/components/broadcast-exceptions.html

[41] https://developer.android.com/guide/platform/index.html

[42] https://developer.android.com/guide/topics/connectivity/bluetooth.html

[43] https://developer.android.com/guide/topics/manifest/intent-filter-element.html

[44] https://developer.android.com/guide/topics/manifest/manifest-intro.html#ifs

[45] https://developer.android.com/guide/topics/permissions/overview.html#normal-dangerous

[46] https://developer.android.com/reference/android/bluetooth/BluetoothSocket.html

[47] https://developer.android.com/reference/android/hardware/Camera.html

[48] https://developer.android.com/reference/android/hardware/camera2/package-

summary.html

[49] https://developer.android.com/reference/android/hardware/Sensor.html

[50] https://developer.android.com/training/basics/firstapp/creating-project.html

[51] https://developer.android.com/training/permissions/requesting

[52] https://developer.android.com/training/permissions/requesting.html#normal-dangerous

[53] https://developer.mozilla.org/en-US/docs/Glossary/Asynchronous

[54] https://developer.mozilla.org/en-US/docs/Learn/JavaScript/Asynchronous/Async_await

[55] https://developer.mozilla.org/en-US/docs/Learn/JavaScript/Asynchronous/Introducin

[56] https://developer.mozilla.org/en-US/docs/Learn/JavaScript/Asynchronous/Introducing

[57] https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API

[58] https://developer.mozilla.org/en-US/docs/Web/API/Window/localStorage

[59] https://developer.mozilla.org/en-US/docs/Web/API/XMLHttpRequest

[60] https://docs.mapbox.com/android/maps/

[61] https://docs.mapbox.com/android/maps/examples/symbol-layer-info-window/

[62] https://docs.mapbox.com/android/plugins/overview/annotation/

[63] https://eslint.org/

[64] https://github.com/axios/axios

[65] https://github.com/botyourbusiness/android-camera2-secret-picture-taker

[66] https://github.com/kevalpatel2106/android-hidden-camera

[67] https://github.com/request/request/issues/3143

[68] https://github.com/stereoboy/android_samples/tree/master/SimpleCamera

[69] https://nodejs.org/en/

[70] https://reactjs.org/

[71] https://router.vuejs.org/

[72] https://router.vuejs.org/guide/

[73] https://source.android.com/devices/sensors/sensor-types#rotation_vector

[74] https://stackoverflow.com/questions/21752637/how-to-capture-an-image-in-background-

without-using-the-camera-application

[75] https://stackoverflow.com/questions/36936914/list-of-android-permissions-normal-

permissions-and-dangerous-permissions-in-api

[76] https://swagger.io/

[77] https://vuejs.org/

[78] https://vuejs.org/v2/guide/components-props.html

[79] https://vuejs.org/v2/guide/components-registration.html

[80] https://vuejs.org/v2/guide/computed.html

[81] https://vuejs.org/v2/guide/forms.html

[82] https://vuejs.org/v2/guide/instance.html#Instance-Lifecycle-Hooks

[83] https://vuejs.org/v2/guide/list.html

 208

[84] https://vuejs.org/v2/guide/single-file-components.html

[85] https://vuetifyjs.com/en/

[86] https://vuex.vuejs.org/

[87] https://webpack.js.org/

[88] https://www.androidauthority.com/adding-bluetooth-to-your-app-742538/

[89] https://www.codeproject.com/Articles/814814/Android-Connectivity#bluetooth

[90] https://www.codespeedy.com/simple-compass-code-with-android-studio/

[91] https://www.grokkingandroid.com/android-tutorial-broadcastreceiver/

[92] https://www.javatpoint.com/android-bluetooth-list-paired-devices-example

[93] https://www.javatpoint.com/android-bluetooth-tutorial

[94] https://www.npmjs.com/

[95] https://www.php.net

[96] https://www.php.net/manual/en/book.pdo.php

[97] https://www.php.net/manual/en/faq.passwords.php

[98] https://www.sitepoint.com/get-started-vuetify/

[99] https://www.slideshare.net/boochlin/camera2-how-tocreate

[100] https://www.sqlite.org/index.html

[101] https://www.tutorialspoint.com/android/android_broadcast_receivers.htm

[102] https://www.udemy.com/course/the-complete-android-oreo-developer-course/

[103] https://www.w3schools.com/jsref/dom_obj_event.asp

[104] https://www.youtube.com/watch?v=ls1cjNcgdFI

[105] https://www.youtube.com/watch?v=nOQxq2YpEjQ

[106] https://www.youtube.com/watch?v=pDz8y5B8GsE

[107] https://www.zdrojak.cz/clanky/android-studio-nove-vyvojove-prostredi/

[108] insidebigdata.com The Exponential Growth of Data, 17. 2. 2017 online

https://insidebigdata.com/2017/02/16/the-exponential-growth-of-data

[109] Marr Bernard: Big Data: 20 Mind-Boggling Facts Everyone Must Read,

https://www.forbes.com/sites/bernardmarr/2015/09/30/big-data-20-mind-boggling-facts-

everyone-must-read/#6e7dfc7317b1 Sep 30, 2015

 209

