
CHAPTER 1 FOR THE BOOK: “ CONTEMPORARY DIDACTICS, METHODS

AND TECHNOLOGIES OF TEACHING PROGRAMMING USING

MICROLEARNING AND AUTOMATED SOURCE CODE EVALUATION ”

Microlearning and Automated Assessment - a
Framework Implementation of Dissimilar Elements to

Achieve Better Educational Outcomes

Jan Skalka

Constantine the Philosopher University in Nitra, Tr. A. Hlinku 1, 949 01 Nitra, Slovakia
jskalka@ukf.sk

Abstract. Writing the source code of programmes is currently one of the basic skills
of a modern employee. Many support systems of various levels, content and quality
have been created to support the teaching of programming. However, within educa-
tional environments, in combination with practical lessons, it has become an exciting
tool for developing the idea of gamification in learning programming. The main aim of
the article is to present architecture, current state and experience with the pilot deploy-
ment of virtual learning environment Priscilla, based on the conceptual framework for
teaching and learning programming. This environment effectively combines contem-
porary promising educational approaches, including microlearning and automatically
evaluated source codes (automated assessment). The balanced combination of these
methods allows effectively managing the time required for learning theory, applying
the obtain knowledge immediately, minimising the time for source code evaluation, and
providing immediate feedback, which is essential for learning programming.

Keywords: programming learning, education environment, VLE, microlearning, auto-
mated assessment, Priscilla.

Introduction

Writing the source code of programmes is currently one of the basic skills of a mod-
ern employee. Many support systems of various levels, content and quality have been
created to support the teaching of programming (Crow, Luxton-Reilly, & Wuensche,

2

2018). Many researchers seek to focus on the narrow field of programming as such and
explore the modern learning environment in a broader context, often in the intercon-
nection of STEM/STEAM area (Çetin & Demircan, 2020), (Smyrnova-Trybulska,
Morze, Kommers, Zuziak, & Gladun, 2017).

The research trends of the last few years are aimed at predicting success or failure
in education (Kabathova & Drlik, 2021), (Drlik & Munk, 2019). However, the most
crucial element of education is the content, form, and distribution to the student (Carlon,
Keerativoranan, & Cross, 2020). Several frameworks have been designed and imple-
mented in recent years to optimise content, distribution, and retain student attention
(Halvoník & Kapusta, 2020), (Sharma, Banati, & Bedi, 2012).

Mobile applications are gradually becoming the most important distribution channel
due to their ease of use and availability anytime and anywhere (Baldwin & Ching,
2020). The use of mobile applications in education, research in the field of personali-
sation (Moon, Do, Lee, & Choi, 2020), (Morze, Varchenko-Trotsenko, Terletska, &
Smyrnova-Trybulska, 2021), (Bartolomé, Castañeda, & Adell, 2018) and monitoring
of user behaviour (Halvoník & Kapusta, 2019) has also intensified.

The article deals with the search for an answer to whether it is possible to combine
two effective approaches in teaching programming – microlearning and automated as-
sessment. Methodologies of their use are developed in many sources, and their isolated
use is currently a frequent subject of pedagogical research. However, the combination
of both approaches is unique and represents an additional combination of obtaining
basic information and its practical use for writing programs in different programming
languages.

In addition to the design and presentation of an educational environment combining
learning in small units and tools designed for automatic evaluation of source codes, the
article also includes evaluating the perception of the environment and the educational
approaches used by students.

The article main aim of the article is to present architecture, current state, and expe-
rience with the pilot deployment of virtual learning environment Priscilla (Skalka &
Drlik, 2018), developed based on the conceptual framework for teaching and learning
programming (Skalka et al., 2021).

This environment effectively combines contemporary promising educational ap-
proaches, including microlearning (Hug, 2005) and automatically evaluated source
codes (automated assessment) (Ala-Mutka, 2005), (Fernández Alemán, 2011). The bal-
anced combination of these approaches allows effectively managing the time required
for learning theory, applying the obtain knowledge immediately, minimising the time
for source code evaluation, and providing immediate feedback, which is important for
learning programming.

The research questions are defined as follow:

 RQ1: What is the effective software architecture covering the needs of the frame-
work defined for learning and teaching programming in introductory courses.

 RQ2: How do students perceive the methods of microlearning, and how, according
to them, does it contribute to the improvement of their programming skills and
knowledge.

3

 RQ3: How do students perceive the method of automated assessment, and how, ac-
cording to them, does it contribute to the improvement of their programming skills
and knowledge.

The article has the following structure. The second part summarises information
about selected information systems for teaching programming and web portals used in
programming learning. The third part presents the introductory conceptual model and
implementation of the backend and front-end parts. This section also describes the most
important framework modules implemented in the Priscilla system. The fourth chapter
deals with studying the perception of the system by students who completed one se-
mester of study. Finally, the article concludes with a discussion, a description of the
current state and future work.

Introductory Programming Learning Environments

Despite the relatively extensive research in introductory programming courses, the
specific research focused on developing proprietary solutions used by universities is
rare. Many universities use plugins or modules implemented in Learning Management
Systems (LMS). Skalka et al. (Skalka, Drlik, & Obonya, 2019) used the LMS plugin
implemented by Rodríguez-del-Pino et al. (Rodríguez-del-Pino, Rubio-Royo, &
Hernández-Figueroa, 2012) for LMS Moodle to support automated evaluation of source
codes in the introductory programming course of Java.

The following examples of original solutions and software systems for the teaching
of programming are considered very promising.

Vesin et al. (Vesin, Mangaroska, & Giannakos, 2018), (Blažeska-Tabakovska,
Ivanović, Klašnja-Milićević, & Ivković, 2017) presented Programming Tutoring Sys-
tem (ProTuS) with a cross-platform architecture that aggregates and harmonises study
analyses from different systems and quantifies student performance through a set of
indicators. Learning is based on a combination of explanations, interactive examples,
interactive challenges and coding exercises.

Brusilovsky et al. described the use of the Python Grids System (Brusilovsky et al.,
2018) as a tool that provides access to four types of interactive tutorial content for learn-
ing Python: annotated examples, animated examples, semantic code evaluation prob-
lems, and code construction problems.

Buffardi & Edwards (Buffardi & Edwards, 2014) introduced CodeWorkout - an
online training system with course management functions. It hosts an online repository
of questions and assignments that teachers can incorporate into their courses. It also
provides tools for creating new items so that the exercises can be adapted to the class's
needs.

Many courses provided through MOOC portals such as Coursera, Edx, Udemy often
contain various types of "camps" that allow writing, running and evaluating codes, ei-
ther at the automatic level or through peer-review (Chauhan, 2014), (Johnston, 2015).

University solutions are complemented by various categories of public portals and
applications which offer free courses for the public and life-long learning. Each of them

4

is specific, often closely oriented on technically skilled students without implemented
standard didactical methodology. The simplest category of portals provides an essential
source of information, where the popular w3schools.com was chosen as a typical ex-
ample. The second category covers portals supporting the development of program-
ming skills by writing programs with the support of many programming languages.
Here it is assumed that the user already has basic knowledge and educational content is
usually not available (Hackerrank, Codewars). The next category consists of portals
providing content in the microlearning form with various types of competitions. It is
assumed that the user achieves the course goals based on internal motivation, ensured
by various competitions and strong gamification (Sololearn). The last category is rep-
resented by portals intended for the youngest users. They can replace writing code by
automatically entering entire commands or block-based language depending on their
age.

Table 1 compares the presented Priscilla portal, as a portal based on microlearning
and automated assessment with other solutions.

Table 1. Popular free web portals focused on programming learning compared with a real implemen-
tation of the presented framework by system PRISCILLA.

Portal
/ property

w
3s

ch
oo

ls
.c

om

co
d

ew
ar

s.
co

m
 /

q
ua

li
fi

ed
.io

so
lo

le
ar

n.
co

m

fr
ee

co
de

ca
m

p.
or

g

h
ac

ke
rr

an
k.

co
m

co
d

ea
ve

ng
er

s.
co

m

co
d

e.
or

g

P
R

IS
C

IL
L

A

age category teens, adults
teens,
adults

teens,
adults

teens, adults
teens,
adults

5+ 4+ teens, adults

supported lan-
guages

JavaScript,
HTML/CSS;
PHP in sim-

ple form

all lan-
guage
types

all lan-
guage
types

JavaScript,
HTML/CSS,

Python

all lan-
guage
types

JavaScript,
HTML/CSSweb
languages, Py-

thon

primary
block-based
visual pro-
gramming

all language
types

content basic - yes basic
as part
of tasks

yes
in a specific

form
complex in

microcontent

micro content - - yes - - - - yes

quizzes basic - yes - - yes - yes

automatic code
evaluation

yes yes - yes yes yes yes yes

sandbox or own
code space

yes - yes - - - -
in prepara-

tion

learning
paths/courses

basic - yes yes yes yes yes yes

competitions - yes yes - yes - - yes

gamification - yes yes - yes yes
in a specific

form
yes

teaching - yes
create

content
- - yes

in a specific
form

yes

5

In addition to the portals listed in Table 1, which offer educational content for mul-

tiple programming languages, many other portals are focused on a specific program-
ming language. Many solutions make it possible to integrate selected parts of the con-
tent into teaching or use web portals as a suitable supplement for practising educational
content.

Learning Environment Concept

Successful and sustainable implementation of the framework requires coverage of
introductory programming courses and activities intended for future educational envi-
ronment development and content development. Taking care of content updates and
creation and updating design following modern design trends can be covered by edu-
cational activities in advanced engineering courses. Students will work on the develop-
ment of an environment that they know because they studied in it the basics of pro-
gramming.

The implementation of the framework (Skalka & Drlík, 2018) defines the concept
and learning processes into independent systems preceded by the implementation in the
LMS Moodle environment (Skalka et al., 2021). Typical tests in Moodle with quiz ques-
tions of various types were used to cover the needs of microlearning. Prepared tests
consist of simple answers through the selection of options to complete the source code.
Automatic code evaluation was provided by the Virtual Programming Lab supporting
automatic source code evaluation in many programming languages (Rodríguez-del-
Pino et al., 2012).

Using Moodle during implementation has resulted in the need to address many lim-
itations and did not produce the expected results in the user interface. The most prob-
lematic places were the static structure of the course, which does not support the effi-
cient display of a large number of course objects and the complicated integration of
gamification elements into the system. Support for user activity logging and support for
learning analytics, which are the essential features of a system for understanding the
learning process, did not provide detailed information on user behaviour. It has also
been laborious for users to obtain detailed information about fixes and source improve-
ments. The ability to adapt the user's view of the educational content was low, etc.

The form of programming new modules in LMS Moodle is precisely given, and mod-
ule programmers require a thorough knowledge of the LMS system and the use of spa-
ghetti code in PHP. The complicated development has significantly reduced the poten-
tial for sustainable system development due to lower motivation and higher demands
on students in advanced programming courses.

The logical step was to create a stand-alone, fully adaptable system in-house that
primarily supports the requirements of the framework and is based on new popular and
widely used technologies.

6

Following the positive experience with microlearning activities and exercises based
on automated source code evaluation in LMS Moodle (Skalka & Drlik, 2020) and re-
quirement of conceptual design presented above and in (Skalka & Drlik, 2018), the
concept of a software architecture proposal of a system called Priscilla (PRogressIve
System for interaCtIve (programming) Learning and Learning Assistance) was de-
signed. Its structure and implementation are presented in this section.

Framework Architecture

The conceptual model of Priscilla presented in Figure 1 is structured as three-lay-
ered architecture, which contains an independent front-end part (presentation/client
module) and separate backend parts integrated into the server infrastructure. The com-
munication between front-end and backend is realised via the API interface, and par-
ticular features use web sockets.

Fig. 1. Simplified conceptual model of PRISCILLA-2.0 based on the PRISCILLA model presented in
(Skalka & Drlik, 2018).

The front-end part can be implemented as a web, mobile or desktop application. The
user's interaction with the application is fluent because the network traffic is very low
after the first application launch in a web browser.

The front-end part provides the educational content in three forms:

7

 Micro-content represents the content in the form of text, short source codes, images,
etc. This type of activity is designed as an HTML container, and the content is trans-
mitted as a package containing formatted text (headings, text, source code, images,
tables, etc.).

 Microlearning activities are interactive objects that require the user to solve simple
tasks. A typical example is filling in the correct code result, filling a gap in the code
by typing or drag-and-dropping the right parts, reordering shuffled lines of source
code, and so on. Interactive activities are combined with content activities (usually
1:1 or in favour of interactive activities) in lessons and chapters. Tasks in interactive
activities are focused on the information contained in previous content activities –
the content structure is developed concerning microlearning principles.

 Activities aimed at acquiring programming skills are focused on writing, executing
and validating the program code. The student completes the developed programs or
writes complete codes in a user-friendly editor adapted to the selected language. Af-
ter writing the code, the student sends the program to the validation system, which
evaluates its correctness. The response may contain compiler errors (syntax errors)
or code accuracy, which depends on comparing the submitted code results with the
expected results.

The front-end part allows the student to use the discussion module to communicate

with their classmates, rate the content and activities and report errors or inaccuracies in
the content. Each user's action causes a connection to the API interface and records the
action type and user identification. Many activities require an educational system re-
sponse implemented by RPC (Request-Response Protocol) using the JSON format.

Responses are generated on the backend part, which is divided into two physical and
several logical segments. Two independent systems present the physical parts:

 The educational system is implemented as a web application working with data
stored in a database system. This structure will be described later.

 The jail-system is implemented as an independent Linux system designed to verify
the source code. Because program code verification is often based on program exe-
cution, the system must be resistant to attacks, malicious code, and system errors and
must be self-healing. The Priscilla system uses the jail-server developed for the Vir-
tual programming Lab in Moodle (Rodríguez-del-Pino et al., 2012), which can eval-
uate dozens of programming languages. The jail-system creates a new temporary
user with low privileges for every task, and after reading the results, the user is re-
moved from the system. The restrictions defined for program activities are derived
from Linux user permissions.

The logical structure of the backend reflects the education system functions and the
ideas presented in the previous section. It is designed so that the individual parts cover
all the functions of the system. The parts are closely linked with each other, as activity
in one part often causes related activity in the other part. The backend has the following
components:

8

 The Content provider provides access to all educational content. The main part of
the content is divided into lessons and chapters organised in educational courses.
Extended content is intended for tests, exercises, revisions and competitions. Each
question, task or assignment is accompanied by tips, hints and correct answers or
authoring solutions of the programs. The Content provider processes the requests
from the client interface and sends the content or evaluation results. All evaluation
algorithms are implemented in the backend part to prevent hacker attacks. The User
data module is a part of the Content provider containing information about all activ-
ities, attempts, and users' results in the system. This part of the data is primarily
intended for the Learning analytics module.

 The Content and competition creation module is determined for content building.
This section is intended for administrators or content creators, and the typical user is
not authorised to use the features of this module. The module provides functions for
competitions, courses, chapters and lesson structure creating. Content, questions and
assignments can fill built elements.

 The Competition module ensures the realisation of activities aimed at testing students
(in organised education) or competitions of students with each other. It offers pre-
pared content in educational objects (matches, tests, revisions, etc.) and keeps track
of time defined for them. The module also includes the evaluation of test results as
a whole and the ordering of competitors. The structure of the questions is identical
to the items used in the learning part. Two main areas are used in competitions –
users can compete in answering questions or writing programs (rated for writing
speed, execution speed, or code effectiveness).

 The Social network module is a layer that provides task-related discussions, com-
menting, micro-object evaluation, bug reporting, and general discussion manage-
ment. Each discussion post can be evaluated (positively or negatively), and the au-
thor can get feedback, which is also used in the gamification part.

 The Gamification module monitors user activities and processes the collected data
into gamification elements. The most frequent gamification components of the
Priscilla system are badges in many categories (different types of experience with
the learning process, experience with competition, evaluation, and activities in dis-
cussions, contribution to the system, etc.). Badges are also graded according to per-
formance into several levels (bronze, silver, gold, diamond, etc.). Each action in the
system triggers event processing in the Gamification module and changes the moni-
tored user parameters.

 The Learning analytics module is designed to analyse and evaluate the user's behav-
iour and educational outcomes, identify problematic parts of the content and predict
the user's preferences and success. This module does not create new data; it only
processes the data of the Content provider and displays it based on the teacher or
administrator's defined views. The module helps to tune and optimise the parameters
of the system.

9

Backend Implementation

Typical attributes of modern software systems are permanent availability, fast pro-
cessing of many parallel requests, and orientation to the data provided through services.
Complex systems usually consist of related services that work independently and can
be developed in isolation. Increased flexibility gained by adopting paradigms such as
API-oriented architecture is associated with creating robust and complex systems
(Brosig, Huber, & Kounev, 2014). The communication between the front-end and the
backend is provided via web services. This architecture allows the development of var-
ious front-end applications: web-client, mobile application, or desktop application.

The core of the Priscilla system based on the conceptual model is implemented as a
server application developed in the PHP framework Laravel Lumen intended to develop
applications based on microservices. The current database system is MySQL. The com-
munication is realised via REST API using application/JSON format.

Fig. 2. The software structure of PRISCILLA implementation based on microservices.

The backend part of the system processes front-end requests in several layers and is
depicted in Figure 2:

 The first layer verifies the user's identity. Only the requests of the authorised and
logged-in user will be moved for further processing. Authentication is provided by
OAuth components (Ferretti, Marchetti, & Colajanni, 2017).

 The API layer identifies the request and selects the correct service to process or pro-
vide the data.

 Service is usually a single-purpose method for providing communication with a da-
tabase or simple request processing. The services can be combined and typically
write a record of the operation in a database recording the user's behaviour and re-
sults.

10

Services can be divided into three types: services for processing anonymous activi-
ties (login, registration, visits to the main page of the system, etc.), activities with pro-
gram codes that are specific and all other activities performed by the logged-in user in
the system.

Anonymous activities skip the authorisation layer and process requests directly. The
answer may also include data from the database.

Activities with automatic source code evaluation are specific because it is necessary
to ensure communication with the jail server. The communication of the application as
a whole with the jail-server is realised as follows:

 the user in the front-end asks to check the correctness of his program,
 the service invoked in the backend stores code of the delivered program into the

database and prepares the request to the jail server,
 the backend sends a request to the jail-server and, in response, immediately receives

a token representing the jail-server process executing the source code,
 the obtained token is sent as a response (to the demand of the code verification) to

the front-end,
 the front-end gets a token and opens a web-socket to the jail-server; jail-server has

meanwhile started the execution of the program delivered from backend,
 front-end reads the changes on the jail-server via the socket, and if the jail-server

reaches one of the final states (error, long program execution time, program comple-
tion, etc.), the front-end sends a request to the backend to read the results,

 the jail-server results are read by the backend service and written to the database; at
the end of the process, the service sends evaluation results to the front-end.

The process is a bit complicated due to the decrease of server load and the elimina-
tion of cheating. Direct communication with the jail-server is realised only on the
backend. The time-consuming operation of monitoring the running program's activity
on the jail-server is again implemented on the client side.

All other activities are carried out uniformly: After defining the application client's
request parameters and calling the appropriate microservice, the backend realises user
authentication, authorisation verification (user, admin), and subsequent request pro-
cessing. The standard services cover common CRUD operations, evaluation of the so-
lution's correctness, logging of activities, gamification and use of social network ele-
ments. Task evaluation is performed exclusively on the server to eliminate cheating.

The Front-end Implementation

The current version of the application's front-end part was developed in the VueJS
environment with the definition of the appearance based on the rules of Material design
of Google. The system is designed to teach many programming languages, and the
structure of the system supports their teaching in one application. The example of used
courses, languages and user interface is presented in Figure 3.

11

Language support depends primarily on language interpreters (compilers) and then
on advanced content (defined usually by content developers or teachers). Each language
has defined a default lesson path consisting of microlearning activities (tasks) and pro-
gramming tasks (code).

Fig. 3. The user's view of the dashboard and his opened courses in the PRISCILLA system.

Content Structure

The essential idea in successful introductory programming courses is to leave stu-
dents some freedom to choose the order of activities they should complete in the pro-
gramming course. The programming courses were designed following the classical ed-
ucational structures, and the order of defined chapters is in line with the didactics of
teaching programming. Still, they do not force the student to proceed linearly. Almost
every chapter contains a combination of tasks and programs, which students complete
based on their preferences. Each task can be repeated as many times as a student needs.
Students can return to the place of explanation of the issue, if necessary – the system's
goal is not to evaluate but to teach.

The basic information displayed to the student is the progress of completed questions
and submitted programs that are part of each chapter. An overview of the open course
Java - fundamental (Skalka, Benko, Boryczka, Landa, & Rodríguez-del-Pino, 2020) is
shown in Figure 4.

12

Fig. 4. User's view of the Java course content.

Each chapter displays an icon indicating whether it should be started or whether the
user should solve more tasks in the previous chapter. The recommendation is calculated
to a 50% success rate of tasks and programs in the previous chapter. No chapter is
locked; there are only recommendations, and the user can study any chapter at any time.

The panel on the right side contains information about the last completed activity in
the course, the achieved score and the amount of currency gained, and other gamifica-
tion objects.

All interactive activities are dynamically generated based on data obtained from the
backend part of the system and a standard universal template.

A combination of micro-content and micro-tasks realises the implementation of mi-
crolearning in the system. The micro-content contains brief information, and the micro-
task follows it and contains a question ensuring the repetition or consolidation of the
presented information. It is advisable to alternate micro-content and micro-tasks within
the lessons in a ratio of 1:1 or more (one content and at least one task). The specific
content of micro-content and micro-task are presented in Figure 5 and Figure 6.

13

Fig. 5. Example of micro-content in the educational system PRISCILLA.

Fig. 6. Example of micro-task in the educational system PRISCILLA.

Support for building skills in several ways is based on a combination of different
types of tasks. There are available the following task types covering the following ac-
tivities:

14

 typical domain verification tasks (short answer, choice of options),
 placing code snippets,
 supplementing the writing of commands or parts of code,
 finding the results of subroutines,
 rearranging lines of source code,
 different types of writing programs (in whole or part).

Automatic Source Code Evaluation

Exercises based on automatic source code evaluation consist of three basic types.
The most used and simplest type for the content creator automatically evaluates pro-

grams based on comparing the program's correct outputs with the outputs of the user
program (I/O approach). The definition of evaluated inputs has a typical structure com-
patible with the definition of inputs and expected results in the VPL environment
(Rodríguez-del-Pino et al., 2012). The example of test cases and their use is presented
in Figure 7 and Figure 8.

Fig. 7. Test cases definition for code that should print the number of characters in a defined string.

15

Fig. 8. The result of program code evaluation in the implementation of the presented framework in the
educational system PRISCILLA. The Execution info section shows the inputs and outputs of test cases
in which the expected and obtained values do not match.

Based on xUnit testing ideas, the second approach is typical for tasks designed to
learn object-oriented programming. It uses automated tests principles, and its imple-
mentation depends on the creators' abilities and habits. Each content creator can imple-
ment their testing methods. The easiest way is to use the xUnit libraries, where the
creator has set the tested methods and the correct outputs.

The system is also open to unique approaches. The content creator can create his
random generators for selecting a sequence of methods, selecting input values, and us-
ing the author's solution as a sample solution, with the results of which the student's
solution will be compared.

An example of a particular class used for program evaluation in the form of another
class defined in the assignment is shown in Figure 9. The definition uses an input matrix
that will be set as attributes of class instances passed by students. Each attribute and
method should be tested for random and threshold values. The user output has the same
design as the Execution info section in Figure 8.

16

Fig. 9. A simple example of a class designed to compare the results of students classes with the original
solution. The assignment was simple -- create a method for the sum of two real values. Test cases are
defined by string constants -- P (positive values), N (negative values), R (random values) and Z (zero).
The randomisation of input values minimises the risk of false positives.

The last type of automatic evaluation is a static evaluation used in any programming
language of varying complexity and difficulty. Its simple version based on content (not
structure) analysis is used, for example, in HTML courses. The idea is based on defin-
ing the rules and evaluating their fulfilment. Priscilla contains several rules that can be
used to varying degrees to validate a document (text). The rules are defined to check
the existence, position, or order of text patterns. A simple example is presented in Fig-
ure 10.

17

Fig. 10. Example of static automated evaluation of HTML program code in the implementation of the
educational system PRISCILLA. The rules are defined in the admin interface, and the user views only
a simple window after evaluation.

Learning and Teaching Support

For each task, the template provides the ability to invoke help or unlock an answer,
add a discussion post, report errors, and rate the quality of the question. The activities
dedicated to programming are extended by sending the program to evaluate and display
compiler messages or test results. The views of activities are presented in Figure 11.

 (a)

18

 (b)
Fig. 11. Functions implemented in interactive (a) and programming (b) activities. There are shared
functions on the header toolbar -- get help, buy the correct answer and in the program activity:
show/hide the compiler message and show/hide the execution information. The footer of each activity
contains icons for rating assignments, bug reports, and discussion views.

The user interface for competitions (test, revisions etc.) uses the same templates and
activity types, but the time to prepare answers for tasks and programs is limited. After
the set time has elapsed, all the tasks (including unfinished ones) are automatically sub-
mitted and evaluated.

The educational environment includes gamification tools – levelling, awarding
badges, rewarding selected activities and rankings for individual courses or program-
ming languages.

A teacher role has been created in the Priscilla system to support the use of blended
activities. This role can be acquired by any user who sets up a study group, where the
students join by the key. The teacher has permission to monitor students activity and
results in his group, and he can participate in solving course activities.

Fig. 12. Monitoring of student activities in teacher defined groups.

19

Students' Perception of the Elements of the Priscilla System

Priscilla was first deployed in the winter semester of 2020/2021 as the primary
teaching tool for Java courses and a complementary database and SQL learning tool.
Other courses were used to support additional activities in the voluntary preparation of
students.

The research focused on the perception of elements of the system by students was
carried out after the end of the semester. Answers of the Java course students were
collected not anonymously to find dependency between students results and their per-
ception of the educational process. The questionnaire was focused comprehensively,
the coverage of the topics of lessons by micro-content and automatically evaluated pro-
grams was identified. A series of similar questions focused on perception by students
was devoted to individual elements of the environment.

The questionnaire respondents were students of the first year of the study program
of applied informatics aged 20-23 years.

Table 2 presents the perceptions of micro-lessons by students. The course content
was created to evenly cover all the topics covered in the introductory course of pro-
gramming. The perception of the compliance of the content of micro-lessons and lec-
tures realised in 2020 in online form expresses mastery and understanding of content
by students. If students perceive that the taught and the practised content are the same,
they are likely to understand the context or at least paid sufficient attention to the con-
tent. The first question in the questionnaire finds out this fact.

The second group of questions focuses on identifying the role of micro-content
through the Likert scale. The role of micro-content is expressed in questions at different
levels:

 Micro-content and micro-questions helped students understand the curriculum.
 Micro-content and micro-questions helped students practice previously understood

curriculum content.
 Micro-content helped students with a comprehensive mastery of the curriculum - the

student used it as a primary source of learning.

Table 2. Perceptions of micro-lessons by students in the winter semester of 2020/2021.

question
1

(disagree)

2 3 4 5 6 7
(agree)

compliance of micro-lessons and lectures 4 0 2 9 8 27 25

help to understand 3 0 7 11 13 21 20

practice understood content 3 2 4 8 11 23 24

primary source of learning 2 4 5 17 16 17 14

It can be observed that majority of students perceived microlearning positively to

very positively.

20

Table 3 presents the perceptions of automated assessment by students. The most
important characteristics of educational content are students understanding and the
teacher's (or course creator's) ability to assign a task clearly and accurately. The first
question focuses on identifying the unambiguity and comprehensibility of the assign-
ment.

The following questions focus on identifying the role of automated assessment
through the Likert scale again. The roles of automated assessment were expressed at
two levels:

 The automated assessment helped students understand the curriculum.
 The automated assessment helped students practice previously understood content.

The majority of respondents perceived automated assessment positively.

Table 3. Perceptions of automated assessment by students in the winter semester of 2020/2021.

question
1

(disagree)

2 3 4 5 6 7
(agree)

clarity and accuracy of assignments 4 2 8 15 18 18 10

help to understand 3 1 6 9 16 17 23

practice understood content 4 0 2 10 13 22 24

The results of two continuous tests aimed at identifying students' ability to write

entire programs independently were used to inspect the relationship between students'
answers and their learning outcomes. The maximum score of this pair of tests was 1000
points (500 per test). The histogram in Figure 13 presents the distribution of the results.
Questionnaire respondents who were evaluated in a different way (external study) were
omitted from the sample.

Fig. 13. Histogram of student test results.

21

The correlations between students' results and the answers to the questionnaire ques-
tions are presented in Table 4. The dependence was identified using the Pearson corre-
lation coefficient.

Table 4. Correlations between student results and questionnaire questions.

activity/questions Pearson correlation coefficient

compliance of micro-lessons and lectures 0.22

micro-lessons helped to understand 0.17

micro-lessons helped to practice the understood content 0.12

micro-lessons were a primary source of learning 0.01

clarity and accuracy of assignments in automated assessment 0.26

the automated assessment helped to understand 0.35

the automated assessment helped practice understood content 0.26

The dependence between characteristics is proven in the case of a value greater than

0.4. The evaluation results demonstrate that there is no dependence between the results
of students and their perception of individual types of educational objects.

Discussion

The answers to the research questions can be summarised as follows

 RQ1: What is the effective software architecture covering the needs of the frame-
work defined for learning and teaching programming in introductory courses.

The software architecture was designed to be able to cover the needs of the frame-
work defined in (Skalka & Drlik, 2018) and at the same time bring a user and research
design that is better than its implementation presented in (Skalka et al., 2021). The es-
sential feature of the system is open to any front-end implementations covering the
creation of the web, mobile and desktop applications on the same backend kernel.

The functionality of the backend kernel ensures the control of responses and the
evaluation of source codes. This approach is standard, implemented in several similar
systems (Chen, Chen, & Lee, 2018), (Silva, Hak, & Winckler, 2017) and, thanks to its
isolation from user activities on the front end, also relatively secure (Liebenberg &
Jarke, 2020).

Based on conceptual framework ideas, the presented system covers an educational
concept implemented as an essential tool for teaching programming at five European
universities. The educational system is used to cover the first framework phases defined
for building knowledge and skills. Priscilla provides an environment to offer content
availability, instant feedback in all types of assignments, the ability to communicate
between users, and the support of a full-time study of learning programming.

22

It covers many activities needed to educate programmers at novice levels. There are
24 courses in 8 languages implemented to cover Java, Python, C, HTML, CSS, JavaS-
cript, PHP and SQL. Every course is localised into English, Spanish, Slovak, Czech
and Polish languages.

Currently, the system has about 1500 unique active users, so it can be concluded that
the proposed concept is functional and successful.

 RQ2: How do students perceive the methods of microlearning, and how, according
to them, does it contribute to the improvement of their programming skills and
knowledge.

 RQ3: How do students perceive the method of automated assessment, and how, ac-
cording to them, does it contribute to the improvement of their programming skills
and knowledge.

A pair of research questions were answered through a questionnaire with the follow-
ing results based on the evaluation of the feedback obtained after the end of the semester
on a sample of 75 first-year students. It can be stated that:

 micro-lessons help students understand new content and are sufficient for 72% of
students as a basic source of information, 13% disagree with this statement,

 77% of respondents say that microlearning helped them practice educational con-
tent, and 12% are negative about the claim,

 63% of students can accept micro-lessons as the primary source of information
when learning programming, 15% disagree with the statement,

 automated assessments help students understand new content for 75% of students,
13% disagree with this statement,

 automated assessments help students practice content and are sufficient for 79% of
students, 8% disagree with this statement,

The dependence between students' educational results and their perception of micro-
content and automated assessment has not been proven. This finding is quite important
because it does not favour micro-lessons or automated assessment only for a selected
group of students. Statistically, students with better and students with weaker results
perceive it in the same way.

Conclusion and future work

The next phases of students' education focus on developing advanced skills and
knowledge use the education system as an environment whose content and modules can
students develop. As part of the verification of the framework concept, the following
activities will be implemented in the next part of their study:

 Students will be involved in creating new questions and tasks after completing the
introductory courses. Creating new assignments expands the educational content

23

provided by the system. Discussion and analysis of new content will create an area
for students better to understand the relationships between elements of their acquired
knowledge. Self-expression skills and skills for building code and writing test clas-
ses or scripts will also be improved. This activity will be covered by students' obli-
gation to create new tasks and provide tools for their verification within the advanced
subjects dedicated to application development. Feedback and quality evaluation of
the new elements will be provided on two levels. The first level will be covered by
user evaluation, which is a part of all micro-units. It will be a subjective part of the
evaluation. The evaluation's objective aspect will be realised by learning analytics
tools, which can identify outliers from students' average results for individual types
of tasks. If students' success in newly added assignments is significantly higher or
significantly lower than the average of works of the same type and level, the assign-
ment will be replaced or removed from the system.

 Involving advanced students in discussions on tasks in introductory programming
courses will be a versatile benefit. First, it relieves teachers of the tedious work of
answering elementary questions and allows them to tackle more complex tasks. It
will bring advanced students new experience from working with less experienced
colleagues and ensure their communication skills and patience. Simultaneously, ad-
vanced students will learn to accept criticism in case of inconsistent or inaccurate
answers. We also anticipate developing relationships between groups of students,
which may be used later in study or work for team building. Finally, the benefit for
novices will be to get the answer to the question faster, often in a language that is
closer to that of the students' generation than to the teachers' generation.

The final part of the framework is focused on mastering the development environ-
ments used by employers and building soft skills in general.

 The most challenging task in the advanced phases defined by the framework is to
create new types of activities in the system. A prerequisite for implementing new
tasks is a mastery of the technologies by which the system is built. Therefore, stu-
dents will not create new activities at the beginning of specialised courses but later -
- after completing a set of school tasks and at least one complex project. It is assumed
that students who complete their education in an educational environment and create
content for younger colleagues know the system appropriately. Knowledge of the
system functionalities is the first condition for the possibility of its development. In
parallel, the possibility of using students' creativity in designing completely new
types of activities will be utilised not only for programming but also for other areas
forming IT professionals' skills and knowledge (mathematics, artificial intelligence,
etc.).

 Developing new applications or upgrading applications to new, more modern envi-
ronments that will gain a foothold in the application development market in the fu-
ture is a complex task that requires the involvement of development teams. As part
of IT specialists training, courses devoted to team cooperation and communication
or leadership skills are usually part of the study. These courses content will be up-
dated and extended by tasks supporting the implemented system's upgrade and de-
velopment. The tasks will be focused on advancing the existing functionalities to a

24

newer environment or building partial applications using the deployed system's
backend infrastructure (e.g., C language lessons, 30 days with Java language). Mo-
bile, web or desktop applications can be created – communication with the backend
via the API interface will enable any technology communicating via the HTTP pro-
tocol. An alternative design of mobile and web applications has great potential in
educational activities in developing new types of activities. Students gain knowledge
and practical skills in developing applications in the real world with immediate feed-
back from users.

Implementing the model and the system described creates a space for further re-
search and verification of many educational theories focused on and verified only
within the isolated teaching programming problems. It can be assumed that successful
implementation will increase the quality of training of IT specialists.

One of the most important educational system goals is identifying problem students
and the early detection of the risk of early course (or study) termination. Therefore, a
goal in the near future is to implement algorithms that can detect this group of students
and then implement functions and modules that will allow them to overcome the unfa-
vourable situation.

Integration with other education systems and collecting data through other education
systems to gain a more accurate and detailed view of the student have been developed
and described in (Drlík et al., 2017), (Skalka, Drlik, Obonya, & Capay, 2020).

Some ideas for future research based on natural language processing (NLP) focused
on automation and artificial intelligence functions have been published in (Skalka,
2018). A valuable technique for preparing new lessons from complex content (e.g.,
book, articles) is a summary that analyses the content and chooses essential infor-
mation. The summary techniques can extract whole sentences or unit information from
the text, which will become the basis of microlessons or questions. Elements of NLP
will create coherent sentences, enabling the generation of meaningful content.

Another logical direction from the collected content is feedback generation for pro-
gram errors (syntactic and semantic). It is possible to categorise the mistakes and iden-
tify the reasons for errors using machine learning methods (Keuning, Jeuring, &
Heeren, 2018). The data for categorisation is obtained from the submitted correct and
incorrect source codes. Submitted source code with errors can be classified, and the
system will guide students in correcting the code.

Another exciting element is implementing question-answering methods enabling an-
swer generation based on the educational content, via, for example, questions posted to
the student's discussion.

Integrating these ideas requires developing additional software modules based on
artificial intelligence tools and prepared and optimised content.

Acknowledgements

This research was funded by European Commission under the ERASMUS+ Programme 2018,
KA2, grant number: 2018-1-SK01-KA203-046382 "Work-Based Learning in Future IT Professionals
Education", Ministry of Education of Slovakia, grant number 004UKF-2-1/2021 “Preparation and de-
velopment of teaching courses in English with a focus on artificial intelligence in the form of blended-

25

learning”, and Ministry of Education of Slovakia, grant number: 2020/8148:34-A1101 “Support for
the development of practical skills of UKF students in Nitra”.

References

Ala-Mutka, K. M. (2005). A survey of automated assessment approaches for programming assignments.

Computer Science Education, 15(2). Retrieved from https://doi.org/10.1080/08993400500150747

Baldwin, S. J., & Ching, Y. H. (2020). Guidelines for Designing Online Courses for Mobile Devices.

TechTrends, 64(3). Retrieved from https://doi.org/10.1007/s11528-019-00463-6

Bartolomé, A., Castañeda, L., & Adell, J. (2018). Personalisation in educational technology: the absence of

underlying pedagogies. International Journal of Educational Technology in Higher Education, 15(1).

Retrieved from https://doi.org/10.1186/s41239-018-0095-0

Blažeska-Tabakovska, N., Ivanović, M., Klašnja-Milićević, A., & Ivković, J. (2017). Comparison of E-

learning personalization systems: Protus and PLeMSys. International Journal of Emerging

Technologies in Learning, 12(1). Retrieved from https://doi.org/10.3991/ijet.v12i01.6085

Brosig, F., Huber, N., & Kounev, S. (2014). Architecture-level software performance abstractions for online

performance prediction. Science of Computer Programming, 90(PART B). Retrieved from

https://doi.org/10.1016/j.scico.2013.06.004

Brusilovsky, P., Malmi, L., Hosseini, R., Guerra, J., Sirkiä, T., & Pollari-Malmi, K. (2018). An integrated

practice system for learning programming in Python: design and evaluation. Research and Practice

in Technology Enhanced Learning, 13(1). Retrieved from https://doi.org/10.1186/s41039-018-0085-

9

Buffardi, K., & Edwards, S. H. (2014). Introducing CodeWorkout. Retrieved from

https://doi.org/10.1145/2538862.2544317

Carlon, M. K. J., Keerativoranan, N., & Cross, J. S. (2020). Content Type Distribution and Readability of

MOOCs. In L@S 2020 - Proceedings of the 7th ACM Conference on Learning @ Scale. Retrieved

from https://doi.org/10.1145/3386527.3405950

Çetin, M., & Demircan, H. Ö. (2020). Empowering technology and engineering for STEM education through

programming robots: a systematic literature review. Early Child Development and Care. Retrieved

from https://doi.org/10.1080/03004430.2018.1534844

Chauhan, A. (2014). Massive Open Online Courses (MOOCS): Emerging trends in assessment and

accreditation. Digital Education Review. Retrieved from https://doi.org/10.1344/der.2014.25.7-17

Chen, H. M., Chen, W. H., & Lee, C. C. (2018). An automated assessment system for analysis of coding

convention violations in Java programming assignments*. Journal of Information Science and

Engineering, 34(5). Retrieved from https://doi.org/10.6688/JISE.201809_34(5).0006

Crow, T., Luxton-Reilly, A., & Wuensche, B. (2018). Intelligent Tutoring Systems for Programming

Education: A Systematic Review. In ACM International Conference Proceeding Series. Retrieved

from https://doi.org/10.1145/3160489.3160492

Drlik, M., & Munk, M. (2019). Understanding time-based trends in stakeholders’ choice of learning activity

type using predictive models. IEEE Access, 7. Retrieved from

https://doi.org/10.1109/ACCESS.2018.2887057

Drlík, M., Švec, P., Kapusta, J., Munk, M., Noskova, T., Pavlova, T., … Smyrnova-Trybulska, E. (2017).

Identification of differences in university e-environment between selected EU and non-EU countries

26

using knowledge mining methods: Project IRNet case study. International Journal of Web Based

Communities, 13(2). Retrieved from https://doi.org/10.1504/IJWBC.2017.084416

Fernández Alemán, J. L. (2011). Automated assessment in a programming tools course. IEEE Transactions

on Education, 54(4). Retrieved from https://doi.org/10.1109/TE.2010.2098442

Ferretti, L., Marchetti, M., & Colajanni, M. (2017). Verifiable Delegated Authorization for User-Centric

Architectures and an OAuth2 Implementation. In Proceedings - International Computer Software and

Applications Conference (Vol. 2). Retrieved from https://doi.org/10.1109/COMPSAC.2017.260

Halvoník, D., & Kapusta, J. (2019). Identifying problematic e-courses content based on students behaviour.

In Lecture Notes in Electrical Engineering (Vol. 489). Retrieved from https://doi.org/10.1007/978-3-

319-75605-9_27

Halvoník, D., & Kapusta, J. (2020). Framework for e-learning materials optimization. International Journal

of Emerging Technologies in Learning, 15(11). Retrieved from

https://doi.org/10.3991/IJET.V15I11.12721

Hug, T. (2005). Microlearning : A New Pedagogical Challenge. In Proceedings of Microlearning Conference

2005.

Johnston, T. (2015). Lessons from Moocs: Video Lectures and Peer Assessment. Academy of Educational

Leadership Journal, 19(2).

Kabathova, J., & Drlik, M. (2021). Towards predicting student’s dropout in university courses using different

machine learning techniques. Applied Sciences (Switzerland), 11(7). Retrieved from

https://doi.org/10.3390/app11073130

Keuning, H., Jeuring, J., & Heeren, B. (2018). A systematic literature review of automated feedback

generation for programming exercises. ACM Transactions on Computing Education, 19(1). Retrieved

from https://doi.org/10.1145/3231711

Liebenberg, M., & Jarke, M. (2020). Information Systems Engineering with Digital Shadows: Concept and

Case Studies: An Exploratory Paper. In Lecture Notes in Computer Science (including subseries

Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (Vol. 12127 LNCS).

Retrieved from https://doi.org/10.1007/978-3-030-49435-3_5

Moon, J., Do, J., Lee, D., & Choi, G. W. (2020). A conceptual framework for teaching computational thinking

in personalized OERs. Smart Learning Environments, 7(1). Retrieved from

https://doi.org/10.1186/s40561-019-0108-z

Morze, N., Varchenko-Trotsenko, L., Terletska, T., & Smyrnova-Trybulska, E. (2021). Implementation of

adaptive learning at higher education institutions by means of Moodle LMS. In Journal of Physics:

Conference Series (Vol. 1840). Retrieved from https://doi.org/10.1088/1742-6596/1840/1/012062

Rodríguez-del-Pino, J. C., Rubio-Royo, E., & Hernández-Figueroa, Z. (2012). A Virtual Programming Lab

for Moodle with automatic assessment and anti-plagiarism features. Conference on E-Learning, e-

Business, Entreprise Information Systems, & e-Government.

Sharma, R., Banati, H., & Bedi, P. (2012). Adaptive content sequencing for e-learning courses using ant

colony optimization. In Advances in Intelligent and Soft Computing (Vol. 131 AISC). Retrieved from

https://doi.org/10.1007/978-81-322-0491-6_53

Silva, T. R., Hak, J. L., & Winckler, M. (2017). A Behavior-Based Ontology for Supporting Automated

Assessment of Interactive Systems. In Proceedings - IEEE 11th International Conference on

Semantic Computing, ICSC 2017. Retrieved from https://doi.org/10.1109/ICSC.2017.73

Skalka, J. (2018). Data processing methods in the development of the microlearning-based framework for

teaching programming languages. DIVAI 2018: 12TH INTERNATIONAL SCIENTIFIC

CONFERENCE ON DISTANCE LEARNING IN APPLIED INFORMATICS. Retrieved from

27

https://publons.com/publon/18895954/

Skalka, J., Benko, Ľ., Boryczka, M., Landa, J., & Rodríguez-del-Pino, J. C. (2020). Java fundamental. Java

fundamental. Retrieved from https://doi.org/10.17846/2020-java1

Skalka, J., & Drlik, M. (2018). Priscilla - Proposal of System Architecture for Programming Learning and

Teaching Environment. IEEE International Conference on Application of Information and

Communication Technologies. Retrieved from https://publons.com/publon/27387754/

Skalka, J., & Drlik, M. (2020). Automated assessment and microlearning units as predictors of at-risk

students and students’ outcomes in the introductory programming courses. Applied Sciences

(Switzerland), 10(13). Retrieved from https://doi.org/10.3390/app10134566

Skalka, J., & Drlík, M. (2018). Conceptual framework of microlearning-based training mobile application

for improving programming skills. Advances in Intelligent Systems and Computing (Vol. 725).

Retrieved from https://doi.org/10.1007/978-3-319-75175-7_22

Skalka, J., Drlik, M., Benko, L., Kapusta, J., Del Pino, J. C. R., Smyrnova-Trybulska, E., … Turcinek, P.

(2021). Conceptual framework for programming skills development based on microlearning and

automated source code evaluation in virtual learning environment. Sustainability (Switzerland), 13(6).

Retrieved from https://doi.org/10.3390/su13063293

Skalka, J., Drlik, M., & Obonya, J. (2019). Automated Assessment in Learning and Teaching Programming

Languages using Virtual Learning Environment. PROCEEDINGS OF IEEE GLOBAL

ENGINEERING EDUCATION CONFERENCE (EDUCON2017). Retrieved from

https://doi.org/10.1109/EDUCON.2019.8725127

Skalka, J., Drlik, M., Obonya, J., & Capay, M. (2020). Architecture proposal for micro-learning application

for learning and teaching programming courses. In IEEE Global Engineering Education Conference,

EDUCON (Vol. 2020-April). Retrieved from https://doi.org/10.1109/EDUCON45650.2020.9125407

Smyrnova-Trybulska, E., Morze, N., Kommers, P., Zuziak, W., & Gladun, M. (2017). Selected aspects and

conditions of the use of robots in STEM education for young learners as viewed by teachers and

students. Interactive Technology and Smart Education, 14(4). Retrieved from

https://doi.org/10.1108/ITSE-04-2017-0024

Vesin, B., Mangaroska, K., & Giannakos, M. (2018). Learning in smart environments: user-centered design

and analytics of an adaptive learning system. Smart Learning Environments, 5(1). Retrieved from

https://doi.org/10.1186/s40561-018-0071-0

