
1

CHAPTER 9 FOR THE BOOK: “ CONTEMPORARY DIDACTICS, METHODS

AND TECHNOLOGIES OF TEACHING PROGRAMMING USING MICROLE-

ARNING AND AUTOMATED SOURCE CODE EVALUATION”

A comprehensive discussion of emerging Automatic
Programming Assessment in Learning Management

Systems: the VPL example

Juan Carlos Rodríguez-del-Pino, Zenón J. Hernández-Figueroa, María Dolores
Afonso Suárez, José Daniel González Domínguez

Department of Informatics and Systems, University of Las Palmas de Gran Canaria, 30, 35001
Las Palmas de Gran Canaria, Spain

jc.rodriguezdelpino@ulpgc.es, zenon.hernandez@ulpgc.es, marilola.afonso@ulpgc.es, joseda-
niel.gonzalez@ulpgc.es

Abstract.

Programming assessment is an especially costly task to develop in computer pro-

gramming subjects, which are present in a wide variety of curricula, at all educational
levels. This chapter introduces the currently more used approaches to Automatic Pro-
gramming Assessment Systems (APAS) and their features. Starting with the explana-
tion of these types of systems' design and the role of the actors involved; the core section
focuses on Programming Assessment within Learning Management Systems (LMS);
and finally, the adaptation of Unit Testing Frameworks to this ecosystem is shown,
illustrated with the example of three different approaches: ProFormA, the Grenoble
University Approach and the University of Las Palmas de Gran Canaria Approach.

Keywords: Automatic programming assessment, Programming assessment frame-
works, Programming assessment, Computer-aided learning.

2

Introduction

Computer programming is a subject present in a wide variety of curricula, not only
in higher education, but at all educational levels. Programming assessment is an espe-
cially costly task since different correct solutions may vary substantially from each
other in terms of the involved logic constructions. Manual evaluation of these solutions
could be a long and tedious process, especially if the size of the classes in the code is
large. Large-size classes usually require the intervention of several evaluators, which
could produce inconsistency and heterogeneity in mark grades, especially when assess-
ment criteria and rubrics are not strictly stablished. As Tharmaseelan (Tharmaseelan,
Manathunga, Reyal, Kasthurirathna, & Thurairasa, 2021) says, the automation of eval-
uation has the intrinsic value of "provide consistency and standardization across the
mark distribution especially in large classes where multiple human-markers are in-
volved". Thus, from the perspective of the programming teacher, the main motivation
for using automatic assessment tools is to make the assessment feasible and accurate.

From the students' point of view, the main benefit of automatic evaluation is that
feedback from their results is faster than when the evaluation is manual and is usually
accompanied by the possibility of reworking successive submissions to improve those
results. In this sense, there are studies (Chen, Nguyen, Yan, & Dow, 2020) that suggest
the convenience of limiting the number of allowed resubmissions, to avoid students
ending up solving their problems by a trial-and-error system supported by automatic
evaluation, instead of implementing the tests to make sure the code they have writen
works correctly.

Automated Programming Assessment Systems

An Automated Programming Assessment System (APAS) involves, at least, three
legitim actors (Teacher/Evaluator, Student/Learner, and APAS Developer), plus a non-
legitim one (Student/Cheater), as Fig. 1 shows. Each actor has different needs and in-
terests. Furthermore, actually, each actor can be considered a set of diverse persons
with the same role but not the same interests-skills. There are also entities, and relation-
ships to consider. The entities are tasks description, tests, submissions/drafts, feedback,
marks, and the APAS that includes test frameworks. Relationships are between actors
an entities: teachers/evaluators write tasks descriptions and develop tests for a specific
test framework or APAS. Students read the task description and submit a proposal of
solution that the APAS assess using the tests. The APAS generate a report that may
content feedback and marks. The cheating student tries to get an unfair mark or other
benefits by sending manipulated submissions to the APAS. The APAS developer tries
to get the best system for teachers and allows the best assessment and feedback to stu-
dents and avoiding unfair use by cheaters.

3

Teachers/Evaluators

Teachers use APAS to improve the student´s learning process for students and re-
duce the evaluation time. In this context, they develop programming activities to sup-
port different teaching approaches. Teachers may range from a basic school instructor
to a university professor, all of them with different skills to develop automated assess-
ment activities. Not all types of APA Systems are suitable for the skills of all teachers.
For example, not all teachers of the basic school can write tests using a xUnit frame-
work. The teacher may or not be an evaluator, but if the teacher and the evaluator are
different persons, they must work in close coordination, that is why we have identified
them as the single actor Teacher/Evaluator.

Fig. 1. Actors, entities and relationships on an Automated Programming Assessment System.

The roles of the Teacher/Evaluator are to design the automatic assessment and to
check its proposed results. The teacher/evaluator must write a full description of the
task to be solved and build the proper tests to assess it. Based on our experience of more
than twenty years developing an APAS and using it as evaluators, we think that the best
way to design the evaluation is by applying what we call "Test-Driven Assessment",
due to its similarity to the well-known "Test-Driven Development" used in software
engineering. First, the Teacher/Evaluator must know what kind of automatic assess-
ment the APAS allows. Techniques for program assessment are usually divided into
two types: static and dynamic (Ala-Mutka, 2005). Static assessment is carried out by
analysing the software code without running it. It could be useful for syntax error dis-
covery, style analysis, software metrics evaluation, plagiarism detection, and more
(Rahman & Nordin, 2007). Dynamic assessment, on the other hand, implies the execu-
tion of the code using a set of test cases to detect malfunctioning and possibly also
determine its efficiency. Some systems allow combining both types of assessment.

4

The Teacher/Evaluator must know the APAS’ limitations. Notice that not all types
of APAS can test all types of programing tasks. For example, a teacher can write a task
description asking the student to build a recursive solution for a problem, but not all
APA Systems or test frameworks can check if the code uses recursion.

The Teacher/Evaluator must build assessment tests accordingly to the features and
limitatios of the available APAS, must formulate the task requirements accordingly to
the tests, and must write the task description to make those requirements clear for the
proper functioning of the assessment.

Students

The students form a heterogeneous group that face each programming task differ-
ently due to the different abilities required to resolve it. Some students can resolve cor-
rectly the task with no help, and others may be facing an unsolvable problem according
to their current programming skills. With the correct task description and proper feed-
back during the development, many of the students may improve their programming
skills and successfully pass the task. The target of many of the students is to learn and
improve their skills, but others may have as a primary target to pass the task. Anyway,
almost all of them want to pass the task within the minimum possible time.

The Student/Learner needs formative feedback to improve his learning and the
Teacher/Evaluator must include such feedback in a suitable way to the student. The
feedback provided should consider the student profile; a novice, the first-course student
does not require the same as a student following an advancing programming course.
The type and complexity of the task to solve is another factor to consider, and, overall,
the Teacher/Evaluator must know the different types of feedback that he must provide.
For example, Keuning (Keuning, Jeuring, & Heeren, 2018) lists 5 types of elaborate
feedback components: Knowledge about task constrains, Knowledge about concepts,
Knowledge about mistakes, Knowledge about how to proceed, and Knowledge about
meta-cognition.

Some students sometimes turn into cheaters. The Student/Cheater is a type of learner
that, for different reasons as lack of skills, short time to solve tasks, social or economic
environment pressures, or enjoy cheating among others tries to pass the task without
resolving the problem. The other actors that participate in the learning process must be
aware of this type of student; not only for trying to get an unfair grade but also for the
effect that this can have on the rest of the students.

APAS Developer

 The APA developer must be in coordination with developers of other related system
features that can include the management of task description, tests definitions, submis-
sions, reports, integration with LMS, etc. However, the main coordination is with the

5

teachers/evaluator because the main feature of APAS is to run the tests developed by
evaluators for a specific submission.

Controlling the use of resources

A common feature of all APAS is to control de resources used by the tests process.
The types of resources to control may be CPU time, memory used, the number of pro-
cesses, the disk used, the network bandwidth used, etc. If the APAS has no limit of
resources for running tests, the type of test may be limited to static ones that do not run
student code. Run student's code without resource limits may lead to exhaust some of
the resources and the affected machine become unusable due to being unavailable or
low throughput. The developer must offer the evaluator a way to set the limit of re-
sources that needs each test, especially if run the student's code. It may be appropriate
to have a default value for not established limits by evaluators.

Defining tests and feedback

The APAS must provide a way to define the tests for the student's code. The types
of tests may range from a specific test framework that commonly is or mimics a gen-
eral-purpose test framework, for example, JUnit to a specific language for describing
tests. The election of this feature must be coordinated with evaluators.

Commonly a test represents a set of tests cases. Each test case tries to check if the
student program passes a specification of the problem or of the code. To generate a
proper report for students, when the tests case fails the system adds default information
to the feedback; also, the test case definition may contain text that the system adds to
the feedback. This text may show the data of the test case, hints to pass the test, where
the student can get information to resolve the problem found, etc.

Security

The APAS as all types of software must consider security as a high priority requisite.
Notice that cheaters may have a strong motivation to get an unfair benefice and that
cheaters are learning aspects of computer science that can give knowledge of how to
attack a system, also the cheater can know peers that can help to prepare an attack. The
systems that host the APAS commonly connect to a network. Then the attacker can
have two vectors of attack and two targets. The vectors of attack are the network and
the student's code. The targets may be the host system and the APA system itself. Pos-
sible path of attack can see in Fig.. 2.

6

Fig. 2. Cheater attacks.

The system administrators can palliate attacks against the host system using the net-
work with common measures used on other systems connected to networks. The APAS
developers can palliate attacks using the network with a proper authentication system
from the evaluation requester to the APAS. The APAS developers can reduce attacks
to the host system using an isolation approach of the tests executions. The APAS de-
velopers and evaluators can mitigate attacks on APAs using student's code with the
correct APA design and the proper use of the test definition by the evaluator. For ex-
ample, in this last case, an evaluator can write test cases that inform the student of the
details of the case fails with valued used and the expected result. This is common prac-
tice because if not the student can be frustrated with unknown fails. If the system allows
repeated submissions, a cheater con passes the tests cases with a simple program with
a sequence of "if known value return expected result" obtained from the failed cases.
To resolve this attack the evaluator must write test cases of the same "class of equiva-
lence" that does not give the values used and expected, and only inform of the type of
failed case. The use of a submission versioning system and a proper log of all run tests
can help to found attacks using student's code.

Existing solutions for Automatic Assessment in LMS

Several Automated Programming Assessment Systems (APAS) exist (Christian &
Bhushan, 2016) (Keuning, Jeuring, & Heeren, 2018), but many of them have been de-
veloped and used in a research context, are not publicly available, or have been aban-
doned once the research comes to an end. Among them, and from our own perspective
and experience, the most valuables are those which are integrated into a Learning man-
agement System (LMS). A LMS usually provides a full ecosystem of modules for
teaching and learning activities as well as a grading system capable of combining marks
from many of those activities. An automated programming assessment tool could be
integrated into an LMS as an activity module and could beneficiate from the interaction
with the background provided by such a system, simultaneously contributing to the
overall learning design.

Currently, there are a variety of available LMS, some of them proprietaries as Black-
board and Brightspace D2L, and others open source as Moodle, Canvas, and Sakay.

7

Fig. 3. Spring 2017 Market Share: Higher Ed LMS in 4 Global Regions

As can be seen from Fig. 3 (Hill, 2017), in 2017 Moodle was the dominant LMS at
degree-granting institutions in Europe, Latin America, and Oceania, and the second one
in North America.

To the best of our knowledge and among the first 30 items (sorted by relevance)
returned by a search1 in the Moodle Plugin Directory using the terms "computer pro-
gramming learning automated assessment" (without quotation marks) we found that
three of them were really related to the automated assessment of programming code.
The first one was "Virtual Programming Lab" (VPL) 2, described as "an activity module
to manage programming assignments". At the time of the search, it was being used in,
at least 1725 sites, and had 5000 downloads in the last previous 90 days as Fig. 4
shows.

1 realized 07/28/2021
2 https://moodle.org/plugins/mod_vpl

8

Fig. 4. Top plugin downloads in Moodle in the last 12 months (07/26//2021)

The second one was "ProFormA Programming Task" 3, described as "Quiz question
type for automatically graded programming questions". At the time of the search, it was
being used in, at least 50 sites, and had 81 downloads in the last previous 90 days.

The third one was "Source-code Plagiarism Plugin" 4, described as "A plugin inte-
grating 2 source code detection engines MOSS and JPlag into Moodle for programming
assignments", but, although plagiarism is a topic related to assessment, obviously this
is not a plugin for full-automated assessment. At the time of the search, it was being
used in, at least 8 sites, and had 19 downloads in the last previous 90 days.

Within the first 60 items we find two more. The fourth one was CodeRunner, de-
scribed as "A question type that allows question authors to set programming questions
in which the student answer is code in some programming language". This plugin has
around 1430 downloads in last 90 days and is installed in 2002 sites around the world.

The last related plugin was VPL Question described as "VPL Questions are ques-
tions that can fit within a Moodle quiz. They are intended to create small to medium
coding exercises, based on the Virtual Programming Lab plugin". This new Quiz plugin
developed at the university of Grenoble has 139 downloads in the last three months and
is installed in 210 Moodle sites.

Table 1. Detail of programming related Moodle plugins

plugin type downloads sites likes
VPL Activity >5000 1725 102
ProFormA Question 76 50 8
CodeRunner Question >1000 2002 89
VPL Question Question 140 210 19

3 https://moodle.org/plugins/qtype_proforma
4 https://moodle.org/plugins/plagiarism_programming

9

VPL seems to be the dominant activity plugin in Moodle for managing programming
assignments, including assessment, although its short description on the plugin homep-
age is a bit scant about it. As of the date of the search, it was ranked 12th in the top 20
global Moodle plugin downloads (Figure 4). VPL supports software development, from
edition to running, debugging, and assessing, in several languages. Currently, it is dis-
tributed with support for Ada, C, C++, C#, D, Erlang, FORTRAN, Go, Groovy,
Haskell, Java, JavaScript, Kotlin, MIPS, Lua, Octave, Pascal, Perl, PHP, Prolog, Py-
thon, R, Ruby, Scala, Scheme, SQL, and VHDL, but it is designed to be language-
independent, and any user could install support for other languages (Rodríguez-del-
Pino, Rubio-Royo, & Hernández-Figueroa, 2012). It also provides a feature to search
for similarities in students' code in the same or another course, so supporting counter-
plagiarism actions.

Adapting Unit Testing Frameworks for APAS and LMS

Dynamic techniques for program assessment have a lot of similarities with unit test-
ing techniques. Both take a piece of software, run it against a set of test cases, and
produce a report from such execution. The main difference is both the software to be
tested and the report that is generated. Unit test frameworks are designed to test "real"
software and inform developers about detected errors, according to the applied test
cases. Programming assessment tools take apprentice software, prone to have errors
which are unlikely for a professional, like infinite loops, unexpected exceptions, secu-
rity shortcomings and more. A programming assessment tool takes such sort of code
and not only have to report error occurrences, but also produce useful feedback for the
students, inform the instructors about the student skills, and, usually, propose a mark.

A well-known family of unit testing frameworks is xUnit. The xUnit family of unit
testing frameworks has ground in most of the current main programming languages
with great popularity. The architecture of xUnit frameworks is composed of a set of
basic elements:
 Tests cases, which define the test data as pairs of input data and expected results.
 Tests fixtures, which define the context for the tests.
 Tests suites, which are a set of text sharing the same fixture.
 Test runners, which execute the tests and report the results.

Given the popularity of the xUnit Family, it seems to be a good idea to use them as
models or tools for automated programming assessment systems. The ProFormA plugin
homepage explicitly says that "Java questions using JUnit can be created directly in
Moodle", so adhering to this criterion by using JUnit. VPL provides two ways to auto-
mate the assessment of programming activities:
(1) The simplest way is using the basic input/output test evaluation system (BIOTES)

provided by VPL out of the box. This system uses the input/output of the student’s
program to test it. We have to fill the file vpl_evaluate.cases (see Fig. 5) to define
the test cases using a simple test case description language. This language allows
defining, for each case, the input we want to provide to the student's program and

10

the output we expect. We can also configure other stuff, as the penalization for
failed tests (see the "VPL Test Case Description Language" 5). The advantage of
this approach is having an APAS independent of the programming language, easy
to use, an allows write the tests without programming. The drawback is that its
basic aim is to test programs by input/output.

Fig. 5. Example of test cases for check leap years

(2) VPL allows evaluators to take full control of the evaluation process with the only
requirement that the output report must have a proper format (See the "Filtering
and Formatting of VPL Evaluation Output" 6 document for more details). This ad-
vanced evaluation requires the evaluator developing a program to test the code
submitted by the student, usually using the same programming language. This pro-
gram could be written from scratch for each activity or be based on a customizable
testing framework. Notice that VPL, in this approach, acts as a meta-APAS by
supporting many other APA systems by writing the proper code.

Desirable features for a framework suitable to serves as a base for advanced evalu-
ation using VPL may be:
 Must be integrable within VPL.
 Must allow giving clear and meaningful feedback to the students.
 Its learning curve for evaluators must be as low as possible.
 Evaluation should not require any interaction with the input/output of the student

program (although such interaction must be possible).
 When possible, should be able to evaluate partial programs.
 The development effort needed to evaluate the students' code must be as simple as

possible.

5 https://vpl.dis.ulpgc.es/images/FITPED/VPL_Test_Case_Description_Language.pdf
6 https://vpl.dis.ulpgc.es/images/FITPED/Filtering_and_Formating_VPL_output.pdf

11

 The grading system provided by the framework must be suitable for a wide range of
grading approach.

 Must be robust to the fatal fails of the students' code and report them.
 Must provide a tool for the internationalization of the reports.
 Must consider cheating risks.

Integrating xUnit in assessment systems

In this section, we discuss the drawbacks of xUnit frameworks to serve as assess-
ment tools "as they are", and present proposals to shortcut such drawbacks. We focused
on JUnit as a representative example of the xUnit family.

Junit is a framework for writing tests for Java. It is one of the first frameworks of
this type to gain high popularity and based on the community dzone.com is still (2020)
one of the best Java testing frameworks.

Writing tests for Java using Junit require writing classes with test methods that check
the program behavior by testing asserts. The parametrization of the tests and the indi-
cation of what methods contain asserts or need to be run after or before each test is done
using the Java annotation feature (format @annotation(param1, param2, ...). Java an-
notations allow tagging classes, methods, etc. Junit consults this information using the
java reflection feature to orchestrate the tests, as the developer requires. Annotations
must be set just before the element to tag. An example of JUnit annotations is @Test
that tag a method to be run in test and containing asserts to check (see Fig. 6).

Some of the following frameworks use annotations to control the APAS tests. Some
of these annotations are compatibles with JUnit doing the use of these test frameworks
easier for evaluators with JUnit knowledge.

Fig. 6. Example of simple JUnit test

12

ProFormA

ProFormA allows to provide JUnit tests suites as external files and offers a setup
option to specify the grading weight of such tests (see Fig.).

Fig. 7. Setup window of ProFomA

The Grenoble University Approach

The project Caseine (https://moodle.caseine.org), led by Grenoble University, mod-
ifies the basic input/output test evaluation system of VPL to merge different types of
evaluation, including those based on JUnit tests suites. In addition, it creates a new Java
annotation to establish the grade for each test, as Error! Reference source not found.8
shows.

13

Fig. 8. Grade annotation from Caseine Project

The University of Las Palmas de Gran Canaria Approach

At the University of Las Palmas de Gran Canaria we have developed a package,
called JUnit4VPL, suitable to use the JUnit system without having to do any change to
VPL. This framework was developed in the context of the project FITPED (Work-
Based Learning in Future IT Professionals Education). JUnit4VPL modifies the Test
annotation available in JUnit adding the attributes “description" and "penalty" while
accepting the "expected" and "timeout" attributes available in the original JUnit Test
annotation; Although the timeout behaviour is slightly different because in JUnit4VPL
a timeout always exist: if the "timeout" attribute of Test is not set, the default-
TestTimeout of TestClass is used. The timeout may need be adjusted to do not surpass
the global timeout. JUnit4VPL also adds new annotations.

The TestClass annotation

TestClass is an annotation for classes which is not present in Junit (Fig.). TestClass
sets global parameters to be applied to the test:
 defaultTestTimeout. Sets the default timeout in milliseconds for each test method.

The default value is 2000 and can be overridden for a method by defining the timeout
attribute of Test.

 globalTimeout. Sets the global timeout in milliseconds for the whole test suite. The
default value is 30000, but the global timeout used is the minimum of globalTimeOut
and the value set at the VPL activity options settings form. When a global timeout is
reached, all pending tests are stopped stops and a penalization of 100% is applied.

14

 timeoutPenalty. Sets the penalty to apply when a test method reaches its timeout. By
default, the same penalization as for assertion fails is applied.

 exceptionPenalty. Sets the penalization to apply when an unexpected exception is
raised. By default, the same penalization as for assertion fails is applied.

 expectedPenalty. Sets the penalization to apply when an expected exception is not
raised. By default, the same penalization as for assertion fails is applied.

Fig. 9. TestClass annotation example

The ConsoleCapture class

This class allows creating objects that can capture the standard output of the appli-
cation. Capturing the output of the application has two goals: be able to check the output
of the student's code and avoid that the student's code interferes with the test report sent
to VPL. ConsoleCapture has the following methods:
 startCapture(). This procedure saves and reassigns the out and err streams to new on-

memory streams.
 stopCapture(). This procedure restores the saved out and err streams.
 getCapturedOut(). Returns the text sent to the out stream from the last captureStart()
 getCapturedErr(). Returns the text sent to the err stream from the last captureStart()
 print(String text). Sends the text to the saved out stream (out of the capturing).

The best practice is to capture the streams as soon as possible and before starting the
test. After ending the test, do not stop the capture: send the test report to VPL using the
ConsoleCapture print method.

JUnit4VPL internationalization

JUnit4VPL use internationalized text by taken the text to show from an object of
JUnitI18n or a derived class. The default language is English, but other languages are
available, as Spanish. To select an available language you must call the static function
JUnitI18n.setLang () with new language object as parameter. The call to setLang() must
be done before calling to JUnitCore.runClasess() or JUnitCore.main() methods to take
effect.

To add a new language to JUnit4VPL it is necessary to extend the JUnitI18n class
and override the methods that define the text to output. Some of the text strings are

15

parametrized with one or two parameters that must be in the string. The current values
replace the parameters when the text is used.

For example, the method expectedButWas() returns a string with two parameters
<expected> and <was> (Fig.).

Fig. 10. Junit4VPL internationalization example (1)

The translated text for the Spanish language must contain also the two parameters
(Fig.). If assertEquals("", 2, 3) fails, the output text for English is "Expected 2, but was
3" and for Spanish is "Se esperaba 2, pero fue 3".

Fig. 11. Junit4VPL internationalization example (2)

The name of the new class must be JUnIt18nLC where, LC is the language code
capitalized, and must belong to the "es.ulpgc.junit4vpl.i18n" package.

Conclusions

This chapter provides insight into the more used existing solutions to the Automatic
Programming Assessment applied to the assessment in computer programming sub-
jects. Specifically, those that can be used from a Learning Management System, con-
tributing to extend different approaches to teachers, developers and also students.

The teachers as users or future users and the researchers could also use the features
and findings presented to enhance their experience in the assessment of programming
subjects from differents points of view: they want to know about new APAS tools or
start using them or just study these frameworks from a scientific point of view.

The examples exposed offer a much better understanding of the scenarios that the
roles defined in an Automated Programming Assessment System may find, facilitating
a perspective from which to understand how to make better use of these tools

Moreover, the use and studies of these systems as well as the contributions made by
an international community of teachers and students in their different roles will surely
lead to the improvement of these systems.

Acknowledgements

16

This research was funded by European Commission under the ERASMUS+ Programme 2018, KA2,

grant number: 2018-1-SK01-KA203-046382 "Work-Based Learning in Future IT Professionals

Education"

References

Ala-Mutka, K. M. (2005). A survey of automated assessment approaches for programming assignments.

Computer science education, 15(2), 83-102.

Chen, H. M., Nguyen, B. A., Yan, Y. X., & Dow, C. (2020). Analysis of Learning Behavior in an Automated

Programming Assessment Environment: A Code Quality Perspective. IEEE Access, 167341-

167354.

Christian, M., & Bhushan, T. (2016). A comparison of existing tools for evaluation of programming

exercises. Proceedings of the Second International Conference on Information and

Communication Technology for Competitive Strategies, (págs. 1-6).

Hill, P. (2017). Academic LMS Market Share: A view across four global regions. Obtenido de

https://eliterate.us/academic-lms-market-share-view-across-four-global-regions/

Keuning, H., Jeuring, J., & Heeren, B. (2018). A systematic literature review of automated feedback

generation for programming exercises. ACM Transactions on Computing Education (TOCE),

19(1).

Python Software Foundation. (2019). Python.org. Obtenido de The Python Tutorial:

https://docs.python.org/3/tutorial/index.html

Rahman, K. A., & Nordin, M. J. (2007). A review on the static analysis approach in the automated

programming assessment systems.

Rodríguez-del-Pino, J. C., Rubio-Royo, E., & Hernández-Figueroa, Z. (2012). A virtual programming lab for

Moodle with automatic assessment and anti-plagiarism features. WorldComp12. Las Vegas, USA.

Tharmaseelan, J., Manathunga, K., Reyal, S., Kasthurirathna, D., & Thurairasa, T. (2021). Revisit of

Automated Marking Techniques for Programming Assignments. IEEE Global Engineering

Education Conference (EDUCON), (págs. 650-657).

1

