
1

CHAPTER 11 FOR THE BOOK: “ CONTEMPORARY DIDACTICS, METHODS AND

TECHNOLOGIES OF TEACHING PROGRAMMING USING MICROLEARNING AND

AUTOMATED SOURCE CODE EVALUATION”

The Architecture of Visual Design in Modern Web
Applications

David Sabol, Jan Skalka

Constantine the Philosopher University in Nitra, Tr. A. Hlinku 1, 949 01 Nitra, Slovakia
david.sabol@student.ukf.sk, jskalka@ukf.sk

Abstract. The appearance of the application provides one of the first impressions that
can engage the user and keep his interest. With many different applications with similar
functionality, this element must not be underestimated during application development.
Various procedures and methodologies are used to design applications. Many of them
are relatively narrowly oriented and face various limitations when deploying them in
complex web applications. The article describes selecting a suitable methodology, ef-
fective implementation, explanation of the critical points of the skinning process, and
examples of skins for the day, night, and colour-blind mode created for the application.
The basis of the proposed system skinning philosophy are techniques used for the or-
ganization and writing CSS code using the form of ITCSS methodology with BEM nam-
ing convention in combination with the capabilities of the SASS preprocessor. The ar-
ticle evaluated the implemented skinning philosophy, the visual design of the system,
and the created skins. Subsequently, it presents the benefits of the proposed solution for
the developers of similarly proposed applications. The application of defined proce-
dures is described in a case study focused on skinning the web application Priscilla
(https://priscilla.fitped.eu), a system focused on teaching and learning in programming
for high schools and universities.

Keywords: skinning, theming, web application, user interface, front-end.

Introduction

Agile methodologies are currently one of the most common approaches in software
development. According to (Maleki & Ramsin, 2018), agile methodologies are suitable

2

candidates for developing web systems but choosing the right one can be a severe chal-
lenge for web development teams. An essential requirement for developing a system
that is expected to be constantly and long-term evolved is the ability to implement
changes quickly and, in visual design, support rapid updates based on styles, inher-
itance, and interconnectedness.

Currently, many methodologies and frameworks describe the steps of software de-
velopment. Still, they are often oriented to the system as a whole and design, as the
entire presentation of the elements of the system, is not described separately (Torrecilla-
Salinas, Sedeño, Escalona, & Mejías, 2015), (Al-Zewairi, Biltawi, Etaiwi, & Shaout,
2017). In commercial applications, the visual elements and the positive user experience
are critical elements in attracting and retaining users (Wang & Emurian, 2005), (Yazid
& Jantan, 2017). Designing an architecture that can cover features for quickly switching
users' looks while implementing developer requirements with minimal code changes is
a challenging task (Taivalsaari, Mikkonen, Pautasso, & Systä, 2017).

The paper focuses on the description of advanced approaches in designing web ap-
plications, their strengths and weaknesses and their implementation in the web applica-
tion Priscilla (Skalka & Drlík, 2018), (Skalka & Drlik, 2018) based on conceptual
framework (Skalka et al., 2021) covering educational activities in the teaching of pro-
gramming languages. From the front-end point of view, the web application Priscilla
is developed using Vue.js, a technology that defined the selection of used tools and
techniques and design definition options. Although the application also includes gami-
fication elements, the primary emphasis is on the simplicity of the user interface and
the ability to switch the visual appearance quickly.

The article consists of three chapters. The first chapter describes essential skinning
technologies used in web application design development. They use CSS (Cascading
Style Sheets) as the basic styling element, preprocessors, and custom properties to gen-
erate the final code. The second chapter focuses on different methodologies of the CSS
content generation and the division of the generation process into layers to provide the
most efficient method for constantly updating the design of the web application. The
last chapter presents the application of the selected methodology to define the visual
design of the web portal Priscilla. This section describes the procedures and best prac-
tices for skinning web applications and the approach used to describe and set up the
day, night, and colour-blind appearance.

Basic Design Definition Techniques

Skinning provides the ability to control and change the look of application parts by
selecting pre-created designs or skins (Eastabrook, 2020). In this context, the skin or
theme is understood as the visual side of the elements organized into the user interface
(UI) (Dowden & Dowden, 2020). The settings are usually contained in a file or files
from which the design module loads them. The combination of files describes the visual
properties of individual elements, such as colour, border, font, shadows, and the like.
These features can be reused in different contexts and for different elements of a web

3

application. By using skins, it is possible to influence the appearance and, to a large
extent, also the usability of the application. Still, it is not possible to affect the function-
ality itself by the application of skins.

The goal of skinning code creation is primarily to separate the graphical user inter-
face (GUI) and the functionality and business logic of the application. This approach
allows the definition of the GUI using external files that can be linked to the application
code later. The collaboration and mutual understanding between the business logic and
the application skin must be implemented to ensure the link between user and applica-
tion (Fomitchev, Garrood, Lacey, & Rojas, 2007).

Many techniques and options currently allow defining, changing, applying, and sav-
ing a change of visual themes, respectively, skins within a web application. Despite the
number of approaches, however, it is possible to observe that quite often, these are only
modified versions of the solutions presented in the following subchapters.

CSS Custom Properties Approach

CSS custom properties are native variables in CSS. They are often mentioned as one
of the most common current approaches to implement changeable visual UI themes in
the web application skinning process (Tzucker, 2019). They are usually defined as a
key: value pair, where the key must be prefixed with two hyphens (--). These native
CSS variables must be defined within a declaration block, which can be any selector. If
it needs to declare globally available properties, it is necessary to use the pseudo-selec-
tor: root. Defined values can be accessed and applied by calling the native CSS function
var() (Kudrna, 2019).

CSS variables thus allow defining a variable that can be referenced from multiple
places throughout CSS. This feature is crucial for skinning because it is possible to share
a property between thousands of elements. Change request processing thus only means
a change of one value of the variable. It is not necessary to update the CSS of each
element individually (Tzucker, 2019). The dynamic nature of CSS variables offers flex-
ibility for all forms of theming and skinning – for pre-prepared and user-customized
themes (Williams, 2017).

The theme of the graphical appearance can be generally defined in the form of a set
of native CSS variables using this technique. These are unified within a specific decla-
ration block of CSS rules with a selector specifying a specific skin. Other UI themes
can be created similarly by redefinition or rewriting of values of existing CSS variables
through a new CSS rule (Tzucker, 2019). Skins defined by the default theme in this way
can be overridden after the user-initiated change. Rewriting functionality is provided
by adding specificity in a class or attribute to the top-level element of an HTML docu-
ment, such as an <body> element. Switching classes or values of element attributes can
be done using JavaScript.

4

Fig. 1. Example of CSS custom properties using specificity and inheritance (Tzucker, 2019)

CSS custom properties can be accessed directly and manipulated in a browser using
JavaScript. This approach makes it possible to specify new values for custom properties
on a web page or application. Using this technique, JavaScript allows changing the
appearance of the current theme dynamically in the browser. In this way, it is possible
to modify selected parts of the design immediately, even when the web application is
running. Using a few lines of JavaScript, it is possible to apply changes that, due to the
inheritance of CSS styles, affect many elements of the web application (Grant, 2018).

Harrell (Harrell, 2017) introduces the advantages of this technique thanks to CSS
custom properties, individual variables, and properties in the browser. These properties
can be easily redefined in media queries or JavaScript. The significant advantage of
CSS custom properties is the nativity, which allows using custom properties without
the need for a CSS preprocessor.

The disadvantage of the technique is its excessive detail, as it requires the element
to be styled with an excessive number of properties. If individual elements contain not
only style definitions but also many rows with variables, this approach often doubles
the size of the element declaration block. Rewriting the properties, taking into account
the appearance of several themes or skins of the web application, is again too detailed
and enlarges CSS files.

CSS Preprocessor Approach

CSS preprocessors such as SASS (Syntactically Awesome Style Sheets), LESS
(Leaner Style Sheets) and Stylus are tools that provide CSS with added capabilities and
functionality that are not available in native CSS (Attardi, 2020). The use of preproces-
sors changes the way of code writing. The content is organized in a specific way and
designed differs from the native CSS code. They offer the possibility of calculating
values, but these values are not available outside of preprocessors. On the one hand, it
is possible to use DRY (Don't repeat yourself) semantic code, but on the other hand, it

5

is necessary to add another step in which the code must be compiled into native CSS
(Dowden & Dowden, 2020).

Fig. 2. Popularity of CSS Preprocessors - Front-End Tooling Survey 2019

(Watson-Nolan, 2019)

Figure 2, based on (Watson-Nolan, 2019), shows a survey of developers who use
CSS preprocessors. At first glance, dominance is evident of the SASS preprocessor. It
can be proof that that choosing this preprocessor is a good choice when preparing web
application themes.

Mixins are a language concept that allows a programmer to inject some code into a
class. Mixins let developers create properties and values that can be easily reused across
the entire application. Using the @include directive, assigning a previously defined
mixin to a new context includes it in the class definition (Dowden & Dowden, 2020).
It is also possible to define mixins that accept parameters similar to conventional pro-
gramming functions (Grant, 2018).

Visual themes support the SASS map declaration, which can stylize CSS properties
with their values for a specific theme. It is usually a separate file in a project imported
into files with real element styles (Borody, 2017).

6

Fig. 3. Example of defining themes using the SASS map (Borody, 2017)

Borody (Borody, 2017) mentioned that the main idea of the illustrative approach
presented in Figure 3 is to wrap the properties of the themes in a themify mix. It accesses
these properties (which are defined in themes) by calling the themed() function with the
name of the desired property. Any call to the themed() function outside the @themify
block will not work.

7

Fig. 4. Example of SASS mixin implementation and function (Borody, 2017)

Figure 4 concisely illustrates the use of @mixin, @function, @include, and other
valuable options that the SASS preprocessor offers for web applications skinning.

With the capabilities of preprocessors, it is also possible to improve the technique
using CSS custom properties. Feigenbaum in (Feigenbaum, 2020) states that fallback
values or properties can partially solve the lack of support for Internet Explorer and
older browsers. Users of these unsupported or outdated versions of browsers will not
change colour modes, but they will see the default theme. Writing these backup solu-
tions is often time-consuming, so this process can be automated using the SASS prepro-
cessor mixin. Böck in (Böck, 2020) argues that combining static variables of CSS pre-
processors with CSS custom properties is the correct approach because they both do
different things.

8

Independent Templates and Themes of CSS

Independent templates and themes can be defined in external CSS files. Each of these
files usually contains specific styles for a certain theme (Morgan, 2021).

Themes can be applied to web applications in several ways. A common approach to
applying a theme is to change the href attribute of the HTML link element, which is
used to import external CSS styles of the application skin or the mentioned themes or
templates. This change can be achieved using JavaScript or a server-side programming
language such as PHP, Java, or others.

Pickering (Pickering, 2019) mentions a performance issue using this approach that
can occur in some cases. The rewriting theme requires a large amount of additional CSS
code to load when changing. In most cases, this approach also causes a problem with
code maintenance, as it is necessary to maintain several distinct styles of individual
user interface themes during further development.

Alternative Skinning Approaches

Analyzing approaches to processing the request for skinning a web application can
be distinguished individual techniques according to where the logic of skinning or
theming occurs, either on the server-side or the client-side.

Server-side Skinning

Assuming the use of a server-side language such as PHP, it is possible to modify
and apply the UI theme in a way that does not require JavaScript. Users send GET or
POST requests with an URL address with the parameter of the required theme. The
server responds with pre-prepared PHP code. It can assign a corresponding CSS class
to the element body according to the user's preference after reloading the page
(Adhuham, 2020).

The essential disadvantage is the need to refresh the page or application to apply
changes. Despite this disadvantage, this approach is still considered helpful in preserv-
ing the user's theme selection even after reloading the page or web application.

Client-side Skinning

Creating modular styles of multi-developer web applications requires adhering to
agreed conventions and avoiding conflicting object names. Some communities of web
developers began experimenting with alternative approaches and turned to JavaScript.
The proposed technique uses inline styles in a form known as CSS in JavaScript. This
approach requires JavaScript to create class names guaranteed to be unique or that in-
dividual CSS styles can be applied to a page using the HTML attribute style.

9

Grant recommends keeping in mind this principle even though it is still experimental
(Grant, 2018). It should be noted that this principle only works for applications that are
fully rendered using a library or JavaScript framework, such as Vue.js, React, Angular,
or others.

CSS Code Design and Maintenance Methodologies

CSS is considered a simple and easy-to-learn language for web application develop-
ment. However, if we focus on the language features, it doesn't seem easy to write CSS
code in a sustainable and scalable form intended for manual maintenance by develop-
ers. With an inappropriate approach to defining the structure of CSS code, its manage-
ment can be difficult or impossible as web projects grow. The main consequences are
then redundancy or poor performance.

Web application skinning is a typical example of the need to have CSS code unam-
biguously structured and adequately targeted individual web application elements
through proven naming conventions. In this context, Dowden & Dowden mentioned
that experts often prefer a combination of several proven maintenance methodologies
and CSS code writing (Dowden & Dowden, 2020).

Object-Oriented CSS

Object-Oriented CSS (OOCSS) was initially presented by Nicole Sullivan at the Web
Directions North conference (Dowden & Dowden, 2020). This methodology borrows
concepts from object-oriented design to provide a CSS structure and defines an object
as a repetitive visual pattern that can then be generalized to independent snippets of
HTML, CSS, and possibly JavaScript. This object can be once created and many times
reused on the entire web page or in the application.

OOCSS is based on two principles:

 separation of the structure layout and the visual skin, or the theme,
 separation of the container and the content.

The first rule demands the separation of the structure and the application skin. The
structure layout refers to features that are not directly visible to the user. In principle,
these are instructions that affect the size or location of the elements. These CSS prop-
erties include, for example, width, height, margin, padding, overflow, etc. Through the
web application skin, it refers to the visual properties of elements, which are, for exam-
ple, colour, font-family, box-shadow, etc.

With OOCSS, these properties are defined separately. Subsequently, visual patterns
common to several elements are identified and used as parents to inherit individual
characteristics (Arsenault, 2019).

10

The second principle separates the container and the content and helps to create a
more consistent and predictable user environment. In this case, the content covers ele-
ments such as images, paragraphs, and div elements embedded into other elements used
as containers. As a general rule, CSS styles should never be targeted to specific con-
tainers for possible reuse of styles without the need for subsequent rewriting. To avoid
child selectors is a suitable strategy to maintain the separation of the contents and the
container components.

Block Element Modifier

Block Element Modifier (BEM) is the name for the CSS methodology and naming
convention created by the Yandex team. Michálek considers the most significant ben-
efit of BEM to be the naming convention, which represents only a specific part of the
original CSS methodology (Michálek, 2017).

Within the naming convention, the naming of individual classes is directed by the
following pattern:

 Block – a separate element (.block) that is reusable,
 Element – an element within a block (.block__element); it cannot be used alone and

is linked to the block in which it is contained,
 Modifier – designation of blocks (.block - modifier) or elements (.block__element

- modifier), the use of which will achieve a change in appearance, behaviour, or state.

Dowden & Dowden (Dowden & Dowden, 2020) introduced that the use of modifiers

in BEM contradicts the recommendations of the OOCSS methodology, which aims to
create versatile and reusable styles that represent skin or theme.

Michálek (Michálek, 2017) stated that when using the Bootstrap template (or other
similar libraries) to supplement the primary CSS code, it is advisable to consider the
prefix of selections of these libraries or the primary code.

Scalable and Modular Architecture for CSS

Scalable and Modular Architecture for CSS (SMACSS) is a CSS methodology de-
scribed by Snook (Snook, 2012) as follows: "The core of SMACSS is categorization.
By categorizing CSS rules, we begin to see patterns, and we can define better practices
for each of these patterns. ". Snook divides cascading styles into five types of catego-
ries:

 Base – basic CSS rules that define the default values of HTML elements in agreement
with Dowden & Dowden (Dowden & Dowden, 2020). In this category, it is also
possible to define default styles of attribute selectors, pseudo-classes, etc. However,

11

it is essential to note that nesting elements should be avoided in this category of
rules.

 Layout – rules for the layout of the elements divide a page into sections. These ele-
ments include, e.g. header, sidebar, article, and footer.

 Module – the category covers the reusable modular parts of the design are defined.
It can include various sidebar sections, navigation bar, etc. – various elements with
repeated use in the application.

 State – rules that describe the appearance of individual modules or layouts when
they are in the appropriate state. Such states include, e.g. hover, focus, visible/hid-
den, active/inactive, etc.

 Theme – declarations that affect appearance but do not affect layout and function-
ality. These declarations are similar to the OOCSS skin concept of Dowden & Dow-
den in (Dowden & Dowden, 2020).

Inverted Triangle CSS

Inverted Triangle CSS (ITCSS) is a methodology focused on a sustainable way of
organizing scalable CSS. The motivation for creating the methodology was to find an
effective way to manage and develop large-scale web projects (Roberts, 2014). How-
ever, the solution is not a library but a definition of the way of thinking. The main
principle of ITCSS is to divide the CSS code into layers arranged according to how the
CSS works. The essence of the methodology lies in the exact ordering of styles accord-
ing to specificity. The specificity means how the web browsers decide to apply the most
relevant values of defined CSS properties to individual elements of a website or appli-
cation.

The organization of specificity is defined in ITCSS by a series of seven layers
(Roberts, 2014):

 Settings – the layer that contains variable definitions and various settings and is in-
tended for CSS preprocessors.

 Tools – layer reserved for mixins and functions, similar to the previous layer. This
one belongs to the preprocessor, and in general, the first two layers should not con-
tain the classic CSS output or code.

 Generic – generic, normalization (normalize.CSS) or reset (reset.CSS) style files.
 Elements – the layer of basic styles of standard HTML elements, element selectors.
 Objects are the class selector layer that defines reusable non-decorative styles or

patterns such as objects (described above in the subchapter OOCSS).
 Components – the layer of specific user interface components.
 Trumps/Utilities – helper classes that override previous CSS rules. Within these

rules, it is possible to use the importance of rules in the form !important.

12

category layer example

preprocesor
settings $primary-color, $border-width

tools @mixin breakpoint-up()

HTML
generic h1, h2, h3, p

elements h1, h2, h3, p

CSS classes

objects .container, .media

components .button, .card, .alert

utilities .mb-3, .p-4, .text-center

Table 1 Example of the division of objects into layers (Kudrna, 2019)

Settings Change Processing

The changes of themes based on the web application skinning process should be
saved as user preferences. Adhuham mentions this fact in (Adhuham, 2020) as an es-
sential user element enabling the change and preservation of the appearance even the
next time when he enters the application. The user's choice can be saved into a lo-
calStorage of the browser, or as a limited alternative, to the cookies storage.

For web applications with an authentification, the preferences should be saved in the
relational or NoSQL databases, in which this information can be linked to a specific
user account.

Due to the current ability to set light or dark mode directly in operating systems,
media features known as prefers-color-scheme have been added to media queries.
When skinning web applications, they detect whether the user prefers a light or dark
colour theme at the operating system level.

Kalifa (Kalifa, 2020) states that respecting the operating system's preferences in the
web application is a good first step to customization user preferences. But an even better
approach is to give the user more control over changing the theme. Blažek (Blažek,
2019) considers accepting a theme from the operating system beneficial but warns that
the user may require a different (light) theme in the operating system and a different
(dark) in the application.

ITCSS Methodology Application

The presented approach of skinning and theming was applied to the educational sys-
tem Priscilla (Skalka & Drlik, 2018), (Skalka & Drlík, 2020) with a focus on achieving
a better user experience and educational effect. The web version of the application is a
typical e-learning system focused on programming.

13

Within this web application, the requirement for the design and implementation of
philosophy with practical skin output for daily, nightly, and colour-blind mode were
defined as the primary task. The front-end part of the application is developed by the
JavaScript framework Vue.js using UI components library Vuetify. This library is based
on the recommendations of the Material Design design language.

Skinning Technique Selection

The current scope of the application and its active development excluded approaches
to define themes as separate templates. This approach would not solve the efficient
organization of CSS styles and, in addition, would result in the need for manual man-
agement of each of the template files of the required skins when changing the design of
the application.

The Vuetify UI library used by the application offers the possibility to define the
properties of several themes. This technique applies an approach known as CSS in JS,
which lies in the inefficient sustainability of CSS styles (usually determined at the com-
ponent level). This approach limits the use of defined properties only within the speci-
fied library components and does not support universal use for all HTML elements.
With the subsequent changes in the user interface design, it would be necessary to trace
the styles in the components and edit them manually at various points in the application.

According to the ITCSS description, the first prerequisite for modern styling is de-
fining logical division and arrangement of individual styles. This step contributes to the
effective sustainability of CSS design code and skins, preventing style redundancy and,
last but not least, improving the performance of the application itself. ITCSS was chosen
as the optimal methodology, which divides the CSS code into seven layers, the so-called
inverted triangle.

Fig. 5. Visualization of the proposed implementation of ITCSS in web application skinning

In the final form of CSS, the individual styles that the selectors represent are arranged
simultaneously according to three aspects, which indicates the shape of an inverted tri-
angle representing this methodology:

14

 from far-reaching styles (with great reach) to local styles,
 from general styles to explicit styles,
 from selectors with low specificity to highly specific selectors.

This division and organization of CSS can maintain extensive CSS styles of the

skinned application and more quickly respond to the growing new requirements of the
system in terms of user interface design. A non-conceptual organization could cause an
uncontrollable state of CSS style definition, increased redundancy, and problems with
the specificity of CSS selectors. While designing and implementing the solution, it is
necessary to keep in mind that ID selectors are not allowed in this methodology. There-
fore the design does not contain them.

Settings Layer

The CSS preprocessor was chosen as a tool that made it possible to automate design-
ing, defining, and applying several web application themes. For better standards com-
pliance, the SASS preprocessor with SCSS syntax was preferred to the original SASS
syntax. It is true that any valid CSS code is also a valid SCSS, but not the other way
around. SCSS syntax application made it possible to apply the styles defined before the
design transformation without modifications that would require new syntax.

The first layer of the ITCSS methodology is Settings. Variables with CSS property
values for individual skins of the web application were primarily declared in this layer.
Two options have been obtained for defining skin properties variables using the SASS
preprocessor: native CSS variables and preprocessor variables. While native CSS vari-
ables dominated in the definition of specific properties for individual themes, prepro-
cessor variables were often applied in the so-called fallback values of the application
appearance.

Using only native CSS variables could result in a problem in older versions of brows-
ers. For preprocessor variables, the size of the resulting CSS file would multiply after
compilation (depending on the number of visual UI themes).

Native CSS variables were chosen because they are declarative, which means that
changing the value of a variable will affect previous occurrences of usage and those
that follow the change. Due to the lack of support for native variables in some browsers,
a solution was applied in so-called fallback CSS values. Variables refer to the visual
properties of the default theme, i.e. the daily mode styles of the application.

15

Fig. 6. Example of definition of variables with the properties of individual skins

The SASS map was used to group the fallback SASS variables, an associative field
associating the required variables and providing the certainty of displaying the applica-
tion in the default mode, which would not be possible if only native CSS variables were
used. Part of the definition is presented in Figure 6.

The Settings layer was secondarily used to declare breakpoints for responsive appli-
cation design. The definition of breakpoints was often preceded by an analysis of ex-
isting layout grid solutions, which describes, e.g. Material Design documentation
(Google, 2021), Bootstrap (Team, 2021), Tailwind CSS (Tailwild Labs, 2021), and oth-
ers. Due to the connection with the Vuetify library, four standard breakpoints for later
use in the design of SASS mixins aimed at solving the responsiveness of a web applica-
tion were defined.

Tools Layer

In this layer, it was necessary to define the method of assigning properties to indi-
vidual elements of the web application within the declaration blocks of CSS rules. The
first option is to skip this step by calling a directly defined native CSS variable from the
first layer using a native function var(). This approach would not solve the significant
problem mentioned by the lack of support in some browser versions. It would also be
necessary to deal with obtaining fallback SASS map values manually.

The solution to these problems is the creation and subsequent use of mixin. Mixin
in the SASS preprocessor provides the ability to create reusable blocks of CSS code.
This approach can significantly automate assigning skin values to individual CSS prop-
erties and minimize human factors errors. It is crucial to keep in mind that none of the
preprocessor layers should contain any real CSS output. For this purpose, a themeStyle
mixin was created in the tools layer (Figure 7).

16

Fig. 7. Mixin themeStyle

Mixin themeStyle accepts the following three parameters:

 a standard CSS property that is assigned the value of a skin variable,
 the name of the variable whose value is intended to be used,
 a boolean value of true/false indicates a request to use the !important keyword after

the CSS property value.

The last argument of the mentioned mixin can be observed as an optional parameter

with a default value of false. This last parameter was defined to a mixin enhancement
following the recommendations of the ITCSS methodology, which allows the use of
the importance of the rule in the form of !important for rewriting previous styles only
in the last layer. This structure can avoid unreasonable repetition of method calling with
a false value due to the assumption of predominant themeStyle mixin calls without the
need to use !important.

A common approach to responsive design is to unify multiple customized CSS styles
based on a common media query condition. Although this method is a proven choice
for smaller projects, other approaches have had to be considered for more complex web
applications such as Priscilla. The solution is the use of mixins in a parameterless form.
When designing these mixins with media queries, the mixins needed to be unambiguous
and easy to use within any CSS application declaration block. The definition of the
names should be based on the convention of marking the dimensions of devices with a
possible prefixing of the minimum or maximum resolution according to the needs of
the application.

Skin Design Procedure

The prerequisites for this phase are the definitions of parameters and variables listed
in the previous steps. In this step, their application will be linked to the preparation of
a specific appearance. Each of the skins listed below brought its specifics to the design,
which required the gradual addition of variables with visual property values to the pre-
prepared settings layer.

17

Day Skin Definition

The design of the daily mode is crucial for almost everyone skinned application.
Daily mode is the default view of the Priscilla web application too. At the same time,
some parts of the UI design of this skin were the basis for other skins. Therefore, it was
necessary to pay due attention to the skin and create CSS styles that covered the visual
needs of the entire web application.

Before skins development, the application was based primarily on components and
CSS styles of the Vuetify UI library. Although they met the requirements of Material
Design, they had to be visually unified with the newly prepared UI design and the ap-
plication's components.

The reach, explicitness, and specificity of CSS styles were guided in the skinning
process by combining the BEM naming convention and the ability to nest selectors us-
ing the SASS preprocessor. Potential class name conflicts (since Vuetify also uses BEM)
have been eliminated because Vuetify prefixes the classes of its components with the
letter (v-). Simultaneously with the addition of skin variables, their application was also
implemented within the declaration blocks of CSS code.

During the skin development, specific CSS styles of the application were continu-
ously classified based on the ITCSS methodology into layers of components and utili-
ties, which contain the core of the appearance of the designed skins and web applica-
tion.

Rewriting of CSS styles originating from the Vuetify UI must be done in such a way
as to avoid too high a specificity of selectors. The definition was based on W3C recom-
mendations (Etemad Elika J. & Atkins, 2018). Due to the absence of ID selectors rep-
resenting the first numeric value of a, it was necessary to realize the sum of the number
of class selectors, attributes and pseudo-classes within the value b. The third numerical
value of the specificity c results from the sum of element type selectors and pseudo-
elements. The a-b-c values thus obtained had to be subsequently concatenated to obtain
the final specificity number of the selector combination without the need for unjustified
use of !important. An example of calculating the specificity of selectors is shown in
Figure 8.

Fig. 8. Example of calculating the specificity of selectors

18

Night Skin Definition

At the beginning of the design of the night mode of the application, the existing dark
mode solutions and benefits of their use in various web applications were analyzed
(Riegler & Riener, 2019), (Pedersen, Einarsson, Rikheim, & Sandnes, 2020). The crit-
ical point of the dark-mode proposal was to identify how applications approach the
colour of individual elements in this mode. In addition to this information, the Material
Design language recommendations were also valuable in designing the dark-mode.

The most fundamental recommendations are focused on the colour elevation, the
colour of individual elements, and the typography of the web application. The emphasis
is also placed on a sufficient contrast between the background colour and the colour of
particular application elements to comply with the principles of web accessibility.

The colour saturation of the individual elements is reduced to achieve better visibil-
ity and less eye strain in the dark mode. The colours of the components have to be
desaturated in comparison to the day/light mode. While the day mode used mainly hex-
adecimal colour expression from the UI design, choosing a more sophisticated colour
representation in this mode was necessary. Therefore, the HSL colour model (hue, sat-
uration, luminance) was used, which, in addition to the colour tone or hue, allows ad-
justment of the saturation and luminance of the selected colour (Figure 9).

Fig. 9. Simplified HSL colour model (left) and interpretation of the selected colour in the night
skin (right)

Another point of the design of this skin was the adaptation of the icons to dark back-
grounds. For single-colour icons, the CSS property filter and its invert function were
used. Multicoloured graphic elements, such as the logo or some control icons, needed
to create a customized version for dark mode.

Colour-blind Skin Definition

19

The third form of proposed skins was a mode for users suffering from Daltonism
(colour-blind). Okabe & Ito (Okabe & Ito, 2002) points out that Daltonism is not a
complete loss of colour vision. Colour-blind people can recognize a wide range of col-
ours, while some specific colour ranges are difficult to distinguish. The starting points
for the definition of the colour scheme were the rules of the WCAG (Web Content Ac-
cessibility Guidelines) accessibility methodology defined in (Wcag, 2012) and princi-
ples 3 (+1) Color Universal Design (Kojima, Ichihara, Ikeda, Kamachi, & Ito, 2012).

Achieving acceptable colour elements of the application in the colour-blind skin is
not a trivial matter. At first, it is necessary to identify proper colour combinations and
exclude those that did not achieve the desired properties (e.g. contrast between the
background colour and text colour). A necessary validation element visualizing the ap-
pearance of the skinned application from the view of individual types of colour vision
deficiencies were software tools. They visualized the appearance of the application in
real-time, e.g. Color Oracle (Jenny, 2020), Visolve (Ryobi Systems Co., 2020), WCAG
color contrast checker (Acart Communications, 2017), WhoCanUse (Ginnivan, 2020),
Adobe Color (Adobe, 2021).

A first proposed solution that dynamically recalculates the colour would increase the
range of the application code and solve the problem only partially. In addition, its use
would disrupt the separation of code definition for design and code for application func-
tionality.

Graphic patterns in the context of colour blindness are generally considered a valu-
able visual aid to distinguish similarly or even the same colours (Molina-López &
Medina-Medina, 2019), (Chua et al., 2015). Various SVG patterns with adapted trans-
parency have proven to be an effective alternative to colour recalculating – the back-
ground colour with the pattern is covered with a layer of black with reduced transpar-
ency. The created colour overlay layer in the form of the CSS pseudo-element (::before)
ensures a regardless of any background colour, the necessary contrast between the
background colour and the font colour.

20

Fig. 10. Testing and simulation of colour vision deficiency – protanopia

Figure 10 shows a misinterpretation of the WCAG for the resulting header colour
values for some test results. This misinterpretation was caused because the tool could
not automatically check for advanced elements with a transparent black colour at the
testing time.

Skin Implementation in the Vue.js Environment

The file structure of an application is usually determined by the development envi-
ronment or framework dedicated for the application development. In the Priscilla web
application developed in the Vue.js environment, one of the places that allow the im-
plementation of created skins is the integration file App.vue, which is the root file of
the main components of Vue.

The method dedicated to skin selection works with a textual value defining the ap-
plication design (theme_preference). Based on a series of conditional statements, it
evaluates the user's data-theme value and applies the appearance of the desired skin.

In assigning the skin, the lifecycle hooks of Vue components were used to access
the reactive data of the application and to events at the component level to react to them
by applying the correct skin. The scheme of operation in the structure of the application
is presented in Figure 11.

Fig. 11. The description of the skinning philosophy in Vue.js

As part of the functionality of the skinning module, the system also included the
possibility of automatically assigning a light or dark appearance based on the currently
selected colour theme of the operating system (os-preference). This information can be
accessed over a media query with a prefers-color-scheme. The application uses a sepa-
rate setting for this way of identifying the appearance. If this information is available

21

from the operating system, it will be used; otherwise (default link, incompatibility), the
default skin of the web application is applied.

The functionality of the solution has been successfully tested in current versions of
various operating systems, such as Microsoft Windows, macOS, Android, and iOS. An
example of the appearance of the modes is available in Figure 12.

Fig. 12. Demonstration of automatic skin assignment when changing OS appearance prefer-
ences

The colour-blind mode of the application brings, in part, a distinctive visual design
that can improve the quality of education within the system for users with colour vision
deficiency. In this skin, possible colour pitfalls and visual ambiguities of the system
were minimized. This approach increases the comfort and efficiency of colour-blind
users working with the system. This skin also solves the relatively common problem of
applications with the recognition of colour controls, which can be easily overlooked
using the application by colour-blind users.

22

Fig. 13. Minimization of colour traps and the skin colour palette itself for colour-blind people

The presented approach and created skin can be considered sufficiently adapted to
individual types of colour blindness based on results from testing and simulation tools.
The views of the content by users of different kinds of disabilities are presented in Fig-
ure 14.

Fig. 14. Demonstration of different types of colour perception based on colour blindness dis-
eases

Conclusion

The presented approach is complex and focused on large and constantly developing
web applications. Although there are several applicable procedures, most of them will
eventually encounter limitations or development slowdown due to code redundancy for
design definition, CSS level issues, or non-functional inheritance between style levels.

Applying the ITCSS structure, methodological layers, and appropriate settings, it
was possible to propose and apply a suitable responsive design that meets the defined
application requirements. Using the proposed mixins with media queries and other ca-
pabilities of the SASS preprocessor, it was possible to target the needs of the application
directly in CSS declaration blocks. This procedure made the CSS code with a responsive
design more readable and unambiguous. The suitable combination of CSS settings al-
lows, in addition to providing content in primary form, adaptation to mobile devices. It
provides access to the educational content of the Priscilla system anytime and any-
where.

It should be noted that the transformation of the existing methodology for the appli-
cation of styles to the levels defined by ITCSS is a time-consuming task. Based on the
transformation made in the case study, it can be argued that the skinning process itself
may get into a situation that does not allow it to be completed before the finishing de-
velopment of the entire application. Therefore, it is impossible to separate the design
definition and the application development process and remain only using already de-
fined styles. The reason is, except for the new features of the application, the use of

23

skins for users affected by Daltonism. These skins often require a specific approach
that cannot be generalized or detailed in advance.

A potential research possibility for the future is also more detailed design research

for colour-blind users. The typical problem, not only in the Priscilla system, is the rep-
resentation of the flags of states in setting the language of the system, which, with their
fixed and conventional colours, represent a globally unresolved and open problem for
colour-blind people. In the application, this problem was solved relatively simply - by
adding an international abbreviation of the language next to the flag of the state.

The application of the methodology and the rationale for its choice can help devel-
opers and designers of complex web applications select a suitable procedure for sepa-
rating several levels of design and the functionality of the system.

Acknowledgements

This research was funded by European Commission under the ERASMUS+ Programme 2018,
KA2, grant number: 2018-1-SK01-KA203-046382 "Work-Based Learning in Future IT Professionals
Education", Ministry of Education of Slovakia, grant number 004UKF-2-1/2021 “Preparation and de-
velopment of teaching courses in English with a focus on artificial intelligence in the form of blended-
learning”, and Ministry of Education of Slovakia, grant number: 2020/8148:34-A1101 “Support for
the development of practical skills of UKF students in Nitra”.

References

Acart Communications. (2017). Contrast checker. Retrieved from https://contrastchecker.com/

Adhuham, M. (2020). A Complete Guide to Dark Mode on the Web. Retrieved from https://css-tricks.com/a-

complete-guide-to-dark-mode-on-the-web/

Adobe. (2021). Adobe Color. Retrieved from https://color.adobe.com/create/color-accessibility

Al-Zewairi, M., Biltawi, M., Etaiwi, W., & Shaout, A. (2017). Agile Software Development Methodologies:

Survey of Surveys. Journal of Computer and Communications, 05(05). Retrieved from

https://doi.org/10.4236/jcc.2017.55007

Arsenault, C. (2019). OOCSS - The Future of Writing CSS. Retrieved from

https://www.keycdn.com/blog/oocss

Attardi, J. (2020). Modern CSS: Master the Key Concepts of CSS for Modern Web Development. Nwe York:

Apress.

Blažek, L. (2019). Dark Mode teď prostě frčí. Retrieved from

https://blog.newlogic.cz/development/html/dark-mode-ted-proste-frci/

Böck, M. (2020). Color Theme Switcher. Retrieved from https://mxb.dev/blog/color-theme-switcher/

Borody, D. (2017). Theming Web Apps with SASS. Retrieved from

https://medium.com/@dmitriy.borodiy/easy-color-theming-with-scss-bc38fd5734d1

Chua, S. H., Zhang, H., Hammad, M., Zhao, S., Goyal, S., & Singh, K. (2015). ColorBless: Augmenting

visual information for colorblind people with binocular luster effect. ACM Transactions on

Computer-Human Interaction, 21(6). Retrieved from https://doi.org/10.1145/2687923

Dowden, M., & Dowden, M. (2020). Architecting CSS: The Programmer’s Guide to Effective Style Sheets.

New York: Apress.

24

Eastabrook, J. (2020). CSS Skinning: Let Your Visitors Choose the Style.

Etemad Elika J., & Atkins, T. (2018). Selectors Level 4. Retrieved from https://www.w3.org/TR/selectors-4

Feigenbaum, R. (2020). The Complete Guide to the Dark Mode Toggle. Retrieved from

https://ryanfeigenbaum.com/dark-mode/

Fomitchev, M., Garrood, S., Lacey, J.-D. K., & Rojas, J. J. (2007). System and method of skinning themes.

Canada.

Ginnivan, C. (2020). Who can use this color combination? Retrieved from https://whocanuse.com

Google. (2021). Responsive layout grid. Retrieved from https://material.io/design/layout/responsive-layout-

grid.html

Grant, K. J. (2018). CSS in Depth. Manning Publications.

Harrell, J. (2017). Unlocking the Benefits of CSS Variables. Retrieved from https://www.jonathan-

harrell.com/blog/unlocking-the-benefits-of-css-custom-properties

Jenny, B. (2020). Color Oracle. Retrieved from https://colororacle.org

Kalifa, F. (2020). Dark Mode on the Web: UX, DX and Technical Exploration For Inclusive Dark Mode.

Retrieved from https://fatihkalifa.com/dark-mode-web

Kojima, N., Ichihara, Y. G., Ikeda, T., Kamachi, M. G., & Ito, K. (2012). Color universal design: analysis of

color category dependency on color vision type (3). In Color Imaging XVII: Displaying, Processing,

Hardcopy, and Applications (Vol. 8292). Retrieved from https://doi.org/10.1117/12.907669

Kudrna, A. (2019). Dark mode s CSS custom properties: přístupnost v atraktivní podobě. Retrieved from

https://frontend.garden/dark-mode-s-css-custom-properties/

Maleki, N. G., & Ramsin, R. (2018). Agile web development methodologies: A survey and evaluation.

Studies in Computational Intelligence, 722. Retrieved from https://doi.org/10.1007/978-3-319-

61388-8_1

Michálek, M. (2017). BEM: Pojmenovávací konvence pro třídy v CSS. Retrieved from

https://www.vzhurudolu.cz/prirucka/bem

Molina-López, J., & Medina-Medina, N. (2019). Design proto-patterns to improve the interaction in video

games of people with color blindness. In ACM International Conference Proceeding Series. Retrieved

from https://doi.org/10.1145/3335595.3335612

Morgan, C. (2021). My dark theme implementation. Retrieved from My dark theme implementation

Okabe, M., & Ito, K. (2002). How to make figures and presentations that are friendly to color blind

people.pdf. Http://Jfly.Iam.U-Tokyo.Ac.Jp/Color/Index.Html.

Pedersen, L. A., Einarsson, S. S., Rikheim, F. A., & Sandnes, F. E. (2020). User interfaces in dark mode

during daytime – improved productivity or just cool-looking? In Lecture Notes in Computer Science

(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)

(Vol. 12188 LNCS). Retrieved from https://doi.org/10.1007/978-3-030-49282-3_13

Pickering, H. (2019). Inclusive Components. Smashing Magazine.

Riegler, A., & Riener, A. (2019). Adaptive Dark Mode: Investigating Text and Transparency of Windshield

Display Content for Automated Driving. Mensch Und Computer 2019 Workshop on Automotive

HMIs.

Roberts, H. (2014). Managing CSS Projects with ITCSS. Retrieved from

https://csswizardry.net/talks/2014/11/itcss-dafed.pdf

Ryobi Systems Co. (2020). Visolve - the assistive software for people with color blindness. Retrieved from

https://www.ryobi.co.jp/products/visolve/en

Skalka, J., & Drlik, M. (2018). Priscilla - Proposal of System Architecture for Programming Learning and

Teaching Environment. IEEE International Conference on Application of Information and

25

Communication Technologies. Retrieved from https://publons.com/publon/27387754/

Skalka, J., & Drlík, M. (2018). Conceptual framework of microlearning-based training mobile application

for improving programming skills. Advances in Intelligent Systems and Computing (Vol. 725).

Retrieved from https://doi.org/10.1007/978-3-319-75175-7_22

Skalka, J., & Drlík, M. (2020). Educational Model for Improving Programming Skills Based on Conceptual

Microlearning Framework BT - The Challenges of the Digital Transformation in Education. In M. E.

Auer & T. Tsiatsos (Eds.) (pp. 923–934). Cham: Springer International Publishing.

Skalka, J., Drlik, M., Benko, L., Kapusta, J., Del Pino, J. C. R., Smyrnova-Trybulska, E., … Turcinek, P.

(2021). Conceptual framework for programming skills development based on microlearning and

automated source code evaluation in virtual learning environment. Sustainability (Switzerland), 13(6).

Retrieved from https://doi.org/10.3390/su13063293

Snook, J. (2012). Scalable and Modular Architecture for CSS (second). Snook.ca Web Development, Inc.

Retrieved from http://smacss.com/

Tailwild Labs. (2021). Responsive Design. Retrieved from https://tailwindcss.com/docs/responsive-design

Taivalsaari, A., Mikkonen, T., Pautasso, C., & Systä, K. (2017). Comparing the Built-In Application

Architecture Models in the Web Browser. In Proceedings - 2017 IEEE International Conference on

Software Architecture, ICSA 2017. Retrieved from https://doi.org/10.1109/ICSA.2017.23

Team, B. (2021). Grid system. Retrieved from https://getbootstrap.com/docs/4.0/layout/grid

Torrecilla-Salinas, C. J., Sedeño, J., Escalona, M. J., & Mejías, M. (2015). Estimating, planning and

managing Agile Web development projects under a value-based perspective. Information and

Software Technology, 61. Retrieved from https://doi.org/10.1016/j.infsof.2015.01.006

Tzucker, J. (2019). Coding a CSS Theme Switcher – a Multitude of Web Dev Options. Retrieved from

https://joshuatz.com/posts/2019/coding-a-css-theme-switcher-a-multitude-of-web-dev-options/

Wang, Y. D., & Emurian, H. H. (2005). Trust in E-commerce: Consideration of interface design factors.

Journal of Electronic Commerce in Organizations. Retrieved from

https://doi.org/10.4018/jeco.2005100103

Watson-Nolan, A. (2019). The Front-End Tooling Survey 2019 - Results. Retrieved from

https://ashleynolan.co.uk/blog/frontend-tooling-survey-2019-results#css-processors

Wcag. (2012). Web Content Accessibility Guidelines (WCAG) Overview. Web Accessibility Initiative,

(December 2008).

Williams, S. (2017). Theming with CSS Custom Properties. Retrieved from

https://ramenhog.com/blog/2017/06/07/theming-with-css-custom-properties

Yazid, M. A., & Jantan, A. H. (2017). User experience design (UXD) of mobile application: An

implementation of a case study. In Journal of Telecommunication, Electronic and Computer

Engineering (Vol. 9).

