
1

Chapter Proposal for Book “Contemporary Didactics,
Methods and Technologies of Teaching Programming
Using Microlearning and Automated Source Code
Evaluation”

Guidance for Introductory Programming Courses
Creation Using Microlearning and Automated

Assessment

Jan Skalka, Lubomir Benko, Martin Drlik, Michal Munk, Peter Svec

Constantine the Philosopher University in Nitra, Tr. A. Hlinku 1, 949 01 Nitra, Slovakia
jskalka@ukf.sk, lbenko@ukf.sk, mdrlik@ukf.sk, mmunk@ukf.sk, psvec@ukf.sk

Abstract. Learning programming is a very complex activity. Student must understand
and master the way of thinking, which is often different from the thinking to which he
is accustomed in everyday life. A virtual learning environment named Priscilla is based
on an educational framework combining primary microlearning activities with an au-
tomatic evaluation of programs using automated assessment. The article presents the
form and structure of the Java programming course, a pilot course for using the Pricilla
system in teaching. This course was used in university education in the COVID pan-
demic period. The article aims to describe the results of the pilot deployment and, based
on the experience and feedback from students, generalise the principles and rules of
creating educational courses based on microlearning and automated assessment.

Keywords: programming learning, automated assessment, microlearning, Java, e-
learning.

Introduction

The challenges for changing the work process brought by the COVID-19 crisis are
focused on flexibility and autonomy of employees, quality of working time, work in-
tensity and workload, and the line between work and home activities (Eurofound,
2020). These changes have also accelerated the IT (information technologies) trends,

2

2

where automation and the digitalisation of society bring many new tasks and require-
ments for employees. The need for staff with IT skills, programs and scripts under-
standing, and finally, the ability to write source code, has been fully demonstrated dur-
ing the suppression of activities of everyday working life and their transfer to home-
work (Kogan, Klein, Hannon, & Nolte, 2020), (Gibson, Bardach, & Pope, 2020).

Universities have managed to adapt education to a virtual environment at various
levels. The fast adaption was administered by those institutions that implemented the
distance form of education in the past or had prepared sufficiently robust electronic
support for education (Skalka, Drlik, & Svec, 2012), (Saxena, Baber, & Kumar, 2021),
(Skalka, Drlik, & Svec, 2013). The virtual learning environment (VLE) built within the
FITPED project (ERASMUS + Program 2018, KA2, project number: 2018-1-SK01-
KA203-046382 - Work-Based Learning in Future IT Professionals Education) enabled
an effective and smooth transition from blended learning to complete online education.
Today's e-learning is not only a tool for isolating students at home, but MOOCs are the
best choice for educating large numbers of students with different levels of knowledge
and skills.

VLE named Priscilla (Skalka & Drlik, 2018) is based on an educational framework
(Skalka et al., 2021) combining primary microlearning activities with an automatic
evaluation of programs using automated assessment (AA). It integrates the standards
obtained by research carried out within international teams in recent years (Svec et al.,
2017), (Drlík et al., 2017). The environment is designed for optimal teaching of pro-
gramming languages using adapted types of activities and user interface design. Within
the school year 2020/2021, it was used by around 1,500 users registered in more than
20 training courses that covered eight programming languages.

Mastering the first programming language is a very challenging task for every user
(Vivian, Falkner, & Szabo, 2014). At present, research is most often focused on pre-
dicting behaviour, educational failure/success, or user categorisation in introductory
programming courses (Skalka & Drlik, 2020), (Hawlitschek, Köppen, Dietrich, & Zug,
2020), (Çetinkaya & Baykan, 2020). However, many authors point out that the primary
prerequisite for mastering and thinking in a programming language is precisely pre-
pared educational content (Berglund & Lister, 2010), (Iqbal Malik & Coldwell-Neilson,
2017).

The preparation of the structure and content of the course using microlearning and
AA has many aspects.

The article aims to define the rules of content creation based on the practical imple-
mentation and pilot use of the introductory course in programming in the Java program-
ming language. The article describes the structure, content creation and results of the
pilot use of the course to identify and generalise the principles of content creation for
programming courses using microlearning, AA and providing immediate feedback to
students.

The article has the following structure. The next chapter presents the complexity of
teaching programming and the need to provide each student with their own way of
advancing and achieving the educational goal. The third chapter presents the form and
structure of the Java programming course, which is a pilot course for the use of the
Pricilla system in teaching and which was used during the COVID pandemic period.

3

This chapter also includes a description of the implementation of the course at CPU in
Nitra. The discussion summarises the results of the pilot deployment and, based on the
experience and feedback from students, generalises the principles of creating educa-
tional courses based on microlearning and AA.

The Complexity of the Programming Learning

Learning programming is a very complex activity. Student must understand and
master the way of thinking, which is often different from the thinking to which he is
accustomed in everyday life. During getting acquainted with "machine thinking," the
student goes through several levels of understanding until he becomes an independent
analyst and programmer in a specific programming language. Based on the summaries
of areas of knowledge and skills domains (Winslow, 1996), (Ganapathi, Lourdusamy,
& Rajaram, 2011), (Castellanos, Restrepo-Calle, González, & Echeverry, 2017), the
following levels of students' ability to program were identified:

 Problem domain understanding (focused on problem description using natural lan-
guage or metalanguage; the need to use commands of a programming language is
not necessary):
o understanding the definition of problems expressed in natural language,
o understanding the goal of a solution expressed in natural language,
o understanding the description of the solution in natural language,
o problem transformation from natural language to a limited area of metalanguage

(not in programming language yet),
o solutions obtained from metalanguage transformation to the natural language;
o discuss a problem, explain the solution procedures.

 Programming language domain understanding (focused on understanding syntax
and semantic):
o understanding commands of programming language and their use,
o understanding programming language fundamentals (variable, input, output),
o knowing parameters and syntax of fundamental commands,
o understanding semantic of algorithmic structures (usually sequence, conditions,

cycles),
o knowledge to find suitable command need for the realisation of necessary activity.

 Transformation problem to the programming language and data structure domain:
o understanding the concept of data structures,
o knowledge of main data structures implemented in language and their use,
o mental transformation of the problem to programming language design,
o ability to use programming structures with a combination of data structures to

solve the defined assignments,
o selection of suitable problem-solving strategies.

 Source code understanding domain:
o the ability to read foreign code,
o verification of correctness and identification of errors in source code,

4

4

o understanding boundary and unsolvable inputs,
o manual testing and repairing code using checkpoint and output partial results.

 Subroutines using to make a program more understandable and more effective:
o understanding why and how to divide the program into smaller parts,
o understanding subroutines, parameters and types of parameters,
o to make the first contact with the effectiveness of programs (not only) using sub-

routines.
 Use of development tools:
o to use pre-compiler and help in the development environment,
o understanding why and how to debug programs,
o the ability to build applications,
o the ability to program with a focus on performance and memory.

 Deep understanding (join of programming and problem-solving) domain:
o experience of problem-solving application (optimisation, specialisation, abstrac-

tion),
o good-practice adoption (design patterns, code writing, documentation building).

 Software development domain:
o ability to select powerful and appropriate technology,
o skills in the management of the team,
o development planning and team performance calculating,
o problem-solving skills building and using.

The presented complexity of the programming learning process is the reason for
educational failures, student frustration and lack of motivation. Therefore, it is neces-
sary to offer students different ways to achieve the goal.

The Matrix Taxonomy, presented in (Fuller et al., 2007), describes the framework
for assessing learners' computer science and engineering capabilities. The taxonomy is
based on the complexity of intrinsic characteristics of computer science and covers the
above requirements of students' ability to program. The model reflects the fact that un-
derstanding the program and the ability to write a code independently are two semi-
independent capabilities. Students who acquired the ability to read source code may not
necessarily be able to write new programs. Likewise, the ability to write program code
does not mean the ability to identify errors, debug programs and correct bugs. Visual-
ising these facts takes the form of the two-dimensional matrix to represent the two sep-
arate ranges of competencies: the ability to understand and interpret an existing product
(program code) and design and build a new program.

Different students use different "learning paths". Some students get the skills to read
and debug code at first, and other students build skills in writing code instead before
they skills to read or debug foreign ideas. Figure 1 presents different learning paths and
mapped programming activities of various groups of students.

5

Fig. 1. Different learning paths of programming skills learning and building (Fuller et al., 2007)

Building programming skills for university students in the "classic" way often en-
counters a barrier build by modern technologies. Currently, students reject passive
time-consuming activities and prefer immediate testing, verification, and rapid appli-
cation of acquired knowledge and skills.

Java Course in Priscilla

The Java programming language course is an introductory programming course for
students of applied informatics at the University of Constantine the Philosopher in Ni-
tra. Its full deployment in the Priscilla system was realised in the winter semester of
2020/2021.

Following the complexity of programming learning, the course structure was de-
signed to gradually pass through the individual levels of skills and knowledge and
deepen them in a spiral. The design of this structure is based on several years of expe-
rience and tuning of topics, their scope and examples published in (Capay, Skalka, &
Drlik, 2017), (Skalka, Drlik, & Obonya, 2019).

The course is divided into chapters, and then each chapter is divided into lessons.
Every lesson contains 5-10 pairs of content micro-lessons and a control question or
series of programs. A visual representation of the part of the course content is available
in Figure 2.

6

6

Fig. 2. Java course chapters in Priscilla system.

Course Components

The course components are defined based on the functionalities of the Priscilla sys-
tem, which allows combining microlearning content, microlearning tasks and AA as-
signments. The content is built using the following types of micro-lessons:

 microlearning content,
 short answer or result of the program activity,
 selection of one correct answer from several options,
 multiple selections of multiple answers from multiple choices,
 filling the code in the empty field,
 supplement the code by choosing from the options (correct and incorrect),
 arrangement of code or lines/paragraphs of text.

The example of question/task answering is presented in Figure 3.

7

Fig. 3. Question type 6 - selection of missing code snippets.

Although the system allows the creation of program tasks evaluated by xUnit librar-
ies, in the case of the introductory course, program assignments based on output control
for a given series of inputs (I / O approach) will suffice.

The assignment consists of three main parts:

 description of the assignment with a precisely specified shape of input and output,
 preprepared code - in the introductory programs, it is advisable to insert comments

defining the expected lines of code,
 test cases - defining the inputs for which the program will be tested and the expected

outputs assigned to them.

A typical example of program assignment is presented in Figure 4.

Fig. 4. Preparation of a program entry in the administrator interface.

8

8

Course Structure

For some students, the course is the very first contact with programming. For this
reason, it is necessary to start the course with an explanation of the concept of com-
mands, variables, control structures and data types in the introductory parts. The second
part is focused on the use of cycles and strings. The emphasis is placed on developing
algorithmic and programming thinking, efficiency and debugging of code in this sec-
tion. The course closes with multiple branches, arrays, random numbers, and working
with files.

The detailed structure of the course with individual chapters and their scope is shown
in Table 1.

Table 1. Java course structure – chapters and quantity of task types.

chapter name lessons
microlessons

programs
content task

The Java language 2 10 10 0

Output commands 2 5 5 4

Variables 2 6 10 3

Data input 2 3 6 9

Conditions 3 8 10 3

Loops 5 14 15 12

Numeric data types 6 17 19 17

Other data types 4 13 18 4

String I. 5 18 20 4

String II. 5 10 10 22

Nested loops and effectivity 4 3 5 25

Multiple conditionals 2 5 5 11

Exceptions 2 6 6 4

Arrays 6 15 18 15

Array processing 4 6 6 23

2D arrays 4 13 14 16

Files 4 17 17 10

Summary 62 169 194 182

After an introductory acquaintance with terminology and fundamental concepts,

chapters focus on problem-solving/writing programs. The sum of tasks and programs
achieves the principle of active study and minimises the passive activities of the student.
Table 1 shows the gradual increase in the number of program assignments at the ex-
pense of microlearning tasks.

9

Course Students

The course is intended for students of the first year of the university study program
of applied informatics. The pilot study population consists of 83 students aged 19-23
years of the first year of the study in the winter semester of 2020/2021 at Constantine
the Philosopher University in Nitra (Slovakia).

Teaching during the pandemic period took place in the first two weeks in a face-to-
face form, then moved to the virtual space. The task for the students was to complete
the defined chapters within the week. Every chapter consists of micro-content and pro-
gram code writing. Students obtained basic information through online lectures (usually
90 minutes per week), from which a video recording was made, and they could visit
optional consultations. As part of practical exercises and seminars (approximately
90+90 minutes per week), students solved selected tasks with the tutor and discussed
tasks that they could not solve independently within a week. The content of the pre-
sented course covered half of the semester (approx. 6 weeks).

After completing the course, a test aimed at verifying students' ability to write inde-
pendent programs followed. The test contained four simple AA tasks that had to be
solved in 100 minutes. The tasks were randomly generated from the prepared series.
The examples of the assignment are presented in Figure 5.

1. Write a code that will calculate the volume and surface of a block given by three float
values a, b, c. Do not round the result.

 Equation for volume: a * b * b
 Equation for surface: 2 * (a * b + a * c + b * c)

2. Write a code that will determine how many even and odd digits are contained in a
given number.

3. Write a code that will determine how many of an array of 20 numbers (given from the
input) are below average, above average and equal to the average.

4. Write a code that will save numbers into an array. The numbers are given from the
input and are separated by commas. The numbers should be sorted and then written
out to separate the numbers, and after the last number is a dot. After that, write out the
minimum and maximum from the numbers.

Fig. 5. Examples of four test assignments in various levels of difficulty.

The test took place in a special mode. Due to the high risk of using unauthorised
support materials and plagiarism, all students wrote the test simultaneously in 10 par-
allel virtual rooms. Because this form of ensuring objective evaluation was used for the
first time, students had no experience with its violation. The distribution of test results
approximately corresponded to the distribution in previous years. The test results and
their distribution is presented in Figure 6.

10

10

Fig. 6. Student test results after completing the course.

The evaluation of the whole course is a combination of:

 results of work in a virtual environment,
 success in tests (written twice during the semester),
 an exam test aimed at understanding the source code
 and an oral answer from the content of lectures.

The overall results of students who have taught in the Priscilla environment are
available in Table 2.

Table 2. The structure of the comprehensive assessment of students.

grade
count of stu-

dent
the average number of
points of micro-tasks

the average number of
points of programs

the average number of
the first test

A 10 81.6 78.8 99.2

B 11 78.4 79.2 87.7

C 10 90.6 66,3 74,9

D 6 80.1 60.2 44.8

E 16 88.5 58,1 42.1

Fx 30 93.9 41.5 28.9

Sum 83 88.1 58.0 55.9

11

Discussion and Conclusion

Table 2 shows the discrepancy between the student's results from the first test (Fig-
ure 6) and the overall results from the subject. In this case, it is a consequence that the
initial knowledge of programming was different at the beginning of the semester. Some
students had the experience of programming at a high school (usually in Python); others
encountered programming for the first time. However, some students who started with
considerable experience did not maintain the level of the first test. At the end of the
semester, they received B, C, possibly D grades.

However, according to Table 2, differences in the average results of groups can be
observed. While students with a final grade of A achieved a success rate of 99.2%, the
success rate is 74.9% for a grade of C, and for Fx, only 28.9%.

It is interesting to investigate the achieved scores in micro-lessons and AA. In the
case of micro-lessons, students with worse final grades show better results. In the case
of AA, a declining success rate is seen together with a declining final grade.

On the one hand, a result confirms the correct design of the course - the student
chooses his own path, which is easier for him. On the other hand, it can be seen that the
choice of own way does not lead every time to successful management of the course,
and this observation should be the goal of further research. It can be observed that stu-
dents with better results chose more intensive creation of program code at the expense
of micro-tasks.

The course is probably well built in terms of content, as its microlearning part was
completed by students who failed to complete programming (as a university course)
and that with more than 90% success.

A questionnaire focused on opinion findings of students was realised after the course
pass. The majority of students expressed a positive opinion on the use of AA and mi-
crolearning in education. 77% of students were positive of the use of microlearning and
79% of the use of AA.

Free answers of students combined with the facts above make it possible to define
and generalise the principles of creating programming courses using a microlearning
approach (to become acquainted with the content) and automated assessment (for learn-
ing and practising programming as such).

The principles for content creation can therefore be formulated as follows:

Course

 The course must allow freedom of movement through the content - the aim of the
course is not to test the student but to teach him. When a student needs it, he has to
move to the position where the problem he is solving is explained.

 The course must allow a movement between lessons and chapters even if the student
has not completed previous activities. The aim is not to delay and bore the student
in the education but to motivate him to progress at his own pace and based on his
own decisions. The student can understand some parts of the content without going
through the lessons and can skip them.

12

12

 The course must be sufficiently detailed for the weaker student to absorb the content
to the extent necessary to write the programs. It requires enough microlearning tasks
to practice elementary operations.

 The student must not be bored - the course aims to learn to program. Micro-lessons
have to direct and prepare the student - the main tool for teaching programming is
writing programs.

 The types of tasks and their difficulty must alternate. Different types can keep the
student's attention. The various difficulty of the tasks motivates different kinds of
students to progress.

Microlearning

 The micro-content must be truly micro-content. A long content lesson can only re-
ally be justified in rare cases.

 Microlearning requires the transmission of information and its immediate fixation
through a micro-question. If possible, two micro-contents in a row should be
avoided. It is more appropriate to insert between them a micro-question focused on
repetition.

 Micro-questions must be formulated so that they can be answered within a maximum
of tens of seconds.

 In the case of more demanding micro-topics, or topics that have greater variability,
it is advisable to repeat a similar task with other values or aspects.

 Micro-questions prepare the student for programming - they must convey concepts,
commands and programming thinking to him.

 If the micro-questions are focused on the gradual solving of the task, it is suitable to
display the previous (already solved) content so that the student also perceives the
context.

 For micro-questions, it is advisable to set the same score level. It is assumed that the
student should go through all of them and not choose the highest-rated ones. Unnec-
essary micro-tasks do not belong in the course.

 You can prepare and use program building in micro-tasks. The creation of programs
must be gradual - the student first selects the commands from the list, then completes
the program by typing using the keyboard. After thoroughly mastering the chapter
or lesson, writes the programs independently using AA.

Automated Assessment

 The programming assignment must be concise and unambiguous. The assignment
should also include a precisely determined input and a precisely determined output.

 In the introductory tasks, when the student is acquainted with the language, it is
desirable to have the individual steps of the algorithm/program in comments.

 Initially, it is necessary to formulate tasks at the level of programming language
commands. Later, it is needed to force the student to solve problems in a word prob-
lems form. It should not be immediately clear from the assignment what the program
should look like.

13

 In addition to the initial tasks, the assignments should not be formulated so that the
result is a simple value selected from a small group of values, e.g. true/false, 1/0 etc.
Students like cheating.

 Programming tasks should have different scores set - assigned based on the expected
difficulty. Scores can be defined later based on the success of task solving or based
on the average time spent solving a task.

 When defining inputs in test cases, it is necessary to think about the time and com-
putational complexity of the used algorithm. The system aims to enable the current
work of as many users as possible and not overwhelm the system with unnecessary
complexity.

It can be assumed that respecting these principles will enable the effective creation
of content and the broadest possible use of the created courses.

Acknowledgements

This research was funded by European Commission under the ERASMUS+ Programme 2018,
KA2, grant number: 2018-1-SK01-KA203-046382 "Work-Based Learning in Future IT Professionals
Education", Ministry of Education of Slovakia, grant number 004UKF-2-1/2021 "Preparation and de-
velopment of teaching courses in English with a focus on artificial intelligence in the form of blended-
learning", and Ministry of Education of Slovakia, grant number: 2020/8148:34-A1101 "Support for
the development of practical skills of UKF students in Nitra".

References

Berglund, A., & Lister, R. (2010). Introductory Programming and the Didactic Triangle. Conferences in

Research and Practice in Information Technology Series, 103.

Capay, M., Skalka, J., & Drlik, M. (2017). Computer science learning activities based on experience. In IEEE

Global Engineering Education Conference, EDUCON. Retrieved from

https://doi.org/10.1109/EDUCON.2017.7943025

Castellanos, H., Restrepo-Calle, F., González, F. A., & Echeverry, J. J. R. (2017). Understanding the

relationships between self-regulated learning and students source code in a computer programming

course. In Proceedings - Frontiers in Education Conference, FIE (Vol. 2017-October). Retrieved

from https://doi.org/10.1109/FIE.2017.8190467

Çetinkaya, A., & Baykan, Ö. K. (2020). Prediction of middle school students’ programming talent using

artificial neural networks. Engineering Science and Technology, an International Journal, 23(6).

Retrieved from https://doi.org/10.1016/j.jestch.2020.07.005

Drlík, M., Švec, P., Kapusta, J., Munk, M., Noskova, T., Pavlova, T., … Smyrnova-Trybulska, E. (2017).

Identification of differences in university e-environment between selected EU and non-EU countries

using knowledge mining methods: Project IRNet case study. International Journal of Web Based

Communities, 13(2). Retrieved from https://doi.org/10.1504/IJWBC.2017.084416

Eurofound. (2020). COVID-19 could permanently change teleworking in Europe.

Fuller, U., Johnson, C. G., Ahoniemi, T., Cukierman, D., Hernán-Losada, I., Jackova, J., … Thompson, E.

(2007). Developing a computer science-specific learning taxonomy. ACM SIGCSE Bulletin, 39(4).

Retrieved from https://doi.org/10.1145/1345375.1345438

Ganapathi, G., Lourdusamy, R., & Rajaram, V. (2011). Towards ontology development for teaching

14

14

programming language. In Proceedings of the World Congress on Engineering 2011, WCE 2011 (Vol.

3).

Gibson, A., Bardach, S. H., & Pope, N. D. (2020). COVID-19 and the Digital Divide: Will Social Workers

Help Bridge the Gap? Journal of Gerontological Social Work. Retrieved from

https://doi.org/10.1080/01634372.2020.1772438

Hawlitschek, A., Köppen, V., Dietrich, A., & Zug, S. (2020). Drop-out in programming courses – prediction

and prevention. Journal of Applied Research in Higher Education, 12(1). Retrieved from

https://doi.org/10.1108/JARHE-02-2019-0035

Iqbal Malik, S., & Coldwell-Neilson, J. (2017). Impact of a New Teaching and Learning Approach in an

Introductory Programming Course. Journal of Educational Computing Research, 55(6). Retrieved

from https://doi.org/10.1177/0735633116685852

Kogan, M., Klein, S. E., Hannon, C. P., & Nolte, M. T. (2020). Orthopaedic Education During the COVID-

19 Pandemic. The Journal of the American Academy of Orthopaedic Surgeons. Retrieved from

https://doi.org/10.5435/JAAOS-D-20-00292

Saxena, C., Baber, H., & Kumar, P. (2021). Examining the Moderating Effect of Perceived Benefits of

Maintaining Social Distance on E-learning Quality During COVID-19 Pandemic. Journal of

Educational Technology Systems, 49(4). Retrieved from https://doi.org/10.1177/0047239520977798

Skalka, J., & Drlik, M. (2018). Priscilla - Proposal of System Architecture for Programming Learning and

Teaching Environment. IEEE International Conference on Application of Information and

Communication Technologies. Retrieved from https://publons.com/publon/27387754/

Skalka, J., & Drlik, M. (2020). Automated assessment and microlearning units as predictors of at-risk

students and students’ outcomes in the introductory programming courses. Applied Sciences

(Switzerland), 10(13). Retrieved from https://doi.org/10.3390/app10134566

Skalka, J., Drlik, M., Benko, L., Kapusta, J., Del Pino, J. C. R., Smyrnova-Trybulska, E., … Turcinek, P.

(2021). Conceptual framework for programming skills development based on microlearning and

automated source code evaluation in virtual learning environment. Sustainability (Switzerland), 13(6).

Retrieved from https://doi.org/10.3390/su13063293

Skalka, J., Drlik, M., & Obonya, J. (2019). Automated Assessment in Learning and Teaching Programming

Languages using Virtual Learning Environment. PROCEEDINGS OF IEEE GLOBAL

ENGINEERING EDUCATION CONFERENCE (EDUCON2017). Retrieved from

https://doi.org/10.1109/EDUCON.2019.8725127

Skalka, J., Drlik, M., & Svec, P. (2012). E-learning Courses Quality Evaluation Framework as Part of Quality

Assurance in Higher Education. 2012 15th International Conference on Interactive Collaborative

Learning (ICL). Retrieved from

http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=ORCID&Src

App=OrcidOrg&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=WOS:000335746300

143&KeyUID=WOS:000335746300143

Skalka, J., Drlik, M., & Svec, P. (2013). Knowledge discovery from university information systems for

purposes of quality assurance implementation. In IEEE Global Engineering Education Conference,

EDUCON. Retrieved from https://doi.org/10.1109/EduCon.2013.6530165

Svec, P., Drlik, M., Noskova, T., Pavlova, T., Yakovleva, O., & Munk, M. (2017). Analysis of university e-

environment in selected European countries – IRNet case study. In Green Energy and Technology

(Vol. 0). Retrieved from https://doi.org/10.1007/978-3-319-57070-9_17

Vivian, R., Falkner, K., & Szabo, C. (2014). Can everybody learn to code? Computer science community

perceptions about learning the fundamentals of programming. In ACM International Conference

15

Proceeding Series (Vol. 2014-November). Retrieved from https://doi.org/10.1145/2674683.2674695

Winslow, L. E. (1996). Programming pedagogy - A psychological overview. SIGCSE Bulletin (Association

for Computing Machinery, Special Interest Group on Computer Science Education). Retrieved from

https://doi.org/10.1145/234867.234872

