
1

CHAPTER 12 FOR THE BOOK: “ CONTEMPORARY DIDACTICS, METHODS

AND TECHNOLOGIES OF TEACHING PROGRAMMING USING

MICROLEARNING AND AUTOMATED SOURCE CODE EVALUATION”

Virtual Programming Lab For Moodle – Automatic
Program Assessment in a First-year University Course

Juan Carlos Rodríguez-del-Pino, Zenón J. Hernández-Figueroa, José Daniel
González Domínguez, Jan Skalka

Department of Informatics and Systems, University of Las Palmas de Gran Canaria, 30, 35001
Las Palmas de Gran Canaria, Spain

jc.rodriguezdelpino@ulpgc.es, zenon.hernandez@ulpgc.es, josedaniel.gonzalez@ulpgc.es

Constantine the Philosopher University in Nitra, Tr. A. Hlinku 1, 949 01 Nitra, Slovakia
jskalka@ukf.sk

Abstract. The ability to prepare algorithms to solve the problem and rewrite it into
program code is one of the necessary skills in finding work in the IT sector. Automated
assessment represents a tool that automatically checks source code and provides feed-
back at a level defined by the instrument or module, providing the automatic evaluation
operation. The article aims to use the automated assessment tool in the university envi-
ronment and evaluate its contribution by students. The research used the Virtual Pro-
gramming Lab module for LMS Moodle (VPL) integrated into the university e-learning
environment. The article describes VPL as a technological solution with its components
and processes for running and evaluating student source code. The research was con-
ducted through a questionnaire. The results show that students who are beginning to
program perceive VPL and automated assessment as a very useful and effective tool
for mastering programming.

Keywords: programming learning, virtual learning environment, automated assess-
ment, LMS Moodle, Virtual Programming Lab.

2

Introduction

The ability to prepare algorithms for solving problems and rewrite them into pro-
gram code is one of the necessary skills in finding work not only in the IT sector. Alt-
hough pupils have been developing algorithmic skills since the first years of primary
school, many fail to establish it to write programs.

In the past, difficulties were often sought in connection with mathematical thinking
and skills. Gomes et al. (Gomes, Carmo, Bigotte, & Mendes, 2006) realised a compar-
ative study between the students' results in the programming and mathematical tests in
the first year after starting university. The results pointed out that students do not have
enough basic mathematical concepts concerning the number theory. They have diffi-
culties understanding the problem description, weak abstraction levels, and a lack of
logical reasoning.

Chao (Chao, 2016) tried to solve these shortcomings by applying a problem-oriented
approach using a visual environment. Students solve a serie of problems while observ-
ing how novice programmers use a visual programming environment to solve a com-
putational problem. This study shows that visual problem solving is an effective ap-
proach that helps novice programmers create computational design strategies.

Bosse and Gerosa (Bosse & Gerosa, 2017) identified some typical problems of nov-
ice programmers, which can be divided into several groups. The primary cause of fail-
ure is usually a weak understanding of the basic programming principles (variables,
expressions, commands) and, subsequently, a weak ability to analyse feedback in the
development environment (compiler messages, identifying the causes of runtime errors,
etc.).

According to (Skalka & Drlik, 2020), (Skalka, Drlik, & Obonya, 2019) program-
ming language courses are still the most challenging courses that students fail. The
current approach to solving this problem is based on adapting the educational method-
ology to the habits of current students. The approach used to obtain information for
young Generation Z programmers is based primarily on the use of smartphones, the
limited amount of information displayed (Hug, 2005), and the provision of immediate
feedback (Keuning, Jeuring, & Heeren, 2018), (Le, 2016).

Although several applications and frameworks support the use of smartphones in
teaching programming, writing more complex programs in this environment is ineffi-
cient (Skalka & Drlík, 2018). An ideal tool for teaching programming at universities,
which can eliminate some beginner's difficulties when set up correctly, is automated
assessment (Staubitz, Klement, Renz, Teusner, & Meinel, 2016), (Galan, Heradio,
Vargas, Abad, & Cerrada, 2019).

Automated assessment (AA) represents a tool that automatically checks source code
and provides feedback at a level defined by the instructor or module providing the AA
operation. According to (Skalka et al., 2019), AA is beneficial for the following areas:

 the student gains immediate feedback whether the program is correct;
 students can use at their own pace while the teacher assists in explaining the task or

getting stuck during the solution;

3

 the teacher gains extra time, instead of time wasted by checking the assignment and
identifying and re-explaining repeated errors in past;

 it is possible to teach large groups of students without increasing the demands on
teachers, which apply mainly in the case of MOOC courses;

 the learning process is more efficient and, due to the errors tracking, speed and qual-
ity of the solutions, the individual parts of the process can be fragmented, quantified
and described.

The article aims to use the AA tool in the university environment and evaluate its
contribution by students. The research used the Virtual Programming Lab module for
LMS Moodle (VPL) (Rodríguez-del-Pino, Rubio-Royo, & Hernández-Figueroa, 2012).
VPL was integrated into the university e-learning environment. Its use with other edu-
cational materials (lectures, tests, video lessons, etc.) was used to support blended learn-
ing in the first year of bachelor's study applied informatics.

The research questions are defined as follow:

 RQ1: How do students perceive the method of automated assessment, and how it
contributes to improving their programming skills.

 RQ2: How do students perceive the environment of the VPL module.

The article has the following structure. The second part describes the Virtual Pro-
gramming Lab as a technological solution with its components and integration into
LMS Moodle. It also describes services for running and evaluating student source code.
The third part presents the structure and results of a questionnaire implemented within
a group of first-year university students who used VPL as the primary tool for writing
introductory programs in Java. Finally, the article concludes with a discussion and con-
clusion.

Virtual Programming Lab

Virtual Programming Lab for Moodle (VPL) is a tool aimed to manage student as-
signments in computer programming courses (Rodríguez-del-Pino et al., 2012). VPL is
an open-source tool that supports the execution and assessment of the program code
submitted by the students.

VPL is available from the official Moodle site and is developed by teachers at the
University of Las Palmas de Gran Canaria (ULPGC), Spain. The following subchapters
describe the structure of VPL.

Logical Structure Overview

VPL is composed of three pieces: an execution service, a Moodle plugin, and an IDE
client. The execution service attends to the requests from the Moodle plugin to execute

4

and monitor tasks while interacting with the IDE client through text or graphic termi-
nals.

Fig. 1. Components of Virtual Programming Lab

The Moodle plugin manages and saves the configuration data for each assignment

and the student submissions with their assessment and grading reports. It also coordi-
nates the requests for running, debugging, or assessing student code. The user makes
requests through the IDE client, and the Moodle plugin transfers them to an execution
server selected to carry on such tasks. The IDE client running in a browser interacts
with the users, starts requests to the Moodle plugin, retrieves and displays the responses,
and establishes direct connections with the execution server.

The VPL Moodle Plugin

The VPL Moodle plugin is the piece that integrates VPL into the Moodle online
learning system. It allows using VPL as an integral part of Moodle by supporting back-
ups, restores, logs, reports, roles, groups, calendars, grade book, GDP, etc.

Teachers interact with the VPL Moodle plugin to manage the VPL activities. The
teachers can define all the aspects of the assignment and get live reports of each assign-
ment status, including students' submissions and time spent in the activity. The config-
uration of an assignment may include an easy-to-write definition of input/output test
cases, allowing automatic assessment.

The data managed by the plugin for each assignment include:

 description,
 submission limits (number of files, file size, etc.),
 execution limits (time, memory, etc.),
 initial files for the student,

5

 files to support running students' code,
 the submissions of each student,
 test cases definition,
 automatic and manual grading reports.

Fig. 2. Virtual Programming Lab communication in the LMS Moodle environment.

From the teachers' point of view, the VPL plugin is the dashboard of the program-
ming assignments where they can get help to manage and grade this type of activity
without needing to download or run code outside this tool.

The tool out of the box supports more than twenty programming languages. This
support includes the needed scripts to compile or interpret the code written in each
language. It is also highly customisable, allowing teachers to add support for new pro-
gramming languages or even change the behaviour for initially supported ones.

The plugin gives an always ready-to-use environment to save, develop, and test pro-
gramming assignments receiving automatic feedback and the final mark from the stu-
dent's point of view. All this without the need for installations or configurations in a
machine. As a drawback, although the system reports the compilation and execution
bugs, its auto-completion hints are not syntax-aware.

The IDE Client

The IDE client is really part of the Moodle plugin, but it runs in a web browser
instead of running in the Moodle server. The IDE client is a multi-file code-editing
environment with syntactic highlighting for many programming languages.

It supports standard file operations like, among others, exporting files as a ZIP file,
drag-and-drop, and import files from the local machine. The import and drag-and-drop
include the unpacking of ZIP files. The IDE client also consists of an interactive text

6

terminal and a graphical environment. The client allows running many programs from
classic I/O text programs, GUI programs to web applications.

The user using the IDE client triggers the execution of the code, so getting an instant
compilation report and, if compilation succeeds, an interactive terminal (text or GUI)
connected to the running program. The compilation report allows the student to fix the
problems found.

If the assignment configuration allows it, students could also request from the IDE
client the assessment of their submissions, obtaining immediate feedback on their re-
sults that they could use to rework their tasks.

The Execution Service

Running and assessing code written by students is one of the main functionalities of
VPL. The execution service is the module in charge of such a task. The VPL Moodle
plugin can interact with several execution services

The execution services accept requests to run, debug, or assess students' code. The
service also accepts commands to stop, get status, retrieve assessment, etc., for each
task. It also allows Websocket connections to interact with running tasks and monitor
them.

Security has been one of the main criteria driving the development of VPL. As in-
ternal security measures, the execution services run tasks in a controlled environment,
limiting the effect of the task in the execution server. No external code runs outside the
execution service. The authors recommend the service be installed on a dedicated Linux
server. The service uses local installed compilers and interpreters to run code written in
the different programming languages.

As perimeter security measures, VPL uses HTTPS secure connections, keys to ac-
cept tasks, transient tokens to control, monitor, and interact with tasks, and can limit
the serves available to request tasks. It can also use anti-DoS algorithms.

Fig. 3. Execution server with connexions from Moodle and Browser.

7

For each execution, the execution service creates a temporal user and home directory
to save the data and run the code of the task. Each task runs with the limits of memory,
time, processes, etc., demanded in the task request. After the job ends, the service re-
moves the temporal user and directory assigned. The service is stateless in the sense
that each execution always starts from scratch.

Research Methodology and Design

The preparation of the questionnaire was aimed at identifying strengths and weak-
nesses in the use of AA. AA was a compulsory part of completing the introductory
programming course, but they were only a part of the study obligations. Students can
use presentations from lectures, video recordings of lectures, video recordings of the
solution of selected tasks and weekly summary tests. Education was realised in a com-
bined form, and the teacher solved selected assignments with students. Some of the
tasks were solved within the home preparation.

The first part of the questionnaire examines the acceptance of principles and the use
of new technology by students, and the second part is focused on the user experience
of students with VPL within the introductory semester period at the university. These
students were not yet in contact with the VPL or AA environment, so their perception
of both elements is not affected by previous experience.

The survey population consists of 52 students aged 19-22 years of the first year of
the study in the winter semester of 2019/2020 at Constantine the Philosopher University
in Nitra (Slovakia). Data collection was not anonymous, but student participation was
optional and voluntary in the survey.

The questions were asked in the form of a 7-level Likert scale.

Students' Attitude to the Use of AA

The first group of questions was focused on the perceptions of AA by students.
The essential characteristics of educational content are students understanding and

the teacher's (or course creator's) ability to assign a task clearly and accurately. The first
question (The VPL's assignments were clear and understandable.) focuses on identify-
ing the unambiguity and comprehensibility of the assignment.

The second question (The assignments of the VPL were in accordance with the con-
tent of the lectures.) was focused on identifying whether students correctly perceive the
content of lectures and can connect it with the tasks they solve through AA.

The third and fourth questions focus on identifying the role of AA in a cognitive
process. The third question (The VPL assignments helped me understand the content of
programming.) identified the importance of AA in understanding the content itself and
building basic knowledge.

8

The fourth question (The VPL assignments helped me practice the understood con-
tent.) identified the importance of AA in understanding the content itself and building
basic knowledge.

The summarisation of answers is presented in Table 1.

Table 1. Perceptions of AA by students in the winter semester of 2019/2020.

question

 7 6 5 4 3 2 1

mean

strongly

agree

(% / N)

agree

(% / N)

somewhat

agree

(% / N)

neutral

(% / N)

somewhat

disagree

(% / N)

disagree

(% / N)

strongly

disagree

(% / N)

The VPL's assignments were
clear and understandable.

5.19
13.5%

(7)
32.7%
(17)

30.8%
(16)

11.5%
(6)

7.7%
(4)

1.9%
(1)

1.9%
(1)

The assignments of the VPL
were in accordance with the con-
tent of the lectures.

5.76
50%
(26)

19.2%
(10)

11.5%
(6)

7.7%
(4)

3.8%
(2)

3.8%
(2)

3.8%
(2)

The VPL assignments helped me
understand the content of pro-
gramming.

5.34
42.3%
(22)

11.5%
(6)

15.4%
(8)

17.3%
(9)

1.9%
(1)

5.8%
(3)

5.8%
(3)

The VPL assignments helped me
practice the understood content.

5.67
51.9%
(27)

11.5%
(6)

13.5%
(7)

13.5%
(7)

1.9%
(1)

0%
(0)

7.7%
(4)

The results show that respondents perceive the most important questions signifi-

cantly positively (The VPL assignments helped me understand the content of program-
ming. – 5.34; The VPL assignments helped me practice the understood content. – 5.67),
and the supplementary questions also provide information that students understand the
connection between the course content and AA: The VPL's assignments were clear and
understandable. (5.19) and The assignments of the VPL were in accordance with the
content of the lectures. (5.76).

The students' view of AA is illustrated by free answers, of which the most interesting
observations include:

 I know the result of the task immediately; I don't have to wait for the teacher to fix
it and deal with solving the problem again.

 Possibility to learn or repeat the curriculum only on the Internet. There is no need to
install the program itself on my computer.

 Thanks to the display of inputs and outputs, I can see for what inputs my program
does not work.

 AA quickly detected errors in the code and saved me time searching on the Internet
or in the materials from lectures in LMS Moodle.

 Possibility to practice tasks at home independently and need the opportunity to con-
nect with a team of classmates with whom we help each other.

9

Students' Attitude to the Use of VPL Environment

The second part of the questionnaire was focused on the web IDE environment with
VPL functionality to find out how students react to the web IDE environment and the
behaviour of the evaluation module.

Fig. 4. User view in VPL environment.

The questions were aimed to identify potential issues and their impact on student
skills-building and perception of the AA environment.

The second purpose of the questions was to provide VPL module developers feed-
back from a group of university users.

The example of an assignment evaluated in the VPL environment is presented in
Figure 4.

Questions and answers scores are shown in Table 2.

Table 2. Perceptions of VPL environment by students in the winter semester of 2019/2020.

question

 7 6 5 4 3 2 1

mean

strongly

agree

(% / N)

agree

(% / N)

some-

what

agree

(% / N)

neutral

(% / N)

some-

what dis-

agree

(% / N)

disagree

(% / N)

strongly

disagree

(% / N)

The environment was easy to
use.

5.77
44.2%
(23)

19.2%
(10)

25%
(13)

3.8%
(2)

0%
(0)

3.8%
(2)

3.8%
(2)

The functionality of the editor
was sufficient.

5.15
25%
(13)

25%
(13)

19.2%
(10)

15.4%
(8)

7.7%
(4)

1.9%
(1)

5.8%
(3)

The evaluation speed was suffi-
cient.

5.98
51.9%
(27)

21.2%
(11)

17.3%
(9)

3.8%
(2)

0%
(0)

0%
(0)

5.8%
(3)

Feedback on detecting syntax er-
rors was sufficient (compiler re-
ports).

5.53
36.5%
(19)

19.2%
(10)

23.1%
(12)

11.5%
(6)

5.8%
(3)

0%
(0)

3.8%
(2)

10

question

 7 6 5 4 3 2 1

mean

strongly

agree

(% / N)

agree

(% / N)

some-

what

agree

(% / N)

neutral

(% / N)

some-

what dis-

agree

(% / N)

disagree

(% / N)

strongly

disagree

(% / N)

Feedback of detecting logical er-
rors was sufficient (reports of in-
correct results).

5.13
28.8%
(15)

15.4%
(8)

25%
(13)

11.5%
(6)

11.5%
(6)

5.8%
(3)

1.9%
(1)

The results show that respondents are satisfied with all the functionalities of the en-

vironment to very satisfied.
Free answers bring ideas for improving the functionality of the editor and insights

from practical use:

 The editor does not support the autocomplete utility and neither continuous error
evaluation as the development environment.

 Sometimes there were problems with the evaluation; for example, VPL did not want
to recognise the specified output, which was visually identical to the expected output
- in such cases, it may be helpful to display ASCII character codes.

 The system does not prevent the student from cheating.
 The same code in NetBeans and VPL returns different results - real numbers were

sometimes taken with different accuracy.

However, these observations are usually not a technological matter of the VPL en-
vironment as such. They are used to indicate that students have not identified any seri-
ous deficiencies in the VPL module within three months of using the system.

Discussion and Conclusion

The answers to the research questions can be summarised as follows.

 RQ1: How do students perceive the method of automated assessment, and how it
contributes to improving their programming skills.

The first research question was answered through a questionnaire with the following
results based on the evaluation of the feedback obtained after the end of the semester
on a sample of 52 first-year students. It can be stated that:

 81% of students perceive the connection between the content of lectures and AA,
11% disagree with this statement,

 77% of students understand the assignments formulated in the language at a level
corresponding to university students and considers them comprehensible, 11% dis-
agree with this statement,

 automated assessments help students understand new content for 69% of students,
13% disagree with this statement,

11

 automated assessments help students practice content and are sufficient for 77% of
students, 10% disagree with this statement,

 RQ2: How do students perceive the environment of the VPL module.

It can be stated that:

 with the statement that the environment is easy to use, agree 88% and disagree 8%
of students,

 the functionality of the editor were sufficient for 69% of students; 15% of students
disagree with this statement,

 the evaluation speed were sufficient for 90% of students; 6% of students disagree
with this statement,

 feedback of detecting syntax errors were sufficient for 79% and insufficient for
10% of students,

 feedback of detecting logical errors were sufficient for 69% and insufficient for
19% of students.

Based on the questionnaire results, it can be stated that AA represents a technology,
which brings positive results from the introductory courses in teaching programming.
Students perceive this tool highly positively, and they are aware of the benefits it brings
for them. It can be assumed that the successful implementation of AA modules or sys-
tems will increase the quality of training of IT specialists.

VPL is a useful and highly positively perceived system whose main advantages are
integration into the LMS Moodle and modularity, which allows its parts in other (inde-
pendent) systems. VPL components are used in the Priscilla system, which integrates
AA with other elements typical for nowadays smart education (Skalka & Drlik, 2018).

Thanks to collecting all submitted assignments for every user, VPL provides a data-
base that allows identifying problems of students and students who may have educa-
tional issues (Drlík et al., 2017), (Skalka, Drlik, Obonya, & Capay, 2020).

Acknowledgements

This research was funded by European Commission under the ERASMUS+ Programme 2018,
KA2, grant number: 2018-1-SK01-KA203-046382 "Work-Based Learning in Future IT Professionals
Education", Ministry of Education of Slovakia, grant number 004UKF-2-1/2021 "Preparation and de-
velopment of teaching courses in English with a focus on artificial intelligence in the form of blended-
learning", and Ministry of Education of Slovakia, grant number: 2020/8148:34-A1101 "Support for
the development of practical skills of UKF students in Nitra".

References

Bosse, Y., & Gerosa, M. A. (2017). Why is programming so difficult to learn? ACM SIGSOFT Software

Engineering Notes, 41(6). Retrieved from https://doi.org/10.1145/3011286.3011301

Chao, P. Y. (2016). Exploring students’ computational practice, design and performance of problem-solving

through a visual programming environment. Computers and Education, 95. Retrieved from

12

https://doi.org/10.1016/j.compedu.2016.01.010

Drlík, M., Švec, P., Kapusta, J., Munk, M., Noskova, T., Pavlova, T., … Smyrnova-Trybulska, E. (2017).

Identification of differences in university e-environment between selected EU and non-EU countries

using knowledge mining methods: Project IRNet case study. International Journal of Web Based

Communities, 13(2). Retrieved from https://doi.org/10.1504/IJWBC.2017.084416

Galan, D., Heradio, R., Vargas, H., Abad, I., & Cerrada, J. A. (2019). Automated Assessment of Computer

Programming Practices: The 8-Years UNED Experience. IEEE Access, 7. Retrieved from

https://doi.org/10.1109/ACCESS.2019.2938391

Gomes, A., Carmo, L., Bigotte, E., & Mendes, A. (2006). Mathematics and programming problem solving.

In 3rd e-learning conference--computer science education (pp. 1–5).

Hug, T. (2005). Microlearning : A New Pedagogical Challenge. In Proceedings of Microlearning Conference

2005.

Keuning, H., Jeuring, J., & Heeren, B. (2018). A systematic literature review of automated feedback

generation for programming exercises. ACM Transactions on Computing Education, 19(1). Retrieved

from https://doi.org/10.1145/3231711

Le, N.-T. (2016). A Classification of Adaptive Feedback in Educational Systems for Programming. Systems,

4(2). Retrieved from https://doi.org/10.3390/systems4020022

Rodríguez-del-Pino, J. C., Rubio-Royo, E., & Hernández-Figueroa, Z. (2012). A Virtual Programming Lab

for Moodle with automatic assessment and anti-plagiarism features. Conference on E-Learning, e-

Business, Entreprise Information Systems, & e-Government.

Skalka, J., & Drlik, M. (2018). Priscilla - Proposal of System Architecture for Programming Learning and

Teaching Environment. IEEE International Conference on Application of Information and

Communication Technologies. Retrieved from https://publons.com/publon/27387754/

Skalka, J., & Drlik, M. (2020). Automated assessment and microlearning units as predictors of at-risk

students and students’ outcomes in the introductory programming courses. Applied Sciences

(Switzerland), 10(13). Retrieved from https://doi.org/10.3390/app10134566

Skalka, J., & Drlík, M. (2018). Conceptual framework of microlearning-based training mobile application

for improving programming skills. Advances in Intelligent Systems and Computing (Vol. 725).

Retrieved from https://doi.org/10.1007/978-3-319-75175-7_22

Skalka, J., Drlik, M., & Obonya, J. (2019). Automated Assessment in Learning and Teaching Programming

Languages using Virtual Learning Environment. PROCEEDINGS OF IEEE GLOBAL

ENGINEERING EDUCATION CONFERENCE (EDUCON2017). Retrieved from

https://doi.org/10.1109/EDUCON.2019.8725127

Skalka, J., Drlik, M., Obonya, J., & Capay, M. (2020). Architecture proposal for micro-learning application

for learning and teaching programming courses. In IEEE Global Engineering Education Conference,

EDUCON (Vol. 2020-April). Retrieved from https://doi.org/10.1109/EDUCON45650.2020.9125407

Staubitz, T., Klement, H., Renz, J., Teusner, R., & Meinel, C. (2016). Towards practical programming

exercises and automated assessment in Massive Open Online Courses. In Proceedings of 2015 IEEE

International Conference on Teaching, Assessment and Learning for Engineering, TALE 2015.

Retrieved from https://doi.org/10.1109/TALE.2015.7386010

