

Practical Guideline for Automated

Programming Assignments Writing

Published on

November 2021

Authors

José Daniel González-Domínguez | University of Las Palmas de Gran Canaria, Spain

Zenón José Hernández-Figueroa | University of Las Palmas de Gran Canaria, Spain

Juan Carlos Rodríguez-del-Pino | University of Las Palmas de Gran Canaria, Spain

Ján Skalka | Constantine the Philosopher University in Nitra, Slovakia

Reviewers

Anna Stolińska | Pedagogical University of Cracow, Poland

Dušan Junas | Teacher.sk, Slovakia

Cyril Klimeš | Mendel University in Brno, Czech Republic

Piet Kommers | Helix5, Netherland

Eugenia Smyrnova-Trybulska | University of Silesia in Katowice, Poland

Michal Švec | Teacher.sk, Slovakia

Graphics

Marcela Skalková | Teacher.sk, Slovakia

David Sabol | Constantine the Philosopher University in Nitra, Slovakia

Erasmus+ FITPED

Work-Based Learning in Future IT Professionals Education

Project 2018-1-SK01-KA203-046382

The European Commission support for the production of this publication does not constitute an

endorsement of the contents which reflects the views only of the authors, and the Commission

cannot be held responsible for any use which may be made of the information contained therein.

Licence (licence type: Attribution-Non-commercial-No Derivative Works) and may be used by third

parties as long as licensing conditions are observed. Any materials published under the terms of a CC

Licence are clearly identified as such.

All trademarks and brand names mentioned in this publication and all trademarks and brand names

mentioned that may be the intellectual property of third parties are unconditionally subject to the

provisions contained within the relevant law governing trademarks and other related signs. The mere

mention of a trademark or brand name does not imply that such a trademark or brand name is not

protected by the rights of third parties.

© 2021 Constantine the Philosopher University in Nitra

ISBN 978-80-558-1795-8

Table of Contents

INTRODUCTION .. 8

SOFTWARE TESTING.. 10

INTRODUCTION TO SOFTWARE TESTING .. 10

Advantages of software testing .. 12
Manual and automated testing .. 13
Fundamental types of testing ... 13

METHODS AND LEVELS .. 14

Testing methods ... 14
Testing levels .. 16
Advanced testing - non-functional types of testing ... 17

AUTOMATIC EVALUATION OF SOURCE CODES ... 19

VIRTUAL PROGRAMMING LAB .. 22

TYPICAL USERS ... 22

BASIC FEATURES .. 23

PROGRAM EXECUTION .. 23

VPL ACTIVITY IN MOODLE ... 24

Creating VPL activity ... 24
Test cases ... 28
Execution options ... 29
Requested files ... 30
Submissions report ... 31
Similarity ... 34
Test activity .. 37
Submission view ... 39
Assignment list in Virtual Programming Labs ... 42

VPL TEST CASE LANGUAGE .. 44

Basic definition ... 44
Input ... 44
Output .. 45
Multiple output checking ... 49
Penalizations and final grade ... 49
Advanced testing .. 50
Running another program .. 51

OUTPUT FILTERING AND FORMATTING ... 54

Filtering the raw output ... 54
Format indicators ... 56

PRISCILLA SYSTEM .. 57

CONTENT STRUCTURE ... 58

Content microlesson .. 60
Short answer .. 60
Choice of options .. 61
Multiple choice of options .. 62
Placing code snippets ... 63

Writing commands into code ... 64
Rearranging lines (of source code) ... 65

PROGRAM ASSIGNMENT .. 66

BIOTES assignments ... 66
Statically evaluated code .. 68

ADVANCED VPL FEATURES .. 70

EXECUTION FILES .. 70

EXECUTION RESOURCES LIMITS ... 71

FILES TO KEEP WHEN RUNNING ... 72

VARIATIONS .. 72

CHECK EXECUTION SERVERS ... 73

LOCAL EXECUTION SERVERS .. 74

THE BASED-ON FEATURE .. 74

ADDING SUPPORT FOR A NEW PROGRAMMING LANGUAGE .. 75

CUSTOMIZING AUTOMATIC PROGRAM ASSESSMENT .. 76

EVALUATION OUTPUT FORMAT ... 76

FORMATTING THE COMMENTS (FEEDBACK) .. 76

DETAILS OF RUNNING A TASK ... 76

VPL ARCHITECTURE ... 78

CONNECTIONS ACCEPTED BY EXECUTION SERVER ... 79

SECURITY ASPECTS .. 80

The "available" method .. 81
The "request" method .. 83
The "getresult" method .. 86
The "running" method.. 87
The "stop" method ... 87

TASK MONITORING ... 88

RETRIEVING THE VPL ACTIVITIES DEFINITION TO USE IT ON ANOTHER SYSTEM ... 89

VPL SETTINGS IN PRISCILLA ... 91

COURSE SETTINGS .. 91

JAVA .. 91

C/C++ LANGUAGE ... 95

PYTHON ... 96

PHP .. 98

UNITTEST2VPL FRAMEWORK ... 102

REQUIREMENTS ... 102

Produce suitable VPL feedbacks ... 102
Catch unexpected exceptions .. 102
Prevent from non-ending states .. 103

SOLUTION FOR PYTHON .. 103

Unittest2VPL Base Activity ... 103
Scripts ... 108

Internationalization and Localization ... 109
How to use ... 110
VPL activity configuration ... 112
PRISCILLA configuration ... 112

SQLITETEST4VPL FRAMEWORK .. 114

THE IMPLEMENTATION FILES .. 115

Scripts ... 115
Data preparation files ... 119

JUNIT4VPL FRAMEWORK ... 122

WHAT OFFERS JUNIT4VPL? .. 122

USING JUNIT4VPL ... 122

Basic use of JUnit4VPL, the OddEven problem .. 123
Testing a students class .. 125

ADVANCED TESTING CUSTOMIZATION .. 125

The Test annotation ... 126
The TestClass annotation ... 126
The ConsoleCapture class ... 126

JUNIT4VPL INTERNATIONALIZATION ... 127

JUNITBASE FRAMEWORK ... 128

EXAMPLE OF ASSIGNMENT ... 128

MYSOLUTION .. 129

STARTING CLASS .. 129

EVALUATE CLASS .. 131

SCRIPTS .. 133

PRACTICAL INFO – xUNIT TESTING .. 134

JUNIT... 134

Testing in IntelliJ ... 135
Testing in Eclipse .. 140
Finish the test ... 144

ACCURACY IN TESTS .. 145

Real numbers in test ... 145

EXCEPTIONS .. 146

Division by zero .. 146

TESTING METHODS ... 148

BIBLIOGRAPHY ... 150

s

 8

Introduction

The ability to prepare algorithms for solving problems and rewrite them into program code is one of

the necessary skills in finding work not only in the IT sector. Programming language courses are still

the most challenging courses that students fail. The current approach to solving this problem is based

on adapting the educational methodology to the habits of current students. Automated assessment

represents a tool that automatically checks source code and provides feedback at a level defined by

the instructor or module providing these operations.

The publication you are holding in your hands summarizes the authors' many years of experience in

the field of automatic evaluation of source codes. Many software environments and modules have

been created to assess the correctness of source code written in various programming languages.

Some are narrowly oriented. Others can cover needs in many programming languages.

One of the successful solutions is the Virtual Programming Lab for Moodle, which currently works on

more than 1,700 servers across educational organizations worldwide.

Based on this solution, modules for the PRISCILLA system were created within the FITPED project.

PRISCILLA modules use this system but leave the LMS Moodle environment and offer a single-

purpose and simple graphically oriented environment instead of Moodle complexity.

The publication is one of the results of the project Work-Based Learning in Future IT Professionals

Education (ERASMUS+ Programme 2018, KA2, project number: 2018-1-SK01-KA203-046382).

The primary goal of the publication is the dissemination of project results in the field of automatically

evaluated tasks development and use, which represent a significant contribution both in fulfilling the

project objectives and in the didactics of learning programming.

The introduction of the publication presents basic information about the reasons and methods of

testing followed by a general introduction to automatic evaluation of source code.

The following chapters are more practical. The third chapter presents VPL, its use in the LMS Moodle

environment, explains the basic principles of creating assignments and familiarizes the reader with

various types of programming assignments that can be made through the language for creating test

cases. In the next chapter, the authors present the implementation of elements in the PRISCILLA

environment and describe the types of questions and assignments that can be used to build

programming skills in a newly developed system.

The following three chapters describe the structure and nuances of more complicated tasks that

allow you to verify the correctness of complex tasks and enter the low-level evaluation process. At

the same time, this group of chapters provides information suitable for users who decide to

implement VPL in their software solution.

The VPL settings in the PRISCILLA section summarize the scripts needed to check the source code in

Java, C, Python, and PHP.

The next chapters present advanced options for code verification and user message generation

through frameworks from colleagues from the University of Las Palmas Grand Canaria and

Constantine the Philosopher University in Nitra. They are dedicated to verifying the correctness of

tasks with objects in Python and Java languages. A unique approach provides a framework for

checking SQL entries, which allows you to check the correctness of queries sent to the database

server.

 9

The publication concludes with a chapter explaining the working principle of xUnit libraries designed

for unit testing of programs. This chapter is intended for readers who have not yet encountered this

type of testing and cannot absorb the content of the chapters presented frameworks without this

knowledge.

Based on the content of the publication, it is possible to create different types of tasks not only

within the platform developed for the needs of the project but also in other platforms supporting

automated code evaluation.

The benefit of the publication is also a description of best practices for different programming

languages because each of the languages has its own specifics that allow it to communicate with the

educator more friendly and more accurately identify deficiencies in the code than when using

universal approaches.

 10

Software Testing

Introduction to software testing

Software testing is part of a more general verification and validation process, including static and

dynamic validation techniques. Understanding these techniques is the main aim of this chapter.

Basic testing methods

We can understand the concept of software testing as:

• the process of evaluating a system or its component(s) with the intent to find whether it

satisfies the specified requirements or not,

• executing a system to identify any gaps, errors, or missing needs contrary to the actual

requirements,

• intended to show that a program does what it is designed to do and discover program

defects before it is used.

• a process of analysing a software item to detect the differences between existing and

required conditions and evaluate the features.

Testing software often requires executing a program using artificial data. Testing can reveal the

presence of errors, not their absence.

Life cycle

Testing is a part of all kinds of software development life cycles. Different types of stakeholders are

involved in the software testing process depending on the complexity of the project, used

methodology and project management, the experience of the project team members. The following

roles are often involved in the process:

• Software Tester

• Software Developer

• Project Manager

• End-User

• Software Quality Assurance Engineer

• Quality Assurance Analyst.

Software Development Life Cycle (SDLC), often called the Software Development Process, is a process

used by the software industry to design, develop and test high-quality software. The SDLC aims to

produce high-quality software that meets or exceeds customer expectations, reaches completion

within times and cost estimates. It has the following phases in general:

• Planning and requirements analysis

• Defining requirements

• Designing the product architecture

• Building the product

• Testing the product

 11

• Deployment of the product

• Maintenance and further development of the product

There are numerous SDLC models, which are often called Software Development Process Models.

They are suitable for different situations. Their effective use depends on the complexity of the

software product, which should be developed. They differ in the series of steps, which ensure

success in the process of software development. The following are the most popular SDLC models:

• Waterfall model

• Iterative model

• Spiral model

• V-model

• Agile model

• Rapid Application Development Model

• Prototyping model.

The software testing is included in all SDLC models to different extents. It can create a separate

phase, or testing can create an inseparable part of various phases of the SDLC.

Verification and Validation

Verification and validation are two very similar terms, which closely relate to the software testing

topic. They differ in the following aspects:

Verification:

1. “Are you building it right?”

2. Ensures that the software system meets all the functionality.

3. Verification takes place first and includes checking for documentation, code, etc.

4. Developers do it.

5. It has static activities, as it includes collecting reviews, walkthroughs, and inspections to

verify software.

6. It is an objective process, and no subjective decision should be needed to verify software.

Validation:

1. Validation addresses the concern: ”Are you building the right thing?”

2. Ensures that the functionalities meet the intended behaviour.

3. Validation occurs after verification and mainly involves the checking of the overall product.

4. Testers do it.

5. It has dynamic activities, as it includes executing the software against the requirements.

6. It is a subjective process and involves personal decisions on how well the software works.

When to start testing?

Testing should start as early as possible because an early start to testing reduces the cost and time to

rework the product. The real start depends on the used development model. Testing is incorporated

in every phase of SDLC:

 12

• During the requirement gathering phase, the analysis and verification of requirements are

also considered as testing.

• Reviewing the design in the design phase to improve the design is also considered testing.

• Testing performed by a developer on completion of the code is also categorised as testing.

When to finish testing?

Any software can not be 100% tested. Testing is a never-ending process. Therefore, it is crucial to

estimate how much testing is enough and consider the following circumstances:

• Deadline of the project

• Code coverage level of the source code

• Bug rate under a certain level

• Decisions of the project manager

Advantages of software testing

Advantages of software testing can be defined as:

• Cost-effectiveness – early testing saves time and costs because the discovered problem does

not affect the final implemented solution

• Software improvement – testing is a phase of all SDLC

• Automation reduces the testing time. However, it should be started after static validation, an

inspection of the system.

• Software quality assurance helps measure the following software properties: functionality,

reliability, usability, efficiency, maintainability, and portability.

Program Testing has the following parts

Validation testing demonstrates to the developer and the system customer that the software meets

its requirements. A successful test shows that the system operates as intended.

Defect testing, which discovers situations in which the behaviour of the software is incorrect,

undesirable or does not conform to its specification. It leads to defect testing. A successful test is a

test that forces the system to perform incorrectly and so shows a defect in the system

Software inspection is a formal evaluation technique in which software requirements, designs, or

codes are examined in detail by a person or a group other than the author to detect faults, violations

of development standards, and other problems complementary to verification technique to testing.

It represents a formal technique that involves formal or informal technical reviews of any artefact by

identifying any error or gap.

Software inspection is considered a practical approach for discovering program errors. It is a static

verification because it focuses on analysing the static system representation to discover problems.

Simultaneously, it does not require the execution of a system and, therefore, it does not require

additional costs for inspection of incomplete versions of a system. It can be applied to any software

representation like the requirements specification, software architecture, database schema.

 13

Software inspection can consider a broader set of quality attributes like portability, maintainability,

compliance with standards. It can check conformance with a specification, not with the customers'

requirements. On the other hand, it does not check non-functional requirements like performance,

usability.

Manual and automated testing

Software engineering defines the following two types of testing:

• Manual testing covers testing software manually, without any automated tool and scripts.

Manual testing has several stages, which will be introduced later. The tester, in the role of

end-user, tests the software to identify any unexpected behaviour. The tester uses test cases

and test scenarios to ensure the completeness of tests.

• Automated testing (Test automation) requires the tester to write scripts and use specialised

software to test the product. Test automation is a logical replacement for manual testing, in

which constantly repeating routines occur. It allows running the test scenarios repeatedly

and incrementally.

When to Automate? Test Automation is helpful in the following situations:

• project is large and complex,

• projects require testing the same areas repeatedly,

• requirements do not change very often.

There are many specialised systems, which allow automated testing. The following methodology can

be used to decide if automated testing can be used:

• Identifying areas within the software for automation

• Selection of appropriate tool for test automation

• Writing test scripts

• Development of test suits

• Execution of scripts

• Create result reports

• Identify any potential bug or performance issues

Fundamental types of testing

There are several types of testing:

• Smoke Testing

• Functional Testing

• Non-functional Testing

They all can be used on different levels of testing, which will be introduced later.

 14

Smoke Testing

Smoke testing, often called build verification testing, is a type of software testing that comprises a

non-exhaustive set of tests, which try to ensure that the most critical functions of the software will

work. The result of this testing is used to decide if a build is stable enough to proceed with further

testing. This type of testing can uncover problems early. It can be used in integration, system and

acceptance levels of testing.

Functional Testing

Functional testing is a type of black-box testing. The software is tested using a set of tests with

known inputs. The obtained outputs (results) are compared with expected ones. Functional testing

has the following steps:

• The determination of the functionality that the intended application is meant to perform.

• The creation of test data based on the specifications of the application.

• The output based on the test data and the specifications of the application.

• The writing of test scenarios and the execution of test cases.

• The comparison of actual and expected results based on the executed test cases.

Non-functional Testing

Non-functional testing involves testing important software non-functional requirements such as

• performance,

• security,

• user interface,

• compliance with standards.

Methods and levels

The following basic methods can be used based on the level of knowledge of the internal structure of

the software, which is tested.

• Black-box testing

• White-box testing

• Grey-box testing

• Agile testing

• Ad-hoc testing

Testing methods

Black-box Testing

Black box testing, known as behavioural testing, is testing without knowing the internal structure,

design or implementation. The tester has no access to the source code, but he interacts with the user

interface of the software product. She provides a set of inputs and examines the outputs.

 15

The outputs must fulfil the tester's expectations. The main advantage of this approach is that black-

box testing is suitable for large code segments. It does not require access to source code, shows how

the software will be used by end-user, does not need testers with the knowledge of programming

languages, operation systems and other whole SDLC.

The main disadvantages of the black-testing technique are limited coverage by tests, difficulties in

designing test cases, and limited knowledge of the testers about the software product.

This method attempts to find incorrect or missing functions, interface errors, errors in data

structures, behaviour, and performance. It applies to the integration, system and acceptance testing

levels.

White-box Testing

This testing method, also known as glass testing, requires the tester knows the internal structure,

design or implementation of the software. In other words, the tester has access to the source code

and can investigate the internal logic and structure of the code. This situation is simultaneously the

main advantage of this method.

Moreover, it allows code optimising, refactoring and the maximal coverage of the code due to the

knowledge of the code. On the other hand, this technique requires a skilled tester and specialised

tools like code analyser and debugging tools. This method is applicable to unit, integration and

system testing levels.

Grey-box Testing

The grey-box testing method has limited knowledge of the internal structure and logic of the tested

software product. The tester usually must design documents and the database. Therefore, she can

write better test scenarios.

The combination of best practices of white box and black box methods is considered the main

advantage of this method. It relies on interface definition and functional specifications. The tests are

realised from the user's point of view, not a developer. It is primarily used at the integration testing

level.

Agile Testing

Agile testing represents a testing method, which follows the principles of agile development

methods. This testing method does not require any special approach and techniques. It still needs all

proven software testing methods and levels, but their use depends on the agile team's tester or

developer decisions and other priorities.

Agile testing is built upon very simple, strong and reasonable processes like the process of

conducting the daily meeting or preparing the daily build. Simultaneously, it attempts to leverage

tools, especially for test automation, as much as possible. Testing itself is in the middle of interest. As

a result, this method does not elaborate on any plan or documentation.

 16

Ad-hoc Testing

Ad-hoc testing, sometimes called Random Testing or Monkey Testing, is a software testing method

without planning and documentation. All tests are conducted informally and randomly without any

formal procedure or expected results.

This method is typically used during Acceptance Testing. Surprisingly, this method can be very useful

in finding errors, which is hard to find using other more systematic, step-by-step approaches. The

success of the method, therefore, depends on the creativity and previous experience of the tester.

Testing levels

Unit Testing

Unit testing is a level of testing where individual units/components are tested to verify that these

units behave as expected. Unit testing belongs to the white-box testing method. A unit is the smallest

tested part of the software, such as the OOP class method.

Unit testing is performed mainly by the developer, who can also be the author of the source code or

other members of the development team. The developer uses test data. The main aim is to validate

that part of the source code is correct in terms of requirements and functionality.

It is impossible to cover all source code and evaluate all possible execution paths of the software.

Unit testing has the following benefits:

• increase confidence in changing code,

• code is easier to reuse,

• development is faster,

• the cost of fixing a bug is smaller,

• small units are easier to understand.

Integration Testing

Integration testing means testing of combined parts of the software intending to determine if the

parts work correctly. The purpose of this second level of testing is to expose faults in the interaction

between integrated units. Integration testing can use bottom-up, top-down and big bang approach.

While the first one begins with unit testing, followed by a combination of module testing and builds.

In the second one, the modules are tested first and then the lower-level modules and units are

tested. A big bang is an approach in which all or most units are combined and tested in one

run. Integration testing uses any of the black-box, white-box or grey-box testing methods.

System Testing

System testing is the third level of software testing. It tests the whole system to verify if it meets

functional and technical specifications. After all the components are integrated, the software is

tested with the aim to fulfil the specified quality standards.

 17

This kind of test enables to test, verification, and validate business requirements and the software

architecture in the environment, which is very close to the production environment. The black-box

testing method is usually used for system testing.

Acceptance Testing

Acceptance testing is closely joined to quality assurance. Acceptance testing is the fourth and last

level of software testing. It verifies whether the software meets previously defined specifications and

satisfies the business requirements of the customer.

A system is tested for acceptability. Acceptance tests are intended to point out any bugs, which will

result in the software crash, but it also points out small mistakes, errors and differences. It usually

uses the black-box testing method. It does not follow a strict procedure and is rather ad-hoc.

Alpha Testing

Alpha test is realised by the development teams in the first stage of testing. It means that combined

unit, integration and system testing are considered together as alpha testing. The software is tested

for spelling mistakes, broken links.

Beta Testing

The beta testing (also called pre-release testing) follows alpha testing after it has been successfully

finished. A selected group of future users tests the software.

It is important to distribute the testing to a wide range of future users, who will test installation

procedure, typography, navigation and flow of tasks, etc. Simultaneously, they provide important

feedback, identify hidden problems and test their fixes.

Advanced testing - non-functional types of testing

Regression Testing

All changes in the software can cause problems in other areas of the software. For that reason,

regression testing focuses on verification if the change has not resulted in another functionality

violation. In other words, regression testing ensures that this change has not caused problems that

the tests do not cover.

During regression testing, new test cases are not created, but previously created test cases are re-

executed. Regression testing can be used during any level of testing, mainly during system testing.

Usability Testing

Usability testing is a black-box technique used to identify errors and consequent implementations of

the software improvements by observing the users' behaviour. This testing is done from a user

perspective to find out if the software is easy to use.

It is focused on the efficiency of use, ability to learn, ability to memorise, errors and safety and

satisfaction of the users. This type of testing can be performed during system and acceptance testing

levels.

 18

Security Testing

Security testing belongs to the critical and inevitable kinds of non-functional testing. It aims to

identify any problems with the security and vulnerability of the software. Depending on the nature of

the software, security testing tries to ensure integrity, availability, correct authorisation and

authentication, and save software against different kinds of attacks and flaws.

Portability Testing

Portability testing is focused on testing software for reusability, transferring software between

computers and different versions of operating systems and middleware.

Compliance Testing

Compliance testing, sometimes called conformance testing or regulation testing is a type of testing to

determine the compliance of a system with internal or external standards. The type of testing

conducted during compliance testing depends on the specific regulation/standard being assessed.

Performance Testing

Performance testing is non-functional testing focused on determining how the software performs in

terms of responsiveness and stability under different conditions. It covers load tests, stress tests,

endurance and spike tests.

While Load testing tests the behaviour of the software by application maximum load of input data,

stress testing tests the behaviour under abnormal conditions like losing resources. Performance

testing tries to identify any bottlenecks related to the software performance like network delay, load

balancing between servers, database transaction delay using quantitative and qualitative measures.

It tests the speed, capacity, stability and scalability of the software.

 19

Automatic Evaluation of Source Codes

Based on the summary of areas of knowledge and skills domains, the following levels of students'

ability to program were identified:

• Problem domain understanding (focused on problem description using natural language or

metalanguage; the need to use commands of a programming language is not necessary):

o understanding the definition of problems expressed in natural language,

o understanding the goal of a solution expressed in natural language,

o understanding the description of the solution in natural language,

o problem transformation from natural language to a limited area of metalanguage

(not in programming language yet),

o solutions obtained from metalanguage transformation to the natural language;

o discuss a problem, explain the solution procedures.

• Programming language domain understanding (focused on understanding syntax and

semantic):

o understanding commands of programming language and their use,

o understanding programming language fundamentals (variable, input, output),

o knowing parameters and syntax of fundamental commands,

o understanding semantic of algorithmic structures (usually sequence, conditions,

cycles),

o knowledge to find suitable command needed to the realisation of necessary activity.

• Transformation problem to the programming language and data structure domain:

o understanding the concept of data structures,

o knowledge of main data structures implemented in language and their use,

o mental transformation of the problem to programming language design,

o ability to use programming structures with a combination of data structures to solve

the defined assignments,

o selection of suitable problem-solving strategies.

• Source code understanding domain:

o the ability to read foreign code,

o verification of correctness and identification of errors in source code,

o understanding boundary and unsolvable inputs,

o manual testing and repairing code using checkpoint and output partial results.

• Subroutines used to make a program more understandable and more effective:

o understanding why and how to divide the program into smaller parts,

o understanding subroutines, parameters and types of parameters,

o to make the first contact with the effectiveness of programs (not only) using

subroutines.

• Use of development tools:

o to use pre-compiler and help in the development environment,

o understanding why and how to debug programs,

o the ability to build applications,

o the ability to program with a focus on performance and memory.

 20

• Deep understanding (join of programming and problem-solving) domain:

o experience of problem-solving application (optimisation, specialisation, abstraction),

o good-practice adoption (design patterns, code writing, documentation building).

• Software development domain:

o ability to select powerful and appropriate technology,

o skills in the management of the team,

o development planning and team performance calculating,

o problem-solving skills building and using.

The presented complexity of the programming learning process is the cause of educational failures,

student frustration and lack of motivation, so it is necessary to offer students different ways to

achieve the goal.

The automated assessment of programming assignments has been practised since programming has

been taught, especially in the introductory programming courses. The automatic assessment has

different features, which are automatically assessed by different assessment tools and systems.

Automated assessment represents a tool that allows checking source code automatically and brings a

new perspective on learning. According to many authors, automated assessments are beneficial for

the following areas:

• the student gains immediate feedback whether the program is correct, and students can use

their own pace;

• the teacher gains extra time, instead of time wasted by checking the assignment and

identifying and re-explaining repeated errors in past;

• it is possible to teach large groups of students without increasing the demands on teachers,

which apply especially in the case of MOOC courses;

• the learning process is more efficient and, due to the errors tracking, speed and quality of

the solutions, the individual parts of the process can be fragmented, quantified and

described (complicated topics, problematic examples, number of necessary attempts, etc.).

Implementing the systems that allow evaluating the practical exercises and assignments of

programming code writing is a great challenge for modern education. They should be based on good

practices of live coding systems, e.g. CodeWars, CodeCombat, CodingBat, HackerRank, SPOJ, Project

Euler, etc.

Modern principles of automated assessment are based on two main approaches:

• Static evaluation is based on checking the form, structure, content, or documentation of the

source code. This type of evaluation is based on validating source code without executing the

program and analysing the textual expression of code and anomalies in it. Static evaluation

can be enriched with rules aimed at validating the values of parameters defined in tasks

assignments. Static evaluation is the first option for design-oriented languages (e.g. HTML,

CSS) or languages with simple rules (e.g. SQL).

• Dynamic evaluation approaches use output results for validation on various levels. For

defined inputs, the principles use automated testing or comparison of expected and achieved

results:

 21

o The I/O approach is the simplest method from the content developer's point of view,

with minimal requirements for its capabilities. The author of the content defined the

input values and expected outputs. Validation is based on comparing the values

obtained from the students' program with the values defined as expected and

correct. Pairs are defined as test cases and usually contain values for standard inputs,

boundary inputs and exceptions. The approach offers strong advantages: the

definition of test cases is high-speed; the same test cases can be defined and used

for many programming languages. The disadvantages are missing functions to verify

the internal structure of the source code (can be solved by extending static

evaluation methods) and formatting problems that cause a mismatch between

expected and received output.

o Writing automated tests as part of engineering software testing is a widely used and

required approach in the software development process. Using unit testing is one of

the necessary user skills of modern programmers (JUnit, CUnit, etc.). This approach is

currently the most effective way to validate code, which tests the outputs or results

of the program and focuses on checking its elementary parts (units), as are methods,

procedures, algorithms, class states, etc. The ideal goal of unit testing is to verify

each part of the written code and allow immediate repetition of testing after

modifying any part of the code. The advantage of this approach is greater flexibility

and more accurate identification of errors, or/and the mistakes explanation to the

user. The disadvantage can be considered as the more arduous preparation of the

validation itself through writing code. In the presented framework, writing tests is

one of the important activities aimed at developing programming skills in students

and test writing into new program tasks is the desired activity.

o Acceptance testing represents the highest level of testing based on the definition

and combination of testing scenarios focused on the outcomes of the program

activity. Individual parts of the test are accepted if they positively verify the expected

results from the user's or customer's point of view (e.g. changes in class instances,

changes in the database, changes in the content of the website, etc.). This type of

test is usually used for more complex assignments that teach technological skills,

machine learning, results of collaborative activities, etc.

The result of automated testing should not only inform about the correctness of the program. Users

need to view syntax errors, compiler messages, and test cases with differences between expected

and obtained outputs. Help is also a valuable tool to help write the program, or in the event of a user

jam, the correct authoring solution can also be obtained.

 22

Virtual Programming Lab

Virtual Programming Lab (VPL) is the easy way to manage programming assignments in Moodle. Its

features of editing, running, and evaluating programs make the learning process for students and the

evaluation task for teachers easier than ever. The software is licenced under GNU GPL3.

Its salient features are:

• Enables to edit the programs source code in the browser

• Students can run interactive programs in the browser

• You can run tests to review the programs.

• Allows searching for the similarity between files.

• Allows setting editing restrictions and avoiding external text pasting.

These features make easier the learning process for students and the evaluation task for teachers.

The plugin VPL for Moodle requires some VPL-Jail-System to delegate the running and evaluation of

the student’s code. VPL-Jail-System serves as a stateless, secure, and isolated sandbox for running

code.

Typical users

The primary users of VPL are teachers of universities and teachers of the last courses of high schools;

currently (August 2021), at least 1700 servers around the world run VPL.

University teachers use VPL to take control of the programming tasks that students do, especially in

courses with a large number of students.

Hight school teachers use VPL for introducing students to programming.

Students use VPL as an easy-to-use tool with zero installation and configuration, concentrating their

efforts on the problem and not on the tools used.

 23

Basic features

If you don’t know if VPL matches your needs, here is a list of some of the uses of VPL:

• Adequates for small to medium programming assignments tasks.

• Manages the student’s submissions. Students and teachers can save time managing how,

where, and when to submit and review programming assignments.

• Students can use VPL as a basic IDE online, allowing running their code with zero installation

or configuration.

• A teacher can review, run, and evaluate students’ submissions without a download code.

Grading integrated with the Moodle grade book can be used.

• A teacher can set input/output tests easily to evaluate the student’s code. The evaluation can

lead to giving a final grade or advising the teacher in the grading process.

• The evaluation system is open to customization.

• Performing programming examines in controlled conditions with network access limits,

password, and no external code introduction, etc.

• Search for code similarity.

• Helps teach classes due by showing, editing, and running code in the same environment

students use.

Program execution

The VPL execution service is responsible for receiving and controlling the execution of code. The

execution can be terminated for four reasons:

• Finish their execution normally

• They are stopped when they deplete their assigned resources (time, memory, etc.)

• They are stopped on user requests (e.g. the user closes the browser). This monitoring is done

through a WebSocket connection from the browser to the jail server.

• The Moodle server requests the stop of the task. Each student can only have one running

task; if the user requests to execute another task, the previous one will be stopped.

After the end of a task, the work area used is cleaned.

The VPL module uses http+XMLRPC to communicate with the jail server. The browser uses

WebSocket (ws:) for monitoring the task and the interactive execution. It is also possible to use

HTTPS and WSS (secure connection). If communications from the browser with the Moodle server

use HTTPS, most browsers require WSS to connect with the jail server. The use of HTTPS and WSS

 24

required to have a certificate in the execution server. The recommended way is using certificates

signed by a known Certificate Authority.

VPL activity in Moodle

The following part is intended for teachers that want to start using VPL or need details of the basic

VPL features. Teachers here will see how to create and configure programming activities for their

courses and how VPL helps to monitor students’ work.

Creating VPL activity

To create a new VPL activity, you must set the course in editing mode by pushing the Turn editing on

button as with other activity types. Then select the section where you want to add the activity and

click on Add an activity or resource link.

You have to select the Virtual Programming Lab activity.

All details of options you can set in this step will be shown below. After creating the activity, you can

change these options at any time.

Creating new VPL activity by duplicating another is an easy way to obtain a new activity

preconfigured. VPL fully supports activity duplication.

 25

The simplest way to create new VPL activity contains the following steps.

• Start creating a VPL activity as shown at section start.

• Set the name of the activity. The system uses this name as the activity identification for

users.

• Set the description. The description contains the details of the task the student must do.

• Set the due date. After the due date, students can not submit new code versions.

• Set the maximum number of files that the students can upload in each submission.

• If this activity gives grades to students, you must set the type of grade and the maximum

grade.

• Save the new activity.

• Click on the activity name just created, and at the action menu, go to Execution options and

set the execution actions (run/debug/evaluate) that you allow the students do.

The details of described steps and options of VPL activity follow.

Name

The name of the activity is used to identify it. The name must be plain text. The name field is the only

required field in this form.

Short description

The short description is used to describe the activity when the full description is not available. The

short description must be plain text.

Full description

The full description is used as a detailed description of the activity. It is in HTML format and may

contain images, mathematic equations, etc.

If you check the Display description on course page checkbox, the description will be shown on the

course page just below the link to the activity.

Submission period

 26

This setting allows limiting the time that students can submit files.

Available from set a time to start showing and usable the activity, before the set time the activity is

not available for students. If not set, the activity will be usable if it is shown. If set and shown, the

students can read the description before the available from but can not submit files.

Note: When the start time (available from) is close to the current time (less than 5 minutes), the

system will show the activity, and the students can access the description.

Due date set a time to stop accepting submissions. If not set, while the activity is shown, the

students submit files. After the due date, students can access the activity to see descriptions,

download last submissions, etc.

Submission restrictions

This option allows you to set restrictions primarily at the user interface or resource level (size and

number of user files).

A maximum number of files limits the number of files students can submit each time.

Type of work allows switching from individual work (the default) to group work. To activate group

work, you must set a grouping of groups, each group with a team of students. Group work means

that any student’s submission belongs to the group. All group members can make submissions,

access the last submission, and will get the same grade for the activity.

 27

Note: A student cannot belong to two or more groups of the grouping. Submissions belong to the

group, and one student can be moved or removed from a group with no effect in submissions.

Disable external file upload, paste, and drop external content – if the teacher sets this option, the

students will not be able to upload files or paste code from external sources. The only way to write

code is by typewriting in the IDE. The IDE still supports internal copy/paste functions.

This activity acts as an example, and it sets an option where the activity will be read-only. The

teacher must write the example files in the Requested files. These files will contain the example of

code that students can run or debug. Students can’t submit or change the code.

Maximum upload file size – the teacher can set the maximum size of each file accepted in this

activity.

Note: Maximum upload file size may be affected by the option The based on feature.

Password can be set by teachers for each activity. The student needs to enter the password to access

any element of that activity (except the title). Entering the password gives permission to access the

activity during the current session of the student, even if the key is changed. A common use is to give

students the password to start the activity and change it once introduced, which prevents using the

given password after the start of the activity.

Note: Changing the password after all students access may give extra security.

Allowed submission from the net – allows set which devices or networks can access the activity. This

will prevent access to the activity from outside of the authorized networks. This feature may be

useful for exams. The formats accepted are:

• xxx.xxx.xxx.xxx (IP). Example 1.2.3.4
• xxx.xxx.xxx.xxx/nn (number of bits in the mask). Example 1.2.3.128/4
• xxx.xxx.xxx.xxx yyy (IP range in the last group). Example 1.2.3.4 8
• xxx.xxx.xxx or xxx.xxx.xxx (incomplete address). Example 1.2.3

For allowing multiple networks or IPs, separate them by “,”. Example 1.2.3.4, 1.2.3.128/4, 1.2.3.4 8,

1.2.3

SEB browser required to support the use of the Safe Exam Browser (SEB).

SEB exam Key/s – if the key is set, the activity will require the Safe Exam Browser (SEB) with specific

configuration by the Browser Exam Key. This feature may be helpful for exams. See

https://safeexambrowser.org.

Grade

In addition to the standard Moodle grade setting, there are options to control the students'

evaluations.

https://safeexambrowser.org/

 28

This control is done by penalizing the final grade based on the values of two options:

• Free evaluations. This option set the number of automatic evaluations students can request
with no penalization.

• Reduction by automatic evaluation. Once the student expends all the free evaluations, this
option is applied. The value can be a fixed value or a percentage. For each new automatic
evaluation, the reduction is applied to the current grade. The percentage is applied to the
current grade, not the maximum grade. A repeated assessment of the same submissions
does not count.

Example of use 1

With maximum grade set to 10, Free evaluations set to 3, and Reduction by automatic evaluation

set to 0.5. A student with five evaluations and an initial grade of 8 will get 7 points.

8 - (5 - 3) * 0.5 = 7

Example of use 2

With maximum grade set to 10, Free evaluations set to 2, and Reduction by automatic evaluation

set to 10%. A student with four evaluations and an initial grade of 8 will get 6.48 points.

8 - (10% of 8) = 7.2

7.2 - (10% of 7.2) = 6.48

Test cases

To use the feature of automatic program evaluation of VPL, teachers must populate the

vpl_evaluate.cases file going to Action menu ‣ Test cases.

To create automated tests teacher can use the auto-complete feature of the editor (Ctl+space), but

notice that the exact output match must go in double-quotes. A detailed explanation of this feature

will be presented later.

 29

The figure above shows editing vpl_evaluate.cases with two cases and auto-complete (Ctrl-space).

Execution options

These options can be set going to Action menu ‣ Execution options.

Based on is a powerful feature that allows us to inherit the options and files of other VPL activities.

Selecting programming language tools allows selecting the tool used for running and debugging

programs based on the filename extension of the submitted files. The system searches for a known

extension following the order of submitted files. Once a known extension is found, the system uses

the default associate tool.

This option allows setting the compiler/interpreter or debugger to use. Different versions are

available for some programming languages, such as Python 2 or Python 3, C ANSI or C ISO 11, etc.

Selection of run and debug script.

Selecting run script.

• Run: The teacher must set to ‘Yes’ to allow the students to run programs in IDE.
• Debug: The teacher must set to ‘Yes’ to allow the students to debug programs in IDE.
• Evaluate: The teacher must set to ‘Yes’ to allow the students to run automatic evaluations.

Note: Users with grading capability can always run, debug, or evaluate.

• Evaluate on submission - The submission is evaluated automatically when uploaded but not
when saved in IDE.

• Automatic grading - If the evaluation result includes grading, they are used to set the grade
automatically in Moodle grade book.

 30

Requested files

This feature allows teachers to control the file names students submit and create activities in which

the students must complete a task.

The teachers can set the names of the files that the students must submit and the initial content of

these files. The teacher must use the editor to set the file names and their content. Notice that for

some programming languages in VPL, the order of the files may be important.

The number of files must be less or equal to the max number of files set in the Edit settings of the

activity. If the teacher doesn’t set names for all the files, the unnamed files are optional, and the

student can use any name.

This set of files are available for download with the description of the activity. The first time the

student accessed the IDE, the editor loaded these files with their content. The IDE has an option to

reset these files to their initial content.

Note: If the name of files changes after the students start working on the activity, they can need to

move their code to the new files manually.

 31

Submissions report

The option Submission list reports the current situation of the students’ tasks in the activity, allowing

multiple actions such as accessing each student’s submissions, evaluating, modifying submissions,

automatic battery evaluation, viewing other reports, etc.

This report shows for each student the following columns:

• A sequence number to easily identify the number of students that match any criteria. If
clicked, goes to edit a copy of the last submission in the teacher’s workspace.

• The student photo - is omitted if there are too many students. If clicked, it goes to the
student’s profile.

• The student’s full name.
• The last submission date and time – if the option is clicked, show the student’s submission.
• A number of submissions that are saved in the system - if it is clicked, it goes to the student’s

previous submissions report.
• If available, the proposed or final grade. If available and clicked, it goes to student grade.
• If an assignment is graded manually, the name of the evaluator.
• If graded, the date and time of grading.

The actions get by clicking are also available at the action menu at the end of each student’s row.

The report can be ordered as ascending or descending by any column.

The submission selection option allows to filter the students:

• All: Shows all students with or without submissions.
• All submissions: Select the students with submissions. This is the default option.
• Not graded: Select the students with submissions not graded.
• Graded: Select the students with submissions graded.
• Graded by user: Select the students with submissions graded by the current user.

 32

The Evaluate option allows to launch a batch evaluation of the selected students and submissions

that match the criteria:

• Not executed: Option evaluates the submissions not previously evaluated.
• Not grade: Option evaluates the submissions not graded.
• All: Option evaluates all submissions.

The action menu at the end of the header row allows access to the other reports and downloads that

are shown below.

Time spent report

This graphic report is calculated based on the submissions saved and shows the number of students

by hours spent in the tasks. It also shows the average of each student's work periods and the time

spent in the largest period.

 33

Assessment report

This report is similar to the Submission list but shows the details of the automatic evaluation and

final feedback, for each student shows the following field:

• A sequence number to identify easily the number of students that match any criteria. If
clicked, goes to edit a copy of the last submission in the teacher’s workspace.

• The student photo – is omitted if there are too many students. If clicked, it goes to the
student’s profile.

• The student’s full name.
• If available, the proposed or final grade. If available and clicked, it goes to student grade.
• The automatic evaluation result and final assessment if available.
• Action menu to access the student’s submission.

Download submissions

This action downloads a ZIP file containing the last submission of each student. The zip file contains

for each student a directory with name + id + username. The directory contains another directory

with the name date+time of submission that contains the submissions files. There is another sibling

directory with name date+time + ‘.ceg’ that contains the files: compilation.txt, execution.txt

grade.txt, and gradecomments.txt.

An entry example:

Jone Doe 13 jone

 2021-05-21-10-12-45

 myclass.h

 34

 myclass.cpp

 main.cpp

 2021-05-21-10-12-45.ceg

 compilation.txt

 execution.txt

 grade.txt

 gradecomments.txt

The action Download all submissions contains all the saved submissions of the students.

Similarity

This feature search for similarity in a set of files generating a report of similar pairs of files ordered

from most to fewer similar. The basic set of files are the last submitted files in the activity, and the

form allows adding other sets of files for searching.

The search uses a mix of three different metrics. Code changes affect in a different way to each

metric.

The table above presents the effects on the metrics of different code changes.

Scan options are supported by the parameter Maximum output by similarity, which is used as a cut

point for the more similar selected pairs by metric and has no other influence.

The difference between a report setting Maximum output by similarity to 40 and another setting it

to 45 is that the new report must be the same but with 5-15 new pairs with less similarity. Notice

that if we have paired with the same similarity, the output may vary.

The option Files to Scan allows selecting the file names to compare. Notice that these files must be in

the list of Requested files. Also, you can select to compare all files regardless of name or join all files

on each student’s submission.

 35

The option Other sources to add to the scan allows for incorporating more file sets into the search.

An option enables adding another VPL activity to the search. Activities of other courses are available

in this selection. Another option allows adding a zip file containing the set of files to add to the

search.

By default, these files are not compared to each other. The last option allows to enable it. Using this

option on an empty activity and adding a zip file containing the set of files to scan allows using this

feature for search similarity on external files.

The report orders the output from more to less similar pairs. Each report row shows the first

filename and student, similarity rate, and second file and student. The similarity rate has the format

of “metric1 percent | metric2 percent | metric3 percent | asterix (1..3)”. As a per cent, each metric

result also shows “*” to indicate the metrics that set the pair in an order position less than Maximum

output by similarity. After the ordered pairs, the report shows clusters of similar submissions.

 36

Example of similarity report

The system tries to help the teacher compare pairs of files by showing them side by side and adding

blank lines to align similar lines of code. You must click on the similarity rate of a pair of files to get

this side by side report. Also, by clicking the (*) near the student’s name, an individual report is

generated.

The figure above presents the example of side by side file comparison report

The side-by-side file report shows in the middle of the two files the differences between the two

paired lines using a code:

• ===: The two lines are identical.
• <<<: The left line is not present in the right file.
• >>>: The right line is not present in the right file.
• ==#: The two lines without spaces are identical.
• =##: The two lines without alphanum are identical.
• ###: The two lines do not match any previous criteria.

Considering that the similarity report can give “false positives” and that the report has no external

consideration that may affect the case. The use of similarity reports can follow these considerations

and recommendations:

• The similarity report is NOT criteria to assure that plagiarism happened.
• The report is information for teachers but never must be used as a direct verdict.
• Always must be one or more teachers who judge the case.
• The teacher must have proofs based mainly on the code and not on the similarity report of

VPL.
• Based on his own criteria, the only trustable report about the possibility of unfair behaviour

is generated by a teacher.
• The similarity report can help the teacher to select what pair of submissions must be

reviewed in detail.

 37

• A common way to study the report is to review the pairs from most to less similar and stop
reviewing when enough adjacents “false positives” are found.

Note: In this context, a “false positive” is pair of files that the metrics indicate a high similarity, but

an expert indicates that there is no reason to consider plagiarism.

Test activity

To test the activity, you can switch temporarily to the student role. But this way to test the activity

will allow students to access the activity if you don’t temporally Restrict access to the other students.

However, VPL allows test activities without changing the role by accessing the menu Edit settings ->

Test activity. The teacher can similarly access the activity as a student does but in a specific

workspace for him. The difference is the Previous submissions list, Grade, and that teacher can use

all options (run/debug/evaluate) regardless of the setting in Execution options.

The activity menu for the teacher role looks like this:

And the activity menu assigned to the student role is as follow:

The part Description shows the description of the activity and the different settings that affect the

task. The settings shown are different based on the role of the user. Teachers get more detailed

information on settings.

The page Submission allows students to upload the files to submit. This interface has some

drawbacks, and students cannot set directories for the files uploaded. Also, notice that this page may

be restricted by the Disable external file upload, paste, and drop external content option. It may be

more convenient to use the Edit page with a similar effect and more flexibility.

 38

The page Edit gives access to students to edit, run, debug, or evaluate a new or previous submission.

Saving here is equivalent to uploading a submission. This page allows teachers to test the activity or

access a student’s submission to run/debug/evaluate it or even change the student’s submission

when saving. The teacher can know if he is accessing a student’s submission because, in that case,

the menu shows the student’s name.

The figure above shows the example of editing files by the student role.

The next figure shows the example of running code by the student role.

 39

Submission view

The page Submission view shows students its last submission. It also allows to download the

submission as a zip file or ask for automatic evaluation if available. This page also shows teachers the

corresponding student’s last submission.

The page Grading a submission allows teachers to grade a student’s last submission manually. The

page shows a form to introduce the grade and the comments (feedback) for the student. The form

also shows different actions on the grade of the submission:

• Grade: This input must not be empty. The penalization (grade reduction) for asking
automatic evaluations applies to the introduced value.

• Comments: This is a multi-line entry with feedback for the student. The content of this input
is formatted when shown.

• Grade button: this button saves the grade to the Moodle grade book.
• Grade & Next button: This button, available on batch grade, saves the grade to the Moodle

grade book and goes to the next student’s last submission.

 40

• Copy button: This button asks the system to copy the student’s submission to the teacher’s
workplace. The teacher can there check the student’s code by running, debugging, or fixing
it.

• Evaluate button: This button asks the system to run the automatic evaluation for this
submission. The automatic evaluation does not change a manual grade.

• Calculate button: This button asks the system to review the comment and calculate the
grade based on its formatting.

Bellow the form, the page shows information as the Submission view with the automatic evaluation,

the manual evaluation, and the files submitted. Also, at the right of the form, the list of previous

headers used is shown. These headers may be reused by clicking on them.

The student can see the grade and feedback in the Moodle grade book or the Submission view.

 41

The page Previous submissions list shows the list of submissions saved in the system for a student

and an activity. It also shows two reports obtained from analyzing these submissions.

This graphic report shows the evolution of the size in bytes of each file in each submission.

The following graphic report shows the student’s time spent in this activity. The horizontal axis

represents each period of the student’s continuous work time, and the vertical axis is the time of

 42

each period in hours. Notice that these parameters are calculated based on the submissions saved;

then, they estimate the parameter, not its real value.

The last part of this page is the list of all submissions of the student order from newest to oldest. For

each submission, the system shows:

• A sequence number.

• The submission date.

• The description that contains the names of the files, their size in bytes, and their number of

lines.

• An action menu that allows to see or copy in the teacher’s workspace any submission.

Also, there is the possibility to see this page with More details, meaning also shows the content of all

the files of the student’s submissions.

Assignment list in Virtual Programming Labs

This report is only available from the action menu and shows the VPL activities in a course. To

students, it shows its available activities. For teachers, it shows all the activities.

 43

It shows the following data for each activity:

• A sequence number.
• Section - the section of the course where the activity appears. Clicking goes to the course

section.
• Name - the activity name. Clicking goes to the activity.
• Available from - the date the activity is available for students.
• Due date - the date that the activity does not accept more submissions.
• Submissions - the number of students’ submissions. Clicking goes to the list of students’

submissions.
• Graded - the number of students’ submissions that have been graded and not graded in

parenthesis. Clicking goes to the list of students’ submissions not graded.

The list of VPL activities in the course can be filtered in two ways: by selecting a section of the course

and by selecting the state of the activity:

• Open - select the activities that, at this moment, students can submit files.
• Closed - select the activities that, at this moment, students can not submit files.
• Time limited - select the activities that have set a due date.
• Time unlimited - select the activities that have not set a due date.
• Automatic grade - select the activities that have grades and have set automatic grading.
• Manual grading - select the activities that have grades and have not set automatic grading.
• Examples - select the activities that are of type example.

 44

VPL Test Case language

The basic input/output test evaluation system (BIOTES) provided by VPL out of the box use special

language. To evaluate the students' program, the evaluator writes the test cases in the

vpl_evaluate.cases file using this language.

The language uses statements with the format “statement = value”. The statement takes the whole

line. Based on the statement type, the value can take only one line or spans multiple ones. A

multiline value ends when another statement appears. The statement name is case insensitive.

Each test case definition includes a case name, the input we want to provide to the student's

program and the output we expect. We can also configure other stuff, as the penalization for failed

tests. VPL will run the evaluation applying the test cases and generating a report of failed cases and

the mark obtained.

Basic definition

The statement starts a new case definition and states the case description.

Format:

"Case = Test case description"

The case description occupies only one line. This description will appear in the report if the case fails.

Example:

Evaluation report showing the test case description:

Input

This statement defines the text to send to the student program as input. Each case requires one and

only one input statement. Its value can span multiple lines.

Format:

"Input = text"

 45

Example 1:

Example 2:

Example 3:

Example 4:

Output

The output statement defines a possible correct output of the student program for the input of the

current case. A test case can have multiple output statements and must have at least one. If the

program output matches one of the output statements, the test case succeeds, else fails. There are

four kinds of values for an output statement: numbers, text, exact text and regular expression.

Format:

"Output = value"

The value of the output can span multiple lines.

Checking only numbers

This type of output checks numbers in the response from the student's program, ignoring the rest of

the text. To define this type of output check, you must use only numbers as values for the output

statement. The output of the student's program is filtered, removing the non-numeric text. Finally,

the system compares the resulting numbers of the output with those expected for the case, using a

tolerance when comparing floating numbers.

 46

Example 1:

Student's program output that matches this definition:

Example 2:

Student's program output that matches this definition:

 47

Checking text

This type of output is a nonstrict text check comparing only words in the output of the student’s

program. The comparison is case-insensitive and ignores the punctuation marks, spaces, tabs, and

newlines. To define this type of output check, you must use text (may include numbers, but non

only) non starting with a slash or being inside double-quotes. A filter removes punctuation marks,

spaces, tabs, and newlines from the output of the student’s program, leaving a separator between

each word. Numbers are not punctuation marks, so they are not removed. Finally, the system

compares case-insensitive the resulting text with the expected output.

Example:

Student's program output that matches this definition:

Checking exact text

This type of output checks the exact text on the output from the student's program. To define this

type of output check, you must use text enclosed in double-quotes. The system compares the output

of the program with the defined output (removing double quotes).

 48

Example 1:

Student's program output that matches this definition:

Example 2:

Student's program output that matches this definition:

Checking regular expression

The evaluator can define this type of check, starting the output value with a slash "/" and ending with

another slash "/" plus optionally one or several modifiers. This format is similar to JavaScript literal

regular expression but uses POSIX regex instead.

Example:

 49

Student's program output that matches this definition:

Multiple output checking

The test case definition may contain multiple output statements, meaning that the case succeeds if

any of them matches.

Example:

Student's program output that matches this definition:

Penalizations and final grade

A test case fails if its output does not match with an expected value. By default, the penalty applied

when a test case fails is the “grade_range/number_of_cases”. The penalties of all failed test cases

are summed to obtain the overall penalization. The final grade is the maximum mark, less the total

penalization. The final grade value never is less than the minimum grade or greater than the

maximum grade of the VPL activity.

Format:

"Grade reduction = [value | percent%]"

The penalty can be a percentage or a specific value. The final grade will be the maximum grade for

the activity minus the overall penalization. If the result value is less than the minimum grade, the

minimum is applied.

 50

Example:

Evaluation report for a wrong output

Advanced testing

Controlling the messages in the output report

BIOTES adds to the report the details of the input, the output expected, and the output found when

a test fails. When a test case fails and has a Fail message statement, the system shows that message

instead of showing the default input/output report.

The Fail message statement allows the evaluator to hide the data used in the case. A student

knowing the inputs and each output expected might code a solution that passes the tests without

resolving the problem. If the fail message statement appears in a test case which fails, the report will

only contain the message in this statement.

Format:

"Fail message = message"

Example:

Evaluation report for a wrong output

 51

Running another program

The evaluator can use another program to test a different feature of the student’s program. Among

other possibilities, this allows running static/dynamic analysis of the student code, e.g., the evaluator

can run checkstyle1 to check the style of the student's java code. The Program to run allows, for this

test case, replacing the program to run (the student’s program) for another.

Format:

"Program to run = path"

Example:

Program arguments

This statement allows sending information as command-line arguments to the student program or

the program to run if set. Notice that this statement is compatible with the input statement.

Format:

"Program arguments = arg1 arg2 …"

Example 1:

This example shows how to use the Program to run and Program arguments statements to check if

the student’s program creates a file with a name passed as a command-line argument.

1 http://checkstyle.sourceforge.net/

http://checkstyle.sourceforge.net/

 52

Example of using Program arguments statement and Program arguments statements:

Code of the check_file_exist.sh script:

Example 2:

The following example shows how the teacher can use the Program to run and Program arguments

statements to evaluate a SQL query exercise using different data sets.

Example of using Program to run and Program arguments statements:

 53

Expected exit code

This statement sets the expected exit code of the program case execution. The test case succeeds if

the exit code matches. Notice that the test case also succeeds if an output matches.

Format:

"Expected exit code = number"

Example 1:

The following example shows how the evaluator can use the Program to run and Program

arguments statements to evaluate a SQL query exercise using different data sets.

 54

The next example shows the possibilities of Program to run and Program arguments statements to

execute different programs. The first case changes the name of a file, the second compiles the file,

and the third runs the resulting program.

Example 2:

Output filtering and formatting

This chapter is intended for an expert audience interested in developing tools that can be integrated

with VPL. VPL extracts the text for the assessment report and the proposed grade for an evaluation

execution from the raw text output of such execution. To do this, VPL expects that the raw text

output contains some labels to identify the relevant texts. These texts can also include some format

indicators that VPL uses to format its report.

Filtering the raw output

VPL processes the raw output of an evaluation execution, selecting the text for the report and the

proposed grade. The text for the report is composed of comments which can be of two types: line

comments and block comments. A line comment is a text contained in a line starting with the label

“Comment :=>>”, like:

Comment :=>>This text will appear in the report

Result:

 55

A block comment is a text included between a line with the label “<|--” and a line with the label

“--|>“. The labelling lines must not include any other text but the labels. A block comment looks like

this:

<|--

This is a multiline text to appear as comment

in the evaluation report

--|>

Result:

The raw report may contain a combination of line comments, block comments, and other contents.

This text will NOT appear in the report

<|--

This is a multiline text to appear as comment

in the evaluation report

--|>

This text will NOT appear in the report

Comment :=>>This is a line comment in the report

Contents outside of a line or block comment are removed from the report.

Result:

The proposed grade is set in a line starting with the label “Grade :=>>”. If more than one of these

lines appear, the system uses the last. A report with a proposed grade line looks like this:

Grade :=>>10.5

Comment :=>>This text will appear in the report

Grade :=>>8.5

Result:

 56

The proposed grade found becomes the final grade if the automatic assessment option is set in the

VPL activity configuration.

Format indicators

The comments in the report of an activity evaluation may contain marks to get the best formatting.

The allowed marks are as follows:

• Lines starting with “-” are titles.

• Lines starting with “> ” are preformatted text “<pre>”.

• The rest of the lines are regular text and show as content related to the previous title.

• Expressions of the form “filename:number”, when filename is the name of one student's

source file, generate automatic hyperlinks to the corresponding line of the source file. The

text is also added at the corresponding editor gutter line as a tooltip.

You may add a penalty as a negative value between round brackets at the end of each title line. This

value represents the penalty attributed to the associated comment and is hidden from the students.

When the evaluator pushes the calculate button at the manual grade form, the system uses these

penalties to reduce the maximum grade and shows the resulting value as the student grade. A

reported comment that contains these formats, including a line title with a penalty, looks like:

<|--

-This is a major error. (-55)

This text will appear associate to the previous title

> +--------------------------+

> |This is a preformated text|

> |This is other text |

> +--------------------------+

Error in Fraction.java:4

--|>

Grade :=>>45

Result:

 57

PRISCILLA System

The positive experience with microlearning activities and exercises based on automated source code

evaluation in LMS Moodle led to the software architecture proposal and subsequent software

implementation of a system called Priscilla (PRogressIve System for interaCtIve (programming)

Learning and Learning Assistance).

The front-end part can be implemented as a web, mobile or desktop application. The user's

interaction with the application is fluent because the network traffic is very low after the first

application launch in a web browser. The front-end part provides the educational content in three

forms:

• Micro-content represents the content in the form of text, short source codes, images, etc.

This type of activity is designed as an HTML container, and the content is transmitted as a

package containing formatted text (headings, text, source code, images, tables, etc.).

• Microlearning activities are interactive objects that require the user to solve simple tasks. A

typical example is filling in the correct code result, filling a gap in the code by typing or drag-

and-dropping the right parts, reordering shuffled lines of source code, and so on. Interactive

activities are combined with content activities (usually 1:1 or in favour of interactive

activities) in lessons and chapters. Tasks in interactive activities are focused on the

information contained in previous content activities – the content structure is developed

concerning microlearning principles.

• Activities aimed at acquiring programming skills are focused on writing, executing, and

validating the program code. The student completes the developed programs or writes

complete codes in a user-friendly editor adapted to the selected language. After writing the

code, the student sends the program to the validation system, which evaluates its

correctness. The response may contain compiler errors (syntax errors) or code accuracy,

depending on comparing the submitted code results with the expected results.

The communication between the front-end and the backend is provided via web services. This

architecture allows the development of various front-end applications: web-client, mobile

application, or desktop application. The communication is realised via REST API using

application/JSON format.

The following diagram presents an overall view of the communication between the individual

elements of the system.

 58

Content structure

The essential idea in successful introductory programming courses is to leave students some freedom

to choose the activities they should complete in the programming course. The programming courses

were designed following the classical educational structures, and the order of defined chapters is in

line with the didactics of teaching programming. Still, they do not force the student to proceed

linearly. Almost every chapter contains a combination of tasks and programs, which students

complete based on their preferences. Each task can be repeated as many times as a student needs.

Students can return to the place of explanation of the issue, if necessary – the system's goal is not to

evaluate but to teach.

The following figure presents chapters as the main parts of the courses.

The course consists of chapters; chapters contain lessons. Lessons are structured in the following

views.

Admin view:

Every lesson contains tasks and program assignments.

 59

Admin view:

User view:

The most important activity is task and programming assignment (content) development. Support for

building skills in several ways is based on a combination of different types of tasks. There are

available the following task types covering the following activities:

• content microlesson

• short answer

• choice of options

• multiple choice of options

• placing code snippets

• writing commands into code

• rearranging lines of source code

• different types of writing programs based on VPL ideas.

Every question, microlesson or program can be translated into supported language. The list of

languages depends on system settings. They are currently English, Spanish, Slovak, Czech, Polish, and

Hungarian.

 60

Content microlesson

The content of microlessons is presented by HTML text with all standard supported objects (images,

colours, links, bullets, codes, etc.).

The result of content creator activity looks like this:

Short answer

The short answer is a type of question usable for obtaining simple (and short) answers, or results of

programs or numerical values obtained, e.g. through the execution of expressions.

 61

The content creator can define more correct answers, or some answers can be evaluated as not quite

right. The per cent of correctness is defined together with expected answers and feedback.

Definition:

User view:

Choice of options

This type of question can be used if only one of the pre-listed answers to the question is correct.

Because the system is set up so that it is possible to evaluate even partially correct answers, it is

possible to set a percentage of correctness for each option. The choice of methodology and rules of

assessment depends only on the teacher. However, by default, for this type of question, one answer

is expected to have a 100% rating and the others zero.

Definition:

 62

User view:

Multiple choice of options

This type of question can be used if one or more of the above answers are correct. The starting point

for this type of question is to offer a different approach to accurate calculations. A content developer

can penalize a bad answer or ignore it (set to zero), or some questions can be evaluated with a better

score. Some wrong answers can be penalized by a worse score. The function of the system can

recalculate partial scores for its harmonization.

 63

Definition:

User view:

Placing code snippets

This type of question allows the user to select code snippets and insert them into the program in the

correct place. The part of the code that will be hidden from the user is inserted between the pairs of

§§ marks.

Solving the task can be complicated by adding incorrect options, which will appear to the user in a

shuffled list along with the correct ones.

The task does not always have to be focused only on adding code to the program; it can be used to

arbitrarily insert parts of the text into the content. Due to the complicated structuring of complex

text, bullets and part of HTML objects are not supported.

 64

Definition:

User view:

Writing commands into code

This type of question is similar to the previous one, except that we do not select the inserted code

from the list, but we have to enter it manually.

Again, the hidden text inserted between the pairs of §§ marks and the type of task can be used to

insert any content (not just parts of the program).

 65

Definition:

User view:

Rearranging lines (of source code)

This type of question requires a row reordering. Lines can be source code or any text defined as

paragraphs.

Definition:

User view:

 66

Program assignment

BIOTES assignments

Programming tasks are based on the ideas of a Virtual Programming Lab for Moodle. The evaluation

uses VPL infrastructure and the functionality of a jail server.

This section describes the creation of tasks based on BIOTES, while the functionalities described in

the previous chapter (definition of inputs, various types of outputs, penalties, etc.) also work in the

PRISCILLA system.

The content developer defines assignments, including examples of inputs and outputs displayed to

the user directly in the assignment.

For the task, it is necessary to define a file name or a list of files that will be sent to the server

evaluating the source code. It is advisable to set the file extensions to valid extensions –

corresponding to the programming language.

 67

The Requested file(s) section defines the pre-prepared source code that will be displayed to the user

together with the assignment.

Note that in some languages (such as Java), the file name must be the same as the class name

defined in that file. For this reason, too, it is not advisable to leave the file displayed to the user

blank.

The Requested file(s) also includes the Author solution, which will be displayed to students as a help

or a ready-made solution. The functionality of the specified solutions can be verified directly in the

system by buttons above the content of the author solution.

Test cases are defined and created in accordance with the rules specified for VPL in LMS Moodle.

 68

The use of other object types such as files and configuration files will be explained below as part of

the VPL.

User view:

The figure shows unsatisfactory results with the expected and obtained value of the program. These

results are served as an aid to the user in identifying inputs with bad results.

Statically evaluated code

A special category of source code is represented by languages such as HTML or CSS. It is impossible

to evaluate the result in obtaining output based on executing a sequence of commands. In this case,

text analysis was chosen as the basic evaluation approach.

For the text form of the document (parts of the code, web page, etc.), is it possible to define a series

of rules that verify the fulfilment of the occurrence and/or position of specific text strings. The

following rules were defined and applied:

• The text must contain $$$ minimum ### times

• The text can contain $$$ maximum ### times

• The text must not contain $$$

 69

• The text $$$ must follow $$$

• The text $$$ must be before $$$

• The text $$$$ must not follow $$$$

• The text must contain the pairs in this order: $$$$ and $$$$

• The text must contain the triads in the following order: $$$$ and $$$$ and $$$$

• The text must contain the fours in the following order: $$$$ and $$$$ and $$$$ and $$$$

• The text must contain #### times the text $$$$ between $$$$ and $$$$

• In the order ####-th of the $$$$ command must have the parameter $$$$ set to this value:

$$$$

• Some of the occurrences of $$$$ must have the parameter $$$$ set to the value: $$$$

The $$$ can be understood as a text string and ### as a number.

Following realisation can be presented as an example:

Definition:

User view:

 70

Advanced VPL Features

VPL assignments also provide additional settings to support many variations when checking

programs. Teachers can customize the running and assessing process and more.

Execution files

Execution files are a set of files that participate in the run, debug and evaluate tasks. The list includes

scripting files, program test files, data files, etc. These files will go with the student’s submitted files

to run in an execution server. If a student’s file has the same name as an execution file, the execution

file is used. Some of the files have a predetermined purpose based on their name: vpl_run.sh,

vpl_debug.sh, vpl_evaluate.sh, and vpl_evaluate.cases.

The scripts vpl_run.sh, vpl_debug.sh, and vpl_evaluate.sh if set, replaces the corresponding default

action. These scripts carry out the compilation or preparation phase of the action. They aim to

generate a file named vpl_execution or vpl_wexecuton. These files must be a binary executable or a

script beginning with “#!/bin/sh “. The system launches vpl_execution in a textual terminal and

launches vpl_wexecution in a graphic terminal. The non-generation of one of these files impedes

running the selected action. The vpl_debug.sh can not generate a vpl_wexecuton file.

The file vpl_evaluate.cases defines the test cases used by the VPL input/output evaluation program.

Execution files setting has as interface an IDE that allows defining the files. This interface provides

the predefined files named above and the run, debug and evaluate buttons allowing to test the effect

of the Execution files in the last submission of the teacher.

Files included and excluded

For security reason the run action removes vpl_debug.sh, vpl_evaluate.sh or vpl_evaluate.cases

from the task. The debug action removes vpl_evaluate.sh or vpl_evaluate.cases.

All execution tasks includes two auxiliar scripts: common_script.sh and vpl_environment.sh.

The common_script.sh script defines auxiliary functions for the other scripts. The

vpl_environment.sh define shell environment variables with information about the task. The run,

debug or evaluate script can use the following variables:

 71

• LANG: used language.
• LC_ALL: same value as LANG.
• VPL_MAXTIME: maximum execution time in seconds.
• VPL_FILEBASEURL: URL to access the files of the course.
• VPL_SUBFILE#: each name of the files submitted by the student. # Ranges from 0 to the

number of submitted files.
• VPL_SUBFILES: list of all submitted files separated by space.
• VPL_VARIATION: the identification of the variation assigned or empty.
• VPL_VARIATION + id: where id is the variation order starting with 0, and the value identifies

the variation assigned. These vars have a sense when using :ref: the based on feature.
• If the action requested is evaluation, then the following vars are added too.
• VPL_MAXTIME: max time of execution in seconds.
• VPL_MAXMEMORY: max memory usable.
• VPL_MAXFILESIZE: max file size in bytes that can be created.
• VPL_MAXPROCESSES: max number of processes that can be run simultaneously.
• VPL_FILEBASEURL: URL to the course files.
• VPL_GRADEMIN: Min grade for this activity.
• VPL_GRADEMAX: Max grade for this activity.

Execution resources limits

You can set limits for the execution time, the memory used, the execution files sizes, and the number

of processes to be executed simultaneously.

These limits are used when running the scripting files vpl_run.sh, vpl_debug.sh and vpl_evaluate.sh

and the file vpl_execution or vpl_wexecution built by them.

How to measure the required resources for execution in an execution(jail) server?

In general, it is correct to leave the defaults value of resource limits. Suppose you want to restrict or

extend the resources used in a particular activity. In that case, it is recommended to test a standard

solution of the activity, varying the resource from higher to lower to find the correct value.

 72

Files to keep when running

For security reasons, after running the scripting files vpl_run.sh, vpl_debug.sh or vpl_evaluate.sh,

and before running the file vpl_execution or vpl_wexecution built by them, the unneeded execution

files are removed. If some of these files need to be when running the student’s program, the teacher

must mark these files here, e. g. auxiliary libs or data files.

Variations

A set of variations can be defined for an activity. These variations are randomly assigned to the

students.

Here you can indicate if this activity has variations, put a title for the set of variations, and to add the

desired variations.

 73

Each variation has an identification code and a description. The students see the description of their

assigned variation in the task description. The identification code of the student’s assigned variation

is set in vpl_enviroment.sh file to participate in the execution process.

Check execution servers

This report checks and shows the status of each execution server available for this activity. The

report also shows the tasks running or just finished in the current course.

 74

Local execution servers

VPL allows the setting of several execution servers. For each task requested, the system selects one

of these execution servers to carry out the task. The local execution server allows adding new

execution servers for the current activity. This option will allow having more execution power and fail

tolerance for specific activities. It is also possible to set the only servers that will participate in the

current activity by ending the list of local servers with a line containing “end_of_jails”. It allows

having specific execution servers for specific activities that may have particular software needs.

The based-on feature

This powerful feature allows activities to inherit the options and files of other VPL activities. This

feature enables the development of generic activities that can be used as a basis for others. In many

cases, the generic activities are not used as activities to be used by students; their purpose is to

establish a common framework for other activities. The following items are inherited from the

selected activity as based on:

• Description. The based on description is inherited. If the current activity contains a
description, it is appended to the based on activity.

• Resource limits. The based on resource limits are inherited. Any resource limit set in current
activity replaces inherited value.

• Upload file size limits. Current activity can replace inherited value.
• Run/debug script. Inherits the selection in Execution options of the run script and debug

script if not set in the current activity.
• Execution files. All execution files are inherited. Current activity execution files add files and

replace the ones inherited with the same name. Exceptionally, predefined scripting files
(vpl_run.sh, vpl_debug.sh, and vpl_evaluate.sh) are append to the inherited.

• Local servers. Inherits local servers and append local servers in current activity.
• Variations. Inherited and current variations are used to generate multi-variation activities.

 75

Adding support for a new programming language

Adding support for a new programming language in VPL requires two things: the programming

language compiler/interpreter ready to be used in an execution server and the scripts that allow

preparing the student’s files to run. The first requirement can be done following the instructions of

the selected programming language tool. The second is done by customizing the vpl_run.sh script for

running and the vpl_debug.sh for debugging. If planning using the Automated program assessment,

customize vpl_evaluate.sh is unneeded.

A simple way to start your own script is to take the default script of another similar programming

language. The default scripts are located in “/mod/vpl/jail/default_scripts/” of the VPL plugin source

code.

The purpose of the script is to compile or prepare the implementation of the action requested

run/debug/evaluate. If the script succeeds, it will generate an executable file called vpl_execution to

be run on a textual terminal or vpl_wexecution for execution in a graphics terminal.

Suppose you have a predefined activity customized to run a new programming language. All the new

activities configured as based on the predefined one will also run the new programming language.

 76

Customizing Automatic Program Assessment

VPL is a flexible tool such that you can customize the automatic evaluation process. Following the

Execution files, indications you can run your own tools to evaluate the student’s code.

The customized evaluation must generate an output that follows the format below.

Evaluation output format

When an automatic evaluation is done, the system process the execution output (standard output)

to obtain the comments (feedback) and proposed grade.

The comment (feedback) format is as follows:

A comment (feedback) line would be a line starting with “Comment:=>>”. A block comment would be

contained between a line containing only “<|--” and another with “--|>”. The proposed grade is

taken from the last line that begins with “Grade:=>>”.

If the automatic assessment is set, the proposed grade becomes the final going to the Moodle grade

book.

Formatting the comments (feedback)

The comments in the activity assessment have their own format:

• Lines beginning with “-” are titles.
• Lines starting with “> ” are preformatted text “<pre>”.
• The rest of the lines are considered content related to the previous title.
• Expressions of the form filename:number generate a hyperlink to the corresponding line of

the file.
• At the end of each title line, optionally, you can add a negative discount. This value

represents the discount attributed to the associated comment. This discount is never
displayed to the students. This discount is used for the calculate button.

Example:

- Error: infinite loop (-10)

Details of running a task

This section will try to explain what is happening backstage of a running task.

Connections when running task:

1. User clicks run button. Browser send request by === AJAX (json) === > to the VPL plugin in
the Moodle server.

2. VPL plugin in Moodle Server prepare task and send data by === http/https (XMLRPC) === > to
a selected execution server.

3. Execution Server starts the task and returns to VPL plugin in Moodle server the task
identification.

 77

4. VPL plugin in Moodle server returns to the browser the task identification.
5. The browser monitorize the task by connecting by === ws/wss === > to the execution Server.
6. The browser may connect with the running program by connecting by === ws/wss === > to

the execution Server.

Process of a student’s program execution (summarized). The following steps are performed:

1. The system takes the files submitted by the student
2. The system takes the files set by the teacher in Execution files. These files replace files of the

student with the same name.
3. Depending on the action (run, debug, or evaluate), the system takes the customized or

default script by detecting the programming language used based on the extension of file
names.

4. In the case of evaluation, if there is no custom script, the VPL program for automatic
assessment is also added. This program is based on the input and output of the program and
requires that you specify the test cases in the file vpl_evaluate.cases.

5. These collected files are sent to an execution server.
6. The plugin informs the browser that the execution has begun.
7. If the request is an evaluation, when the task is finished, the evaluation result is retrieved

from the execution server.

 78

VPL Architecture

This chapter details the VPL internal architecture and the API of the execution servers. The VPL

architecture is complex since the system requires the coordination of the three main software

components:

• the VPL Moodle plugin,

• the execution system

• and the integrated development environment (IDE).

The Moodle plugin is the core of the VPL system. It supports the persistent storage of information,

integration with Moodle, and control of the execution system.

The IDE is composed of an execution monitor agent, a web code editor, a text terminal and a graphic

terminal. It provides a modern development environment for multiple programming languages, with

storage, execution, and evaluation provided by the Moodle plugin.

The execution system uses one or more execution servers providing a service for remote execution

(execution service). The execution service is a component fully developed for VPL, which runs on a

Linux operating system and executes programs in a safe and controlled environment, attending to

the requests of the Moodle server and interacting with the IDE.

Virtual Lab Architecture is presented in the following figure.

The system uses three types of connections and data formats between their components:

• The client (Browser) connects with the VPL Moodle plugin using JSON over HTTP/HTTPS. The

client sends requests to load and save files from the Moodle server, runs, debugs, and

evaluates students' code, and retrieves evaluation results.

• The VPL Moodle plugin connects with the execution server using XML-RPC over HTTP/HTTPS.

The plugin sends XML-RPC commands to the execution server to run tasks, get tasks results,

stop tasks, etc.

 79

• The client (Browser) connects with the execution server using raw/custom format over

WebSocket. The client uses these types of connections to monitor execution tasks (this is

required) and get remote access to the running program using a text o graphic terminal.

Connections accepted by execution server

The execution service in VPL supports XML-RPC requests and WebSocket over HTTP/HTTPS. The

WebSocket connections allow the bidirectional and direct connection between the browser and any

other machine that supports the protocol. The WebSocket protocol does not require a dedicated

port since it allows transforming an HTTP connection into WebSocket (through an initial negotiation

using the HTTP protocol headers).

Suppose a browser uses secure connections to communicate with the Moodle server. In that case,

the JavaScript code that runs on the resulting web pages must also use secure connections, even

though the connections are WebSocket. This browser security requirement raises the need to

support WebSocket Secure (WSS), the WebSocket encrypted protocol. It is achieved by adding

support for HTTPS, which provides support for WSS as a side effect.

The execution service can execute both non-interactive evaluation tasks and interactive execution

tasks (run or debug). The execution of those tasks is divided into several actions: execution request,

retrieval of results request, and execution stop request. All these requests use HTTP or HTTPS in

XML-RPC format.

On the other hand, the monitoring and control of the state of the execution task and the interaction

in case of interactive execution, either in a text or graphic terminal, are done by means of each

WebSocket connection from the browser. This monitoring and control connect the browser with the

execution server to inform the user of the state of the task and allow him to stop it. It should be

borne in mind that the execution tasks are divided into two parts: compilation or preparation of the

execution of the code and another execution.

The execution part varies depending on whether the requested task is run, debug, or evaluated. In

the first two cases, the execution is interactive. In the third one, the execution takes place without

the user's intervention and without the user having direct access to the evaluation result, which is

processed to obtain a proposed grade and the annotations that support that grade.

In the run and debug tasks, the only difference is the script that is used. If the first compilation phase

ends well, it goes to the interactive execution phase. To launch the execution, the browser is

informed of the type of execution required through the monitoring and control channel (text or

graphic terminal). So, it establishes the appropriate WebSocket connection.

This connection establishment triggers the execution process itself. After interaction with a text

terminal, the inputs and outputs of the program are redirected to the established WebSocket

connection. In the case of execution in a graphic terminal, a VNC server is started where the

student's program will be executed.

The execution service in a graphic terminal establishes a raw connection with the VNC server to

channel the RFB data stream between the server and the VNC client in the browser via the

WebSocket connection.

 80

Security aspects

Security is an essential aspect of the system, so developers consider it carefully in each design and

implementation phase of the proposed solution. Moodle takes care of the user authentication;

however, VPL is in charge of the connections with the execution server. Execution servers can control

the access from Moodle using two security elements:

The first one allows setting a key as part of the URL to access the service. The second one allows

limiting by IPs or networks the machines that can request execution tasks.

This restriction only affects the start of the task. Once the request is accepted, the system uses other

security mechanisms. A request generates specific credentials for task monitoring, interactive

execution, and task management.

The monitoring and execution credentials are for single-use by the browser. The Moodle server only

uses the management credential.

Execution servers count failure requests statistics to mitigate denial-of-service (DoS)

attacks by holding in quarantine for a while the IPs with a high rate of failures. XML-RPC

commands

Following commands from XML-RPC communication are supported:

• available: This is an optional command that can be used to know if the server has enough

resources to execute a request.

• request: This is the command to request execution. The response to this request contains

tickets required to follow the execution.

• getresult: This command returns the result of an evaluation.

• running: This command returns if execution is still running or has finished yet.

• stop: This command stops a running execution.

 81

All VPL XML-RPC requests and responses use one parameter with a value of type struct. The XML-RPC

struct is used to represent objects attributes or associative arrays in a programming language.

The "available" method

Description

This method requests the server to inform if it is available to run a task that requires a certain

amount of memory. This request can be sent before a request command to know if the server has

enough resources to execute a future request. This command is not a necessity to send a request.

The available command returns a status value, indicating if the server is available and a detail of the

server execution limits.

"available" parameters

Attribute type Opt. Description

maxmemory int No Memory in bytes is required by the task to test if the system

can support it

For PHP the code to generate the request may be:

$data = new stdClass();

$data->maxmemory = $maxmemory;

$encoding = array ('encoding' => 'UTF-8')

$requestready = xmlrpc_encode_request('available', $data, $encoding);

Example of XML-RPC method available

<?xml version="1.0" encoding="UTF-8"?>

<methodCall>

<methodName>available</methodName>

<params>

 <param>

 <value>

 <struct>

 <member>

 <name>maxmemory</name>

 <value>

 <int>128000000</int>

 </value>

 </member>

 </struct>

 </value>

 </param>

</params>

</methodCall>

Response to "available"

The response is an object with the following attributes:

Attribute type Description

status string "ready" for accepting the request

"offline" for going offline

 82

"busy" for too busy for accepting the request

load int Number of the task currently running

maxtime int Limit of execution time in seconds defined at execution server

configuration

maxfilesize int Limit of each file size in bytes defined at execution server

configuration

maxmemory int Limit of memory in bytes used by a task defined at execution

server configuration

maxprocesses int Limit of number of processes running in a task defined at execution

server configuration

secureport int Reports the secure port used by the execution server

For PHP, the code to decode the response may be as

$response = xmlrpc_decode($rawresponse, "UTF-8");

if (is_array($response)) {

 if (xmlrpc_is_fault($response)) {

 $error = 'xmlrpc is fault: ' . s($response ["faultString"]);

 } else {

 return $response;

 }

} else {

 $error = 'http error ' . s(strip_tags($rawresponse));

}

return false;

Example of XML-RPC available response

<?xml version="1.0" encoding="UTF-8"?>

<methodResponse>

 <params>

 <param>

 <struct>

 <member><name>status</name>

 <value><string>ready</string></value>

 </member>

 <member><name>load</name>

 <value><int>0</int></value>

 </member>

 <member><name>maxtime</name>

 <value><int>600</int></value>

 </member>

 <member><name>maxfilesize</name>

 <value><int>67108864</int></value>

 </member>

 <member><name>maxmemory</name>

 <value><int>2097152000</int></value>

 </member>

 <member><name>maxprocesses</name>

 <value><int>500</int></value>

 </member>

 <member><name>secureport</name>

 <value><int>443</int></value>

 </member>

 83

 </struct>

 </param>

 </params>

</methodResponse>

The "request" method

Description

This method requests the server to run a task. The request contains all the information necessary for

the execution of the task. The server responds to the request before starting the task execution to

avoid latencies. The response contains tickets to control de task execution.

The task execution has two phases: compilation and execution. The compilation phase has the basic

function of generating a valid program and can be used to do another task as static analysis of code.

The execution phase is interactive when running or debugging student code and is batch if

evaluating. A monitor process supervises the execution of each task.

For more details about the monitor connection, see section Task monitoring.

The request may contain the following data:

• Files which will be sent to the execution server. The files contain the file name, including the

path relative to the user's home directory and the file contents. The files can include the

student's files, execution scripts and teacher's files. The files may be text in UTF-8 or binary

encoded in base64.

• The list of files that the system must remove after the compilation phase and before the

execution. By default, the system removes all teacher's files (advanced options->execution

files in VPL).

• Limits of resources to use during the compilation and execution.

• The name of the script to start the compilation phase.

• If the task is interactive or batch.

• The language used by the user.

"request" parameters

Attribute type Opt. Description

files struct No Each member of this struct represents a file. The name of

each member is the name of a file, and its value is a string

with the file content. The file content may be initially

encoded in base64; see file encoding.

filestodelete struct No Each member of this struct represents a file to be deleted.

The name of each member is the name of a file to be

deleted, and the value is not used. These files are removed

after the compilation phase and before the execution phase

fileencoding struct Yes Each member of this struct represents information about a

file encoding. The name of each member is the name of a

file, and the value is an integer. If the integer associated

with the name is 0, the file content is text in UTF-8. If the

 84

value is 1 the file is encoded in base64.

maxtime int No The maximum number of seconds that the compilation or

execution is required to finish. If the maxtime is reached,

the task is stopped.

maxfilesize int No The maximum size a file created by the task can reach. This

limit is recommended to be high. The OS control this limit.

Some tasks may have an odd behaviour if they reach the

limit.

maxmemory int No The maximum number of bytes of memory that a task can

use. The system stops the task if it uses more memory than

the maxmemory.

maxprocesses int No The maximum number of processes that the task can use.

The OS controls this limit. Some tasks may have an odd

behaviour if they reach the limit.

lang string No A string that represents the LANG of the user. The task

execution may use this environment variable. A common

value is en.

execute string No The name of the script to start the task. The VPL plugin uses

vpl_run.sh, vpl_debug.sh or vpl_evaluate.sh

interactive int No The 1 if the task is interactive or 0 if it is batch. VPL uses

batch tasks when evaluating with the vpl_evaluate.sh

script.

Example of XML-RPC method available

<?xml version="1.0" encoding="UTF-8"?>

<methodCall>

<methodName>request</methodName>

<params>

 <param>

 <value>

 <struct>

 <member>

 <name>files</name>

 <value>

 <struct>

 <member>

 <name>vpl_run.sh</name>

 <value>

 <string>...</string>

 </value>

 </member>

 <member>

 <name>eval/Main.java</name>

 <value>

 <string>...</string>

 </value>

 </member>

 ...

 </struct>

 </value>

 </member>

 <member>

 85

 <name>filestodelete</name>

 <value>

 <struct>

 <member>

 <name>vpl_run.sh</name>

 <value>

 <int>1</int>

 </value>

 </member>

 ...

 </struct>

 </value>

 </member>

 <member>

 <name>maxtime</name>

 <value>

 <int>240</int>

 </value>

 </member>

 <member>

 <name>maxfilesize</name>

 <value>

 <int>67108864</int>

 </value>

 </member>

 <member>

 <name>maxmemory</name>

 <value>

 <int>469762048</int>

 </value>

 </member>

 ...

 <member>

 <name>execute</name>

 <value>

 <string>vpl_evaluate.sh</string>

 </value>

 </member>

 <member>

 <name>interactive</name>

 <value>

 <int>0</int>

 </value>

 </member>

 <member>

 <name>fileencoding</name>

 <value>

 <struct>

 <member>

 <name>vpl_run.sh</name>

 <value>

 <int>0</int>

 </value>

 </member>

 ...

 </struct>

 </value>

 </member>

 </struct>

 86

 </value>

 </param>

</params>

</methodCall>

Response to "request"

A response format is an object with the following attributes

Attribute type Description

adminticket string This ticket grants access to the XML-RPC methods related to the

started task (getresult, running and stop)

monitorticket string This ticket is needed to establish the WebSocket monitoring

connection. This is a single-use ticket if the connection is lost

cannot be re-established. See the section Task monitoring.

executionticket string This ticket is used in the WebSocket execution connection. This is

a single-use ticket if the connection is lost cannot be re-

established.

port int Server port used to accept HTTP requests.

secureport int Server port used to accept HTTPS requests.

Example of XML-RPC request response

<?xml version="1.0" encoding="UTF-8"?>

<methodResponse>

 <params>

 <param>

 <struct>

 <member><name>adminticket</name>

 <value><string>112316513634721</string></value>

 </member>

 <member><name>monitorticket</name>

 <value><string>90173797645932</string></value>

 </member>

 <member><name>executionticket</name>

 <value><string>700988013259542</string></value>

 </member>

 <member><name>port</name>

 <value><int>80</int></value>

 </member>

 <member><name>secureport</name>

 <value><int>443</int></value>

 </member>

 </struct>

 </param>

 </params>

</methodResponse>

The "getresult" method

Description

 87

This method requests the server to retrieve the result of a batch task. This request can be made

when the monitor informs that the task has ended. For more details about the monitor connection,

see section Task monitoring. The request only contains the adminticket

"getresult" parameters

Attribute type Opt. Description

adminticket string No The admin ticket returned in response to the request

method.

Response to "getresult"

A response format is an object with the following attributes

Attribute type Description

compilation string Content the output of the compilation, standard output and

error.

execution string Content the output of the execution, standard output and error.

executed int 1 if the compilation generated a valid result and 0 if not. A valid

result is a file named vpl_execution or vpl_wexecution.

interactive int 1 if the execution was interactive and 0 if not.

The constant JAIL_RESULT_MAX_SIZE limits the compilation and execution size. The default value is

32Kb.

The "running" method

Description

This method requests the server information to know if a task is still running. Notice that this

information can also be known through the control connection. The request only contains the

adminticket

"running" parameters

Attribute type Opt. Description

adminticket string No The admin ticket returned in response to the request

method.

Response to "running"

A response format is an object with the following attributes

Attribute type Description

running int 1 if the task is still running, 0 if not

The "stop" method

Description

 88

This method requests to stop a running task. Notice that this can also be done through the control

connection. The request only contains the adminticket

Method "stop" parameters

Attribute type Opt. Description

adminticket string No The admin ticket returned in response to the request

method.

Response to "running"

A response format is an object with the following attributes

Attribute type Description

stop int Always set to 1

Task monitoring

Once the server accepts a task execution request, the monitoring connection launches the creation

of a process that monitors the evolution of the task. If a monitoring connection is not established

after 5 seconds of the task request, the system stops the task. This timeout value

JAIL_MONITORSTART_TIMEOUT is set in the jail_limits.h source file of the execution daemon. The

monitoring process stops the task also if the execution time limit or the memory limit are reached.

The monitoring connection establishes a channel of communication with an external agent. If the

external agent sends something to the monitoring process or the connection is lost or closed, the

monitoring process stops the task. The monitoring process informs the agent about the state of the

task, and commonly the agent reacts to the state changes. The external agent in VPL runs in the

browser interacting with the end-user, the VPL Moodle plugin and the execution server.

The monitoring connection is a WebSocket connection stablished using a URL with the form:

[http|https]://ExecutionServerName/monitorTicket/monitor

A monitoring connection URL for an HTTPS connection to the server demojail.dis.ulpgc.es with a

monitor ticket value 98723498124984 would be:

https://demojail.dis.ulpgc.es:/98723498124984/monitor

The monitoring process sends messages to the external agent in a simple format “type:data”.

Type of message Description

message:[text]

[text] is a text of any size.

This message, received from the monitoring process, is textual

and commonly used to inform the end-user about the stage of

the execution task and the time spent at that stage.

VPL uses this information to show the state of compilation and

execution to the user.

The agent can ignore this information, does not need to take any

action on it.

compilation:[text]

[text] is a text of any size.

When the compilation phase ends, and the task is interactive,

the monitoring process sends the compilation output to the

agent using this format.

 89

VPL uses this information to show the output of the compilation

phase (commonly warnings and errors) to the end-user.

The agent can ignore this information, does not need to take any

action on it.

run:terminal

or

run:vnc:[password]

The VNC client will use

[password] to connect to the

server.

If the compilation of an interactive task succeeds, the

monitoring process sends a message to the agent requesting to

start a WebSocket execution connection. This connection

triggers the execution of the vpl_execute or vpl_wexecute file

of the task at the execution server, starting the execution phase.

run:terminal -> a text terminal is expected at the end point of

the connection.

run:vnc:password -> a VNC client is expected at the end point of

the connection.

The agent can delegate or start by itself a connection with the

execution server with a URL of the form

[http|https]://ExecutionServerName/executionTicket/execution.

retrieve: If the compilation of a non-interactive task succeeds, the

monitoring process triggers the execution of the vpl_execute file

of the task at the execution server, starting the execution phase.

After the correct end of the execution phase, the monitoring

process sends this message to the agent to inform that the

evaluation has ended and the output is ready to be retrieved

from the execution server.

The reception of this message triggers at the VPL agent a

request to the VPL Moodle plugin to send an XML-RPC getresult

command to the execution server. VPL Moodle plugin saves the

response of the command at the Moodle server (the compilation

and execution result).

close: The reception of this message informs the agent that the task

has ended. The monitoring process will close the connection in a

short time after it sends this message.

Retrieving the VPL activities definition to use it on another system

A simple way to export and use the VPL activities in another system may be saving for each activity:

1. The description in HTML format

2. The requested files with their content

3. The XML-RPC code generated for the evaluation action (method request) is generated using the

requested files as the student's files to evaluate. This XML code will be used to request

evaluations to the execution systems easily.

• The new system can then show the description of the activity to the users.

• It can offer the initial content of the requested files.

• The system can also evaluate the code introduced by the users by replacing the new code

into the saved XML and sending it to the execution server. Notice that the response of the

evaluation (method getresult) must be properly formatted (see previous documentation

Filtering and Formatting VPL output)

 90

 91

VPL Settings in PRISCILLA

Course settings

To run each program via VPL clones, it is necessary to appropriately define files that allow the

preparation (compilation) of source code files and subsequent code execution. Along with files that

execute programs, source code files, test cases, and possibly other files that may contain processed

data or startup configuration elements go to the server.

Priscilla allows you to define these files at the course level or separately in each assignment as an

advanced set of it. If the configuration files vpl_run.sh, vpl_debug.sh, vpl_evaluate.sh that are part

of the tasks contain text. They will replace the contents of parent files with the same names defined

at the course level. The definition of files in the course settings is as follows:

There is also a standard file extension with source code and syntax highlighting + autocompletion

template to provide a popup with commands in the editor.

For the following languages, we list the source code needed to run user code:

• Java

• Python

• C

• PHP

In the case of specific requests to run code in a given language, we will notify you.

Java

Code file extension: java

When running the program, the source code file name must be the same as the class name defined.

The running class must contain the public main() method, from which program execution starts.

public class JavaApp {

 public static void main(String[] args) {

 92

 // write your code here

 }

}

vpl_run.sh

#!/bin/bash

This file is part of VPL for Moodle - http://vpl.dis.ulpgc.es/

Script for running Java language

Copyright (C) 2015 onwards Juan Carlos Rodriguez-del-Pino

License http://www.gnu.org/copyleft/gpl.html GNU GPL v3 or later

Author Juan Carlos Rodriguez-del-Pino

function getClassName {

 #replace / for .

 local CLASSNAME=$(echo "$1" |sed 's/\//\./g')

 #remove file extension .java

 CLASSNAME=$(basename "$CLASSNAME" .java)

 echo $CLASSNAME

}

function getClassFile {

 #remove file extension .java

 local CLASSNAME=$(basename "$1" .java)

 local DIRNAME=$(dirname "$1")

 echo "$DIRNAME/$CLASSNAME.class"

}

function hasMain {

 local FILE=$(getClassFile "$1")

 cat -v $FILE | grep -E "\^A\^@\^Dmain\^A\^@\^V\(\[Ljava/lang/String;\)" &>

/dev/null

}

@vpl_script_description Using default javac, run JUnit if detected

load common script and check programs

. common_script.sh

check_program javac

check_program java

if ["$1" == "version"] ; then

 echo "#!/bin/bash" > vpl_execution

 echo "javac -version" >> vpl_execution

 chmod +x vpl_execution

 exit

fi

JUNIT4=/usr/share/java/junit4.jar

if [-f $JUNIT4] ; then

 export CLASSPATH=$CLASSPATH:$JUNIT4

fi

get_source_files java

compile all .java files

javac -Xlint:deprecation $2 $SOURCE_FILES

if ["$?" -ne "0"] ; then

 echo "Not compiled"

 exit 0

fi

Search main procedure class

MAINCLASS=

 93

for FILENAME in $VPL_SUBFILES

do

 hasMain "$FILENAME"

 if ["$?" -eq "0"] ; then

 MAINCLASS=$(getClassName "$FILENAME")

 break

 fi

done

if ["$MAINCLASS" = ""] ; then

 for FILENAME in $SOURCE_FILES

 do

 hasMain "$FILENAME"

 if ["$?" -eq "0"] ; then

 MAINCLASS=$(getClassName "$FILENAME")

 break

 fi

 done

fi

if ["$MAINCLASS" = ""] ; then

Search for junit4 test classes

 TESTCLASS=

 for FILENAME in $SOURCE_FILES

 do

 CLASSFILE=$(getClassFile "$FILENAME")

 grep "org/junit/" $CLASSFILE &> /dev/null

 if ["$?" -eq "0"] ; then

 TESTCLASS=$(getClassName "$FILENAME")

 break

 fi

 done

 if ["$TESTCLASS" = ""] ; then

 echo "Class with \"public static void main(String[] arg)\" method not found"

 exit 0

 fi

fi

cat common_script.sh > vpl_execution

echo "export CLASSPATH=$CLASSPATH" >> vpl_execution

if [! "$MAINCLASS" = ""] ; then

 echo "java -enableassertions $MAINCLASS \$@" >> vpl_execution

else

 echo "java org.junit.runner.JUnitCore $TESTCLASS \$@" >> vpl_execution

fi

chmod +x vpl_execution

for FILENAME in $SOURCE_FILES

do

 CLASSFILE=$(getClassFile "$FILENAME")

 grep -E "javax/swing/(JFrame|JDialog|JOptionPane|JApplet)" $CLASSFILE &> /dev/null

 if ["$?" -eq "0"] ; then

 mv vpl_execution vpl_wexecution

 break

 fi

done

vpl_evaluate.sh

#!/bin/bash

This file is part of VPL for Moodle

Default evaluate script for VPL

Copyright (C) 2014 onwards Juan Carlos Rodriguez-del-Pino

 94

License http://www.gnu.org/copyleft/gpl.html GNU GPL v3 or later

Author Juan Carlos Rodriguez-del-Pino <jcrodriguez@dis.ulpgc.es>

#load VPL environment vars

. common_script.sh

if ["$SECONDS" = ""] ; then

 export SECONDS=20

fi

let VPL_MAXTIME=$SECONDS-5;

if ["$VPL_GRADEMIN" = ""] ; then

 export VPL_GRADEMIN=0

 export VPL_GRADEMAX=10

fi

#exist run script?

if [! -s vpl_run.sh] ; then

 echo "I'm sorry, but I haven't a default action to evaluate the type of submitted

files"

else

 #avoid conflict with C++ compilation

 mv vpl_evaluate.cpp vpl_evaluate.cpp.save

 #Prepare run

 ./vpl_run.sh &>>vpl_compilation_error.txt

 cat vpl_compilation_error.txt

 if [-f vpl_execution] ; then

 mv vpl_execution vpl_test

 if [-f vpl_evaluate.cases] ; then

 mv vpl_evaluate.cases evaluate.cases

 else

 echo "Error need file 'vpl_evaluate.cases' to make an evaluation"

 exit 1

 fi

 mv vpl_evaluate.cpp.save vpl_evaluate.cpp

 check_program g++

 g++ vpl_evaluate.cpp -g -lm -lutil -o .vpl_tester

 if [! -f .vpl_tester] ; then

 echo "Error compiling evaluation program"

 exit 1

 else

 cat vpl_environment.sh >> vpl_execution

 echo "./.vpl_tester" >> vpl_execution

 fi

 else

 echo "#!/bin/bash" >> vpl_execution

 echo "echo" >> vpl_execution

 echo "echo '<|--'" >> vpl_execution

 echo "echo '-$VPL_COMPILATIONFAILED'" >> vpl_execution

 if [-f vpl_wexecution] ; then

 echo "echo '======================'" >> vpl_execution

 echo "echo 'It seems you are trying to test a program with a graphic user

interface'" >> vpl_execution

 fi

 echo "echo '--|>'" >> vpl_execution

 echo "echo" >> vpl_execution

 echo "echo 'Grade :=>>$VPL_GRADEMIN'" >> vpl_execution

 fi

 chmod +x vpl_execution

fi

 95

C/C++ language

Code file extension: cpp

When running the program, the source code must contain the public main() method, from which

program execution starts.

#include <iostream>

using namespace std;

int main(){

 // write solution here:

 return 0;

}

vpl_run.sh

#!/bin/bash

This file is part of VPL for Moodle - http://vpl.dis.ulpgc.es/

Script for running C++ language

Copyright (C) 2012 Juan Carlos Rodriguez-del-Pino

License http://www.gnu.org/copyleft/gpl.html GNU GPL v3 or later

Author Juan Carlos Rodriguez-del-Pino <jcrodriguez@dis.ulpgc.es>

#@vpl_script_description Using default g++ with math and util libs

#load common script and check programs

. common_script.sh

check_program g++

if ["$1" == "version"] ; then

 echo "#!/bin/bash" > vpl_execution

 echo "g++ --version | head -n2" >> vpl_execution

 chmod +x vpl_execution

 exit

fi

get_source_files cpp C

#compile

g++ -fno-diagnostics-color -o vpl_execution $2 $SOURCE_FILES -lm -lutil

vpl_evaluate.sh

#!/bin/bash

This file is part of VPL for Moodle

Default evaluate script for VPL

Copyright (C) 2014 onwards Juan Carlos Rodriguez-del-Pino

License http://www.gnu.org/copyleft/gpl.html GNU GPL v3 or later

Author Juan Carlos Rodriguez-del-Pino <jcrodriguez@dis.ulpgc.es>

#load VPL environment vars

. common_script.sh

if ["$SECONDS" = ""] ; then

 export SECONDS=20

fi

let VPL_MAXTIME=$SECONDS-5;

if ["$VPL_GRADEMIN" = ""] ; then

 export VPL_GRADEMIN=0

 export VPL_GRADEMAX=10

fi

 96

#exist run script?

if [! -s vpl_run.sh] ; then

 echo "I'm sorry, but I haven't a default action to evaluate the type of submitted

files"

else

 #avoid conflict with C++ compilation

 mv vpl_evaluate.cpp vpl_evaluate.cpp.save

 #Prepare run

 ./vpl_run.sh &>>vpl_compilation_error.txt

 cat vpl_compilation_error.txt

 if [-f vpl_execution] ; then

 mv vpl_execution vpl_test

 if [-f vpl_evaluate.cases] ; then

 mv vpl_evaluate.cases evaluate.cases

 else

 echo "Error need file 'vpl_evaluate.cases' to make an evaluation"

 exit 1

 fi

 mv vpl_evaluate.cpp.save vpl_evaluate.cpp

 check_program g++

 g++ vpl_evaluate.cpp -g -lm -lutil -o .vpl_tester

 if [! -f .vpl_tester] ; then

 echo "Error compiling evaluation program"

 exit 1

 else

 cat vpl_environment.sh >> vpl_execution

 echo "./.vpl_tester" >> vpl_execution

 fi

 else

 echo "#!/bin/bash" >> vpl_execution

 echo "echo" >> vpl_execution

 echo "echo '<|--'" >> vpl_execution

 echo "echo '-$VPL_COMPILATIONFAILED'" >> vpl_execution

 if [-f vpl_wexecution] ; then

 echo "echo '======================'" >> vpl_execution

 echo "echo 'It seems you are trying to test a program with a graphic user

interface'" >> vpl_execution

 fi

 echo "echo '--|>'" >> vpl_execution

 echo "echo" >> vpl_execution

 echo "echo 'Grade :=>>$VPL_GRADEMIN'" >> vpl_execution

 fi

 chmod +x vpl_execution

fi

Python

Code file extension: py

No special needs are defined.

vpl_run.sh

#!/bin/bash

This file is part of VPL for Moodle - http://vpl.dis.ulpgc.es/

Script for running Python language

Copyright (C) 2014 onwards Juan Carlos Rodriguez-del-Pino

 97

License http://www.gnu.org/copyleft/gpl.html GNU GPL v3 or later

Author Juan Carlos Rodriguez-del-Pino <jcrodriguez@dis.ulpgc.es>

@vpl_script_description Using python3 with the first file

load common script and check programs

. common_script.sh

check_program python3

if ["$1" == "version"] ; then

 echo "#!/bin/bash" > vpl_execution

 echo "python3 --version" >> vpl_execution

 chmod +x vpl_execution

 exit

fi

get_first_source_file py

cat common_script.sh > vpl_execution

echo "export TERM=ansi" >>vpl_execution

echo "python3 $FIRST_SOURCE_FILE \$@" >>vpl_execution

chmod +x vpl_execution

grep -E "Tkinter" $FIRST_SOURCE_FILE &> /dev/null

if ["$?" -eq "0"] ; then

 mv vpl_execution vpl_wexecution

fi

vpl_evaluate.sh

#!/bin/bash

This file is part of VPL for Moodle

Default evaluate script for VPL

Copyright (C) 2014 onwards Juan Carlos Rodriguez-del-Pino

License http://www.gnu.org/copyleft/gpl.html GNU GPL v3 or later

Author Juan Carlos Rodriguez-del-Pino <jcrodriguez@dis.ulpgc.es>

#load VPL environment vars

. common_script.sh

if ["$SECONDS" = ""] ; then

 export SECONDS=20

fi

let VPL_MAXTIME=$SECONDS-5;

if ["$VPL_GRADEMIN" = ""] ; then

 export VPL_GRADEMIN=0

 export VPL_GRADEMAX=10

fi

#exist run script?

if [! -s vpl_run.sh] ; then

 echo "I'm sorry, but I haven't a default action to evaluate the type of submitted

files"

else

 #avoid conflict with C++ compilation

 mv vpl_evaluate.cpp vpl_evaluate.cpp.save

 #Prepare run

 ./vpl_run.sh &>>vpl_compilation_error.txt

 cat vpl_compilation_error.txt

 if [-f vpl_execution] ; then

 mv vpl_execution vpl_test

 if [-f vpl_evaluate.cases] ; then

 mv vpl_evaluate.cases evaluate.cases

 else

 echo "Error need file 'vpl_evaluate.cases' to make an evaluation"

 98

 exit 1

 fi

 mv vpl_evaluate.cpp.save vpl_evaluate.cpp

 check_program g++

 g++ vpl_evaluate.cpp -g -lm -lutil -o .vpl_tester

 if [! -f .vpl_tester] ; then

 echo "Error compiling evaluation program"

 exit 1

 else

 cat vpl_environment.sh >> vpl_execution

 echo "./.vpl_tester" >> vpl_execution

 fi

 else

 echo "#!/bin/bash" >> vpl_execution

 echo "echo" >> vpl_execution

 echo "echo '<|--'" >> vpl_execution

 echo "echo '-$VPL_COMPILATIONFAILED'" >> vpl_execution

 if [-f vpl_wexecution] ; then

 echo "echo '======================'" >> vpl_execution

 echo "echo 'It seems you are trying to test a program with a graphic user

interface'" >> vpl_execution

 fi

 echo "echo '--|>'" >> vpl_execution

 echo "echo" >> vpl_execution

 echo "echo 'Grade :=>>$VPL_GRADEMIN'" >> vpl_execution

 fi

 chmod +x vpl_execution

fi

PHP

Code file extension: php

Making the input channel available is necessary to provide an automatic evaluation of source code

written in PHP. This operation is provided by the following lines, which are necessary to start each

program in the PHP course:

<?php

// your input, do not remove this line

$x = (int) trim(fgets(STDIN));

// write your code here

vpl_run.sh

#!/bin/bash

This file is part of VPL for Moodle - http://vpl.dis.ulpgc.es/

Script for running PHP language

Copyright (C) 2012 onwards Juan Carlos Rodriguez-del-Pino

License http://www.gnu.org/copyleft/gpl.html GNU GPL v3 or later

Author Juan Carlos Rodriguez-del-Pino <jcrodriguez@dis.ulpgc.es>

@vpl_script_description Using "php -n -f" with the first file or on serve if

index.php exists

load common script and check programs

. common_script.sh

check_program php5 php

PHP=$PROGRAM

if ["$1" == "version"] ; then

 99

 echo "#!/bin/bash" > vpl_execution

 echo "$PHP -v" >> vpl_execution

 chmod +x vpl_execution

 exit

fi

check_program x-www-browser firefox

BROWSER=$PROGRAM

if [-f index.php] ; then

 PHPCONFIGFILE=$($PHP -i 2>/dev/null | grep "Loaded Configuration File" | sed

's/^[^\/]*//')

 if ["$PHPCONFIGFILE" == ""] ; then

 touch .php.ini

 else

 cp $PHPCONFIGFILE .php.ini

 fi

 #Configure session

 SESSIONPATH=$HOME/.php_sessions

 mkdir $SESSIONPATH

 #Generate php.ini

 cat >> .php.ini <<END_OF_INI

session.save_path="$SESSIONPATH"

error_reporting=E_ALL

display_errors=On

display_startup_errors=On

END_OF_INI

 #Generate router

 cat >> .router.php << 'END_OF_PHP'

<?php $path=urldecode(parse_url($_SERVER["REQUEST_URI"],PHP_URL_PATH));

$file='.'.$path;

if(is_file($file) || is_file($file.'/index.php') || is_file($file.'/index.html')){

 unset($path,$file);

 return false;

}

$pclean=htmlentities($path);

http_response_code(404);

header(':', true, 404);

?>

<!doctype html>

<html><head><title>404 Not found</title>

<style>h1{background-color: aqua;text-align:center} code{font-size:150%}</style>

</head>

<body><h1>404 Not found</h1><p>The requested resource <code><?php echo "'$pclean'";

?></code>

was not found on this server</body></html>

END_OF_PHP

while true; do

 PHPPORT=$((6000+$RANDOM%25000))

 netstat -tln | grep -q ":$PHPPORT "

 ["$?" != "0"] && break

done

cat > vpl_wexecution <<END_OF_SCRIPT

#!/bin/bash

$PHP -c .php.ini -S "127.0.0.1:$PHPPORT" .router.php &

$BROWSER "127.0.0.1:$PHPPORT"

END_OF_SCRIPT

 chmod +x vpl_wexecution

else

 100

 get_first_source_file php

 cat common_script.sh > vpl_execution

 echo "$PHP -n -f $FIRST_SOURCE_FILE \$@" >>vpl_execution

 chmod +x vpl_execution

fi

vpl_evaluate.sh

#!/bin/bash

This file is part of VPL for Moodle

Default evaluate script for VPL

Copyright (C) 2014 onwards Juan Carlos Rodr&#aguez-del-Pino

License http://www.gnu.org/copyleft/gpl.html GNU GPL v3 or later

Author Juan Carlos Rodr&#aguez-del-Pino <jcrodriguez@dis.ulpgc.es>

#load VPL environment vars

. common_script.sh

if ["$SECONDS" = ""] ; then

 export SECONDS=20

fi

let VPL_MAXTIME=$SECONDS-5;

if ["$VPL_GRADEMIN" = ""] ; then

 export VPL_GRADEMIN=0

 export VPL_GRADEMAX=10

fi

#exist run script?

if [! -s vpl_run.sh] ; then

 echo "I'm sorry, but I haven't a default action to evaluate the type of submitted

files"

else

 #avoid conflict with C++ compilation

 mv vpl_evaluate.cpp vpl_evaluate.cpp.save

 #Prepare run

 ./vpl_run.sh &>>vpl_compilation_error.txt

 cat vpl_compilation_error.txt

 if [-f vpl_execution] ; then

 mv vpl_execution vpl_test

 if [-f vpl_evaluate.cases] ; then

 mv vpl_evaluate.cases evaluate.cases

 else

 echo "Error need file 'vpl_evaluate.cases' to make an evaluation"

 exit 1

 fi

 mv vpl_evaluate.cpp.save vpl_evaluate.cpp

 check_program g++

 g++ vpl_evaluate.cpp -g -lm -lutil -o .vpl_tester

 if [! -f .vpl_tester] ; then

 echo "Error compiling evaluation program"

 exit 1

 else

 cat vpl_environment.sh >> vpl_execution

 echo "./.vpl_tester" >> vpl_execution

 fi

 else

 echo "#!/bin/bash" >> vpl_execution

 echo "echo" >> vpl_execution

 echo "echo '<|--'" >> vpl_execution

 echo "echo '-$VPL_COMPILATIONFAILED'" >> vpl_execution

 if [-f vpl_wexecution] ; then

 echo "echo '======================'" >> vpl_execution

 101

 echo "echo 'It seems you are trying to test a program with a graphic user

interface'" >> vpl_execution

 fi

 echo "echo '--|>'" >> vpl_execution

 echo "echo" >> vpl_execution

 echo "echo 'Grade :=>>$VPL_GRADEMIN'" >> vpl_execution

 fi

 chmod +x vpl_execution

fi

 102

UnitTest2VPL Framework

VPL provides two ways to evaluate activities:

• The simplest way is to evaluate the input/output of a program. We only have to fill a file

(vpl_evaluate.cases, in the execution files section of the activity) with the input we want to

provide to the program and the output we expect. We can also configure other stuff, as

penalization, when the output is not correct. Still, with only the input and the expected

output, VPL can run the evaluation, applying the input and testing that the output matches

the expected one.

• Advanced evaluation requires that the evaluator prepares some code to test the code

submitted by the student, usually using the same programming language. This code could be

entirely designed for each activity or based on some general, customizable framework. Such

a framework could be written to take advantage of an existing unit test framework, as a unit

test for Python. Of course, it could be written differently.

Requirements

Produce suitable VPL feedbacks

Problem

VPL expects that the evaluation process of activity produces feedbacks using a pre-established texts

format.

Discussion

The format required for writing VPL feedbacks is public. A test framework could produce the

feedbacks text simply by means of output commands. When using a unit tests framework, the

messages associated with the asserts that are usually used in the tests could, in most cases, be

customized to adopt a format suitable to VPL

Resulting requirement

The code designed to carry on advanced evaluation must produce suitable VPL feedbacks. It is

recommended to use a standard unit test framework and customize the asserts messages properly.

Catch unexpected exceptions

Problem

The tested code could raise an unexpected exception.

Discussion

An unexpected exception could interrupt the test execution without providing any suitable VPL

feedbacks.

Resulting requirement

Every unit test must be wrapped with an exceptions control block to catch any unexpected

exception and provide proper VPL feedback.

 103

Prevent from non-ending states

Problem

The tested code could enter non-ending states such as infinite looping or when waiting for an input

that will not arrive.

Discussion

A VPL activity establishes a maximum execution time in its resource limits setup page. When the

established time is reached, VPL kills the evaluation process of the activity, stopping all pending

tasks. As a result, an infinite loop in a test could cause the loss of feedback for many other tests,

resulting in a waste of time.

Resulting requirement

The test framework should include a timeout mechanism to stop only the tests that enter non-

ending states, producing proper feedback about them and continuing with the rest until their

normal finalization.

Solution for Python

The solution adopted for Python VPL activities is to provide a base activity, the UnitTest2VPL Base

activity, designed to be used as base activity by any other VPL activity that makes tests using a unit

test framework. It provides the tools to convert unit test results into suitable VPL feedback, including

comments and grade calculation.

Unittest2VPL Base Activity

The Unittest2VPL Base Activity is composed of: A Python script (file main_evaluate.py) to collect

and run the tests and three Python classes (VPLMessage, TestTimeout, and VPLTests). It also defines

its own vpl_run and vpl_evaluate bash scripts.

Class VPLMessage

The class VPLMessage extends the Python’s class str to represent valid VPL comments. A VPL

comment requires a title, a detailed explanation, and a penalty, as it usually represents a failure in a

test run on a task submitted to be graded. The detailed explanation and the penalty could be

optional. Still, the VPLMessage class does not manage this issue, so the magic method __new__ is

defined with four arguments (apart of the mandatory cls argument): test (which binds the message

with the unit test that raises the failure), title, detail and penalty.

class VPLMessage(str):

 """This class provides strings formatted for VPL report"""

 def __new__(cls, test, title: str, detail: str, penalty: float):

 """Adds to the clas str some attributes required for VPL feedback"""

 obj = str.__new__(cls, title)

 obj.test = test

 obj.detail = detail

 obj.penalty = penalty

 return obj

 104

 def __str__(self):

 """Returns a string formatted for VPL report"""

 header = "Comment :=>>-{0}.({1})".format(str.__str__(self), self.penalty)

 body = ""

 if self.detail != None:

 lines = self.detail.split("\n")

 for line in lines:

 body += "Comment :=>>>{0}\n".format(line)

 self.test.updateGrade(self.penalty)

 return "\n" + header + "\n" + body

We must use the __new__ method to construct a VPL message because str is an immutable class and

does not permit to add attributes via the __init__ method. We need to add the attributes test, detail

and penalty, which will be used later to build the VPL message in the __str__ method. This way, we

can assure that grade for the assignment will be updated only when it is required to show the VPL

comment because a fail has been raised. The title does not need to be added as an attribute because

it is used to make the base str object.

TestTimeout class

The TestTimeout class serves to build timeout objects which will be used in a context manager to

end the execution of the tested code in case of non-ending sceneries as infinite loops.

import signal

class TestTimeout:

 def __init__(self, seconds, message, test):

 """Sets a timeout with a message to be shown when reached"""

 self.seconds = seconds

 self.message = message

 self.test = test

 def handle_timeout(self, signum, frame):

 """Raises a test fail when the timeout is reached"""

 self.test.fail(self.message)

 def __enter__(self):

 """Actives the timeout countdown"""

 signal.signal(signal.SIGALRM, self.handle_timeout)

 signal.alarm(self.seconds)

 def __exit__(self, exc_type, exc_val, exc_tb):

 """Deactivates the timeout"""

 signal.alarm(0)

The __init__ method of the TestTimeout class requires as arguments the timeout time expressed in

seconds, a VPL message (which includes the short description of the test, the detail of the timeout

failure, and a proposed penalty for it), and the test itself.

The TestTimeout class sets the alarm when entering the managed context to be launched when the

timeout is reached. The handle for this alarm raises a test fail with the pre-established VPL message.

 105

If the end of the managed context is reached before the timeout, the alarm is deactivated by the

__exit__ method.

VPLTests class

The VPLTests class is defined in the package unittest2VPL, which imports the modules re (regular

expressions), os (operating system), traceback, unittest, VPLMessage and TestTimeout.

The VPLTests class extends the class unittest.TestCase and defines four class methods (setUpClass,

showGrade, updateGrade and tearDownClass) and three instance methods (message, timeout and

runTest).

import os

import traceback

import unittest

from vplmessage import VPLMessage

from testtimeout import TestTimeout

from localization import Localization

class VPLTests(unittest.TestCase):

 """Base class for testing of VPL activities written in Python"""

 show_grade = False

 __default_lang = "en"

 def set_penalty_percentage(self, percentage):

 self.penalty = self.grade_range * percentage / 100.0

The setUpClass method is executed only once before running the tests and initializes the default

penalty to be applied for each test failure by dividing the grade range by the number of tests to run

(note that the default penalty is a negative value). It also initializes the failed tests counter.

@classmethod

def setUpClass(cls):

 """Prepare the execution of the tests"""

 grade_min = float(os.getenv('VPL_GRADEMIN', '0'))

 grade_max = float(os.getenv('VPL_GRADEMAX', '10'))

 cls.grade_range = grade_max - grade_min

 cls.grade = cls.grade_range

 cls.tests = list(filter(lambda x: x.find("test_") == 0, dir(cls)))

 cls.number_of_tests = len(cls.tests)

 cls.default_penalty = - (grade_max - grade_min) / cls.number_of_tests

 cls.failed = 0

 cls.__addLocalizations()

 Localization.setLanguage(cls.__default_lang)

The showGrade method changes to True the show_grade attribute, which determines if a proposed

grade is shown at the end of the tests. The initial value for show_grade is False and only can be

changed to True.

@classmethod

def showGrade(cls):

 """Allows showing a proposed grade to the student"""

 cls.show_grade = True

 106

The updateGrade method updates the proposed grade every time a test fails and increments the

failed tests counter. Updating the proposed grade adds the penalty argument (supposed negative) to

the grade class attribute.

@classmethod

def updateGrade(cls, penalty):

 """Updates the grade to be proposed with a penalization"""

 cls.grade += penalty

 cls.failed += 1

The tearDownClass method is executed only once after running the tests. It shows a message

informing about how many tests have been run and how many of them have failed. If show_grade

value is True, the proposed grade is shown too.

@classmethod

def tearDownClass(cls):

 """Shows the report for the run tests"""

 print(

 Localization.localize(

 "Comment :=>> {} tests failed of {} tests run",

 [cls.failed, len(cls.tests)]

)

)

 if cls.show_grade:

 grade = cls.grade

 if grade < 0:

 grade = 0

 print("Grade :=>>{0}".format(grade))

The message method is used to compose a proper VPL message in the case a test fails. It requires a

title, a (negative) penalty and an optional string with additional fail details.

def message(self, title: str, details: str = None):

 """Returns a message formatted for VPL report"""

 return VPLMessage(self, title, details, self.penalty)

The timeout method is used to create a timeout object for the test.

def timeout(self, seconds: float, title: str, message: str = None):

 """Sets a timeout for a test execution"""

 if message == None:

 message = Localization.localize(

 'Test timed out after {} seconds.',

 [seconds]

)

 return TestTimeout(seconds,

 self.message(

 title,

 message

),

 self

)

 107

The runTest method:

1. Calls the setUpClass method.

2. Execute the unit tests.

3. Calls the tearDownClass method.

For each unit test:

1. Calls the test setup method, if any.

2. Set the penalty for the test to the default penalty (this can be overridden by the test method,

setting a custom penalty).

3. Configures a timeout context and run the test method inside it.

4. Catches any exception raised by the unit test, distinguishing between failure exceptions and

any other unexpected exception and producing a proper VPL message in any case.

5. Calls the test tearDown method, if any.

def runTest(self, result = None):

 """Executes VPL tests on the submitted code"""

 self.setUpClass()

 for test_name in self.tests:

 if hasattr(self, "setUp"):

 getattr(self, "setUp")()

 try:

 self.penalty = self.default_penalty

 test = getattr(self, test_name)

 with self.timeout(3, test.__doc__):

 test()

 except Exception as e:

 if type(e) == self.failureException:

 if hasattr(test, "__doc__"):

 message = str(e).replace(

 "None",

 Localization.localize(test.__doc__)

)

 else:

 message = VPLMessage(

 self,

 Localization.localize(test.__doc__),

 Localization.localize(

 #"Unexpected {} - {}\n-----------------------\n{}",

 #[type(e).__name__, str(e), traceback.format_exc()]

 "Unexpected {} - {}",

 [type(e).__name__, str(e)]

),

 self.penalty

)

 print(message)

 if hasattr(self, "tearDown"):

 getattr(self, "tearDown")()

 self.tearDownClass()

 108

Scripts

The file named main_evaluate.py contains a Python script to collect and run the tests.

import unittest

import tests

my_test = tests.Tests()

my_test.run()

The vpl_evaluate.sh bash script is used to run the main_evaluate.py script when the activity is going

to be evaluated.

#!/bin/bash

cat common_script.sh > vpl_execution

echo "python3 main_evaluate.py" >>vpl_execution;

chmod +x vpl_execution

The vpl_run.sh bash script runs the first file of the activity's submission. It is unnecessary because

that is what VPL does by default.

#!/bin/bash

. common_script.sh

check_program python

cat common_script.sh > vpl_execution

echo "python3 $VPL_SUBFILE0" >>vpl_execution;

chmod +x vpl_execution

Test class

The test.py file must import the unittest2VPL module defined in the UnitTest2VPL Base activity. It

must also import any other module required to test the assignment and declare a class named Tests

that will extend unittest2VPL.VPLTests. Test class will include the tests methods and any other

method necessary to test the assignment.

Test methods

The test methods will be written as normal UnitTests methods, with names beginning with the prefix

test, but with two requirements:

• The first line must be a doc comment with a short description of the test to be used as the

title of the VPL message if the test fails.

• You can use any of the assertion clauses available in Unittest, but always provide a custom

message built using the self.message method to be a proper VPL message.

def test_00(self):

 """Initializing a square rectangle and testing area"""

 # Prepare the test

 length = 1.0

 widht = 1.0

 expected_area = abs(length) * abs(width)

 109

 # Run code to test

 my_rect = Reactangle(length, width)

 real_area = my_rest.area

 # Evaluate results

 self.assertEuqal(

 real_area,

 expected_area,

 self.message(

 self.shortDescription(),

 ("A rectangle with length = {} and width = {}\n"

 "Expected area is {} {}\n"

 "But real area seems to be {}"

).format(length, width, expected_area, real_area)

)

)

The test method could include, previous to the test itself, an assignation to the self.penalty attribute,

only in the case when a failure will be penalized with a value different from the default.

If a proposed grade is going to be shown, the class method tearDownClass must be overridden with

a new one to call the class method showGrade and then the superclass method tearDownClass. Any

other required finalization action can be done between these two calls.

@classmethod

def tearDownClass(cls):

 cls.showGrade()

 super().tearDownClass

Internationalization and Localization

Internationalization and localization of software are important issues in a global world. Unittest2VPL

is prepared to give its feedback properly translated to any required language, based on the previous

addition of translations for that language.

The class Location

The main tool for the internationalization and localization of Unittest2VPL based activities is the

Localization class provided by the localization module. The Location class has three class methods:

setLanguage, addLocale, and localize. For all of then, the first parameter, cls, represents the

Localization class, as is usual in Python:

• The setLanguage method has the form: setLanguage(cls, lang), being lang a string

representing a language. The method changes the current language to that represented by

lang.

• The addLocale method has the form: addLocale(cls, lang, key, value), being lang, key, and

value three strings. The method adds the translation value of key for the language lang. The

value parameter could include placeholders to be replaced by real values when key

translation is required, as explained at the next point.

• The localize method has the form: localize(cls, key, params = []), key a string and params a

list of objects. The method returns the value previously registered for key by addLocale for

the current language (set by setLanguage). Before return value, localize replaces its

placeholders by string representations of the positional-corresponding objects in params. In

 110

case of not localizing a translation of key for the current language, the key itself is returned

as value.

The placeholders have the form "{}". An escaping backslash must be included to allow the inclusion

of a group "{}" in a value string ("\{}" → "{}"). See example:

• value: "Result is {} and must be {}. These curly brackets \{} will stay."

• params: [198.99, 190.0]

• returned value: "Result is 198.99 and must be 190.0. These curly brackets {} will stay."

How to use

Localization of the VPLTest class

The VPLTests class uses English as a base and default language and has all its feedback translated to

Spanish. It is prepared to show localized feedback for any derived activity that uses localization. New

localizations for VPLTests' feedback can be added to the private class method __Localizations.

@classmethos

def _addLocalizations(cls):

 # Set the localizations for the test

 Localization.addLocale(

 "es",

 "Testing the area property existence",

 "Probando la existencia de la propiedad area"

)

 Localization.addLocale(

 "es",

 "Testing that area is readonly",

 "Probando que la propiedad area es de solo lectura"

)

 Localization.addLocale(

 "es",

 "area property is writable",

 "La propiedad area es modificable"

)

 Localization.addLocale(

 "es",

 "Testing area value (1)",

 "Probando el valor de la propiedad area (1)"

)

All the feedback messages printed by the VPLTests class are localized using the localize function of

the class Localization. As can be seen in both the above and below figures, messages in the base

language (English) are used as keys for localization.

print(

 Localization.localize(

 "Comment :=>> {} tests failed of {} tests runned",

 [cls.failed, len(cls.tests)]

)

)

 111

The default language is set at the setUpClass class method by calling the method setLanguage of

Localization using the private variable __default_lang as a parameter. To change the default

language, only the value of this private variable needs to be changed.

cls.failed = 0

cls._addLocalizations()

Localization.setLanguage(cls._default_lang)

class VPLTests(unittest.TestCase):

 show_grade = False

 _default_lang = "en"

Localization of derived Test classes

A test class derived from VPLTests can localize its feedback. To do this, it must define its own

setUpClass class method, which must first call the VPLTests' setUpClass class method and then add

its own localizations using the addLocale method the Localization class, which must be imported

previously.

from localization import Localization

…

class Tests(unittest2VPL.VPLTests):

 @classmethod

 def setUpClass(cls):

 super().setUpClass()

 # Set the localizations for the test

 Localization.addLocale(

 "es",

 "Time has not {} attribute",

 "El objeto de la clase Time no tiene atributo {}"

)

…

The messages to be used as assessment feedback must be localized using the localize function of the

Localization class. The test class does not print these messages, and the VPLTest base class prints

them. The Test class establishes them as assertion fail messages or docstrings for the tests methods.

The docstrings can't, and don't need, be localized using the localize function; this task is done at the

VPLTest base class, the derived Test class only needs to add localizations for them in its setUpClass

class method.

The default language set at the VPLTests base class can be overridden by including a call to the

setLanguage method of Location in the setUpClass method of the derived Test class.

 # Set the language selected by the user if any

 rec_doc = rectangle.__doc__

 if rec_doc != None:

 lang_esp = re.search(r"\(test-lang=(\w{2,})\)", rec_doc)

 if lang_esp != None:

 Localization.setLanguage(lang_esp.group(1))

 else:

 Localization.setLanguage("en")

 112

An activity can allow users to use their own language. To do this, the user must include a special

pattern like "(test-lang=es)" in the docstring of his module, and the Test class must include code to

process that pattern in its setUpClass class method. (In the next figure, rectangle is the module

developed by the user). If there is no localization for the language selected by the user, the alternate

language is used. If no any exists, the default language is selected.

VPL activity configuration

Execution options

A VPL activity assignment must be based on the UnitTest2VPL Base activity (configured in Execution

options).

Execution files

It must include a file named test.py in its Execution files.

PRISCILLA configuration

To set up recurring files for all program assignments, you can use the course settings where these

files are defined and saved:

Files are prepared to test specific tasks with test procedures, and localization is part of individual

tasks. They can be added to the Data files or Config files section

 113

 114

SQLiteTest4VPL Framework

The SQLiteTest4VPL is a tool to create VPL activities that evaluate SQL easily. The system use script to

generate the test cases using different datasets and obtain the correct answer by running a solution

provided by the teacher on each data set.

The activity SQLiteTest4VPL Base is the root of the inherit tree and has, in the section Advanced

settings / Execution files, the necessary scripts to generate the test cases and run the tests.

Each test case is based on a dataset. Each dataset is created by a sequence of SQL inserts in one or

more tables.

The creation of tables must be done using SQL create commands that must be in a file called

createTables.sql, in the section Advanced settings / Execution files.

Each dataset is populated by running insert SQL commands written in files named dataset#.sql,

where '#' represents a number. The files must be in the Advanced settings / Execution files section.

The files are processed consecutively, starting at the file named dataset1.sql, and the corresponding

test cases will be generated according to the order established by those numbers.

Tables are created from scratch before running the dataset for each test case using the

createTables.sql file.

Suppose we want to develop several VPL activities that use the same datasets. In that case, we will

implement an activity that inherits from SQLiteTest4VPL Base in which we will include the file

createTables.sql and as many dataset#.sql files as necessary. The process can be done easily by

duplicating and modifying the activity SQLiteTest4VPL Base Data Set Model.

The activity Data Set Customers+Employees+Cities is an example of a base activity to provide

datasets for final activities to be carried out by the student. Notice that the SQLiteTest4VPL Base and

datasets activities are not intended to be used for the students, so they must be hidden.

 115

We can create a new final activity, duplicating and modifying the activity Activity tested with

SQLiteTest4VPL or other activity that uses the datasets we want to apply. It may be necessary to

select others based on activities to use the correct datasets. In the Advanced settings / Execution

files section, a final activity must include two files called correctAnswer.sql and showResult.sql (this

one is not necessary if the solution is a select query).

The file correctAnswer.sql will contain the correct SQL commands to solve the activity, which will be

used to generate the correct result prior to the execution of each test case to compare it with the

result obtained by the execution of the student's response.

The file showResult.sql will contain SQL select commands to show the results of the execution of the

student response (the state of the affected tables after the execution). The file should not be placed

if the student's expected response is a select query. If the expected response is an insert, an update

or a delete, the file showResult.sql MUST be included.

The activities select01 v2, insert 01 v2, update 15 v2, and delete08 v2 are examples of final activities

that inherit from the Data Set Customers + Employees + Cities activity, sharing the same dataset for

the tests. They are modified versions of the activities select01, insert 01, update 15 and delete08

developed in the different sections of the course.

The implementation files

The implementation contains the above files, while they can just as well be implemented in LMS

Moodle or the PRISCILLA system.

Scripts

vpl_run.sh

#!/bin/bash

This file is part of VPL for Moodle - http://vpl.dis.ulpgc.es/

Script for running SQL language (sqlite3)

Copyright (C) 2018 Juan Carlos Rodríguez-del-Pino

License http://www.gnu.org/copyleft/gpl.html GNU GPL v3 or later

Author Juan Carlos Rodríguez-del-Pino <jcrodriguez@dis.ulpgc.es>

@vpl_script_description Using sqlite3

load common script and check programs

. common_script.sh

check_program sqlite3

DBFILE=.vpl.db

#Generate execution script

cat common_script.sh > vpl_execution

#remove $DBFILE

function vpl_generate_execution {

 local SHOWRESULT

 local DATASET

 SHOWRESULT=vpl_showResult.sql

 CREATETABLES=vpl_createTables.sql

 local i

 for i in {1..1000}

 do

 DATASET="vpl_dataset${i}.sql"

 116

 if [-s "$DATASET"] ; then

 grep -Ezq "VPL_fail_message_remove" "$DATASET"

 if [$? -ne 0] ; then

 echo "rm $DBFILE &> /dev/null" >> vpl_execution

 echo "echo \"===== Data Set ${i}\" =====" >> vpl_execution

 echo "sqlite3 $DBFILE < $CREATETABLES" >> vpl_execution

 echo "sqlite3 $DBFILE < \"$DATASET\"" >> vpl_execution

 if [-s "$SHOWRESULT"] ; then

 echo "echo \"=> Initial state of the data set ${i}\"" >>

vpl_execution

 echo "sqlite3 $DBFILE < $SHOWRESULT" >> vpl_execution

 fi

 echo "echo \"=> Execution of \"$VPL_SUBFILE0\" on data set ${i}\""

>> vpl_execution

 echo "sqlite3 $DBFILE < \"$VPL_SUBFILE0\"" >> vpl_execution

 if [-s "$SHOWRESULT"] ; then

 echo "echo \"=> Final state of the data set ${i}\"" >>

vpl_execution

 echo "sqlite3 $DBFILE < $SHOWRESULT" >> vpl_execution

 fi

 echo "echo" >> vpl_execution

 else

 rm "$DATASET"

 fi

 else

 break

 fi

 done

}

vpl_generate_execution

echo "sqlite3 $DBFILE" >> vpl_execution

chmod +x vpl_execution

vpl_evaluate.sh

#!/bin/bash

This file is part of VPL for Moodle

Default evaluate script for VPL

Copyright (C) 2014 onwards Juan Carlos Rodriguez-del-Pino

License http://www.gnu.org/copyleft/gpl.html GNU GPL v3 or later

Author Juan Carlos Rodriguez-del-Pino <jcrodriguez@dis.ulpgc.es>

#load VPL environment vars

. common_script.sh

if ["$SECONDS" = ""] ; then

 export SECONDS=20

fi

let VPL_MAXTIME=$SECONDS-5;

if ["$VPL_GRADEMIN" = ""] ; then

 export VPL_GRADEMIN=0

 export VPL_GRADEMAX=10

fi

#exist run script?

if [! -s vpl_run.sh] ; then

 echo "I'm sorry, but I haven't a default action to evaluate the type of submitted

files"

 117

else

 #avoid conflict with C++ compilation

 mv vpl_evaluate.cpp vpl_evaluate.cpp.save

 #Prepare run

 ./vpl_run.sh &>>vpl_compilation_error.txt

 cat vpl_compilation_error.txt

 if [-f vpl_execution] ; then

 mv vpl_execution vpl_test

 if [-f vpl_evaluate.cases] ; then

 mv vpl_evaluate.cases evaluate.cases

 else

 echo "Error need file 'vpl_evaluate.cases' to make an evaluation"

 exit 1

 fi

 mv vpl_evaluate.cpp.save vpl_evaluate.cpp

 check_program g++

 g++ vpl_evaluate.cpp -g -lm -lutil -o .vpl_tester

 if [! -f .vpl_tester] ; then

 echo "Error compiling evaluation program"

 exit 1

 else

 cat vpl_environment.sh >> vpl_execution

 echo "./.vpl_tester" >> vpl_execution

 fi

 else

 echo "#!/bin/bash" >> vpl_execution

 echo "echo" >> vpl_execution

 echo "echo '<|--'" >> vpl_execution

 echo "echo '-$VPL_COMPILATIONFAILED'" >> vpl_execution

 if [-f vpl_wexecution] ; then

 echo "echo '======================'" >> vpl_execution

 echo "echo 'It seems you are trying to test a program with a graphic user

interface'" >> vpl_execution

 fi

 echo "echo '--|>'" >> vpl_execution

 echo "echo" >> vpl_execution

 echo "echo 'Grade :=>>$VPL_GRADEMIN'" >> vpl_execution

 fi

 chmod +x vpl_execution

fi

SQLiteCase.sh

#!/bin/bash

Copyright (C) 2019 Juan Carlos Rodríguez-del-Pino

License http://www.gnu.org/copyleft/gpl.html GNU GPL v3 or later

Author Juan Carlos Rodríguez-del-Pino <jcrodriguez@dis.ulpgc.es>

DB Case for SQLITE

SQLITE=/usr/bin/sqlite3

DBFILE=.vpldata.db

CREATETABLES=vpl_createTables.sql

SHOWRESULT=vpl_showResult.sql

DATASET=$1

ANSWER=$2

SQLEXE=.sql_execution.sql

rm $DBFILE &> /dev/null

cp $CREATETABLES $SQLEXE

cat $DATASET >> $SQLEXE

cat $ANSWER >> $SQLEXE

 118

if [-s "$SHOWRESULT"] ; then

 cat $SHOWRESULT >> $SQLEXE

fi

$SQLITE $DBFILE < $SQLEXE | sed "s/\"//g"

rm $DBFILE &> /dev/null

rm $SQLEXE &> /dev/null

pre_vpl_run.sh

#!/bin/bash

. vpl_environment.sh

CASES=vpl_evaluate.cases

CORRECTANSWER=correctAnswer.sql

ANSWER=$VPL_SUBFILE0

SQLITECASE=SQLiteCase.sh

function rename_files {

 local CREATETABLES

 local SHOWRESULT

 CREATETABLES=createTables.sql

 SHOWRESULT=showResult.sql

 for i in {1..1000}

 do

 DATASET="dataset${i}.sql"

 if [-s "$DATASET"] ; then

 mv "$DATASET" "vpl_$DATASET"

 else

 break

 fi

 done

 if [-s "$CREATETABLES"] ; then

 mv "$CREATETABLES" "vpl_$CREATETABLES"

 else

 echo "ERROR: File createTables.sql missing"

 fi

 if [-s "$SHOWRESULT"] ; then

 mv "$SHOWRESULT" "vpl_$SHOWRESULT"

 fi

 if [-s "$SQLITECASE"] ; then

 mv "$SQLITECASE" ".$SQLITECASE"

 SQLITECASE="./.$SQLITECASE"

 fi

}

function generate_sql_cases {

 rm $CASES &> /dev/null

 local FILENAME

 local i

 for i in {1..1000}

 do

 DATASET="vpl_dataset${i}.sql"

 if [-s "$DATASET"] ; then

 {

 echo "Case = Test $ANSWER on Data Set ${i}"

 grep -Ezq "VPL_fail_message_remove" "$DATASET"

 if [$? -eq 0] ; then

 echo "Fail message = The result is incorrect"

 fi

 echo "Grade reduction = 100%"

 119

 echo "Program to run = $SQLITECASE"

 echo "Program arguments = $DATASET $ANSWER"

 echo -n "output =\""

 $SQLITECASE $DATASET $CORRECTANSWER

 echo "\""

 echo

 } >> $CASES

 else

 break

 fi

 done

}

rename_files

if [-f vpl_evaluate.sh] ; then

 generate_sql_cases

fi

rm $CORRECTANSWER &> /dev/null

rm pre_vpl_run.sh

Data preparation files

Scripts are common for all SQL assignments. Data preparation and individual tests are different for

each assignment (in some cases, it is possible to use the same content of files – e.g. when defining

the board and filling them).

createTables.sql

This query creates tables according to SQLite syntax.

Example:

/***

 Tables may exists. Drop Tables then here.

**/

drop table if exists Customers;

drop table if exists Employees;

drop table if exists Cities;

/* Activate foreign_keys in sqlite3 */

PRAGMA foreign_keys = ON;

/***

 Create Tables

**/

create table Cities (

 Id integer PRIMARY KEY,

 Name text

);

create table Customers (

 Id integer PRIMARY KEY,

 Name text,

 Surname text,

 City_Id integer REFERENCES Cities(Id)

);

create table Employees (

 Id integer PRIMARY KEY,

 120

 Name text,

 Surname text,

 JobTitleCode varchar(6)

);

create table EmployeesCopy (

 Id integer PRIMARY KEY,

 Name text,

 Surname text,

 JobTitleCode varchar(6)

);

create table CitiesCopy (

 Id integer PRIMARY KEY,

 Name text

);

create table CustomersCopy (

 Id integer PRIMARY KEY,

 Name text,

 Surname text,

 City_Id integer REFERENCES Cities(Id)

);

dataset#.sql

The correctness of the student's query can be tested on many datasets (even empty ones). They

must be numbered in the order 1-n.

Example:

insert into Cities (Id,Name) values (1,"Bratislava");

insert into Cities (Id,Name) values (2,"Nitra");

insert into Cities (Id,Name) values (3,"Trnava");

insert into Cities (Id,Name) values (4,"Katowice");

insert into Cities (Id,Name) values (5,"Telde");

insert into Cities (Id,Name) values (6,"Paris");

insert into Cities (Id,Name) values (8,"Galdar");

insert into Cities (Id,Name) values (10,"Krakow");

insert into Customers (Id,Name,Surname,City_Id) values (1, "Sofia","Bednar",10);

insert into Customers (Id,Name,Surname,City_Id) values (2, "Jan","Zachar",1);

insert into Customers (Id,Name,Surname,City_Id) values (3, "Nela","Walach",1);

insert into Customers (Id,Name,Surname,City_Id) values (4, "Witold","Nowak",5);

insert into Customers (Id,Name,Surname,City_Id) values (5,

"Katarzyna","Kowalska",6);

insert into Customers (Id,Name,Surname,City_Id) values (6, "Iwona","Bednarz",8);

insert into Employees (Id,Name,Surname,JobTitleCode) values

(1,"Jan","Kowalski","RKB012");

insert into Employees (Id,Name,Surname,JobTitleCode) values

(2,"Jan","Nowak","RKB003");

insert into Employees (Id,Name,Surname,JobTitleCode) values

(3,"Kamil","Wilmowski","RKB011");

insert into Employees (Id,Name,Surname,JobTitleCode) values

(4,"Olga","Milenka","RKB003");

insert into Employees (Id,Name,Surname,JobTitleCode) values

(5,"Angela","Wilga","RKB002");

 121

In principle, two cases can be distinguished when evaluating the correctness of queries:

• Selection queries, where the evaluation of the result is a part of the answer - based on the

output of data from the table (tables), we see whether the correct data were obtained.

• Action queries where the command changes the data, but we need to obtain information to

know if the change was successful. We need to finish this process with a select query to get

and check the final data in the database.

correctAnswer.sql

The file correctAnswer.sql is used for comparison of students queries and expected results. The text

of queries can be different, but the important thing is the same outputs.

If the assignment requires an action query, the showResult.sql file is also required. The call of this file

is provided by SQLiteCase.sh file (if showResult.sql exists)

Example of select:

Select all fields from countries ordered by Country

correctAnswer.sql

SELECT *

FROM Countries

ORDER BY Country;

Example of update:

Write a query that modifies a Capital name to Krakow from the Countries table, where the Country

name is Poland.

correctAnswer.sql

UPDATE Countries

SET Capital='Krakow'

WHERE Country='Poland';

showResult.sql

SELECT *

FROM Countries;

 122

JUnit4VPL Framework

The JUnit4VPL tool is a Java framework, fully integrated with the Virtual Programming Laboratory

(VPL), mimics the well-known JUnit and seeks to meet the previously listed features to facilitate the

evaluation of student code written in Java.

The direct use of JUnit would have multiple drawbacks, especially in the assessment, feedback,

security, and internationalization. Notice that JUnit does not offer any customizable solution for

these issues.

The users of JUnit usually test a single, known code when using this tool. The primary information

obtained when a fail appears the line of the test code that triggers the error. The testing code state

the details of the case tested and allows to reproduce the problem to find out the offending code. On

the other hand, an evaluator needs to test many different codes which try to resolve the same

problem with different approaches. These codes may have unusual errors due to the students'

inexperience, including infinite loops, unexpected exceptions, security shortcomings and more.

What offers JUnit4VPL?

The JUnit4VPL framework has the aim of evaluating students' code and showing a proper report to

them. JUnit4VPL main features are:

• The grade range (minimum and maximum marks) can be specified. By default, the tool takes

the grade range from the VPL activity.

• A text describing the test case that is being tested in the method can be specified. If the case

fails, that text will appear in the report.

• A penalty may be set for each test fail. The penalty may be a fixed value or a per cent of the

grade range. By default, the penalty is the grade range length divided by the number of test

methods.

• The execution of test methods always follows the same order. The order of the execution is

based on the lexicographic order of the name of the methods.

• The tool establishes a default timeout for every test method, but a different one can be set

for each of them.

• The tool establishes a global timeout for the whole test suite.

• The tool is robust to fatal student code failures: infinite loop, stack overflow, exhaustion of

threads, unexpected exceptions, etc.

Using JUnit4VPL

JUnit4VPL attempts to be as similar as possible to JUnit, but some JUnit features were omitted,

especially those that may allow altering the test results. For example, the Assume class has been

omitted due to the possibility of using it to pass the entire test without checks. Asserts without

messages have been removed too to fulfil the goal of always providing adequate feedback for

assessments.

 123

Basic use of JUnit4VPL, the OddEven problem

The very simple problem OddEven requests the student to write a class OddEven with a static

function isOdd that takes an integer parameter. The function isOdd() returns true if the number

passed is odd and false if not.

The figure shows a class TestOddEven that tests the static method OddEven.isOdd() using JUnit4.

The TestOddEven class use two methods, the first one for testing odd numbers and the other one for

testing even numbers. Almost all asserts have a message that informs about the problem.

We can use the above class to test the student code in the next figure. Notice that the student code

is a dumb solution that always returns true.

 124

The result delivered by JUnit is not very useful for evaluation and feedback purposes. We can adapt

the test to use JUnit4VPL changing org.junit the package name of JUnit for es.ulpgc.junit4vpl the

package name of JUnit4VPL.

By default, JUnit4VPL will assign a penalty to each fail proportional to the number of test methods

and take the name of the method as the title for the fail message. In this case, the dumb solution

gets half of the grade range, and the message title is "TestIsEven".

The JUnit4VPL Test annotation has the elements description and penalty, allowing to customize the

penalty and the title to show when an assert command fails. The description is a String that must

describe the case checked. The penalty is a String that contents a constant value or a per cent. Using

a per cent as a penalty may be more versatile than a constant value.

 125

For example, if we want to penalize the fails as 95% of the range length, and to better detail what we

are testing, the Test annotation of the test methods may look like this:

The evaluation report is more transparent and has a more appropriate grade than the previous one.

The title of the message is verbose, and the grade is five of one hundred.

Testing a students class

Testing classes differs from testing a static method mainly in the number of test cases needed and

the object implicated in non-static methods. Often the object of the class to test has different states

that may be as another dimension of a test case. Notice that when we call a method on an object, it

is really another input of that method. A common approach is to prepare a set of objects with

different states and use it when testing each class method. A specific test method creates this set of

objects, frequently named fixture. JUnit supports this initialization with the tag Before. All the

methods tagged as Before are running before running each method tagged as Test. JUnit4VPL

support this tag and the related ones: After, BeforeClass and AfterClass. For security reasons, it is

not recommended to initialize the fixture in the constructor of the test class.

Advanced testing customization

You only need to read this section if you find limitations or need a more detailed control of the basic

customization of the Test annotation seen before. This section describes a more detailed use of the

JUnit4VPL features that are different or extend the JUnit test framework. For more details, see the

complete JavaDoc documentation. The main differences between JUNIT4VPL and Junit are:

• the new attributes of the Test annotation,

 126

• the new TestClass annotation and

• the ConsoleCapture class.

The Test annotation

JUnit4VPL modifies the Test annotation available in JUnit, adding the attributes description and

penalty, as described above while accepting the expected and timeout attributes available in the

original JUnit Test annotation. The timeout behaviour is slightly different because in JUnit4VPL a

timeout always exists: if the timeout attribute of Test is not set, the defaultTestTimeout of

TestClass is used. The timeout may need to be adjusted to do not surpass the global timeout.

The TestClass annotation

TestClass is an annotation for classes that is not present in JUnit. TestClass sets global parameters to

be applied to the test:

• defaultTestTimeout - sets the default timeout in milliseconds for each test method. The

default value is 2000 and can be overridden for a method by defining the timeout attribute

of Test.

• globalTimeout - sets the global timeout in milliseconds for the whole test suite. The default

value is 30000, but the global timeout used is the minimum of globalTimeOut and the value

set at the VPL activity options settings form. When a global timeout is reached, all pending

tests are stopped, and penalization of 100% is applied.

• timeoutPenalty - sets the penalty to apply when a test method reaches its timeout. By

default, the same penalization as for assertion fails is applied.

• exceptionPenalty - sets the penalization to apply when an unexpected exception is raised. By

default, the same penalization as for assertion fails is applied.

• expectedPenalty - sets the penalization to apply when an expected exception is not raised.

By default, the same penalization as for assertion fails is applied.

The ConsoleCapture class

This class allows the creation of objects that can capture the standard output of the application.

Capturing the output of the application has two goals: be able to check the output of the student's

code, and avoid that the student's code interfering with the test report sent to VPL. ConsoleCapture

has the following methods:

• startCapture() - saves and reassigns the out and err streams to new on-memory streams.

• stopCapture() - restores the saved out and err streams.

• getCapturedOut() - returns the text sent to the out stream from the last captureStart().

• getCapturedErr() - returns the text sent to the err stream from the last captureStart().

• print(String text) - sends the text to the saved out-stream (out of the capturing).

 127

The best practice is to capture the streams as soon as possible and before starting the test. After

ending the test, do not stop the capture: send the test report to VPL using the ConsoleCapture print

method.

JUnit4VPL internationalization

JUnit4VPL uses internationalised text to show from an object of JUnitI18n or a derived class. The

default language is English, but other languages are available, as Spanish. You must call the static

function JUnitI18n.setLang() with a new language object as a parameter to select an available

language. The call to setLang() must be done before calling to JUnitCore.runClasess() or

JUnitCore.main() methods to take effect.

To add a new language to JUnit4VPL it is necessary to extend the JUnitI18n class and override the

methods that define the text to output. Some of the text strings are parametrized with one or two

parameters that must be in the string. The current values replace the parameters when the text is

used.

For example, the method expectedButWas() return a string with two parameters <expected> and

<was>.

The translated text for the Spanish language must also contain the two parameters. If

assertEquals("", 2, 3) fails, the output text for English is "Expected 2, but was 3" and for Spanish is

"Se esperaba 2, pero fue 3".

The name of the new class must be JUnIt18nLC, where LC is the language code capitalized and must

belong to the es.ulpgc.junit4vpl.i18n package.

 128

JUnitBase Framework

The JUnitBase framework was proposed to simplify test preparation and create Java class

assignments as quickly as possible. Although it is primarily debugged for this language, its use for

other object languages represents only a minor modification of the code files; the philosophy

remains.

The framework requires the correct solution (classes) as part of the testing process.

The principle of verifying the correctness of individual methods is to compare their results. It is also

possible to compare the values of attributes if, for some reason, they are not defined as private.

The authors and students classes are compared after a sequence of (their) methods. The test class

can generate the input values, the repeating of methods, the order of its calls, and other operations

based on user/tester defined parameters.

Example of assignment

Create a Student class that will have information about:

• first and last name

• the student's year

• the amount of the scholarship

Define a constructor with first name, last name, year and scholarship amount (integer), ensuring that

the attributes are populated as follows:

• set the first and last name as they came in

• if the year is less than 1, generate an IllegalArgumentException with the text "too low year of

study"

• if the year is greater than 5, generate an IllegalArgumentException with the text "too high

year of study"

• If the scholarship is less than 0, generate an exception: NumberFormatException with text

"negative scholarship"

• If the scholarship is less than 10000, generate an exception: NumberFormatException with

the text "too expensive scholarship"

Define a getInfo() method that returns information about the student in the form of the name,

surname, year, scholarship, e.g.:

first name last name, 5th, scholarship EUR

The following procedure presents an illustration of creating instances and calling methods:

public static void main(String[] args) {

 Student s1 = new Student("John","Smith", 2, 5000);

 System.out.println(s1.getInfo()); // writes John Smith, 2., 5000 EUR

 // constructor ends with error: IllegalArgumentException: too high year of study

 Student s2 = new Student("John","Doe", 8, 5000);

 // constructor ends with error: NumberFormatException: negative scholarship

 Student s3 = new Student("John","Doe", 2, -5000);

}

 129

MySolution

MySolution class contains a complete and correct solution to the task. Due to its simplicity, probably

no further comment is needed.

public class MySolution {

 private String name;

 private String surname;

 private int year_of_study;

 private int scholarship;

 public MySolution(String n, String sn, int yos, int sch) {

 name = n;

 surname = sn;

 if (yos < 1) throw new IllegalArgumentException("too low year of study");

 if (yos > 5) throw new IllegalArgumentException("too high year of study");

 year_of_study = yos;

 if (sch < 0) throw new NumberFormatException("negative scholarship");

 if (sch > 10000)

 throw new NumberFormatException("too expensive scholarship");

 scholarship = sch;

 }

 public String getInfo() {

 return name + surname + ", " +

 year_of_study + "., " + scholarship + " EUR";

 }

}

Starting class

The starting class prepares a list of tests, defines the creation of input parameters, and summarizes

the individual partial evaluations into the overall grade.

public class Main {

The constants for test names are defined for user information in which tests passed and failed.

 final static String TEST1_NAME = "constructor() valid data";

 final static String TEST2_NAME = "constructor() invalid data";

The tests details are defined as objects. Every tested object has a name and an importance,

expressed as a percentage. For each element (method) test in the class, it is possible to perform any

number of executions with different input values. In this case, pentuples representing the data for

the constructor are defined:

• P - random positive integer value

• N - random negative integer value

• Z - zero

• R - random integer value

• X - the specific value specified after the X character

The method of generation can be modified at any time in the Evaluate class.

 130

 static Object[][] tests = {

 {TEST1_NAME, "20", new Object[][] {

 {"John", "Smith", "X1", "X2000"},

 {"Jason", "Bourne", "X2", "X5000"},

 {"Anna", "Green", "X3", "X0"},

 {"Jane", "Doe", "X4", "X10000"},

 {"Peter", "Pan", "X5", "X8000"},

 }},

 {TEST2_NAME, "80", new Object[][] {

 {"John", "Smith", "X0", "X2000"},

 {"Jason", "Bourne", "X12", "X5000"},

 {"Anna", "Green", "X3", "X-3000"},

 {"Jane", "Doe", "X4", "X12000"},

 {"Peter", "Pan", "X12", "X18000"},

 }},

 };

The main() method goes through the individual tests, and the grade variable summarizes their

results.

 public static void main(String[] args) {

 long grade = 0;

 for(int i = 0; i < tests.length; i++) {

 int weight = Integer.parseInt((String)tests[i][1]);

 Object[][] cases = (Object[][])tests[i][2];

 // test name, weight, test cases

 grade += Math.round((processTest((String)tests[i][0],weight, cases)

 *100/cases.length) * weight/100);

 }

 System.out.println("Grade :=>>" + grade);

 }

The processTest() method creates a new evaluation class and sends a test with input arrays. Catches

errors and presents information about the progress of testing.

 private static int processTest(String testName, int weight, Object[][] tests) {

 System.out.println("!--- Test: " + testName + " (" + weight + "%): ");

 Evaluate t = new Evaluate();

 String output = "";

 try {

 switch (testName) {

 case TEST1_NAME: output = t.testsAll(TEST1_NAME, tests); break;

 case TEST2_NAME: output = t.testsAll(TEST2_NAME, tests); break;

 }

 } catch (Exception e) { output = "" + e.getMessage(); }

 int correctCount = Integer.parseInt(output.substring(0,output.indexOf(";")));

 System.out.println(output.substring(output.indexOf(";") + 1));

 return correctCount;

 }

}

 131

Evaluate class

The Evaluate class performs the execution of individual tests, compares the results of the student

class and the sample class, and generates the output intended for the user.

public class Evaluate {

Definition of constants for generated output to support localization is as follow:

 final String TEXT_ERROR = "failed";

 final String TEXT_INPUT_VALUES = "input values";

 final String TEXT_PROGRAM_OUTPUT = "program output";

 final String TEXT_EXPECTED_OUTPUT = "expected output";

Value generator based on inputs from the Main class. The method type determines if integer or real

values are generated.

 public int getMyValue(String input) {

 String t = input.substring(0,1);

 int mx = 50;

 int val = 0;

 switch (t) {

 case "P": val = 1 + (int) (Math.random() * mx); break;

 case "N": val = -(int) (Math.random() * mx); break;

 case "Z": val = 0; break;

 case "R": val = -mx + (int) (Math.random() * (2 * mx + 1)); break;

 case "X": val = Integer.parseInt(input.substring(1)); break;

 default: val = 0;

 }

 return val;

 }

Method for tests processing.

 public String testsAll(String method, Object[][] cases) {

 String output = "";

 int correct_count = 0;

 String svalue1 = "", svalue2 = "", svalue3 = "", svalue4 = "";

 int ivalue1 = 0, ivalue2 = 0, ivalue3 = 0, ivalue4 = 0;

 double dvalue1 = 0, dvalue2 = 0;

Every line (array element) from the matrix with inputs is processed. String and integer parameters

are inserted into variables and processed.

 for (int i = 0; i < cases.length; i++) { // number of tests

 svalue1 = ((String) (cases[i][0]));

 svalue2 = ((String) (cases[i][1]));

 ivalue1 = getMyValue((String) (cases[i][2]));

 ivalue2 = getMyValue((String) (cases[i][3]));

 String result_test = "";

 String result_correct = "";

 String methods= "";

 MySolution correct;

 132

 Student tested;

 try {

 switch (method) {

 case Main.TEST1_NAME:

 case Main.TEST2_NAME:

According to the author's solution, a new instance is created, and its contents are listed via the

getInfo() method.

 try {

 correct = new MySolution(svalue1, svalue2, ivalue1, ivalue2);

 result_correct = correct.getInfo();

 } catch (Exception e) {result_correct = e.toString();}

A new instance is created according to the student solution, and its contents are listed via the

getInfo() method.

 try {

 tested = new Student(svalue1, svalue2, ivalue1, ivalue2);

 result_test = tested.getInfo();

 } catch (Exception e) {result_test = e.toString();}

 break;

 }

 } catch (Exception e) {

 result_test = "ERROR: " + e.toString();

 }

The results are compared, and the system message is generated.

 if (!result_test.equals(result_correct)) {

 output = output + "!--- result: " + TEXT_ERROR + "\n";

 } else {

 output = output + "!--- result: OK\n";

 correct_count++;

 }

 output += "!--- " + TEXT_INPUT_VALUES + ": \n"

 + "values: "+ svalue1 + ", "+ svalue2 + ", "+ ivalue1 + ", "+ ivalue2;

 output += "\n" + "!--- " + TEXT_PROGRAM_OUTPUT + ": \n"

 + result_test + " \n"

 + "!--- " + TEXT_EXPECTED_OUTPUT + ": \n"

 + result_correct + " \n";

 }

The output and information about successful attempts are returned.

 return "" + correct_count + ";" + output;

 }

}

 133

Scripts

Customized scripts ensure that the correct classes are selected and run and that output is generated.

vpl_run.sh

#!/bin/bash

#load common script and check programs

. common_script.sh

check_program javac

check_program java

get_source_files java

#compile all .java files

export CLASSPATH=$CLASSPATH:/usr/share/java/junit4.jar

javac -Xlint:deprecation *.java

if ["$?" -ne "0"] ; then

 echo "Not compiled"

 exit 0

fi

cat common_script.sh > vpl_execution

echo "java -enableassertions -cp $CLASSPATH:/usr/share/java/junit4.jar

org.junit.runner.JUnitCore MyTest" >> vpl_execution

chmod +x vpl_execution

vpl_evaluate.sh

#!/bin/bash

#load common script and check programs

. common_script.sh

check_program javac

check_program java

get_source_files java

#compile all .java files

export CLASSPATH=$CLASSPATH:/usr/share/java/junit4.jar

javac -Xlint:deprecation *.java

if ["$?" -ne "0"] ; then

 echo "Not compiled"

 exit 0

fi

cat common_script.sh > vpl_execution

echo "java -enableassertions -cp $CLASSPATH:/usr/share/java/junit4.jar Main" >>

vpl_execution

chmod +x vpl_execution

 134

Practical Info – xUnit testing

XUnit is a typical tool representing libraries for testing elementary parts of a program. X- in the name

means that it is a tool designed for various programming languages. E.g. JUnit is used for Java, CUnit

is used for C, PHPUnit is used for PHP, etc.

The principle of working with xUnit libraries is similar in all environments. We illustrate the use of

JUnit for testing Java applications in the two most used development environments - IntelliJ and

Eclipse.

This part is aimed to presents methods and principles of xUnit testing. Specific environments are

presented so that the reader can test the functionality and principle of assert methods in specific

objects and parts of the application. It is expected that the presented procedures can be

subsequently applied in situations aimed at testing student codes.

JUnit

JUnit is a simple open-source framework for Java source testing (www.junit.org). It is intended to

verify if a piece of code works as is expected. It uses principles based on the comparison of expected

and obtained outputs.

JUnit is a special tool that allows writing Java tests using a simple interface.

It can test functions, methods, classes, packages, subsystems and supports automated testing.

JUnit is intended to run tests that have already been prepared - after editing code and making

changes.

Task:

Create a class Calculator with methods:

sum - adds two integers obtained as parameters and returns the result as an integer,

multi - multiplies two integers obtained as parameters and returns the result as an integer,

To create a new class is easy - we create it in a new project:

public class Calculator {

 public int sum(int a, int b) {

 return a + b;

 }

 public int multi(int a, int b) {

 return a * b;

 }

}

To add tests, we can proceed in several ways:

• we can place the test files directly into a package with code (it is not the best solution)

https://www.junit.org/

 135

• we can create a separate group for tests.

Testing in IntelliJ

The libraries for JUnit are shipped with IntelliJ IDEA but are not included in the classpath of your

project or module by default.

To add the necessary library to the classpath, you can use the general procedure of adding a

dependency to a module. The corresponding libraries are in the following directories:

• JUnit libraries (hamcrest-core-1.3.jar and junit-4.12.jar): <IntelliJ IDEA directory>\lib.

IntelliJ IDEA can add the necessary library to the classpath automatically. The corresponding features

are available when creating a test for a class or writing the code for a test.

To initialise tests, we should press Alt+Enter in the name of our class (or select Show content action

in the popup menu).

The warning after Create test option selection is that the application doesn't have a place for roots

We cancel dialogue, and:

We create a new folder in the project structure (e.g. Tests)

 136

The result is a new folder:

We mark this created folder in project structure (File -> Project structure) in the Module Group on

tab Sources to Tests:

The next use of Alt + Enter opens a window for test parameters settings.

If we prepare the first test, we probably need to install the library and use the Fix button to solve the

actual situation.

After install (the window is still opened), we set the following selections:

 137

The result of the test dialogue activity brings some code:

package com.company;

import org.junit.jupiter.api.AfterEach;

import org.junit.jupiter.api.BeforeEach;

import org.junit.jupiter.api.Test;

import static org.junit.jupiter.api.Assertions.*;

class CalculatorTest {

 @BeforeEach

 void setUp() {

 }

 @AfterEach

 void tearDown() {

 }

 @Test

 void sum() {

 }

 @Test

 void multi() {

 }

}

Every test class consists of optional parts defined by notations (the method names are not

important):

• @BeforeEach - must be performed before each test in the class to set the parameters
needed for the test,

• @AfterEach - must be performed after each test in the class (e.g. reset parameters, etc.),
• @Test - the method of testing itself

 138

The program has to work every time with an independent instance. We can achieve it with a new

independent calculator created before every test.

We use the @BeforeEach notation method:

class CalculatorTest {

 Calculator calc;

 @BeforeEach

 void setUp() {

 calc = new Calculator();

 }

The use of the method with @AfterEach notation is not necessary. We can let it empty.

The tests are realised in methods with notation @Test. We can prepare its content ourselves, but the

idea of test writing is to prepare easily understandable code - we use the methods in test class for

testing in methods with the same name.

The most commonly used method for testing is the AssertEquals method, which compares the

expected value with the result obtained from the tested class.

assertEquals(5, calc.sum(2, 3));

• the first parameter is the expected value
• the second parameter is the value obtained as a result of the test class

The code with tests for sum has the following form:

class CalculatorTest {

 Calculator calc;

 @BeforeEach

 void setUp() {

 calc = new Calculator();

 }

 @AfterEach

 void tearDown() {

 }

 @Test

 void sum() {

 assertEquals(5, calc.sum(2, 3));

 assertEquals(-3, calc.sum(-8, 5));

 }

We can add new test for method multi():

 @Test

 void multi() {

 assertEquals(6, calc.multi(2, 3));

 assertEquals(-40, calc.multi(-8, 5));

 }

 139

To run the created test, you have to start it as follow:

Using the context menu, you can Run CalculatorTest. Or you can run the application using the button

on the toolbar.

The result of the run should be:

• all tests were passed successfully:

• some tests were failed:

 140

The environment shows you:

• expected value: value what user wrote as expected value of the tested function
• actual value: the value returned by the tested function

Testing in Eclipse

The libraries for JUnit are integrated into Eclipse.

To add a new test case, you can select New -> Other… in the context menu of the project.

Select JUnit Test Case in the opened window...

... and set the name and package for the test class. You can add some methods of test classes too.

 141

For using the JUnit library, you should add it to the project. Select OK.

The result of the test dialogue activity brings the short code:

package main;

import static org.junit.jupiter.api.Assertions.*;

class CalculatorTest {

 @BeforeEach

 void setUp() throws Exception {

 }

@AfterEach

 void tearDown() throws Exception {

 }

 @Test

 void test() {

 fail("Not yet implemented");

 }

}

 142

Every test class consists of optional parts defined by notations (the method names are not

important):

• @BeforeEach - must be performed before each test in the class to set the parameters
needed for the test,

• @AfterEach - must be performed after each test in the class (e.g. reset parameters, etc.),
• @Test - the method of testing itself

The program has to work every time with an independent instance. We can achieve it with a new

independent calculator created before every test.

We use @BeforeEach notation method:

class CalculatorTest {

 Calculator calc;

 @BeforeEach

 void setUp() throws Exception {

 calc = new Calculator();

 }

The use of the method with @AfterEach notation is not necessary. We can let it empty.

The tests are realised in methods with notation @Test. We can prepare its content ourselves, but the

idea of test writing is to prepare easily understandable code - we use the methods in test class for

testing in methods with the same name – we create the method sum() with notation @Test.

The most commonly used method for testing is the AssertEquals method, which compares the

expected value with the result obtained from the tested class.

assertEquals(5, calc.sum(2, 3));

• the first parameter is the expected value
• the second parameter is the value obtained as a result of the test class

The code with tests for sum() has the following form:

class CalculatorTest {

 Calculator calc;

 @BeforeEach

 void setUp() throws Exception {

 calc = new Calculator();

 }

 @AfterEach

 void tearDown() throws Exception {

 }

 @Test

 void sum() {

 assertEquals(5, calc.sum(2, 3));

 assertEquals(-3, calc.sum(-8, 5));

 }

 143

We can add a test for method multi().

 @Test

 void multi() {

 assertEquals(20, calc.multi(2, 10));

 assertEquals(40, calc.multi(8, 5));

 }

To run created tests, you have to start it using the context menu CalculatorTest - Run as - JUnit Test.

The result of the run should be in two forms:

• all tests were passed successfully:

• some tests failed:

 144

The environment shows you:

• expected value: value what user wrote as expected value of the tested function
• actual value: the value returned by the tested function

Finish the test

The following lines are independent of the used environment. Let's go to summarise our tests. We

should add new asserts for the tested method – we should use some critical or limit values:

class CalculatorTest {

 Calculator calc;

 @BeforeEach

 void setUp() throws Exception {

 calc = new Calculator();

 }

 @AfterEach

 void tearDown() throws Exception {

 }

 @Test

 void sum() {

 assertEquals(5, calc.sum(2, 3));

 assertEquals(-3, calc.sum(-8, 5));

 assertEquals(0, calc.sum(0, 0));

 assertEquals(5, calc.sum(0, 5));

 assertEquals(-5, calc.sum(0, -5));

 assertEquals(10, calc.sum(-5, -5));

 assertEquals(0, calc.sum(-1, 1));

 assertEquals(2000000, calc.sum(1000000, 1000000));

 }

 @Test

 void multi() {

 assertEquals(8, calc.multi(2, 4));

 assertEquals(40, calc.multi(-8, -5));

 assertEquals(0, calc.multi(0, -5));

 assertEquals(-25, calc.multi(5, -5));

 assertEquals(1, calc.multi(-1, -1));

 assertEquals(1, calc.multi(1, 1));

 assertEquals(5000000, calc.multi(1000, 5000));

 }

}

The final test shows us that our tests passed, and we have probably the correct code.

If the expected value differs from the obtained value, an error (AssertionError) is generated, usually

with a message why it is unsuccessful:

org.opentest4j.AssertionFailedError:

Expected :1

Actual :0

<Click to see difference>

 at org.junit.jupiter.api.AssertionUtils.fail(AssertionUtils.java:55)

 at org.junit.jupiter.api.AssertEquals.failNotEqual(AssertEquals.java:195)

 145

 at org.junit.jupiter.api.AssertEquals.assertEquals(AssertEquals.java:152)

 at org.junit.jupiter.api.AssertEquals.assertEquals(AssertEquals.java:147)

It should be noted that the system cannot identify that this is a tester error, and if the tester makes a

mistake when entering the expected value, the test tool attributes a program error.

It should be noted that the test lists only a mismatch between the expected and the obtained value.

Accuracy in tests

Real numbers in test

How to modify the previous program and tests to use decimal/real numbers?

The original task was to create a Calculator class with methods:

• sum - adds two integers obtained as parameters and returns the result as an integer,
• multi - multiplies two integers obtained as parameters and returns the result as an integer,

The modified class has the following form:

public class Calculator {

 public double sum(double a, double b) {

 return a + b;

 }

 public double multi(double a, double b) {

 return a * b;

 }

}

The accuracy of real numbers processing is often a problematic part of calculation using digital

computers.

According to this fact, the tests used in programming support the parameter accuracy as the third

parameter in assertEquals, e.g.:

 assertEquals(8, calc.multi(2, 4), 0.001);

If the result of the inspected method and the result set by the tester are diverged by less than the

specified accuracy, the test is passed.

So, we prepare the tests for the modified Calculator:

class CalculatorTest {

 Calculator calc;

 @BeforeEach

 void setUp() {

 calc = new Calculator();

 }

 146

 @AfterEach

 void tearDown() {

 }

 @Test

 void sum() {

 assertEquals(5.5, calc.sum(2.5, 3),0.0001);

 assertEquals(-3.01, calc.sum(-8.01, 5),0.0001);

 }

 @Test

 void multi() {

 assertEquals(6.25, calc.multi(2.5, 2.5),0.0001);

 assertEquals(40, calc.multi(-8.0001, -5),0.01);

 assertEquals(0, calc.multi(0, -5.99),0.0001);

 }

}

Look at to the second test in multiplication:

 @Test

 void multi() {

 assertEquals(6.25, calc.multi(2.5, 2.5),0.0001);

 assertEquals(40, calc.multi(-8.0001, -5),0.01);

 assertEquals(0, calc.multi(0, -5.99),0.0001);

 }

}

Even though the multiplication result is 40.0005, the test ignores the difference between the

expected result (40) and the actual result. The difference is considered to be irrelevant because the

acceptable deviation is 0.01.

Be careful:

if we allow big inaccuracy, the system will pass this test as well:

assertEquals(-5, calc.sum(-8, 5), 3);

Exceptions

Division by zero

Enrich the class Calculator to the division and solve the situation with division by zero.

We can add a new method to get quotient:

public class Calculator {

 public double sum(double a, double b) {

 return a + b;

 }

 public double multi(double a, double b) {

 return a * b;

 }

 147

 public double quotient(double a, double b) {

 if (b!=0)

 return a / b;

 }

}

The result of the new method is decimal value - it is defined via the type of method.

Therefore, returning some text in the form of "do not divide by zero" is quite problematic.

But, we can create a “managed” exception that can be caught and handled in the code using the

Calculator.

The exception generation is a common method in work with classes and methods. We can apply it

using keyword throw.

public double quotient(double a, double b) {

 if (b!=0)

 return a / b;

 else

 throw new IllegalArgumentException("zero division");

}

This exception is caught in application using:

public static void main(String[] args) {

 Calculator calc = new Calculator();

 try {

 calc.quotient(4,0);

 } catch (Exception e) {

 System.out.println(e.toString());

 }

}

The output is:

java.lang.IllegalArgumentException: zero division

Exceptions testing is important and common. This type of testing needs a special method to process

the returned exceptions. The method assertThrows is used to assert that the supplied executable

will throw an exception of the expectedType. If there is no exception of expectedType, the method

will fail.

The definition of the assertThrow() consists of two parameters:

public static void assertThrows(Class<? extends Throwable> expectedType, Executable

executable)

The second part is defined as executable. We can use the lambda notation and set this parameter as

() -> method()

The final code has following form:

assertThrows(IllegalArgumentException.class, () -> calc.quotient(2, 0));

 148

When writing tests, keep in mind that we separately test the values for the standard result and the

values giving the exception.

@Test

public void quotient_common() {

 assertEquals(2,calc.quotient(2, 1));

 assertEquals(2,calc.quotient(3, 1.5),0.0001);

}

@Test

public void quotient_exception() {

 assertThrows(IllegalArgumentException.class, () -> calc.quotient(2, 0));

}

Testing methods

In addition to the methods described above, we also have others available:

• assertArrayEquals() - return true if two arrays contain the same elements
• assertNotEquals() - return true if two values are not the same
• assertNotNull() - return true if the value is not null
• assertNotSame() - return true if two references don't address to the same object
• assertSame() - return true if two references address to the same object (compares with ==)
• assertTrue() - return true if result of expression or method is true
• assertFalse() - return true if result of expression or method is false

Example of assertions:

public class TestAssertions {

 @Test

 public void testAssertions() {

 String str1 = new String ("abc"), str2 = new String ("abc");

 String str3 = null;

 String str4 = "abc", str5 = "abc";

 int val1 = 5, val2 = 6;

 String[] expectedArray = {"one", "two", "three"};

 String[] resultArray = {"one", "two", "three"};

 //Check that two objects are equal

 assertEquals(str1, str2);

 //Check that a condition is true

 assertTrue (val1 < val2);

 //Check that a condition is false

 assertFalse(val1 > val2);

 //Check that an object isn't null

 assertNotNull(str1);

 //Check that an object is null

 assertNull(str3);

 //Check if two object references point to the same object

 assertSame(str4,str5);

 //Check if two object references not point to the same object

 assertNotSame(str1,str3);

 //Check whether two arrays are equal to each other.

 149

 assertArrayEquals(expectedArray, resultArray);

 }

}

 150

Bibliography

1. Vargas-Llave, O.; Mandl, I.; Weber, T.; Wilkens, M. Telework and ICT-based mobile work: Flexible working in the digital

age, New forms of employment series, Publications Office of the European Union, Luxembourg, 2020,

doi:10.2806/337167.

2. Kogan, M.; Klein, S. E.; Hannon, C. P.; Nolte, M. T. Orthopaedic education during the COVID-19 pandemic. The Journal

of the American Academy of Orthopaedic Surgeons, , Vol. 28, No. 11, 2020.

3. Gibson, A.; Bardach, S. H.; Pope, N. D. COVID-19 and the Digital Divide: Will Social Workers Help Bridge the Gap?,

Journal of Gerontological Social Work, 2020, doi: 10.1080/01634372.2020.1772438.

4. Henriksen, D.; Mishra, P.; Fisser, P. Infusing Creativity and Technology in 21st Century Education: A Systemic View for

Change. Journal of Educational Technology & Society, 2016, Vol. 19, No. 3 (July 2016), pp. 27-37.

5. Skalka, J.; Drlik, M. Automated Assessment and Microlearning Units as Predictors of At-Risk Students and Students’

Outcomes in the Introductory Programming Courses. Appl. Sci. 2020, 10, 4566.

6. Tabanao, E. S.; Rodrigo, M. M. T.; Jadud, M. C. Predicting at-risk novice Java programmers through the analysis of

online protocols. In Proceedings of the Seventh International Workshop on Computing Education Research, ICER

2011, Providence, RI, USA, 8–9 August 2011, doi:10.1145/2016911.2016930.

7. Kinnunen, P.; Malmi, L. Why Students Drop out CS1 Course? In Proceedings of the Second International Workshop on

Computing Education Research, New York, NY, USA, 10–12 September 2006; pp. 97–108,

doi:10.1145/1151588.1151604.

8. Othman, J.; Wahab, N. A. The Uncommon Approaches of Teaching the Programming Courses: The Perspective of

Experienced Lecturers. Computing Research & Innovation (CRINN), Vol. 1, November 2016.

9. Chen, Y.; Zhang, M. MOOC student dropout: Pattern and prevention. In Proceedings of the ACM Turing 50th

Celebration Conference-China, 2017. pp. 1-6.

10. Skalka, J.; Drlik, M. Priscilla–Proposal of System Architecture for Programming Learning and Teaching Environment,

IEEE 12th International Conference on Application of Information and Communication Technologies (AICT). IEEE,

2018, pp. 1-6.

11. Fuller, U.; Johnson, C. G.; Ahoniemi, T.; Cukierman, D.; Hernán-Losada, I.; Jackova, J.; Lahtinen, E.; Lewis, T. L.;

Thompson, D. M.; Riedesel, C.; Thompson, E. Developing a Computer Science-specific Learning Taxonomy, ACM

SIGCSE Bulletin, 2007, Vol 37, No. 4, pp. 152-170.

12. Skalka, J.; Drlik, M. Educational Model for Improving Programming Skills Based on Conceptual Microlearning

Framework. In The Challenges of the Digital Transformation in Education. ICL 2018. Advances in Intelligent Systems

and Computing, vol. 916. Springer 2020.

13. Becker, B. A.; Quille, K. 50 years of CS1 at SIGCSE: A review of the evolution of introductory programming education

research. In Proceedings of the 50th ACM technical symposium on computer science education, 2019. pp. 338-344.

14. Medeiros, R. P.; Ramalho, G. L.; Falcao, T. P. (2018). A Systematic Literature Review on Teaching and Learning

Introductory Programming in Higher Education. IEEE Transactions on Education, 2018, pp. 1–14.

doi:10.1109/te.2018.2864133.

15. Murphya, E.; Crick, T.; Davenportc, J. H. An Analysis of Introductory Programming Courses at UK Universities. The Art,

Science, and Engineering of Programming, 2017, 1(2), 23.

16. Queiros, R.; Pinto, M.; Terroso, T. Computer Programming Education in Portuguese Universities. In First International

Computer Programming Education Conference (ICPEC 2020). Schloss Dagstuhl-Leibniz-Zentrum für Informatik.

17. Krinke, J.; Storzer, M.; Zeller, A. Web-basierte Programmierpraktikamit Praktomat in Workshop Neue Medien in der

Informatik-Lehre, Dortmund, 2002, pp. 48–56.

18. Morth, T.; Oechsle, R.; Schloß, H.; Schwinn, M. Automatische Bewertung studentischer Software in Workshop

”Rechnerunterstutztes Selbststudium in der Informatik”, Universitat Siegen, 2007.

19. Edwards, S.; Perez-Quinones, M. A. Web-CAT: Automatically Grading Programming Assignments in Proceedings of the

39th SIGCSE Technical Symposium on Computer Science Education. ACM, New York, 2008. pp. 328 – 338.

20. Hoernecke, J.; Amelung, M.; Krieger, K.; Rosner, D. Flexibles E-Assessment mit OLAT und ECSpooler. In: Rohland, H.,

Kienle, A. & Friedrich, S. (Hrsg.), DeLFI 2011 - Die 9. e-Learning Fachtagung Informatik. Bonn: Gesellschaft für

Informatik, pp. 127-138.

21. Striewe, M.; Goedicke, M.; Balz, M. Computer Aided Assessmentsand Programming Exercises with JACK, No. 28,

Institut fur Informatik und Wirtschafts informatik (ICB), University of Duisburg-Essen, 2008.

 151

22. Hass, B.; Yuan, C.; Li, Z. On the Automatic Assessment of Learning Outcome in Programming Techniques, IEEE 14th

International Conference on Intelligent Systems and Knowledge Engineering (ISKE), Dalian, China, 2019, pp. 274-278,

doi: 10.1109/ISKE47853.2019.9170370.

23. Agbo, F. J.; Oyelere, S. S.; Suhonen, J.; Adewumi, S. A systematic review of computational thinking approach for

programming education in higher education institutions. In Proceedings of the 19th Koli Calling International

Conference on Computing Education Research, 2019. pp. 1-10.

24. Caceffo, R.; Wolfman, S.; Booth, K.S.; Azevedo, R. Developing a Computer Science Concept Inventory for Introductory

Programming. In Proceedings of the 47th ACM Technical Symposium on Computing Science Education (SIGCSE '16).

Association for Computing Machinery, New York, USA, 2016, pp. 364–369, doi: 10.1145/2839509.2844559

25. Skalka, J.; Drlik, M.; Obonya, J. Automated Assessment in Learning and Teaching Programming Languages using Virtual

Learning Environment. In IEEE Global Engineering Education Conference (EDUCON), IEEE., 2019. pp. 689-697

26. Parihar, S.; Dadachanji, Z.; Singh, P. K.; Das, R.; Karkare, A.; Bhattacharya, A. Automatic grading and feedback using

program repair for introductory programming courses. In Proceedings of the ACM Conference on Innovation and

Technology in Computer Science Education, 2017, pp. 92-97.

27. Gao, J.; Pang, B.; Lumetta, S. S. Automated feedback framework for introductory programming courses. In

Proceedings of the ACM Conference on Innovation and Technology in Computer Science Education, 2016. pp. 53-58.

28. Batista, A. L. F.; Connolly, T.; Angotti, J. A. P. A framework for games-based construction learning: A text-based

programming languages approach. In European Conference on Games Based Learning. Academic Conferences

International Limited., 2016, p. 815

29. Duffany, J. L. Application of active learning techniques to the teaching of introductory programming. IEEE Revista

Iberoamericana de Tecnologias del Aprendizaje, 2017, 12(1), pp. 62-69

30. Schez-Sobrino, S.; Gomez-Portes, C.; Vallejo, D.; Glez-Morcillo, C.; Redondo, M. A. An Intelligent Tutoring System to

Facilitate the Learning of Programming through the Usage of Dynamic Graphic Visualisations. Appl. Sci. 2020, 10,

1518.

31. Djelil, F.; Albouy-Kissi, A.; Albouy-Kissi, B.; Sanchez, E.; Lavest, J. M. Microworlds for learning Object-Oriented

Programming: Considerations from research to practice. Journal of Interactive Learning Research, 2016, 27(3), pp.

247-266.

32. Karagiannis, I.; Satratzemi, M. Enhancing Adaptivity in Moodle: Framework and Evaluation Study. In: Auer M.,

Guralnick D., Uhomoibhi J. (eds) Interactive Collaborative Learning. ICL 2016., Advances in Intelligent Systems and

Computing, vol 545. Springer, Cham, 2016. doi: 10.1007/978-3-319-50340-0_52.

33. Rodríguez-del-Pino, J. C.; Rubio-Royo, E.; Hernández-Figueroa, Z. Virtual Programming Lab for Moodle with automatic

assessment and anti-plagiarism features, Proceedings of the International Conference on e-Learning, e-Business,

Enterprise Information Systems, and e-Government (EEE), The Steering Committee of The World Congress in

Computer Science, Computer Engineering and Applied Computing (WorldComp), 2012.

34. Vesin, B.; Mangaroska, K.; Giannakos, M. Learning in smart environments: user-centered design and analytics of an

adaptive learning system. Smart Learning Environments, 5(1), 24. 2018.

35. Brusilovsky, P.; Malmi, L.; Hosseini, R.; Guerra, J.; Sirkiä, T.; Pollari-Malmi , K. An integrated practice system for

learning programming in Python: design and evaluation. RPTEL 13, 18 (2018). doi: 10.1186/s41039-018-0085-9

36. Buffardi, K.; Edwards, S. H. Introducing CodeWorkout: an adaptive and social learning environment. In Proceedings of

the 45th ACM Technical Symposium on Computer Science Education, 2014. pp. 724-724.

37. Wood, K. Top 25 Websites to Learn Coding for Free. Hostinger tutorials. on-line:

https://www.hostinger.com/tutorials/learn-coding-online-for-free/, 2020.

38. Morris, S. 80+ Ways to Learn to Code for Free in 2020. skillcrush.com. on-line: https://skillcrush.com/blog/64-online-

resources-to-learn-to-code-for-free/, 2020.

39. Hadjerrouit, S. Towards a blended learning model for teaching and learning computer programming: A case study.

Informatics in Education-An International Journal, 2008, 7(2), pp. 181-210.

40. Zhang, J. An adaptive model customised for programming learning in e-learning. In 2010 3rd International Conference

on Computer Science and Information Technology (Vol. 6). IEEE., 2010. pp. 443-447.

41. Bashir, G.M.M.; Hoque, A.S.M.L. An effective learning and teaching model for programming languages. Journal of

Computers in Education, 3 (2016). pp. 413–437, doi: 10.1007/s40692-016-0073-2.

42. Chen, G. M. Programming Language Teaching Model Based on Computational Thinking and Problem-based Learning.

In 2nd International Seminar on Education Innovation and Economic Management (SEIEM 2017). Atlantis Press., 2017.

doi: 10.2991/seiem-17.2018.31.

 152

43. Othman, M.; Othman, M.; Hussain, F. M. Designing prototype model of an online collaborative learning system for

introductory computer programming course. Procedia-Social and Behavioral Sciences, 2013, 90, pp. 293-302.

44. Skalka, J.; Drlik, M. Conceptual framework of microlearning-based training mobile application for improving

programming skills. In Interactive Mobile Communication, Technologies and Learning. Springer, Cham, 2018. pp. 213-

224.

45. Appiahene, P.; Asante, G.; Kesse-Yaw, B.; Acquah-Hayfron, J. Raising students programming skills using appiahene

gamification model. In ECGBL 11th European Conference on Game-Based Learning. Academic Conferences and

publishing limited., 2017. pp. 14-21.

46. Khaleel, F. L.; Ashaari, N. S.; Wook, T. S. M. T.; Ismail, A. Methodology for developing gamification-based learning

programming language framework. In 6th International conference on electrical engineering and informatics (ICEEI).

IEEE, 2017. pp. 1-6.

47. Rojas-López, A.; Rincón-Flores, E. G.; Mena, J.; García-Peñalvo, F. J.; Ramírez-Montoya, M. S. Engagement in the

course of programming in higher education through the use of gamification, Universal Access in the Information

Society, 18(3), 2019. pp. 583-597.

48. Kordaki, M. A drawing and multi-representational computer environment for beginners’ learning of programming

using C: Design and pilot formative evaluation, Computers & Education, 2010, Vol. 54, No. 1, pp. 69-87.

49. Lee, D. M. C.; Rodrigo, M. M. T.; Baker, R. S. J. d.; Sugay, J. O.; Coronel, A. Exploring the Relationship between Novice

Programmer Confusion and Achievement, In: Affective Computing and Intelligent Interaction. ACII 2011. Lecture

Notes in Computer Science, vol 6974. Springer, Berlin, Heidelberg, pp. 175-184.

50. Krusche, S.; Seitz, A. ArTEMiS - An Automatic Assessment Management System for Interactive Learning, SIGCSE '18

Proceedings of the 49th ACM Technical Symposium on Computer Science Education, 2018. pp. 284-289.

51. Ambrosio, A. P.; Costa, F. M.; Almeida, L.; Franco, A.; Macedo, J. Identifying cognitive abilities to improve CS1

outcome, Frontiers in Education Conference (FIE), 2011. IEEE, pp. F3G1-F3G7.

52. Ciancarini, P.; Missiroli, M.; Russo, D. Cooperative Thinking: Analysing a new framework for software engineering

education. Journal of Systems and Software, 2019, 157, 110401.

53. López-Fernández, D.; P., Alarcón P.; Tovar, E. Motivation in engineering education a framework supported by

evaluation instruments and enhancement resources. In IEEE Global Engineering Education Conference (EDUCON).

IEEE, 2015. pp. 421-430.

54. Tovar, E.; Soto, O. Are new coming computer engineering students well prepared to begin future studies programs

based on competences in the European Higher Education Area?. Frontiers in Education Conference, 2009. FIE'09. 39th

IEEE, pp. 1-6.

55. Bekki, J. M.; Dalrymple, O.; Butler, C. S. A mastery-based learning approach for undergraduate engineering programs.

Frontiers in Education Conference (FIE), IEEE, 2012, pp. 1-6.

56. Bloom, B. S. Taxonomy of Educational Objectives. Cognitive domain, 1956, Vol. 1, pp. 20-24.

57. Anderson, L. W.; Bloom, B. S. A taxonomy for learning, teaching, and assessing: A revision of Bloom's taxonomy of

educational objectives. Longman, 2001.

58. Zufic, J.; Jurcan, B. Micro learning and EduPsy LMS. In Central European Conference on Information and Intelligent

Systems. Faculty of Organization and Informatics Varazdin., 2015. p. 115.

59. Jones, N. D.; Gomard, C. K.; Sestoft, P. Partial evaluation and automatic program generation. Peter Sestoft, 1993.

60. Selby, R. W.; Porter, A. A. Learning from examples: generation and evaluation of decision trees for software resource

analysis. IEEE Transactions on Software Engineering, 1988, 14(12), 1743-1757.

61. Daly, C. RoboProf and an introductory computer programming course. ACM SIGCSE Bulletin, 1999, 31(3), 155-158.

62. Zheng, J.; Williams, L.; Nagappan, N.; Snipesm, W.; Hudepohl, J.; Vouk, M. On the value of static analysis for fault

detection in software. In. IEEE Transactions on Software Engineering, 2006, 32 (4), pp. 240-253.

63. Kafai, Y. B.; Resnick, They Have Their Own Thoughts: A Story of Constructionist Learning in an Alternative African-

Centered Community School. In Constructionism in Practice. Routledge. 2012. pp. 259-272.

64. Palloff, R. M.; Pratt, K. Collaborating online: Learning together in community, John Wiley & Sons, 2010. Vol. 32

65. Wenger, E. Communities of practice and social learning systems: the career of a concept, Social learning systems and

communities of practice. Springer, London, 2010. pp. 179-198.

66. Hunicke, R.; LeBlanc, M.; Zubek, R. MDA: A formal approach to game design and game research. In Proceedings of the

AAAI Workshop on Challenges in Game AI 2004, Vol. 4, No. 1, p. 1722

67. Chou, Y. K. Actionable gamification: Beyond points, badges, and leaderboards. Packt Publishing Ltd., 2019.

 153

68. Wise, A. F.; Vytasek, J. M.; Hausknecht, S.; Zhao, Y. Developing Learning Analytics Design Knowledge in the Middle

Space: The Student Tuning Model and Align Design Framework for Learning Analytics Use, Online Learning 2016, Vol.

20, No. 2, pp. 155-182.

69. Skalka, J.; Drlik, M.; Obonya, J.; Capay, M. Architecture Proposal for Micro-Learning Application for Learning and

Teaching Programming Courses. In IEEE Global Engineering Education Conference (EDUCON). IEEE, 2020. pp. 980-987.

70. Brosig, F.; Huber, N.; Kounev, S. Architecture-level software performance abstractions for online performance

prediction. Science of Computer Programming. 2014, 90(Part B, 0), pp. 71-92.

71. Drlik, M.; Skalka, J.; Švec, P.; Kapusta, J. Proposal of Learning Analytics Architecture Integration into University IT

Infrastructure. In IEEE 12th International Conference on Application of Information and Communication Technologies

(AICT). IEEE., 2018, pp. 1-6.

72. Munk, M.; Drlík, M.; Benko, L.; Reichel, J. Quantitative and qualitative evaluation of sequence patterns found by

application of different educational data preprocessing techniques. IEEE Access 2017, 5, pp. 8989-9004.

73. Drlík, M.; Švec, P.; Kapusta, J.; Munk, M.; Noskova, T.; Pavlova, T.; Smyrnova-Trybulska, E. Identification of differences

in university e-environment between selected EU and non-EU countries using knowledge mining methods: project

IRNet case study. International Journal of Web Based Communities 2017, 13(2), pp. 236-261.

74. Halvoník, D.; Kapusta, J. Framework for e-Learning Materials Optimisation. International Journal of Emerging

Technologies in Learning (iJET), 2020, 15(11), pp. 67-77.

75. Skalka, J. Data processing methods in the development of the microlearning-based framework for teaching

programming languages. In The 12th international scientific conference on Distance Learning in Applied Informatics,

Praha, Wolters Kluwer, 2018. pp. 503-512.

 154

