

Frameworks for Frontend Application
Development (jQuery, Angular, Vue)

Published on

November 2021

Authors

Jozef Kapusta | Pedagogical University of Cracow, Poland

Wojciech Baran | Pedagogical University of Cracow, Poland

Ján Skalka | Constantine the Philosopher University in Nitra, Slovakia

Reviewers

Martin Drlík | Constantine the Philosopher University in Nitra, Slovakia

Peter Švec | Teacher.sk, Slovakia

Cyril Klimeš | Mendel University in Brno, Czech Republic

Eugenia Smyrnova-Trybulska | University of Silesia in Katowice, Poland

Piet Kommers | Helix5, Netherland

Graphics

Ľubomír Benko | Constantine the Philosopher University in Nitra, Slovakia

David Sabol | Constantine the Philosopher University in Nitra, Slovakia

Erasmus+ FITPED

Work-Based Learning in Future IT Professionals Education

Project 2018-1-SK01-KA203-046382

The European Commission support for the production of this publication does not
constitute an endorsement of the contents which reflects the views only of the authors,
and the Commission cannot be held responsible for any use which may be made of
the information contained therein.

Licence (licence type: Attribution-Non-commercial-No Derivative Works) and may be
used by third parties as long as licensing conditions are observed. Any materials
published under the terms of a CC Licence are clearly identified as such.

All trademarks and brand names mentioned in this publication and all trademarks and
brand names mentioned that may be the intellectual property of third parties are
unconditionally subject to the provisions contained within the relevant law governing
trademarks and other related signs. The mere mention of a trademark or brand name
does not imply that such a trademark or brand name is not protected by the rights of
third parties.

© 2021 Constantine the Philosopher University in Nitra

ISBN 978-80-558-1792-7

Table of Contents

jQuery .. 6

1 jQuery .. 7

1.1 What is jQuery? ... 8

1.2 jQuery introduction ... 12

1.3 Events .. 18

1.4 More Selectors .. 24

2 Playground ... 31

2.1 Hide vs. show .. 32

2.2 Classes .. 36

Angular ... 47

3 Introduction .. 48

3.1 What is Angular? ... 49

3.2 TypeScript ... 49

3.3 Components .. 50

3.4 Templates.. 51

3.5 Dependency injection ... 51

3.6 Angular CLI .. 52

3.7 Installation ... 52

3.8 Application structure .. 53

3.9 Naming .. 54

3.10 First-party libraries .. 55

3.11 Introduction (Exercises) ... 56

4 Components ... 58

4.1 Components .. 59

4.2 Overview .. 62

4.3 Lifecycle... 65

4.4 Encapsulation ... 68

4.5 Interaction ... 70

4.6 Styles ... 77

4.7 Content projection .. 79

4.8 Dynamic Components .. 82

4.9 Angular elements .. 85

4.10 Components (Exercises) .. 87

5 Templates... 90

5.1 Text interpolation .. 91

5.2 Template statements ... 95

5.3 Pipes .. 97

5.4 Property binding .. 99

5.5 Attribute, class, and style bindings.. 105

5.6 Event binding ... 108

5.7 Two-way binding ... 111

5.8 Template variables ... 113

5.9 Templates (Exercises).. 116

6 Directive .. 118

6.1 Built-in directives .. 119

6.2 Attribute directives ... 126

6.3 Structural Directives ... 132

6.4 Directives (Exercises) ... 135

7 Dependency Injection .. 136

7.1 Dependency injection ... 137

7.2 DI Providers ... 138

7.3 Dependency injection (Exercises) ... 143

8 Forms .. 145

8.1 Forms ... 146

8.2 Reactive forms .. 149

8.3 Validating form input .. 157

8.4 HTTP Client ... 165

8.5 Forms (Exercises) ... 179

9 Testing .. 181

9.1 Angular testing .. 182

9.2 Testing (Exercises) ... 192

10 Animations ... 193

10.1 Introduction ... 194

10.2 Transitions and triggers ... 202

10.3 Complex animation sequences ... 213

10.4 Reusable Animations ... 218

10.5 Route transition animations .. 220

10.6 Animations (Exercises) .. 227

11 PWA .. 229

11.1 PWA ... 230

12 Web Workers .. 234

12.1 Web workers ... 235

Vue ..237

13 Introduction .. 238

13.1 What is VueJS ... 239

13.2 Let's go to start ... 241

13.3 Application structure .. 246

13.4 Edit default project ... 256

14 Simple Application ... 261

14.1 Greeting - variables and functions .. 262

14.2 Counter - events .. 264

14.3 Event object... 268

14.4 v-model .. 272

15 Condition and Loop ... 277

15.1 v-if .. 278

15.2 v-for .. 280

16 Lists .. 284

16.1 Work with List ... 285

16.2 Material design ... 295

16.3 Edit inline ... 301

16.4 Add new element - other way .. 304

16.5 Bulk data operations .. 307

jQuery

jQuery

Chapter 1

jQuery | FITPED

8

1.1 What is jQuery?

🕮 1.1.1

jQuery is a fast and function-rich library of coding language JavaScript. Thanks to a
combination of versatility and extensibility jQuery created the change of way how
many programmers write their JavaScript.

Everything that can be made in jQuery can be also created in the programming
language JavaScript.

Everything that can be made in JavaScript can be created in jQuery, too.

jQuery is designed the way to make your Javascript simpler and shorten the time to
develop an application. The motto of JQuery is "write less, do more".

jQuery takes many basic tasks which require many lines of Javascript, inserts them
into its' own methods, and you can call them with just one line of the code.

🕮 1.1.2

What can JQuery do?

5 main tasks you can do faster and easier with jQuery :

1. Access to DOM (Document Object Model) elements on the page – access
to individual or whole groups of elements

2. Set attributes of DOM for element or group of elements (find something on
the page and create something with it)

3. Create, delete, view, hide DOM elements on the page
4. Define events on the page (clicking, moving of a mouse, dynamic styles,

animations, dynamic content)
5. Calling AJAX

Probably the best advantage of JQuery is the work with AJAX. Calling and working
with AJAX, just like the work with web services is incomparable with JavaScript.

📝 1.1.3

jQuery is:

• a library of JavaScript language
• a library of Java language

jQuery | FITPED

9

• a library of PHP language
• a library for new CSS styles

🕮 1.1.4

As an example of the simplicity of code JQuery, the next source code shows how to
find resolutions of the browser window in Javascript:

var x,y;

if (self.innerHeight) { // all except Explorer

 x = self.innerWidth;

 y = self.innerHeight;

}

else if (document.documentElement &&

 document.documentElement.clientHeight) {

 // Explorer 6 Strict Mode

 x = document.documentElement.clientWidth;

 y = document.documentElement.clientHeight;

}

else if (document.body) { // other Explorers

 x = document.body.clientWidth;

 y = document.body.clientHeight;

}

In JQuery the same problem can be solved with the next two lines of code:

var x = $(window).width();

var y = $(window).height();

🕮 1.1.5

There are many libraries existing in Javascript, but JQuery is the most popular and
flexible.

Just like many libraries, even JQuery is located in an external file/ files, which is
necessary to add to the page. If we want to work with JQuery we have two options:

1. To download library JQuery from the page jquery.com
2. To add JQuery to your page with CDN

Our recommendation is the second option. CDN (Content Delivery Network) is a
distributed group of servers cooperating with the fast distribution of internet

jQuery | FITPED

10

content. CDN allows a fast transfer of tools needed for loading Internet content,
even HTML pages, JavaScript files, styles, pictures and videos.

In our case, the whole library code of JQuery will be inserted from another source
located on the internet. The only disadvantage of the method is a permanent
internet connection. Library jQuery is necessary with every loading of a web page,
furthermore, every time when the web page is loading (even locally), the browser
will be connected to CND and download the JQuery library. It is important to realize,
every computer does that independently even though the library is on our web
server or using CDN (when talking about the "basic" web page)

🕮 1.1.6

For using CDN and inserting JQuery library into our source code, it is
important to call the next script into our web pages:

<script

src="https://ajax.googleapis.com/ajax/libs/jquery/3.3.1/jquery

.min.js"></script>

CDN is often added into the element <head>. like in JavaScript, if your pages are
larger and you want to improve the speed of loading, you can insert CDN at the end
of element <body> before ending character </body>. JQuery includes the basic
method for safe executing of its' functions after the loading of the whole page.

📝 1.1.7

Copy the next CDN loading of a library JQuery and insert it into an HTML code into
the element <head>.

 <script

src="https://ajax.googleapis.com/ajax/libs/jquery/3.3.1/jquery

.min.js"></script>

<!doctype html>

<html>

 <head><title>First JavaScript</title>_____

 </head>

 <body>

 </body>

</html>

jQuery | FITPED

11

🕮 1.1.8

CDN is available at ajax.googleapis.com but you can either use another CDN, for
example, Microsoft CDN:

<script src="https://ajax.aspnetcdn.com/ajax/jQuery/jquery-

3.3.1.min.js"></script>

🕮 1.1.9

The whole form of the jQuery syntax is designed with the objective to speed up
basic operations with DOM elements. Access to DOM elements is realized by
calling:

$(selector).action()

Character $ defines access to jQuery, selector is a specification of a name, class, or
ID element, to which we want to get access. The action indicates the function, that
will be called by the found element.

In the next code, we will show an example of the calling method hide() for chosen
selectors. The method will hide the chosen element on the page.

$(this).hide() //hides actual element

$("img").hide() // hides all pictures, known as elements

on the page

$("p").hide() //hides all paragraphs, known as elements <p> on

the page

📝 1.1.10

Use the correct selector for hiding all elements <p> on the webpage.

$("_____").hide();

📝 1.1.11

Use the correct selector for hiding all elements <h1> on the webpage.

$("_____").hide();

jQuery | FITPED

12

📝 1.1.12

Use the correct selector and JQuery syntax for hiding all elements <div> on the
webpage.

_____("_____").hide();

1.2 jQuery introduction

🕮 1.2.1

From the practical point of view, you can alway create an element <script>.
Sometimes troubles occur with the slow loading of JQuery. If in any of its function
is link to, let's say, picture, which isn't yet loaded , or to not yet loaded button,
JQuery won't work correctly in case a function is linked to an unloaded picture or a
temporary uncreated button.

To avoid these problems, the so-called programmer of „good habits“ add the whole
code into function $(document).ready.. It's the function that will execute after the
whole page is loaded, what means all the needed elements created in DOM. This
function is some kind of a main() method of JQuery.

Every basic JQuery code looks as following:

<!doctype html>

<html><head>

 <title>First JavaScript</title>

 <script

src="https://ajax.googleapis.com/ajax/libs/jquery/3.3.1/jquery

.min.js"></script>

 <script>

 $(document).ready(function () {

 // Your code goes here

 });

 </script>

 </head>

 <body>

 </body>

</html>

📝 1.2.2

jQuery is a library of JavaScript, so all the functions of JavaScript can be called
even in jQuery.

jQuery | FITPED

13

Task: Insert call alert('jQuery works correctly') into the $(document).ready.

<!doctype html>

<html>

 <head>

 <title>First JavaScript</title>

 <script

src="https://ajax.googleapis.com/ajax/libs/jquery/3.3.1/jquery

.min.js"></script>

 <script>

 $(document).ready(function () {

 _____('jQuery works correctly');

 });

 </script>

 </head><body></body>

</html>

🕮 1.2.3

Essential of every JQuery code is to choose the correct selector and the use of a
function, setting features or defining an event for a chosen selector. Selectors allow
us to choose and manipulate with HTML elements in JQuery.

For example, if we need access to all the elements in JavaScript <div>, the code
would look as follows:

document.getElementsByName(“div”)

while in jQuery we can use:

$(“div”)

📝 1.2.4

In the next example, we will use the function hide(). We already know the method
hides a chosen element on the webpage..

Task: Insert the element <h1>JavaScript</h1> into an HTML webpage.

<!doctype html>

<html><head>

 <title>First JavaScript</title>

 <script>

 $(document).ready(function () {

jQuery | FITPED

14

 });

 </script>

 </head>

 <body>

 </body>

</html>

📝 1.2.5

Insert second element <h2>AngularJS</h2> under element <h1>JavaScript</h1>

<!doctype html>

<html>

 <head>

 <title>JavaScript Example</title>

 <script>

 $(document).ready(function () {

 });

 </script>

 </head>

 <body>

 <h1>JavaScript</h1>

 <h2>JSON</h2>

 </body>

</html>

📝 1.2.6

Insert the link for CDN

<script
src="https://ajax.googleapis.com/ajax/libs/jquery/3.3.1/jquery.min.js"></script>

into the element <head> for loading thejQuery library.

<!doctype html>

<html>

 <head>

 <title>JavaScript Example</title>_____

 <script>

jQuery | FITPED

15

 $(document).ready(function () {

 });

 </script>

 </head>

 <body>

 <h1>JavaScript</h1>

 <h2>AngularJS</h2>

 <h2>JSON</h2>

 </body>

</html>

📝 1.2.7

Use the correct selector for hiding all the second level titles, such as elements <h2>
on the webpage.

<!doctype html>

<html>

 <head>

 <title>JavaScript Example</title>

 <script

src="https://ajax.googleapis.com/ajax/libs/jquery/3.3.1/jquery

.min.js"></script>

<script>

 $(document).ready(function () {

 $("_____").hide();

 });

 </script>

 </head>

 <body>

 <h1>JavaScript</h1>

 <h2>AngularJS</h2>

 <h2>JSON</h2>

 </body>

</html>

📝 1.2.8

Add a correct calling for hiding all the first level titles, such as element <h1>.

jQuery | FITPED

16

<!doctype html>

<html>

 <head>

 <title>JavaScript Example</title>

 <script

src="https://ajax.googleapis.com/ajax/libs/jquery/3.3.1/jquery

.min.js"></script>

<script>

 $(document).ready(function () {

 $("h2").hide();

 $("h1")._____;

 });

 </script>

 </head>

 <body>

 <h1>JavaScript</h1>

 <h2>AngularJS</h2>

 <h2>JSON</h2>

 </body>

</html>

📝 1.2.9

Which text will be shown on the webpage after executing the script??

<!doctype html>

<html>

 <head>

 <title>JavaScript Example</title>

 <script

src="https://ajax.googleapis.com/ajax/libs/jquery/3.3.1/jquery

.min.js"></script>

 <script>

 $(document).ready(function () {

 $("span").hide();

 $("p").hide();

 });

 </script>

 </head>

 <body>

 If you please--draw me a sheep!

 <p>What!</p>

 <div>Draw me a sheep!</div>

 <p>I jumped to my feet,completely thunderstruck.</p>

jQuery | FITPED

17

 </body>

</html>

• Draw me a sheep!
• If you please--draw me a sheep!
• I jumped to my feet, completely thunderstruck.
• If you please--draw me a sheep! I jumped to my feet, completely

thunderstruck.

📝 1.2.10

Add another call into the script of a function hide() so the JQuery hides even
remaining element (<div>) on the webpage (all the elements will be hidden):

<!doctype html>

<html>

 <head>

 <title>JavaScript Example</title>

 <script

src="https://ajax.googleapis.com/ajax/libs/jquery/3.3.1/jquery

.min.js"></script>

<script>

 $(document).ready(function () {

 $("span").hide();

 $("p").hide();

 });

 </script>

 </head>

 <body>

 If you please--draw me a sheep!

 <p>What!</p>

 <div>Draw me a sheep!</div>

 <p> I jumped to my feet, completely thunderstruck.</p>

 </body>

</html>

jQuery | FITPED

18

1.3 Events

🕮 1.3.1

The programmer usually prefers the scripting language for HTML in in case he
expects some activity from the visitors of his website. Using jQuery only for setting
attributes of elements on the page is wasting of JQuery's potential. Attributes of
elements can be set directly in HTML.

The purpose of jQuery, like in other scripting languages for HTML, is
programming events and subsequently dynamical editing of pages. All actions from
different visitors of our pages, to which the web page can dynamically reply , are
called events. Event is a moment when something happens. For example moving
the mouse, clicking, pressing the button on a keyboard and also receiving an
answer on the required web service, etc.

Most events in HTML elements have their method in jQuery.

🕮 1.3.2

Probably the most used event in the environment of webpages is the event of
clicking the mouse in HTML element. If we have a button on the webpage, it means
we have an element <button> in HTML code, for example:

<button type="button">Click Me!</button>

Event of clicking the mouse on the button is defined in jQuery as follows:

$("button").click();

We used the name of the element as a selector, so the event is defined for all
buttons which we add to the webpage. In an event click() we must define, what
should be executed if the button is pressed.

It is typical in jQuery, the event of function is created directly:

$("button").click(function(){

 // action goes here!!

});

📝 1.3.3

Which event is used for defining the click action with the mouse on an object?

jQuery | FITPED

19

• click()
• mouseclick()
• clickmouse()
• clicked()
• clicking()

📝 1.3.4

Task: Define an event the mouse on a button in the script. .

It is important to mention that even events are called after loading all elements on
the webpage. Every event is added into the function $(document).ready.

<!doctype html>

<html>

 <head>

 <title>JavaScript Example</title>

 <script

src="https://ajax.googleapis.com/ajax/libs/jquery/3.3.1/jquery

.min.js"></script>

 <script>

 $(document).ready(function () {

 $("button")._____(function(){

 // action goes here!!

 });

 });

 </script>

 </head>

 <body>

 <button type="button">Click Me!</button>

 </body>

</html>

📝 1.3.5

Task: Add a function for the printing of a user message into the event click() . Text
of the message will be "You clicked on a button!", then insert the message with the
help of the function alert(). Don't forget the semicolon at the end of the line.

<!doctype html>

<html>

 <head>

 <title>JavaScript Example</title>

jQuery | FITPED

20

 <script

src="https://ajax.googleapis.com/ajax/libs/jquery/3.3.1/jquery

.min.js"></script>

<script>

 $(document).ready(function () {

 $("button").click(function(){

 });

 });

 </script>

 </head>

 <body>

 <button type="button">Click Me!</button>

 </body>

📝 1.3.6

Alike the pressing the button, the event click() is able to define for all the elements
on the HTML page.

Task: Create two sections, i.e. insert the text with the beginning of „This asteroid
has only“ until „Grown-ups are like that . . .“ into the element for a section <p>.
Similiarly, create the second paragraph <p> for the text with the beginning of
„Fortunately, however“ and ending with „accepted his report.“.

<!doctype html>

<html>

 <head>

 <title>JavaScript Example</title>

 <script

src="https://ajax.googleapis.com/ajax/libs/jquery/3.3.1/jquery

.min.js"></script>

 <script>

 $(document).ready(function () {

 });

 </script>

 </head>

 <body> <button>Show paragraph</button>

_____This asteroid has only once been seen through the

telescope. That was by a Turkish astronomer, in 1909.

On making his discovery, the astronomer had presented it to

the International Astronomical Congress, in a great

jQuery | FITPED

21

demonstration. But he was in Turkish costume, and so nobody

would believe what he said.

Grown-ups are like that . . ._____

_____Fortunately, however, for the reputation of Asteroid B-

612, a Turkish dictator made a law that his subjects, under

pain of death, should change to European costume. So in 1920

the astronomer gave his demonstration all over again, dressed

with impressive style and elegance. And this time everybody

accepted his report._____

 </body>

</html>

📝 1.3.7

Task: In jQuery create an event click for the element <button> and also for the
element <p>.

<!doctype html>

<html>

 <head>

 <title>JavaScript Example</title>

 <script

src="https://ajax.googleapis.com/ajax/libs/jquery/3.3.1/jquery

.min.js"></script>

 <script>

 $(document).ready(function () {

 $("button")._____(function(){

 });

 $("_____").click(function(){

 });

 });

 </script>

 </head>

 <body> <button>Show paragraph</button>

<p>This asteroid has only once been seen through the

telescope. That was by a Turkish astronomer, in 1909.

On making his discovery, the astronomer had presented it to

the International Astronomical Congress, in a great

demonstration. But he was in Turkish costume, and so nobody

would believe what he said.

jQuery | FITPED

22

Grown-ups are like that . . .</p>

<p>Fortunately, however, for the reputation of Asteroid B-612,

a Turkish dictator made a law that his subjects, under pain of

death, should change to European costume. So in 1920 the

astronomer gave his demonstration all over again, dressed with

impressive style and elegance. And this time everybody

accepted his report.</p>

 </body>

</html>

📝 1.3.8

Task: Add an effect of hiding paragraphs with the event click() for the element<p> .
Use the function .hide().

<!doctype html>

<html>

 <head>

 <title>JavaScript Example</title>

 <script

src="https://ajax.googleapis.com/ajax/libs/jquery/3.3.1/jquery

.min.js"></script>

 <script>

 $(document).ready(function () {

 $("button").click(function(){

 });

 $("p").click(function(){

 $("p")._____;

 });

 });

 </script>

 </head>

 <body> <button>Show paragraph</button>

<p>This asteroid has only once been seen through the

telescope. That was by a Turkish astronomer, in 1909.

On making his discovery, the astronomer had presented it to

the International Astronomical Congress, in a great

demonstration. But he was in Turkish costume, and so nobody

would believe what he said.

Grown-ups are like that . . .</p>

jQuery | FITPED

23

<p>Fortunately, however, for the reputation of Asteroid B-612,

a Turkish dictator made a law that his subjects, under pain of

death, should change to European costume. So in 1920 the

astronomer gave his demonstration all over again, dressed with

impressive style and elegance. And this time everybody

accepted his report.</p>

 </body>

</html>

📝 1.3.9

The opposite of the function .hide() is the function .show(). We can show hidden
elements with the use of it. .

Task: Add the effect of showing paragraphs after the button click. Use the function
.show().

<!doctype html>

<html>

 <head>

 <title>JavaScript Example</title>

 <script

src="https://ajax.googleapis.com/ajax/libs/jquery/3.3.1/jquery

.min.js"></script>

 <script>

 $(document).ready(function () {

 $("button").click(function(){

 $("p")._____;

 });

 $("p").click(function(){

 $("p").hide();

 });

 });

 </script>

 </head>

 <body> <button>Show paragraph</button>

<p>This asteroid has only once been seen through the

telescope. That was by a Turkish astronomer, in 1909.

On making his discovery, the astronomer had presented it to

the International Astronomical Congress, in a great

demonstration. But he was in Turkish costume, and so nobody

would believe what he said.

Grown-ups are like that . . .</p>

jQuery | FITPED

24

<p>Fortunately, however, for the reputation of Asteroid B-612,

a Turkish dictator made a law that his subjects, under pain of

death, should change to European costume. So in 1920 the

astronomer gave his demonstration all over again, dressed with

impressive style and elegance. And this time everybody

accepted his report.</p>

 </body>

</html>

1.4 More Selectors

🕮 1.4.1

The use of the correct selector is one of the most important parts in jQuery.JQuery
uses CSS syntax for choosing elements with a selector. In case of CSS and also
jQuery, there are differences between id selector and a class selector.

Id selector uses a specific attribute id for finding the correct element. It is important
to mention, that the value of attribute id should be unique. . Id selector in jQuery is
defined with a character # before the name of the selector

For Example:

<!doctype html>

<html>

 <head>

 <title>First JavaScript</title>

 <script

src="https://ajax.googleapis.com/ajax/libs/jquery/3.3.1/jquery

.min.js"></script>

 <script>

 $(document).ready(function () {

 $("#prvy").hide();

 });

 </script>

 </head>

 <body>

 <p id="prvy">JavaScript</p>

 <p>AngularJS</p>

 <p>JSON</p>

 </body>

</html>

jQuery | FITPED

25

📝 1.4.2

Task: Edit the script to hideid the paragraph with id attribute "first".

<!doctype html>

<html>

 <head>

 <title>JavaScript Example</title>

 <script

src="https://ajax.googleapis.com/ajax/libs/jquery/3.3.1/jquery

.min.js"></script>

 <script>

 $(document).ready(function () {

 $("_____").hide();

 });

 </script>

 </head>

 <body>

 <p id="prvy"> JavaScript </p>

 <p>AngularJS</p>

 <p>JSON</p>

 </body>

</html>

📝 1.4.3

Which text will be shown on the webpage after executing the script?

<!doctype html>

<html>

 <head>

 <title>JavaScript Example</title>

 <script

src="https://ajax.googleapis.com/ajax/libs/jquery/3.3.1/jquery

.min.js"></script>

 <script>

 $(document).ready(function () {

 $("#druhy").hide();

 $("#treti").hide();

 });

 </script>

 </head>

 <body>

 <p id="prvy">JavaScript</p>

jQuery | FITPED

26

 <p id="druhy">AngularJS</p>

 <p id="treti">JSON</p>

 </body>

</html>

• JavaScript
• AngularJS
• JSON

🕮 1.4.4

Another often used selector is a class selector. Multiple elements of HTML can be
added into the same class with an attribute class. Furthermore, these elements can
use the same defined function. Selector of class (class selector) is in jQuery
defined with a character . (dot) before the name of selector.

Example:

<!doctype html>

<html>

 <head>

 <title>First JavaScript</title>

 <script

src="https://ajax.googleapis.com/ajax/libs/jquery/3.3.1/jquery

.min.js"></script>

 <script>

 $(document).ready(function () {

 $(".data").hide();

 });

 </script>

 </head>

 <body>

 <p class="app"> JavaScript </p>

 <p class="data">XML</p>

 <p class="data">JSON</p>

 </body>

</html>

📝 1.4.5

Task: Edit the script to show the paragraphs with the class attribute “prince“.

<!doctype html>

jQuery | FITPED

27

<html>

 <head>

 <title>JavaScript Example</title>

 <script

src="https://ajax.googleapis.com/ajax/libs/jquery/3.3.1/jquery

.min.js"></script>

 <script>

 $(document).ready(function () {

 $("_____").hide();

 });

 </script>

 </head>

 <body>

 <p class="prince">If you please--draw me a sheep!</p>

 <p class="antoine">What!</p>

 <p class="prince">Draw me a sheep!</p>

 <p> I jumped to my feet, completely thunderstruck.</p>

 </body>

</html>

📝 1.4.6

Which text will be shown on the webpage after executing the script?

<!doctype html>

<html>

 <head>

 <title>JavaScript Example</title>

 <script

src="https://ajax.googleapis.com/ajax/libs/jquery/3.3.1/jquery

.min.js"></script>

 <script>

 $(document).ready(function () {

 $(".druhy").hide();

 });

 </script>

 </head>

 <body>

 <p id="prvy">JavaScript</p>

 <p class="druhy">AngularJS</p>

 <p class="druhy">JSON</p>

 </body>

</html>

jQuery | FITPED

28

• JavaScript
• AngularJS
• JSON

📝 1.4.7

Thing about both id selectors and class selectors. Which text will be shown on the
webpage after executing the script?

<!doctype html>

<html>

 <head>

 <title>JavaScript Example</title>

 <script

src="https://ajax.googleapis.com/ajax/libs/jquery/3.3.1/jquery

.min.js"></script>

 <script>

 $(document).ready(function () {

 $(".simple").hide();

 $("#favorite").hide();

 });

 </script>

 </head>

 <body>

 <p class="simple">HTML</p>

 <p id="favorite"> JavaScript </p>

 <p class="simple">JSON</p>

 <p id="for_data">XML</p>

 </body>

</html>

• XML
• JavaScript
• JSON
• HTML

🕮 1.4.8

We can use a lot more logs for writing selectors in jQuery jQuery besides id and
class because jQuery uses CSS syntax for selectors.

For example:

jQuery | FITPED

29

$("p.my_class")

// Selector for selecting all elements <p> , that have class

class="my_class"

$("p:first")

// Selector for selecting first element <p> , in v case of

page having multiple elements <p>, selector selects first

element.

$("ul li:first")

// Selecting first element, that is inserted into element

More options and the showcase of selectors can be found on the webpage:
https://learn.jquery.com/using-jquery-core/selecting-elements/

📝 1.4.9

When calling events of selectors with the change of html elements, they behave
similarly like using id and class selector. For example id selector is one of the most
used selectors when operating with buttons.

Task: Add to the script a correct code for calling the method click() for the button.
Define an event with idselector.

<!doctype html>

<html>

 <head>

 <title>JavaScript Example</title>

 <script

src="https://ajax.googleapis.com/ajax/libs/jquery/3.3.1/jquery

.min.js"></script>

 <script>

 $(document).ready(function () {

 $("_____n").click(function(){

 // action goes here!!

 });

 });

 </script>

 </head>

 <body>

 <button id="my_button">Click Me!</button>

 </body>

</html>

https://learn.jquery.com/using-jquery-core/selecting-elements/

jQuery | FITPED

30

📝 1.4.10

Task: HTML code consists of two buttons with different atributes of id. Insert
selectors into code to print messages in a function alert() correctly.

<!doctype html>

<html>

 <head>

 <title>JavaScript Example</title>

 <script

src="https://ajax.googleapis.com/ajax/libs/jquery/3.3.1/jquery

.min.js"></script>

 <script>

 $(document).ready(function () {

 $("_____").click(function(){

 alert("You clicked on B button");

 });

 $("{_____").click(function(){

 alert("You clicked on A button");

 });

 });

 </script>

 </head>

 <body>

 <button id="buttonA">ButtonA</button>

 <button id="buttonB">ButtonB</button>

 </body>

</html>

Playground

Chapter 2

Playground | FITPED

32

2.1 Hide vs. show

🕮 2.1.1

In the previous examples, we have often used the function .hide(), which hid the
selected element on the page. If we would see more in the HTML page after
executing the function .hide(), we would find out that it adds the style "display:
none;" to the HTML element of the page.

The opposite of the function .hide() is .show(). Obviously, this function can show
hidden elements.

Note: You can also display elements that were not only hidden by .hide() but they
had style set to style="display: none;"

📝 2.1.2

Which function is used to display hidden elements on a web page?

• .show()
• .hide()
• .visible()
• .display()
• .reveal()

📝 2.1.3

What text will be displayed on the web page after executing the script?

<!doctype html>

<html>

 <head>

 <title>JavaScript Example</title>

 <script

src="https://ajax.googleapis.com/ajax/libs/jquery/3.3.1/jquery

.min.js"></script>

 <script>

 $(document).ready(function () {

 $("p").hide();

 $(".prince").show();

 $("#first_request").hide();

 });

Playground | FITPED

33

 </script>

 </head>

 <body>

 <p class="prince" id="first_request">If you please--

draw me a sheep!</p>

 <p>What!</p>

 <p class="prince" id="second_request">Draw me a

sheep!</p>

 <p> I jumped to my feet, completely thunderstruck.</p>

 </body>

</html>

• Draw me a sheep!
• If you please--draw me a sheep!
• What!
• I jumped to my feet, completely thunderstruck.

📝 2.1.4

Add the correct selectors to your code: when you click the button, the paragraph
containing the text will be hidden. Use the selector id to define the event for the
button.

<!doctype html>

<html>

 <head>

 <title>JavaScript Example</title>

 <script

src="https://ajax.googleapis.com/ajax/libs/jquery/3.3.1/jquery

.min.js"></script>

 <script>

 $(document).ready(function () {

 $("_____").click(function(){

 $("_____").hide();

 });

 });

 </script>

 </head>

 <body>

 <p> If I have told you these details about the asteroid,

and made a note of its number for you, it is on account of the

grown-ups and their ways. When you tell them that you have

Playground | FITPED

34

made a new friend, they never ask you any questions about

essential matters. They never say to you, "What does his voice

sound like? What games does he love best? Does he collect

butterflies?" Instead, they demand: "How old is he? How many

brothers has he? How much does he weigh? How much money does

his father make?"</p>

 <button id="buttonHide">Hide paragraph</button>

 </body>

</html>

📝 2.1.5

Insert a new button to the code, id of the button will be "buttonShow" and in the
description (text on the button) will be "Show paragraph"

<!doctype html>

<html>

 <head>

 <title>JavaScript Example</title>

 <script

src="https://ajax.googleapis.com/ajax/libs/jquery/3.3.1/jquery

.min.js"></script>

 <script>

 $(document).ready(function () {

 $("#buttonHide").click(function(){

 $("p").hide();

 });

 });

 </script>

 </head>

 <body>

 <p> If I have told you these details about the asteroid,

and made a note of its number for you, it is on account of the

grown-ups and their ways. When you tell them that you have

made a new friend, they never ask you any questions about

essential matters. They never say to you, "What does his voice

sound like? What games does he love best? Does he collect

butterflies?" Instead, they demand: "How old is he? How many

brothers has he? How much does he weigh? How much money does

his father make?"</p>

 <button id="buttonHide">Hide paragraph</button>

 <button id="_____">_____</button>

Playground | FITPED

35

 </body>

</html>

📝 2.1.6

Insert the event .click() for the new button, using the new button id as the selector.
In the event, use the function show() for showing a hidden paragraph.

<!doctype html>

<html>

 <head>

 <title>JavaScript Example</title>

 <script

src="https://ajax.googleapis.com/ajax/libs/jquery/3.3.1/jquery

.min.js"></script>

 <script>

 $(document).ready(function () {

 $("#buttonHide").click(function(){

 $("p").hide();

 });

 $("_____").click(function(){

 $("p")._____;

 });

 });

 </script>

 </head>

 <body>

 <p> If I have told you these details about the asteroid,

and made a note of its number for you, it is on account of the

grown-ups and their ways. When you tell them that you have

made a new friend, they never ask you any questions about

essential matters. They never say to you, "What does his voice

sound like? What games does he love best? Does he collect

butterflies?" Instead, they demand: "How old is he? How many

brothers has he? How much does he weigh? How much money does

his father make?"</p>

 <button id="buttonHide">Hide paragraph</button>

 <button id="buttonShow">Show paragraph</button>

 </body>

</html>

Playground | FITPED

36

2.2 Classes

🕮 2.2.1

jQuery has several options for working with CSS, i.e. setting, changing, removing
CSS styles on a web page. The basic method for working with styles is the method
css(). Using this, we can:

• Read the currently set styles for the attribute on the webpage
• Set new styles for the attribute on the webpage.

The.css() method can be used with two syntax how to write method with
parameters. The basic syntax is

css("property_name","value");

E.g. to set the paragraph text color, the jQuery script might look like this:

$(document).ready(function () {

 $("p").css(“color”,”red”);

});

This syntax is useful for simple css()methods of application. We can use it to set
only one css property.

📝 2.2.2

Which method is used to dynamically adjust the css properties of the selected
attribute?

• .css()
• .style()
• .casscadin()
• .set_css()
• .set_style()

📝 2.2.3

By means of the jQuery set blue background color for the paragraph, i. element <p>.
To set it up, use the jQuerycss() method. Use the css property background-color,
use blue to adjust the blue color.

Playground | FITPED

37

<!doctype html>

<html>

 <head>

 <title>JavaScript Example</title>

 <script

src="https://ajax.googleapis.com/ajax/libs/jquery/3.3.1/jquery

.min.js"></script>

 <script>

 $(document).ready(function () {

 $("p").css("_____", "_____");

 });

 </script>

 </head>

 <body>

 <p> If I have told you these details about the

asteroid, and made a note of its number for you, it is on

account of the grown-ups and their ways. When you tell them

that you have made a new friend, they never ask you any

questions about essential matters. They never say to you,

"What does his voice sound like? What games does he love best?

Does he collect butterflies?" Instead, they demand: "How old

is he? How many brothers has he? How much does he weigh? How

much money does his father make?"</p>

 </body>

</html>

📝 2.2.4

It is obvious that the .css() method usange in the main jQuery method has no
meaningful significance. Quicker and easier is to set styles directly via css on the
web page. The most important meaning of the .css() method is in the dynamic style
change.

Task:

We created a paragraph and two buttons in the source code. We have also defined
the .click() event definition for both buttons. Use the .css() to set the paragraph
font color when you click the button with id="button_orange". Set the font color
using the .css() property "color" with value "orange". Keep in mind that the css
property and its value are actually text strings, so they must be included in the
quotation marks in the css method.

<!doctype html>

<html>

 <head>

Playground | FITPED

38

 <title>JavaScript Example</title>

 <script

src="https://ajax.googleapis.com/ajax/libs/jquery/3.3.1/jquery

.min.js"></script>

 <script>

 $(document).ready(function () {

 $("#button_orange").click(function(){

 $("p").css("_____", "_____");

 });

 $("#button_pink").click(function(){

 });

 });

 </script>

 </head>

 <body>

 <button id="button_orange">Set color to orange</button>

 <button id="button_pink">Set color to pink</button>

 <p> If I have told you these details about the

asteroid, and made a note of its number for you, it is on

account of the grown-ups and their ways. When you tell them

that you have made a new friend, they never ask you any

questions about essential matters. They never say to you,

"What does his voice sound like? What games does he love best?

Does he collect butterflies?" Instead, they demand: "How old

is he? How many brothers has he? How much does he weigh? How

much money does his father make?"</p>

 </body>

</html>

📝 2.2.5

Task:

Use the ..css() method to set the paragraph font color after you click on the second
button with id=“button_pink“. Set the font color with css property
“color“value“pink“.

<!doctype html>

<html>

 <head>

 <title>JavaScript Example</title>

Playground | FITPED

39

 <script

src="https://ajax.googleapis.com/ajax/libs/jquery/3.3.1/jquery

.min.js"></script>

 <script>

 $(document).ready(function () {

 $("#button_orange").click(function(){

 $("p").css("color", "orange");

 });

 $("#button_pink").click(function(){

 });

 });

 </script>

 </head>

 <body>

 <button id="button_orange">Set color to orange</button>

 <button id="button_pink">Set color to pink</button>

 <p> If I have told you these details about the

asteroid, and made a note of its number for you, it is on

account of the grown-ups and their ways. When you tell them

that you have made a new friend, they never ask you any

questions about essential matters. They never say to you,

"What does his voice sound like? What games does he love best?

Does he collect butterflies?" Instead, they demand: "How old

is he? How many brothers has he? How much does he weigh? How

much money does his father make?"</p>

 </body>

</html>

📝 2.2.6

Task:

Create a button that change the position (move to left), when you click on it. The
button changes its horizontal position to the center. Use the left property to change
the position of the button. The property value "50%"ensures the centering of the
horizontal position of the button.

Note: For the "jump" option through the page, we set the position to fixed for the
button using the css style.

<!doctype html>

<html>

Playground | FITPED

40

 <head>

 <title>JavaScript Example</title>

 <script

src="https://ajax.googleapis.com/ajax/libs/jquery/3.3.1/jquery

.min.js"></script>

 <script>

 $(document).ready(function () {

 $("#button_jump").click(function(){

 $("#button_jump").css("_____", "_____");

 });

 });

 </script>

 </head>

 <body>

 <button id="button_jump">Jump button</button>

 </body>

</html>

🕮 2.2.7

The .css method can be also used to read the set style. In this case, the method
has only one paramete, the style. The output is the specified values of the style in
the parameter.

In the following illustration, when you click on paragraph, the text color of the
paragraph is displayed and it value is displayed by means of the alert()function.

<!doctype html>

<html>

 <head>

 <title>JavaScript Example</title>

 <script

src="https://ajax.googleapis.com/ajax/libs/jquery/3.3.1/jquery

.min.js"></script>

 <script>

 $(document).ready(function () {

 $("p").click(function(){

 alert($("p").css("color"));

 });

 });

 </script>

 </head>

Playground | FITPED

41

 <body>

 <p> I jumped to my feet, completely thunderstruck.</p>

 </body>

</html>

🕮 2.2.8

In the previous examples, we used the .css() method to set the properties of the
html elements. Let´s imagine a situation, where we need to set multiple css
properties at the same time. For example, after clicking on a paragraph, we would
like this to completely reformatted by changing the font style, font color and font
size and so on. Of course the correct solution could be to change every new
property in a separated call of the .css() method.

Sometimes, it is a faster and more "clever" procedure to set the required properties
beforehand by means of the css style, setting the class as a selector. jQuery
provides the addClass() method. Use this class to assign a selected element to a
class that we used previously as a selector to set multiple css styles at the same
time. This way we apply multiple ccs styles to the element.

📝 2.2.9

Create a webpage, that will include text with paragraph and a button with label
"Change style". After the clicking on the button assign a class to the paragraph, to
which is multiple css styles created.

In the example, we prepared css styles and a button event.

Task:

Assign a class to the style that you created. Call the class "newstyle". Note that CSS
(as well in jQuery) uses a dot before the class name to indicate the class.

<!doctype html>

<html>

 <head>

 <title>JavaScript Example</title>

 <script

src="https://ajax.googleapis.com/ajax/libs/jquery/3.3.1/jquery

.min.js"></script>

 <style type="text/css">

 _____{

 font-size:20px;

 color:orange;

Playground | FITPED

42

 background-color:yellow;

 }

 </style>

 <script>

 $(document).ready(function () {

 });

 </script>

 </head>

 <body>

 <p> I jumped to my feet, completely thunderstruck.</p>

 <button>Zmena štýlu</button>

 </body>

</html>

📝 2.2.10

Task: Create a button click event, use the button selector.

<!doctype html>

<html>

 <head>

 <title>JavaScript Example</title>

 <script

src="https://ajax.googleapis.com/ajax/libs/jquery/3.3.1/jquery

.min.js"></script>

 <style type="text/css">

 .newstyle{

 font-size:20px;

 color:orange;

 background-color:yellow;

 }

 </style>

 <script>

 $(document).ready(function () {

 $("_____")._____(function(){

 });

 });

 </script>

 </head>

 <body>

 <p> I jumped to my feet, completely thunderstruck.</p>

Playground | FITPED

43

 <button>Change style</button>

 </body>

</html>

📝 2.2.11

Task: Supplement a function that add a "newstyle" to the p selector. This ensures
that the "newstyle" class is assigned to the paragraph. There are multiple css styles
for the given class, which are applied to the paragraph format at the same time.

<!doctype html>

<html>

 <head>

 <title>JavaScript Example</title>

 <script

src="https://ajax.googleapis.com/ajax/libs/jquery/3.3.1/jquery

.min.js"></script>

 <style type="text/css">

 .newstyle{

 font-size:20px;

 color:orange;

 background-color:yellow;

 }

 </style>

 <script>

 $(document).ready(function () {

 $("button").click(function(){

 $("p")._____;

 });

 });

 </script>

 </head>

 <body>

 <p> I jumped to my feet, completely thunderstruck.</p>

 <button>Change Style</button>

 </body>

</html>

📝 2.2.12

The counterpart of the .addClass() method is the .removeClass(), which removes
the class from the selected elements.

Playground | FITPED

44

Task:

In our example we added new styles. Add for the newly created styles the
paragraph selector. For that purpose use selector p.

<!doctype html>

<html>

 <head>

 <title>JavaScript Example</title>

 <script

src="https://ajax.googleapis.com/ajax/libs/jquery/3.3.1/jquery

.min.js"></script>

 <style type="text/css">

 .newstyle{

 font-size:20px;

 color:orange;

 background-color:yellow;

 }

 _____{

 font-size:14px;

 color:black;

 background-color:white;

 }

 </style>

 <script>

 $(document).ready(function () {

 $("button").click(function(){

 $("p").addClass("new

style");

 });

 });

 </script>

 </head>

 <body>

 <p> I jumped to my feet, completely thunderstruck.</p>

 <button>Change style</button>

 </body>

</html>

Playground | FITPED

45

📝 2.2.13

Task: We created a mouse click event on a paragraph. Add the .removeClass()
method with the correct parameter (specifying the name of the style being removed
from the paragraph) to remove the style from the paragraph.

<!doctype html>

<html>

 <head>

 <title>JavaScript Example</title>

 <script

src="https://ajax.googleapis.com/ajax/libs/jquery/3.3.1/jquery

.min.js"></script>

 <style type="text/css">

 .newstyle{

 font-size:20px;

 color:orange;

 background-color:yellow;

 }

 p{

 font-size:14px;

 color:black;

 background-color:white;

 }

 </style>

 <script>

 $(document).ready(function () {

 $("button").click(function(){

 $("p").addClass("new

style");

 });

 $("p").click(function(){

 });

 });

 </script>

 </head>

 <body>

 <p> I jumped to my feet, completely thunderstruck.</p>

 <button>Change style</button>

 </body>

Playground | FITPED

46

</html>

📝 2.2.14

By means of the jQuery set the blue background color for the paragraph, i. element
<p> To set it, use the jQuery css() method. Use the css property background-color,
use blue parameter to adjust the blue color.

<!doctype html>

<html>

 <head>

 <title>JavaScript Example</title>

 <script

src="https://ajax.googleapis.com/ajax/libs/jquery/3.3.1/jquery

.min.js"></script>

 <script>

 $(document).ready(function () {

 $("p").css("_____", "_____");

 });

 </script>

 </head>

 <body>

 <p> If I have told you these details about the

asteroid, and made a note of its number for you, it is on

account of the grown-ups and their ways. When you tell them

that you have made a new friend, they never ask you any

questions about essential matters. They never say to you,

"What does his voice sound like? What games does he love best?

Does he collect butterflies?" Instead, they demand: "How old

is he? How many brothers has he? How much does he weigh? How

much money does his father make?"</p>

 </body>

</html>

Angular

Introduction

Chapter 3

Angular Introduction | FITPED

49

3.1 What is Angular?

🕮 3.1.1

Angular is a platform and framework for building single-page client applications
using HTML and TypeScript. Angular is written in TypeScript. It implements core
and optional functionality as a set of TypeScript libraries that you import into your
apps.

🕮 3.1.2

With basic building blocks framework Angular components which are Angular
organized in NgModules. They are collecting NgModules connected code into
functional sets; the Angular application is being defined by the NgModules set. The
application always has at least main module which the bootstrap enables, and
usually has modules far more of function.

📝 3.1.3

What language is Angular written in?

3.2 TypeScript

🕮 3.2.1

TypeScript is an open-source language which builds on JavaScript, one of the
world’s most used tools, by adding static type definitions.

🕮 3.2.2

Types provide a way to describe the shape of an object, providing better
documentation, and allowing TypeScript to validate that your code is working
correctly.

Angular Introduction | FITPED

50

🕮 3.2.3

Writing types can be optional in TypeScript, because type inference allows you to
get a lot of power without writing additional code.

📝 3.2.4

What type is TypeScript?

3.3 Components

🕮 3.3.1

Components are the building blocks that compose an application. A component
includes a TypeScript class with a @Component() decorator, an HTML template,
and styles. The @Component() decorator specifies the following Angular-specific
information:

• A CSS selector that defines how the component is used in a template. HTML
elements in your template that match this selector become instances of the
component.

• An HTML template that instructs Angular how to render the component.
• An optional set of CSS styles that define the appearance of the template's

HTML elements.

🕮 3.3.2

Angular's component model offers strong encapsulation and an intuitive
application structure. Components also make your application easier to unit test
and can improve the overall readability of your code.

📝 3.3.3

What is a component?

Angular Introduction | FITPED

51

3.4 Templates

🕮 3.4.1

Each Angular template in your app is a section of HTML that you can include as a
part of the page that the browser displays. An Angular HTML template renders a
view, or user interface, in the browser, just like regular HTML, but with a lot more
functionality.

🕮 3.4.2

When you generate an Angular app with the Angular CLI, the app.component.html
file is the default template containing placeholder HTML.

📝 3.4.3

In which programming language are the templates written?

3.5 Dependency injection

🕮 3.5.1

Dependency injection allows you to declare the dependencies of your TypeScript
classes without taking care of their instantiation. Instead, Angular handles the
instantiation for you.

🕮 3.5.2

This design pattern allows you to write more testable and flexible code.

📝 3.5.3

What Angular does for us by injecting dependencies?

Angular Introduction | FITPED

52

3.6 Angular CLI

🕮 3.6.1

Angular CLI is the fastest, easiest, and recommended way to develop Angular
applications.

• ng build Compiles an Angular app into an output directory.
• ng serve Builds and serves your application, rebuilding on file changes.
• ng generate Generates or modifies files based on a schematic.
• ng test Runs unit tests on a given project.
• ng e2e Builds and serves an Angular application, then runs end-to-end tests.

📝 3.6.2

Builds and serves an Angular application, then runs end-to-end tests.

• ng test
• ng e2e
• ng test

3.7 Installation

🕮 3.7.1

Before the startup from Angularem one should install Node.js along with the
manager of npm packages. In order to check whether we have him installed on
one's computer one should write down into the terminal:

node --version

If a mistake will appear one should download the installer from the side:

https://nodejs.org/en/download/.

🕮 3.7.2

After node.js installing, with order "npm install - g typscript" we are installing
TypeScript, and at the end with order "npm install - g angular/cli" we are proceeding
to the Angular installation is imposing a customs duty. Angular is imposing a

https://nodejs.org/en/download/

Angular Introduction | FITPED

53

customs duty is a tool of the interface of the command line which lets us for full
managing the Angular application.

📝 3.7.3

How to check if we have a Node installed?

3.8 Application structure

🕮 3.8.1

Introduction to directory structure:

e2e It contains the code related to automated testing purpose.

node_modules It saves all the dev dependencies (used only at development time)
and dependencies (used for development as well as needed in production time),
any new dependency when added to project it is automatically saved to this folder.

src This directory contains all of our work related to project i.e. creating
components, creating services, adding CSS to the respective page, etc.

package.json This file stores the information about the libraries added and used in
the project with their specified version installed. Whenever a new library is added to
the project it’s name and version is added to the dependencies in package.json.

🕮 3.8.2

Inside src folder:

index.html This is the entry point for the application, app-root tag is the entry point
of the application on this single page application, on this page angular will add or
remove the content from the DOM or will add new content to the DOM.
Base href=”/” is important for routing purposes.

style.scss This file is the global stylesheet you can add that CSS classes or
selectors which are common to many components, for example, you can import
custom fonts, import bootstrap.css, etc.

assets It contains the js images, fonts, icons and many other files for your project.

Angular Introduction | FITPED

54

🕮 3.8.3

Inside app folder:

app.module.ts Defines the root module, named AppModule, that tells Angular how
to assemble the application. Initially declares only the AppComponent. As you add
more components to the app, they must be declared here.

app.component.html Defines the HTML template associated with the root
AppComponent.

app.component.spec.ts Defines a unit test for the root AppComponent.

app.component.ts Defines the logic for the app's root component, named
AppComponent. The view associated with this root component becomes the root of
the view hierarchy as you add components and services to your application.

3.9 Naming

🕮 3.9.1

All artifacts in your project; folders, files, classes, etc. should be named to convey
meaning. The names should give an indication of what the artifact does.

Use names that express your intentions

Use searchable names

Use nouns for classes, folders, and filenames

Use verbs or verb expressions for methods or functions

Avoid abbreviations and notations as they can be confusing

In addition to the general naming guidelines discussed above, Angular mainly uses
three case styles for naming artifacts. camelCase, PascalCase, and kebab-case. It
is important to know when and where to use each of these case styles.

🕮 3.9.2

Kebab-case is a naming style where all letters in the name are lowercase and uses
a hyphen to separate words in the name. Additionally, Angular uses a period to
separate the name, type, and extension of filenames.

Angular Introduction | FITPED

55

Including type in file names makes it easier to find a specific file type with a text
editor or IDE. In addition, they ensure pattern matching to automated tasks.

Kebab-case is used to name folders, component selectors, files, and the Angular
application itself. Common files in an Angular project include component files,
service files, template files, module files, etc.

🕮 3.9.3

PascalCase is a style where all the first letters of the words in the name are
capitalized or capitalized.

The Pascal case is mainly used for class naming in the Angular project.

e.g. Export class DogsListCompoent {}

🕮 3.9.4

The camelCase naming style is somewhat similar to the PascalCase style, except
that the first letter of the name should always be lowercase. All other words in the
name will have their first letter capitalized.

Note: CamelCase and kebab-case for single word names will be similar.

CamelCase is used to name methods or functions, properties, fields, directive
selectors, and pipe selectors.

3.10 First-party libraries

🕮 3.10.1

Angular provides many proprietary libraries to extend the functionality of the
website. You can also create your own libraries or use others.

🕮 3.10.2

Sample libraries:

• Angular Forms Uniform system for form participation and validation.

Angular Introduction | FITPED

56

• Angular HttpClient Robust HTTP client that can power more advanced client-
server communication.

• Angular Animations Rich system for driving animations based on application
state.

• Angular Schematics Automated scaffolding, refactoring, and update tools
that simplify development at large scale.

📝 3.10.3

Uniform system for form participation and validation.

• Angular Forms
• Angular Animations
• Angular Schematics

3.11 Introduction (Exercises)

📝 3.11.1

What language is Angular written in?

📝 3.11.2

What type is TypeScript?

📝 3.11.3

What is a component?

📝 3.11.4

In which programming language are the templates written?

📝 3.11.5

What Angular does for us by injecting dependencies?

Angular Introduction | FITPED

57

📝 3.11.6

Builds and serves an Angular application, then runs end-to-end tests.

📝 3.11.7

How to check if we have a Node installed?

Components

Chapter 4

Components | FITPED

59

4.1 Components

🕮 4.1.1

A component must belong to an NgModule in order for it to be available to another
component or application. To make it a member of an NgModule, list it in the
declarations field of the NgModule metadata.

Note that, in addition to these options for configuring a directive, you can control a
component's runtime behavior by implementing life-cycle hooks.

📝 4.1.2

What must a component belong to to be available to another component or
application?

🕮 4.1.3

ChangeDetection

The change-detection strategy to use for this component.

changeDetection?: ChangeDetectionStrategy

When a component is instantiated, Angular creates a change detector, which is
responsible for propagating the component's bindings. The strategy is one of:

ChangeDetectionStrategy#OnPush sets the strategy to CheckOnce (on demand).

ChangeDetectionStrategy#Default sets the strategy to CheckAlways.

🕮 4.1.4

viewProviders

Defines the set of injectable objects that are visible to its view DOM children.

viewProviders?: Provider[]

Components | FITPED

60

🕮 4.1.5

Property binding

Property binding in Angular helps you set values for properties of HTML elements
or directives. With property binding, you can do things such as toggle button
functionality, set paths programmatically, and share values between components.

Property binding moves a value in one direction, from a component's property into a
target element property.

To bind to an element's property, enclose it in square brackets, [], which identifies
the property as a target property. A target property is the DOM property to which
you want to assign a value. For example, the target property in the following code is
the image element's src property.

In this example, src is the name of the element property.

The brackets, [], cause Angular to evaluate the right-hand side of the assignment as
a dynamic expression. Without the brackets, Angular treats the right-hand side as a
string literal and sets the property to that static value.

<app-item-detail childItem="parentItem"></app-item-detail>

Omitting the brackets renders the string parentItem, not the value of parentItem.

🕮 4.1.6

Event binding

Event binding allows you to listen for and respond to user actions such as
keystrokes, mouse movements, clicks, and touches.

To bind to an event you use the Angular event binding syntax. This syntax consists
of a target event name within parentheses to the left of an equal sign, and a quoted
template statement to the right. In the following example, the target event name is
click and the template statement is onSave().

<button (click)="onSave()">Save</button>

The event binding listens for the button's click events and calls the component's
onSave() method whenever a click occurs.

Components | FITPED

61

📝 4.1.7

Event binding allows you to listen for and respond to user actions such as:

🕮 4.1.8

NgFor

A structural directive that renders a template for each item in a collection. The
directive is placed on an element, which becomes the parent of the cloned
templates.

The ngForOf directive is generally used in the shorthand form *ngFor. In this form,
the template to be rendered for each iteration is the content of an anchor element
containing the directive.

Angular automatically expands the shorthand syntax as it compiles the template.
The context for each embedded view is logically merged to the current component
context according to its lexical position.

🕮 4.1.9

Template variables

Template variables help you use data from one part of a template in another part of
the template. With template variables, you can perform tasks such as respond to
user input or finely tune your application's forms.

In the template, you use the hash symbol, #, to declare a template variable. The
following template variable, #phone, declares a phone variable on an <input>
element.

<input #phone placeholder="phone number" />

You can refer to a template variable anywhere in the component's template. Here, a
<button> further down the template refers to the phone variable.

<input #phone placeholder="phone number" />

<!-- lots of other elements -->

<!-- phone refers to the input element; pass its `value` to an

event handler -->

<button (click)="callPhone(phone.value)">Call</button>

Components | FITPED

62

4.2 Overview

🕮 4.2.1

Prerequisites - To create a component, verify that you have met the following
prerequisites:

Install the Angular CLI.

Create an Angular workspace with initial application. If you don't have a project, you
can create one using ng new <project-name>, where <project-name> is the name of
your Angular application.

🕮 4.2.2

Creating a component using the Angular CLI

To create a component using the Angular CLI:

1. From a terminal window, navigate to the directory containing your
application.

2. Run the ng generate component <component-name> command, where
<component-name> is the name of your new component.

By default, this command creates the following:

• A folder named after the component
• A component file, <component-name>.component.ts
• A template file, <component-name>.component.html
• A CSS file, <component-name>.component.css
• A testing specification file, <component-name>.component.spec.ts

Where <component-name> is the name of your component.

🕮 4.2.3

Creating a component manually:

Although the Angular CLI is the easiest way to create an Angular component, you
can also create a component manually. This section describes how to create the
core component file within an existing Angular project.

To create a new component manually:

Components | FITPED

63

1. Navigate to your Angular project directory.
2. Create a new file, <component-name>.component.ts.
3. At the top of the file, add the following import statement.
4. After the import statement, add a @Component decorator.
5. Choose a CSS selector for the component.
6. Define the HTML template that the component uses to display information.

In most cases, this template is a separate HTML file.
7. Select the styles for the component's template. In most cases, you define the

styles for your component's template in a separate file.
8. Add a class statement that includes the code for the component.

🕮 4.2.4

Specifying a component's CSS selector

Every component requires a CSS selector. A selector instructs Angular to
instantiate this component wherever it finds the corresponding tag in template
HTML. For example, consider a component hello-world.component.ts that defines
its selector as app-hello-world. This selector instructs Angular to instantiate this
component any time the tag <app-hello-world> appears in a template.

Specify a component's selector by adding a selector statement to the @Component
decorator.

🕮 4.2.5

Defining a component's template

A template is a block of HTML that tells Angular how to render the component in
your application. You can define a template for your component in one of two ways:
by referencing an external file, or directly within the component.

To define a template as an external file, add a templateUrl property to the
@Component decorator.

@Component({

 selector: 'app-component-overview',

 templateUrl: './component-overview.component.html',

})

To define a template within the component, add a template property to the
@Component decorator that contains the HTML you want to use.

@Component({

Components | FITPED

64

 selector: 'app-component-overview',

 template: '<h1>Hello World!</h1>',

})

If you want your template to span multiple lines, you can use backticks (`). For
example:

@Component({

 selector: 'app-component-overview',

 template: `

 <h1>Hello World!</h1>

 <p>This template definition spans multiple lines.</p>

 `

})

🕮 4.2.6

Declaring a component's styles

You can declare component styles uses for its template in one of two ways: by
referencing an external file, or directly within the component.

To declare the styles for a component in a separate file, add a styleUrls property to
the @Component decorator.

@Component({

 selector: 'app-component-overview',

 templateUrl: './component-overview.component.html',

 styleUrls: ['./component-overview.component.css']

})

To declare the styles within the component, add a styles property to the
@Component decorator that contains the styles you want to use.

@Component({

 selector: 'app-component-overview',

 template: '<h1>Hello World!</h1>',

 styles: ['h1 { font-weight: normal; }']

})

The styles property takes an array of strings that contain the CSS rule declarations.

Components | FITPED

65

4.3 Lifecycle

🕮 4.3.1

Lifecycle hooks

A component instance has a lifecycle that starts when Angular instantiates the
component class and renders the component view along with its child views. The
lifecycle continues with change detection, as Angular checks to see when data-
bound properties change, and updates both the view and the component instance
as needed. The lifecycle ends when Angular destroys the component instance and
removes its rendered template from the DOM. Directives have a similar lifecycle, as
Angular creates, updates, and destroys instances in the course of execution.

Your application can use lifecycle hook methods to tap into key events in the
lifecycle of a component or directive in order to initialize new instances, initiate
change detection when needed, respond to updates during change detection, and
clean up before deletion of instances.

🕮 4.3.2

Responding to lifecycle events

You can respond to events in the lifecycle of a component or directive by
implementing one or more of the lifecycle hook interfaces in the Angular core
library. The hooks give you the opportunity to act on a component or directive
instance at the appropriate moment, as Angular creates, updates, or destroys that
instance.

Each interface defines the prototype for a single hook method, whose name is the
interface name prefixed with ng. For example, the OnInit interface has a hook
method named ngOnInit(). If you implement this method in your component or
directive class, Angular calls it shortly after checking the input properties for that
component or directive for the first time.

@Directive({selector: '[appPeekABoo]'})

export class PeekABooDirective implements OnInit {

 constructor(private logger: LoggerService) { }

 // implement OnInit's `ngOnInit` method

 ngOnInit() {

 this.logIt(`OnInit`);

 }

 logIt(msg: string) {

 this.logger.log(`#${nextId++} ${msg}`);

 }

Components | FITPED

66

}

You don't have to implement all (or any) of the lifecycle hooks, just the ones you
need.

🕮 4.3.3

Lifecycle event sequence

After your application instantiates a component or directive by calling its
constructor, Angular calls the hook methods you have implemented at the
appropriate point in the lifecycle of that instance.

Angular executes hook methods in the following sequence. You can use them to
perform the following kinds of operations.

ngOnChanges(), ngOnInit(), ngDoCheck(), ngAfterContentInit(),

ngAfterContentChecked(), ngAfterViewInit(),

ngAfterViewChecked(), ngOnDestroy().

🕮 4.3.4

Initializing a component or directive

Use the ngOnInit() method to perform the following initialization tasks.

• Perform complex initializations outside of the constructor. Components
should be cheap and safe to construct. You should not, for example, fetch
data in a component constructor. You shouldn't worry that a new component
will try to contact a remote server when created under test or before you
decide to display it. An ngOnInit() is a good place for a component to fetch
its initial data.

• Set up the component after Angular sets the input properties. Constructors
should do no more than set the initial local variables to simple values. Keep
in mind that a directive's data-bound input properties are not set until after
construction. If you need to initialize the directive based on those properties,
set them when ngOnInit() runs.

🕮 4.3.5

Cleaning up on instance destruction

Components | FITPED

67

Put cleanup logic in ngOnDestroy(), the logic that must run before Angular destroys
the directive.

This is the place to free resources that won't be garbage-collected automatically.
You risk memory leaks if you neglect to do so.

• Unsubscribe from Observables and DOM events.
• Stop interval timers.
• Unregister all callbacks that the directive registered with global or

application services.

The ngOnDestroy() method is also the time to notify another part of the application
that the component is going away.

🕮 4.3.6

Using change detection hooks

Angular calls the ngOnChanges() method of a component or directive whenever it
detects changes to the input properties. The onChanges example demonstrates
this by monitoring the OnChanges() hook.

ngOnChanges(changes: SimpleChanges) {

 for (const propName in changes) {

 const chng = changes[propName];

 const cur = JSON.stringify(chng.currentValue);

 const prev = JSON.stringify(chng.previousValue);

 this.changeLog.push(`${propName}: currentValue = ${cur},

previousValue = ${prev}`);

 }

}

The ngOnChanges() method takes an object that maps each changed property
name to a SimpleChange object holding the current and previous property values.
This hook iterates over the changed properties and logs them.

The example component, OnChangesComponent, has two input properties: hero
and power.

@Input() hero!: Hero;

@Input() power = '';

The host OnChangesParentComponent binds to them as follows.

<on-changes [hero]="hero" [power]="power"></on-changes>

Components | FITPED

68

4.4 Encapsulation

🕮 4.4.1

View encapsulation

In Angular, component CSS styles are encapsulated into the component's view and
don't affect the rest of the application.

To control how this encapsulation happens on a per component basis, you can set
the view encapsulation mode in the component metadata. Choose from the
following modes:

• ShadowDom view encapsulation uses the browser's native shadow DOM
implementation to attach a shadow DOM to the component's host element,
and then puts the component view inside that shadow DOM. The
component's styles are included within the shadow DOM.

• Emulated view encapsulation (the default) emulates the behavior of shadow
DOM by preprocessing (and renaming) the CSS code to effectively scope the
CSS to the component's view.

• None means that Angular does no view encapsulation. Angular adds the CSS
to the global styles. The scoping rules, isolations, and protections discussed
earlier don't apply. This mode is essentially the same as pasting the
component's styles into the HTML.

To set the component's encapsulation mode, use the encapsulation property in the
component metadata:

// warning: not all browsers support shadow DOM encapsulation

at this time

encapsulation: ViewEncapsulation.ShadowDom

🕮 4.4.2

Inspecting generated CSS

When using emulated view encapsulation, Angular preprocesses all component
styles so that they approximate the standard shadow CSS scoping rules.

In the DOM of a running Angular application with emulated view encapsulation
enabled, each DOM element has some extra attributes attached to it:

<hero-details _nghost-pmm-5>

 <h2 _ngcontent-pmm-5>Mister Fantastic</h2>

Components | FITPED

69

 <hero-team _ngcontent-pmm-5 _nghost-pmm-6>

 <h3 _ngcontent-pmm-6>Team</h3>

 </hero-team>

</hero-detail>

There are two kinds of generated attributes:

• An element that would be a shadow DOM host in native encapsulation has a
generated _nghost attribute. This is typically the case for component host
elements.

• An element within a component's view has a _ngcontent attribute that
identifies to which host's emulated shadow DOM this element belongs.

The exact values of these attributes aren't important. They are automatically
generated and you should never refer to them in application code. But they are
targeted by the generated component styles, which are in the <head> section of the
DOM:

[_nghost-pmm-5] {

 display: block;

 border: 1px solid black;

}

h3[_ngcontent-pmm-6] {

 background-color: white;

 border: 1px solid #777;

}

These styles are post-processed so that each selector is augmented with _nghost
or _ngcontent attribute selectors. These extra selectors enable the scoping rules
described in this page.

🕮 4.4.3

Mixing encapsulation modes

Avoid mixing components that use different view encapsulation. Where it is
necessary, you should be aware of how the component styles will interact.

• The styles of components with ViewEncapsulation.Emulated are added to
the <head> of the document, making them available throughout the
application, but are "scoped" so they only affect elements within the
component's template.

Components | FITPED

70

• The styles of components with ViewEncapsulation.None are added to the
<head> of the document, making them available throughout the application,
and are not "scoped" so they can affect any element in the application.

• The styles of components with ViewEncapsulation.ShadowDom are only
added to the shadow DOM host, ensuring that they only affect elements
within the component's template.

All the styles for ViewEncapsulation.Emulated and ViewEncapsulation.None
components are also added to the shadow DOM host of each
ViewEncapsulation.ShadowDom component.

The result is that styling for components with ViewEncapsulation.None will affect
matching elements within the shadow DOM.

This approach may seem counter-intuitive at first, but without it a component with
ViewEncapsulation.None could not be used within a component with
ViewEncapsulation.ShadowDom, since its styles would not be available.

4.5 Interaction

🕮 4.5.1

Pass data from parent to child with input binding

HeroChildComponent has two input properties, typically adorned with @Input()
decorator.

import { Component, Input } from '@angular/core';

import { Hero } from './hero';

@Component({

 selector: 'app-hero-child',

 template: `

 <h3>{{hero.name}} says:</h3>

 <p>I, {{hero.name}}, am at your service, {{masterName}}.</p>

 `

})

export class HeroChildComponent {

 @Input() hero!: Hero;

 @Input('master') masterName = ''; // tslint:disable-line: no-

input-rename

}

Components | FITPED

71

The second @Input aliases the child component property name masterName as
'master'.

The HeroParentComponent nests the child HeroChildComponent inside an *ngFor
repeater, binding its master string property to the child's master alias, and each
iteration's hero instance to the child's hero property.

import { Component } from '@angular/core';

import { HEROES } from './hero';

@Component({

 selector: 'app-hero-parent',

 template: `

 <h2>{{master}} controls {{heroes.length}} heroes</h2>

 <app-hero-child

 *ngFor="let hero of heroes"

 [hero]="hero"

 [master]="master">

 </app-hero-child>

 `

})

export class HeroParentComponent {

 heroes = HEROES;

 master = 'Master';

}

🕮 4.5.2

Intercept input property changes with a setter

Use an input property setter to intercept and act upon a value from the parent.

The setter of the name input property in the child NameChildComponent trims the
whitespace from a name and replaces an empty value with default text.

import { Component, Input } from '@angular/core';

@Component({

 selector: 'app-name-child',

 template: '<h3>"{{name}}"</h3>'

})

export class NameChildComponent {

 @Input()

 get name(): string { return this._name; }

Components | FITPED

72

 set name(name: string) {

 this._name = (name && name.trim()) || '<no name set>';

 }

 private _name = '';

}

Here's the NameParentComponent demonstrating name variations

including a name with all spaces:

import { Component } from '@angular/core';

@Component({

 selector: 'app-name-parent',

 template: `

 <h2>Master controls {{names.length}} names</h2>

 <app-name-child *ngFor="let name of names"

[name]="name"></app-name-child>

 `

})

export class NameParentComponent {

 // Displays 'Dr IQ', '<no name set>', 'Bombasto'

 names = ['Dr IQ', ' ', ' Bombasto '];

}

🕮 4.5.3

Intercept input property changes with ngOnChanges()

Detect and act upon changes to input property values with the ngOnChanges()
method of the OnChanges lifecycle hook interface.

This VersionChildComponent detects changes to the major and minor input
properties and composes a log message reporting these changes:

import { Component, Input, OnChanges, SimpleChanges } from

'@angular/core';

@Component({

 selector: 'app-version-child',

 template: `

 <h3>Version {{major}}.{{minor}}</h3>

 <h4>Change log:</h4>

 <li *ngFor="let change of changeLog">{{change}}

 `

Components | FITPED

73

})

export class VersionChildComponent implements OnChanges {

 @Input() major = 0;

 @Input() minor = 0;

 changeLog: string[] = [];

 ngOnChanges(changes: SimpleChanges) {

 const log: string[] = [];

 for (const propName in changes) {

 const changedProp = changes[propName];

 const to = JSON.stringify(changedProp.currentValue);

 if (changedProp.isFirstChange()) {

 log.push(`Initial value of ${propName} set to ${to}`);

 } else {

 const from = JSON.stringify(changedProp.previousValue);

 log.push(`${propName} changed from ${from} to ${to}`);

 }

 }

 this.changeLog.push(log.join(', '));

 }

}

The VersionParentComponent supplies the minor and major values and binds
buttons to methods that change them.

import { Component } from '@angular/core';

@Component({

 selector: 'app-version-parent',

 template: `

 <h2>Source code version</h2>

 <button (click)="newMinor()">New minor version</button>

 <button (click)="newMajor()">New major version</button>

 <app-version-child [major]="major" [minor]="minor"></app-

version-child>

 `

})

export class VersionParentComponent {

 major = 1;

 minor = 23;

 newMinor() {

 this.minor++;

 }

Components | FITPED

74

 newMajor() {

 this.major++;

 this.minor = 0;

 }

}

🕮 4.5.4

Parent listens for child event

The child component exposes an EventEmitter property with which it emits events
when something happens. The parent binds to that event property and reacts to
those events.

The child's EventEmitter property is an output property, typically adorned with an
@Output() decorator as seen in this VoterComponent:

import { Component, EventEmitter, Input, Output } from

'@angular/core';

@Component({

 selector: 'app-voter',

 template: `

 <h4>{{name}}</h4>

 <button

(click)="vote(true)" [disabled]="didVote">Agree</button>

 <button (click)="vote(false)"

[disabled]="didVote">Disagree</button>

 `

})

export class VoterComponent {

 @Input() name = '';

 @Output() voted = new EventEmitter<boolean>();

 didVote = false;

 vote(agreed: boolean) {

 this.voted.emit(agreed);

 this.didVote = true;

 }

}

Clicking a button triggers emission of a true or false, the boolean payload.

The parent VoteTakerComponent binds an event handler called onVoted() that
responds to the child event payload $event and updates a counter.

Components | FITPED

75

import { Component } from '@angular/core';

@Component({

 selector: 'app-vote-taker',

 template: `

 <h2>Should mankind colonize the Universe?</h2>

 <h3>Agree: {{agreed}}, Disagree: {{disagreed}}</h3>

 <app-voter

 *ngFor="let voter of voters"

 [name]="voter"

 (voted)="onVoted($event)">

 </app-voter>

 `

})

export class VoteTakerComponent {

 agreed = 0;

 disagreed = 0;

 voters = ['Narco', 'Celeritas', 'Bombasto'];

 onVoted(agreed: boolean) {

 agreed ? this.agreed++ : this.disagreed++;

 }

}

🕮 4.5.5

Parent interacts with child using local variable

A parent component cannot use data binding to read child properties or invoke
child methods. You can do both by creating a template reference variable for the
child element and then reference that variable within the parent template as seen in
the following example.

The following is a child CountdownTimerComponent that repeatedly counts down
to zero and launches a rocket. It has start and stop methods that control the clock
and it displays a countdown status message in its own template.

import { Component, OnDestroy } from '@angular/core';

@Component({

 selector: 'app-countdown-timer',

 template: '<p>{{message}}</p>'

})

export class CountdownTimerComponent implements OnDestroy {

Components | FITPED

76

 intervalId = 0;

 message = '';

 seconds = 11;

 ngOnDestroy() { this.clearTimer(); }

 start() { this.countDown(); }

 stop() {

 this.clearTimer();

 this.message = `Holding at T-${this.seconds} seconds`;

 }

 private clearTimer() { clearInterval(this.intervalId); }

 private countDown() {

 this.clearTimer();

 this.intervalId = window.setInterval(() => {

 this.seconds -= 1;

 if (this.seconds === 0) {

 this.message = 'Blast off!';

 } else {

 if (this.seconds < 0) { this.seconds = 10; } // reset

 this.message = `T-${this.seconds} seconds and counting`;

 }

 }, 1000);

 }

}

The CountdownLocalVarParentComponent that hosts the timer component is as
follows:

import { Component } from '@angular/core';

import { CountdownTimerComponent } from './countdown-

timer.component';

@Component({

 selector: 'app-countdown-parent-lv',

 template: `

 <h3>Countdown to Liftoff (via local variable)</h3>

 <button (click)="timer.start()">Start</button>

 <button (click)="timer.stop()">Stop</button>

 <div class="seconds">{{timer.seconds}}</div>

 <app-countdown-timer #timer></app-countdown-timer>

 `,

 styleUrls: ['../assets/demo.css']

Components | FITPED

77

})

export class CountdownLocalVarParentComponent { }

The parent component cannot data bind to the child's start and stop methods nor
to its seconds property.

You can place a local variable, #timer, on the tag <app-countdown-timer>
representing the child component. That gives you a reference to the child
component and the ability to access any of its properties or methods from within
the parent template.

4.6 Styles

🕮 4.6.1

Component styles

Angular applications are styled with standard CSS. That means you can apply
everything you know about CSS stylesheets, selectors, rules, and media queries
directly to Angular applications.

Additionally, Angular can bundle component styles with components, enabling a
more modular design than regular stylesheets.

🕮 4.6.2

Using component styles

For every Angular component you write, you may define not only an HTML template,
but also the CSS styles that go with that template, specifying any selectors, rules,
and media queries that you need.

One way to do this is to set the styles property in the component metadata. The
styles property takes an array of strings that contain CSS code. Usually you give it
one string, as in the following example:

@Component({

 selector: 'app-root',

 template: `

 <h1>Tour of Heroes</h1>

 <app-hero-main [hero]="hero"></app-hero-main>

 `,

 styles: ['h1 { font-weight: normal; }']

Components | FITPED

78

})

export class HeroAppComponent {

/* . . . */

}

🕮 4.6.3

Style scope

They are not inherited by any components nested within the template nor by any
content projected into the component.

In this example, the h1 style applies only to the HeroAppComponent, not to the
nested HeroMainComponent nor to <h1> tags anywhere else in the application.

This scoping restriction is a styling modularity feature.

• You can use the CSS class names and selectors that make the most sense in
the context of each component.

• Class names and selectors are local to the component and don't collide with
classes and selectors used elsewhere in the application.

• Changes to styles elsewhere in the application don't affect the component's
styles.

• You can co-locate the CSS code of each component with the TypeScript and
HTML code of the component, which leads to a neat and tidy project
structure.

• You can change or remove component CSS code without searching through
the whole application to find where else the code is used.

🕮 4.6.4

Special selectors

Component styles have a few special selectors from the world of shadow DOM
style scoping

:host

Use the :host pseudo-class selector to target styles in the element that hosts the
component (as opposed to targeting elements inside the component's template).

The :host selector is the only way to target the host element. You can't reach the
host element from inside the component with other selectors because it's not part
of the component's own template. The host element is in a parent component's
template.

Components | FITPED

79

Use the function form to apply host styles conditionally by including another
selector inside parentheses after :host.

:host-context

Sometimes it's useful to apply styles based on some condition outside of a
component's view. For example, a CSS theme class could be applied to the
document <body> element, and you want to change how your component looks
based on that.

Use the :host-context() pseudo-class selector, which works just like the function
form of :host(). The :host-context() selector looks for a CSS class in any ancestor of
the component host element, up to the document root. The :host-context() selector
is useful when combined with another selector.

🕮 4.6.5

Loading component styles

There are several ways to add styles to a component:

• By setting styles or styleUrls metadata.
• Inline in the template HTML.
• With CSS imports.

4.7 Content projection

🕮 4.7.1

Single-slot content projection

The most basic form of content projection is single-slot content projection. Single-
slot content projection refers to creating a component into which you can project
one component.

To create a component that uses single-slot content projection:

• Create a component.
• In the template for your component, add an <ng-content> element where you

want the projected content to appear.

Components | FITPED

80

🕮 4.7.2

Multi-slot content projection

A component can have multiple slots. Each slot can specify a CSS selector that
determines which content goes into that slot. This pattern is referred to as multi-
slot content projection. With this pattern, you must specify where you want the
projected content to appear. You accomplish this task by using the select attribute
of <ng-content>.

To create a component that uses multi-slot content projection:

1. Create a component.
2. In the template for your component, add an <ng-content> element where you

want the projected content to appear.
3. Add a select attribute to the <ng-content> elements. Angular supports

selectors for any combination of tag name, attribute, CSS class, and the :not
pseudo-class.

🕮 4.7.3

Conditional content projection

If your component needs to conditionally render content, or render content multiple
times, you should configure that component to accept an <ng-template> element
that contains the content you want to conditionally render.

Using an <ng-content> element in these cases is not recommended, because when
the consumer of a component supplies the content, that content is always
initialized, even if the component does not define an <ng-content> element or if that
<ng-content> element is inside of an ngIf statement.

With an <ng-template> element, you can have your component explicitly render
content based on any condition you want, as many times as you want. Angular will
not initialize the content of an <ng-template> element until that element is explicitly
rendered.

The following steps demonstrate a typical implementation of conditional content
projection using <ng-template>.

1.Create a component.

2.In the component that accepts an <ng-template> element, use an <ng-container>
element to render that template, such as:

Components | FITPED

81

<ng-container [ngTemplateOutlet]="content.templateRef"></ng-

container>

This example uses the ngTemplateOutlet directive to render a given <ng-template>
element, which you will define in a later step. You can apply an ngTemplateOutlet
directive to any type of element. This example assigns the directive to an <ng-
container> element because the component does not need to render a real DOM
element.

3.Wrap the <ng-container> element in another element, such as a div element, and
apply your conditional logic.

<div *ngIf="expanded" [id]="contentId">

 <ng-container [ngTemplateOutlet]="content.templateRef"></ng-

container>

</div>

4.In the template where you want to project content, wrap the projected content in
an <ng-template> element, such as:

<ng-template appExampleZippyContent>

 It depends on what you do with it.

</ng-template>

The <ng-template> element defines a block of content that a component can render
based on its own logic. A component can get a reference to this template content,
or TemplateRef, by using either the @ContentChild or @ContentChildren
decorators. The preceding example creates a custom directive,
appExampleZippyContent, as an API to mark the <ng-template> for the
component's content. With the TemplateRef, the component can render the
referenced content by using either the ngTemplateOutlet directive, or with the
ViewContainerRef method createEmbeddedView().

5.Create an attribute directive with a selector that matches the custom attribute for
your template. In this directive, inject a TemplateRef instance.

@Directive({

 selector: '[appExampleZippyContent]'

})

export class ZippyContentDirective {

 constructor(public templateRef: TemplateRef<unknown>) {}

}

In the previous step, you added an <ng-template> element with a custom attribute,
appExampleZippyDirective. This code provides the logic that Angular will use when
it encounters that custom attribute. In this case, that logic instructs Angular to
instantiate a template reference.

Components | FITPED

82

6.In the component you want to project content into, use @ContentChild to get the
template of the projected conten

@ContentChild(ZippyContentDirective) content!:

ZippyContentDirective;

Prior to this step, your application has a component that instantiates a template
when certain conditions are met. You've also created a directive that provides a
reference to that template. In this last step, the @ContentChild decorator instructs
Angular to instantiate the template in the designated component.

4.8 Dynamic Components

🕮 4.8.1

The anchor directive

Before you can add components you have to define an anchor point to tell Angular
where to insert components.

The ad banner uses a helper directive called AdDirective to mark valid insertion
points in the template.

import { Directive, ViewContainerRef } from '@angular/core';

@Directive({

 selector: '[adHost]',

})

export class AdDirective {

 constructor(public viewContainerRef: ViewContainerRef) { }

}

AdDirective injects ViewContainerRef to gain access to the view container of the
element that will host the dynamically added component.

In the @Directive decorator, notice the selector name, adHost; that's what you use
to apply the directive to the element. The next section shows you how.

Components | FITPED

83

🕮 4.8.2

Loading components

Most of the ad banner implementation is in ad-banner.component.ts. To keep
things simple in this example, the HTML is in the @Component decorator's
template property as a template string.

The <ng-template> element is where you apply the directive you just made. To apply
the AdDirective, recall the selector from ad.directive.ts, [adHost]. Apply that to <ng-
template> without the square brackets. Now Angular knows where to dynamically
load components.

template: `

 <div class="ad-banner-example">

 <h3>Advertisements</h3>

 <ng-template adHost></ng-template>

 </div>

`

The <ng-template> element is a good choice for dynamic components because it
doesn't render any additional output.

🕮 4.8.3

Resolving components

Take a closer look at the methods in ad-banner.component.ts.

AdBannerComponent takes an array of AdItem objects as input, which ultimately
comes from AdService. AdItem objects specify the type of component to load and
any data to bind to the component.AdService returns the actual ads making up the
ad campaign.

Passing an array of components to AdBannerComponent allows for a dynamic list
of ads without static elements in the template.

With its getAds() method, AdBannerComponent cycles through the array of
AdItems and loads a new component every 3 seconds by calling loadComponent().

export class AdBannerComponent implements OnInit, OnDestroy {

 @Input() ads: AdItem[] = [];

 currentAdIndex = -1;

Components | FITPED

84

 @ViewChild(AdDirective, {static: true}) adHost!: AdDirective;

 interval: number | undefined;

 constructor(private componentFactoryResolver:

ComponentFactoryResolver) { }

 ngOnInit() {

 this.loadComponent();

 this.getAds();

 }

 ngOnDestroy() {

 clearInterval(this.interval);

 }

 loadComponent() {

 this.currentAdIndex = (this.currentAdIndex + 1) %

this.ads.length;

 const adItem = this.ads[this.currentAdIndex];

 const componentFactory =

this.componentFactoryResolver.resolveComponentFactory(adItem.c

omponent);

 const viewContainerRef = this.adHost.viewContainerRef;

 viewContainerRef.clear();

 const componentRef =

viewContainerRef.createComponent<AdComponent>(componentFactory

);

 componentRef.instance.data = adItem.data;

 }

 getAds() {

 this.interval = setInterval(() => {

 this.loadComponent();

 }, 3000);

 }

}

The loadComponent() method is doing a lot of the heavy lifting here. Take it step by
step. First, it picks an ad.

Components | FITPED

85

After loadComponent() selects an ad, it uses ComponentFactoryResolver to resolve
a ComponentFactory for each specific component. The ComponentFactory then
creates an instance of each component.

Next, you're targeting the viewContainerRef that exists on this specific instance of
the component. How do you know it's this specific instance? Because it's referring
to adHost and adHost is the directive you set up earlier to tell Angular where to
insert dynamic components.

As you may recall, AdDirective injects ViewContainerRef into its constructor. This is
how the directive accesses the element that you want to use to host the dynamic
component.

To add the component to the template, you call createComponent() on
ViewContainerRef.

The createComponent() method returns a reference to the loaded component. Use
that reference to interact with the component by assigning to its properties or
calling its methods.

4.9 Angular elements

🕮 4.9.1

Angular elements overview

Angular elements are Angular components packaged as custom elements (also
called Web Components), a web standard for defining new HTML elements in a
framework-agnostic way.

Custom elements are a Web Platform feature currently supported by Chrome, Edge
(Chromium-based), Firefox, Opera, and Safari, and available in other browsers
through polyfills A custom element extends HTML by allowing you to define a tag
whose content is created and controlled by JavaScript code. The browser
maintains a CustomElementRegistry of defined custom elements, which maps an
instantiable JavaScript class to an HTML tag.

The @angular/elements package exports a createCustomElement() API that
provides a bridge from Angular's component interface and change detection
functionality to the built-in DOM API.

Transforming a component to a custom element makes all of the required Angular
infrastructure available to the browser. Creating a custom element is simple and
straightforward, and automatically connects your component-defined view with
change detection and data binding, mapping Angular functionality to the
corresponding native HTML equivalents.

Components | FITPED

86

🕮 4.9.2

Using custom elements

Custom elements bootstrap themselves - they start automatically when they are
added to the DOM, and are automatically destroyed when removed from the DOM.
Once a custom element is added to the DOM for any page, it looks and behaves like
any other HTML element, and does not require any special knowledge of Angular
terms or usage conventions.

Easy dynamic content in an Angular application

Transforming a component to a custom element provides an easy path to creating
dynamic HTML content in your Angular application. HTML content that you add
directly to the DOM in an Angular application is normally displayed without Angular
processing, unless you define a dynamic component, adding your own code to
connect the HTML tag to your application data, and participate in change detection.
With a custom element, all of that wiring is taken care of automatically.

Content-rich applications

If you have a content-rich application, such as the Angular app that presents this
documentation, custom elements let you give your content providers sophisticated
Angular functionality without requiring knowledge of Angular. For example, an
Angular guide like this one is added directly to the DOM by the Angular navigation
tools, but can include special elements like <code-snippet> that perform complex
operations. All you need to tell your content provider is the syntax of your custom
element. They don't need to know anything about Angular, or anything about your
component's data structures or implementation.

🕮 4.9.3

Transforming components to custom elements

Angular provides the createCustomElement() function for converting an Angular
component, together with its dependencies, to a custom element. The function
collects the component's observable properties, along with the Angular
functionality the browser needs to create and destroy instances, and to detect and
respond to changes.

The conversion process implements the NgElementConstructor interface, and
creates a constructor class that is configured to produce a self-bootstrapping
instance of your component.

Use the built-in

Components | FITPED

87

customElements.define()

 function to register the configured constructor and its associated custom-element
tag with the browser's

CustomElementRegistry

When the browser encounters the tag for the registered element, it uses the
constructor to create a custom-element instance.

🕮 4.9.4

Mapping

A custom element hosts an Angular component, providing a bridge between the
data and logic defined in the component and standard DOM APIs. Component
properties and logic maps directly into HTML attributes and the browser's event
system.

The creation API parses the component looking for input properties, and defines
corresponding attributes for the custom element. It transforms the property names
to make them compatible with custom elements, which do not recognize case
distinctions. The resulting attribute names use dash-separated lowercase. For
example, for a component with @Input('myInputProp') inputProp, the corresponding
custom element defines an attribute my-input-prop.

Component outputs are dispatched as HTML Custom Events, with the name of the
custom event matching the output name. For example, for a component with
@Output() valueChanged = new EventEmitter(), the corresponding custom element
will dispatch events with the name "valueChanged", and the emitted data will be
stored on the event’s detail property. If you provide an alias, that value is used; for
example, @Output('myClick') clicks = new EventEmitter<string>(); results in
dispatch events with the name "myClick".

4.10 Components (Exercises)

📝 4.10.1

Does each component require a CSS selector?

• yes
• no

Components | FITPED

88

📝 4.10.2

How can you define a template for your component?

📝 4.10.3

When the life cycle ends?

📝 4.10.4

What the cleanup logic in ngOnDestroy () protects against?

📝 4.10.5

View encapsulation (the default) emulates the behavior of shadow DOM by
preprocessing (and renaming) the CSS code to effectively scope the CSS to the
component's view

• ShadowDom
• Emulated
• None

📝 4.10.6

The styles of components with ViewEncapsulation.ShadowDom are only added to
the shadow DOM host, ensuring that they only affect elements within the
component's template.

• True
• False

📝 4.10.7

Don't style changes elsewhere in the application affect the component's styles?

Components | FITPED

89

📝 4.10.8

Możesz zmienić lub usunąć komponentowy kod CSS bez przeszukiwania całej
aplikacji, aby dowiedzieć się, gdzie jeszcze ten kod jest używany.

• True
• False

📝 4.10.9

Can a component only have one slot?

• No
• Yes

📝 4.10.10

What do I need to add before adding components?

📝 4.10.11

Passing an array of components to AdBannerComponent allows for a dynamic list
of ads without static elements in the template.

• True
• False

Templates

Chapter 5

Templates | FITPED

91

5.1 Text interpolation

🕮 5.1.1

Text interpolation

Text interpolation lets you incorporate dynamic string values into your HTML
templates. Use interpolation to dynamically change what appears in an application
view, such as displaying a custom greeting that includes the user's name.

🕮 5.1.2

Displaying values with interpolation

Interpolation refers to embedding expressions into marked up text. By default,
interpolation uses the double curly braces {{ and }} as delimiters.

To illustrate how interpolation works, consider an Angular component that contains
a currentCustomer variable:

src/app/app.component.ts

currentCustomer = 'Maria';

Use interpolation to display the value of this variable in the corresponding
component template:

src/app/app.component.html

<h3>Current customer: {{ currentCustomer }}</h3>

Angular replaces currentCustomer with the string value of the corresponding
component property. In this case, the value is Maria.

In the following example, Angular evaluates the title and itemImageUrl properties to
display some title text and an image.

src/app/app.component.html

<p>{{title}}</p>

<div></div>

Templates | FITPED

92

🕮 5.1.3

Template expressions

A template expression produces a value and appears within double curly braces, {{
}}. Angular resolves the expression and assigns it to a property of a binding target.
The target could be an HTML element, a component, or a directive.

Resolving expressions with interpolation

More generally, the text between the braces is a template expression that Angular
first evaluates and then converts to a string. The following interpolation illustrates
the point by adding two numbers:

src/app/app.component.html

<!-- "The sum of 1 + 1 is 2" -->

<p>The sum of 1 + 1 is {{1 + 1}}.</p>

Expressions can also invoke methods of the host component such as getVal() in
the following example:

src/app/app.component.html

<!-- "The sum of 1 + 1 is not 4" -->

<p>The sum of 1 + 1 is not {{1 + 1 + getVal()}}.</p>

With interpolation, Angular performs the following tasks:

1. Evaluates all expressions in double curly braces.
2. Converts the expression results to strings.
3. Links the results to any adjacent literal strings.
4. Assigns the composite to an element or directive property.

🕮 5.1.4

Syntax

Template expressions are similar to JavaScript. Many JavaScript expressions are
legal template expressions, with the following exceptions.

You can't use JavaScript expressions that have or promote side effects, including:

• Assignments (=, +=, -=, ...)
• Operators such as new, typeof, or instanceof

Templates | FITPED

93

• Chaining expressions with ; or ,
• The increment and decrement operators ++ and --
• Some of the ES2015+ operators

Other notable differences from JavaScript syntax include:

• No support for the bitwise operators such as | and &
• New template expression operators, such as |, ?. and !

🕮 5.1.5

Expression context

Interpolated expressions have a context—a particular part of the application to
which the expression belongs. Typically, this context is the component instance.

In the following snippet, the expression recommended and the
expression itemImageUrl2 refer to properties of the AppComponent.

src/app/app.component.html

<h4>{{recommended}}</h4>

An expression can also refer to properties of the template's context such as a
template input variable or a template reference variable.

The following example uses a template input variable of customer.

src/app/app.component.html (template input variable)

 <li *ngFor="let customer of

customers">{{customer.name}}

This next example features a template reference variable, #customerInput.

src/app/app.component.html (template reference variable)

<label>Type something:

 <input #customerInput>{{customerInput.value}}

</label>

Templates | FITPED

94

🕮 5.1.6

Preventing name collisions

The context against which an expression evaluates is the union of the template
variables, the directive's context object—if it has one—and the component's
members. If you reference a name that belongs to more than one of these
namespaces, Angular applies the following logic to determine the context:

1. The template variable name.
2. A name in the directive's context.
3. The component's member names.

To avoid variables shadowing variables in another context, keep variable names
unique. In the following example, the AppComponent template greets the customer,
Padma.

An ngfor then lists each customer in the customers array.

src/app/app.component.ts

@Component({

 template: `

 <div>

 <!-- Hello, Padma -->

 <h1>Hello, {{customer}}</h1>

 <!-- Ebony and Chiho in a list-->

 <li *ngFor="let customer of customers">{{

customer.value }}

 </div>

 `

})

class AppComponent {

 customers = [{value: 'Ebony'}, {value: 'Chiho'}];

 customer = 'Padma';

}

The customer within the ngFor is in the context of an <ng-template> and so refers
to the customer in the customers array, in this case Ebony and Chiho. This list does
not feature Padma because customer outside of the ngFor is in a different context.
Conversely, customer in the <h1> doesn't include Ebony or Chiho because the
context for this customer is the class and the class value for customer is Padma.

Templates | FITPED

95

🕮 5.1.7

Expression best practices

When using template expressions, follow these best practices:

• Use short expressions
• Use property names or method calls whenever possible. Keep application

and business logic in the component, where it is accessible to develop and
test.

• Quick execution
• Angular executes template expressions after every change detection cycle.

Many asynchronous activities trigger change detection cycles, such as
promise resolutions, HTTP results, timer events, key presses and mouse
moves.

• Expressions should finish quickly to keep the user experience as efficient as
possible, especially on slower devices. Consider caching values when their
computation requires greater resources.

• No visible side effects
• According to Angular's unidirectional data flow model,, a template

expression should not change any application state other than the value of
the target property. Reading a component value should not change some
other displayed value. The view should be stable throughout a single
rendering pass.

5.2 Template statements

🕮 5.2.1

Template statements

Template statements are methods or properties that you can use in your HTML to
respond to user events. With template statements, your application can engage
users through actions such as displaying dynamic content or submitting forms.

In the following example, the template statement deleteHero() appears in quotes to
the right of the = symbol as in (event)="statement".

src/app/app.component.html

<button (click)="deleteHero()">Delete hero</button>

When the user clicks the Delete hero button, Angular calls the deleteHero() method
in the component class.

Templates | FITPED

96

Use template statements with elements, components, or directives in response to
events.

🕮 5.2.2

Syntax

Like template expressions template statements use a language that looks like
JavaScript. However, the parser for template statements differs from the parser for
template expressions. In addition, the template statements parser specifically
supports both basic assignment, =, and chaining expressions with semicolons, ;.

The following JavaScript and template expression syntax is not allowed:

• new
• increment and decrement operators, ++ and --
• operator assignment, such as += and -=
• the bitwise operators, such as | and &
• the pipe operator

🕮 5.2.3

Statement context

Statements have a context—a particular part of the application to which the
statement belongs.

Statements can refer only to what's in the statement context, which is typically the
component instance. For example, deleteHero() of (click)="deleteHero()" is a
method of the component in the following snippet.

src/app/app.component.html

<button (click)="deleteHero()">Delete hero</button>

The statement context may also refer to properties of the template's own context.
In the following example, the component's event handling method, onSave() takes
the template's own $event object as an argument. On the next two lines, the
deleteHero() method takes a template input variable, hero, and onSubmit() takes a
template reference variable, #heroForm.

src/app/app.component.html

<button (click)="onSave($event)">Save</button>

Templates | FITPED

97

<button *ngFor="let hero of heroes"

(click)="deleteHero(hero)">{{hero.name}}</button>

<form #heroForm (ngSubmit)="onSubmit(heroForm)"> ... </form>

In this example, the context of the $event object, hero, and #heroForm is the
template.

Template context names take precedence over component context names. In the
preceding deleteHero(hero), the hero is the template input variable, not the
component's hero property.

🕮 5.2.4

Statement best practices

• Conciseness
• Use method calls or basic property assignments to keep template

statements minimal.
• Work within the context
• The context of a template statement can be the component class instance or

the template. Because of this, template statements cannot refer to anything
in the global namespace such as window or document. For example,
template statements can't call console.log() or Math.max().

5.3 Pipes

🕮 5.3.1

Transforming Data Using Pipes

Use pipesto transform strings, currency amounts, dates, and other data for display.
Pipes are simple functions to use in template expressions to accept an input value
and return a transformed value. Pipes are useful because you can use them
throughout your application, while only declaring each pipe once. For example, you
would use a pipe to show a date as April 15, 1988 rather than the raw string format.

Angular provides built-in pipes for typical data transformations, including
transformations for internationalization (i18n), which use locale information to
format data. The following are commonly used built-in pipes for data formatting:

• DatePipe: Formats a date value according to locale rules.
• UpperCasePipe: Transforms text to all upper case.
• LowerCasePipe: Transforms text to all lower case.

Templates | FITPED

98

• CurrencyPipe: Transforms a number to a currency string, formatted
according to locale rules.

• DecimalPipe: Transforms a number into a string with a decimal point,
formatted according to locale rules.

• PercentPipe: Transforms a number to a percentage string, formatted
according to locale rules.

🕮 5.3.2

Transforming data with parameters and chained pipes

Use optional parameters to fine-tune a pipe's output. For example, use
the CurrencyPipe with a country code such as EUR as a parameter. The template
expression {{ amount | currency:'EUR' }} transforms the amount to currency in
euros. Follow the pipe name (currency) with a colon (:) and the parameter value
('EUR').

If the pipe accepts multiple parameters, separate the values with colons. For
example, {{ amount | currency:'EUR':'Euros '}} adds the second parameter, the string
literal 'Euros ', to the output string. Use any valid template expression as a
parameter, such as a string literal or a component property.

Some pipes require at least one parameter and allow more optional parameters,
such as SlicePipe. For example, {{ slice:1:5 }} creates a new array or string
containing a subset of the elements starting with element 1 and ending with
element 5.

🕮 5.3.3

Detecting changes with data binding in pipes

You use data binding with a pipe to display values and respond to user actions. If
the data is a primitive input value, such as String or Number, or an object reference
as input, such as Date or Array, Angular executes the pipe whenever it detects a
change for the input value or reference.

For example, you could change the previous custom pipe example to use two-way
data binding with ngModel to input the amount and boost factor, as shown in the
following code example.

src/app/power-boost-calculator.component.ts

import { Component } from '@angular/core';

Templates | FITPED

99

@Component({

 selector: 'app-power-boost-calculator',

 template: `

 <h2>Power Boost Calculator</h2>

 <label for="power-input">Normal power: </label>

 <input id="power-input" type="text" [(ngModel)]="power">

 <label for="boost-input">Boost factor: </label>

 <input id="boost-input" type="text" [(ngModel)]="factor">

 <p>

 Super Hero Power: {{power | exponentialStrength:

factor}}

 </p>

 `,

 styles: ['input {margin: .5rem 0;}']

})

export class PowerBoostCalculatorComponent {

 power = 5;

 factor = 1;

}

The exponentialStrength pipe executes every time the user changes the "normal
power" value or the "boost factor".

Angular detects each change and immediately runs the pipe. This is fine for
primitive input values. However, if you change something inside a composite object
(such as the month of a date, an element of an array, or an object property), you
need to understand how change detection works, and how to use an impure pipe.

5.4 Property binding

🕮 5.4.1

Property binding

Property binding in Angular helps you set values for properties of HTML elements
or directives. Use property binding to do things such as toggle button functionality,
set paths programmatically, and share values between components.

🕮 5.4.2

Binding to a property

Templates | FITPED

100

To bind to an element's property, enclose it in square brackets, [], which identifies
the property as a target property. A target property is the DOM property to which
you want to assign a value. For example, the target property in the following code is
the image element's src property.

src/app/app.component.html

In most cases, the target name is the name of a property, even when it appears to
be the name of an attribute. In this example, src is the name of the element
property.

The brackets, [], cause Angular to evaluate the right-hand side of the assignment as
a dynamic expression. Without the brackets, Angular treats the right-hand side as a
string literal and sets the property to that static value.

src/app.component.html

<app-item-detail childItem="parentItem"></app-item-detail>

🕮 5.4.3

Setting an element property to a component property value

To bind the src property of an element to a component's property, place the
target, src, in square brackets followed by an equal sign and then the property. The
property here is itemImageUrl.

src/app/app.component.html

Declare the itemImageUrl property in the class, in this case AppComponent.

src/app/app.component.ts

itemImageUrl = '../assets/phone.png';

colspan and colSpan

A common point of confusion is between the attribute, colspan, and the
property, colSpan. Notice that these two names differ by only a single letter.

If you wrote something like this:

<tr><td colspan="{{1 + 1}}">Three-Four</td></tr>

Templates | FITPED

101

You'd get this error:

Template parse errors:

Can't bind to 'colspan' because it isn't a known built-in

property

As the message says, the <td> element does not have a colspan property. This is
true because colspan is an attribute—colSpan, with a capital S, is the corresponding
property. Interpolation and property binding can set only properties, not attributes.

Instead, you'd use property binding and write it like this:

src/app/app.component.html

<!-- Notice the colSpan property is camel case -->

<tr><td [colSpan]="1 + 1">Three-Four</td></tr>

Another example is disabling a button when the component says that
it isUnchanged:

src/app/app.component.html

<!-- Bind button disabled state to `isUnchanged` property -->

<button [disabled]="isUnchanged">Disabled Button</button>

Another is setting a property of a directive:

src/app/app.component.html

<p [ngClass]="classes">[ngClass] binding to the classes

property making this blue</p>

Yet another is setting the model property of a custom component—a great way for
parent and child components to communicate:

src/app/app.component.html

<app-item-detail [childItem]="parentItem"></app-item-detail>

🕮 5.4.4

Toggling button functionality

To disable a button's functionality depending on a Boolean value, bind the
DOM disabled property to a property in the class that is true or false.

Templates | FITPED

102

src/app/app.component.html

<!-- Bind button disabled state to `isUnchanged` property -->

<button [disabled]="isUnchanged">Disabled Button</button>

Because the value of the property isUnchanged is true in the AppComponent,
Angular disables the button.

src/app/app.component.ts

isUnchanged = true;

🕮 5.4.5

Setting a directive property

To set a property of a directive, place the directive within square brackets , such
as [ngClass], followed by an equal sign and the property. Here, the property
is classes.

src/app/app.component.html

<p [ngClass]="classes">[ngClass] binding to the classes

property making this blue</p>

To use the property, you must declare it in the class, which in this example
is AppComponent. The value of classes is special.

src/app/app.component.ts

classes = 'special';

Angular applies the class special to the <p> element so that you can use special to
apply CSS styles.

🕮 5.4.6

Bind values between components

To set the model property of a custom component, place the target, here childItem,
between square brackets [] followed by an equal sign and the property. Here, the
property is parentItem.

src/app/app.component.html

https://angular.io/api/common/NgClass

Templates | FITPED

103

<app-item-detail [childItem]="parentItem"></app-item-detail>

To use the target and the property, you must declare them in their respective
classes.

Declare the target of childItem in its component class, in this
case ItemDetailComponent.

For example, the following code declares the target of childItem in its component
class, in this case ItemDetailComponent.

Then, the code contains an @Input() decorator with the childItem property so data
can flow into it.

src/app/item-detail/item-detail.component.ts

@Input() childItem = '';

Next, the code declares the property of parentItem in its component class, in this
case AppComponent. In this example the type of childItem is string,
so parentItem needs to be a string. Here, parentItem has the string value of lamp.

src/app/app.component.ts

parentItem = 'lamp';

With this configuration, the view of <app-item-detail> uses the value
of lamp for childItem.

🕮 5.4.7

Property binding and security

Property binding can help keep content secure. For example, consider the following
malicious content.

src/app/app.component.ts

evilTitle = 'Template <script>alert("evil never

sleeps")</script> Syntax';

The component template interpolates the content as follows:

src/app/app.component.html

Templates | FITPED

104

<p>"{{evilTitle}}" is the <i>interpolated</i> evil

title.</p>

The browser doesn't process the HTML and instead displays it raw, as follows.

"Template <script>alert("evil never sleeps")</script> Syntax"

is the interpolated evil title.

Angular does not allow HTML with <script> tags, neither with interpolation nor
property binding, which prevents the JavaScript from running.

In the following example, however, Angular sanitizes the values before displaying
them.

src/app/app.component.html

<!--

 Angular generates a warning for the following line as it

sanitizes them

 WARNING: sanitizing HTML stripped some content (see

https://g.co/ng/security#xss).

-->

 <p>"" is the <i>property

bound</i> evil title.</p>

Interpolation handles the <script> tags differently than property binding, but both
approaches render the content harmlessly. The following is the browser output of
the sanitized evilTitle example.

"Template Syntax" is the property bound evil title.

🕮 5.4.8

Property binding and interpolation

Often interpolation and property binding can achieve the same results. The
following binding pairs do the same thing.

src/app/app.component.html

<p> is the <i>interpolated</i>

image.</p>

<p> is the <i>property bound</i>

image.</p>

Templates | FITPED

105

<p>"{{interpolationTitle}}" is the <i>interpolated</i>

title.</p>

<p>"" is the

<i>property bound</i> title.</p>

Use either form when rendering data values as strings, though interpolation is
preferable for readability. However, when setting an element property to a non-
string data value, you must use property binding.

5.5 Attribute, class, and style bindings

🕮 5.5.1

Attribute, class, and style bindings

Attribute binding in Angular helps you set values for attributes directly. With
attribute binding, you can improve accessibility, style your application dynamically,
and manage multiple CSS classes or styles simultaneously.

🕮 5.5.2

Binding to an attribute

It is recommended that you set an element property with a property
binding whenever possible. However, sometimes you don't have an element
property to bind. In those situations, use attribute binding.

For example, ARIA and SVG are purely attributes. Neither ARIA nor SVG correspond
to element properties and don't set element properties. In these cases, you must
use attribute binding because there are no corresponding property targets.

🕮 5.5.3

Syntax

Attribute binding syntax resembles property binding, but instead of an element
property between brackets, you precede the name of the attribute with the
prefix attr, followed by a dot. Then, you set the attribute value with an expression
that resolves to a string.

<p [attr.attribute-you-are-targeting]="expression"></p>

Templates | FITPED

106

🕮 5.5.4

Binding ARIA attributes

One of the primary use cases for attribute binding is to set ARIA attributes, as in
this example:

src/app/app.component.html

<!-- create and set an aria attribute for assistive technology

-->

<button [attr.aria-label]="actionName">{{actionName}} with

Aria</button>

🕮 5.5.5

Binding to colspan

Another common use case for attribute binding is with the colspan attribute in
tables. Binding to the colspan attribute helps you keep your tables
programmatically dynamic. Depending on the amount of data that your application
populates a table with, the number of columns that a row spans could change.

To use attribute binding with the <td> attribute colspan:

1. Specify the colspan attribute by using the following syntax: [attr.colspan].
2. Set [attr.colspan] equal to an expression.

In the following example, you bind the colspan attribute to the expression 1 + 1.

src/app/app.component.html

<!-- expression calculates colspan=2 -->

<tr><td [attr.colspan]="1 + 1">One-Two</td></tr>

🕮 5.5.6

Binding to the class attribute

Use class binding to add and remove CSS class names from an
element's class attribute.

Binding to a single CSS class

Templates | FITPED

107

To create a single class binding, use the prefix class followed by a dot and the
name of the CSS class—for example, [class.sale]="onSale". Angular adds the class
when the bound expression, onSale is truthy, and it removes the class when the
expression is falsy—with the exception of undefined. See styling delegation for
more information.

Binding to multiple CSS classes

To bind to multiple classes, use [class] set to an expression—for
example, [class]="classExpression". The expression can be one of:

• A space-delimited string of class names.
• An object with class names as the keys and truthy or falsy expressions as

the values.
• An array of class names.

With the object format, Angular adds a class only if its associated value is truthy.

🕮 5.5.7

Injecting attribute values

There are cases where you need to differentiate the behavior of
a Component or Directive based on a static value set on the host element as an
HTML attribute. For example, you might have a directive that needs to know
the type of a <button> or <input> element.

The Attribute parameter decorator is great for passing the value of an HTML
attribute to a component/directive constructor using dependency injection.

src/app/my-input-with-attribute-decorator.component.ts

import { Attribute, Component } from '@angular/core';

@Component({

 selector: 'app-my-input-with-attribute-decorator',

 template: '<p>The type of the input is: {{ type }}</p>'

})

export class MyInputWithAttributeDecoratorComponent {

 constructor(@Attribute('type') public type: string) { }

}

src/app/app.component.html

Templates | FITPED

108

<app-my-input-with-attribute-decorator type="number"></app-my-

input-with-attribute-decorator>

In the preceding example, the result of app.component.html is The type of the input
is: number.

Another example is the RouterOutlet directive, which makes use of
the Attribute decorator to retrieve the unique name on each outlet.

@ATTRIBUTE() VS @INPUT()

Remember, use @Input() when you want to keep track of the attribute value and
update the associated property. Use @Attribute() when you want to inject the value
of an HTML attribute to a component or directive constructor.

5.6 Event binding

🕮 5.6.1

Event binding

Event binding lets you listen for and respond to user actions such as keystrokes,
mouse movements, clicks, and touches.

🕮 5.6.2

Binding to events

To bind to an event you use the Angular event binding syntax. This syntax consists
of a target event name within parentheses to the left of an equal sign, and a quoted
template statement to the right. In the following example, the target event name
is click and the template statement is onSave().

Event binding syntax

<button (click)="onSave()">Save</button>

The event binding listens for the button's click events and calls the
component's onSave() method whenever a click occurs.

Templates | FITPED

109

🕮 5.6.3

Binding to passive events

Angular also supports passive event listeners. For example, use the following steps
to make a scroll event passive.

1. Create a file zone-flags.ts under src directory.
2. Add the following line into this file.

(window as any)['__zone_symbol__PASSIVE_EVENTS'] = ['scroll'];

1. In the src/polyfills.ts file, before importing zone.js, import the newly
created zone-flags.

import './zone-flags';

import 'zone.js'; // Included with Angular CLI.

After those steps, if you add event listeners for the scroll event, the listeners will
be passive.

🕮 5.6.4

Custom events with EventEmitter

Directives typically raise custom events with an Angular EventEmitter as follows.

1. The directive creates an EventEmitter and exposes it as a property.
2. The directive then calls EventEmitter.emit(data) to emit an event, passing in

message data, which can be anything.
3. Parent directives listen for the event by binding to this property and

accessing the data through the $event object.

Consider an ItemDetailComponent that presents item information and responds to
user actions. Although the ItemDetailComponent has a delete button, it doesn't
contain the functionality to delete the hero. It can only raise an event reporting the
user's delete request.

src/app/item-detail/item-detail.component.html (template)

{{ item.name }}

<button (click)="delete()">Delete</button>

Templates | FITPED

110

The component defines a deleteRequest property that returns an EventEmitter.
When the user clicks Delete, the component invokes the delete() method, telling
the EventEmitter to emit an Item object.

src/app/item-detail/item-detail.component.ts (deleteRequest)

// This component makes a request but it can't actually delete

a hero.

@Output() deleteRequest = new EventEmitter<Item>();

delete() {

 this.deleteRequest.emit(this.item);

 this.displayNone = this.displayNone ? '' : 'none';

 this.lineThrough = this.lineThrough ? '' : 'line-through';

}

The hosting parent component binds to the deleteRequest event of
the ItemDetailComponent as follows.

src/app/app.component.html (event-binding-to-component)

<app-item-detail (deleteRequest)="deleteItem($event)"

[item]="currentItem"></app-item-detail>

When the deleteRequest event fires, Angular calls the parent
component's deleteItem() method with the item.

Determining an event target

To determine an event target, Angular checks if the name of the target event
matches an event property of a known directive. In the following example, Angular
checks to see if myClick is an event on the custom ClickDirective.

src/app/app.component.html

<h4>myClick is an event on the custom ClickDirective:</h4>

<button (myClick)="clickMessage=$event" clickable>click with

myClick</button>

{{clickMessage}}

If the target event name, myClick fails to match an element event or an output
property of ClickDirective, Angular reports an "unknown directive" error.

Templates | FITPED

111

5.7 Two-way binding

🕮 5.7.1

Two-way binding

Two-way binding gives components in your application a way to share data. Use
two-way binding to listen for events and update values simultaneously between
parent and child components.

🕮 5.7.2

Adding two-way data binding

Angular's two-way binding syntax is a combination of square brackets and
parentheses, [()]. The [()] syntax combines the brackets of property binding, [], with
the parentheses of event binding, (), as follows.

src/app/app.component.html

<app-sizer [(size)]="fontSizePx"></app-sizer>

🕮 5.7.3

How two-way binding works

For two-way data binding to work, the @Output() property must use the
pattern, inputChange, where input is the name of the @Input() property. For
example, if the @Input() property is size, the @Output() property must
be sizeChange.

The following sizerComponent has a size value property and a sizeChange event.
The size property is an @Input(), so data can flow into the sizerComponent.
The sizeChange event is an @Output(), which lets data flow out of
the sizerComponent to the parent component.

Next, there are two methods, dec() to decrease the font size and inc() to increase
the font size. These two methods use resize() to change the value of
the size property within min/max value constraints, and to emit an event that
conveys the new size value.

src/app/sizer.component.ts

export class SizerComponent {

Templates | FITPED

112

 @Input() size!: number | string;

 @Output() sizeChange = new EventEmitter<number>();

 dec() { this.resize(-1); }

 inc() { this.resize(+1); }

 resize(delta: number) {

 this.size = Math.min(40, Math.max(8, +this.size + delta));

 this.sizeChange.emit(this.size);

 }

}

The sizerComponent template has two buttons that each bind the click event to
the inc() and dec() methods. When the user clicks one of the buttons,
the sizerComponent calls the corresponding method. Both
methods, inc() and dec(), call the resize() method with a +1 or -1, which in turn
raises the sizeChange event with the new size value.

src/app/sizer.component.html

<div>

 <button (click)="dec()" title="smaller">-</button>

 <button (click)="inc()" title="bigger">+</button>

 <label [style.font-size.px]="size">FontSize:

{{size}}px</label>

</div>

In the AppComponent template, fontSizePx is two-way bound to
the SizerComponent.

src/app/app.component.html

<app-sizer [(size)]="fontSizePx"></app-sizer>

<div [style.font-size.px]="fontSizePx">Resizable Text</div>

In the AppComponent, fontSizePx establishes the
initial SizerComponent.size value by setting the value to 16.

src/app/app.component.ts

fontSizePx = 16;

Clicking the buttons updates the AppComponent.fontSizePx. The
revised AppComponent.fontSizePx value updates the style binding, which makes
the displayed text bigger or smaller.

Templates | FITPED

113

The two-way binding syntax is shorthand for a combination of property binding and
event binding. The SizerComponent binding as separate property binding and event
binding is as follows.

src/app/app.component.html (expanded)

<app-sizer [size]="fontSizePx"

(sizeChange)="fontSizePx=$event"></app-sizer>

The $event variable contains the data of the SizerComponent.sizeChange event.
Angular assigns the $event value to the AppComponent.fontSizePx when the user
clicks the buttons.

TWO-WAY BINDING IN FORMS

Because no built-in HTML element follows the x value and xChange event pattern,
two-way binding with form elements requires NgModel.

5.8 Template variables

🕮 5.8.1

Template variablesTemplate variables help you use data from one part of a
template in another part of the template. Use template variables to perform tasks
such as respond to user input or finely tune your application's forms.

A template variable can refer to the following:

• a DOM element within a template
• a directive
• an element
• TemplateRef
• a web component

🕮 5.8.2

Syntax

In the template, you use the hash symbol, #, to declare a template variable. The
following template variable, #phone, declares a phone variable on
an <input> element.

src/app/app.component.html

Templates | FITPED

114

<input #phone placeholder="phone number" />

Refer to a template variable anywhere in the component's template. Here,
a <button> further down the template refers to the phone variable.

src/app/app.component.html

<input #phone placeholder="phone number" />

<!-- lots of other elements -->

<!-- phone refers to the input element; pass its `value` to an

event handler -->

<button (click)="callPhone(phone.value)">Call</button>

🕮 5.8.3

How Angular assigns values to template variables

Angular assigns a template variable a value based on where you declare the
variable:

• If you declare the variable on a component, the variable refers to the
component instance.

• If you declare the variable on a standard HTML tag, the variable refers to the
element.

• If you declare the variable on an <ng-template> element, the variable refers
to a TemplateRef instance, which represents the template. For more
information on <ng-template>, see How Angular uses the asterisk, *,
syntax in Structural directives.

• If the variable specifies a name on the right-hand side, such
as #var="ngModel", the variable refers to the directive or component on the
element with a matching exportAs name.

Using NgForm with template variables

In most cases, Angular sets the template variable's value to the element on which it
occurs. In the previous example, phone refers to the phone number <input>. The
button's click handler passes the <input> value to the
component's callPhone() method.

The NgForm directive demonstrates getting a reference to a different value by
reference a directive's exportAs name. In the following example, the template
variable, itemForm, appears three times separated by HTML.

src/app/hero-form.component.html

https://angular.io/guide/structural-directives#asterisk

Templates | FITPED

115

<form #itemForm="ngForm" (ngSubmit)="onSubmit(itemForm)">

 <label for="name">Name <input class="form-control"

name="name" ngModel required />

 </label>

 <button type="submit">Submit</button>

</form>

<div [hidden]="!itemForm.form.valid">

 <p>{{ submitMessage }}</p>

</div>

Without the ngForm attribute value, the reference value of itemForm would be
the HTMLFormElement, <form>. There is, however, a difference between
a Component and a Directive in that Angular references a Component without
specifying the attribute value, and a Directive does not change the implicit
reference, or the element.

With NgForm, itemForm is a reference to the NgForm directive with the ability to
track the value and validity of every control in the form.

Unlike the native <form> element, the NgForm directive has a form property.
The NgForm form property lets you disable the submit button if
the itemForm.form.valid is invalid.

🕮 5.8.4

Template input variable

A template input variable is a variable to reference within a single instance of the
template. You declare a template input variable using the let keyword as in let hero.

There are several such variables in this example: hero, i, and odd.

<ng-template #hero let-hero let-i="index" let-odd="isOdd">

 <div [class]="{'odd-row': odd}">{{i}}:{{hero.name}}</div>

</ng-template>

The variable's scope is limited to a single instance of the repeated template. Use
the same variable name again in the definition of other structural directives.

In contrast, you declare a template variable by prefixing the variable name with #, as
in #var. A template variable refers to its attached element, component, or directive.

Templates | FITPED

116

Template input variables and template variables names have their own
namespaces. The template input variable hero in let hero is distinct from the
template variable hero in #hero.

5.9 Templates (Exercises)

📝 5.9.1

What are the Best Expression Practices?

📝 5.9.2

Statement best practices

📝 5.9.3

To bind to an element's property, enclose it in ...

📝 5.9.4

What to use when you want to track the value of an attribute and update the related
property?

📝 5.9.5

What to use when you want to inject the value of an HTML attribute into the
constructor of a component or directive?

📝 5.9.6

Event binding allows you to listen and respond to user actions such as keystrokes,
mouse movements, clicks, and touches.

• Yes
• No

Templates | FITPED

117

📝 5.9.7

What Does Angular Do To Determine The Purpose Of An Event?

• Angular checks if the name of the target event matches an event property of
a known directive.

• Angular checks that the name of the target event matches the event property
of each directive.

📝 5.9.8

Since no built-in HTML element is compatible with the xvalue and xChangewith
event pattern, bidirectional binding to form elements requires ...

📝 5.9.9

If you declare the variable on a standard HTML tag ...

• the variable refers to the component instance.
• the variable refers to the element.
• the variable refers to the directive or component on the element with a

matching exportAs name.

Directive

Chapter 6

Directive | FITPED

119

6.1 Built-in directives

🕮 6.1.1

Built-in directivesDirectives are classes that add additional behavior to elements in
your Angular applications. With Angular's built-in directives, you can manage forms,
lists, styles, and what users see.

The different types of Angular directives are as follows:

1. Components—directives with a template. This type of directive is the most
common directive type.

2. Attribute directives—directives that change the appearance or behavior of an
element, component, or another directive.

3. Structural directives—directives that change the DOM layout by adding and
removing DOM elements.

🕮 6.1.2

Built-in attribute directives

Attribute directives listen to and modify the behavior of other HTML elements,
attributes, properties, and components.

Many NgModules such as the RouterModule and the FormsModule define their
own attribute directives. The most common attribute directives are as follows:

• NgClass—adds and removes a set of CSS classes.
• NgStyle—adds and removes a set of HTML styles.
• NgModel—adds two-way data binding to an HTML form element.

🕮 6.1.3

Adding and removing classes with NgClass

You can add or remove multiple CSS classes simultaneously with ngClass.

Using NgClass with an expression

On the element you'd like to style, add [ngClass] and set it equal to an expression. In
this case, isSpecial is a boolean set to true in app.component.ts.
Because isSpecial is true, ngClass applies the class of special to the <div>.

Directive | FITPED

120

src/app/app.component.html

<!-- toggle the "special" class on/off with a property -->

<div [ngClass]="isSpecial ? 'special' : ''">This div is

special</div>

Using NgClass with a methodlink

1. To use NgClass with a method, add the method to the component class. In
the following example, setCurrentClasses() sets the
property currentClasses with an object that adds or removes three classes
based on the true or false state of three other component properties.

2. Each key of the object is a CSS class name. If a key is true, ngClass adds the
class. If a key is false, ngClass removes the class.

3. src/app/app.component.ts

currentClasses: Record<string, boolean> = {};

/* . . . */

 setCurrentClasses() {

 // CSS classes: added/removed per current state of

component properties

 this.currentClasses = {

 saveable: this.canSave,

 modified: !this.isUnchanged,

 special: this.isSpecial

 };

 }

1. In the template, add the ngClass property binding to currentClasses to set
the element's classes:

2. src/app/app.component.html

<div [ngClass]="currentClasses">This div is initially

saveable, unchanged, and special.</div>

For this use case, Angular applies the classes on initialization and in case of
changes. The full example calls setCurrentClasses() initially with ngOnInit() and
when the dependent properties change through a button click. These steps are not
necessary to implement ngClass.

https://angular.io/guide/built-in-directives#using-ngclass-with-a-method

Directive | FITPED

121

🕮 6.1.4

Setting inline styles with NgStyle

You can use NgStyle to set multiple inline styles simultaneously, based on the state
of the component.

1. To use NgStyle, add a method to the component class.
2. In the following example, setCurrentStyles() sets the

property currentStyles with an object that defines three styles, based on the
state of three other component properties.

3. src/app/app.component.ts

currentStyles: Record<string, string> = {};

/* . . . */

 setCurrentStyles() {

 // CSS styles: set per current state of component

properties

 this.currentStyles = {

 'font-style': this.canSave ? 'italic' : 'normal',

 'font-weight': !this.isUnchanged ? 'bold' : 'normal',

 'font-size': this.isSpecial ? '24px' : '12px'

 };

 }

1. To set the element's styles, add an ngStyle property binding to currentStyles.
2. src/app/app.component.html

<div [ngStyle]="currentStyles">

 This div is initially italic, normal weight, and extra large

(24px).

</div>

For this use case, Angular applies the styles upon initialization and in case of
changes. To do this, the full example calls setCurrentStyles() initially
with ngOnInit() and when the dependent properties change through a button click.
However, these steps are not necessary to implement ngStyle on its own.

🕮 6.1.5

Displaying and updating properties with ngModel

You can use the NgModel directive to display a data property and update that
property when the user makes changes.

Directive | FITPED

122

1. Import FormsModule and add it to the NgModule's imports list.
2. src/app/app.module.ts (FormsModule import)

import { FormsModule } from '@angular/forms'; // <---

JavaScript import from Angular

/* . . . */

@NgModule({

/* . . . */

 imports: [

 BrowserModule,

 FormsModule // <--- import into the NgModule

],

/* . . . */

})

export class AppModule { }

1. Add an [(ngModel)] binding on an HTML <form> element and set it equal to
the property, here name.

2. src/app/app.component.html (NgModel example)

<label for="example-ngModel">[(ngModel)]:</label>

<input [(ngModel)]="currentItem.name" id="example-ngModel">

1. This [(ngModel)] syntax can only set a data-bound property.

To customize your configuration, you can write the expanded form, which separates
the property and event binding. Use property binding to set the property and event
binding to respond to changes. The following example changes the <input> value to
uppercase:

src/app/app.component.html

<input [ngModel]="currentItem.name"

(ngModelChange)="setUppercaseName($event)" id="example-

uppercase">

NgModel and value accessors

The NgModel directive works for an element supported by a ControlValueAccessor.
Angular provides value accessors for all of the basic HTML form elements. For
more information, see Forms.

To apply [(ngModel)] to a non-form native element or a third-party custom
component, you have to write a value accessor.

https://angular.io/api/forms/NgModel

Directive | FITPED

123

🕮 6.1.6

Built-in structural directives

Structural directives are responsible for HTML layout. They shape or reshape the
DOM's structure, typically by adding, removing, and manipulating the host elements
to which they are attached.

This section introduces the most common built-in structural directives:

• NgIf—conditionally creates or disposes of subviews from the template.
• NgFor—repeat a node for each item in a list.
• NgSwitch—a set of directives that switch among alternative views.

🕮 6.1.7

Adding or removing an element with NgIf

You can add or remove an element by applying an NgIf directive to a host element.

When NgIf is false, Angular removes an element and its descendants from the
DOM. Angular then disposes of their components, which frees up memory and
resources.

To add or remove an element, bind *ngIf to a condition expression such
as isActive in the following example.

src/app/app.component.html

<app-item-detail *ngIf="isActive" [item]="item"></app-item-

detail>

When the isActive expression returns a truthy value, NgIf adds
the ItemDetailComponent to the DOM. When the expression is falsy, NgIf removes
the ItemDetailComponent from the DOM and disposes of the component and all of
its sub-components.

🕮 6.1.8

Listing items with NgFor

You can use the NgFor directive to present a list of items.

Directive | FITPED

124

1. Define a block of HTML that determines how Angular renders a single item.
2. To list your items, assign the short hand let item of items to *ngFor.

src/app/app.component.html

<div *ngFor="let item of items">{{item.name}}</div>

The string "let item of items" instructs Angular to do the following:

• Store each item in the items array in the local item looping variable
• Make each item available to the templated HTML for each iteration
• Translate "let item of items" into an <ng-template> around the host element
• Repeat the <ng-template> for each item in the list
•

Repeating a component view

To repeat a component element, apply *ngFor to the selector. In the following
example, the selector is <app-item-detail>.

src/app/app.component.html

<app-item-detail *ngFor="let item of items"

[item]="item"></app-item-detail>

You can reference a template input variable, such as item, in the following
locations:

• within the ngFor host element
• within the host element descendants to access the item's properties

The following example references item first in an interpolation and then passes in a
binding to the item property of the <app-item-detail> component.

src/app/app.component.html

<div *ngFor="let item of items">{{item.name}}</div>

<!-- . . . -->

 <app-item-detail *ngFor="let item of items"

[item]="item"></app-item-detail>

Directive | FITPED

125

🕮 6.1.9

Switching cases with NgSwitch

Like the JavaScript switch statement, NgSwitch displays one element from among
several possible elements, based on a switch condition. Angular puts only the
selected element into the DOM.

NgSwitch is a set of three directives:

• NgSwitch—an attribute directive that changes the behavior of its companion
directives.

• NgSwitchCase—structural directive that adds its element to the DOM when
its bound value equals the switch value and removes its bound value when it
doesn't equal the switch value.

• NgSwitchDefault—structural directive that adds its element to the DOM when
there is no selected NgSwitchCase.

1. On an element, such as a <div>, add [ngSwitch] bound to an expression that
returns the switch value, such as feature. Though the feature value in this
example is a string, the switch value can be of any type.

2. Bind to *ngSwitchCase and *ngSwitchDefault on the elements for the cases.
3. src/app/app.component.html

<div [ngSwitch]="currentItem.feature">

 <app-stout-item *ngSwitchCase="'stout'"

[item]="currentItem"></app-stout-item>

 <app-device-item *ngSwitchCase="'slim'"

[item]="currentItem"></app-device-item>

 <app-lost-item *ngSwitchCase="'vintage'"

[item]="currentItem"></app-lost-item>

 <app-best-item *ngSwitchCase="'bright'"

[item]="currentItem"></app-best-item>

<!-- . . . -->

 <app-unknown-item *ngSwitchDefault

[item]="currentItem"></app-unknown-item>

</div>

1. In the parent component, define currentItem so you can use it in
the [ngSwitch] expression.

2. src/app/app.component.ts

currentItem!: Item;

1. In each child component, add an item input property which is bound to
the currentItem of the parent component. The following two snippets show

Directive | FITPED

126

the parent component and one of the child components. The other child
components are identical to StoutItemComponent.

2. In each child component, here StoutItemComponent

export class StoutItemComponent {

 @Input() item!: Item;

}

Switch directives also work with native HTML elements and web components. For
example, you could replace the <app-best-item> switch case with a <div> as
follows.

src/app/app.component.html

<div *ngSwitchCase="'bright'"> Are you as bright as

{{currentItem.name}}?</div>

6.2 Attribute directives

🕮 6.2.1

Attribute directives

With attribute directives, you can change the appearance or behavior of DOM
elements and Angular components.

🕮 6.2.2

Building an attribute directive

This section walks you through creating a highlight directive that sets the
background color of the host element to yellow.

1. To create a directive, use the CLI command ng generate directive.

ng generate directive highlight

1. The CLI creates src/app/highlight.directive.ts, a corresponding test
file src/app/highlight.directive.spec.ts, and declares the directive class in
the AppModule.

2. The CLI generates the default src/app/highlight.directive.ts as follows:
3.
4.

Directive | FITPED

127

5. src/app/highlight.directive.ts

import { Directive } from '@angular/core';

@Directive({

 selector: '[appHighlight]'

})

export class HighlightDirective {

 constructor() { }

}

1. The @Directive() decorator's configuration property specifies the directive's
CSS attribute selector, [appHighlight].

2. Import ElementRef from @angular/core. ElementRef grants direct access to
the host DOM element through its nativeElement property.

3. Add ElementRef in the directive's constructor() to inject a reference to the
host DOM element, the element to which you apply appHighlight.

4. Add logic to the HighlightDirective class that sets the background to yellow.
5. src/app/highlight.directive.ts

import { Directive, ElementRef } from '@angular/core';

@Directive({

 selector: '[appHighlight]'

})

export class HighlightDirective {

 constructor(el: ElementRef) {

 el.nativeElement.style.backgroundColor = 'yellow';

 }

}

🕮 6.2.3

Applying an attribute directive

1. To use the HighlightDirective, add a <p> element to the HTML template with
the directive as an attribute.

2. src/app/app.component.html

<p appHighlight>Highlight me!</p>

Angular creates an instance of the HighlightDirective class and injects a reference
to the <p> element into the directive's constructor, which sets the <p> element's
background style to yellow.

https://angular.io/guide/dependency-injection

Directive | FITPED

128

🕮 6.2.4

Handling user events

This section shows you how to detect when a user mouses into or out of the
element and to respond by setting or clearing the highlight color.

1. Import HostListener from '@angular/core'.
2. src/app/highlight.directive.ts (imports)

import { Directive, ElementRef, HostListener } from

'@angular/core';

1. Add two event handlers that respond when the mouse enters or leaves, each
with the @HostListener() decorator.

2. src/app/highlight.directive.ts (mouse-methods)

@HostListener('mouseenter') onMouseEnter() {

 this.highlight('yellow');

}

@HostListener('mouseleave') onMouseLeave() {

 this.highlight('');

}

private highlight(color: string) {

 this.el.nativeElement.style.backgroundColor = color;

}

1. With the @HostListener() decorator, you can subscribe to events of the DOM
element that hosts an attribute directive, the <p> in this case.

2. The handlers delegate to a helper method, highlight(), that sets the color on
the host DOM element, el.

The complete directive is as follows:

src/app/highlight.directive.ts

@Directive({

 selector: '[appHighlight]'

})

export class HighlightDirective {

 constructor(private el: ElementRef) { }

 @HostListener('mouseenter') onMouseEnter() {

Directive | FITPED

129

 this.highlight('yellow');

 }

 @HostListener('mouseleave') onMouseLeave() {

 this.highlight('');

 }

 private highlight(color: string) {

 this.el.nativeElement.style.backgroundColor = color;

 }

}

🕮 6.2.5

Passing values into an attribute directive

This section walks you through setting the highlight color while applying
the HighlightDirective.

1. In highlight.directive.ts, import Input from @angular/core.
2. src/app/highlight.directive.ts (imports)

import { Directive, ElementRef, HostListener, Input } from

'@angular/core';

1. Add an appHighlight @Input() property.
2. src/app/highlight.directive.ts

@Input() appHighlight = '';

1. The @Input() decorator adds metadata to the class that makes the
directive's appHighlight property available for binding.

2. In app.component.ts, add a color property to the AppComponent.
3. src/app/app.component.ts (class)

export class AppComponent {

 color = 'yellow';

}

1. To simultaneously apply the directive and the color, use property binding
with the appHighlight directive selector, setting it equal to color.

2. src/app/app.component.html (color)

<p [appHighlight]="color">Highlight me!</p>

Directive | FITPED

130

1. The [appHighlight] attribute binding performs two tasks:

• applies the highlighting directive to the <p> element
• sets the directive's highlight color with a property binding

Setting the value with user input

This section guides you through adding radio buttons to bind your color choice to
the appHighlight directive.

1. Add markup to app.component.html for choosing a color as follows:
2. src/app/app.component.html (v2)

<h1>My First Attribute Directive</h1>

<h2>Pick a highlight color</h2>

<div>

 <input type="radio" name="colors"

(click)="color='lightgreen'">Green

 <input type="radio" name="colors"

(click)="color='yellow'">Yellow

 <input type="radio" name="colors"

(click)="color='cyan'">Cyan

</div>

<p [appHighlight]="color">Highlight me!</p>

1. Revise the AppComponent.color so that it has no initial value.
2. src/app/app.component.ts (class)

export class AppComponent {

 color = '';

}

🕮 6.2.6

Binding to a second property

This section guides you through configuring your application so the developer can
set the default color.

1. Add a second Input() property to HighlightDirective called defaultColor.
2. src/app/highlight.directive.ts (defaultColor)

@Input() defaultColor = '';

Directive | FITPED

131

1. Revise the directive's onMouseEnter so that it first tries to highlight with
the highlightColor, then with the defaultColor, and falls back to red if both
properties are undefined.

2. src/app/highlight.directive.ts (mouse-enter)

@HostListener('mouseenter') onMouseEnter() {

 this.highlight(this.highlightColor || this.defaultColor ||

'red');

}

1. To bind to the AppComponent.color and fall back to "violet" as the default
color, add the following HTML. In this case, the defaultColor binding doesn't
use square brackets, [], because it is static.

2. src/app/app.component.html (defaultColor)

<p [appHighlight]="color" defaultColor="violet">

 Highlight me too!

</p>

1. As with components, you can add multiple directive property bindings to a
host element.

🕮 6.2.7

Deactivating Angular processing with NgNonBindable

To prevent expression evaluation in the browser, add ngNonBindable to the host
element. ngNonBindable deactivates interpolation, directives, and binding in
templates.

In the following example, the expression {{ 1 + 1 }} renders just as it does in your
code editor, and does not display 2.

src/app/app.component.html

<p>Use ngNonBindable to stop evaluation.</p>

<p ngNonBindable>This should not evaluate: {{ 1 + 1 }}</p>

Applying ngNonBindable to an element stops binding for that element's child
elements. However, ngNonBindable still allows directives to work on the element
where you apply ngNonBindable. In the following example,
the appHighlight directive is still active but Angular does not evaluate the
expression {{ 1 + 1 }}.

src/app/app.component.html

Directive | FITPED

132

<h3>ngNonBindable with a directive</h3>

<div ngNonBindable [appHighlight]="'yellow'">This should not

evaluate: {{ 1 +1 }}, but will highlight yellow.

</div>

If you apply ngNonBindable to a parent element, Angular disables interpolation and
binding of any sort, such as property binding or event binding, for the element's
children.

6.3 Structural Directives

🕮 6.3.1

Creating a structural directive

This section guides you through creating an UnlessDirective and how to
set condition values. The UnlessDirective does the opposite of NgIf,
and condition values can be set to true or false. NgIf displays the template content
when the condition is true. UnlessDirective displays the content when the condition
is false.

Following is the UnlessDirective selector, appUnless, applied to the paragraph
element. When condition is false, the browser displays the sentence.

src/app/app.component.html (appUnless-1)

<p *appUnless="condition">Show this sentence unless the

condition is true.</p>

1. Using the Angular CLI, run the following command, where unless is the name
of the directive:

ng generate directive unless

1. Angular creates the directive class and specifies the CSS
selector, appUnless, that identifies the directive in a template.

2. Import Input, TemplateRef, and ViewContainerRef.
3. src/app/unless.directive.ts (skeleton)

import { Directive, Input, TemplateRef, ViewContainerRef }

from '@angular/core';

@Directive({ selector: '[appUnless]'})

export class UnlessDirective {

}

Directive | FITPED

133

1. Inject TemplateRef and ViewContainerRef in the directive constructor as
private variables.

2. src/app/unless.directive.ts (ctor)

constructor(

 private templateRef: TemplateRef<any>,

 private viewContainer: ViewContainerRef) { }

1. The UnlessDirective creates an embedded view from the Angular-
generated <ng-template> and inserts that view in a view container adjacent
to the directive's original <p> host element.

2. TemplateRef helps you get to the <ng-template> contents
and ViewContainerRef accesses the view container.

3. Add an appUnless @Input() property with a setter.
4. src/app/unless.directive.ts (set)

@Input() set appUnless(condition: boolean) {

 if (!condition && !this.hasView) {

 this.viewContainer.createEmbeddedView(this.templateRef);

 this.hasView = true;

 } else if (condition && this.hasView) {

 this.viewContainer.clear();

 this.hasView = false;

 }

}

1. Angular sets the appUnless property whenever the value of the condition
changes.

• If the condition is falsy and Angular hasn't created the view previously, the
setter causes the view container to create the embedded view from the
template.

• If the condition is truthy and the view is currently displayed, the setter clears
the container, which disposes of the view.

The complete directive is as follows:

src/app/unless.directive.ts (excerpt)

import { Directive, Input, TemplateRef, ViewContainerRef }

from '@angular/core';

/**

 * Add the template content to the DOM unless the condition is

true.

 */

@Directive({ selector: '[appUnless]'})

Directive | FITPED

134

export class UnlessDirective {

 private hasView = false;

 constructor(

 private templateRef: TemplateRef<any>,

 private viewContainer: ViewContainerRef) { }

 @Input() set appUnless(condition: boolean) {

 if (!condition && !this.hasView) {

 this.viewContainer.createEmbeddedView(this.templateRef);

 this.hasView = true;

 } else if (condition && this.hasView) {

 this.viewContainer.clear();

 this.hasView = false;

 }

 }

}

🕮 6.3.2

Testing the directive

In this section, you'll update your application to test the UnlessDirective.

1. Add a condition set to false in the AppComponent.
2. src/app/app.component.ts (excerpt)

condition = false;

1. Update the template to use the directive. Here, *appUnless is on
two <p> tags with opposite condition values, one true and one false.

2. src/app/app.component.html (appUnless)

<p *appUnless="condition" class="unless a">

 (A) This paragraph is displayed because the condition is

false.

</p>

<p *appUnless="!condition" class="unless b">

 (B) Although the condition is true,

 this paragraph is displayed because appUnless is set to

false.

</p>

Directive | FITPED

135

1. The asterisk is shorthand that marks appUnless as a structural directive.
When the condition is falsy, the top (A) paragraph appears and the bottom
(B) paragraph disappears. When the condition is truthy, the top (A)
paragraph disappears and the bottom (B) paragraph appears.

2. To change and display the value of condition in the browser, add markup that
displays the status and a button.

3. src/app/app.component.html

<p>

 The condition is currently

 <span [ngClass]="{ 'a': !condition, 'b': condition,

'unless': true }">{{condition}}.

 <button

 (click)="condition = !condition"

 [ngClass] = "{ 'a': condition, 'b': !condition }" >

 Toggle condition to {{condition ? 'false' : 'true'}}

 </button>

</p>

6.4 Directives (Exercises)

📝 6.4.1

conditionally creates or disposes of subviews from the template -

📝 6.4.2

repeat a node for each item in a list -

📝 6.4.3

a set of directives that switch among alternative views -

📝 6.4.4

With attribute directives, you can change the ... of DOM elements and Angular
components.

📝 6.4.5

Which command to use to create a CLI command directive?

Dependency Injection

Chapter 7

Dependency Injection | FITPED

137

7.1 Dependency injection

🕮 7.1.1

Injecting dependencies in Angular

Dependencies are services or objects that a class needs to perform its function.
Dependency injection or DI is a design pattern in which a class requests
dependencies from external sources rather than creating them.

Angular's DI framework provides dependencies to a class when an instance is
created. You can use Angular DI to increase flexibility and modularity in your
applications.

🕮 7.1.2

Creating an injectable service

To generate a new HeroService class in the src/app/heroes folder use the
following Angular CLI command.

ng generate service heroes/hero

This command creates the following default HeroService.

src/app/heroes/hero.service.ts (CLI-generated)

import { Injectable } from '@angular/core';

@Injectable({

 providedIn: 'root',

})

export class HeroService {

 constructor() { }

}

The @Injectable() decorator specifies that Angular can use this class in the DI
system. The metadata, providedIn: 'root', means that the HeroService is visible
throughout the application.

Next, to get the hero mock data, add a getHeroes() method that returns the heroes
from mock.heroes.ts.

src/app/heroes/hero.service.ts

Dependency Injection | FITPED

138

import { Injectable } from '@angular/core';

import { HEROES } from './mock-heroes';

@Injectable({

 // declares that this service should be created

 // by the root application injector.

 providedIn: 'root',

})

export class HeroService {

 getHeroes() { return HEROES; }

}

For clarity and maintainability, it is recommended that you define components and
services in separate files.

If you do combine a component and service in the same file, it is important to
define the service first, and then the component. If you define the component
before the service, Angular returns a run-time null reference error.

🕮 7.1.3

Injecting services

Injecting services results in making them visible to a component.

To inject a dependency in a component's constructor(), supply a constructor
argument with the dependency type. The following example specifies
the HeroService in the HeroListComponent constructor. The type
of heroService is HeroService.

src/app/heroes/hero-list.component (constructor signature)

constructor(heroService: HeroService)

7.2 DI Providers

🕮 7.2.1

Dependency providers

By configuring providers, you can make services available to the parts of your
application that need them.

Dependency Injection | FITPED

139

A dependency provider configures an injector with a DI token, which that injector
uses to provide the runtime version of a dependency value.

🕮 7.2.2

Specifying a provider token

If you specify the service class as the provider token, the default behavior is for the
injector to instantiate that class with new.

In the following example, the Logger class provides a Logger instance.

providers: [Logger]

You can, however, configure an injector with an alternative provider in order to
deliver some other object that provides the needed logging functionality.

You can configure an injector with a service class, you can provide a substitute
class, an object, or a factory function.

🕮 7.2.3

Dependency injection tokens

When you configure an injector with a provider, you are associating that provider
with a dependency injection token, or DI token. The injector allows Angular to create
a map of any internal dependencies. The DI token acts as a key to that map.

The dependency value is an instance, and the class type serves as a lookup key.
Here, the injector uses the HeroService type as the token for looking
up heroService.

src/app/injector.component.ts

heroService: HeroService;

When you define a constructor parameter with the HeroService class type, Angular
knows to inject the service associated with that HeroService class token:

src/app/heroes/hero-list.component.ts

constructor(heroService: HeroService)

Dependency Injection | FITPED

140

Though classes provide many dependency values, the expanded provide object lets
you associate different kinds of providers with a DI token.

🕮 7.2.4

Defining providers

The class provider syntax is a shorthand expression that expands into a provider
configuration, defined by the Provider interface. The following example is the class
provider syntax for providing a Logger class in the providers array.

providers: [Logger]

Angular expands the providers value into a full provider object as follows.

[{ provide: Logger, useClass: Logger }]

The expanded provider configuration is an object literal with two properties:

• The provide property holds the token that serves as the key for both locating
a dependency value and configuring the injector.

• The second property is a provider definition object, which tells the injector
how to create the dependency value. The provider-definition key can
be useClass, as in the example. It can also be useExisting, useValue,
or useFactory. Each of these keys provides a different type of dependency,
as discussed below.

🕮 7.2.5

Specifying an alternative class provider

Different classes can provide the same service. For example, the following code
tells the injector to return a BetterLogger instance when the component asks for a
logger using the Logger token.

[{ provide: Logger, useClass: BetterLogger }]

Configuring class providers with dependencies

If the alternative class providers have their own dependencies, specify both
providers in the providers metadata property of the parent module or component.

[UserService,

Dependency Injection | FITPED

141

 { provide: Logger, useClass: EvenBetterLogger }]

In this example, EvenBetterLogger displays the user name in the log message. This
logger gets the user from an injected UserService instance.

@Injectable()

export class EvenBetterLogger extends Logger {

 constructor(private userService: UserService) { super(); }

 log(message: string) {

 const name = this.userService.user.name;

 super.log(`Message to ${name}: ${message}`);

 }

}

The injector needs providers for both this new logging service and its
dependent UserService.

Aliasing class providers

To alias a class provider, specify the alias and the class provider in
the providers array with the useExisting property.

In the following example, the injector injects the singleton instance
of NewLogger when the component asks for either the new or the old logger. In this
way, OldLogger is an alias for NewLogger.

[NewLogger,

 // Alias OldLogger w/ reference to NewLogger

 { provide: OldLogger, useExisting: NewLogger}]

Be sure you don't alias OldLogger to NewLogger with useClass, as this creates two
different NewLogger instances.

🕮 7.2.6

Injecting an object

To inject an object, configure the injector with the useValue option. The following
provider object uses the useValue key to associate the variable with
the Logger token.

[{ provide: Logger, useValue: SilentLogger }]

In this example, SilentLogger is an object that fulfills the logger role.

Dependency Injection | FITPED

142

// An object in the shape of the logger service

function silentLoggerFn() {}

export const SilentLogger = {

 logs: ['Silent logger says "Shhhhh!". Provided via

"useValue"'],

 log: silentLoggerFn

};

Injecting a configuration object

A common use case for object literals is a configuration object. The following
configuration object includes the title of the application and the address of a web
API endpoint.

src/app/app.config.ts (excerpt)

export const HERO_DI_CONFIG: AppConfig = {

 apiEndpoint: 'api.heroes.com',

 title: 'Dependency Injection'

};

To provide and inject the configuration object, specify the object in
the @NgModule() providers array.

src/app/app.module.ts (providers)

providers: [

 UserService,

 { provide: APP_CONFIG, useValue: HERO_DI_CONFIG }

],

Using an InjectionToken object

You can define and use an InjectionToken object for choosing a provider token for
non-class dependencies. The following example defines a token, APP_CONFIG of
the type InjectionToken.

src/app/app.config.ts

import { InjectionToken } from '@angular/core';

export const APP_CONFIG = new

InjectionToken<AppConfig>('app.config');

Dependency Injection | FITPED

143

The optional type parameter, <AppConfig>, and the token description, app.config,
specify the token's purpose.

Next, register the dependency provider in the component using
the InjectionToken object of APP_CONFIG.

src/app/providers.component.ts

providers: [{ provide: APP_CONFIG, useValue: HERO_DI_CONFIG }]

Now you can inject the configuration object into the constructor
with @Inject() parameter decorator.

src/app/app.component.ts

constructor(@Inject(APP_CONFIG) config: AppConfig) {

 this.title = config.title;

}

Interfaces and dependency injection

Though the TypeScript AppConfig interface supports typing within the class,
the AppConfig interface plays no role in dependency injection. In TypeScript, an
interface is a design-time artifact, and doesn't have a runtime representation, or
token, that the DI framework can use.

When the transpiler changes TypeScript to JavaScript, the interface disappears
because JavaScript doesn't have interfaces.

Since there is no interface for Angular to find at runtime, the interface cannot be a
token, nor can you inject it.

// Can't use interface as provider token

[{ provide: AppConfig, useValue: HERO_DI_CONFIG })]

content_copy

// Can't inject using the interface as the parameter type

constructor(private config: AppConfig){ }

7.3 Dependency injection (Exercises)

📝 7.3.1

What is recommended to ensure transparency and ease of maintenance?

Dependency Injection | FITPED

144

📝 7.3.2

If you define the component before the service ...

📝 7.3.3

A dependency provider configures an injector with a DI token, which that injector
uses to provide the runtime version of a dependency value.

• True
• False

Forms

Chapter 8

Forms | FITPED

146

8.1 Forms

🕮 8.1.1

Choosing an approach

Reactive forms and template-driven forms process and manage form data
differently. Each approach offers different advantages.

Reactive forms provide direct, explicit access to the underlying forms object model.
Compared to template-driven forms, they are more robust: they're more scalable,
reusable, and testable. If forms are a key part of your application, or you're already
using reactive patterns for building your application, use reactive forms.

Template-driven forms rely on directives in the template to create and manipulate
the underlying object model. They are useful for adding a simple form to an app,
such as an email list signup form. They're easy to add to an app, but they don't
scale as well as reactive forms. If you have very basic form requirements and logic
that can be managed solely in the template, template-driven forms could be a good
fit.

🕮 8.1.2

Scalability

If forms are a central part of your application, scalability is very important. Being
able to reuse form models across components is critical.

Reactive forms are more scalable than template-driven forms. They provide direct
access to the underlying form API, and use synchronous data flow between the
view and the data model, which makes creating large-scale forms easier. Reactive
forms require less setup for testing, and testing does not require deep
understanding of change detection to properly test form updates and validation.

Template-driven forms focus on simple scenarios and are not as reusable. They
abstract away the underlying form API, and use asynchronous data flow between
the view and the data model. The abstraction of template-driven forms also affects
testing. Tests are deeply reliant on manual change detection execution to run
properly, and require more setup.

Forms | FITPED

147

🕮 8.1.3

Setting up the form model

Both reactive and template-driven forms track value changes between the form
input elements that users interact with and the form data in your component model.
The two approaches share underlying building blocks but differ in how you create
and manage the common form-control instances.

Common form foundation classes

Both reactive and template-driven forms are built on the following base classes.

• FormControl tracks the value and validation status of an individual form
control.

• FormGroup tracks the same values and status for a collection of form
controls.

• FormArray tracks the same values and status for an array of form controls.
• ControlValueAccessor creates a bridge between

Angular FormControl instances and native DOM elements.

Setup in reactive forms

With reactive forms, you define the form model directly in the component class.
The [formControl] directive links the explicitly created FormControl instance to a
specific form element in the view, using an internal value accessor.

The following component implements an input field for a single control, using
reactive forms. In this example, the form model is the FormControl instance.

import { Component } from '@angular/core';

import { FormControl } from '@angular/forms';

@Component({

 selector: 'app-reactive-favorite-color',

 template: `

 Favorite Color: <input type="text"

[formControl]="favoriteColorControl">

 `

})

export class FavoriteColorComponent {

 favoriteColorControl = new FormControl('');

}

Forms | FITPED

148

🕮 8.1.4

Data flow in forms

When an application contains a form, Angular must keep the view in sync with the
component model and the component model in sync with the view. As users
change values and make selections through the view, the new values must be
reflected in the data model. Similarly, when the program logic changes values in the
data model, those values must be reflected in the view.

Reactive and template-driven forms differ in how they handle data flowing from the
user or from programmatic changes.

🕮 8.1.5

Form validation

Validation is an integral part of managing any set of forms. Whether you're
checking for required fields or querying an external API for an existing username,
Angular provides a set of built-in validators as well as the ability to create custom
validators.

• Reactive forms define custom validators as functions that receive a control
to validate.

• Template-driven forms are tied to template directives, and must provide
custom validator directives that wrap validation functions.

🕮 8.1.6

Testing

Testing plays a large part in complex applications. A simpler testing strategy is
useful when validating that your forms function correctly. Reactive forms and
template-driven forms have different levels of reliance on rendering the UI to
perform assertions based on form control and form field changes.

Forms | FITPED

149

8.2 Reactive forms

🕮 8.2.1

Overview of reactive forms

Reactive forms use an explicit and immutable approach to managing the state of a
form at a given point in time. Each change to the form state returns a new state,
which maintains the integrity of the model between changes. Reactive forms are
built around observable streams, where form inputs and values are provided as
streams of input values, which can be accessed synchronously.

Reactive forms also provide a straightforward path to testing because you are
assured that your data is consistent and predictable when requested. Any
consumers of the streams have access to manipulate that data safely.

Reactive forms differ from template-driven forms in distinct ways. Reactive forms
provide synchronous access to the data model, immutability with observable
operators, and change tracking through observable streams.

Template-driven forms allow direct access to modify data in your template, but are
less explicit than reactive forms because they rely on directives embedded in the
template, along with mutable data to track changes asynchronously.

🕮 8.2.2

Adding a basic form control

There are three steps to using form controls.

1. Register the reactive forms module in your application. This module declares
the reactive-form directives that you need to use reactive forms.

2. Generate a new FormControl instance and save it in the component.
3. Register the FormControl in the template.

You can then display the form by adding the component to the template.

The following examples show how to add a single form control. In the example, the
user enters their name into an input field, captures that input value, and displays the
current value of the form control element.

Register the reactive forms module

To use reactive form controls, import ReactiveFormsModule from
the @angular/forms package and add it to your NgModule's imports array.

Forms | FITPED

150

src/app/app.module.ts (excerpt)

import { ReactiveFormsModule } from '@angular/forms';

@NgModule({

 imports: [

 // other imports ...

 ReactiveFormsModule

],

})

export class AppModule { }

Generate a new FormControl

Use the CLI command ng generate to generate a component in your project to host
the control.

ng generate component NameEditor

To register a single form control, import the FormControl class and create a new
instance of FormControl to save as a class property.

src/app/name-editor/name-editor.component.ts

import { Component } from '@angular/core';

import { FormControl } from '@angular/forms';

@Component({

 selector: 'app-name-editor',

 templateUrl: './name-editor.component.html',

 styleUrls: ['./name-editor.component.css']

})

export class NameEditorComponent {

 name = new FormControl('');

}

Use the constructor of FormControl to set its initial value, which in this case is an
empty string. By creating these controls in your component class, you get
immediate access to listen for, update, and validate the state of the form input.

Register the control in the template

After you create the control in the component class, you must associate it with a
form control element in the template. Update the template with the form control
using the formControl binding provided by FormControlDirective, which is also
included in the ReactiveFormsModule.

Forms | FITPED

151

src/app/name-editor/name-editor.component.html

<label for="name">Name: </label>

<input id="name" type="text" [formControl]="name">

• For a summary of the classes and directives provided
by ReactiveFormsModule, see the Reactive forms API section below.

• For complete syntax details of these classes and directives, see the API
reference documentation for the Forms package.

Using the template binding syntax, the form control is now registered to
the name input element in the template. The form control and DOM element
communicate with each other: the view reflects changes in the model, and the
model reflects changes in the view.

Display the component

The form control assigned to name is displayed when the component is added to a
template.

src/app/app.component.html (name editor)

<app-name-editor></app-name-editor>

🕮 8.2.3

Displaying a form control value

You can display the value in the following ways.

• Through the valueChanges observable where you can listen for changes in
the form's value in the template using AsyncPipe or in the component class
using the subscribe() method.

• With the value property, which gives you a snapshot of the current value.

The following example shows you how to display the current value using
interpolation in the template.

src/app/name-editor/name-editor.component.html (control value)

<p>Value: {{ name.value }}</p>

The displayed value changes as you update the form control element.

Reactive forms provide access to information about a given control through
properties and methods provided with each instance. These properties and

Forms | FITPED

152

methods of the underlying AbstractControl class are used to control form state and
determine when to display messages when handling input validation.

🕮 8.2.4

Grouping form controls

Forms typically contain several related controls. Reactive forms provide two ways
of grouping multiple related controls into a single input form.

• A form group defines a form with a fixed set of controls that you can manage
together. Form group basics are discussed in this section. You can also nest
form groups to create more complex forms.

• A form array defines a dynamic form, where you can add and remove
controls at run time. You can also nest form arrays to create more complex
forms. For more about this option, see Creating dynamic forms below.

Just as a form control instance gives you control over a single input field, a form
group instance tracks the form state of a group of form control instances (for
example, a form). Each control in a form group instance is tracked by name when
creating the form group. The following example shows how to manage multiple
form control instances in a single group.

Generate a ProfileEditor component and import
the FormGroup and FormControl classes from the @angular/forms package.

ng generate component ProfileEditor

src/app/profile-editor/profile-editor.component.ts (imports)

import { FormGroup, FormControl } from '@angular/forms';

To add a form group to this component, take the following steps.

1. Create a FormGroup instance.
2. Associate the FormGroup model and view.
3. Save the form data.

Create a FormGroup instance

Create a property in the component class named profileForm and set the property
to a new form group instance. To initialize the form group, provide the constructor
with an object of named keys mapped to their control.

For the profile form, add two form control instances with the
names firstName and lastName.

Forms | FITPED

153

src/app/profile-editor/profile-editor.component.ts (form group)

import { Component } from '@angular/core';

import { FormGroup, FormControl } from '@angular/forms';

@Component({

 selector: 'app-profile-editor',

 templateUrl: './profile-editor.component.html',

 styleUrls: ['./profile-editor.component.css']

})

export class ProfileEditorComponent {

 profileForm = new FormGroup({

 firstName: new FormControl(''),

 lastName: new FormControl(''),

 });

}

The individual form controls are now collected within a group.
A FormGroup instance provides its model value as an object reduced from the
values of each control in the group. A form group instance has the same properties
(such as value and untouched) and methods (such as setValue()) as a form control
instance.

Associate the FormGroup model and view

A form group tracks the status and changes for each of its controls, so if one of the
controls changes, the parent control also emits a new status or value change. The
model for the group is maintained from its members. After you define the model,
you must update the template to reflect the model in the view.

src/app/profile-editor/profile-editor.component.html (template form group)

<form [formGroup]="profileForm">

 <label for="first-name">First Name: </label>

 <input id="first-name" type="text"

formControlName="firstName">

 <label for="last-name">Last Name: </label>

 <input id="last-name" type="text"

formControlName="lastName">

</form>

Note that just as a form group contains a group of controls,
the profileForm FormGroup is bound to the form element with

Forms | FITPED

154

the FormGroup directive, creating a communication layer between the model and
the form containing the inputs. The formControlName input provided by
the FormControlName directive binds each individual input to the form control
defined in FormGroup. The form controls communicate with their respective
elements. They also communicate changes to the form group instance, which
provides the source of truth for the model value.

Save form data

The ProfileEditor component accepts input from the user, but in a real scenario you
want to capture the form value and make available for further processing outside
the component. The FormGroup directive listens for the submit event emitted by
the form element and emits an ngSubmit event that you can bind to a callback
function.

Add an ngSubmit event listener to the form tag with the onSubmit() callback
method.

src/app/profile-editor/profile-editor.component.html (submit event)

<form [formGroup]="profileForm" (ngSubmit)="onSubmit()">

The onSubmit() method in the ProfileEditor component captures the current value
of profileForm. Use EventEmitter to keep the form encapsulated and to provide the
form value outside the component. The following example uses console.warn to
log a message to the browser console.

src/app/profile-editor/profile-editor.component.ts (submit method)

onSubmit() {

 // TODO: Use EventEmitter with form value

 console.warn(this.profileForm.value);

}

The submit event is emitted by the form tag using the native DOM event. You
trigger the event by clicking a button with submit type. This allows the user to press
the Enter key to submit the completed form.

Use a button element to add a button to the bottom of the form to trigger the form
submission.

src/app/profile-editor/profile-editor.component.html (submit button)

<p>Complete the form to enable button.</p>

<button type="submit"

[disabled]="!profileForm.valid">Submit</button>

Forms | FITPED

155

Note: The button in the snippet above also has a disabled binding attached to it to
disable the button when profileForm is invalid. You aren't performing any validation
yet, so the button is always enabled. Basic form validation is covered in
the Validating form input section.

Display the component

To display the ProfileEditor component that contains the form, add it to a
component template.

src/app/app.component.html (profile editor)

<app-profile-editor></app-profile-editor>

ProfileEditor allows you to manage the form control instances for
the firstName and lastName controls within the form group instance.

🕮 8.2.5

Creating nested form groups

Form groups can accept both individual form control instances and other form
group instances as children. This makes composing complex form models easier
to maintain and logically group together.

When building complex forms, managing the different areas of information is easier
in smaller sections. Using a nested form group instance allows you to break large
forms groups into smaller, more manageable ones.

To make more complex forms, use the following steps.

1. Create a nested group.
2. Group the nested form in the template.

Some types of information naturally fall into the same group. A name and address
are typical examples of such nested groups, and are used in the following
examples.

Create a nested group

To create a nested group in profileForm, add a nested address element to the form
group instance.

src/app/profile-editor/profile-editor.component.ts (nested form group)

import { Component } from '@angular/core';

Forms | FITPED

156

import { FormGroup, FormControl } from '@angular/forms';

@Component({

 selector: 'app-profile-editor',

 templateUrl: './profile-editor.component.html',

 styleUrls: ['./profile-editor.component.css']

})

export class ProfileEditorComponent {

 profileForm = new FormGroup({

 firstName: new FormControl(''),

 lastName: new FormControl(''),

 address: new FormGroup({

 street: new FormControl(''),

 city: new FormControl(''),

 state: new FormControl(''),

 zip: new FormControl('')

 })

 });

}

In this example, address group combines the
current firstName and lastName controls with the new street, city, state,
and zip controls. Even though the address element in the form group is a child of
the overall profileForm element in the form group, the same rules apply with value
and status changes. Changes in status and value from the nested form group
propagate to the parent form group, maintaining consistency with the overall
model.

Group the nested form in the template

After you update the model in the component class, update the template to connect
the form group instance and its input elements.

Add the address form group containing the street, city, state, and zip fields to
the ProfileEditor template.

src/app/profile-editor/profile-editor.component.html (template nested form group)

<div formGroupName="address">

 <h2>Address</h2>

 <label for="street">Street: </label>

 <input id="street" type="text" formControlName="street">

 <label for="city">City: </label>

 <input id="city" type="text" formControlName="city">

Forms | FITPED

157

 <label for="state">State: </label>

 <input id="state" type="text" formControlName="state">

 <label for="zip">Zip Code: </label>

 <input id="zip" type="text" formControlName="zip">

</div>

The ProfileEditor form is displayed as one group, but the model is broken down
further to represent the logical grouping areas.

8.3 Validating form input

🕮 8.3.1

Validating form input

You can improve overall data quality by validating user input for accuracy and
completeness. This page shows how to validate user input from the UI and display
useful validation messages, in both reactive and template-driven forms.

🕮 8.3.2

Validating input in template-driven forms

To add validation to a template-driven form, you add the same validation attributes
as you would with native HTML form validation. Angular uses directives to match
these attributes with validator functions in the framework.

Every time the value of a form control changes, Angular runs validation and
generates either a list of validation errors that results in an INVALID status, or null,
which results in a VALID status.

You can then inspect the control's state by exporting ngModel to a local template
variable. The following example exports NgModel into a variable called name:

template/hero-form-template.component.html (name)

<input type="text" id="name" name="name" class="form-control"

 required minlength="4" appForbiddenName="bob"

 [(ngModel)]="hero.name" #name="ngModel">

<div *ngIf="name.invalid && (name.dirty || name.touched)"

Forms | FITPED

158

 class="alert">

 <div *ngIf="name.errors?.required">

 Name is required.

 </div>

 <div *ngIf="name.errors?.minlength">

 Name must be at least 4 characters long.

 </div>

 <div *ngIf="name.errors?.forbiddenName">

 Name cannot be Bob.

 </div>

</div>

Notice the following features illustrated by the example.

• The <input> element carries the HTML validation
attributes: required and minlength. It also carries a custom validator
directive, forbiddenName. For more information, see the Custom
validators section.

• #name="ngModel" exports NgModel into a local variable
called name. NgModel mirrors many of the properties of its
underlying FormControl instance, so you can use this in the template to
check for control states such as valid and dirty. For a full list of control
properties, see the AbstractControl API reference.

• The *ngIf on the <div> element reveals a set of nested message divs but only
if the name is invalid and the control is either dirty or touched.

• Each nested <div> can present a custom message for one of the possible
validation errors. There are messages for required, minlength,
and forbiddenName.

To prevent the validator from displaying errors before the user has a chance to edit
the form, you should check for either the dirty or touched states in a control.

• When the user changes the value in the watched field, the control is marked
as "dirty".

• When the user blurs the form control element, the control is marked as
"touched".

🕮 8.3.3

Validating input in reactive forms

In a reactive form, the source of truth is the component class. Instead of adding
validators through attributes in the template, you add validator functions directly to

https://angular.io/api/forms/FormControl

Forms | FITPED

159

the form control model in the component class. Angular then calls these functions
whenever the value of the control changes.

Validator functions

Validator functions can be either synchronous or asynchronous.

• Sync validators: Synchronous functions that take a control instance and
immediately return either a set of validation errors or null. You can pass
these in as the second argument when you instantiate a FormControl.

• Async validators: Asynchronous functions that take a control instance and
return a Promise or Observable that later emits a set of validation errors
or null. You can pass these in as the third argument when you instantiate
a FormControl.

For performance reasons, Angular only runs async validators if all sync validators
pass. Each must complete before errors are set.

Built-in validator functions

You can choose to write your own validator functions, or you can use some of
Angular's built-in validators.

The same built-in validators that are available as attributes in template-driven
forms, such as required and minlength, are all available to use as functions from
the Validators class. For a full list of built-in validators, see the Validators API
reference.

To update the hero form to be a reactive form, you can use some of the same built-
in validators—this time, in function form, as in the following example.

reactive/hero-form-reactive.component.ts (validator functions)

ngOnInit(): void {

 this.heroForm = new FormGroup({

 name: new FormControl(this.hero.name, [

 Validators.required,

 Validators.minLength(4),

 forbiddenNameValidator(/bob/i) // <-- Here's how you

pass in the custom validator.

]),

 alterEgo: new FormControl(this.hero.alterEgo),

 power: new FormControl(this.hero.power,

Validators.required)

 });

}

Forms | FITPED

160

get name() { return this.heroForm.get('name'); }

get power() { return this.heroForm.get('power'); }

In this example, the name control sets up two built-in validators—
Validators.required and Validators.minLength(4)—and one custom
validator, forbiddenNameValidator.

All of these validators are synchronous, so they are passed as the second
argument. Notice that you can support multiple validators by passing the functions
in as an array.

This example also adds a few getter methods. In a reactive form, you can always
access any form control through the get method on its parent group, but
sometimes it's useful to define getters as shorthand for the template.

If you look at the template for the name input again, it is fairly similar to the
template-driven example.

reactive/hero-form-reactive.component.html (name with error msg)

<input type="text" id="name" class="form-control"

 formControlName="name" required>

<div *ngIf="name.invalid && (name.dirty || name.touched)"

 class="alert alert-danger">

 <div *ngIf="name.errors?.required">

 Name is required.

 </div>

 <div *ngIf="name.errors?.minlength">

 Name must be at least 4 characters long.

 </div>

 <div *ngIf="name.errors?.forbiddenName">

 Name cannot be Bob.

 </div>

</div>

This form differs from the template-driven version in that it no longer exports any
directives. Instead, it uses the name getter defined in the component class.

Notice that the required attribute is still present in the template. Although it's not
necessary for validation, it should be retained to for accessibility purposes.

Forms | FITPED

161

🕮 8.3.4

Defining custom validators

The built-in validators don't always match the exact use case of your application, so
you sometimes need to create a custom validator.

Consider the forbiddenNameValidator function from previous reactive-form
examples. Here's what the definition of that function looks like.

shared/forbidden-name.directive.ts (forbiddenNameValidator)

/** A hero's name can't match the given regular expression */

export function forbiddenNameValidator(nameRe: RegExp):

ValidatorFn {

 return (control: AbstractControl): ValidationErrors | null

=> {

 const forbidden = nameRe.test(control.value);

 return forbidden ? {forbiddenName: {value: control.value}}

: null;

 };

}

The function is a factory that takes a regular expression to detect
a specific forbidden name and returns a validator function.

In this sample, the forbidden name is "bob", so the validator will reject any hero
name containing "bob". Elsewhere it could reject "alice" or any name that the
configuring regular expression matches.

The forbiddenNameValidator factory returns the configured validator function. That
function takes an Angular control object and returns either null if the control value
is valid or a validation error object. The validation error object typically has a
property whose name is the validation key, 'forbiddenName', and whose value is an
arbitrary dictionary of values that you could insert into an error message, {name}.

Custom async validators are similar to sync validators, but they must instead return
a Promise or observable that later emits null or a validation error object. In the case
of an observable, the observable must complete, at which point the form uses the
last value emitted for validation.

Forms | FITPED

162

🕮 8.3.5

Control status CSS classes

Angular automatically mirrors many control properties onto the form control
element as CSS classes. You can use these classes to style form control elements
according to the state of the form. The following classes are currently supported.

• .ng-valid
• .ng-invalid
• .ng-pending
• .ng-pristine
• .ng-dirty
• .ng-untouched
• .ng-touched
• .ng-submitted (enclosing form element only)

In the following example, the hero form uses the .ng-valid and .ng-invalid classes
to set the color of each form control's border.

forms.css (status classes)

.ng-valid[required], .ng-valid.required {

 border-left: 5px solid #42A948; /* green */

}

.ng-invalid:not(form) {

 border-left: 5px solid #a94442; /* red */

}

.alert div {

 background-color: #fed3d3;

 color: #820000;

 padding: 1rem;

 margin-bottom: 1rem;

}

.form-group {

 margin-bottom: 1rem;

}

label {

 display: block;

 margin-bottom: .5rem;

}

Forms | FITPED

163

select {

 width: 100%;

 padding: .5rem;

}

🕮 8.3.6

Creating asynchronous validators

Asynchronous validators implement
the AsyncValidatorFn and AsyncValidator interfaces. These are very similar to their
synchronous counterparts, with the following differences.

• The validate() functions must return a Promise or an observable,
• The observable returned must be finite, meaning it must complete at some

point. To convert an infinite observable into a finite one, pipe the observable
through a filtering operator such as first, last, take, or takeUntil.

Asynchronous validation happens after the synchronous validation, and is
performed only if the synchronous validation is successful. This check allows
forms to avoid potentially expensive async validation processes (such as an HTTP
request) if the more basic validation methods have already found invalid input.

After asynchronous validation begins, the form control enters a pending state. You
can inspect the control's pending property and use it to give visual feedback about
the ongoing validation operation.

A common UI pattern is to show a spinner while the async validation is being
performed. The following example shows how to achieve this in a template-driven
form.

<input [(ngModel)]="name" #model="ngModel"

appSomeAsyncValidator>

<app-spinner *ngIf="model.pending"></app-spinner>

Implementing a custom async validator

In the following example, an async validator ensures that heroes pick an alter ego
that is not already taken. New heroes are constantly enlisting and old heroes are
leaving the service, so the list of available alter egos cannot be retrieved ahead of
time. To validate the potential alter ego entry, the validator must initiate an
asynchronous operation to consult a central database of all currently enlisted
heroes.

The following code create the validator class, UniqueAlterEgoValidator, which
implements the AsyncValidator interface.

Forms | FITPED

164

@Injectable({ providedIn: 'root' })

export class UniqueAlterEgoValidator implements AsyncValidator

{

 constructor(private heroesService: HeroesService) {}

 validate(

 ctrl: AbstractControl

): Promise<ValidationErrors | null> |

Observable<ValidationErrors | null> {

 return

this.heroesService.isAlterEgoTaken(ctrl.value).pipe(

 map(isTaken => (isTaken ? { uniqueAlterEgo: true } :

null)),

 catchError(() => of(null))

);

 }

}

The constructor injects the HeroesService, which defines the following interface.

interface HeroesService {

 isAlterEgoTaken: (alterEgo: string) => Observable<boolean>;

}

In a real world application, the HeroesService would be responsible for making an
HTTP request to the hero database to check if the alter ego is available. From the
validator's point of view, the actual implementation of the service is not important,
so the example can just code against the HeroesService interface.

As the validation begins, the UniqueAlterEgoValidator delegates to
the HeroesService isAlterEgoTaken() method with the current control value. At this
point the control is marked as pending and remains in this state until the
observable chain returned from the validate() method completes.

The isAlterEgoTaken() method dispatches an HTTP request that checks if the alter
ego is available, and returns Observable<boolean> as the result.
The validate() method pipes the response through the map operator and
transforms it into a validation result.

The method then, like any validator, returns null if the form is valid,
and ValidationErrors if it is not. This validator handles any potential errors with
the catchError operator. In this case, the validator treats
the isAlterEgoTaken() error as a successful validation, because failure to make a
validation request does not necessarily mean that the alter ego is invalid. You could
handle the error differently and return the ValidationError object instead.

Forms | FITPED

165

After some time passes, the observable chain completes and the asynchronous
validation is done. The pending flag is set to false, and the form validity is updated.

Optimizing performance of async validators

By default, all validators run after every form value change. With synchronous
validators, this does not normally have a noticeable impact on application
performance. Async validators, however, commonly perform some kind of HTTP
request to validate the control. Dispatching an HTTP request after every keystroke
could put a strain on the backend API, and should be avoided if possible.

You can delay updating the form validity by changing the updateOn property
from change (default) to submit or blur.

With template-driven forms, set the property in the template.

<input [(ngModel)]="name" [ngModelOptions]="{updateOn:

'blur'}">

With reactive forms, set the property in the FormControl instance.

new FormControl('', {updateOn: 'blur'});

🕮 8.3.7

Interaction with native HTML form validation

By default, Angular disables native HTML form validation by adding
the novalidate attribute on the enclosing <form> and uses directives to match these
attributes with validator functions in the framework. If you want to use native
validation in combination with Angular-based validation, you can re-enable it with
the ngNativeValidate directive.

8.4 HTTP Client

🕮 8.4.1

Communicating with backend services using HTTP

Most front-end applications need to communicate with a server over the HTTP
protocol, in order to download or upload data and access other back-end services.
Angular provides a client HTTP API for Angular applications, the HttpClient service
class in @angular/common/http.

Forms | FITPED

166

The HTTP client service offers the following major features.

• The ability to request typed response objects.
• Streamlined error handling.
• Testability features.
• Request and response interception.

🕮 8.4.2

Setup for server communication

Before you can use HttpClient, you need to import the Angular HttpClientModule.
Most apps do so in the root AppModule.

app/app.module.ts (excerpt)

import { NgModule } from '@angular/core';

import { BrowserModule } from '@angular/platform-browser';

import { HttpClientModule } from '@angular/common/http';

@NgModule({

 imports: [

 BrowserModule,

 // import HttpClientModule after BrowserModule.

 HttpClientModule,

],

 declarations: [

 AppComponent,

],

 bootstrap: [AppComponent]

})

export class AppModule {}

You can then inject the HttpClient service as a dependency of an application class,
as shown in the following ConfigService example.

app/config/config.service.ts (excerpt)

import { Injectable } from '@angular/core';

import { HttpClient } from '@angular/common/http';

@Injectable()

export class ConfigService {

 constructor(private http: HttpClient) { }

Forms | FITPED

167

}

The HttpClient service makes use of observables for all transactions. You must
import the RxJS observable and operator symbols that appear in the example
snippets. These ConfigService imports are typical.

app/config/config.service.ts (RxJS imports)

import { Observable, throwError } from 'rxjs';

import { catchError, retry } from 'rxjs/operators';

🕮 8.4.3

Requesting data from a server

Use the HttpClient.get() method to fetch data from a server. The asynchronous
method sends an HTTP request, and returns an Observable that emits the
requested data when the response is received. The return type varies based on
the observe and responseType values that you pass to the call.

The get() method takes two arguments; the endpoint URL from which to fetch, and
an options object that you can use to configure the request.

options: {

 headers?: HttpHeaders | {[header: string]: string |

string[]},

 observe?: 'body' | 'events' | 'response',

 params?: HttpParams|{[param: string]: string | number |

boolean | ReadonlyArray<string | number | boolean>},

 reportProgress?: boolean,

 responseType?: 'arraybuffer'|'blob'|'json'|'text',

 withCredentials?: boolean,

 }

Important options include the observe and responseType properties.

• The observe option specifies how much of the response to return.
• The responseType option specifies the format in which to return data.

You can use the options object to configure various other aspects of an outgoing
request. In Adding headers, for example, the service set the default headers using
the headers option property.

Use the params property to configure a request with HTTP URL parameters, and
the reportProgress option to listen for progress events when transferring large
amounts of data.

Forms | FITPED

168

Applications often request JSON data from a server. In the ConfigService example,
the app needs a configuration file on the server, config.json, that specifies resource
URLs.

assets/config.json

{

 "heroesUrl": "api/heroes",

 "textfile": "assets/textfile.txt",

 "date": "2020-01-29"

}

To fetch this kind of data, the get() call needs the following options: {observe:
'body', responseType: 'json'}. These are the default values for those options, so the
following examples do not pass the options object. Later sections show some of
the additional option possibilities.

The example conforms to the best practices for creating scalable solutions by
defining a re-usable injectable service to perform the data-handling functionality. In
addition to fetching data, the service can post-process the data, add error handling,
and add retry logic.

The ConfigService fetches this file using the HttpClient.get() method.

app/config/config.service.ts (getConfig v.1)

configUrl = 'assets/config.json';

getConfig() {

 return this.http.get<Config>(this.configUrl);

}

The ConfigComponent injects the ConfigService and calls the getConfig service
method.

Because the service method returns an Observable of configuration data, the
component subscribes to the method's return value. The subscription callback
performs minimal post-processing. It copies the data fields into the
component's config object, which is data-bound in the component template for
display.

app/config/config.component.ts (showConfig v.1)

showConfig() {

 this.configService.getConfig()

 .subscribe((data: Config) => this.config = {

 heroesUrl: data.heroesUrl,

Forms | FITPED

169

 textfile: data.textfile,

 date: data.date,

 });

}

🕮 8.4.4

Requesting a typed response

You can structure your HttpClient request to declare the type of the response
object, to make consuming the output easier and more obvious. Specifying the
response type acts as a type assertion at compile time.

Specifying the response type is a declaration to TypeScript that it should treat your
response as being of the given type. This is a build-time check and doesn't
guarantee that the server will actually respond with an object of this type. It is up to
the server to ensure that the type specified by the server API is returned.

To specify the response object type, first define an interface with the required
properties. Use an interface rather than a class, because the response is a plain
object that cannot be automatically converted to an instance of a class.

export interface Config {

 heroesUrl: string;

 textfile: string;

 date: any;

}

Next, specify that interface as the HttpClient.get() call's type parameter in the
service.

app/config/config.service.ts (getConfig v.2)

getConfig() {

 // now returns an Observable of Config

 return this.http.get<Config>(this.configUrl);

}

When you pass an interface as a type parameter to the HttpClient.get() method,
you can use the RxJS map operator to transform the response data as needed by
the UI. You can then pass the transformed data to the async pipe.

The callback in the updated component method receives a typed data object, which
is easier and safer to consume:

app/config/config.component.ts (showConfig v.2)

Forms | FITPED

170

config: Config | undefined;

showConfig() {

 this.configService.getConfig()

 // clone the data object, using its known Config shape

 .subscribe((data: Config) => this.config = { ...data });

}

To access properties that are defined in an interface, you must explicitly convert the
plain object you get from the JSON to the required response type. For example, the
following subscribe callback receives data as an Object, and then type-casts it in
order to access the properties.

.subscribe(data => this.config = {

 heroesUrl: (data as any).heroesUrl,

 textfile: (data as any).textfile,

});

OBSERVE AND *RESPONSE* TYPES

The types of the observe and response options are string unions, rather than plain
strings.

options: {

 ...

 observe?: 'body' | 'events' | 'response',

 ...

 responseType?: 'arraybuffer'|'blob'|'json'|'text',

 ...

 }

This can cause confusion. For example:

// this works

client.get('/foo', {responseType: 'text'})

// but this does NOT work

const options = {

 responseType: 'text',

};

client.get('/foo', options)

In the second case, TypeScript infers the type of options to be {responseType:
string}. The type is too wide to pass to HttpClient.get which is expecting the type
of responseType to be one of the specific strings. HttpClient is typed explicitly this

Forms | FITPED

171

way so that the compiler can report the correct return type based on the options
you provided.

Use as const to let TypeScript know that you really do mean to use a constant
string type:

const options = {

 responseType: 'text' as const,

};

client.get('/foo', options);

🕮 8.4.5

Handling request errors

If the request fails on the server, HttpClient returns an error object instead of a
successful response.

The same service that performs your server transactions should also perform error
inspection, interpretation, and resolution.

When an error occurs, you can obtain details of what failed in order to inform your
user. In some cases, you might also automatically retry the request.

Getting error details

An app should give the user useful feedback when data access fails. A raw error
object is not particularly useful as feedback. In addition to detecting that an error
has occurred, you need to get error details and use those details to compose a
user-friendly response.

Two types of errors can occur.

• The server backend might reject the request, returning an HTTP response
with a status code such as 404 or 500. These are error responses.

• Something could go wrong on the client-side such as a network error that
prevents the request from completing successfully or an exception thrown in
an RxJS operator. These errors have status set to 0 and the error property
contains a ProgressEvent object, whose type might provide further
information.

HttpClient captures both kinds of errors in its HttpErrorResponse. You can inspect
that response to identify the error's cause.

The following example defines an error handler in the previously
defined ConfigService.

Forms | FITPED

172

app/config/config.service.ts (handleError)

private handleError(error: HttpErrorResponse) {

 if (error.status === 0) {

 // A client-side or network error occurred. Handle it

accordingly.

 console.error('An error occurred:', error.error);

 } else {

 // The backend returned an unsuccessful response code.

 // The response body may contain clues as to what went

wrong.

 console.error(

 `Backend returned code ${error.status}, body was: `,

error.error);

 }

 // Return an observable with a user-facing error message.

 return throwError(

 'Something bad happened; please try again later.');

}

The handler returns an RxJS ErrorObservable with a user-friendly error message.
The following code updates the getConfig() method, using a pipe to send all
observables returned by the HttpClient.get() call to the error handler.

app/config/config.service.ts (getConfig v.3 with error handler)

getConfig() {

 return this.http.get<Config>(this.configUrl)

 .pipe(

 catchError(this.handleError)

);

}

Retrying a failed request

Sometimes the error is transient and goes away automatically if you try again. For
example, network interruptions are common in mobile scenarios, and trying again
can produce a successful result.

The RxJS library offers several retry operators. For example, the retry() operator
automatically re-subscribes to a failed Observable a specified number of times. Re-
subscribing to the result of an HttpClient method call has the effect of reissuing the
HTTP request.

Forms | FITPED

173

The following example shows how you can pipe a failed request to
the retry() operator before passing it to the error handler.

app/config/config.service.ts (getConfig with retry)

getConfig() {

 return this.http.get<Config>(this.configUrl)

 .pipe(

 retry(3), // retry a failed request up to 3 times

 catchError(this.handleError) // then handle the error

);

}

🕮 8.4.6

Sending data to a server

In addition to fetching data from a server, HttpClient supports other HTTP methods
such as PUT, POST, and DELETE, which you can use to modify the remote data.

The sample app for this guide includes an abridged version of the "Tour of Heroes"
example that fetches heroes and enables users to add, delete, and update them.
The following sections show examples of the data-update methods from the
sample's HeroesService.

Making a POST request

Apps often send data to a server with a POST request when submitting a form. In
the following example, the HeroesService makes an HTTP POST request when
adding a hero to the database.

app/heroes/heroes.service.ts (addHero)

/** POST: add a new hero to the database */

addHero(hero: Hero): Observable<Hero> {

 return this.http.post<Hero>(this.heroesUrl, hero,

httpOptions)

 .pipe(

 catchError(this.handleError('addHero', hero))

);

}

The HttpClient.post() method is similar to get() in that it has a type parameter,
which you can use to specify that you expect the server to return data of a given
type. The method takes a resource URL and two additional parameters:

Forms | FITPED

174

• body - The data to POST in the body of the request.
• options - An object containing method options which, in this case, specify

required headers.

The example catches errors as described above.

The HeroesComponent initiates the actual POST operation by subscribing to
the Observable returned by this service method.

app/heroes/heroes.component.ts (addHero)

this.heroesService

 .addHero(newHero)

 .subscribe(hero => this.heroes.push(hero));

When the server responds successfully with the newly added hero, the component
adds that hero to the displayed heroes list.

🕮 8.4.7

Making a DELETE request

This application deletes a hero with the HttpClient.delete method by passing the
hero's id in the request URL.

app/heroes/heroes.service.ts (deleteHero)

/** DELETE: delete the hero from the server */

deleteHero(id: number): Observable<unknown> {

 const url = `${this.heroesUrl}/${id}`; // DELETE

api/heroes/42

 return this.http.delete(url, httpOptions)

 .pipe(

 catchError(this.handleError('deleteHero'))

);

}

The HeroesComponent initiates the actual DELETE operation by subscribing to
the Observable returned by this service method.

app/heroes/heroes.component.ts (deleteHero)

this.heroesService

 .deleteHero(hero.id)

 .subscribe();

Forms | FITPED

175

The component isn't expecting a result from the delete operation, so it subscribes
without a callback. Even though you are not using the result, you still have to
subscribe. Calling the subscribe() method executes the observable, which is what
initiates the DELETE request.

You must call subscribe() or nothing happens. Just
calling HeroesService.deleteHero() does not initiate the DELETE request.

// oops ... subscribe() is missing so nothing happens

this.heroesService.deleteHero(hero.id);

Always subscribe!

An HttpClient method does not begin its HTTP request until you call subscribe() on
the observable returned by that method. This is true for all HttpClient methods.

The AsyncPipe subscribes (and unsubscribes) for you automatically.

All observables returned from HttpClient methods are cold by design. Execution of
the HTTP request is deferred, allowing you to extend the observable with additional
operations such as tap and catchError before anything actually happens.

Calling subscribe(...) triggers execution of the observable and causes HttpClient to
compose and send the HTTP request to the server.

You can think of these observables as blueprints for actual HTTP requests.

In fact, each subscribe() initiates a separate, independent execution of the
observable. Subscribing twice results in two HTTP requests.

const req = http.get<Heroes>('/api/heroes');

// 0 requests made - .subscribe() not called.

req.subscribe();

// 1 request made.

req.subscribe();

// 2 requests made.

🕮 8.4.8

Configuring HTTP URL parameters

Use the HttpParams class with the params request option to add URL query strings
in your HttpRequest.

The following example, the searchHeroes() method queries for heroes whose
names contain the search term.

Forms | FITPED

176

Start by importing HttpParams class.

import {HttpParams} from "@angular/common/http";

content_copy

/* GET heroes whose name contains search term */

searchHeroes(term: string): Observable<Hero[]> {

 term = term.trim();

 // Add safe, URL encoded search parameter if there is a

search term

 const options = term ?

 { params: new HttpParams().set('name', term) } : {};

 return this.http.get<Hero[]>(this.heroesUrl, options)

 .pipe(

 catchError(this.handleError<Hero[]>('searchHeroes', []))

);

}

If there is a search term, the code constructs an options object with an HTML URL-
encoded search parameter. If the term is "cat", for example, the GET request URL
would be api/heroes?name=cat.

The HttpParams object is immutable. If you need to update the options, save the
returned value of the .set() method.

You can also create HTTP parameters directly from a query string by using
the fromString variable:

const params = new HttpParams({fromString: 'name=foo'});

🕮 8.4.9

Intercepting requests and responses

With interception, you declare interceptors that inspect and transform HTTP
requests from your application to a server. The same interceptors can also inspect
and transform a server's responses on their way back to the application. Multiple
interceptors form a forward-and-backward chain of request/response handlers.

Interceptors can perform a variety of implicit tasks, from authentication to logging,
in a routine, standard way, for every HTTP request/response.

Without interception, developers would have to implement these tasks explicitly for
each HttpClient method call.

Forms | FITPED

177

🕮 8.4.10

Optimizing server interaction with debouncing

If you need to make an HTTP request in response to user input, it's not efficient to
send a request for every keystroke. It's better to wait until the user stops typing and
then send a request. This technique is known as debouncing.

Consider the following template, which lets a user enter a search term to find an
npm package by name. When the user enters a name in a search-box,
the PackageSearchComponent sends a search request for a package with that
name to the npm web API.

app/package-search/package-search.component.html (search)

<input type="text" (keyup)="search(getValue($event))"

id="name" placeholder="Search"/>

 <li *ngFor="let package of packages$ | async">

 {{package.name}} v.{{package.version}} -

 <i>{{package.description}}</i>

Here, the keyup event binding sends every keystroke to the
component's search() method.

The type of $event.target is only EventTarget in the template. In
the getValue() method, the target is cast to an HTMLInputElement to allow type-
safe access to its value property.

getValue(event: Event): string {

 return (event.target as HTMLInputElement).value;

}

The following snippet implements debouncing for this input using RxJS operators.

app/package-search/package-search.component.ts (excerpt)

withRefresh = false;

packages$!: Observable<NpmPackageInfo[]>;

private searchText$ = new Subject<string>();

search(packageName: string) {

Forms | FITPED

178

 this.searchText$.next(packageName);

}

ngOnInit() {

 this.packages$ = this.searchText$.pipe(

 debounceTime(500),

 distinctUntilChanged(),

 switchMap(packageName =>

 this.searchService.search(packageName,

this.withRefresh))

);

}

constructor(private searchService: PackageSearchService) { }

The searchText$ is the sequence of search-box values coming from the user. It's
defined as an RxJS Subject, which means it is a multicasting Observable that can
also emit values for itself by calling next(value), as happens in
the search() method.

Rather than forward every searchText value directly to the
injected PackageSearchService, the code in ngOnInit() pipes search values through
three operators, so that a search value reaches the service only if it's a new value
and the user has stopped typing.

• debounceTime(500) —Wait for the user to stop typing (1/2 second in this
case).

• distinctUntilChanged() —Wait until the search text changes.
• switchMap() —Send the search request to the service.

The code sets packages$ to this re-composed Observable of search results. The
template subscribes to packages$ with the AsyncPipe and displays search results
as they arrive.

🕮 8.4.11

Using the switchMap() operator

The switchMap() operator takes a function argument that returns an Observable. In
the example, PackageSearchService.search returns an Observable, as other data
service methods do. If a previous search request is still in-flight (as when the
network connection is poor), the operator cancels that request and sends a new
one.

Forms | FITPED

179

Note that switchMap() returns service responses in their original request order,
even if the server returns them out of order.

If you think you'll reuse this debouncing logic, consider moving it to a utility function
or into the PackageSearchService itself.

🕮 8.4.12

Testing HTTP requests

As for any external dependency, you must mock the HTTP backend so your tests
can simulate interaction with a remote server.
The @angular/common/http/testing library makes it straightforward to set up such
mocking.

Angular's HTTP testing library is designed for a pattern of testing in which the app
executes code and makes requests first. The test then expects that certain
requests have or have not been made, performs assertions against those requests,
and finally provides responses by "flushing" each expected request.

🕮 8.4.13

Passing metadata to interceptors

Many interceptors require or benefit from configuration. Consider an interceptor
that retries failed requests. By default, the interceptor might retry a request three
times, but you might want to override this retry count for particularly error-prone or
sensitive requests.

HttpClient requests contain a context that can carry metadata about the request.
This context is available for interceptors to read or modify, though it is not
transmitted to the backend server when the request is sent. This allows
applications or other interceptors to tag requests with configuration parameters,
such as how many times to retry a request.

8.5 Forms (Exercises)

📝 8.5.1

define custom validators as functions that receive a control to validate.

Forms | FITPED

180

📝 8.5.2

are tied to template directives, and must provide custom validator directives that
wrap validation functions.

📝 8.5.3

Each change to the form state returns a new state, which maintains the integrity of
the model between changes.

📝 8.5.4

Reactive forms provide access to information about a given control through
properties and methods provided with each instance

• True
• False

📝 8.5.5

o prevent the validator from displaying errors before the user has a chance to edit
the form, you should check for either the ... or ... states in a control.

📝 8.5.6

Functions that take a control instance and return a Promise or Observable that later
emits a set of validation errors or null. You can pass these in as the third argument
when you instantiate a FormControl.

📝 8.5.7

 Angular doesn't provides a client HTTP API for Angular applications, the HttpClient
service class in @angular/common/http.

• True
• False

📝 8.5.8

You can use the ... object to configure various other aspects of an outgoing
request. In Adding headers, for example, the service set the default headers using
the headers option property.

📝 8.5.9

If the request fails on the server what does HttpClient return?

Testing

Chapter 9

Testing | FITPED

182

9.1 Angular testing

🕮 9.1.1

Angular testing is a core feature available in every project set up with the Angular
CLI.

To stay synchronized with the JavaScript ecosystem, the Angular team makes a
point to release two major Angular version each year. Since its inception through to
its most recent release, Angular 11, Angular has been designed with testability in
mind.

There are two types of Angular testing:

1. Unit testing is the process of testing small, isolated pieces of code. Also
known as isolated testing, unit tests do not use external resources, such as
the network or a database

2. Functional testing refers to testing the functionality and of your Angular app
from a user experience perspective — i.e., interacting with your app as it’s
running in a browser just as a user would

🕮 9.1.2

Unit testing in Angular refers to the process of testing individual units of code.

An Angular unit test aims to uncover issues such as incorrect logic, misbehaving
functions, etc. by isolating pieces of code. This is sometimes more difficult than it
sounds, especially for complex projects with poor separation of concerns. Angular
is designed to help you write code in such a way that enables you to test your app’s
functions individually in isolation.

Angular unit testing enables you to test your app based on user behavior. While
testing each possible behavior would be tedious, inefficient, and ineffective, writing
tests for each coupling block in your application can help demonstrate how these
blocks behave.

One of the easiest ways to test the strengths of these blocks is to write a test for
each one. You don’t necessarily need to wait until your users complain about how
the input field behaves when the button is clicked. By writing a unit test for your
blocks (components, services, etc.), you can easily detect when there is a break.

Testing | FITPED

183

Our example Angular app has a service, a component, and an async task to
simulate data being fetched from the server.

🕮 9.1.3

How do you write an Angular test?

When you create a new project with the Angular CLI (ng new appName), a default
component and test file are added. Also — if, like me, you’re always looking for a
shortcut — a test script is always created alongside any component module
(service, component) you create using the Angular CLI.

This test script, which ends with .spec.ts, is always added. Let’s take a look at the
initial test script file, which is the app.component.spec.ts:

import { TestBed, async } from '@angular/core/testing';

import { AppComponent } from './app.component';

describe('AppComponent', () => {

 beforeEach(async(() => {

 TestBed.configureTestingModule({

 declarations: [

 AppComponent

],

 }).compileComponents();

 }));

 it('should create the app', async(() => {

 const fixture = TestBed.createComponent(AppComponent);

 const app = fixture.debugElement.componentInstance;

 expect(app).toBeTruthy();

 }));

 it(`should have as title 'angular-unit-test'`, async(() => {

 const fixture = TestBed.createComponent(AppComponent);

 const app = fixture.debugElement.componentInstance;

 expect(app.title).toEqual('angular-unit-test');

 }));

 it('should render title in a h1 tag', async(() => {

 const fixture = TestBed.createComponent(AppComponent);

 fixture.detectChanges();

 const compiled = fixture.debugElement.nativeElement;

expect(compiled.querySelector('h1').textContent).toContain('We

lcome to angular-unit-test!');

 }));

});

Testing | FITPED

184

Let’s run our first test to make sure nothing has broken yet:

ng test

You might be wondering, how can we simulate a user behavior by simply writing a
test, even though the project is being rendered in a browser? As we proceed, I’ll
demonstrate how to simulate and Angular app running on a browser.

🕮 9.1.4

What is Karma in Angular?

Karma is a JavaScript test runner that runs the unit test snippet in Angular. Karma
also ensures the result of the test is printed out either in the console or in the file
log.

By default, Angular runs on Karma. Other test runners include Mocha and Jasmine.
Karma provides tools that make it easier to call Jasmine tests while writing code in
Angular.

🕮 9.1.5

How to write a unit test in Angular

The Angular testing package includes two utilities
called TestBed and async. TestBed is the main Angular utility package.

The describe container contains different blocks (it, beforeEach, xit, etc.).
beforeEach runs before any other block. Other blocks do not depend on each other
to run.

From the app.component.spec.ts file, the first block is the beforeEach inside the
container (describe). This is the only block that runs before any other block (it). The
declaration of the app module in app.module.ts file is simulated (declared) in the
beforeEach block. The component (AppComponent) declared in the beforeEach
block is the main component we want to have in this testing environment. The
same logic applies to other test declaration.

The compileComponents object is called to compile your component’s resources
like the template, styles etc. You might not necessarily compile your component if
you are using webpack:

Testing | FITPED

185

beforeEach(async(() => {

 TestBed.configureTestingModule({

 declarations: [

 AppComponent

],

 }).compileComponents();

}));

Now that the component has been declared in the beforeEach block, let’s check if
the component is created.

Thefixture.debugElement.componentInstance creates an instance of the class
(AppComponent) . We will test to see if the instance of the class is truly created or
not using toBeTruthy :

it('should create the app', async(() => {

 const fixture = TestBed.createComponent(AppComponent);

 const app = fixture.debugElement.componentInstance;

 expect(app).toBeTruthy();

}));

The third block demonstrates how you can have access to the properties of the
created component (AppComponent). The only property added by default is the
title. You can easily check if the title you set has changed or not from the instance
of the component (AppComponent) created:

it(`should have as title 'angular-unit-test'`, async(() => {

 const fixture = TestBed.createComponent(AppComponent);

 const app = fixture.debugElement.componentInstance;

 expect(app.title).toEqual('angular-unit-test');

}));

The fourth block demonstrates how the test behaves in the browser environment.
After creating the component, an instance of the created component
(detectChanges) to simulate running on the browser environment is called. Now
that the component has been rendered, you can have access to its child element by
accessing the nativeElelment object of the rendered component
(fixture.debugElement.nativeElement):

it('should render title in a h1 tag', async(() => {

 const fixture = TestBed.createComponent(AppComponent);

 fixture.detectChanges();

 const compiled = fixture.debugElement.nativeElement;

 expect(compiled.querySelector('h1').textContent).toContain('W

elcome to angular-unit-test!');

}));

Testing | FITPED

186

Now that you have familiarized yourself with the basics of testing a component,
let’s test our Angular example application.

🕮 9.1.6

How to test an Angular service

The describe container contains different blocks (it, beforeEach, xit,
etc.). beforeEach runs before any other block. Other blocks do not depend on each
other to run.

From the app.component.spec.ts file, the first block is the beforeEach inside the
container (describe). This is the only block that runs before any other block (it). The
declaration of the app module in app.module.ts file is simulated (declared) in
the beforeEach block. The component (AppComponent) declared in
the beforeEach block is the main component we want to have in this testing
environment. The same logic applies to other test declaration.

The compileComponents object is called to compile your component’s resources
like the template, styles etc. You might not necessarily compile your component if
you are using webpack:

beforeEach(async(() => {

 TestBed.configureTestingModule({

 declarations: [

 AppComponent

],

 }).compileComponents();

}));

Now that the component has been declared in the beforeEach block, let’s check if
the component is created.

Thefixture.debugElement.componentInstance creates an instance of the class
(AppComponent) . We will test to see if the instance of the class is truly created or
not using toBeTruthy :

it('should create the app', async(() => {

 const fixture = TestBed.createComponent(AppComponent);

 const app = fixture.debugElement.componentInstance;

 expect(app).toBeTruthy();

}));

The third block demonstrates how you can have access to the properties of the
created component (AppComponent). The only property added by default is the

Testing | FITPED

187

title. You can easily check if the title you set has changed or not from the instance
of the component (AppComponent) created:

it(`should have as title 'angular-unit-test'`, async(() => {

 const fixture = TestBed.createComponent(AppComponent);

 const app = fixture.debugElement.componentInstance;

 expect(app.title).toEqual('angular-unit-test');

}));

The fourth block demonstrates how the test behaves in the browser environment.
After creating the component, an instance of the created component
(detectChanges) to simulate running on the browser environment is called. Now
that the component has been rendered, you can have access to its child element by
accessing the nativeElelment object of the rendered component
(fixture.debugElement.nativeElement):

it('should render title in a h1 tag', async(() => {

 const fixture = TestBed.createComponent(AppComponent);

 fixture.detectChanges();

 const compiled = fixture.debugElement.nativeElement;

expect(compiled.querySelector('h1').textContent).toContain('We

lcome to angular-unit-test!');

}));

Now that you have familiarized yourself with the basics of testing a component,
let’s test our Angular example application.

🕮 9.1.7

How to test an Angular component

In our Angular unit testing example app, the service is injected into
the QuoteComponent to access its properties, which will be needed by the view:

import { Component, OnInit } from '@angular/core';

import { QuoteService } from '../service/Quote.service';

import { QuoteModel } from '../model/QuoteModel';

@Component({

 selector: 'app-Quotes',

 templateUrl: './Quotes.component.html',

 styleUrls: ['./Quotes.component.css']

})

Testing | FITPED

188

export class QuotesComponent implements OnInit {

 public quoteList: QuoteModel[];

 public quoteText: String = null;

 constructor(private service: QuoteService) { }

 ngOnInit() {

 this.quoteList = this.service.getQuote();

 }

 createNewQuote() {

 this.service.addNewQuote(this.quoteText);

 this.quoteText = null;

 }

 removeQuote(index) {

 this.service.removeQuote(index);

 }

}

<div class="container-fluid">

 <div class="row">

 <div class="col-8 col-sm-8 mb-3 offset-2">

 <div class="card">

 <div class="card-header">

 <h5>What Quote is on your mind ?</h5>

 </div>

 <div class="card-body">

 <div role="form">

 <div class="form-group col-8 offset-2">

 <textarea #quote class="form-control" rows="3"

cols="8" [(ngModel)]="quoteText" name="quoteText"></textarea>

 </div>

 <div class="form-group text-center">

 <button class="btn btn-primary"

(click)="createNewQuote()" [disabled]="quoteText ==

null">Create a new

 quote</button>

 </div>

 </div>

 </div>

 </div>

 </div>

 </div>

Testing | FITPED

189

 <div class="row">

 <div class="card mb-3 col-5 list-card" id="quote-cards"

style="max-width: 18rem;" *ngFor="let quote of quoteList; let

i = index"

 (click)="removeQuote(i)">

 <div class="card-body">

 <h6>{{ quote.text }}</h6>

 </div>

 <div class="card-footer text-muted">

 <small>Created on {{ quote.timeCreated }}</small>

 </div>

 </div>

 </div>

</div>

The first two blocks in the describe container run consecutively. In the first block,
the FormsModule is imported into the configure test. This ensures the form’s
related directives, such as ngModel, can be used.

Also, the QuotesComponent is declared in the configTestMod similar to how the
components are declared in ngModule residing in the appModule file. The second
block creates a QuoteComponent and its instance, which will be used by the other
blocks:

let component: QuotesComponent;

 let fixture: ComponentFixture<QuotesComponent>;

 beforeEach(() => {

 TestBed.configureTestingModule({

 imports: [FormsModule],

 declarations: [QuotesComponent]

 });

 });

 beforeEach(() => {

 fixture = TestBed.createComponent(QuotesComponent);

 component = fixture.debugElement.componentInstance;

 });

This block tests if the instance of the component that is created is defined:

it("should create Quote component", () => {

 expect(component).toBeTruthy();

 });

Testing | FITPED

190

The injected service handles the manipulation of all operations
(add, remove, fetch). The quoteService variable holds the injected service
(QuoteService). At this point, the component is yet to be rendered until
the detectChangesmethod is called:

it("should use the quoteList from the service", () => {

 const quoteService =

fixture.debugElement.injector.get(QuoteService);

 fixture.detectChanges();

expect(quoteService.getQuote()).toEqual(component.quoteList);

 });

Now let’s test whether we can successfully create a post. The properties of the
component can be accessed upon instantiation, so the component rendered
detects the new changes when a value is passed into the quoteText model.
The nativeElement object gives access to the HTML element rendered which
makes it easier to check if the quote added is part of the texts rendered:

it("should create a new post", () => {

 component.quoteText = "I love this test";

 fixture.detectChanges();

 const compiled = fixture.debugElement.nativeElement;

 expect(compiled.innerHTML).toContain("I love this test");

 });

Apart from having access to the HTML contents, you can also get an element by its
CSS property. When the quoteText model is empty or null, the button is expected to
be disabled:

it("should disable the button when textArea is empty", () => {

 fixture.detectChanges();

 const button =

fixture.debugElement.query(By.css("button"));

 expect(button.nativeElement.disabled).toBeTruthy();

 });

it("should enable button when textArea is not empty", () => {

 component.quoteText = "I love this test";

 fixture.detectChanges();

 const button =

fixture.debugElement.query(By.css("button"));

 expect(button.nativeElement.disabled).toBeFalsy();

 });

Testing | FITPED

191

Just like the way we access an element with its CSS property, we can also access
an element by its class name. Multiple classes can be accessed at the same time
using By e.g By.css(‘.className.className’) .

The button clicks are simulated by calling the triggerEventHandler . The event type
must be specified which ,in this case, is click. A quote displayed is expected to be
deleted from the quoteList when clicked on:

it("should remove post upon card click", () => {

 component.quoteText = "This is a fresh post";

 fixture.detectChanges();

 fixture.debugElement

 .query(By.css(".row"))

 .query(By.css(".card"))

 .triggerEventHandler("click", null);

 const compiled = fixture.debugElement.nativeElement;

 expect(compiled.innerHTML).toContain("This is a fresh

post");

 });

🕮 9.1.8

How to test an async operation in Angular

It’s inevitable that you’ll eventually need to fetch data remotely. This operation is
best treated as an asynchronous task.

fetchQoutesFromServer represents an async task that returns an array of quotes
after two seconds:

fetchQuotesFromServer() {

 return new Promise((resolve, reject) => {

 setTimeout(() => {

 resolve([new QuoteModel("I love unit testing", "Mon 4,

2018")]);

 }, 2000);

 });

 }

spyOn objects simulate how fetchQuotesFromServer method works. It accepts two
argument quoteService which is injected into the component and
the fetchQuotesFromServer method. fetchQuotesFromServer is expected to return
a promise. spyOn chains the method using and with a fake promise call, which is
returned using returnValue. Since we want to emulate how

Testing | FITPED

192

the fetchQuotesFromServer works, we need to pass a promise that will resolve with
a list of quotes.

Just as we did before, we’ll call the detectChanges method to get the updated
changes. whenStable allows access to results of all async tasks when they are
done:

it("should fetch data asynchronously", async () => {

 const fakedFetchedList = [

 new QuoteModel("I love unit testing", "Mon 4, 2018")

];

 const quoteService =

fixture.debugElement.injector.get(QuoteService);

 let spy = spyOn(quoteService,

"fetchQuotesFromServer").and.returnValue(

 Promise.resolve(fakedFetchedList)

);

 fixture.detectChanges();

 fixture.whenStable().then(() => {

 expect(component.fetchedList).toBe(fakedFetchedList);

 });

 });

9.2 Testing (Exercises)

📝 9.2.1

is the process of testing small, isolated pieces of code. Also known as isolated
testing -

📝 9.2.2

refers to testing the functionality and of your Angular app from a user experience
perspective

📝 9.2.3

By default, Angular runs on Karma. Other test runners include ... and Karma
provides tools that make it easier to call Jasmine tests while writing code in
Angular.

 Animations

Chapter 10

Animations | FITPED

194

10.1 Introduction

🕮 10.1.1

Animation provides the illusion of motion: HTML elements change styling over
time. Well-designed animations can make your application more fun and easier to
use, but they aren't just cosmetic. Animations can improve your application and
user experience in a number of ways:

• Without animations, web page transitions can seem abrupt and jarring.
• Motion greatly enhances the user experience, so animations give users a

chance to detect the application's response to their actions.
• Good animations intuitively call the user's attention to where it is needed.

Typically, animations involve multiple style transformations over time. An HTML
element can move, change color, grow or shrink, fade, or slide off the page. These
changes can occur simultaneously or sequentially. You can control the timing of
each transformation.

Angular's animation system is built on CSS functionality, which means you can
animate any property that the browser considers animatable. This includes
positions, sizes, transforms, colors, borders, and more. The W3C maintains a list of
animatable properties on its CSS Transitions page.

🕮 10.1.2

Getting started

The main Angular modules for animations
are @angular/animations and @angular/platform-browser. When you create a new
project using the CLI, these dependencies are automatically added to your project.

To get started with adding Angular animations to your project, import the
animation-specific modules along with standard Angular functionality.

Step 1: Enabling the animations module

Import BrowserAnimationsModule, which introduces the animation capabilities into
your Angular root application module.

src/app/app.module.ts

import { NgModule } from '@angular/core';

import { BrowserModule } from '@angular/platform-browser';

Animations | FITPED

195

import { BrowserAnimationsModule } from '@angular/platform-

browser/animations';

@NgModule({

 imports: [

 BrowserModule,

 BrowserAnimationsModule

],

 declarations: [],

 bootstrap: []

})

export class AppModule { }

Note: When you use the CLI to create your app, the root application
module app.module.ts is placed in the src/app folder.

Step 2: Importing animation functions into component files

If you plan to use specific animation functions in component files, import those
functions from @angular/animations.

src/app/app.component.ts

import { Component, HostBinding } from '@angular/core';

import {

 trigger,

 state,

 style,

 animate,

 transition,

 // ...

} from '@angular/animations';

Note: See a summary of available animation functions at the end of this guide.

Step 3: Adding the animation metadata property

In the component file, add a metadata property called animations: within
the @Component() decorator. You put the trigger that defines an animation within
the animations metadata property.

src/app/app.component.ts

@Component({

 selector: 'app-root',

 templateUrl: 'app.component.html',

Animations | FITPED

196

 styleUrls: ['app.component.css'],

 animations: [

 // animation triggers go here

]

})

🕮 10.1.3

Animating a transition

Let's animate a transition that changes a single HTML element from one state to
another. For example, you can specify that a button displays
either Open or Closed based on the user's last action. When the button is in
the open state, it's visible and yellow. When it's the closed state, it's translucent and
blue.

In HTML, these attributes are set using ordinary CSS styles such as color and
opacity. In Angular, use the style() function to specify a set of CSS styles for use
with animations. You can collect a set of styles in an animation state, and give the
state a name, such as open or closed.

Let's create a new open-close component to animate with simple transitions.

Run the following command in terminal to generate the component:

ng g component open-close

This will create the component at src/app/open-close.component.ts.

Animation state and styles

Use Angular's state() function to define different states to call at the end of each
transition. This function takes two arguments: a unique name
like open or closed and a style() function.

Use the style() function to define a set of styles to associate with a given state
name. Note that the style attributes must be in camelCase.

Let's see how Angular's state() function works with the style() function to set CSS
style attributes. In this code snippet, multiple style attributes are set at the same
time for the state. In the open state, the button has a height of 200 pixels, an
opacity of 1, and a background color of yellow.

src/app/open-close.component.ts

// ...

state('open', style({

Animations | FITPED

197

 height: '200px',

 opacity: 1,

 backgroundColor: 'yellow'

})),

In the closed state, shown below, the button has a height of 100 pixels, an opacity
of 0.7, and a background color of blue.

src/app/open-close.component.ts

state('closed', style({

 height: '100px',

 opacity: 0.8,

 backgroundColor: '#c6ecff'

})),

🕮 10.1.4

Transitions and timing

In Angular, you can set multiple styles without any animation. However, without
further refinement, the button instantly transforms with no fade, no shrinkage, or
other visible indicator that a change is occurring.

To make the change less abrupt, we need to define an animation transition to
specify the changes that occur between one state and another over a period of
time. The transition() function accepts two arguments: the first argument accepts
an expression that defines the direction between two transition states, and the
second argument accepts one or a series of animate() steps.

Use the animate() function to define the length, delay, and easing of a transition,
and to designate the style function for defining styles while transitions are taking
place. You can also use the animate() function to define the keyframes() function
for multi-step animations. These definitions are placed in the second argument of
the animate() function.

🕮 10.1.5

Animation metadata: duration, delay, and easing

The animate() function (second argument of the transition function) accepts
the timings and styles input parameters.

The timings parameter takes a string defined in three parts.

Animations | FITPED

198

animate ('duration delay easing')

The first part, duration, is required. The duration can be expressed in milliseconds
as a number without quotes, or in seconds with quotes and a time specifier. For
example, a duration of a tenth of a second can be expressed as follows:

• As a plain number, in milliseconds: 100
• In a string, as milliseconds: '100ms'
• In a string, as seconds: '0.1s'

The second argument, delay, has the same syntax as duration. For example:

• Wait for 100ms and then run for 200ms: '0.2s 100ms'

The third argument, easing, controls how the animation accelerates and
decelerates during its runtime. For example, ease-in causes the animation to begin
slowly, and to pick up speed as it progresses.

• Wait for 100ms, run for 200ms. Use a deceleration curve to start out fast and
slowly decelerate to a resting point: '0.2s 100ms ease-out'

• Run for 200ms, with no delay. Use a standard curve to start slow, accelerate
in the middle, and then decelerate slowly at the end: '0.2s ease-in-out'

• Start immediately, run for 200ms. Use an acceleration curve to start slow
and end at full velocity: '0.2s ease-in'

Note: See the Material Design website's topic on Natural easing curves for general
information on easing curves.

This example provides a state transition from open to closed with a one second
transition between states.

src/app/open-close.component.ts

transition('open => closed', [

 animate('1s')

]),

In the code snippet above, the => operator indicates unidirectional transitions,
and <=> is bidirectional. Within the transition, animate() specifies how long the
transition takes. In this case, the state change from open to closed takes one
second, expressed here as 1s.

This example adds a state transition from the closed state to the open state with a
0.5 second transition animation arc.

src/app/open-close.component.ts

transition('closed => open', [

Animations | FITPED

199

 animate('0.5s')

]),

Note: Some additional notes on using styles within state and transition functions.

• Use state() to define styles that are applied at the end of each transition, they
persist after the animation has completed.

• Use transition() to define intermediate styles, which create the illusion of
motion during the animation.

• When animations are disabled, transition() styles can be skipped,
but state() styles can't.

• You can include multiple state pairs within the same transition() argument:
• transition('on => off, off => void').

🕮 10.1.6

Triggering the animation

An animation requires a trigger, so that it knows when to start.
The trigger() function collects the states and transitions, and gives the animation a
name, so that you can attach it to the triggering element in the HTML template.

The trigger() function describes the property name to watch for changes. When a
change occurs, the trigger initiates the actions included in its definition. These
actions can be transitions or other functions, as we'll see later on.

In this example, we'll name the trigger openClose, and attach it to
the button element. The trigger describes the open and closed states, and the
timings for the two transitions.

Note: Within each trigger() function call, an element can only be in one state at any
given time. However, it's possible for multiple triggers to be active at once.

🕮 10.1.7

Defining animations and attaching them to the HTML template

Animations are defined in the metadata of the component that controls the HTML
element to be animated. Put the code that defines your animations under
the animations: property within the @Component() decorator.

src/app/open-close.component.ts

@Component({

Animations | FITPED

200

 selector: 'app-open-close',

 animations: [

 trigger('openClose', [

 // ...

 state('open', style({

 height: '200px',

 opacity: 1,

 backgroundColor: 'yellow'

 })),

 state('closed', style({

 height: '100px',

 opacity: 0.8,

 backgroundColor: '#c6ecff'

 })),

 transition('open => closed', [

 animate('1s')

]),

 transition('closed => open', [

 animate('0.5s')

]),

]),

],

 templateUrl: 'open-close.component.html',

 styleUrls: ['open-close.component.css']

})

export class OpenCloseComponent {

 isOpen = true;

 toggle() {

 this.isOpen = !this.isOpen;

 }

}

When you've defined an animation trigger for a component, you can attach it to an
element in that component's template by wrapping the trigger name in brackets and
preceding it with an @ symbol. Then, you can bind the trigger to a template
expression using standard Angular property binding syntax as shown below,
where triggerName is the name of the trigger, and expression evaluates to a
defined animation state.

<div [@triggerName]="expression">...</div>;

The animation is executed or triggered when the expression value changes to a
new state.

Animations | FITPED

201

The following code snippet binds the trigger to the value of the isOpen property.

src/app/open-close.component.html

<nav>

 <button (click)="toggle()">Toggle Open/Close</button>

</nav>

<div [@openClose]="isOpen ? 'open' : 'closed'" class="open-

close-container">

 <p>The box is now {{ isOpen ? 'Open' : 'Closed' }}!</p>

</div>

In this example, when the isOpen expression evaluates to a defined state
of open or closed, it notifies the trigger openClose of a state change. Then it's up to
the openClose code to handle the state change and kick off a state change
animation.

For elements entering or leaving a page (inserted or removed from the DOM), you
can make the animations conditional. For example, use *ngIf with the animation
trigger in the HTML template.

Note: In the component file, set the trigger that defines the animations as the value
of the animations: property in the @Component() decorator.

In the HTML template file, use the trigger name to attach the defined animations to
the HTML element to be animated.

🕮 10.1.8

trigger() Starts the animation and serves as a container for all other animation
function calls. The HTML template is associated with triggerName. Use the first
argument to declare a unique trigger name. Uses array syntax.

style() Defines one or more CSS styles for use in animations. Controls the visual
appearance of HTML elements during animation. Uses object-oriented syntax.

state() Creates a named set of CSS styles to be applied after a successful
transition to a state. The state can then be referenced by name within other
animation functions.

animate() Specifies the timing information for the transition. Optional values for
delay easing. May contain style()calls within.

transition() Defines an animation sequence between two named states. Uses array
syntax.

Animations | FITPED

202

keyframes() Allows you to sequentially change styles over a specified time interval.
Use in animate() string. Can contain multiple style()calls in each keyframe(). Uses
array syntax.

group() Specifies a group of animation steps (internal animations) to be run in
parallel. The animation continues only after all internal animation steps have been
completed. Used in sequence() or transition().

query() Finds at least one internal HTML element in the current element.

sequence() Specifies a list of animation steps that are run sequentially, one after
the other.

stagger() Extends the animation start time for multiple elements.

animation() Creates a reusable animation that can be called from elsewhere. Used
in conjunction with useAnimation().

useAnimation() Activates a reusable animation. Used with animation().

animateChild() Allows animations to run on slave components at the same time as
the parent.

10.2 Transitions and triggers

🕮 10.2.1

Predefined states and wildcard matching

In Angular, transition states can be defined explicitly through the state() function or
using the predefined * (wildcard) and void states.

Wildcard state

An asterisk * or wildcard matches any animation state. This is useful for defining
transitions that apply regardless of the HTML element's start or end state.

For example, a transition of open => * applies when the element's state changes
from open to anything else.

The following is another code sample using the wildcard state together with the
previous example using the open and closed states. Instead of defining each state-
to-state transition pair, any transition to closed takes 1 second, and any transition
to open takes 0.5 seconds.

Animations | FITPED

203

This allows us to add new states without having to include separate transitions for
each one.

src/app/open-close.component.ts

animations: [

 trigger('openClose', [

 // ...

 state('open', style({

 height: '200px',

 opacity: 1,

 backgroundColor: 'yellow'

 })),

 state('closed', style({

 height: '100px',

 opacity: 0.8,

 backgroundColor: '#c6ecff'

 })),

 transition('* => closed', [

 animate('1s')

]),

 transition('* => open', [

 animate('0.5s')

]),

]),

],

Use a double arrow syntax to specify state-to-state transitions in both directions.

src/app/open-close.component.ts

transition('open <=> closed', [

 animate('0.5s')

]),

🕮 10.2.2

Using wildcard state with multiple transition states

In the two-state button example, the wildcard isn't that useful because there are
only two possible states, open and closed. Wildcard states are better when an
element in one particular state has multiple potential states that it can change to. If
the button can change from open to either closed or something like inProgress,
using a wildcard state could reduce the amount of coding needed.

Animations | FITPED

204

src/app/open-close.component.ts

animations: [

 trigger('openClose', [

 // ...

 state('open', style({

 height: '200px',

 opacity: 1,

 backgroundColor: 'yellow'

 })),

 state('closed', style({

 height: '100px',

 opacity: 0.8,

 backgroundColor: '#c6ecff'

 })),

 transition('open => closed', [

 animate('1s')

]),

 transition('closed => open', [

 animate('0.5s')

]),

 transition('* => closed', [

 animate('1s')

]),

 transition('* => open', [

 animate('0.5s')

]),

 transition('open <=> closed', [

 animate('0.5s')

]),

 transition ('* => open', [

 animate ('1s',

 style ({ opacity: '*' }),

),

]),

 transition('* => *', [

 animate('1s')

]),

The * => * transition applies when any change between two states takes place.

Transitions are matched in the order in which they are defined. Thus, you can apply
other transitions on top of the * => * (any-to-any) transition. For example, define
style changes or animations that would apply just to open => closed, or just

Animations | FITPED

205

to closed => open, and then use * => * as a fallback for state pairings that aren't
otherwise called out.

To do this, list the more specific transitions before * => *.

🕮 10.2.3

Using wildcards with styles

Use the wildcard * with a style to tell the animation to use whatever the current
style value is, and animate with that. Wildcard is a fallback value that's used if the
state being animated isn't declared within the trigger.

src/app/open-close.component.ts

content_copy

transition ('* => open', [

 animate ('1s',

 style ({ opacity: '*' }),

),

]),

Void state

You can use the void state to configure transitions for an element that is entering or
leaving a page. See Animating entering and leaving a view.

Combining wildcard and void states

You can combine wildcard and void states in a transition to trigger animations that
enter and leave the page:

• A transition of * => void applies when the element leaves a view, regardless
of what state it was in before it left.

• A transition of void => * applies when the element enters a view, regardless
of what state it assumes when entering.

• The wildcard state * matches to any state, including void.

🕮 10.2.4

:enter and :leave aliases

:enter and :leave are aliases for the void => * and * => void transitions. These
aliases are used by several animation functions.

Animations | FITPED

206

transition (':enter', [...]); // alias for void => *

transition (':leave', [...]); // alias for * => void

It's harder to target an element that is entering a view because it isn't in the DOM
yet. So, use the aliases :enter and :leave to target HTML elements that are inserted
or removed from a view.

Use of *ngIf and *ngFor with :enter and :leave

The :enter transition runs when any *ngIf or *ngFor views are placed on the page,
and :leave runs when those views are removed from the page.

This example has a special trigger for the enter and leave animation
called myInsertRemoveTrigger. The HTML template contains the following code.

src/app/insert-remove.component.html

<div @myInsertRemoveTrigger *ngIf="isShown" class="insert-

remove-container">

 <p>The box is inserted</p>

</div>

In the component file, the :enter transition sets an initial opacity of 0, and then
animates it to change that opacity to 1 as the element is inserted into the view.

src/app/insert-remove.component.ts

trigger('myInsertRemoveTrigger', [

 transition(':enter', [

 style({ opacity: 0 }),

 animate('100ms', style({ opacity: 1 })),

]),

 transition(':leave', [

 animate('100ms', style({ opacity: 0 }))

])

]),

Note that this example doesn't need to use state().

:increment and :decrement in transitions

The transition() function takes additional selector
values, :increment and :decrement. Use these to kick off a transition when a
numeric value has increased or decreased in value.

Note: The following example uses query() and stagger() methods, which is
discussed in the complex sequences page.

Animations | FITPED

207

src/app/hero-list-page.component.ts

trigger('filterAnimation', [

 transition(':enter, * => 0, * => -1', []),

 transition(':increment', [

 query(':enter', [

 style({ opacity: 0, width: '0px' }),

 stagger(50, [

 animate('300ms ease-out', style({ opacity: 1, width:

'*' })),

]),

], { optional: true })

]),

 transition(':decrement', [

 query(':leave', [

 stagger(50, [

 animate('300ms ease-out', style({ opacity: 0, width:

'0px' })),

]),

])

]),

]),

🕮 10.2.5

Boolean values in transitions

If a trigger contains a boolean value as a binding value, then this value can be
matched using a transition() expression that compares true and false, or 1 and 0.

src/app/open-close.component.html

<div [@openClose]="isOpen ? true : false" class="open-close-

container">

</div>

In the code snippet above, the HTML template binds a <div> element to a trigger
named openClose with a status expression of isOpen, and with possible values
of true and false. This is an alternative to the practice of creating two named states
of open and close.

In the component code, in the @Component metadata under
the animations: property, when the state evaluates to true (meaning "open" here),
the associated HTML element's height is a wildcard style or default. In this case,
use whatever height the element already had before the animation started. When

Animations | FITPED

208

the element is "closed," the element animates to a height of 0, which makes it
invisible.

src/app/open-close.component.ts

animations: [

 trigger('openClose', [

 state('true', style({ height: '*' })),

 state('false', style({ height: '0px' })),

 transition('false <=> true', animate(500))

])

],

🕮 10.2.6

Animation callbacks

The animation trigger() function emits callbacks when it starts and when it finishes.
The example below features a component that contains an openClose trigger.

src/app/open-close.component.ts

@Component({

 selector: 'app-open-close',

 animations: [

 trigger('openClose', [

 // ...

]),

],

 templateUrl: 'open-close.component.html',

 styleUrls: ['open-close.component.css']

})

export class OpenCloseComponent {

 onAnimationEvent(event: AnimationEvent) {

 }

}

In the HTML template, the animation event is passed back via $event,
as @trigger.start and @trigger.done, where trigger is the name of the trigger being
used. In this example, the trigger openClose appears as follows.

src/app/open-close.component.html

<div [@openClose]="isOpen ? 'open' : 'closed'"

 (@openClose.start)="onAnimationEvent($event)"

Animations | FITPED

209

 (@openClose.done)="onAnimationEvent($event)"

 class="open-close-container">

</div>

A potential use for animation callbacks could be to cover for a slow API call, such
as a database lookup. For example, you could set up the InProgress button to have
its own looping animation where it pulsates or does some other visual motion while
the backend system operation finishes.

Then, another animation can be called when the current animation finishes. For
example, the button goes from the inProgress state to the closed state when the
API call is completed.

An animation can influence an end user to perceive the operation as faster, even
when it isn't. Thus, a simple animation can be a cost-effective way to keep users
happy, rather than seeking to improve the speed of a server call and having to
compensate for circumstances beyond your control, such as an unreliable network
connection.

Callbacks can serve as a debugging tool, for example in conjunction
with console.warn() to view the application's progress in a browser's Developer
JavaScript Console. The following code snippet creates console log output for the
original example, a button with the two states of open and closed.

src/app/open-close.component.ts

export class OpenCloseComponent {

 onAnimationEvent(event: AnimationEvent) {

 // openClose is trigger name in this example

 console.warn(`Animation Trigger: ${event.triggerName}`);

 // phaseName is start or done

 console.warn(`Phase: ${event.phaseName}`);

 // in our example, totalTime is 1000 or 1 second

 console.warn(`Total time: ${event.totalTime}`);

 // in our example, fromState is either open or closed

 console.warn(`From: ${event.fromState}`);

 // in our example, toState either open or closed

 console.warn(`To: ${event.toState}`);

 // the HTML element itself, the button in this case

 console.warn(`Element: ${event.element}`);

 }

Animations | FITPED

210

}

🕮 10.2.7

Keyframes

The previous section features a simple two-state transition. Now create an
animation with multiple steps run in sequence using keyframes.

Angular's keyframe() function is similar to keyframes in CSS. Keyframes allow
several style changes within a single timing segment. For example, the button,
instead of fading, could change color several times over a single 2-second
timespan.

The code for this color change might look like this.

src/app/status-slider.component.ts

transition('* => active', [

 animate('2s', keyframes([

 style({ backgroundColor: 'blue' }),

 style({ backgroundColor: 'red' }),

 style({ backgroundColor: 'orange' })

]))

Offset

Keyframes include an offset that defines the point in the animation where each
style change occurs. Offsets are relative measures from zero to one, marking the
beginning and end of the animation, respectively and should be applied to each of
the keyframe's steps if used at least once.

Defining offsets for keyframes is optional. If you omit them, evenly spaced offsets
are automatically assigned. For example, three keyframes without predefined
offsets receive offsets of 0, 0.5, and 1. Specifying an offset of 0.8 for the middle
transition in the above example might look like this.

The code with offsets specified would be as follows.

src/app/status-slider.component.ts

transition('* => active', [

 animate('2s', keyframes([

 style({ backgroundColor: 'blue', offset: 0}),

 style({ backgroundColor: 'red', offset: 0.8}),

 style({ backgroundColor: '#754600', offset: 1.0})

Animations | FITPED

211

])),

]),

transition('* => inactive', [

 animate('2s', keyframes([

 style({ backgroundColor: '#754600', offset: 0}),

 style({ backgroundColor: 'red', offset: 0.2}),

 style({ backgroundColor: 'blue', offset: 1.0})

]))

]),

You can combine keyframes with duration, delay, and easing within a single
animation.

🕮 10.2.8

Keyframes with a pulsation

Use keyframes to create a pulse effect in your animations by defining styles at
specific offset throughout the animation.

Here's an example of using keyframes to create a pulse effect:

• The original open and closed states, with the original changes in height,
color, and opacity, occurring over a timeframe of 1 second.

• A keyframes sequence inserted in the middle that causes the button to
appear to pulsate irregularly over the course of that same 1-second
timeframe.

The code snippet for this animation might look like this.

src/app/open-close.component.ts

trigger('openClose', [

 state('open', style({

 height: '200px',

 opacity: 1,

 backgroundColor: 'yellow'

 })),

 state('close', style({

 height: '100px',

 opacity: 0.5,

 backgroundColor: 'green'

 })),

 // ...

Animations | FITPED

212

 transition('* => *', [

 animate('1s', keyframes ([

 style({ opacity: 0.1, offset: 0.1 }),

 style({ opacity: 0.6, offset: 0.2 }),

 style({ opacity: 1, offset: 0.5 }),

 style({ opacity: 0.2, offset: 0.7 })

]))

])

])

🕮 10.2.9

Animatable properties and units

Angular's animation support builds on top of web animations, so you can animate
any property that the browser considers animatable. This includes positions, sizes,
transforms, colors, borders, and more. The W3C maintains a list of animatable
properties on its CSS Transitions page.

For positional properties with a numeric value, define a unit by providing the value
as a string, in quotes, with the appropriate suffix:

• 50 pixels: '50px'
• Relative font size: '3em'
• Percentage: '100%'

If you don't provide a unit when specifying dimension, Angular assumes a default
unit of pixels, or px. Expressing 50 pixels as 50 is the same as saying '50px'.

Automatic property calculation with wildcards

Sometimes you don't know the value of a dimensional style property until runtime.
For example, elements often have widths and heights that depend on their content
and the screen size. These properties are often challenging to animate using CSS.

In these cases, you can use a special wildcard * property value under style(), so that
the value of that particular style property is computed at runtime and then plugged
into the animation.

The following example has a trigger called shrinkOut, used when an HTML element
leaves the page. The animation takes whatever height the element has before it
leaves, and animates from that height to zero.

src/app/hero-list-auto.component.ts

content_copy

Animations | FITPED

213

animations: [

 trigger('shrinkOut', [

 state('in', style({ height: '*' })),

 transition('* => void', [

 style({ height: '*' }),

 animate(250, style({ height: 0 }))

])

])

]

Keyframes summary

The keyframes() function in Angular allows you to specify multiple interim styles
within a single transition, with an optional offset to define the point in the animation
where each style change occurs.

10.3 Complex animation sequences

🕮 10.3.1

Animate multiple elements using query() and stagger() functions

The query() function allows you to find inner elements within the element that is
being animated. This function targets specific HTML elements within a parent
component and applies animations to each element individually. Angular
intelligently handles setup, teardown, and cleanup as it coordinates the elements
across the page.

The stagger() function allows you to define a timing gap between each queried item
that is animated and thus animates elements with a delay between them.

The Filter/Stagger tab in the live example shows a list of heroes with an
introductory sequence. The entire list of heroes cascades in, with a slight delay
from top to bottom.

The following example demonstrates how to use query() and stagger() functions
on the entry of an animated element.

• Use query() to look for an element entering the page that meets certain
criteria.

• For each of these elements, use style() to set the same initial style for the
element. Make it invisible and use transform to move it out of position so
that it can slide into place.

• Use stagger() to delay each animation by 30 milliseconds.

Animations | FITPED

214

• Animate each element on screen for 0.5 seconds using a custom-defined
easing curve, simultaneously fading it in and un-transforming it.

src/app/hero-list-page.component.ts

animations: [

 trigger('pageAnimations', [

 transition(':enter', [

 query('.hero, form', [

 style({opacity: 0, transform: 'translateY(-

100px)'}),

 stagger(-30, [

 animate('500ms cubic-bezier(0.35, 0, 0.25, 1)',

style({ opacity: 1, transform: 'none' }))

])

])

])

]),

]

})

export class HeroListPageComponent implements OnInit {

 @HostBinding('@pageAnimations')

 public animatePage = true;

 heroTotal = -1;

 get heroes() { return this._heroes; }

 private _heroes: Hero[] = [];

 ngOnInit() {

 this._heroes = HEROES;

 }

 updateCriteria(criteria: string) {

 criteria = criteria ? criteria.trim() : '';

 this._heroes = HEROES.filter(hero =>

hero.name.toLowerCase().includes(criteria.toLowerCase()));

 const newTotal = this.heroes.length;

 if (this.heroTotal !== newTotal) {

 this.heroTotal = newTotal;

 } else if (!criteria) {

 this.heroTotal = -1;

 }

 }

Animations | FITPED

215

}

🕮 10.3.2

Parallel animation using group() function

You've seen how to add a delay between each successive animation. But you may
also want to configure animations that happen in parallel. For example, you may
want to animate two CSS properties of the same element but use a
different easing function for each one. For this, you can use the
animation group() function.

Note: The group() function is used to group animation steps, rather than animated
elements.

In the following example, using groups on both :enter and :leave allow for two
different timing configurations. They're applied to the same element in parallel, but
run independently.

src/app/hero-list-groups.component.ts (excerpt)

animations: [

 trigger('flyInOut', [

 state('in', style({

 width: 120,

 transform: 'translateX(0)', opacity: 1

 })),

 transition('void => *', [

 style({ width: 10, transform: 'translateX(50px)',

opacity: 0 }),

 group([

 animate('0.3s 0.1s ease', style({

 transform: 'translateX(0)',

 width: 120

 })),

 animate('0.3s ease', style({

 opacity: 1

 }))

])

]),

 transition('* => void', [

 group([

 animate('0.3s ease', style({

 transform: 'translateX(50px)',

 width: 10

Animations | FITPED

216

 })),

 animate('0.3s 0.2s ease', style({

 opacity: 0

 }))

])

])

])

]

🕮 10.3.3

Sequential vs. parallel animations

Complex animations can have many things happening at once. But what if you want
to create an animation involving several animations happening one after the other?
Earlier we used group() to run multiple animations all at the same time, in parallel.

A second function called sequence() lets you run those same animations one after
the other. Within sequence(), the animation steps consist of
either style() or animate() function calls.

• Use style() to apply the provided styling data immediately.
• Use animate() to apply styling data over a given time interval.

🕮 10.3.4

Filter animation example

Let's take a look at another animation on the live example page. Under the
Filter/Stagger tab, enter some text into the Search Heroes text box, such
as Magnet or tornado.

The filter works in real time as you type. Elements leave the page as you type each
new letter and the filter gets progressively stricter. The heroes list gradually re-
enters the page as you delete each letter in the filter box.

The HTML template contains a trigger called filterAnimation.

src/app/hero-list-page.component.html

<ul class="heroes" [@filterAnimation]="heroTotal">

The component file contains three transitions.

Animations | FITPED

217

src/app/hero-list-page.component.ts

@Component({

 animations: [

 trigger('filterAnimation', [

 transition(':enter, * => 0, * => -1', []),

 transition(':increment', [

 query(':enter', [

 style({ opacity: 0, width: '0px' }),

 stagger(50, [

 animate('300ms ease-out', style({ opacity: 1,

width: '*' })),

]),

], { optional: true })

]),

 transition(':decrement', [

 query(':leave', [

 stagger(50, [

 animate('300ms ease-out', style({ opacity: 0,

width: '0px' })),

]),

])

]),

]),

]

})

export class HeroListPageComponent implements OnInit {

 heroTotal = -1;

}

The animation does the following:

• Ignores any animations that are performed when the user first opens or
navigates to this page. The filter narrows what is already there, so it
assumes that any HTML elements to be animated already exist in the DOM.

• Performs a filter match for matches.

For each match:

• Hides the element by making it completely transparent and infinitely narrow,
by setting its opacity and width to 0.

• Animates in the element over 300 milliseconds. During the animation, the
element assumes its default width and opacity.

• If there are multiple matching elements, staggers in each element starting at
the top of the page, with a 50-millisecond delay between each element.

Animations | FITPED

218

🕮 10.3.5

Animation sequence summary

Angular functions for animating multiple elements start with query() to find inner
elements, for example gathering all images within a <div>. The remaining
functions, stagger(), group(), and sequence(), apply cascades or allow you to
control how multiple animation steps are applied.

10.4 Reusable Animations

🕮 10.4.1

Creating reusable animations

To create a reusable animation, use the animation() method to define an animation
in a separate .ts file and declare this animation definition as a const export
variable. You can then import and reuse this animation in any of your application
components using the useAnimation() API.

src/app/animations.ts

import { animation, style, animate, trigger, transition,

useAnimation } from '@angular/animations';

export const transitionAnimation = animation([

 style({

 height: '{{ height }}',

 opacity: '{{ opacity }}',

 backgroundColor: '{{ backgroundColor }}'

 }),

 animate('{{ time }}')

]);

In the above code snippet, transAnimation is made reusable by declaring it as an
export variable.

Note: The height, opacity, backgroundColor, and time inputs are replaced during
runtime.

You can also export a part of an animation. For example, the following snippet
exports the animation trigger.

src/app/animations.1.ts

Animations | FITPED

219

import { animation, style, animate, trigger, transition,

useAnimation } from '@angular/animations';

export const triggerAnimation = trigger('openClose', [

 transition('open => closed', [

 useAnimation(transitionAnimation, {

 params: {

 height: 0,

 opacity: 1,

 backgroundColor: 'red',

 time: '1s'

 }

 })

])

]);

From this point, you can import resuable animation variables in your component
class. For example, the following code snippet imports the transAnimation variable
for use in the useAnimation() method.

src/app/open-close.component.ts

import { Component } from '@angular/core';

import { transition, trigger, useAnimation } from

'@angular/animations';

import { transAnimation } from './animations';

@Component({

 selector: 'app-open-close-reusable',

 animations: [

 trigger('openClose', [

 transition('open => closed', [

 useAnimation(transAnimation, {

 params: {

 height: 0,

 opacity: 1,

 backgroundColor: 'red',

 time: '1s'

 }

 })

])

])

],

 templateUrl: 'open-close.component.html',

 styleUrls: ['open-close.component.css']

})

Animations | FITPED

220

10.5 Route transition animations

🕮 10.5.1

Routing enables users to navigate between different routes in an application. When
a user navigates from one route to another, the Angular router maps the URL path
to a relevant component and displays its view. Animating this route transition can
greatly enhance the user experience.

The Angular router comes with high-level animation functions that let you animate
the transitions between views when a route changes. To produce an animation
sequence when switching between routes, you need to define nested animation
sequences. Start with the top-level component that hosts the view, and nest
additional animations in the components that host the embedded views.

To enable routing transition animation, do the following:

1. Import the routing module into the application and create a routing
configuration that defines the possible routes.

2. Add a router outlet to tell the Angular router where to place the activated
components in the DOM.

3. Define the animation.

Let's illustrate a router transition animation by navigating between two
routes, Home and About associated with
the HomeComponent and AboutComponent views respectively. Both of these
component views are children of the top-most view, hosted by AppComponent.
We'll implement a router transition animation that slides in the new view to the right
and slides out the old view when the user navigates between the two routes.

🕮 10.5.2

Route configuration

To begin, configure a set of routes using methods available in
the RouterModule class. This route configuration tells the router how to navigate.

Use the RouterModule.forRoot method to define a set of routes. Also, import
this RouterModule to the imports array of the main module, AppModule.

Note: Use the RouterModule.forRoot method in the root module, AppModule, to
register top-level application routes and providers. For feature modules, call
the RouterModule.forChild method to register additional routes.

The following configuration defines the possible routes for the application.

Animations | FITPED

221

src/app/app.module.ts

content_copy

import { NgModule } from '@angular/core';

import { BrowserModule } from '@angular/platform-browser';

import { BrowserAnimationsModule } from '@angular/platform-

browser/animations';

import { RouterModule } from '@angular/router';

import { AppComponent } from './app.component';

import { OpenCloseComponent } from './open-close.component';

import { OpenClosePageComponent } from './open-close-

page.component';

import { OpenCloseChildComponent } from './open-

close.component.4';

import { ToggleAnimationsPageComponent } from './toggle-

animations-page.component';

import { StatusSliderComponent } from './status-

slider.component';

import { StatusSliderPageComponent } from './status-slider-

page.component';

import { HeroListPageComponent } from './hero-list-

page.component';

import { HeroListGroupPageComponent } from './hero-list-group-

page.component';

import { HeroListGroupsComponent } from './hero-list-

groups.component';

import { HeroListEnterLeavePageComponent } from './hero-list-

enter-leave-page.component';

import { HeroListEnterLeaveComponent } from './hero-list-

enter-leave.component';

import { HeroListAutoCalcPageComponent } from './hero-list-

auto-page.component';

import { HeroListAutoComponent } from './hero-list-

auto.component';

import { HomeComponent } from './home.component';

import { AboutComponent } from './about.component';

import { InsertRemoveComponent } from './insert-

remove.component';

@NgModule({

 imports: [

 BrowserModule,

 BrowserAnimationsModule,

 RouterModule.forRoot([

Animations | FITPED

222

 { path: '', pathMatch: 'full', redirectTo: '/enter-

leave' },

 { path: 'open-close', component: OpenClosePageComponent

},

 { path: 'status', component: StatusSliderPageComponent

},

 { path: 'toggle', component:

ToggleAnimationsPageComponent },

 { path: 'heroes', component: HeroListPageComponent,

data: {animation: 'FilterPage'} },

 { path: 'hero-groups', component:

HeroListGroupPageComponent },

 { path: 'enter-leave', component:

HeroListEnterLeavePageComponent },

 { path: 'auto', component: HeroListAutoCalcPageComponent

},

 { path: 'insert-remove', component:

InsertRemoveComponent},

 { path: 'home', component: HomeComponent, data:

{animation: 'HomePage'} },

 { path: 'about', component: AboutComponent, data:

{animation: 'AboutPage'} },

])

],

The home and about paths are associated with
the HomeComponent and AboutComponent views. The route configuration tells the
Angular router to instantiate the HomeComponent and AboutComponent views
when the navigation matches the corresponding path.

In addition to path and component, the data property of each route defines the key
animation-specific configuration associated with a route. The data property value is
passed into AppComponent when the route changes. You can also pass additional
data in route configuration that is consumed within the animation. The data
property value has to match the transitions defined in the routeAnimation trigger,
which we'll define later.

Note: The data property names that you use can be arbitrary. For example, the
name animation used in the example above is an arbitrary choice.

🕮 10.5.3

Router outlet

Animations | FITPED

223

After configuring the routes, tell the Angular router where to render the views when
matched with a route. You can set a router outlet by inserting a <router-
outlet> container inside the root AppComponent template.

The <router-outlet> container has an attribute directive that contains data about
active routes and their states, based on the data property that we set in the route
configuration.

src/app/app.component.html

content_copy

<div [@routeAnimations]="prepareRoute(outlet)">

 <router-outlet #outlet="outlet"></router-outlet>

</div>

AppComponent defines a method that can detect when a view changes. The
method assigns an animation state value to the animation trigger
(@routeAnimation) based on the route configuration data property value. Here's an
example of an AppComponent method that detects when a route change happens.

src/app/app.component.ts

content_copy

prepareRoute(outlet: RouterOutlet) {

 return outlet && outlet.activatedRouteData &&

outlet.activatedRouteData.animation;

}

Here, the prepareRoute() method takes the value of the outlet directive (established
through #outlet="outlet") and returns a string value representing the state of the
animation based on the custom data of the current active route. You can use this
data to control which transition to execute for each route.

🕮 10.5.4

Animation definition

Animations can be defined directly inside your components. For this example we
are defining the animations in a separate file, which allows us to re-use the
animations.

The following code snippet defines a reusable animation named slideInAnimation.

src/app/animations.ts

Animations | FITPED

224

export const slideInAnimation =

 trigger('routeAnimations', [

 transition('HomePage <=> AboutPage', [

 style({ position: 'relative' }),

 query(':enter, :leave', [

 style({

 position: 'absolute',

 top: 0,

 left: 0,

 width: '100%'

 })

]),

 query(':enter', [

 style({ left: '-100%' })

]),

 query(':leave', animateChild()),

 group([

 query(':leave', [

 animate('300ms ease-out', style({ left: '100%' }))

]),

 query(':enter', [

 animate('300ms ease-out', style({ left: '0%' }))

])

]),

 query(':enter', animateChild()),

]),

 transition('* <=> FilterPage', [

 style({ position: 'relative' }),

 query(':enter, :leave', [

 style({

 position: 'absolute',

 top: 0,

 left: 0,

 width: '100%'

 })

]),

 query(':enter', [

 style({ left: '-100%' })

]),

 query(':leave', animateChild()),

 group([

 query(':leave', [

 animate('200ms ease-out', style({ left: '100%' }))

]),

Animations | FITPED

225

 query(':enter', [

 animate('300ms ease-out', style({ left: '0%' }))

])

]),

 query(':enter', animateChild()),

])

]);

The animation definition does several things:

• Defines two transitions. A single trigger can define multiple states and
transitions.

• Adjusts the styles of the host and child views to control their relative
positions during the transition.

• Uses query() to determine which child view is entering and which is leaving
the host view.

A route change activates the animation trigger, and a transition matching the state
change is applied.

Note: The transition states must match the data property value defined in the route
configuration.

Make the animation definition available in your application by adding the reusable
animation (slideInAnimation) to the animations metadata of the AppComponent.

src/app/app.component.ts

@Component({

 selector: 'app-root',

 templateUrl: 'app.component.html',

 styleUrls: ['app.component.css'],

 animations: [

 slideInAnimation

 // animation triggers go here

]

})

🕮 10.5.5

Styling the host and child components

During a transition, a new view is inserted directly after the old one and both
elements appear on screen at the same time. To prevent this, apply additional
styling to the host view, and to the removed and inserted child views. The host view
must use relative positioning, and the child views must use absolute positioning.

Animations | FITPED

226

Adding styling to the views animates the containers in place, without the DOM
moving things around.

src/app/animations.ts

trigger('routeAnimations', [

 transition('HomePage <=> AboutPage', [

 style({ position: 'relative' }),

 query(':enter, :leave', [

 style({

 position: 'absolute',

 top: 0,

 left: 0,

 width: '100%'

 })

]),

Querying the view containers

Use the query() method to find and animate elements within the current host
component. The query(":enter") statement returns the view that is being inserted,
and query(":leave") returns the view that is being removed.

Let's assume that we are routing from the Home => About.

src/app/animations.ts (Continuation from above)

query(':enter', [

 style({ left: '-100%' })

]),

 query(':leave', animateChild()),

 group([

 query(':leave', [

 animate('300ms ease-out', style({ left: '100%' }))

]),

 query(':enter', [

 animate('300ms ease-out', style({ left: '0%' }))

])

]),

 query(':enter', animateChild()),

]),

transition('* <=> FilterPage', [

 style({ position: 'relative' }),

 query(':enter, :leave', [

 style({

 position: 'absolute',

Animations | FITPED

227

 top: 0,

 left: 0,

 width: '100%'

 })

]),

 query(':enter', [

 style({ left: '-100%' })

]),

 query(':leave', animateChild()),

 group([

 query(':leave', [

 animate('200ms ease-out', style({ left: '100%' }))

]),

 query(':enter', [

 animate('300ms ease-out', style({ left: '0%' }))

])

]),

 query(':enter', animateChild()),

])

The animation code does the following after styling the views:

• query(':enter', style({ left: '-100%' })) matches the view that is added and
hides the newly added view by positioning it to the far left.

• Calls animateChild() on the view that is leaving, to run its child animations.
• Uses group() function to make the inner animations run in parallel.
• Within the group() function:
• Queries the view that is removed and animates it to slide far to the right.
• Slides in the new view by animating the view with an easing function and

duration.
• This animation results in the about view sliding from the left to right.
• Calls the animateChild() method on the new view to run its child animations

after the main animation completes.

10.6 Animations (Exercises)

📝 10.6.1

Finds one or more inner HTML elements within the current element.

Animations | FITPED

228

📝 10.6.2

Creates a named set of CSS styles that should be applied on successful transition
to a given state. The state can then be referenced by name within other animation
functions.

📝 10.6.3

Kicks off the animation and serves as a container for all other animation function
calls. HTML template binds to triggerName. Use the first argument to declare a
unique trigger name. Uses array syntax.

📝 10.6.4

The wildcard state ... matches any state, including void.

📝 10.6.5

 function in Angular allows you to specify multiple interim styles within a single
transition, with an optional offset to define the point in the animation where each
style change occurs.

📝 10.6.6

Use ... to delay each animation by 30 milliseconds.

📝 10.6.7

To enable routing transition animation, do the following:

1. import the routing module into your application and create a routing
configuration that defines possible routes.

2. add a router socket to tell the Angular router where to place the activated
components in the DOM.

3. define the animation.

• True
• False

PWA

Chapter 11

PWA | FITPED

230

11.1 PWA

🕮 11.1.1

The two main requirements of a PWA are a Service Worker and a Web Manifest.
While it's possible to add both of these to an app manually, the Angular team has
an @angular/pwa package that can be used to automate this.

The @angular/pwa package will automatically add a service worker and an app
manifest to the app. To add this package to the app, run:

$ ng add @angular/pwa

Once this package has been added run ionic build --prod and the www directory will
be ready to deploy as a PWA.

By default, the @angular/pwa package comes with the Angular logo
for the app icons. Be sure to update the manifest to use the correct
app name and also replace the icons.

Note: Features like Service Workers and many JavaScript APIs (such
as geolocation) require the app be hosted in a secure context. When
deploying an app through a hosting service, be aware that HTTPS will
be required to take full advantage of Service Workers.

Service Worker configuration

After @angular/pwa has been added, a new ngsw-config.json file will be created at
the root of the project. This file is responsible for configuring how Angular's service
worker mechanism will handle caching assets. By default, the following will be
provided:

{

 "$schema": "./node_modules/@angular/service-

worker/config/schema.json",

 "index": "/index.html",

 "assetGroups": [

 {

 "name": "app",

 "installMode": "prefetch",

 "resources": {

 "files": [

 "/favicon.ico",

 "/index.html",

 "/*.css",

 "/*.js"

]

https://developers.google.com/web/fundamentals/primers/service-workers/
https://developers.google.com/web/fundamentals/web-app-manifest/

PWA | FITPED

231

 }

 }, {

 "name": "assets",

 "installMode": "lazy",

 "updateMode": "prefetch",

 "resources": {

 "files": [

 "/assets/**",

"/*.(eot|svg|cur|jpg|png|webp|gif|otf|ttf|woff|woff2|ani)"

]

 }

 }

]

}

There are two sections in here, one for app specific resources (JS, CSS, HTML) and
assets the app will load on demand. Depending on your app, these options can be
customized. For a more detailed guide, read the official guide from the Angular
Team.

Deploying

Firebase

Firebase hosting provides many benefits for Progressive Web Apps, including fast
response times thanks to CDNs, HTTPS enabled by default, and support for HTTP2
push.

First, if not already available, create the project in Firebase.

Next, in a Terminal, install the Firebase CLI:

$ npm install -g firebase-tools

Note: If it's the first time you use firebase-tools, login to your Google
account with firebase login command.

With the Firebase CLI installed, run firebase init within your Ionic project. The CLI
prompts:

"Which Firebase CLI features do you want to set up for this folder?" Choose
"Hosting: Configure and deploy Firebase Hosting sites."

"Select a default Firebase project for this directory:" Choose the project you
created on the Firebase website.

PWA | FITPED

232

"What do you want to use as your public directory?" Enter "www".

Note: Answering these next two questions will ensure that routing,
hard reload, and deep linking work in the app:

Configure as a single-page app (rewrite all urls to /index.html)?" Enter "Yes".

"File www/index.html already exists. Overwrite?" Enter "No".

A firebase.json config file is generated, configuring the app for deployment.

The last thing needed is to make sure caching headers are being set correctly. To
do this, add a headers snippet to the firebase.json file. The
complete firebase.json looks like:

{

 "hosting": {

 "public": "www",

 "ignore": [

 "firebase.json",

 "**/.*",

 "**/node_modules/**"

],

 "rewrites": [

 {

 "source": "**",

 "destination": "/index.html"

 }

],

 "headers": [

 {

 "source": "/build/app/**",

 "headers": [

 {

 "key": "Cache-Control",

 "value": "public, max-age=31536000"

 }

]

 },

 {

 "source": "ngsw-worker.js",

 "headers": [

 {

 "key": "Cache-Control",

 "value": "no-cache"

 }

PWA | FITPED

233

]

 }

]

 }

}

For more information about the firebase.json properties, see the Firebase
documentation.

Next, build an optimized version of the app by running:

$ ionic build --prod

Last, deploy the app by running:

$ firebase deploy

After this completes, the app will be live.

Web Workers

Chapter 12

Web Workers | FITPED

235

12.1 Web workers

🕮 12.1.1

Background processing using web workersWeb workers allow you to run CPU-
intensive computations in a background thread, freeing the main thread to update
the user interface. If you find your application performs a lot of computations, such
as generating CAD drawings or doing heavy geometrical calculations, using web
workers can help increase your application's performance.

The CLI does not support running Angular itself in a web worker.

Adding a web worker

To add a web worker to an existing project, use the Angular CLI ng
generate command.

ng generate web-worker <location>

You can add a web worker anywhere in your application. For example, to add a web
worker to the root component, src/app/app.component.ts, run the following
command.

ng generate web-worker app

The command performs the following actions.

• Configures your project to use web workers, if it isn't already.
• Adds the following scaffold code to src/app/app.worker.ts to receive

messages.
• src/app/app.worker.ts

addEventListener('message', ({ data }) => {

 const response = `worker response to ${data}`;

 postMessage(response);

});

• Adds the following scaffold code to src/app/app.component.ts to use the
worker.

• src/app/app.component.ts

if (typeof Worker !== 'undefined') {

 // Create a new

 const worker = new Worker(new URL('./app.worker',

import.meta.url));

 worker.onmessage = ({ data }) => {

 console.log(`page got message: ${data}`);

Web Workers | FITPED

236

 };

 worker.postMessage('hello');

} else {

 // Web workers are not supported in this environment.

 // You should add a fallback so that your program still

executes correctly.

}

After you generate this initial scaffold, you must refactor your code to use the web
worker by sending messages to and from the worker.

Some environments or platforms, such as @angular/platform-server used
in Server-side Rendering, don't support web workers. To ensure that your
application will work in these environments, you must provide a fallback
mechanism to perform the computations that the worker would otherwise perform.

Vue

Introduction

Chapter 13

Vue Introduction | FITPED

239

13.1 What is VueJS

🕮 13.1.1

We live in a golden era of JavaScript libraries and frameworks. Many of web
systems are based on modern frameworks and bring functions from web and
mobile application to web browsers.

Vue (pronounced /vjuː/, like view) is a framework for building user interfaces based
on JavaScript. Unlike other monolithic frameworks, Vue is designed from the
ground up to be incrementally adoptable.

The core library is focused on the view layer only and is easy to pick up and
integrate with other libraries or existing projects. Vue is also capable of powering
sophisticated Single-Page Applications.

🕮 13.1.2

Vue is only one of several frontend frameworks. The biggest competition are:

• React; React and Vue share many similarities. They both utilize a virtual
DOM, provide reactive and composable view components. React and Vue are
exceptionally and similarly fast. For large applications, both Vue and React
offer robust routing solutions. Important difference is that Vue’s companion
libraries for state management and routing are all officially supported and
kept up to date with the core library. Positive for React is its "extension"
React Native that enables writing native-rendered apps for iOS and Android
using the same React component model.

• AngularJS - Vue is much simpler than AngularJS, both are in terms of API
and design. Learning enough to build non-trivial applications typically takes
less than a day, which is not true for AngularJS. Some of Vue’s syntax will
look very similar to AngularJS. It is because Angular was an inspiration in
early development phase. Vue is much simpler than AngularJS. Learning
enough to build non-trivial applications typically takes less than a day, which
is not true for AngularJS. AngularJS has strong opinions about how
applications should be structured, while Vue is a more flexible.

Compared to other frameworks, Vue is more approachable and has not as steep of
a learning curve.

Vue Introduction | FITPED

240

🕮 13.1.3

The installation of VueJS is simple, and beginners can easily understand and start
building their own user interfaces. VueJS is created by Evan You, an ex-employee
from Google. The first version of VueJS was released in Feb 2014.

🕮 13.1.4

VueJS uses a virtual DOM, with code-based changes not being made directly in the
DOM, but in its replica, which is mirrored in the JavaScript data structures.

Whenever any changes are made in the JavaScript data structures at first. Then the
changes are compared to their content in the original data structure. The real
changes are then projected to the real DOM, which changes are displayed to the
user. This approach brings optimization, it's more efficient and changes (both
visually and application) are made faster.

🕮 13.1.5

The data binding is a feature which helps manipulate with:

• variables,
• HTML attributes,
• styles/CSS styles,
• using commands like for, if etc. in html parts,
• and many features that will be presented later

Special event handling is defined for DOM elements to listen to the events in VueJS.

🕮 13.1.6

Computed properties help to listen to the changes made using UI elements,
performs the necessary calculations and applied changes of variables
automatically to DOM elements.

Watchers are usually applied in reverse form. When data are changed in GUI, the
watchers make changes in data model. Watcher takes care of handling any data
changes making the code simple and fast.

Vue Introduction | FITPED

241

🕮 13.1.7

The connection between DOM and the Vue instance data is based on templates.
Vue compiles the templates into virtual DOM model.

If we use more than one page in our application, we can use routing which heps to
create URI and navigation between them.

13.2 Let's go to start

🕮 13.2.1

We need some development environment for building app based on combination of
JavaScript, HTML and CSS. The best offer is Visual Studio Code, what is open-
source and allow to use command for building, configuring, adding plugins and
components, building app. etc.

Visual Studio Code is a lightweight but powerful source code editor which runs on
your desktop and is available for Windows, macOS and Linux. It comes with built-in
support for JavaScript, TypeScript and Node.js and has a rich ecosystem of
extensions for other languages (such as C++, C#, Java, Python, PHP, Go) and
runtimes (such as .NET and Unity).

The download link: https://code.visualstudio.com/

Vue Introduction | FITPED

242

🕮 13.2.2

NodeJS is a second inevitable part of development platform. You can create Vue
application without NodeJS too, but it is complicated, because thhe best way for
download libraries for you application and hold them update is node package
manager (npm). To use npm for adding and updating libraries, components and
files is common - many of component has defined path for npm instalation.

To install NodeJS you can use: https://nodejs.org/en/

🕮 13.2.3

After NodeJS installation and Visual Studio Code running, we have empty
environment.

We need to show terminal for application structure creating. We can show it using
Ctrl + ` or View -> Terminal.

We can check our version of npm and vesion of Vue using command:

node --version

vue --version

Vue Introduction | FITPED

243

🕮 13.2.4

Our goal is to use Vue in modern form with many features that makes programming
easier. We want to use Vue CLI (command line interface) 3 what is a way for
developers to get their Vue applications up and running as fast as possible, without
thinking about configuration.

For using Vue CLI3 we need Node version 8.9 above. If you have lower version, you
must upgrade (install latest version of NodeJS): https://nodejs.org

We can now install the new CLI version:

npm install -g @vue/cli

Now you ready to create project.

🕮 13.2.5

We have prepared tools for creating projects. To create project structure, we can
use some templates.

We will initialize new project with name my_first. The directory for project will be
created in directory where we are set in system:

PS D:_FEproject> vue create my_first

The system started process of building after run.

Vue Introduction | FITPED

244

We can set or change the default settings of project plugins:

? Please pick a preset: default (babel, eslint)?

We let default values and press Enter.

✨ Creating project in D:_FEproject\my_first.

???? Initializing git repository...

 Installing CLI plugins. This might take a while...

...

�???? Successfully created project my_first.

�???? Get started with the following commands:

 $ cd my_first

 $ npm run serve

PS D:_FEproject>

After finishing project, we have ready application in new directory - my_first.

🕮 13.2.6

Project structure was created, and the system writes instructions for its run:

�???? Get started with the following commands:

 $ cd my_first

 $ npm run serve

PS D:_FEproject>

We have to go inside of directory of project:

PS D:_FEproject>cd my_first

PS D:_FEproject\my_first>

To run procect we should write command:

PS D:_FEproject\my_first> npm run serve

Vue Introduction | FITPED

245

🕮 13.2.7

After installing we can start our project.

The old procedure used npm run dev.

In vueCLI3 we use:

nmp run serve

🕮 13.2.8

Command

npm run serve

started process of starting development server and preparing application to run.

The valuable information how to run application are added to the end of output:

 App running at:

 - Local: http://localhost:8080/

 - Network: http://10.10.10.22:8080/

The port is usually 8080, but if this one is occupied, system found first next free
port (e.g. 8081, 8082 etc.)

🕮 13.2.9

To start our application, we have to write to the address field in browser

http://localhost:8080/

and we have default content placed into default application in vue:

Vue Introduction | FITPED

246

13.3 Application structure

🕮 13.3.1

To inspect structure of created project we can open directory with source code. If
we use Visual Code Studio, we can open folder using File - Open folder and
directory with created project:

Vue Introduction | FITPED

247

The project consists of three parts:

• node_modules - contains all used and downloaded modules used in
application

• public - contains starting files (usually index.html) and application icon
• src - contains files with vue source code

🕮 13.3.2

The more precise structure is showed after the project is opened:

Vue Introduction | FITPED

248

🕮 13.3.3

The starting file of project is index.html.

<!DOCTYPE html>

<html lang="en">

 <head>

 <meta charset="utf-8">

 <meta http-equiv="X-UA-Compatible" content="IE=edge">

 <meta name="viewport" content="width=device-width,initial-

scale=1.0">

 <link rel="icon" href="<%= BASE_URL %>favicon.ico">

 <title><%= htmlWebpackPlugin.options.title %></title>

 </head>

 <body>

 <noscript>

 We're sorry but <%= htmlWebpackPlugin.options.ti

tle %> doesn't work properly without JavaScript enabled. Pleas

e enable it to continue.

 </noscript>

 <div id="app"></div>

Vue Introduction | FITPED

249

 <!-- built files will be auto injected -->

 </body>

</html>

The content defines necessity of JavaScript enabling and place the application
defined as app into our content (content of index.html).

🕮 13.3.4

Second important file of project is main.js.

import Vue from 'vue'

import App from './App.vue'

new Vue({

 render: h => h(App),

}).$mount('#app')

This is the start file of our application - it is an initialisation file of Vue.

The line

import Vue from 'vue'

imports Vue from node_modules part of project.

The line

import App from './App.vue'

imports file App.vue with our definition of project (parts, components, design, etc.)

The definition

new Vue({

 render: h => h(App),

}).$mount('#app')

is the short description for rendering content defined in App.vue file in "app"
element.

Vue Introduction | FITPED

250

🕮 13.3.5

The definition of application is placed in App.vue file in root of project.

This is the template of application that defines it design and structure.

<template>

 <div id="app">

 <HelloWorld msg="Welcome to Your Vue.js App"/>

 </div>

</template>

<script>

import HelloWorld from './components/HelloWorld.vue'

export default {

 name: 'App',

 components: {

 HelloWorld

 }

}

</script>

<style>

#app {

 font-family: Avenir, Helvetica, Arial, sans-serif;

 -webkit-font-smoothing: antialiased;

 -moz-osx-font-smoothing: grayscale;

 text-align: center;

 color: #2c3e50;

 margin-top: 60px;

}

</style>

The line

<div id="app">

defines the name of application - the reference to "#app" means this part - this div.

This app consists of image

and component defined in other file. The component is named Helloworld

Vue Introduction | FITPED

251

 <HelloWorld msg="Welcome to Your Vue.js App"/>

and has one parameter defined as msg.

We can use HelloWorld component, because:

• we import file with its definition:

import HelloWorld from './components/HelloWorld.vue'

• we define it as a component as part of app:

export default {

 name: 'App',

 components: {

 HelloWorld

 }

}

Last part (style) defines design, and it is not important for application functions.

🕮 13.3.6

Part assets in project structure consists of file like picture, documents etc. and we
can use it in projects.

Vue Introduction | FITPED

252

We used link to image in our App.vue definition.

🕮 13.3.7

The part components is a part of application where are components and its logic
defined. We used one component HelloWorld and we placed it to the application
structure.

The application usually constits of many components used in different components
(not only in main application file).

Vue Introduction | FITPED

253

🕮 13.3.8

The HelloWorld.vue is file with content which we really see in browser:

<template>

 <div class="hello">

 <h1>{{ msg }}</h1>

 <p>

 For a guide and recipes on how to configure / customize

this project,

 check out the

 <a href="https://cli.vuejs.org" target="_blank" rel="noo

pener">vue-cli documentation.

 </p>

 <h3>Installed CLI Plugins</h3>

Vue Introduction | FITPED

254

 <a href="https://github.com/vuejs/vue-

cli/tree/dev/packages/%40vue/cli-plugin-

babel" target="_blank" rel="noopener">babel

 <a href="https://github.com/vuejs/vue-

cli/tree/dev/packages/%40vue/cli-plugin-

eslint" target="_blank" rel="noopener">eslint

 <h3>Essential Links</h3>

 <a href="https://vuejs.org" target="_blank" rel="noo

pener">Core Docs

 <a href="https://forum.vuejs.org" target="_blank" re

l="noopener">Forum

 <a href="https://chat.vuejs.org" target="_blank" rel

="noopener">Community Chat

 <a href="https://twitter.com/vuejs" target="_blank"

rel="noopener">Twitter

 <a href="https://news.vuejs.org" target="_blank" rel

="noopener">News

 <h3>Ecosystem</h3>

 <a href="https://router.vuejs.org" target="_blank" r

el="noopener">vue-router

 <a href="https://vuex.vuejs.org" target="_blank" rel

="noopener">vuex

 <a href="https://github.com/vuejs/vue-devtools#vue-

devtools" target="_blank" rel="noopener">vue-devtools

 <a href="https://vue-

loader.vuejs.org" target="_blank" rel="noopener">vue-

loader

 <a href="https://github.com/vuejs/awesome-

vue" target="_blank" rel="noopener">awesome-vue

 </div>

</template>

<script>

export default {

 name: 'HelloWorld',

 props: {

 msg: String

 }

}

Vue Introduction | FITPED

255

</script>

<!-

- Add "scoped" attribute to limit CSS to this component only -

->

<style scoped>

h3 {

 margin: 40px 0 0;

}

ul {

 list-style-type: none;

 padding: 0;

}

li {

 display: inline-block;

 margin: 0 10px;

}

a {

 color: #42b983;

}

</style>

The interesting part is

<h1>{{ msg }}</h1>

where we show the message defined in App.vue file. The connection between
parameter and its content is defined using props:

export default {

 name: 'HelloWorld',

 props: {

 msg: String

 }

}

the component with name HelloWorld has defined properties (props) named msg...

... and this propety we used in App.vue:

<HelloWorld msg="Welcome to Your Vue.js App"/>

Other lines in html parts defines only list for our web page.

Vue Introduction | FITPED

256

13.4 Edit default project

🕮 13.4.1

Although we have already created an application with the Hello world component, it
is too complicated and consists of many useless commands.

Let's go to make it simpler.

🕮 13.4.2

The most important information for our next activity is, that every vue file consists
of three parts:

• HTML part - defines the content of page, HTML elements and its setting and
content

• JavaScript part - defines variables, methods and properties used in HTML
part

• CSS part - defines styles used in HTML part

The parts are defined by tags as follow:

<template>

 HTML PART

</template>

<script>

 JAVASCRIPT PART

</script>

<style>

 CSS PART

</style>

Programmer can let some parts empty.

🕮 13.4.3

HTML part is defined by tags <template> and </template>.

Vue Introduction | FITPED

257

The content between these tag must by only one root. If you want to use two div-s
you have to join it into one div. It means:

this is bad:

<template>

 <div id="first">... </div>

 <div id="second">... </div>

</template>

this is the solution:

<template>

 <div id="main">

 <div id="first">... </div>

 <div id="second">... </div>

 </div>

</template>

🕮 13.4.4

JavaScript part usually consists of imports and export:

<script>

import SomeComponent from './components/SomeComponent.vue'

export default {

 name: 'HelloWorld',

 props: {

 msg: String

 }

}

</script>

The part export defaults consist of many parts defined by Vue and used in template
part. We will talk about them later.

🕮 13.4.5

CSS part defines styles in two ways:

• styles are defined in part styles; we can use defined style in all parts or
components in all Vue application. The definition has a form:

Vue Introduction | FITPED

258

<style>

 // defined styles for all parts of app

</style>

• styles as defined only for this file (this component) and other files
(components) don't see it:

<style scoped>

 // defined styles only for this component

</style>

🕮 13.4.6

Let's go to edit our project.

First changes will be realised in HelloWorld.vue:

• we don't need to set styles - delete content of styles
• we don't need the content used in templates with links to vue pages

<template>

 <div class="hello">

 <h1>{{ msg }}</h1>

 </div>

</template>

<script>

export default {

 name: 'HelloWorld',

 props: {

 msg: String

 }

}

</script>

<style>

</style>

🕮 13.4.7

We can replace the prop msg via direct text in template

Vue Introduction | FITPED

259

We don't need props definition, and we don't need the name variable of this
component too.

The final form of HelloWord.vue is:

<template>

 <div>

 <h1>Hello world</h1>

 </div>

</template>

<script>

 export default {

 }

</script>

<style>

</style>

The call of HelloWorld component in App.vue must be changed - we don't have
prop definition in HelloWorld.vue.

... and we don't need a picture of Vue.

The final form of Vue.app is:

<template>

 <div id="app">

 <HelloWorld />

 </div>

</template>

<script>

import HelloWorld from './components/HelloWorld.vue'

export default {

 components: {

 HelloWorld

 }

}

</script>

<style>

</style>

Vue Introduction | FITPED

260

The output on localhost:8080 is:

Simple Application

Chapter 14

Simple Application | FITPED

262

14.1 Greeting - variables and functions

🕮 14.1.1

Presented example used simple component for rendering web page. We didn't
reach any new features, we used complicated structure to achieve simple goal. The
significance of Vue we can see if we work with variables and functions.

We will change the component HelloWorld and we use the variable with some
greeting. The greeting will be set to variable and its content will be shown on the
web page.

<script>

export default {

 data() {

 return {

 greeting: "Hello"

 }

 }

}

</script>

At first, we changed script-part.

If we want to define variables, we need place them to the method named data().
This method returns list of variables defined as a part of returned object (passed
into {}). We can set the default value for every variable.

The access from HTML part to value of defined variables in script part is using {{}}.

If we change value of variable, the change will show in content - variables are
reactive.

<template>

 <div>

 <h1>{{ greeting }}</h1>

 </div>

</template>

🕮 14.1.2

Now we can add the name and surname of the person we want to say hello.

Script part - we define more variable, one for name and one for surname:

Simple Application | FITPED

263

<script>

export default {

 data() {

 return {

 greeting: "Hello",

 name: "Jozef",

 surname: "Carrot"

 }

 }

}

</script>

HTML part - we add the representation of values of new variables. Notice the
comma - if we write some text outside of {{}} it is shown in written form (like in
essential HTML code):

<template>

 <div>

 <h1>{{ greeting }}, {{ name }} {{ surname }}</h1>

 </div>

</template>

🕮 14.1.3

We can use a different approach too. We can create the content of variables and
combine name and surname in method.

Vue used separated group for methods in the definition. The group is named
methods and consists of all methods used in component.

The list of methods is placed between { and }.

Methods are separated by commas.

Every method has parameters defined in the parentheses or, if it has none
parameters, the parentheses are empty - it is distinguishing sign between variables
and methods.

<script>

export default {

 data() {

 return {

 greeting: "Hello",

Simple Application | FITPED

264

 name: "Jozef",

 surname: "Carrot"

 }

 },

 methods: {

 getFullName() {

 return this.name + " " + this.surname

 }

 }

}

</script>

If we want to use some variable (or to call method in method) we have to use prefix
this.

The use of method in HTML part is the same as the use of variables - we use only
parentheses (for the identification, that method is called).

<template>

 <div>

 <h1>{{ greeting }}, {{ getFullName() }}</h1>

 </div>

</template>

14.2 Counter - events

🕮 14.2.1

Create Counter - application that will increase ans show value after click to button.

Simple Application | FITPED

265

Create new project "counter" using

> vue create counter

and prepare it for changes in HelloWorld.vue file (delete useless parts)

We will create application that will be able to interact with data model using button.

The default template is:

<template>

 <div>

 <button>Click me</button>

 <h1>{{ counter }}</h1>

 </div>

</template>

and the script consists of one definition of variable counter.

<script>

export default {

 data() {

 return {

 counter: 1

 }

 }

}

</script>

🕮 14.2.2

We can use the v-on directive to listen to DOM events and run some JavaScript
code when they’re triggered. The event type is defined as the argument separated
by dot. The expresion for precessing this event can be a method, like this:

<template>

 <div>

 <button v-on:click="increaseCounter()">Click me</button>

 <h1>{{ counter }}</h1>

 </div>

</template>

The method for increase counter should be defined in methods part, like this:

Simple Application | FITPED

266

<script>

export default {

 data() {

 return {

 counter: 1

 }

 },

 methods: {

 increaseCounter() {

 this.counter++

 }

 }

}

</script>

The user's click on the button causes event click and the command for processing
is set to call to method increaseCounter().

This method changes value in counter and Vue automatically render changed part
of web (=content where counter value is placed).

🕮 14.2.3

We can use different approach too. If the procedure for processing event is short (a
few commands or simple change of variable value), we can write code directly into
expression defined for event:

<template>

 <div>

 <button v-on:click="counter++">Click me</button>

 <h1>{{ counter }}</h1>

 </div>

</template>

<script>

export default {

 data() {

 return {

 counter: 1

 }

 },

Simple Application | FITPED

267

}

</script>

In the HTML part we don't need to use prefix this - we use only name of variable. If
there in expression are more commands, they are divided by semicolon.

🕮 14.2.4

The more experienced programmers shorten notation and omit v-on directive. Vue
allows shortening of entries and replace v-on: by @. The final form of this program
will be:

<template>

 <div>

 <button @click="counter++">Click me</button>

 <h1>{{ counter }}</h1>

 </div>

</template>

<script>

 export default {

 data() {

 return {

 counter: 1

 }

 },

 }

</script>

Every save of code in Visual Studio Code will cause automatic changes to the
appropriate web pages.

⌨ 14.2.5 Increase a decrease buttons

Add a new button to decrease counter value. Use as short code as possible.

Simple Application | FITPED

268

14.3 Event object

🕮 14.3.1

Information about event are hold in event-object. The easiest way to show all
parameters is to write it to console.

Create application to show event-object content to console.

HTML part consists of button and processing event click. The method called after
click is called without parentheses and the info about event is automatically packed
to its call:

<template>

 <div>

 <button @click="showInfo">Click me</button>

 </div>

</template>

The processing of event-object is placed into showInfo() method - object event is
passed to parameter myEvt.

<script>

export default {

 data() {

 return {

 }

 },

 methods: {

 showInfo(myEvt) {

 // eslint-disable-next-line no-console

 console.log(myEvt)

 }

 }

}

</script>

The console can be used in Vue application but it's use depends on eslint settings.
Sometimes we need to disable setting no-console (prohibits data output to the
console). We can disable this restriction using

// eslint-disable-next-line no-console

yes, it is after note setting "//".

Simple Application | FITPED

269

The result of this application is placed to console:

The whole event object is a little bit huge (it contains all informatyin about event):

click

 altKey: false

 bubbles: true

 button: 0

 buttons: 0

 cancelBubble: false

 cancelable: true

 clientX: 53

 clientY: 22

 composed: true

 ctrlKey: false

 currentTarget: null

 defaultPrevented: false

 detail: 1

 eventPhase: 0

 explicitOriginalTarget: <button>

 isTrusted: true

 layerX: 53

 layerY: 22

 metaKey: false

 movementX: 0

 movementY: 0

 mozInputSource: 1

 mozPressure: 0

 offsetX: 0

 offsetY: 0

 originalTarget: <button>

 pageX: 53

 pageY: 22

 rangeOffset: 0

 rangeParent: null

 region: ""

 relatedTarget: null

 returnValue: true

 screenX: 53

Simple Application | FITPED

270

 screenY: 146

 shiftKey: false

 srcElement: <button>

 target: <button>

 timeStamp: 519694

 type: "click"

 view: Window http://localhost:8080/

 which: 1

 x: 53

 y: 22

🕮 14.3.2

We usually use only a part of information stored in event object.

Let's go to read position of mouse cursor when we click to the button.

We need a variable for storing x and y coords and a place to write it.

The HTML part looks like this:

<template>

 <div>

 <button @click="showInfo">Click me</button>

 <p>Coords: [{{ coord.x }},{{ coord.y }}]</p>

 </div>

</template>

The text Coords: [] contains values from object coord defined in script part.

<script>

export default {

 data() {

 return {

 coord: {

 x : 0,

 y : 0

 }

 }

 },

 methods: {

 showInfo(myEvt) {

 this.coord.x = myEvt.x

Simple Application | FITPED

271

 this.coord.y = myEvt.y

 }

 }

}

</script>

The object used in Vue is the same as in JavaScript. It can consists of many
variables or of many different objects placed between { and } and separated by
commas.

The presented values contains information about cursor position on button (not on
the screen).

🕮 14.3.3

Processing of keyboard typing events is usually connected to input fields (user use
the keyboard while filling the text fields).

Let's go to create application which will be show the mirror of text written in text
field.

We need textfield and method for reading content placed in textfield. The best
event for processing is keyup - because when the key is released the character is
written in field.

The HTML parts consists of:

<template>

 <div>

 <p>Write some text</p>

 <input type="text" @keyup="processText"/>

 <p>{{ mirror }}</p>

 </div>

</template>

The parameter of the method processText is event-object and we can read from it
information about:

• target - where the event happens
• value - value of target = text in textfield

... and, at the end, we can process mirroring of written text.

Simple Application | FITPED

272

<script>

export default {

 data() {

 return {

 mirror : ''

 }

 },

 methods: {

 processText(myEvt) {

 let content = myEvt.target.value

 this.mirror = '';

 for(let i = 0; i < content.length; i++)

 this.mirror = content.substring(i,i+1) + this.mirror

 }

 }

}

</script>

The constant content is created in processText method. The value from text field
(text from target of event) is passed into content.

The mirror variable defined as string in data part is used form displaying in HTML
part and we fill it in loop. A loop in Vue is identical with loop in JavaScript.

The changes of variable mirror are rendered to HTML part.

⌨ 14.3.4 Keypress event

Change the event of processing keyboard typing to keypress and follow the
changes.

14.4 v-model

🕮 14.4.1

The mechanisms of reading content on change and setting the variable in a
dedicated method is little bit complicated. You can use the v-model directive to
create two-way data bindings on form input, textarea, select elements, etc.

Simple Application | FITPED

273

It automatically picks the correct way to update the element based on the input
type. The use of v-model ignore the initial value of used DOM elements and set it by
content of variables set to v-model. It will always treat the Vue instance data as the
source of truth. You should declare the initial value on the JavaScript side, inside
the data option of your component.

v-model internally uses different properties and emits different events for different
input elements:

• text and textarea elements use value property and input event;
• checkboxes and radiobuttons use checked property and change event;
• select fields use value as a prop and change as an event.

🕮 14.4.2

Let's modify our program to show mirrored content of text field.

We begin with the script part. We need:

• variable for value connected to textfield content - myContent
• method for mirroring myContent; this method can return mirrored value

<script>

export default {

 data() {

 return {

 myContent : ''

 }

 },

 methods: {

 getMirror() {

 var mirror = '';

 for(let i = 0; i < this.myContent.length; i++)

 mirror = this.myContent.substring(i,i+1) + mirror

 return mirror

 }

Simple Application | FITPED

274

 }

}

</script>

Variable myContent is declared and set to empty value.

Variable mirror in getMirror() method is declared as variable and set to empty at
first. The loop iterate value of myContent and creates mirror of it. The mirrored
content is returned as string value.

The HTML part consists of:

• texfield connected to myContent variable
• output of getMirror() method. The returned value is rendered everytime when

the myContent value (content of texfield) is changed.

<template>

 <div>

 <p>Write some text</p>

 <input type="text" v-model="myContent"/>

 <p>{{ getMirror() }}</p>

 </div>

</template>

🕮 14.4.3

Write program to sum two values written in text fields.

We need to create:

• two text fields connected to two variables
• button with event for reading values and realising numeric operation
• place for result

The definition of HTML part is simple:

<template>

Simple Application | FITPED

275

 <div>

 <p>Write numeric values</p>

 <input type="text" v-model="val_a"/>

 <input type="text" v-model="val_b"/>

 <button @click="countSum()">Sum it</button>

 <p>{{ sum }}</p>

 </div>

</template>

We need to set default values for variables var_a and var_b. It should be 0, but set it
to empty string is visually better.

In a method countSum() we need to transform string written in text fields to the
number.

<script>

export default {

 data() {

 return {

 val_a: '',

 val_b: '',

 sum : 0

 }

 },

 methods: {

 countSum() {

 this.sum = parseInt(this.val_a) + parseInt(this.val_b)

 }

 }

}

</script>

🕮 14.4.4

Change the program to sum values as you type them into text fields.

We don't need button, and we use the method for processing for getting result:

Simple Application | FITPED

276

The HTML part will be:

<template>

 <div>

 <p>Write numeric values</p>

 <input type="text" v-model="val_a"/>

 <input type="text" v-model="val_b"/>

 <p>{{ countSum() }}</p>

 </div>

</template>

And the script part consists of two variable and one getter:

<script>

export default {

 data() {

 return {

 val_a: '',

 val_b: ''

 }

 },

 methods: {

 countSum() {

 return parseInt(this.val_a) + parseInt(this.val_b)

 }

 }

}

</script>

This form is "more Vue" than previous.

Condition and Loop

Chapter 15

Condition and Loop | FITPED

278

15.1 v-if

🕮 15.1.1

The output of previous program was sometimes confusing:

We should add information why the result is weird.

The NaN is result of numeric operations if they don't finish good. The reason is now
empty second text field. We can treat this situation in a method countSum() ...

 countSum() {

 return parseInt(this.val_a) + parseInt(this.val_b)

 }

...or we can use Vue mechanisms and show some information in HTML part.

The directive v-if is used to conditionally render a block. The block will only be
rendered if the directive’s expression returns true.

🕮 15.1.2

Extend the application to information, what says that some of used text fields is
empty. Use rendering part of application.

We usually place code to script part of Vue application if that code is part of
application logic. Many notes and information dedicated only for user to achieve
better communication could make the application logic confusing and
overcrowded. The solution is to move them to the HTML part.

We solve our task using directive v-if.

<template>

 <div>

 <p>Write numeric values</p>

 <input type="text" v-model="val_a"/>

 <input type="text" v-model="val_b"/>

Condition and Loop | FITPED

279

 <p>{{ countSum() }}</p>

 <p v-if="val_a == ''">first field is empty</p>

 <p v-if="val_b == ''">second field is empty</p>

 </div>

</template>

The third paragraph is visible only if val_a (content of first text field) is empty. If we
write some value into first text field, the condition (val_a == '') return false and the
paragraph is invisible.

The same rule is set to the last paragraph.

The script part stay not changed:

<script>

export default {

 data() {

 return {

 val_a: '',

 val_b: ''

 }

 },

 methods: {

 countSum() {

 return parseInt(this.val_a) + parseInt(this.val_b)

 }

 }

}

</script>

You can try application:

• if first text field is empty - we can see this information
• if second text field is empty - we can see this information
• if both text fields are empty - we can see information in two paragraphs

Condition and Loop | FITPED

280

15.2 v-for

🕮 15.2.1

Directive v-for is used for loops in HTML level of Vue application. We can use it to
render a list of items based on an array.

The v-for directive requires a special syntax in the form of item in items, where
items is the source data array and item is an alias for the array element being
iterated on:

My list:

 <li v-for="item in items" :key="item.id">

 {{ item.value}}

The loop renders content of array items. The content of array is rendered as
elements. The loop defines every elements using part value. Id is used because the
loop need some unique parameter of item.

Two conditions have to be respected:

• items is array
• every item has unique value (in example it is id) defined as key of loop

The items in example above is defined as:

items: [

 {id:1, value: 'Adam'},

 {id:2, value: 'Bethany'},

Condition and Loop | FITPED

281

 {id:3, value: 'Cecil'},

 {id:4, value: 'Dag'},

]

The output is:

🕮 15.2.2

If we use array, which does not contain keys or unique value, we can use new
variable as numeric index of processed values. We have to place it as second
argument in iterator definition.

My list

 <li v-for="(item, index) in items" :key="index">

 {{ item }}

The variable index and iterated object are placed into parentheses, and the :key is
defined as this index.

The array items in now defined as simple array of string objects:

<script>

export default {

 data() {

 return {

 items: ['Adam',

 'Bethany',

 'Cecil',

 'Dag'

]

 }

Condition and Loop | FITPED

282

 }

}

</script>

🕮 15.2.3

Vue don't support cycles without data processing - we can't write number from 1 to
5. It is not error it is behaviour. If we need some counter, we can use index as it.

My list

 <li v-for="(item, index) in items" :key="index">

 {{index + 1}}. {{ item }}

Index started at 0 and if we need counter, the first object need number 1 - we
increment output of index.

After variable placed between {{ and }} we render "." and place value of item - i-th
item of array.

The script part is defined as follow...

<script>

export default {

 data() {

 return {

 items: ['Adam',

 'Bethany',

 'Cecil',

 'Dag'

]

 }

 }

}

</script>

... and output has the form

Condition and Loop | FITPED

283

🕮 15.2.4

The output of previous example is a little bit confusing

and we need to remove bullets and use ordered list instead of number written by
code.

The solution can be prepared as follow:

<template>

 <div>

 My list

 <li v-for="(item, index) in items" :key="index">

 {{ item }}

 </div>

</template>

The cycle creates as many items as there are elements in the array. The items of
list are items of ordered list and we have output in this form:

Lists

Chapter 16

Lists | FITPED

285

16.1 Work with List

🕮 16.1.1

We are able to work with lists.

Let's go to prepare application to add and remove employees in our list. The list
will contain surnames only.

HTML part is dedicated to show data. We will read data from array used for storing
surnames of our employees. We can add index before surname.

Under the list we add a text field to add new employee and button to confirm
adding.

<template>

 <div>

 <h3>Employees:</h3>

 <li v-for="(item, index) in items" :key="index">

 {{ item }}

 <input type="text"/>

 <button>Add</button>

 </div>

</template>

We don't use variable index, but we need it. The array with our values (bellow in
script part) has unique values and we can set as key the item. But if we will have
the same surname more times the key value won't be unique and the content
couldn't be rendered.

We add text field and button in one line.

Script part is simple:

<script>

export default {

 data() {

 return {

 items: ['Nowak',

 'Smith',

 'Douglas',

 'Kovacs'

Lists | FITPED

286

]

 }

 },

 methods: {

 }

}

</script>

And render web content has this form:

🕮 16.1.2

First functionality adds new value into existing list of surnames.

We showed how to use data placed in text fields. The best and usual way is to use
v-model and read data from text field by using variable connected to field. We
define variable and set it to v-model in text field.

To run method for add value we use button. We need to set event clicks in button
and define method for processing this event.

HTML part had extended text field and button:

<template>

 <div>

 <h3>Employees:</h3>

 <li v-for="(item, index) in items" :key="index">

 {{ item }}

Lists | FITPED

287

 <input type="text" v-model="new_empl" />

 <button @click="addEmployee()">Add</button>

 </div>

</template>

We don't need parameter in method addEmployee() because we read value from
variable new_empl (connected via v-model to the text field).

In script part we need the definition of variable and new method:

<script>

export default {

 data() {

 return {

 new_empl: '',

 items: ['Nowak',

 'Smith',

 'Douglas',

 'Kovacs'

]

 }

 },

 methods: {

 addEmployee() {

 this.items.push(this.new_empl)

 this.new_empl = ''

 }

 }

}

</script>

To add new item into array we used method push and to empty the text field we
assign variable new_empl to an empty string. We used prefix this, because we work
with variable of this Vue object.

The rendering of values is automatic.

🕮 16.1.3

To delete employee from list we need to select him and call a function for delete.
One of the ways to select a record is to add button to every record, like this:

Lists | FITPED

288

The identification of record must be contained in call of function for delete. We add
it as parameter to function deleteEmployee().

The HTML part contains new button with onclick event:

<template>

 <div>

 <h3>Employees:</h3>

 <li v-for="(item, index) in items" :key="index">

 {{ item }} <button @click="deleteEmployee(index)">de

lete</button>

 <input type="text" v-model="new_empl" />

 <button @click="addEmployee()">Add</button>

 </div>

</template>

The button for delete is generated in look together with information about
employee.

The function for delete look like below. The method splice removes items from
array. The first parameter defines index of first item to remove, second parameter
defines how many items should be deleted.

<script>

export default {

 data() {

 return {

 new_empl: '',

 items: ['Nowak',

Lists | FITPED

289

 'Smith',

 'Douglas',

 'Kovacs'

]

 }

 },

 methods: {

 addEmployee() {

 this.items.push(this.new_empl)

 this.new_empl = ''

 },

 deleteEmployee(index) {

 this.items.splice(index,1)

 }

 }

}

</script>

🕮 16.1.4

Edit the item of a list is common request in work with lists. We can use the same
approach what was used in delete function:

• add a button "edit" next to every item
• call the function edit with parameter defined index of item

But, what to do when we change item?

• we can move item from list to edit field and after change add it to the end of
list

Lists | FITPED

290

• we can remember the position of edited item and after change overwrite
item on primary position

🕮 16.1.5

Let's go to move item from list to edit field and after change add it to the end of list

The HTML part is similar in both cases:

<template>

 <div>

 <h3>Employees:</h3>

 <li v-for="(item, index) in items" :key="index">

 {{ item }}

 <button @click="deleteEmployee(index)">delete</butto

n>

 <button @click="editEmployee(index)">edit</button>

 <input type="text" v-model="new_empl" />

 <button @click="addEmployee()">Add</button>

 </div>

</template>

We can place the buttons to new lines because the position of tags is not important
for web rendering.

The editEmployee() method will set the selected item into text field and delete it in
list.

After change the button Add adds the text from text field to the end of list.

export default {

 data() {

 return {

 new_empl: '',

 items: ['Nowak',

 'Smith',

 'Douglas',

 'Kovacs'

]

 }

 },

Lists | FITPED

291

 methods: {

 addEmployee() {

 this.items.push(this.new_empl)

 this.new_empl = ''

 },

 deleteEmployee(index) {

 this.items.splice(index,1)

 },

 editEmployee(index) {

 this.new_empl = this.items[index]

 this.items.splice(index,1)

 }

 }

}

🕮 16.1.6

The application works correctly but there is one small user unfriendly behaviour. We
wait that after read and set value to text field we can write immediately. But we
can't.

We should set the focus to text field after click to edit button. How to do it?

Vue has procedure to set focus to chosen DOM element, but we need:

• to set the ref parameter to the element what will be focused
• to use group of references ($refs) in Vue and select the item for focusing

We will add tag ref to edit field. We can name the text field as add_emp.

<template>

 <div>

 <h3>Employees:</h3>

 <li v-for="(item, index) in items" :key="index">

 {{ item }}

 <button @click="deleteEmployee(index)">delete</butto

n>

 <button @click="editEmployee(index)">edit</button>

 <input type="text" v-model="new_empl" ref="add_emp" />

 <button @click="addEmployee()">Add</button>

 </div>

</template>

Lists | FITPED

292

We adapt code and add the call for set focus in method editEmployee().

export default {

 data() {

 return {

 new_empl: '',

 items: ['Nowak',

 'Smith',

 'Douglas',

 'Kovacs'

]

 }

 },

 methods: {

 addEmployee() {

 this.items.push(this.new_empl)

 this.new_empl = ''

 },

 deleteEmployee(index) {

 this.items.splice(index,1)

 },

 editEmployee(index) {

 this.new_empl = this.items[index]

 this.items.splice(index,1)

 this.$refs.add_emp.focus()

 }

 }

}

We used the group of references used by Vue, then we select a specific reference
pointed to edit field and at last we set there a focus.

🕮 16.1.7

Let's go to try second approach: remember the position of edited item and after
change overwrite item on primary position.

We need:

• to remember the index of edited item
• to change the text on the "Add" button
• to overwrite the item on primary position

Lists | FITPED

293

These steps can't be realised in one method. We need to prepare data in first
method and to save data in second method. Data save is programmed in method
addEmployee() - we will modify it to method saveEmployee() and we will
differentiate the code for add and for save edited item.

We can show and hide one button for add and one button for save, but we choose
first approach.

In HTML part we use the variable buttonText for set changing text for button next to
text field.

<template>

 <div>

 <h3>Employees:</h3>

 <li v-for="(item, index) in items" :key="index">

 {{ item }}

 <button @click="deleteEmployee(index)">delete</butto

n>

 <button @click="editEmployee(index)">edit</button>

 <input type="text" v-model="new_empl" ref="add_emp" />

 <button @click="saveEmployee()">{{buttonText}}</button>

 </div>

</template>

The changes in script part are larger. We need:

• Variable for text on button (buttonText). The variable is set to "Add" after run
web page. We change it when we press button edit (in method
editEmployee().

• Variable for storing index of changed item (changeIndex). If we are changing
the item, the variable contains index this one. If we don't have processed
changing value, or if we don't start changing, the variable contains -1. This
value decide if we replace or add value by click to button next to text field.

• Method editEmployee() is starting method of change item value. It changes
text on button, stored index of items that we want to edit and stored value of
that item into variable new_empl what is connected to text field via v-model.
The last step is focus setting to text field.

• Method saveEmployee() stored new or edited item into our list. The decision
what to do depends on value of the variable changeIndex. If value is set to -1
(we don't change any item), the text placed in text field is added. If value is
greater than -1 (it mean we set there position of edited item), we will
overwrite existing value of existing item.

The script part has finally this form:

Lists | FITPED

294

export default {

 data() {

 return {

 new_empl: '',

 buttonText: 'Add',

 changeIndex: -1,

 items: ['Nowak',

 'Smith',

 'Douglas',

 'Kovacs'

]

 }

 },

 methods: {

 saveEmployee() {

 if (this.changeIndex > -1) {

 this.items[this.changeIndex] = this.new_empl

 this.changeIndex = -1

 } else {

 this.items.push(this.new_empl)

 }

 this.new_empl = ''

 this.buttonText = "Add"

 },

 deleteEmployee(index) {

 this.items.splice(index,1)

 },

 editEmployee(index) {

 this.buttonText = "Save"

 this.changeIndex = index

 this.new_empl = this.items[index]

 this.$refs.add_emp.focus()

 }

 }

}

🕮 16.1.8

The final function for manipulation with values of list is sort. If we have many items,
the sort function is necessary because of better looking for.

To add this function to our application is very easy:

• we add new button for call function responsible for items order

Lists | FITPED

295

• we implement this function using only one line

HTML part (the button i separated in new line using
):

<template>

 <div>

 <h3>Employees:</h3>

 <li v-for="(item, index) in items" :key="index">

 {{ item }}

 <button @click="deleteEmployee(index)">delete</butto

n>

 <button @click="editEmployee(index)">edit</button>

 <input type="text" v-model="new_empl" ref="add_emp" />

 <button @click="saveEmployee()">{{buttonText}}</button>

 <button @click="sortEmployee()">Sort</button>

 </div>

</template>

The script part contains only one new method:

sortEmployee() {

 this.items.sort()

}

The changes are rendered immediately.

16.2 Material design

🕮 16.2.1

Material Design is a visual language that synthesizes the classic principles of good
design with the innovation of technology and science. The principles of material
design are defined as:

• Create - create a visual language that synthesizes the classic principles of
good design with the innovation and possibility of technology and science.

• Unify - develop a single underlying system that unifies the user experience
across platforms, devices, and input methods.

Lists | FITPED

296

• Customize - expand Material’s visual language and provide a flexible
foundation for innovation and brand expression.

More information is on a web page: https://material.io/design/

We can use the parts of this system for building nice and modern application with
positive user experience and fresh look.

🕮 16.2.2

The team of students from Carnegie Mellon University adapt Material Design to use
in Vue. It is one of many alternatives for implementation of Material Design to your
application. The description "how to" is usually sufficiently detailed on its web.

We use https://materializecss.com as a typical example with a typical step.

1. We copy a path to minified version of css and google icon font into our
index.html file from https://materializecss.com/getting-started.html:

<!DOCTYPE html>

<html lang="en">

 <head>

 <meta charset="utf-8">

 <meta http-equiv="X-UA-Compatible" content="IE=edge">

 <meta name="viewport" content="width=device-width,initial-

scale=1.0">

 <link rel="icon" href="<%= BASE_URL %>favicon.ico">

 <!-- Compiled and minified CSS -->

 <link rel="stylesheet" href="https://cdnjs.cloudflare.com/

ajax/libs/materialize/1.0.0/css/materialize.min.css">

 <!--Import Google Icon Font-->

 <link href="https://fonts.googleapis.com/icon?family=Mater

ial+Icons" rel="stylesheet">

 <title>My Application</title>

 </head>

 <body>

 <noscript>

 We're sorry but <%= htmlWebpackPlugin.options.ti

tle %> doesn't work properly without JavaScript enabled. Pleas

e enable it to continue.

 </noscript>

Lists | FITPED

297

 <div id="app"></div>

 <!-- built files will be auto injected -->

 </body>

</html>

2. We can use Material design component (not only icons) in our HTML parts

🕮 16.2.3

Let's go to adapt design of our application to Material design. We can start by
replacing the buttons with icons.

To add icon into HTML part we need to use class material-icons, e.g.:

<i class = "material-icons">delete</i>

Our buttons should be replaced with icons - we change design part and we don't
change event-part.

The result should have this form

using this code:

<template>

 <div>

 <h3>Employees:</h3>

 <li v-for="(item, index) in items" :key="index">

Lists | FITPED

298

 {{ item }}

 <i class = "material-

icons" @click="deleteEmployee(index)">delete</i>

 <i class = "material-

icons" @click="editEmployee(index)">edit</i>

 <input type="text" v-model="new_empl" ref="add_emp" />

 <button @click="saveEmployee()">{{buttonText}}</button>

 <button @click="sortEmployee()">Sort</button>

 </div>

</template>

🕮 16.2.4

Our "more beautiful" design has a few shortcomings:

• the icons are too big
• the text field is stretched to full width of page

Reading information about used styles we can get information how to make icons
smaller: we can use setting tiny, small, medium or large. If we choose tiny the size
of icon is comparable to the text. We can change their logically order - to place edit
in front of delete.

To change size of text field is a little bit complicated. We need to know that:

Lists | FITPED

299

• the elements on the web page are placed into row
• bootstrap brings useful division of web width to 12 columns and this feature

has been taken over to other systems
• the class for text field definition is in used material design template defined

as an input-field.

According to this behaviour we need to define row in our template an place there
into row a text field width specific size (part of 12 columns).

 <div class="row">

 <div class="input-field col s3">

 <input type="text" v-model="new_empl" ref="add_emp">

 </div>

 </div>

At the and we can change the design of our buttons and set its class to class="btn".

The final code...

<template>

 <div>

 <h3>Employees:</h3>

 <li v-for="(item, index) in items" :key="index">

 {{ item }}

 <i class = "material-

icons tiny" @click="deleteEmployee(index)">delete</i>

 <i class = "material-

icons tiny" @click="editEmployee(index)">edit</i>

 <div class="row">

 <div class="input-field col s3">

 <input type="text" v-model="new_empl" ref="add_emp">

 </div>

 </div>

 <button class="btn" @click="saveEmployee()">{{buttonText}}

</button>

 <button class="btn" @click="sortEmployee()">Sort</button>

 </div>

</template>

... generates the final design:

Lists | FITPED

300

🕮 16.2.5

Using Material design libraries, we can improve design not only in elements of web
page but we can make more beautiful design in web page as a whole.

We can add a navbar as the element of HTML5 web page structure:

 <nav>

 Employees

 </nav>

We used class brand-logo for make the name of page bigger.

Whole HTML part look like below:

<template>

 <div>

 <nav>

 Employees

 </nav>

 <li v-for="(item, index) in items" :key="index">

 {{ item }}

 <i class = "material-

icons tiny" @click="editEmployee(index)">edit</i>

 <i class = "material-

icons tiny" @click="deleteEmployee(index)">delete</i>

Lists | FITPED

301

 <div class="row">

 <div class="input-field col s3">

 <input type="text" v-model="new_empl" ref="add_emp">

 </div>

 </div>

 <button class="btn" @click="saveEmployee()">{{buttonText}}

</button>

 <button class="btn" @click="sortEmployee()">Sort</button>

 </div>

</template>

16.3 Edit inline

🕮 16.3.1

The modern approach to build GUI brings possibility to edit values a the place
where they are. What does it means? In our example we can change the surname of
employees on the place where it is written. We don't copy it to text field below list,
but we can change on its position.

If we click to edit, we get a text field where we can change value of selected item.

We don't need to change script part. We have to differentiate a situation in
rendering where the item is selected to change and when isn't.

The item selected to change will be rendered in text field - with a v-model set to
selected item in items collection. Information about selected item is set to variable
changeIndex used in our previous activities.

The item which is not selected will be rendered as before.

To achieve this behaviour we add v-if into li elements rendering.

Lists | FITPED

302

<template>

 <div>

 <nav>

 Employees

 </nav>

 <li v-for="(item, index) in items" :key="index">

 <div v-if = "index != changeIndex">

 {{ item }}

 <i class = "material-

icons tiny" @click="editEmployee(index)">edit</i>

 <i class = "material-

icons tiny" @click="deleteEmployee(index)">delete</i>

 </div>

 <div v-else class="row yellow">

 <div class="input-field col s3">

 <input type="text" v-model="items[index]">

 </div>

 </div>

 </div>

</template>

The item and icons are rendered for items which are not edited.

The input and yellow div are rendered if item should be edited.

We clear a script part - we don't need function for Add (we will create new one) and
function for edit is simpler:

export default {

 data() {

 return {

 changeIndex: -1,

 items: ['Nowak',

 'Smith',

 'Douglas',

 'Kovacs'

]

 }

 },

 methods: {

 deleteEmployee(index) {

 this.items.splice(index,1)

Lists | FITPED

303

 },

 editEmployee(index) {

 this.changeIndex = index

 }

 }

}

🕮 16.3.2

We didn't display button to confirm data changed in text field. To use button to
confirm changed data is a little-bit older approach. Smartphones and new
webpages change data immediately while you type.

We set the v-model to items[index]...

<div v-else class="row yellow">

 <div class="input-field col s3">

 <input type="text" v-model="items[index]">

 </div>

</div>

... and that means - if we change content of text field, content of items is changed
too.

This is new situation for us - data is changed immediately and we can only stop
editing - hide text field and replace it by li element.

The common way is to confirm end of writing by Enter. When listening for keyboard
events, we often need to check for specific keys. Vue allows adding key modifiers
when listening for key events. We add even-listener to keydown and process key
Enter. This situation finish editing and set all elements of items to not edited.

<input

 type="text"

 v-model="items[index]"

 @keydown.enter="changeIndex = -1"

>

Whole code has this form:

<template>

 <div>

 <nav>

 Employees

 </nav>

Lists | FITPED

304

 <li v-for="(item, index) in items" :key="index">

 <div v-if = "index != changeIndex">

 {{ item }}

 <i class = "material-

icons tiny" @click="editEmployee(index)">edit</i>

 <i class = "material-

icons tiny" @click="deleteEmployee(index)">delete</i>

 </div>

 <div v-else class="row yellow">

 <div class="input-field col s3">

 <input

 type="text"

 v-model="items[index]"

 @keydown.enter="changeIndex = -1"

 >

 </div>

 </div>

 </div>

</template>

To set back previous value into the text field, you can use Ctrl+Z. This shortcut is
implemented in system and helps you to go back and write old value to variable
connected via v-model.

16.4 Add new element - other way

🕮 16.4.1

We lost function for add new values, but we can use new information and prepare
elements using new way.

The element to add new items should be icon because we use icons not button to
run command. Where to place it? We need new employee, the best position is in the
navigation bar. We modify nav to:

Lists | FITPED

305

By code:

<nav>

 <div class="nav-wrapper">

 Employees

 <ul class="right">

 <i class="material-icons btn-floating btn-

large halfway-fab">add</i>

 </div>

</nav>

The ul provide space for definition of main function. The setting of i define position
and design of button for add new items to our list.

🕮 16.4.2

We need to show the text field for add new item. We can decide to place it before or
after list of elements - the code for add will be the same.

The process for add new element consists of following steps:

1. Click to icon for add element: we start process - we inform render system
that we want to show text field. We use boolean variable addNew and set it
to true.

2. If render system found this variable set to true, it shows text field.
3. The text field have to be joined with string variable newValue by v-model.
4. After typing new element content user press Enter (it is necessary to use the

same behaviour in whole application).
5. The new value will be add to the end of list, the string variable should be set

to empty (due to reuse) and the addNew will be set to false, because of
hidding text field

Lists | FITPED

306

According to these requirements the form of HTML part is:

<template>

 <div>

 <nav>

 <div class="nav-wrapper">

 Employees

 <ul class="right">

 <i

 class="material-icons btn-floating btn-

large halfway-fab"

 @click = "addNew = true"

 >

 add

 </i>

 </div>

 </nav>

 <div v-if="addNew" class="input-field col s3">

 <input

 type="text"

 v-model="newValue"

 @keydown.enter="items.push(newValue);

 newValue='';

 addNew = false"

 >

 </div>

 <li v-for="(item, index) in items" :key="index">

 <div v-if = "index != changeIndex">

 {{ item }}

 <i class = "material-

icons tiny" @click="editEmployee(index)">edit</i>

 <i class = "material-

icons tiny" @click="deleteEmployee(index)">delete</i>

 </div>

 <div v-else class="row yellow">

 <div class="input-field col s3">

 <input

 type="text"

 v-model="items[index]"

 @keydown.enter="changeIndex = -1"

 >

Lists | FITPED

307

 </div>

 </div>

 </div>

</template>

All parts of the code we add to event methods directly into HTML part. We
recommend to think over if it is good or bad - it depends on specific situation.

However, we need to define the variables and their default values in a script part:

export default {

 data() {

 return {

 changeIndex: -1,

 addNew: false,

 newValue: '',

 items: ['Nowak',

 'Smith',

 'Douglas',

 'Kovacs'

]

 }

 },

 methods: {

 deleteEmployee(index) {

 this.items.splice(index,1)

 },

 editEmployee(index) {

 this.changeIndex = index

 }

 }

}

16.5 Bulk data operations

🕮 16.5.1

If we develop application for work with lists, we need procedure and DOM elements
for operation supported work with multiple records. We usually use the checkboxes
before or after content of record.

Checkbox in Vue requires definition using label:

Lists | FITPED

308

<label >

 <input type="checkbox"/>

 My Text of checkbox

</label>

with result:

This "nice" design is a outcome of material design styles.

🕮 16.5.2

To remember which checkbox is selected and which one is not, we can use
independent array with boolean values (e.g. named selection). The value on index
position in selection express if the checkbox associated with name in array items
at position index is checked or not.

We can use this approach using this HTML part:

<template>

 <div>

 <nav>

 <div class="nav-wrapper">

 Employees

 <ul class="right">

 <i

 class="material-icons btn-floating btn-

large halfway-fab"

 @click = "addNew = true"

 >

 add

 </i>

 </div>

 </nav>

 <div v-if="addNew" class="input-field col s3">

 <input

 type="text"

 v-model="newValue"

 @keydown.enter="items.push(newValue);

Lists | FITPED

309

 newValue='';

 addNew = false"

 >

 </div>

 <div v-for="(item, index) in items" :key="index">

 <div v-

if = "index != changeIndex">

 <label >

 <input type="checkbox" v-

model="selection[index]"/>

 {{ item }}

 </label>

 <i class = "material-

icons tiny" @click="editEmployee(index)">edit</i>

 <i class = "material-

icons tiny" @click="deleteEmployee(index)">delete</i>

 </div>

 <div v-else class="row yellow">

 <div class="input-field col s3">

 <input

 type="text"

 v-model="items[index]"

 @keydown.enter="changeIndex = -1"

 >

 </div>

 </div>

 </div>

 </div>

</template>

The array selected is filled by false values, after start this page. The number of
values is the same as number of employees.

export default {

 data() {

 return {

 changeIndex: -1,

 addNew: false,

 newValue: '',

 items: ['Nowak',

 'Smith',

 'Douglas',

 'Kovacs'

],

 selection: [false,false,false,false]

Lists | FITPED

310

 }

 },

 methods: {

 deleteEmployee(index) {

 this.items.splice(index,1)

 },

 editEmployee(index) {

 this.changeIndex = index

 }

 }

}

🕮 16.5.3

Presented approach works, but we can use different approach too.

At first we prepare empty array at start of page running (the name could be
selection again). This array is used to collect the selected items. If none item is
selected, array is empty. If five elements are selected, the array contains five
elements sorted by the time they were added.

The form of code that allows us to look like this:

<div v-for="(item, index) in items" :key="index">

 <label>

 <input type="checkbox" v-

model="selection" :value="index" />

 {{ item }}

 </label>

</div>

v-model of checkbox is set to array (selection) where the values of selected items
are stored.

The values stored into array are defined in :value. We decided to store indexes, but
we can replace it by item too (we will store surname of employee).

The array selection is defined as empty array in data part:

export default {

 data() {

 return {

 changeIndex: -1,

 addNew: false,

 newValue: '',

Lists | FITPED

311

 items: ['Nowak',

 'Smith',

 'Douglas',

 'Kovacs'

],

 selection: []

 }

 }, ...

🕮 16.5.4

Let's go to check the values inserted into selection array. We can print it to console.

To run printing, we can add new button below our list:

The complete HTML part has this form:

<template>

 <div>

 <nav>

 <div class="nav-wrapper">

 Employees

 <ul class="right">

 <i

 class="material-icons btn-floating btn-

large halfway-fab"

 @click = "addNew = true"

 >

 add

 </i>

 </div>

 </nav>

Lists | FITPED

312

 <div v-if="addNew" class="input-field col s3">

 <input

 type="text"

 v-model="newValue"

 @keydown.enter="items.push(newValue);

 newValue='';

 addNew = false"

 >

 </div>

 <div v-for="(item, index) in items" :key="index">

 <div v-

if = "index != changeIndex">

 <label >

 <input type="checkbox" v-

model="selection" :value="index" />

 {{ item }}

 </label>

 <i class = "material-

icons tiny" @click="editEmployee(index)">edit</i>

 <i class = "material-

icons tiny" @click="deleteEmployee(index)">delete</i>

 </div>

 <div v-else class="row yellow">

 <div class="input-field col s3">

 <input

 type="text"

 v-model="items[index]"

 @keydown.enter="changeIndex = -1"

 >

 </div>

 </div>

 </div>

 <button @click="showSelection()">Show selection</button>

 </div>

</template>

We add method showSelection to write content of array.

export default {

 data() {

 return {

 changeIndex: -1,

 addNew: false,

 newValue: '',

 items: ['Nowak',

Lists | FITPED

313

 'Smith',

 'Douglas',

 'Kovacs'

],

 selection: []

 }

 },

 methods: {

 deleteEmployee(index) {

 this.items.splice(index,1)

 },

 editEmployee(index) {

 this.changeIndex = index

 },

 showSelection() {

 console.log(this.selection)

 }

 }

}

If we click to checkbox elements in order Douglas, Nowak, Smith, the output is:

Array(3) [2, 0, 1]

Array contains elements ordered in order of insertion.

🕮 16.5.5

The selection is often used to prepare the elements for removal.

Let's go to adapt our code for remove selected elements.

Lists | FITPED

314

We change the text in button and the method called after button press.

<template>

 <div>

 <nav>

 <div class="nav-wrapper">

 Employees

 <ul class="right">

 <i

 class="material-icons btn-floating btn-

large halfway-fab"

 @click = "addNew = true"

 >

 add

 </i>

 </div>

 </nav>

 <div v-if="addNew" class="input-field col s3">

 <input

 type="text"

 v-model="newValue"

 @keydown.enter="items.push(newValue);

 newValue='';

 addNew = false"

 >

 </div>

 <div v-for="(item, index) in items" :key="index">

 <div v-

if = "index != changeIndex">

 <label >

 <input type="checkbox" v-

model="selection" :value="index" />

 {{ item }}

 </label>

 <i class = "material-

icons tiny" @click="editEmployee(index)">edit</i>

 <i class = "material-

icons tiny" @click="deleteEmployee(index)">delete</i>

 </div>

 <div v-else class="row yellow">

 <div class="input-field col s3">

 <input

 type="text"

 v-model="items[index]"

Lists | FITPED

315

 @keydown.enter="changeIndex = -1"

 >

 </div>

 </div>

 </div>

 <button @click="deleteSelected()">Delete selected</button>

 </div>

</template>

The method for delete element should work as follow:

• order indexes of elements, because we need to start deletion by the last
element in list. If we delete other element, the indexes stored in array will
change,

• in for loop from last to first element in array we delete element on the stored
index

• to empty list of selected element, because they were removed.

The script part will be changed to:

export default {

 data() {

 return {

 changeIndex: -1,

 addNew: false,

 newValue: '',

 items: ['Nowak',

 'Smith',

 'Douglas',

 'Kovacs'

],

 selection: []

 }

 },

 methods: {

 deleteEmployee(index) {

 this.items.splice(index,1)

 },

 editEmployee(index) {

 this.changeIndex = index

 },

 deleteSelected() {

 this.selection.sort();

 for(let i = this.selection.length - 1; i>= 0; i--) {

 this.items.splice(this.selection[i], 1)

Lists | FITPED

316

 this.selection.splice(i, 1)

 }

 }

 }

}

🕮 16.5.6

The useful function in work with list is selection of all elements.

The solution is simple, we can prepare function to set all elements of data:

The method for selection has this form:

selectAll() {

 this.selection = []

 for(let i = 0; i < this.items.length; i++){

 this.selection.push(i)

 }

}

