


 
 
 
iOS – Swift Fundamentals 
 

 

 

 

 

 

 

 

 

 

 
Published on 

November 2021 

 
Authors 

Dalibor Kunhart | Mendel University in Brno, Czech Republic 

Peter Švec | Teacher.sk, Slovakia  

Kristián Fodor | Constantine the Philosopher University in Nitra, Slovakia  

 
Reviewers 

Cyril Klimeš | Mendel University in Brno, Czech Republic 

Ján Skalka | Constantine the Philosopher University in Nitra, Slovakia 

Eugenia Smyrnova-Trybulska | University of Silesia in Katowice, Poland 

Piet Kommers  | Helix5, Netherland  

 
Graphics 

Ľubomír Benko | Constantine the Philosopher University in Nitra, Slovakia  

David Sabol | Constantine the Philosopher University in Nitra, Slovakia  

  



 

 

Erasmus+ FITPED  

Work-Based Learning in Future IT Professionals Education 

Project 2018-1-SK01-KA203-046382 

 

 

 

 

 

 

 

 

 

 
The European Commission support for the production of this publication does not 
constitute an endorsement of the contents which reflects the views only of the authors, 
and the Commission cannot be held responsible for any use which may be made of 
the information contained therein. 
 

 
 

 
Licence (licence type: Attribution-Non-commercial-No Derivative Works) and may be 
used by third parties as long as licensing conditions are observed. Any materials 
published under the terms of a CC Licence are clearly identified as such. 
 
All trademarks and brand names mentioned in this publication and all trademarks and 
brand names mentioned that may be the intellectual property of third parties are 
unconditionally subject to the provisions contained within the relevant law governing 
trademarks and other related signs. The mere mention of a trademark or brand name 
does not imply that such a trademark or brand name is not protected by the rights of 
third parties. 
 
© 2021 Constantine the Philosopher University in Nitra 
 

ISBN 978-80-558-1791-0 

 
  



Table of Contents 

  
1 Motivational Introduction ................................................................................................ 5 

1.1 Introduction .............................................................................................................. 6 

1.2 Casting, Arrays, Dictionary ...................................................................................... 7 

2 Control Flow ................................................................................................................... 10 

2.1 Loops ....................................................................................................................... 11 

2.2 Statements.............................................................................................................. 16 

2.3 Other commands ................................................................................................... 23 

3 Types, Operators, Strings, Characters.......................................................................... 30 

3.1 Constants and variables (without type)............................................................... 31 

3.2 Constants and variables (with type) .................................................................... 32 

3.3 Listing constants and variables ........................................................................... 34 

3.4 Types ....................................................................................................................... 36 

3.5 Casting .................................................................................................................... 41 

3.6 N-tuples, types, bonds ........................................................................................... 44 

3.7 Errors, statements, preconditions ........................................................................ 49 

3.8 Operators 1 ............................................................................................................. 53 

3.9 Operators 2 ............................................................................................................. 56 

3.10 Operators 3 ........................................................................................................... 61 

3.11 Strings and characters ........................................................................................ 66 

3.12 Working with strings and characters ................................................................. 70 

3.13 Insertion into substrings and characters .......................................................... 74 

4 Collections ...................................................................................................................... 79 

4.1 Collections .............................................................................................................. 80 

4.2 Sets .......................................................................................................................... 86 

4.3 Dictionaries ............................................................................................................. 91 

5 Functions ........................................................................................................................ 97 

5.1 Functions and work with them ............................................................................. 98 

5.2 Labels, parameters .............................................................................................. 104 

5.3 Types of functions ............................................................................................... 107 

6 Closure .......................................................................................................................... 112 

6.1 Closures ................................................................................................................ 113 

6.2 Types of closures ................................................................................................. 116 

7 Enumerations ............................................................................................................... 122 



7.1 Enumerations ....................................................................................................... 123 

7.2 Related values, Raw values ................................................................................. 125 

8 Structures and Classes ............................................................................................... 131 

8.1 Structures and classes ........................................................................................ 132 

8.2 Types of values, Indicators ................................................................................. 136 

 

 
 

 



 

 

Motivational Introduction 

Chapter 1 

  



Motivational Introduction | FITPED 

6 

1.1 Introduction 

🕮 1.1.1 

Swift is a new programming language for running applications on iOS and macOS 
operating systems. Swift builds on the best of C and Objective-C. It is adopting 
secure programming patterns and add advanced features that make programming 
easier, more flexible and more fun. 

 

📝 1.1.2 

Which manufacturer develops and operates iOS hardware? 

• Microsoft 
• Apple 
• Google 

 

🕮 1.1.3 

Swift simplifies memory management with automatic reference counting (ARC). It 
is nice for Objective-C developers. Accepts the readability of named parameters 
and the power of the Objective-C dynamic object model. It supports Playgrounds, 
an innovative feature that allows programmers to experiment with Swift code and 
see the results instantly, without the hassle of compiling and running the 
application. Thanks to all this, Swift is a new language for the future of software 
development for Apple. 

 

📝 1.1.4 

What languages is Swift built on? 

• Pascal 
• C and Objective-C 
• Unix 

 

🕮 1.1.5 

Tradition dictates that the first program in the new language should display "Hello, 
world!". In Swift, this can be done in one line: 



Motivational Introduction | FITPED 

7 

print ("Hello, world!") 

 

📝 1.1.6 

Write the following greeting in Swift: "Hello, I am here!" 

 

🕮 1.1.7 

If you have programmed in C or Objective-C before, this syntax seems familiar to 
you - in Swift, this line of code is a complete program. You do not need to import a 
separate library for functions such as input/output or string processing. Your main 
code is used as the entry point to the program, so you do not need the main 
function. You do not have to write a semicolon at the end of the line. 

 

📝 1.1.8 

Do I need to import an input / output library in Swift? 

• no 
• yes 

 

1.2 Casting, Arrays, Dictionary 

🕮 1.2.1 

Casting 1 

Values are never implicitly converted to another type. If you need to convert a value 
to another type, explicitly create an instance of the desired type. 

let label = "Width is " 

let width = 94 

let widthLabel = label + string (width) 

 

🕮 1.2.2 

Arrays are created using square brackets [] and their elements are accessed by 
writing the index in parentheses. 



Motivational Introduction | FITPED 

8 

var colors = ["white", "blue", "red", "green"] 

colors [1] = "yellow" 

To create an empty array, use the following syntax: 

let emptyArray = [string] () 

 

🕮 1.2.3 

If type information can be derived, you can write an empty field as [] - for example, 
when assigning a new value to a variable or passing a value to a function. 

array = [] 

 

🕮 1.2.4 

For example, you create a dictionary using square brackets [] and access their 
elements by writing the key in parentheses. 

var flowerColors = ["daisy": "white", "dandelion": "yellow"] 

flowerColors ["tulip"] = "red" 

and to create an empty dictionary, use the following syntax: 

let emptyDictionary = [String: Float] () 

If type information can be derived, you can write an empty dictionary as [:] - for 
example, when assigning a new value to a variable or passing a value to a function. 

dictionary = [:] 

 

📝 1.2.5 

How do you explicitly convert 4.5 to a string? 

• string(4.5) 
• str(4.5) 
• string to (4.5) 

 
 
 
 



Motivational Introduction | FITPED 

9 

🕮 1.2.6 

Casting 2 

There is an even easier way to include values in strings: Write the value in 
parentheses and precede the parentheses with a backslash \(...). 

let apples = 3 

let oranges = 5 

let Fruits = "I have \(apples) apples and \(oranges) oranges. 

Together I have \(apples + oranges) pieces of fruits." 

 

📝 1.2.7 

How do you add the first and the last name of the user to the following sentence 
“User…… is currently logged in”  

• let message = "User \(firstname) \(lastname) is currently logged in" 
• let message = "User + (firstname) + (lastname) is currently logged in" 
• let message = "User \(firstname)\(lastname) is currently logged in" 

 

📝 1.2.8 

Select the correct array notation for real numbers 10, 15, 18, and 19 

• var arr = [10.0, 15, 18, 19] 
• var arr [10.0, 15, 18, 19] 
• var arr is [10.0, 15, 18, 19] 

 

📝 1.2.9 

Create a dictionary called position with real values x = 10, y = 20 

 
 



 

 

Control Flow 

Chapter 2 

  



Control Flow | FITPED 

11 

2.1 Loops 

🕮 2.1.1 

Control Flow 

Swift provides a number of control flow commands. These include while loops to 
perform a task multiple times; if, guard, and switch statements to execute different 
branches of code based on certain conditions; and statements like break or 
continue to move to another location in your code. 

Swift also has a for-in loop that makes it easy to iterate over an array, dictionary, 
set, string, and other types. 

 

🕮 2.1.2 

For-in loops 

Use a for-in loop to iterate a sequence, such as items in an array, numeric ranges, or 
characters in a string. 

 

🕮 2.1.3 

for-in over an array 

This example uses a for-in loop to iterate over an array: 

let names = ["Anna", "Alex", "Brian", "Jack"] 

for name in names { 

  print ("Hello, \(name)!") 

} 

// Hello, Anna! 

// Hello, Alex! 

// Hello, Brian! 

// Hello, Jack! 

 
 
 
 
 
 



Control Flow | FITPED 

12 

📝 2.1.4 

What will be the data type of the variable a in the loop? 

for a in [1, 4, 5.6, 7, 8.9] 

• Double 
• Int 
• String 

 

🕮 2.1.5 

for-in above a dictionary 

You can also iterate over a dictionary and access its key-value pairs. Each entry in 
the dictionary returns as an n-tuple (key, value) when iterates the dictionary, and 
you can decompose the parts of the n-tuple (key, value) as explicitly named 
constants for use in the body of the input loop: 

let numberOfLegs = ["spider": 8, "ant": 6, "cat": 4] 

for (animalName, legCount) in numberOfLegs { 

  print ("\ (animalName) has \ (legCount) legs") 

} 

// the cat has 4 legs 

// the ant has 6 legs 

// the spider has 8 legs 

The contents of the dictionary are inherently disordered and its iteration does not 
guarantee the order in which they will be read. The order in which entries are 
entered in the dictionary does not define the order in which they are iterated. 

 

📝 2.1.6 

What were the (animalName, legCount) variables in the previous example? 

• n-tuple in which the key-value pair is stored when iterating the dictionary 
• n-tuple in which the loop counter is stored when iterating the dictionary 
• n-tuple in which random values are stored when iterating the dictionary 

 
 
 



Control Flow | FITPED 

13 

🕮 2.1.7 

for-in for closed ranges 

You can use a for-in loop to iterate numeric ranges. This example goes through the 
range of 1 to 5: 

for index in 1 ... 5 { 

  print ("\(index) times 5 is \(index * 5)") 

} 

// 1 times 5 is 5 

// 2 times 5 is 10 

// 3 times 5 is 15 

// 4 times 5 is 20 

// 5 times 5 is 25 

The loop is iterated in the range of numbers from 1 to 5 inclusive, as indicated by 
the use of the closed range operator (...). The index value is set to the first number 
in the range (1), and commands are executed inside the loop for all numbers in the 
range. 

The index is a constant whose value is automatically set at the beginning of each 
iteration of the loop. Therefore, the index does not have to be declared before use. 
It is implicitly declared in a loop, without the need for the keyword declaration of let. 

 

🕮 2.1.8 

Optional index in the loop 

If you do not need the index value, you can ignore it by using an underscore instead 
of a variable name: 

let base = 3 

let power = 10 

var answer = 1 

for _ in 1 ... power { 

  answer *= base 

} 

print ("\(base) ^ \(power) is \(answer)") 

//Prints "3 ^ 10 is 59049 

The above example calculates the value of one number to another (in this case 3 to 
10). For this calculation, the individual values of the loop counter are unnecessary - 
the loop runs 10 times. The underscore (_) character used instead of a loop variable 



Control Flow | FITPED 

14 

causes individual values to be ignored and does not provide access to the current 
value during each iteration of the loop. 

 

📝 2.1.9 

Can we omit (leave out) the counter in the for loop? 

• Yes 
• No 

 

🕮 2.1.10 

for-in for open ranges 

In some situations, you may not want to use closed ranges that include both 
endpoints. For example, drawing minutes marks on a dial. You want to draw 60 
markers, starting with 0 minutes. Use the half-open range operator (.. <) to include 
the lower limit, but not the upper limit. 

let minutes = 60 

for tickMark in 0 .. <minutes { 

  // render the check mark every minute (60 times) 

} 

 

🕮 2.1.11 

Another for-in loop step 

Some users only want to mark their fifth minute on their dial. Use the stride (from: 
to: by :) function to skip unwanted passes through the loop: 

let minuteInterval = 5 

for tickMark in stride (from: 0, to: minutes, by: 

minuteInterval) { 

  // draw check mark every 5 minutes (0, 5, 10, 15 ... 45, 50, 

55) 

} 

For a closed range, use stride (from: through: by :): 

let hours = 12 

let hourInterval = 3 



Control Flow | FITPED 

15 

for tickMark in stride (from: 3, through: hours, by: 

hourInterval) { 

  // draw check mark every 3 hours (3, 6, 9, 12) 

} 

 

📝 2.1.12 

Which loop will run 5 times with values of 5, 7, 9, 11, 13? 

• for a in stride(from: 5, through: 14, by: 2) 
• for a in stride(from: 5, through: 12, by: 2) 
• for a in stride(from: 5, through: 2, by: 13) 

 

🕮 2.1.13 

While loops 

The while loop executes a set of statements until the condition becomes false. 
While loops are useful when the number of iterations before the first iteration 
begins. Swift provides two types of while loops: 

• while - with a condition at the beginning of the loop 
• repeat-while - with a condition at the end of the loop 

While loop 

The while loop begins by evaluating the condition. If the condition is true, the set of 
statements are repeated until the condition becomes false: 

while condition { 

  //body of the loop 

} 

 

🕮 2.1.14 

Repeat-while loop 

The second variation of the while loop (repeat-while) first passes through the loop 
block, then evaluates the loop condition. It then continues to repeat the loop until 
the condition is false: 

repeat { 

//body of the loop 



Control Flow | FITPED 

16 

} while condition 

 

📝 2.1.15 

The loop with the condition at the beginning is: 

• while 
• repeat-while 

 

2.2 Statements 

🕮 2.2.1 

Conditional code execution 

It is often useful to execute different pieces of code based on certain conditions. 
You may want to run another piece of code when an error occurs, or you may see a 
message when the value is too high or too low. To do this, you condition parts of 
your code. Swift provides two ways to add conditional branches to your code: 

if statement 

switch command 

You usually use the if statement to evaluate simple conditions with only a few 
possible results. The switch statement is more suitable for more complex 
conditions with multiple possible permutations, and is useful in situations where 
pattern matching can help select the appropriate branch of code to execute. 

 

🕮 2.2.2 

A simple if statement 

In its simplest form, the if statement has a single condition. Executes a set of 
commands only if this condition is true. 

var temperature = -2 

if temperature <= 0 { 

  print ("It's very cold.") 

} 

// Prints "It's very cold." 



Control Flow | FITPED 

17 

The above example checks if the temperature is less than or equal to 0 degrees 
Celsius (freezing point of water). If so, a report will be printed. Otherwise, no 
message is printed and code execution continues after the closing brace of the if 
statement. 

 

🕮 2.2.3 

If-else statement 

The if statement can provide an alternative set of statements (else) for situations 
where the condition evaluates to false: 

temperature = 12 

if temperature <= 0 { 

  print ("It's very cold.") 

} else { 

  print ("It's not that cold.") 

} 

// Prints "It's not that cold." 

One of these two branches is always done. As the temperature rises to 12 degrees 
Celsius, it is no longer cold enough, the else branch is called. 

 

🕮 2.2.4 

Complex conditions 

Multiple conditions that share the same body can be written one after the other, 
separated by a comma. If any of the conditions are met, the result of the condition 
is considered true. If the list is long, you can write it on more lines: 

let someCharacter: Character = "e" 

switch someCharacter { 

case "a", "e", "i", "o", "u": 

  print ("\(someCharacter) is a vowel") 

case "b", "c", "d", "f", "g", "h", "j", "k", "l", "m", 

   "N", "p", "q", "r", "s", "t", "v", "w", "x", "y", "z": 

  print ("\(someCharacter) is a consonant") 

default: 

  print ("\(someCharacter) is not a vowel or a consonant") 

} 

// Prints "e is a vowel" 



Control Flow | FITPED 

18 

🕮 2.2.5 

The if-elseif-else statement 

You can concatenate multiple if statements to test other options: 

temperature = 25 

if temperature <= 0 { 

  print ("It's very cold") 

} else if temperature> = 25 { 

  print ("It's really warm.") 

} else { 

  print ("It's not that cold.") 

} 

// Prints "It's really warm." 

An additional condition that responds to high temperatures has been added here. 
The last else condition remains and prints an answer to any temperature that is 
neither too hot nor too cold. 

However, the last condition else is optional and can be omitted: 

temperature = 18 

if temperature <= 0 { 

  print ("It's very cold.") 

} else if temperature> = 25 { 

  print ("It's really warm.") 

} 

Because the temperature is not too low or too high to trigger the if or else if 
conditions, no message will be printed. 

 

🕮 2.2.6 

The switch command 

The switch command takes one value and compares it to several possible values. It 
then executes the appropriate block of code when the condition is met. The switch 
statement provides an alternative to the if statement for responding to multiple 
potential states. 

In its simplest form, the switch statement compares a value with one or more 
values of the same type: 

switch value { 



Control Flow | FITPED 

19 

case value1: 

  respond to value1 

case value2, 

   value3: 

  respond to value2 or value3 

default: 

  otherwise, do something else 

} 

Each switch statement consists of several possible cases, each of which begins 
with the case keyword. Each switch statement must be exhaustive. This means that 
each possible value of the considered type must correspond to one of the 
conditions. If it is not possible to specify all the options, you can define a default 
block to be executed for all values that are not listed. The default block must 
always be the last: 

let someCharacter: Character = "z" 

switch someCharacter { 

case "a": 

  print ("First letter of the alphabet") 

case "z": 

  print ("Last letter of the alphabet") 

default: 

  print ("Some other character") 

} 

// Prints "Last letter of the alphabet" 

 

🕮 2.2.7 

Switch differences from other languages 

Unlike switch statements in C and Objective-C, switch statements in Swift do not 
have to contain a break statement at the end of each block. 

Each block must contain at least one command. It is not valid to write the following 
code because the first block is empty: 

let anotherCharacter: Character = "a" 

switch anotherCharacter { 

case "a": // Invalid, block has empty body 

case "A": 

  print ("Letter A") 

default: 

  print ("It's not a letter A") 

} 



Control Flow | FITPED 

20 

// This returns a compilation error. 

Unlike the switch command in C, this switch command does not match "a" and "A". 
Swift returns a compilation error that block "a": does not contain any executable 
statements. To perform one block for "a" and "A", combine these two values into a 
compound case and separate them with commas: 

let anotherCharacter: Character = "a" 

switch anotherCharacter { 

case "a", "A": 

  print ("Letter A") 

default: 

  print ("No letter A") 

} 

// Prints "Letter A" 

 

🕮 2.2.8 

Switch command and intervals 

The switch command allows you to check a value using ranges: 

let count = 62 

switch count { 

case 0: 

  print (“nothing”) 

case 1 .. <5: 

  print ("pair") 

case 5 .. <12: 

  print ("several") 

case 12 .. <100: 

  print ("tens") 

case 100 .. <1000: 

  print ("hundreds") 

default: 

  print ("a lot") 

} 

// Prints "tens" 

 
 

🕮 2.2.9 

Switch command and n-tuples 



Control Flow | FITPED 

21 

You can use n-tuples to test multiple values in the same switch statement. Each n-
tuple element can be tested against a different value or range of values. 
Alternatively, use an underscore (_) to match any possible value. 

The following example takes a point (x, y), expressed as a simple n-tuple of type 
(Int, Int): 

let somePoint = (1, 1) 

switch somePoint { 

case (0, 0): 

  print ("\(somePoint) lies at the beginning") 

case (_, 0): 

  print ("\(somePoint) lies on the x-axis") 

case (0, _): 

  print ("\(somePoint) lies on the y-axis") 

default: 

  print ("\(somePoint) does not lie on any axis") 

} 

// Prints "(1, 1) does not lie on any axis" 

Unlike C, Swift allows multiple switch conditions to take into account the same 
value or values. In fact, point (0, 0) could satisfy all conditions. However, if multiple 
matches are possible, the first match is always used. Point (0, 0) first corresponds 
to condition (0, 0), so all other matching conditions would be ignored. 

 

🕮 2.2.10 

Binding values in the switch statement 

The switch statement can create temporary constants or variables for the values 
being compared. This behavior is called value binding because the values are 
bound to temporary constants or variables in the condition block: 

let anotherPoint = (2, 0) 

switch anotherPoint { 

case (let x, 0): 

  print ("on the x-axis with the value x: \(x)") 

case (0, years): 

  print ("on the y-axis with the value y: \(y)") 

case let (x, y): 

  print ("somewhere else in (\(x), \(y))") 

} 

// Prints "on the x-axis with x: 2 



Control Flow | FITPED 

22 

The three switch blocks declare placeholder constants x and y, which temporarily 
take one or both n-tuple values from another point. The first case (flight x, 0) 
corresponds to any point with a value of y 0 and assigns the value of point x to the 
temporary constant x. Similarly, the second case case (0, let y) corresponds to any 
point with a value of x 0 and assigns the y value of the point to the temporary 
constant y. 

Once temporary constants are declared, they can be used within a block of 
condition code. 

This switch command does not have a default block. The last case of case let (x, y) 
declares n-tuples of two placeholders, which can correspond to any value. Because 
anotherPoint is always an n-tuple of two values, this case corresponds to all 
possible remaining values, and when the switch statement is exhaustive, no default 
block is needed. 

 

🕮 2.2.11 

The switch-case-where command 

The switch statement can use the where clause to check other conditions: 

let yetAnotherPoint = (1, -1) 

switch yetAnotherPoint { 

case let (x, y) where x == y: 

  print ("For point (\(x), \ y)) x == y is true") 

case let (x, y) where x == -y: 

  print ("For point (\(x), \(y)) x == -y is true") 

case let (x, y): 

  print ("(\(x), \(y)) is any point") 

} 

// Prints "For point (1, -1) x == -y is true" 

The three switch blocks declare placeholder constants x and y, which temporarily 
take two n-tuple values from yetAnotherPoint. These constants are used as part of 
the where clause to create dynamic conditions. The block condition is true only if 
the condition of the where clause evaluates to true for this value. 

 

🕮 2.2.12 

Complex conditions with a value binding 



Control Flow | FITPED 

23 

Complex cases may also involve value bindings. All complex case patterns must 
include the same set of value constraints, and each constraint must obtain a value 
of the same type from all patterns in the case. This ensures that no matter which 
part of the complex case matches, the code in the body of the case can always 
have access to the value for the bindings, and that the value always has the same 
type. 

let stillAnotherPoint = (9, 0) 

switch stillAnotherPoint { 

case (let distance, 0), (0, let distance): 

  print ("On the axis, \(distance) from the beginning") 

default: 

  print ("Not on the axis") 

} 

// Print "On axis, 9 from the beginning" 

 

📝 2.2.13 

What does the code print? 

let point = (9, 1) 

switch point { 

case (let distance, 0), (0, let distance): 

  print ("On the axis, \(distance) from the beginning") 

default: 

  print ("Not on the axis") 

} 

• Not on the axis 
• On the axis, 9 from the beginning 
• On the axis, 10 from the beginning 

 

2.3 Other commands 

🕮 2.3.1 

Transition commands 

These statements change the execution of code by transferring it from one block of 
code to another. Swift has five commands to control the transition: 

• continue 
• break 



Control Flow | FITPED 

24 

• fallthrough 
• return 
• throw 

We will now describe the continue, break and fallthrough statements. 

 

🕮 2.3.2 

The continue statement 

The continue statement tells the loop to interrupt what it is doing and start again at 
the beginning of the next iteration with the loop. 

The following example removes all vowels and spaces from a lowercase string to 
create a mysterious phrase: 

let puzzleInput = "great minds think alike" 

var puzzleOutput = "" 

let charactersToRemove: [Character] = ["a", "e", "i", "o", 

"u", " "] 

for character in puzzleInput { 

  if charactersToRemove.contains (character) { 

    continue 

  } 

  puzzleOutput.append (character) 

} 

print (puzzleOutput) 

// Prints "grtmndsthnklk" 

The above code calls the continue keyword whenever it matches a vowel or a 
space, which causes the current iteration of the loop to break immediately and 
jump directly to the beginning of the next iteration. 

 

📝 2.3.3 

Which command interrupts the current iteration of the loop and starts the next 
one? 

• continue 
• break 
• return 

 



Control Flow | FITPED 

25 

🕮 2.3.4 

Break statement 

The break statement immediately terminates the execution of the entire control 
flow statement. You can use the break statement inside a switch statement or 
inside a loop if you want to stop executing a switch statement or loop before 
otherwise. 

 

🕮 2.3.5 

Loop break 

If the break statement is used inside a loop block, loop execution ends immediately 
and code execution continues after the loop (after the } character that ends the 
loop block). No further code from the current iteration of the loop is executed and 
no further iterations of the loop are executed. 

 

📝 2.3.6 

Which command interrupts the currently running loop? 

• break 
• continue 
• return 

 

🕮 2.3.7 

Interrupt the switch command 

When the break statement is used inside a switch statement, execution of the 
switch block ends and code execution continues after the switch block (after the } 
character that ends the switch statement). 

The break statement can be used to ignore one or more conditions in a switch 
statement. Because the switch in Swift must have all conditions defined and does 
not allow empty commands, it is sometimes necessary to intentionally terminate its 
execution with the break command: 

let numberSymbol: Character = "3" 

var possibleIntegerValue: Int? 



Control Flow | FITPED 

26 

switch numberSymbol { 

case "1": 

  possibleIntegerValue = 1 

case "2": 

  possibleIntegerValue = 2 

case "3": 

  possibleIntegerValue = 3 

case "4": 

  possibleIntegerValue = 4 

default: 

  break 

} 

if let integerValue = possibleIntegerValue { 

  print ("The integer value \(numberSymbol) is 

\(integerValue).") 

} else { 

  print ("An integer value for \(numberSymbol) could not be 

found.") 

} 

// Prints “The integer value 3 is 3. 

 

🕮 2.3.8 

Fallthrough statement 

Unlike C, the switch statement in Swift only executes the first block of the condition, 
which is true (there is no need to break at the end of the condition block, as in C). If 
you need the C behavior of the switch statement, use the fallthrough statement to 
do so 

let integerToDescribe = 5 

var description = "Number \(integerToDescribe) is" 

switch integerToDescribe { 

cases 2, 3, 5, 7, 11, 13, 17, 19: 

  description += "prime number and also" 

  fallthrough 

default: 

  description += " an integer." 

} 

print(description) 

// Prints "Number 5 is a prime number and also an integer." 



Control Flow | FITPED 

27 

The fallthrough keyword does not check other conditions specified in the switch. 
The code of the block of the following condition, or the block of the default, starts 
immediately, just like in the C language. 

 

📝 2.3.9 

Which command can you use to change the behavior of a switch to a C-like 
behavior? 

• fallthrough 
• continue 
• break 

 

🕮 2.3.10 

Marked (labeled) blocks 

In Swift, you can nest loops and conditional statements in other loops and 
conditional statements to create complex flow control structures. However, loops 
and conditional statements can use break statements to terminate their execution 
prematurely. Therefore, it is sometimes useful to explicitly specify which loop or 
conditional statement you want to end with the break statement. Similarly, if you 
have multiple nested loops, it can be useful to explicitly specify which loop should 
be affected by the continue statement. 

To achieve these goals, you can label a loop statement or a conditional statement. 

To mark a command, add a naming label: to the same line as the command's 
introductory keyword. Here is an example of this while loop syntax, although the 
principle is the same for all loops and switch statements: 

name: while condition { 

  // loop block 

  break name 

} 

 

📝 2.3.11 

How do we name a block of code with the word "name"? 

• name: while ... 
• while: name ... 



Control Flow | FITPED 

28 

• while { ... }: name 

 

🕮 2.3.12 

The Guard statement 

The guard statement conditionally executes statements, similar to the if statement. 
The guard statement does not have a block in case the condition is true (the 
program is expected to continue on the next line). It must always contain an else 
block: 

guard let name = person["name"] else { 

  return 

} 

If this condition is not met, the code is executed inside the else branch. This branch 
must pass control to leave the block of code in which the guard command appears. 
It can do this with a control transfer statement, such as return, break, continue, or 
throw, or it can call an error function or method, such as fatalError(_: file: line:).  

 

📝 2.3.13 

What does the code print: 

let a = 1 

guard let b = a else { 

  print ("a has no value") 

break 

} 

print (“\(a) = \(b)”) 

• 1 = 1 
• a has no value 
• 1 = 2 

 

🕮 2.3.14 

Check system API availability 

Swift has built-in support for checking the availability of the system API, which 
ensures that you do not accidentally call an API that is not available. 



Control Flow | FITPED 

29 

The compiler uses the availability information in the SDK to verify that all APIs used 
in your code are available in the deployment target specified by your project. Swift 
reports an error at compile time if you try to use an API that is not available. 

 

🕮 2.3.15 

Conditional code block execution based on API availability 

To conditionally execute a block of code, use the availability condition in the if or 
guard statement with #available. The condition will be evaluated while the program 
is running according to the OS version on which the application is currently running: 

if #available (platform name version, ..., *) { 

  commands to execute, if APIs are available 

} else { 

  backup commands to execute if APIs are not available 

} 

The availability condition contains a list of platform names and versions. You use 
platform names such as iOS, macOS, watchOS, and tvOS. In addition to specifying 
major version numbers, such as iOS 8 or macOS 10.10, you can enter minor version 
numbers, such as iOS 11.2.6 and macOS 10.13.3. 

The following example shows how to run code on iOS 10 and later and macOS 
10.12 and later. The last argument, *, is required and specifies that on any other 
platform, the if block will run on the minimum version specified in your project: 

if #available (iOS 10, macOS 10.12, *) { 

  // Use iOS 10 API on iOS and use macOS 10.12 API on macOS 

} else { 

  // Go back to the previous API for iOS and macOS 

} 



 

 

Types, Operators, Strings, 
Characters 

Chapter 3 

  



Types, Operators, Strings, Characters | FITPED 

31 

3.1 Constants and variables (without type) 

🕮 3.1.1 

You have successfully mastered the motivational part of the lection. And you can 
start studying .. 

But first you have to answer the question. 

 

📝 3.1.2 

Do you want to continue? 

 

🕮 3.1.3 

Constants and variables associate a name with a value. You create a constant (for 
example, maximumNumberOfLoginAttempts or welcomeMessage) and associate it 
with a value of a specific type (for example, the number 10 or the string "Hello"). 
The value of the constant cannot be changed. Once set, it remains the same 
throughout the program. Hence a constant. The variable can be changed in the 
program and set to another value. 

 

🕮 3.1.4 

Constants and variables must be defined before use. You define constants with the 
keyword let and variables with the keyword var. Here is an example of how 
constants and variables can be used to track the number of login attempts a user 
has made: 

Example: 

let maximumNumberOfLoginAttempts = 10 

var currentLoginAttempt = 0 

 

📝 3.1.5 

Will the maximumNumberOfLoginAttempts from the paragraph before change 
during the program? 

 



Types, Operators, Strings, Characters | FITPED 

32 

📝 3.1.6 

Does the constant change during the program? 

 

🕮 3.1.7 

Next, we can deal with an example: 

let maximumNumberOfLoginAttempts = 10 

var currentLoginAttempt = 0 

Here, the maximum number of allowed login attempts is declared as a constant, 
because the maximum value never changes. That is, the let 
maximumNumberOfLoginAttempts = 10. The current logon attempt counter is 
declared as a variable because this value must be incremented after each failed 
login attempt. So var currentLoginAttempt = 0 

You can declare multiple constants or multiple comma-separated variables in a 
single line: 

var x = 0.0, y = 0.0, z = 0.0 

If the stored value in your code does not change, always declare it as a constant 
with the keyword let. Use variables only to store values that need to be changed. 

 

📝 3.1.8 

How do you define a value that never changes when the program runs 

 

3.2 Constants and variables (with type) 

🕮 3.2.1 

When you declare a constant or variable, you can specify its type to make it clear 
what kind of values a constant or variable can contain. Type the type after the colon 
after the name of the constant or variable. 

var welcomeMessage: String 

Any text value can now be assigned to the welcomeMessage variable without error: 



Types, Operators, Strings, Characters | FITPED 

33 

welcomeMessage = "Hello" 

You can define multiple related variables of the same type on a single line, 
separated by commas, specifying one type after the name of the last variable: 

var x, y: Double 

In practice, variables and constants without a type are usually used. If you enter an 
initial value for a constant or variable, Swift can almost always derive the type to 
use for that constant or variable. 

 

🕮 3.2.2 

Constant and variable names can contain almost any character, including Unicode 
characters: 

let π = 3.14159 

let 你好 = "你好 世界" 

let ???????? = "dogcow" 

Constant and variable names cannot contain blanks, math symbols, arrows, private 
(or invalid) Unicode points, or line and frame drawing characters. They also cannot 
begin with a number, although numbers may be included elsewhere in the name. 

Once you declare a constant or variable of a certain type, you cannot declare it 
again with the same name or change it to store values of another type. You also 
cannot change a constant to a variable or a variable to a constant. 

You can change the value of an existing variable to another value of a compatible 
type. In this example, the friendlyWelcome value changes from "Hello!" To 
"Bonjour!": 

var friendlyWelcome = "Hello!" 

friendlyWelcome = "Bonjour!" 

Unlike a variable, the value of a constant cannot be changed once it has been set. 
An attempt to change the value of a constant is reported as an error when 
compiling the code. 

 

📝 3.2.3 

Fill in: var is used to define: 



Types, Operators, Strings, Characters | FITPED 

34 

📝 3.2.4 

Fill in: let is used for definition 

 

📝 3.2.5 

Is this listing correct? 

let width = 100 

width = 120 

• yes 
• no 

 

3.3 Listing constants and variables 

🕮 3.3.1 

You can print the current value of a constant or variable using the print function 

let friendlyWelcome = “Hello.” 

print(friendlyWelcome) 

// prints "Hello." 

print is a global function that prints a value followed by the end of a line to the 
appropriate output. For example, in Xcode, print prints its output to the Xcode 
console. (The second function, print, performs the same task without appending the 
end of the line to the end of the value to be printed.) 

The print function prints any string value that you pass to it: 

print("This is a string") 

// print "This is a string" 

The print function can also print more complex log messages, containing text as 
well as values for constants and variables. Wrap the name of the constant or 
variable in parentheses and escape them with a backslash before the opening 
parenthesis 

print("The current value of friendlyWelcome is 

\(friendlyWelcome)") 

// prints "The current value of friendlyWelcome is Hello." 



Types, Operators, Strings, Characters | FITPED 

35 

🕮 3.3.2 

You can use comments to include non-executable text in your code as a note or 
reminder. When compiling code, the Swift compiler ignores comments. 

The comments in Swift are very similar to the comments in C. One-line comments 
start with two slashes // 

// this is a comment 

Multiline comments begin with a slash followed by an asterisk / * and end with an 
asterisk followed by a slash * / 

/ * this is also a comment, 

but written on more lines * / 

Unlike multiline comments in C, multiline comments in Swift can be nested in other 
multiline comments. You write nested comments by running a block of multiline 
comments and then running the second multiline comment within the first block. 
The second block is then closed, followed by the first block: 

/ * this is the beginning of the first multiline comment 

/ * this is the second nested multiline comment * / 

this is the end of the first multiline comment * / 

Nested multiline comments make it quick and easy to comment on large blocks of 
code, even if the code already contains multiline comments. 

 

🕮 3.3.3 

Unlike many other languages, Swift does not require you to write a semicolon after 
each statement in your code, although you can do so if you wish. However, 
semicolons are required if you want to write multiple separate statements on a 
single line 

let cat = "????"; print (cat) // print "????" 

Q: 

Which entry is correct: 

let width = 100 let height = 80; - Incorrect 

let width = 100; let height = 80 - Correct 

 



Types, Operators, Strings, Characters | FITPED 

36 

📝 3.3.4 

Print the value of the variable quantity in the form "number: xx" to the console 

 

📝 3.3.5 

Is the notation /* first /* in the notation */ note */ correct? 

 

📝 3.3.6 

Which entry is correct: 

• let width = 100 let height = 80; 
• let width = 100; let height = 80 

 

3.4 Types 

🕮 3.4.1 

Integer 

Integers are numbers without a decimal component, such as 53 and -16. Integers 
can be signed (positive, zero or negative) or unsigned (positive or zero). Swift 
provides signed and unsigned integers in 8, 16, 32 and 64 bit forms. These integers 
follow a C-like naming convention: an 8-bit unsigned integer is of type UInt8 and a 
32-bit unsigned integer is of type Int32. Like all types in Swift, these integer types 
have uppercase and lowercase letters. 

 

📝 3.4.2 

Which entry is correct? 

• let a: Int = 10 
• var b: Uint = 20 

 
 
 



Types, Operators, Strings, Characters | FITPED 

37 

🕮 3.4.3 

Ranges of integers 

You can access the minimum and maximum value of each integer type with its min 
and max properties 

years minValue = UInt8.min // minValue is equal to 0 and is of 

type UInt8 

years maxValue = UInt8.max // maxValue is equal to 255 and is 

of type UInt8 

The values of these properties have the same numeric type (for example, UInt8 in 
the example above) and can therefore be used in expressions along with other 
values of the same type. 

Int 

In most cases, you don't have to select a specific integer size in your code. Swift 
provides another integer type of Int, which is the same size as the native word size 
of the current platform: 

On a 32-bit platform, Int is the same size as Int32. 

On a 64-bit platform, Int is the same size as Int64. 

If you do not need to work with a specific integer size, always use Int for integer 
values in the code. This helps ensure code consistency. 

UInt 

Swift also provides an unsigned integer type, UInt, which is the same size as the 
native word size of the current platform: 

On a 32-bit platform, UInt is the same size as UInt32. 

On a 64-bit platform, UInt is the same size as UInt64. 

It is recommended to use Int as much as possible, although it is clear in advance 
that the values will only be positive. 

 

📝 3.4.4 

Is it recommended to use UInt for positive number values in Swift?  

 



Types, Operators, Strings, Characters | FITPED 

38 

🕮 3.4.5 

Floating point numbers 

Floating point numbers are numbers with a decimal component, such as 3.141592, 
0.5, and -329.26. 

Floating point types can contain values with a much larger range than integer types. 
Swift provides two signed types of floating point numbers: 

Double represents a 64-bit floating point number. 

The float value represents a 32-bit floating point number. 

Double has an accuracy of at least 15 decimal places, while Float accuracy can be 
only 6 decimal places. The appropriate floating point type to use depends on the 
nature and range of values you must work with in your code. In situations where 
both types can be used, the Double type is preferred. 

 

📝 3.4.6 

Which type of floating point is preferred in Swift? 

 

🕮 3.4.7 

Type safety and type derivation 

Swift is a type-safe language. If part of your code expects a string, you can't pass it 
to Int by mistake. 

Because Swift is type-safe, it performs type checks when compiling code and 
marks all mismatched types as errors. This will allow you to catch and fix bugs as 
soon as possible in the development process. 

Type checking helps you avoid errors when working with different types of values. 
However, this does not mean that you must specify the type of each constant and 
variable that you declare. If you do not specify the desired value type, Swift uses a 
type derivation to determine the appropriate type. Type Derivation allows the 
compiler to automatically derive the type of a particular expression when it 
compiles your code, simply by examining the values you enter. 

Due to type derivation, Swift requires far fewer type declarations than languages 
such as C or Objective-C. Constants and variables are still explicitly specified, but 
most of the work with specifying their type is done for you. 



Types, Operators, Strings, Characters | FITPED 

39 

Type derivation is especially useful when you declare a constant or variable with an 
initial value. This is often done by assigning a literal value to a constant or variable 
where you declare it. 

For example, if you assign a literal value of 42 to a new constant without telling you 
what type it is, Swift concludes that you want the constant to be Int because you 
initialized it with a number that looks like an integer: 

let myValue = 42 

// myValue is derived to be of type Int 

Similarly, if you do not specify a type for a floating-point literal, Swift infers that you 
want to create a Double: 

let pi = 3.141592 

// pi is derived to be of type Double 

When deriving a floating-point number type, Swift always chooses Double instead 
of Float. 

If you combine integer and floating-point literals in an expression, the Double type is 
derived from the context. 

let calculatedPi = 3 + 0.141592 

// calculatedPi is also derived to be of type Double 

The value 3 has no explicit type per se, so the appropriate Double output type is 
derived from the presence of a floating-point literal as part of the addition. 

 

📝 3.4.8 

What type will the variable be defined as var num = 1.65 

 

🕮 3.4.9 

Numeric literals 

Integer literals can be written as: 

• Decimal number without prefix 
• Binary number with prefix 0b 
• An octal number prefixed with 0o 
• Hexadecimal number prefixed with 0x 



Types, Operators, Strings, Characters | FITPED 

40 

All these integer literals have a decimal value of 17 

let decimalInteger = 17 

let binaryInteger = 0b10001 // 17 in binary notation 

let octalInteger = 0o21 // 17 in octal notation 

let hexadecimalInteger = 0x11 // 17 in hexadecimal notation 

Floating point literals can be decimal (without a prefix) or hexadecimal (with a 
prefix 0x). It must always have a number (or hexadecimal number) on both sides of 
the decimal point. They may also have an optional exponent denoted by uppercase 
or lowercase letters e for decimal numbers or uppercase or lowercase letters p for 
hexadecimal numbers. 

For decimal numbers with the exp exponent, the base number is multiplied by 
10^exp 

1.25e2 means 1.25 × 10^2 = 125.0. 

1.25e-2 means 1.25 × 10^-2 = 0.0125. 

For hexadecimal numbers with the exp component exp, the base number is 
multiplied by 2^exp 

0xFp2 means 15 × 2^2 = 60.0. 

0xFp-2 means 15 × 2^-2 = 3.75. 

All of these floating-point literals have a decimal value of 12.1875 

let decimalDouble = 12.1875 

let exponentDouble = 1.21875e1 

let hexadecimalDouble = 0xC.3p0 

Numeric literals may contain additional formatting to make them easier to read. 
Both integers and floating numbers can be filled with extra zeros and can contain 
underscores to help with readability. Neither type of formatting affects the base 
value of a literal 

let paddedDouble = 000123,456 

let oneMillion = 1_000_000 

let justOverOneMillion = 1_000_000.000_000_1 

 

📝 3.4.10 

They can contain values of constants and variables with the _ character 



Types, Operators, Strings, Characters | FITPED 

41 

3.5 Casting 

🕮 3.5.1 

Numeric type conversion 

Use the Int type for all integer constants and variables in the code, even if they are 
known to be nonnegative. Using the default integer type in everyday situations 
means that integer constants and variables will be compatible with each other. Use 
other types of integers only if they are specifically needed for the task, because 
data is available from an external source of a given size, memory usage, or other 
necessary optimization. 

 

📝 3.5.2 

Is it recommended to use the Int type for all integer constants and variables in the 
code? 

 

🕮 3.5.3 

Integer conversion 

The range of numbers that can be stored in an integer constant or variable is 
different for each numeric type. The constant or variable Int8 can store numbers 
between -128 and 127, while the constant or variable UInt8 can store numbers 
between 0 and 255. A number that does not fit in a constant or variable of type 
integer is reported as a translation error. 

let cannotBeNegative: UInt8 = -1 

// UInt8 cannot store negative numbers, so an error will be 

reported 

let tooBig: Int8 = Int8.max + 1 

// Int8 cannot store a number greater than its maximum value 

Because each numeric type can store a different range of values, you must convert 
numbers on a case-by-case basis. 

To convert one particular number type to another, you initialize a new number of the 
desired type with an existing value. In the example below, the two thousand 
constant is of type UInt16, while the constant of one is of type UInt8. They cannot 
be added directly because they are not of the same type. Instead, this example calls 
UInt16 (one) to create a new UInt16 initialized with a value of one and uses that 
value instead of the original. 



Types, Operators, Strings, Characters | FITPED 

42 

let twoThousand: UInt16 = 2_000 

let one: UInt8 = 1 

years twoThousandAndOne = twoThousand + UInt16 (one) 

Because both sides of the addition are now of type UInt16, the sum is allowed. The 
output constant (twoThousandAndOne) is derived as type UInt16 because it is the 
sum of two UInt16 values. 

 

📝 3.5.4 

Why convert constants or variables consistently before adding them up? 

• Because they may have a different number range 
• Because the right result would not be displayed 
• Because they may have different data types 

 

🕮 3.5.5 

Integer and real number conversion 

Conversions between integers and real numbers must be made explicitly 

let three = 3 

let pointOneFourOneFiveNineTwo = 0.141592 

let pi = Double (three) + pointOneFourOneFiveNineTwo 

// pi equals 3.14159 and is derived to be of type Double 

Here, the value of constant three is used to create a new value of type Double, so 
that both sides of the addition are of the same type. Without this on-site 
conversion, the addition would not be allowed. 

Floating point conversion to an integer must also be done explicitly. The integer can 
be initialized with Double or Float 

let integerPi = Int(pi) 

// integerPi equals 3 and is derived to be of type Int 

If real numbers are used to initialize a new integer value, the decimal places are 
removed. This means that 4.75 becomes 4 and -3.9 becomes -3. 

 
 



Types, Operators, Strings, Characters | FITPED 

43 

🕮 3.5.6 

Type aliases 

Type aliases define an alternate name for an existing type. You define type aliases 
with the typealias keyword. Type aliases are useful when you want to reference an 
existing type with a name that is more contextually appropriate, such as when 
working with data of a specific size from an external source. 

typealias AudioSample = UInt16 

Once you define an alias type, you can use the alias anywhere you can use the 
original name 

var maxAmplitudeFound = AudioSample.min 

// maxAmplitudeFound is now 0 

Here, AudioSample is defined as an alias for UInt16. Because this is an alias, calling 
AudioSample.min actually calls UInt16.min, which provides an initial value of 0 for 
the maxAmplitudeFound variable. 

 

📝 3.5.7 

What logical constants do we use? 

• true, false 
• false = false 
• true = true 

 

🕮 3.5.8 

Logical type 

Swift has a basic logical type called Bool. Logical values are called logical because 
they can always be true or false. Swift provides two logical constant values, true 
and false 

let orangesAreOrange = true 

let turnipsAreDelicious = false 

The orangesAreOrange and turnipsAreDelicious types were derived as Bool from 
the fact that they were initialized using Boolean literal values. As with Int and 
Double before, you don't have to declare constants or variables as Bool if you set 



Types, Operators, Strings, Characters | FITPED 

44 

them to true or false once you've created them. Type derivation helps make Swift 
code shorter and more readable. 

 

3.6 N-tuples, types, bonds 

🕮 3.6.1 

N-tuple 

N-tuples group multiple values into one compound value. The values in the n-tuple 
can be of any type and do not have to be of the same type as the others. 

In this example (404, “Not Found”), it is an n-tuple that describes the HTTP status 
code. The HTTP status code is a special value returned by the webserver whenever 
you request a web page. If you request a non-existent webpage, a 404 Not Found 
status code is returned. 

let http404Error = (404, "Not Found") 

// http404Error is of type (Int, String) and equals (404, "Not 

Found") 

Said n-tuple groups Int and String. It contains a number and a "readable" 
description. It can be described as n-tuples of type (Int, String). 

You can create n-tuples from any type of permutation and they can contain as many 
different types as you want. There is nothing stopping you from having an n-type 
(Int, Int, Int) or (String, Bool) or any other permutation you require. 

You can break down the contents of an n-tuple into separate constants or variables, 
which you then access as usual: 

let (statusCode, statusMessage) = http404Error 

print("Status code is \(statusCode)") 

// prints "Status code is 404" 

print("Status message is \(statusMessage)") 

// prints "Status message not found 

If you only need some of the values of the n-tuple, ignore the parts of the n-tuple 
with the underscore _ when you decompose the n-tuple: 

let (justTheStatusCode, _) = http404Error 

print("Status code is \(justTheStatusCode)") 

// prints "Status code is 404" 



Types, Operators, Strings, Characters | FITPED 

45 

Alternatively, you can access the individual values of the elements in the n-tuple 
using index numbers starting from zero: 

print("Status code is \(http404Error.0)") 

// prints "Status code is 404" 

print("Status message is \(http404Error.1)") 

// prints "Status message not found" 

When an n-tuple is defined, you can name individual elements in the n-tuple: 

let http200Status = (statusCode: 200, description: “OK”) 

If you name elements in an n-tuple, you can use element names to access the 
values of those elements: 

print("Status code is \(http200Status.statusCode)") 

// prints "Status code is 200" 

print("Status message is \(http200Status.description)") 

// prints "Status message is OK" 

N-tuples are particularly useful as return values of functions. A function that 
attempts to load a Web page may return an n-tuple (Int, String) type, which 
describes the success or failure of the page loading. By returning an n-tuple with 
two different values, each of which has a different type, the function provides more 
useful information about its result than if it could return only one value of a single 
type. 

N-tuples are useful for temporary groups of related values. They are not suitable for 
creating complex data structures. 

 

📝 3.6.2 

Must the N-tuples be of the same type as the others? 

• no 
• yes 

 

🕮 3.6.3 

Optional types 

You use optional types in situations where a value may be missing. Optional says 
there is a value equal to x or no value at all. 



Types, Operators, Strings, Characters | FITPED 

46 

The concept of optional items in C or Objective-C does not exist. The closest thing 
to Objective-C is the ability to return nil from a method that would otherwise return 
an object, where nil means "absence of a valid object." However, this only works for 
objects - it doesn't work for structures, basic C types, or enumeration values. For 
these types, Objective-C methods typically return a special value (such as 
NSNotFound) that indicates the absence of a value. This approach assumes that 
the calling method knows that there is a special value to test and remembers to 
check it. Optional Swift types allow you to indicate the absence of a value for any 
type without the need for special constants. 

Here is an example of how to use options to deal with the absence of value. A 
String type has a method called toInt that attempts to convert a String value to an 
Int value. However, not every string can be converted to an integer. The string "123" 
can be converted to a numeric value of 123, but the string "hello" does not have an 
obvious numeric value to convert to. 

The following example uses the toInt () method to try to convert a string to Int:  

let possibleNumber = "123" 

let convertedNumber = possibleNumber.toInt () 

// the converted number is derived from the type "Int?" or 

"optional Int" 

Because the toInt() method may fail, it returns an optional Int, not Int. The optional 
Int is written as Int ?, not Int. The question mark indicates that the value it contains 
is optional, which means that it can contain some Int value or no value at all. (It 
can't contain anything else, such as a Bool value or a String value. It's either Int or 
nothing at all.) 

 

📝 3.6.4 

Which type is optional? 

• Int 
• Int? 
• Int = nil 

 

🕮 3.6.5 

nil 

To set an optional variable to no value, assign it a special value of nil 

var serverResponseCode: Int? = 404 



Types, Operators, Strings, Characters | FITPED 

47 

// serverResponseCode contains the actual Int value of 404 

serverResponseCode = nil 

// serverResponseCode currently has no value 

nil cannot be used with non-optional constants and variables. If a constant or 
variable in your code must work with the absence of a value, always declare it as an 
optional value of the appropriate type. 

If you define an optional variable without entering a default value, the variable is 
automatically set to nil for you 

var surveyAnswer: String? 

// surveyAnswer is automatically set to nil 

Swift nil is not the same as nil in Objective-C. In Objective-C, nil is a pointer to a non-
existent object. There is no nil indicator in Swift - it is the absence of a value of a 
certain type. You can set any type, not just object types. 

 

📝 3.6.6 

How do you set an optional variable to no value (nil)? 

• by assigning a special value 
• by converting to nill 
• setting to nil 

 

🕮 3.6.7 

Forced value expansion 

You can use the if statement to determine if an optional variable contains a value 
by comparing the optional value with nil. You perform this comparison with the 
"equals" operator (==) or with the "does not equal" (! =) operator. 

If an optional variable has a value, it is considered "not equal" to nil 

if convertedNumber != nil { 

  print ("The converted number contains some integer value.") 

} 

// prints "the converted number contains some integer value. 

Once you are sure that an optional variable contains a value, you can access its 
value by adding an exclamation point! at the end of the optional variable name. The 



Types, Operators, Strings, Characters | FITPED 

48 

exclamation point actually says, “I know that this optional variable definitely has its 
value; please use it." 

if convertedNumber != nil { 

  print("The converted number has an integer value of 

\(convertedNumber!).") 

} 

// prints "the converted number has an integer value of 123." 

If you use ! to access a non-existent optional value a runtime error is triggered. 
Always make sure that the optional value contains a non-nil value before use. 

 

📝 3.6.8 

If the optional variable has a value 

• is considered "not equal" or "not equal!" 
• is considered "not equal" nil 
• is considered "equal" nil 

 

🕮 3.6.9 

Optional binding 

Use the optional constraint to determine if the optional variable contains a value, 
and if so, to make it available as a temporary constant or variable. An optional 
constraint can be used with if and while statements to check a value inside an 
optional element and to extract that value into a local constant or variable. 

Type an optional binding for the if statement as follows: 

if let constantName = someOptional { 

  ... 

} 

You can override the possibleNumber example from the Optionals section and use 
an optional constraint rather than enforcing a value 

if let actualNumber = possibleNumber.toInt () { 

  print("\'\(possibleNumber)\' has an integer value 

\(actualNumber)") 

} else { 



Types, Operators, Strings, Characters | FITPED 

49 

  print("\'\(possibleNumber)\' cannot be converted to an 

integer") 

} 

// prints "'123' has an integer value 123" 

This code can be read as: 

"If the optional Int returned by possibleNumber.toInt contains a value, set a new 
constant called actualNumber to the value contained in the optional." 

If the conversion is successful, the actualNumber constant will be available for use 
in the first branch of the if statement. It has already been initialized with the value 
contained in the optional value, so there is no need to use ! for access to its value. 
In this example, the current number is used to print the conversion result. 

You can use constants and variables with optional binding. If you wanted to 
manipulate the value of currentNumber in the first branch of the if statement, you 
could type, if var actualNumber instead, and the value contained in the optional 
value would be made available as a variable. 

Multiple optional bindings can appear in a single if statement as a comma-
separated list of assignment expressions. 

if let constantName = someOptional, anotherConstantName = 

someOtherOptional { 

  ... 

} 

 
 
 

📝 3.6.10 

Use an optional constraint to determine if the optional variable contains a value. 
Which commands can be used with? 

• “and” & “or” 
• “nil” & “if” or “nil” & “while”  
• ”if” & “while” 

 

3.7 Errors, statements, preconditions 

🕮 3.7.1 

Default unpacked values 



Types, Operators, Strings, Characters | FITPED 

50 

Sometimes it is clear from the program structure that an optional variable will 
always have a value when this value is set for the first time. In these cases, it is 
useful to eliminate the need to check and expand the value of an optional variable 
on each access, because it can be safely assumed that it has a value at all times. 

These types of optional variables are defined as implicitly unpackaged optional 
variables. To write an expanded option, place an exclamation point (String!) instead 
of a question mark (String?) after the type you want to mark as optional. 

The default expanded option is a normal background option, but can also be used 
as an optional value without having to expand the option each time you access it. 
The following example shows the difference in behavior between an optional string 
and the implicitly "unwrapped optional string when accessing their wrapped value 
as an explicit string: 

let possibleString: String? = "Optional string." 

let forcedString: String = possibleString! // requires an 

exclamation mark 

let assumedString: String! = "Optional string expanded by 

default." 

let implicitString: String = assumedString // no exclamation 

point required 

You can think of an implicitly expanded optional variable as providing permission to 
automatically expand an optional variable each time it is used. Instead of inserting 
an exclamation point after a variable name each time you use it, place an 
exclamation point after the variable type when you declare it. 

If you try to access an implicitly expanded optional variable if it does not contain a 
value, a runtime error is raised. The result is exactly the same as placing an 
exclamation point after a normal optional variable that does not contain a value. 

You can still treat an implicitly expanded optional variable as a normal optional 
variable to verify that it contains the value: 

if assumedString != nil { 

  print(assumedString) 

} 

// prints "Optionally expanded optional string." 

You can also use an implicitly expanded optional variable with an optional binding 
to check and extract its value in a single statement: 

if let definiteString = assumedString { 

  print(definiteString) 

} 

// prints "Optional string extended by default." 



Types, Operators, Strings, Characters | FITPED 

51 

Do not use an implicitly expanded optional variable if there is a possibility that the 
variable may contain nil at a later time. If you need to check the nil during the life 
cycle of the variable, always use the normal optional type. 

 

🕮 3.7.2 

Error handling 

By processing errors, you respond to error conditions that your program may 
encounter during execution. 

func canThrowAnError() throws { 

  // this function may or may not cause an error 

} 

do { 

  try canThrowAnError() 

  // no error was raised, the run continues with another line 

} catch errorCode1 { 

  // error 1 occurred 

catch errorCode2 { 

  // error 2 occurred 

} 

 

🕮 3.7.3 

Assertions 

Options allow you to check for values that may or may not exist and to write code 
that elegantly copes with the absence of a value. However, in some cases, it's 
simply not possible for your code to continue executing if the value doesn't exist or 
if the value you enter doesn't meet certain conditions. In these situations, you can 
activate a statement in your code that terminates code execution and provides an 
opportunity to debug the cause of a missing or invalid value. 

Debugging by assertion 

If the condition evaluates to true, code execution continues as usual; if the 
condition evaluates to false, code execution ends and your application terminates. 

If your code runs a statement at runtime in a debugging environment, such as 
Xcode, you can see exactly where the invalid state occurred. The statement will 
also allow you to provide a suitable debugging report. 



Types, Operators, Strings, Characters | FITPED 

52 

Write the statement by calling the global function assert(_: _: file: line:). You pass an 
expression to the assert function that evaluates to true or false, and a message that 
should appear if the result of the condition is false: 

let age = -3 

assert(age> = 0, "A person's age cannot be less than zero") 

// this causes the statement to run because age is not >= 0 

In this example, code execution will continue only if age> = 0 evaluates to true, that 
is, if the age value is non-negative. If the age value is negative, as in the code above, 
then age> = 0 evaluates to false and the statement is activated and the application 
is terminated. 

The assertion message can be omitted if necessary, as in the following example: 

assert (age> = 0) 

Use the statement whenever the condition has the potential to be false, but it must 
definitely apply in order for your code to continue executing. 

If the check has already taken place, use the assertionFailure (_: file: line:) function 
to indicate that the statement failed: 

if age > 10 { 

  print("You can ride the roller-coaster or the ferris 

wheel.") 

} else if age >= 0 { 

  print("You can ride the ferris wheel.") 

} else { 

  assertionFailure("A person's age can't be less than zero.") 

} 

 

📝 3.7.4 

If the condition does not evaluate to true, 

• code execution continues as usual 
• code execution ends and your application terminates 
• the application prints the global function false 

 

🕮 3.7.5 

Preconditions 



Types, Operators, Strings, Characters | FITPED 

53 

Use preconditions whenever a condition has the potential to be false, but for your 
code to continue executing, it must be true. For example, use a precondition to 
check that the subscript is not out of bounds or to check that a valid value has been 
passed to the function. 

To write the precondition, call the precondition(_: _: file: line:) function. You pass an 
expression to this function that evaluates to true or false, and a message that 
appears if the result of the condition is false. For example: 

// When implementing subscript ... 

precondition(index> 0, "Index must be greater than zero.") 

You can also call the preconditionFailure (_: file: line :) function to indicate that an 
error has occurred. 

 

📝 3.7.6 

Which situation can occur when using the precondition so that the code can 
continue 

• The precondition must apply 
• On the contrary, the precondition doesn't need to apply 
• It depends on the definition of the precondition whether or not it must apply 

 

3.8 Operators 1 

🕮 3.8.1 

Terminology 

Operators are unary, binary, or ternary: Unary operators operate on a single target 
(for example, -a). Unary operators can appear before their target (for example !b) or 
behind their target (for example i++). Binary operators work on two targets (for 
example, 2 + 3) and are located between their two targets. Ternary operators 
operate on three targets. Like C, Swift has only one ternary operator, the ternary 
conditional operator (a?b:c). The values that affect operators are operands. In the 
expression 1 + 2, the symbol + is a binary operator and its two operands are the 
values 1 and 2. 

 
 
 



Types, Operators, Strings, Characters | FITPED 

54 

📝 3.8.2 

Unary operators can appear: 

• before or after their target 
• before their target 
• after their target 

 

🕮 3.8.3 

Assignment operator 

The assignment operator (a = b) initializes or updates the value of a with the value 
of b: 

let b = 10 

var a = 5 

a = b 

// and is now equal to 10 

If there is an assignment of a n-tuple with multiple values on the right side, its 
elements can be decomposed into several constants or variables at once: 

let (x, y) = (1, 2) 

// x is equal to 1 and y is equal to 2 

 
 

📝 3.8.4 

Choose the correct answer: Assignment operator 

a) does not initialize the value 

b) does not update the value 

c) initializes or updates the value 

• does not initialize the value 
• does not update the value 
• initializes or updates the value 

 
 



Types, Operators, Strings, Characters | FITPED 

55 

🕮 3.8.5 

The assignment operator does not return a value 

Unlike the assignment operator in C and Objective-C, the assignment operator in 
Swift itself does not return a value. The following statement is not valid: 

if x = y { 

 // this is not valid because x = y does not return a value 

} 

This function prevents the assignment operator (=) from being used accidentally 
instead of the comparison operator (==). 

 

🕮 3.8.6 

Arithmetic operators 

Swift supports four standard arithmetic operators for all types of numbers: 

• Addition (+) 
• Subtraction (-) 
• Multiplication (*) 
• Division (/) 

1 + 2 // equals 3 

5 - 3 // equals 2 

2 * 3 // equals 6 

10.0 / 2.5 // equals 4.0 

Unlike C arithmetic operators and Objective-C Swift, arithmetic operators do not 
allow values to overflow by default. 

The addition operator can also be used to concatenate strings: 

"Hello," + "world" // equals "Hello, world" 

 

📝 3.8.7 

Which characters can be operators? 

a) @, $ 

b) +, - 



Types, Operators, Strings, Characters | FITPED 

56 

c) +, -, = 

• @, $ 
• +, - 
• +,-,= 

 

🕮 3.8.8 

The remainder operator after division 

The remainder operator (a % b) finds out how many multiples of b fit in a, and 
returns the remaining value (remainder). 

9 % 4 // equals 1 

-9 % 4 // equals -1 

Unlike the remainder operator in C and Objective-C, the Swift remainder operator 
can also work with floating-point numbers: 

8% 2.5 // equals 0.5 

In this example, 8 divided by 2.5 equals 3, with a remainder of 0.5, so the remainder 
operator returns a Double value of 0.5. 

 

📝 3.8.9 

Which notation for the remainder operator returns 3? 

• 5%5 
• 15%5 
• 28%5 

 

3.9 Operators 2 

🕮 3.9.1 

Unary operator minus 

The sign of a numeric value can be changed using a prefix - known as the unary 
minus operator: 



Types, Operators, Strings, Characters | FITPED 

57 

let three = 3 

let minusThree = -tree 

// minusThree equals -3 

let plusThree = -minusThree 

// plusThree equals 3 or "minus minus three" 

The unary operator minus (-) is appended directly before the value, without spaces. 
The unary operator plus (+) returns the value without change: 

let minusSix = -6 

let alsoMinusSix = +minusSix 

// alsoMinusSix equals -6 

 

📝 3.9.2 

The unary operator minus (-) is appended before the value: 

• with space 
• without space 
• with or without space 

 

🕮 3.9.3 

Merged assignment operators 

Like C, Swift provides compound assignment operators that combine an 
assignment (=) with another operation. One example is the add assignment 
operator (+=): 

var a = 1 

a += 2 

// and is now equal to 3 

The expression a += 2 is an abbreviation for a = a + 2. Addition and assignment are 
effectively combined into one operator, which performs both tasks simultaneously. 
Compound assignment operators do not return a value. For example, you cannot 
write years b = a += 2. This behavior is different from the increase and decrease 
operators listed above. 

 

🕮 3.9.4 

Comparison operators 



Types, Operators, Strings, Characters | FITPED 

58 

Swift supports all standard C comparison operators: 

• equals (a == b) 
• unequal (a != b) 
• greater than (a > b) 
• less than (a < b) 
• greater than or equal to (a >= b) 
• less than or equal to (a <= b) 

Swift also provides two identity operators (=== and !==) that you use to test 
whether two object references point to the same object instance. 

Each of the comparison operators returns a Bool value that indicates whether the 
statement is true or not: 

1 == 1 // true because 1 equals 1 

2 != 1 // true, because 2 is not equal to 1 

2 > 1 // true because 2 is greater than 1 

1 < 2 // true because 1 is less than 2 

1 >= 1 // true because 1 is greater than or equal to 1 

2 <= 1 // false because 2 is not less than or equal to 1 

Comparison operators are often used in conditional statements, such as the if 
statement: 

let name = "world" 

if name == "world" { 

  print ("hello world") 

} else { 

  print ("sorry \(name), but I don't know you") 

} 

// prints "hello, world" because the name really equals 

"world" 

 

📝 3.9.5 

Is the condition for the equality of two variables written correctly? 

if a = b 

• no 
• yes 

 
 



Types, Operators, Strings, Characters | FITPED 

59 

🕮 3.9.6 

Ternary conditional operator 

The ternary conditional operator is a special operator with three parts, which has 
the form question?answer1:answer2. It is an abbreviation for evaluating one of two 
terms based on whether the question is true or false. If the question is true, 
answer1 is executed and returns its value; otherwise, it executes response2 and 
returns its value. 

The ternary conditional operator is an abbreviation for the code below: 

if question { 

  answer1 

} else { 

  answer2 

} 

Here is an example that calculates the height of a table row. The line height should 
be 50 points higher than the content height if the line has a header, and 20 points 
higher if the line does not have a header: 

let contentHeight = 40 

let hasHeader = true 

let rowHeight = contentHeight + (hasHeader?50:20) 

// rowHeight equals 90 

rowHeight can be briefly set to the correct value on a single line of code. 

Use the ternary conditional operator carefully. Its brevity can lead to hard-to-read 
code. Do not combine multiple instances of a ternary conditional operator into a 
single compound statement. 

 

📝 3.9.7 

What will be the value of the constant b? 

let a = 10 

let b = a <10 ? "smaller": "bigger" 

• smaller 
• bigger 

 



Types, Operators, Strings, Characters | FITPED 

60 

🕮 3.9.8 

Operator ?? 

The operator (a ?? b) returns the optional value of a, if a contains the value, or 
returns the default value of b. The expression a is always of the optional type. The 
expression b must correspond to type a. 

The zero fusion operator is an abbreviation for the code below: 

The following example uses the zero fusion operator to choose between a default 
color name and an optional user-defined color name: 

let defaultColorName = "red" 

var userDefinedColorName: String? // default value nil 

var colorNameToUse = userDefinedColorName ?? defaultColorName 

// userDefinedColorName is nil, so colorNameToUse is set to 

the default value of "red" 

userDefinedColorName = "green" 

colorNameToUse = userDefinedColorName ?? defaultColorName 

// userDefinedColorName is not nil, so colorNameToUse is set 

to "green" 

 

🕮 3.9.9 

Range operators 

Swift includes two range operators to express a range of values. 

Closed range operator 

The closed range operator (a ... b) defines the range from a to b and includes the 
values a and b. The value of a cannot be greater than b. The closed range operator 
is useful in an iteration in which you want to use all values: 

for index in 1 ... 5 { 

  print ("\(index) times 5 is \(index * 5)") 

} 

// 1 times 5 is 5 

// 2 times 5 is 10 

// 3 times 5 is 15 

// 4 times 5 is 20 

// 5 times 5 is 25 

 



Types, Operators, Strings, Characters | FITPED 

61 

📝 3.9.10 

How is the range written? 

• 1.5 
• 1..5 
• 1...5 

 

🕮 3.9.11 

Semi-open range operator 

The semi-open range operator (a .. <b) defines the range from a to b, but does not 
include b. It is said to be semi-open because it contains its first value, but not its 
final value. As with the closed range operator, the value of a must not be greater 
than b. If the value of a is equal to b, the resulting range will be empty. 

Semi-open ranges are especially useful when working with zero-based lists, such as 
fields, where it's useful to count up to (but without) the length of the list: 

let names = ["Anna", "Alex", "Brian", "Jack"] 

let count = names.count 

for i in 0..<count { 

  print ("Person \(i + 1) is named \(names [i])") 

} 

// Person 1 is named Anna 

// Person 2's name is Alex 

// Person 3's name is Brian 

// Person 4's name is Jack 

 

3.10 Operators 3 

🕮 3.10.1 

One-sided ranges 

The closed range operator has an alternative form for ranges that continue in one 
direction if possible - for example, a range that includes all elements of the array 
from index 2 to the end of the array. In these cases, you can omit the value on one 
side of the range operator. This type of range is called a one-sided range because 
the operator has a value on one side only. 

for name in names [2...] { 



Types, Operators, Strings, Characters | FITPED 

62 

  print(name) 

} 

// Brian 

// Jack 

for name in names [...2] { 

  print(name) 

} 

// Anna 

// Alex 

// Brian 

You can also write: 

for name in names [..<2] { 

  print(name) 

} 

// Anna 

// Alex 

You can also check to see if a single-sided range has a 

specific value: 

let range = ... 5 

range.contains (7) // false 

range.contains (4) // true 

range.contains (-1) // true 

 

🕮 3.10.2 

Logical operators 

Logical operators modify or combine the logical values true and false. Swift 
supports three standard C-derived logical operators: 

• logical NO (!a) 
• logical A (a && b) 
• logical OR (a || b) 

 

🕮 3.10.3 

Logical operator NOT 

The logical operator NOT (!A) inverts the logical value so that true becomes false 
and false becomes true. The logical operator NO is the prefix operator and appears 
immediately before the value it is working on, without spaces: 



Types, Operators, Strings, Characters | FITPED 

63 

let allowEntry = false 

if !allowEntry { 

  print("ACCESS DENIED") 

} 

// prints "ACCESS DENIED" 

 

🕮 3.10.4 

Logical operator AND 

The logical operator AND (a && b) creates logical expressions, where both values 
must be true for the entire expression to be true. If any value is false, the entire 
expression will also be false. If the first value is false, the second value will not be 
evaluated because the whole expression cannot be true: 

let enteredDoorCode = true 

let passedRetinaScan = false 

if enteredDoorCode && passedRetinaScan { 

  print("Welcome!") 

} else { 

  println("ACCESS DENIED") 

} 

// prints "ACCESS DENIED" 

 

📝 3.10.5 

Command: 

let boolVal1 = true 

let boolVal2 = false 

if boolVal1 && boolVal2 { 

  print(“Condition met”) 

} 

else { 

  print (“Condition not met”) 

} 

prints: 

• Condition met 
• Condition not met 

 



Types, Operators, Strings, Characters | FITPED 

64 

🕮 3.10.6 

Logical operator OR 

The logical operator OR (a || b) creates logical expressions in which only one of the 
two values must be true for the entire expression to be true. 

If the left side of the logical OR expression is true, the right side is not evaluated 
because it cannot change the result of the overall expression: 

let hasDoorKey = false 

let knowOverridePassword = true 

if hasDoorKey || KnowOverridePassword { 

  print("Welcome!") 

} else { 

  print("ACCESS DENIED") 

} 

// prints "Welcome!" 

 
 

📝 3.10.7 

Command: 

let boolVal1 = true 

let boolVal2 = false 

if boolVal1 || boolVal2 { 

  print(“Condition met”) 

} 

else { 

  print(“Condition not met”) 

} 

prints: 

• Condition met 
• Condition not met 

 

🕮 3.10.8 

Combination of logical operators 



Types, Operators, Strings, Characters | FITPED 

65 

You can combine multiple logical operators to create longer compound 
expressions: 

if enteredDoorCode && passedRetinaScan || hasDoorKey || 

knowOverridePassword { 

  print("Welcome!") 

} else { 

  println("ACCESS DENIED") 

} 

// prints "Welcome!" 

This example uses multiple && and || operators to create a longer compound 
expression. && and || operators only work on two values, so they are actually three 
smaller expressions concatenated together. 

Logical operators in Swift - && and || are evaluated from left to right. 

 

🕮 3.10.9 

Explicit parentheses 

Sometimes it is useful to use parentheses, although this is not necessary to make 
the source code easier to read. In the door access example before, it is useful to 
add parentheses around the first part of a compound expression to make its intent 
explicit: 

if (enteredDoorCode && passedRetinaScan) || hasDoorKey || 

knowOverridePassword { 

  print("Welcome!") 

} else { 

  print("ACCESS DENIED") 

} 

// prints "Welcome!" 

It is clearly stated in parentheses that the first two values are considered in the 
overall logic to be part of a separate possible state. The output of the compound 
expression does not change, but the overall intent is clearer. Readability is always 
preferred to brevity: use parentheses where they help you clarify your intentions. 

 

📝 3.10.10 

Are the following conditions equivalent? 



Types, Operators, Strings, Characters | FITPED 

66 

if enteredDoorCode && passedRetinaScan || hasDoorKey || 

knowOverridePassword 

if (enteredDoorCode && passedRetinaScan) || hasDoorKey || 

knowOverridePassword 

• yes 
• no 

 

3.11 Strings and characters 

🕮 3.11.1 

Strings and characters 

A string is an ordered array of characters, such as "hello, world," or "swift." Swift 
strings are represented by the String type, which in turn represents an array of 
Character values. 

The String and Character types provide a quick way to work with unicode text. The 
syntax for creating and manipulating strings is simple and readable. The text is 
concatenated simply by the + operator and the same rules of constants (let) and 
variables (var) apply to them. 

 

🕮 3.11.2 

String literals 

You can include predefined string values in your code as string literals. A string 
literal is a fixed sequence of text characters surrounded by a pair of quotation 
marks (""). Use a string literal as the initial value for a constant or variable: 

let someString = "Some string literal value" 

Note that Swift derives a string type for the someString constant because it is 
initialized with a string literal value. 

 

🕮 3.11.3 

Multiline string literals 



Types, Operators, Strings, Characters | FITPED 

67 

If you need a string that includes several lines, use a multiline string literal - a 
sequence of characters surrounded by three quotation marks: 

let text = """ 

Some multiline text, 

which can contain line breaks. 

""" 

A multiline string literal contains all the lines between its opening and closing 
quotation marks. The string begins on the first line after the opening quotation 
marks (""") and ends on the line before the closing quotation marks, which means 
that none of the following strings begin or end with a line break: 

let singleLineString = "They are the same." 

let multilineString = """ 

They are the same. 

""" 

When your source code contains a line break inside a multiline string literal, that 
line break also appears in the string value. To use line breaks to make the source 
code easier to read, but you don't want line breaks to be part of the string value, 
type a backslash (\) at the end of these lines: 

let text = """ 

Some multiline text, \ 

which can contain line breaks. 

""" 

 

📝 3.11.4 

What are the three quotation marks """ for? 

• Causes a compilation error 
• To insert special (diacritical) signs 
• For inserting multiline texts 

 
 
 



Types, Operators, Strings, Characters | FITPED 

68 

🕮 3.11.5 

Special characters in text literals 

Text literals can contain the following special characters: 

Escaped characters 

\0 (zero), \\(backslash), \t (tab), \n (newline), \r (return), \"(quotation mark), and \ 
'(apostrophe) 

Any Unicode scalar written as \u{n}, where n is a 1-8 digit hexadecimal number with 
a value equal to a valid Unicode code 

let wiseWords = "\"Imagination is more important than 

knowledge \"- Einstein" 

// prints "Imagination is more important than knowledge" - 

Einstein 

let dollarSign = "\u{24}" 

// $, Unicode scalar character U + 0024 

let blackHeart = "\u{2665}" // ♥, Unicode U + 2665 scalar 

character 

 

🕮 3.11.6 

Extended string delimiters 

You can place a string literal in extended delimiters to include special characters in 
the string without causing them to take effect. Place the string in quotation marks 
(") and surround it with a pound sign (#). When you need to type a special character, 
add the # character between the backslash and the character: 

print (# “line1\nline2” #) 

// prints line1\nline2 

print(# “line1\#nline2” #) 

// prints line1 

// line2 

 

🕮 3.11.7 

Initialization of an empty string 

To create an empty string value as the default value for creating a longer string, 
assign an empty string literal to the variable or initialize a new instance of the string 
using the initializer syntax: 



Types, Operators, Strings, Characters | FITPED 

69 

var emptyString = "" 

// empty string literal 

var anotherEmptyString = String() 

// initializer syntax 

// these two strings are empty and are equivalent to each 

other 

Use the isEmpty property (the return value is of type Boolean) to determine if the 
string is empty: 

if emptyString.isEmpty { 

  print("Nothing to see here") 

} 

// prints "Nothing to see here" 

 

🕮 3.11.8 

Changes in Strings 

You can choose whether or not to edit a particular string. When you create a 
variable, the string will change. When you create a constant, the string will be 
immutable: 

var variableString = "Horse" 

variableString += "a carriage" 

// variableString is now "Horse and Carriage" 

let constantString = "Mountaineer" 

constantString += "and another mountaineer" 

// this reports a compilation error - the constant string 

cannot be modified 

 

📝 3.11.9 

Can the += operator be applied to a string? 

• yes 
• no 

 
 
 
 
 



Types, Operators, Strings, Characters | FITPED 

70 

3.12 Working with strings and characters 

🕮 3.12.1 

String values 

If you create a new value of type String, that value is copied when it is passed to a 
function or method or when it is assigned to a constant or variable. A new copy of 
the existing string value is always created, and a new copy is passed or assigned. 

This copy behavior ensures that when a function or method passes a String value 
to you, it is clear that you own that exact String value, regardless of where it comes 
from. You can count on the string passed to you not being modified unless you 
change it yourself. 

 

🕮 3.12.2 

Working with characters 

Swift String represents a collection of character values in a specified order. You can 
access individual characters in a string in a loop: 

for character in “Dog!???? “{ 

  print(character) 

} 

// D 

// o 

// g 

//! 

// ???? 

You can create a separate character constant or variable from a single-character 
string literal: 

let exclamationMark: Character = "!" 

String values can be constructed by passing an array of characters to its initializer: 

let catCharacters: [Character] = ["C", "a", "t", "!", "????"] 

let catString = String (catCharacters) 

print (catString) 

// prints “Cat!???? “ 

 



Types, Operators, Strings, Characters | FITPED 

71 

📝 3.12.3 

What type does the character represent 

• Char 
• char 
• Character 
• character 

 

🕮 3.12.4 

Concatenation of texts and characters 

String values can be concatenated (added) with an addition (+) operator to create a 
new string value: 

let string1 = "hello" 

let string2 = "everyone" 

var welcome = string1 + string2 

// The welcome variable contains the value "hello everyone" 

You can also add a String value to an existing String variable using the add 
assignment operator (+=): 

var instruction = "look around" 

instruction += string2 

// the instruction now equals "look around everyone" 

You can add a Character value to a String variable using the String append() 
method: 

let exclamationMark: Character = "!" 

welcome.append(exclamationMark) 

// The welcome variable contains the value "hello everyone!" 

You cannot append a string or character to an existing Character variable because 
the Character value must contain only one character. 

 

🕮 3.12.5 

String interpolation 



Types, Operators, Strings, Characters | FITPED 

72 

String interpolation is a way to create a new string value from a mixture of 
constants, variables, literals, and expressions by including their values in the string 
literal. Wrap each item that you put in a string literal in a pair of parentheses with a 
backslash prefix: 

let multiplier = 3 

let message = "\(multiplier) times 2.5 is \(Double(multiplier) 

* 2.5)" 

// message is "3 times 2.5 is 7.5" 

In the example above, the multiplier value is inserted into the string literal as 
\(multiplier). This placeholder is replaced by the actual value of the multiplier when 
the string interpolation is evaluated when the actual string is created. 

The multiplier value is also part of another expression further down the string. This 
expression calculates the value Double (multiplier) * 2.5 and inserts the result (7.5) 
into a string. 

 

📝 3.12.6 

How do you insert the value of a numeric variable a into a string? 

• "Value of a is \(a)" 
• "Value of a is " + a 
• "Value of a is " + str(a) 

 

🕮 3.12.7 

Extended clusters of graphemes 

Each Character instance represents one extended cluster of graphemes — a 
sequence of one or more Unicodes that (when combined) create a single human-
readable character. 

For example, the letter é can be expressed as é Unicode (U+00E9). However, the 
same letter can also be represented as a pair of codes - the standard letter e (or 
U+0065), followed by the diacritics code (U+0301). This code is graphically applied 
to the code that precedes it and turns e into é. 

In both cases, the letter é is represented as a single Character value, which 
represents an extended cluster of graphemes. In the first case, the cluster contains 
one code; in the second case it is a cluster of two codes: 

let eAcute: Character = "\u{E9}" // é 



Types, Operators, Strings, Characters | FITPED 

73 

let combineEAcute: Character = "\u{65}\u{301}" // e followed 

by ' 

// eAcute is é, combineEAcute is é 

 

🕮 3.12.8 

Character counting 

To know the number of characters in a string, call the count property of the string: 

let text = "Hello everyone" 

print("text has \(text.count) characters") 

// prints "text has 12 characters 

If you initialize a new string with the word cafe and then append it to the end of the 
string (U+0301), the resulting string will still have 4 characters: 

var word = "cafe" 

print("number of characters in \(word) is \(word.count)") 

// prints "number of characters in cafe is 4" 

word += "\u{301}" 

print("number of characters in \(word) is \(word.count)") 

// prints "the number of characters in cafe is 4 

 

📝 3.12.9 

How do we find the number of characters in the variable s? 

• s.countOfChars 
• s.length 
• s.count 

 

🕮 3.12.10 

String access and modification 

Access and modify the string using its methods and properties or the index syntax. 

String indexes 

Each string value has an associated index type, String.Index, that corresponds to 
the position of each character in the string. 



Types, Operators, Strings, Characters | FITPED 

74 

Use the startIndex property to access the position of the first character of the 
string. The endIndex property is the position after the last character in the string. As 
a result, the endIndex property is not a valid argument for the string index. If the 
string is empty, startIndex and endIndex are the same. 

You access indexes before and after a given index using the index (before:) and 
index (after:) string methods. You can also use the index (_:offsetBy:) method to 
move the index instead of calling one of these methods multiple times. 

You can use index syntax to access a character in a particular string index. 

let greeting = "Good day!" 

greeting[greeting.startIndex] 

// G 

greeting[greeting.index(before: greeting.endIndex)] 

//! 

greeting[greeting.index(after: greeting.startIndex)] 

// u 

let index = greeting.index(greeting.startIndex, offsetBy: 7) 

greeting[index] 

// a 

Attempting to access an out-of-string index or a character in an out-of-string index 
will cause a run-time error. 

greeting[greeting.endIndex] // Error 

greeting.index (after: greeting.endIndex) // Error 

Use the indices property to access all the indexes of each character in the string. 

for index in greeting.indices { 

  print("\(greeting[index])", terminator: "") 

} 

// prints "G u t e n T a g!" 

 

3.13 Insertion into substrings and characters 

🕮 3.13.1 

Inserting into a string 

To insert one character into a string at a given index, use the insert(_: at:) method, 
and to insert the contents of another string into a given index, use the insert 
(contentsOf: at:) method: 



Types, Operators, Strings, Characters | FITPED 

75 

var welcome = "hello" 

welcome.insert("!", at: welcome.endIndex) 

// welcome contains "hello!" 

welcome.insert(contentsOf: " there", at: welcome.index(before: 

welcome.endIndex)) 

// welcome contains "hello there!" 

 

📝 3.13.2 

Which command do you use to insert a substring in a string? 

• insert(“Hello”, at:s.endIndex) 
• insert(contentsOf:”Hello”, at:s.endIndex) 
• insert(contentsOf:”Hello”, s.endIndex) 

 

🕮 3.13.3 

Removing from string 

To remove a single character from a string at a given index, use the remove(at :) 
method, and to remove a substring at a given index, use the removeSubrange(_ :) 
method: 

welcome.remove(at: welcome.index(before: welcome.endIndex)) 

// welcome contains "hello there" 

let range = welcome.index(welcome.endIndex, offsetBy: -

6)..<welcome.endIndex 

welcome.removeSubrange(range) 

// welcome contains "hello" 

 

🕮 3.13.4 

Substrings 

When you retrieve a substring from a string — for example, using the index or the 
prefix(_ :) method — the result is an instance of the substring, not another string. 
Substrings in Swift have most of the same methods as strings, which means that 
you can work with substrings in the same way as strings. Substrings use the 
memory of the strings from which they were created. When you need to save the 
result for a long time, convert the substring to a string instance: 

let greeting = "Hello, world!" 

let index = greeting.firstIndex(of: ",") ?? greeting.endIndex 



Types, Operators, Strings, Characters | FITPED 

76 

let beginning = greeting[..<index] 

// beginning is "Hello" 

// Convert the result to a String for long-term storage. 

let newString = String(beginning) 

 

📝 3.13.5 

Is it recommended to use substrings to store string values in the long run? 

• yes 
• no 

 

🕮 3.13.6 

Equality of strings and characters 

The equality of strings and characters is checked using the "equals" operator (==) 
and the "does not equal" (!=) operator, as described in the comparison operators: 

let quotation = "We are very similar, you and me." 

sameQuotation = "We are very similar, you and me." 

if quotation == sameQuotation { 

  print("These two strings are considered equivalent") 

} 

// prints "These two strings are considered equivalent 

Two string values (or two character values) are considered equivalent if their 
extended graphema clusters are canonically equivalent. Extended graph cluster 
clusters are canonically equivalent if they have the same linguistic meaning and 
appearance, even though they are composed of different Unicode scalars behind 
the scenes. 

 

📝 3.13.7 

Can comparison operators (==,!=) Be used with variables of type String? 

• yes 
• no 

 
 



Types, Operators, Strings, Characters | FITPED 

77 

🕮 3.13.8 

Equality of the beginning and end of the string 

To check whether a string begins or ends with specific text, call the hasPrefix(_:) 
and hasSuffix(_:) methods of the string, both of which have a single String 
argument and return a Boolean value: 

var text = "Today was nice weather." 

if text.hasPrefix(“Today was”) { 

  print("text starts the same") 

} 

// prints "text starts the same" 

if text.hasSuffix(“weather”) { 

   print("text ends the same") 

} 

// It doesn't print anything because it ends with "weather." 

and not "weather" 

 

🕮 3.13.9 

Unicode string representations 

When a Unicode string is written to a text file or other storage, the Unicode codes in 
that string are encoded into one of several encoding forms defined by Unicode. 
Each form encodes a string in small blocks, code units. These include UTF-8 
encoding (8-bit code units), UTF-16 (16-bit code units), and UTF-32 (32-bit code 
units). 

UTF8 

let dogString = "Dog‼????" 

"For codeUnit in dogString.utf8 { 

  print ("\(codeUnit)", terminator: "") 

} 

print ("") 

// prints "68 111 103 226 128 188 240 159 144 182" 

UTF16 

let dogString = "Dog‼????" 

"For codeUnit in dogString.utf16 { 

  print ("\(codeUnit)", terminator: "") 

} 

print ("") 



Types, Operators, Strings, Characters | FITPED 

78 

// Prints "68 111 103 8252 55357 56374" 

UNICODE 

let dogString = "Dog‼????" 

„For scalar in dogString.unicodeScalars { 

  print ("\(scalar.value)", terminator: "") 

} 

print ("") 

// Prints "68 111 103 8252 128054" 

 
 



 

 

Collections 

Chapter 4 

  



Collections | FITPED 

80 

4.1 Collections 

🕮 4.1.1 

Collections 

Swift provides three types of collections for storing value collections: arrays, sets, 
and dictionaries. Arrays are ordered collections of values. Sets are disordered 
collections of unique values. Dictionaries are disordered collections of key-value 
pairs. Arrays, sets, and dictionaries always have clearly defined types of values and 
keys in Swift that they can store. This means that you can't accidentally insert an 
incorrect type value into a collection, and you can be sure of the type of values you 
retrieve from the collection. 

 

🕮 4.1.2 

Editing collections 

If you create an array, set, or dictionary and assign it to a variable, the created 
collection will be changeable. This means that once created, you can change the 
collection by adding, removing, or changing items in the collection. If you assign an 
array, set, or dictionary to a constant, the collection is immutable and its size and 
contents cannot be changed. 

 

🕮 4.1.3 

Arrays 

The arrays stores values of the same type in a sorted list. The same value can 
appear several times in the array in different positions. 

Array type syntax: 

Array[Element] 

Array<Element> 

where Element is the type of values that the array is allowed to store. These two 
syntaxes are functionally identical, it is preferable to use the syntax with square 
brackets [Element]. 

Arrays in Swift are always indexed from 0. 

 



Collections | FITPED 

81 

🕮 4.1.4 

Creating an empty array 

You can create an empty array of a certain type using the initializer syntax: 

var someInts = [Int]() 

print("someInts is of type [Int] with \(someInts.count).") 

// prints "someInts is of type [Int] with 0 entries." 

Note that the type of the someInts variable is derived as [Int] from the initializer 
type. Alternatively, if the context already provides type information, such as a 
function argument or a variable or constant already specified, you can create an 
empty array with an empty array literal that is written as [] (an empty pair of square 
brackets): 

someInts.append(3) 

// someInts now contains 1 value of type Int 

someInts = [] 

// someInts is now an empty array, but still of type [Int] 

 

🕮 4.1.5 

Create an array with a default value 

The Array type provides an initializer for creating an array of a certain size with all 
its values set to the same default value. This initializer expects two parameters 
(repeating with the default value and count with the number of values in the array): 

var threeDoubles = Array(repeating: 0.0, count: 3) 

// threeDoubles is of type [Double] and equals [0.0, 0.0, 0.0] 

 

🕮 4.1.6 

Create an array by adding two arrays 

You can create a new array by adding two existing arrays with compatible types 
using the add (+) operator. The type of the new array is derived from the type of the 
two arrays you are joining: 

var anotherThreeDoubles = Array (repeating: 2.5, count: 3) 

// anotherThreeDoubles is of type [Double] and equals [2.5, 

2.5, 2.5] 

var sixDoubles = threeDoubles + anotherThreeDoubles 



Collections | FITPED 

82 

// sixDoubles is derived as [Double] and equals [0.0, 0.0, 

0.0, 2.5, 2.5, 2.5] 

 

🕮 4.1.7 

Create an array with values 

You can also initialize an array using an array literal, which is an abbreviation for 
writing one or more values as an array collection. The array literal is written as a 
comma-separated list of values, surrounded by a pair of square brackets: 

var shoppingList: [String] = ["Eggs", "Milk"] 

// shoppingList was initialized with two initial items 

The shoppingList variable is declared as an "array of string values" [String]. Because 
this particular array specified the "String" value type, only String values are allowed 
to be stored. 

Because all values in the array literal are of the same type, we can also initialize the 
array as follows: 

var shoppingList = ["Eggs", "Milk"] 

 

📝 4.1.8 

What literal is used to initialize an array? 

 

🕮 4.1.9 

Access to array elements 

You can access and edit an array using methods and properties or using index 
syntax. 

The number of items in the array 

To determine the number of items in an array, check its read-only count property: 

print("The shopping list contains \(shoppingList.count) 

items.") 

// prints "Shopping list contains 2 items." 

Use the isEmpty Boolean property to check that the count property is 0: 



Collections | FITPED 

83 

if shoppingList.isEmpty { 

  print("The shopping list is empty.") 

} else { 

  print("The shopping list is not empty.") 

} 

// prints "Shopping list is not empty." 

 

🕮 4.1.10 

Add an item to the end of an array 

You can add a new entry to the end of an array by calling the append (_:) array 
method: 

shoppingList.append("Flour") 

// shoppingList now contains 3 items 

You can use the add (+=) operator to add a compatible item (s) to a field: 

shoppingList += ["Baking Powder"] 

// shoppingList now contains 4 items 

shoppingList += ["Chocolate Spread", "Cheese", "Butter"] 

// shoppingList now contains 7 items 

 

📝 4.1.11 

Can I use the += operator to add items to a field? 

• yes 
• no 

 

🕮 4.1.12 

Access array values using an index 

You can read a value from an array using the index in square brackets immediately 
after the array name: 

var firstItem = shoppingList[0] 

// firstItem equals "Eggs" 

You can use an index to change existing values at that index: 



Collections | FITPED 

84 

ShoppingList[0] = "Six Eggs" 

// the first item in the list now equals "Six Eggs" 

When using an index, the specified index must be valid. For example, writing 
shoppingList[shoppingList.count] = "Salt" that attempts to append an item to the 
end of an array will cause a runtime error. 

 

🕮 4.1.13 

Changing array values 

You can also use subscript syntax to change a range of values at once, even if the 
replacement set of values has a different length than the range you are replacing. 
The following example replaces the terms "Chocolate spread", "Cheese" and 
"Butter" with "Bananas" and "Apples": 

shoppingList[4...6] = ["Bananas", "Apples"] 

// shoppingList now contains 6 items 

 

📝 4.1.14 

Which method is used to insert a value on index 2? 

• insert(_: at:) 
• insert(index: value:) 
• insert(_: value:) 

 

🕮 4.1.15 

Delete an item from the array 

To remove an item from the array, call the remove(at :) method. This method 
deletes an entry in the specified index and returns "the deleted entry (although you 
can ignore it if you don't need it): 

let mapleSyrup = shoppingList.remove(at: 0) 

// the item that was at index 0 has just been deleted 

// shoppingList now contains 6 items and no maple syrup 

// the mapleSyrup constant now equals the removed "Maple 

Syrup" string 



Collections | FITPED 

85 

When an item is removed from an array, a space in the array is dropped. Now the 
value in index 0 is again equal to "Six eggs". 

firstItem = shoppingList [0] 

// firstItem now equals "Six Eggs" 

To remove the last item from an array, use the removeLast() method instead of the 
remove(at :) method to avoid having to query the count property of the array. Like 
the remove(at :) method, removeLast() returns the removed item: 

let apples = shoppingList.removeLast() 

// the last item in the array has just been deleted 

// shoppingList now contains 5 items and no apples 

 

🕮 4.1.16 

Insert a value into the array at the given index 

To insert an entry into an array at the specified index, call the insert(_: at :) method: 

ShoppingList.insert("Maple syrup", at: 0) 

// shoppingList now contains 7 items 

// "Maple syrup" is now the first item in the list 

Calling the insert(_: at :) method inserts a new item with the value "Maple Syrup" at 
the beginning of the shopping list under index 0. 

 

🕮 4.1.17 

Iteration over the array 

You can traverse the entire array using a for-in loop: 

for item in shoppingList { 

  print(item) 

} 

// Six eggs 

// Milk 

// Flour 

// Baking powder 

// Bananas 



Collections | FITPED 

86 

If you need an integer index of each item and its value, use an iteration through the 
enumerated() method instead, which returns an integer (index) and an item for each 
item in the array. The index starts at zero and rises by one for each item: 

for (index, value) in shoppingList.enumerated () { 

  print("Item \(index + 1): \(value)") 

} 

// Item 1: Six eggs 

// Item 2: Milk 

// Item 3: Flour 

// Item 4: Baking powder 

// Item 5: Bananas 

 

📝 4.1.18 

What value does the enumerated method return? 

• array item 
• index of the array 
• n-tuple (index, value) 

 

4.2 Sets 

🕮 4.2.1 

Sets 

The set stores different values of the same type in a collection without a defined 
sort order. If the order of the items is not important, or if you need to ensure that 
the item appears only once, you can use a set instead of an array. 

Set syntax 

The Swift set type is written as Set<Element>, where Element is the type that the set 
is allowed to store. 

 

🕮 4.2.2 

Create and initialize an empty set 

You can create an empty set of a specific type using the initializer syntax: 



Collections | FITPED 

87 

var letters = Set<Character>() 

print ("Set<Character> letters with \(letters.count) 

entries.") 

// prints “Set <Character> letters with 0 entries. 

 

🕮 4.2.3 

Create an array-initialized set 

You can also initialize a set with array literal, as an abbreviated way to write one or 
more values as a set collection. 

The following example creates a set called favoriteGenres to store string values: 

var favoriteGenres: Set<String> = ["Rock", "Classical", "Hip 

hop"] 

// favorites Genres were initialized with three starting items 

The favoriteGenres variable is declared as a "set of string values", written as 
Set<String>. Because this particular set has specified a String value type, only 
String values are allowed to be stored. 

The set type cannot be derived from the array literal itself, so the Set type must be 
explicitly declared. However, to derive an item type, you do not have to write the 
element type of the set if you initialize it with an array literal that contains values of 
only one type: 

var favoriteGenres: Set = ["Rock", "Classical", "Hip hop"] 

 

📝 4.2.4 

Which command creates a new set? 

• var favoriteGenres: Set<|String> = ["Rock", "Classical", "Hip hop"] 
• var favoriteGenres: Set(String) = ["Rock", "Classical", "Hip hop"] 
• var favoriteGenres: Set[String] = ["Rock", "Classical", "Hip hop"] 

 

🕮 4.2.5 

Access to set values 

You access a set using its methods and properties. 



Collections | FITPED 

88 

To find out the number of items in a set, check its read-only count property: 

print ("I have \(favoriteGenres.count) favorite music 

genres.") 

// prints "I have 3 favorite music genres." 

Use the isEmpty Boolean property to check that the count property is 0: 

if favoriteGenres.isEmpty { 

  print("I'm not picky about music.") 

} else { 

  print("I have specific music preferences.") 

} 

// prints "I have certain music presets." 

To check if a set contains a specific item, use the contains(_ :) method: 

if favoriteGenres.contains("Funk") { 

  print("Funk is my favorite style.") 

} else { 

  print("I'm not listening to Funk.") 

} 

// prints “I'm not listening to Funk. 

 

🕮 4.2.6 

Changes to set values 

You modify the values of a set using its methods and properties. 

You can add a new item to the set by calling the insert(_:) method: 

favouriteGenres.insert("Jazz") 

// Favorite Genres now contains 4 items 

You can remove an item from a set by calling the remove(_:) method, which 
removes the item if it is a member of the set and returns the removed value, or 
returns nil if the set did not contain it. You can also remove all items in a set using 
the removeAll() method. 

if let removeGenre = favoriteGenres.remove ("Rock") { 

  print ("\(removeGenre)? I'm not listening to it anymore.") 

} else { 

  print("I never cared much about it.") 

} 



Collections | FITPED 

89 

// prints “Rock? I'm not listening to it anymore. " 

 

📝 4.2.7 

What method do you use to insert a new element into a set? 

• insert() 
• insert(_:) 
• insert(value:) 

 

🕮 4.2.8 

Iteration over the set 

You can iterate over the values in a set using a for-in loop: 

for genre in favoriteGenres { 

  print("\(genre)") 

} 

// Classical 

// Jazz 

// Hip hop 

Sets do not have a defined sort order. To iterate over the sorted values of a set, use 
the sorted () method: 

for genre in favoriteGenres.sorted () { 

  print("\(genre)") 

} 

// Classical 

// Hip hop 

// Jazz 

 

🕮 4.2.9 

Basic operations with sets 

You can efficiently perform basic operations on sets, such as combining two sets 
together, determining which values have two sets in common, or determining 
whether two sets contain all, some, or none of the same values. 

• Use the intersection(_:) method to create a new set only with values common 
to both sets. 



Collections | FITPED 

90 

• Use the symmetricDifference(_:) method to create a new set with values that 
are only in one set. 

• Use the union(_:) method to create a new set with all the values that are in 
both sets. 

• Use the subtracting(_:) method to create a new set with values that are not in 
the specified set. 

let oddDigits: Set = [1, 3, 5, 7, 9] 

let evenDigits: Set = [0, 2, 4, 6, 8] 

let singleDigitPrimeNumbers: Set = [2, 3, 5, 7] 

oddDigits.union(evenDigits).sorted () 

// [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] 

oddDigits.intersection(evenDigits).sorted () 

// [] 

oddDigits.subtracting(singleDigitPrimeNumbers).sorted () 

// [1, 9] 

oddDigits.symmetricDifference(singleDigitPrimeNumbers).sorted 

() 

// [1, 2, 9] 

 

🕮 4.2.10 

Compare sets 

Use the equals (==) operator to specify whether the two sets contain all the same 
values. 

Use the isSubset(of:) method to determine if all set values are included in the 
specified set. 

Use the isSuperset(of:) method to determine if the set contains all the values in the 
specified set. 

You can use the isStrictSubset(of:) or isStrictSuperset(of:) methods to determine 
whether a set is a subset or a superset, but is not equal to the specified set. 

Use the isDisjoint(with:) method to determine if the two sets have common values. 

let houseAnimals: Set = ["????", "????"] 

let farmAnimals: Set = ["????", "????", "????", "????", 

"????"] 

let cityAnimals: Set = ["????", "????"] 

houseAnimals.isSubset(of: farmAnimals) 

// true 

farmAnimals.isSuperset(of: houseAnimals) 

// true 



Collections | FITPED 

91 

farmAnimals.isDisjoint(with: cityAnimals) 

// true " 

 

📝 4.2.11 

Can you use the == operator to compare two sets? 

• yes 
• no 

 

4.3 Dictionaries 

🕮 4.3.1 

Dictionaries 

The dictionary stores key-value pairs. All keys in the dictionary must be of the same 
type. All values in the dictionary must be of the same type. Each value is associated 
with a unique key that acts as an identifier for that value in the dictionary. Unlike 
array entries, dictionary entries do not have a specified order. You use the 
dictionary when you need to look up values based on their identifier. 

Dictionary syntax 

The dictionary type is defined as: 

Dictionary[Key: Value] 

Dictionary<Key, Value> 

Key is a type of value that can be used as a key, and Value is a type of value. These 
two shapes are functionally identical, the form with square brackets Dictionary [Key: 
Value] is preferred. 

 

🕮 4.3.2 

Create an empty dictionary 

As with arrays, you can create an empty dictionary of a certain type using the 
initializer syntax: 

var namesOfIntegers = [Int: String]() 

// namesOfIntegers is an empty dictionary [Int: String] 



Collections | FITPED 

92 

In this example, an empty dictionary of type [Int: String] is created, in which 
readable names of integer values will be stored. Its keys are of type Int and its 
values are of type String. If the context already provides type information, you can 
create an empty dictionary with an empty dictionary literal written as [:] (a colon 
inside the double square brackets): 

namesOfIntegers[16] = "sixteen" 

// namesOfIntegers now contains 1 key-value pair 

namesOfIntegers = [:] 

// namesOfIntegers is again an empty dictionary of type [Int: 

String] 

 

📝 4.3.3 

What initializer creates an empty dictionary with an Int key and a Double value?  

• [Int: Double] 
• [Int: Double]() 
• [Int: Double][] 

 

🕮 4.3.4 

Creating a dictionary using a literal 

You can also initialize a dictionary using a literal that has a similar syntax to an 
array literal. A dictionary literal is an abbreviated way of writing one or more key-
value pairs as a dictionary collection. In the literal dictionary, the key and value in 
each pair are separated by a colon. Pairs are written as a comma-separated list, 
surrounded by a pair of square brackets: 

[key1: value1, key2: value2, key3: value3] 

The example below creates a dictionary for storing international airport names. In 
this dictionary, the keys are the three-letter codes of the International Air Transport 
Association and the values are the names of the airports: 

var airports: [String: String] = ["YYZ": "Toronto Pearson", 

"DUB": "Dublin"] 

The airport dictionary is declared as type [String: String], which means “dictionary 
with String type keys and String type values. 

As with arrays, you don't have to define a dictionary type if you initialize it with a 
dictionary literal whose keys and values have clear types: 



Collections | FITPED 

93 

var airports = ["YYZ": "Toronto Pearson", "DUB": "Dublin"] 

 

📝 4.3.5 

What literal is used to define the dictionary? 

• [ke1, ke2: value1, value2] 
• [key1: value1, key2: value2] 
• [key1, value1, key2, value2] 
• [value1: key1, value2: value2] 

 

🕮 4.3.6 

Access to the dictionary 

You can access the dictionary using methods and properties or through an index. 

As with arrays, you can find out the number of entries in the dictionary by checking 
its read-only count property: 

print("The airport dictionary contains the entries 

\(airports.count).") 

// prints "Airport dictionary contains 2 entries." 

Use the boolean property isEmpty to check if the count property is 0: 

if airports.isEmpty { 

  print("The airport dictionary is empty.") 

} else { 

  print("Airport dictionary is not empty.") 

} 

// prints “The airport dictionary is not empty." 

You can use the index to read dictionary values for a specific key. Because it is 
possible to request a key for which there is no value, the dictionary index returns an 
optional value for the dictionary value type. If the dictionary contains a value for the 
required key, the index returns an optional value containing the existing value for 
that key. Otherwise, the subscript returns nil: 

if let airportName = airports["DUB"] { 

  print("The airport name is \(airportName).") 

} else { 

  print("This airport is not in the airport dictionary.") 

} 



Collections | FITPED 

94 

// prints "The airport name is Dublin. 

 

📝 4.3.7 

How do you read a value from the pair in a dictionary? 

• value = dictionary["key"] 
• value = dictionary.key 
• value = dictionary.value["key"] 

 

🕮 4.3.8 

Dictionary editing 

You can edit the dictionary using methods and properties or using an index. 

You can add a new index entry to the dictionary. Use the new key of the appropriate 
type as the index and assign a new value of the appropriate type: 

airports ["LHR"] = "London" 

// the airport dictionary now contains 3 entries 

You can also use an index to change the value associated with a particular key: 

airports["LHR"] = "London Heathrow" 

// the value for "LHR" has been changed to "London Heathrow" 

As an alternative to index access, use the updateValue(_: forKey:) method to set or 
update a value for a specific key. However, unlike index access, the updateValue(_: 
forKey:) method returns the old value after the update. This will allow you to check 
if the update has taken place. 

if let oldValue = airports.updateValue("Dublin Airport", 

forKey:"DUB") { 

  print("The old value for DUB was \(oldValue).") 

} 

// prints "The old value for DUB was Dublin." 

 
 
 
 
 
 



Collections | FITPED 

95 

🕮 4.3.9 

Deleting in the dictionary 

You can use an index to remove a key-value pair from the dictionary by assigning a 
nil value to that key: 

airports["APL"] = "Apple International" 

// "Apple International" is not a real airport for APL, so 

delete it 

airports["APL"] = nil 

// APL has now been removed from the dictionary 

Or you can remove a pair with the removeValue (forKey :) method. This method 
deletes the pair if it exists and returns the deleted value, or returns nil if no value 
existed: 

if let removedValue = airports.removeValue(forKey: "DUB") { 

  print("The name of the removed airport is \(removedValue).") 

} else { 

  print("The airport dictionary does not contain a value for 

DUB.") 

} 

// prints "The name of the removed airport is Dublin Airport." 

 

📝 4.3.10 

What method do you use to remove a pair in the dictionary? 

• removePair() 
• removePair(forKey:) 
• removeValue() 
• removeValue(forKey:) 

 

🕮 4.3.11 

Iteration over the dictionary 

Iterate over the dictionary using a for-in loop. Each entry in the dictionary is returned 
as an n-tuple (key, value), and as part of an iteration you can decompose the n-tuple 
into temporary constants or variables: 

for (airportCode, airportName) in airports { 

  print ("\(airportCode): \(airportName)") 



Collections | FITPED 

96 

} 

// LHR: London Heathrow 

// YYZ: Toronto Pearson 

Or you can iterate over an array of keys or values by accessing the keys and values 
properties: 

for airportCode in airports.keys { 

  print ("Airport code: \(airportCode)") 

} 

// Airport code: LHR 

// Airport code: YYZ 

for airportName in airports.values { 

  print ("Airport name: \(airportName)") 

} 

// Airport name: London Heathrow 

// Airport name: Toronto Pearson 

If you need to use dictionary keys or values as an Array, initialize the new array 
using the keys or values property: 

flight airportCodes = [String](airports.keys) 

// airportCodes is ["LHR", "YYZ"] 

flight airportNames = [String](airports.values) 

// airportNames is ["London Heathrow", "Toronto Pearson"] 

The dictionary is not sorted. To iterate over sorted keys or dictionary values, use the 
sorted() method on its keys or values properties. 

 
 



 

 

Functions 

Chapter 5 

  



Functions | FITPED 

98 

5.1 Functions and work with them 

🕮 5.1.1 

Functions 

Functions are separate blocks of code that perform a specific task. A function has 
a name that identifies what it is doing, and that name is used to "call" the function. 

The syntax of a Swift function is flexible enough to express anything from a simple 
C-style function without parameter names to a complex Objective-C method with 
names and argument names for each parameter. Parameters can provide default 
values to simplify function calls. Parameters can be passed by reference so that 
they modify the value of a parameter when the function finishes. 

Each function in Swift has a type, which consists of function parameter types and a 
return type. You can use this type like any other type in Swift, which makes it easier 
to pass functions as parameters to other functions and return functions from 
functions. Functions can also be written to other functions to encapsulate useful 
functions within a range of nested functions. 

 

🕮 5.1.2 

Simple function 

The function in the example below is called greet(person :). It takes the person's 
name as input and returns a greeting to that person. To do this, you define one 
input parameter - a string value called person - and a String return type that will 
contain a greeting for that person: 

func greet(person: String) -> String { 

  let greeting = "Hello," + person + "!" 

  return greeting 

} 

print(greet(person: "Anna")) 

// prints "Hello, Anna!" 

print(greet(person: "Brian")) 

// prints "Hi, Brian!" 

 

📝 5.1.3 

Which function header is correct? 

• func test(a: Int) -> Int 



Functions | FITPED 

99 

• function test(a: Int): Int 
• func test(a: Int): Int 

 

🕮 5.1.4 

Functions with multiple parameters 

Functions can have multiple input parameters, which are written in definition 
parentheses, separated by commas. 

This function takes the person's name and whether it has already been welcomed 
and returns the corresponding greeting to that person: 

func greet (person: String, alreadyGreeted: Bool) -> String { 

  if alreadyGreeted { 

    return "Hi," + person + "!" 

  } else { 

    return "Hello again," + person + "!" 

  } 

} 

print(greet(person: "Tim", alreadyGreeted: true)) 

// prints "Hello again, Tim!" 

 

🕮 5.1.5 

Functions without parameters 

Functions do not have mandatory input parameters. Here is a function without input 
parameters that always returns the same text value on each call: 

func sayHelloWorld () -> String { 

  return "Hello, world" 

} 

print(sayHelloWorld()) 

// prints "Hello, world" 

The function definition requires parentheses after the function name, even if it does 
not accept any parameters. An empty pair of parentheses is also required when 
calling a function. 

 
 
 



Functions | FITPED 

100 

📝 5.1.6 

Which function header is correct? 

• function test(a: Int; b: String): Int 
• func test(a: Int, b: String) -> Int 
• func test(a: Int, b: String) -> Int 

 

🕮 5.1.7 

Functions without return value 

Functions do not have to define a return value. Here is the version of the greet 
(person:) function that prints the text directly instead of returning it. The definition 
of such a function will contain neither the arrow -> nor the type of return value: 

func greet (person: String) { 

  print("Hi, \(person)!") 

} 

greet (person: "Dave") 

// prints "Hi, Dave!" 

 

🕮 5.1.8 

Ignoring the return value 

The return value of the function can be ignored, as shown below: 

func printAndCount(string: String) -> Int { 

  print(string) 

  return string.count 

} 

func printWithoutCounting(string: String) { 

  let _ = printAndCount(string: string) 

} 

printAndCount(string: "hello world") 

// prints "hello world" and returns 10 

printWithoutCounting(string: "hello world") 

// prints "hello world" but does not return a value 

 
 
 



Functions | FITPED 

101 

📝 5.1.9 

Is it possible to define a function in Swift that returns multiple values at once? 

• No, Swift doesn't allow anything like that 
• Yes, but only an Array value 
• Yes, for example by returning an N-tuple type 

 

🕮 5.1.10 

Optional return n-tuple types 

The above minMax (array:) function does not perform any security checks on the 
array passed to it. If the array argument contains an empty array, the minMax 
(array:) function raises a runtime error when attempting to access array [0]. If an 
empty n-tuple can be returned by the function, use the optional n-tuple type by 
placing a question mark after the closing bracket of the n-tuple type, for example 
(Int, Int)? or (String, Int, Bool)?: 

func minMax(array: [Int]) -> (min: int, max: int)? { 

  if array.isEmpty { 

    return nil 

  } 

  var currentMin = array[0] 

  var currentMax = array[0] 

  for value inarray[1..<array.count] { 

    if value < currentMin { 

      currentMin = value 

    } else if value > currentMax { 

      currentMax = value 

    } 

  } 

  return (currentMin, currentMax) 

} 

if let bounds = minMax (pole: [8, -6, 2, 109, 3, 71]) { 

  print ("min is \(bounds.min) and max is \(bounds.max)") 

} 

// prints "min is -6 and max is 109" 

 
 
 
 
 



Functions | FITPED 

102 

🕮 5.1.11 

Functions with multiple return values 

As a function return type, you can use the n-tuple type to return multiple values as 
part of a single compound return value. The following example defines a function 
called minMax(array:), which finds the smallest and largest number in an array of 
Int values and returns both: 

func minMax(array: [Int]) -> (min: Int, max: Int) { 

  var currentMin = array[0] 

  var currentMax = array[0] 

  for value in array[1..<array.count] { 

    if value < currentMin { 

      currentMin = value 

    } else if value > currentMax { 

      currentMax = value 

    } 

  } 

  return (currentMin, currentMax) 

} 

Because n-tuple member values are named as part of the return type of a function, 
they can be accessed using dot syntax to retrieve the minimum and maximum 
values found, and the names do not need to be defined in the return statement: 

let bounds = minMax(array: [8, -6, 2, 109, 3, 71]) 

print ("min is \(bounds.min) and max is \(bounds.max)") 

// prints "min is -6 and max is 109" 

 

🕮 5.1.12 

Function with default return 

If the whole body of a function is a single expression, the function implicitly returns 
that expression without having to call return. For example, both of the following 
functions have the same behavior: 

func greeting(for person: String) -> String { 

  "Hi," + person + "!" 

} 

print(greeting(for: "Dave")) 

// It says "Hi, Dave!" 

func anotherGreeting(for person: String) -> String { 

  return "Hi," + person + "!" 



Functions | FITPED 

103 

} 

print(anotherGreeting(for: "Dave")) 

// prints “Hi, Dave! 

 

📝 5.1.13 

Is the following function defined correctly? 

func returnDouble(number: Int) -> Int { 

  number * 2 

} 

• yes 
• no 

 

🕮 5.1.14 

Labels and names of parameters passed to the function 

Each function parameter has a label and a parameter name. The parameter label is 
used when calling a function. The parameter name is used when implementing the 
function. By default, functions use the same labels and parameter names. 

func someFunction(firstParameterName: Int, 

secondParameterName: Int) { 

  // In the body of the firstParameterName and 

secondParameterName functions 

  // reference to the argument values for the first and second 

parameters. 

} 

someFunction(firstParameterName: 1, secondParameterName: 2) 

All parameters must have unique names. Although it is possible for multiple 
parameters to have the same argument label, unique argument labels can help you 
read your code. 

 
 
 
 
 
 



Functions | FITPED 

104 

5.2 Labels, parameters 

🕮 5.2.1 

Other parameter labels 

Before the name of the parameter, write its label, separated by a space: 

func someFunction (argumentLabel parameterName: Int) { 

  // In the body of the function, parameterName refers to the 

value of the argument 

  // for this parameter. 

} 

Example: 

func greet (person: String, from hometown: String) -> String { 

  return "Hi \(person)! I'm glad you were able to visit 

\(hometown)." 

} 

print (greet(person: "Bill", from: "Cupertino")) 

// prints “Hi Bill! I'm glad you were able to visit Cupertino. 

" 

 

🕮 5.2.2 

Omitting the label 

If you do not want a label for the parameter, type an underscore (_) instead of a 
label: 

func someFunction (_ firstParameterName: Int, 

secondParameterName: Int) { 

  // In the body of the firstParameterName and 

secondParameterName functions 

  // reference to the argument values for the first and second 

parameters. 

} 

someFunction (1, secondParameterName: 2) 

 
 
 
 



Functions | FITPED 

105 

📝 5.2.3 

What character in the function definition can we omit the parameter label?  

• * (asterisk) 
• _ (underscore) 
• - (dash) 

 

🕮 5.2.4 

Default parameter values 

You can define a default value for any parameter in a function by assigning a 
parameter value to the type of that parameter. If a default value is defined, you can 
omit this parameter when calling the function. Place non-default parameters at the 
top of the function parameter list before parameters that have default values. The 
readability of your code will be better: 

func someFunction(parameterWithoutDefault: Int, 

parameterWithDefault: Int = 12) { 

  // If you omit the second argument when calling this 

function, then 

  // value parameterWithoutDefault is 12 inside the body of 

the function. 

} 

someFunction(parameterWithoutDefault: 3, parameterWithDefault: 

6) 

// parameterWithDefault is 6 

someFunction(parameterWithoutDefault: 4) 

// parameterWithDefault is 12 

 

📝 5.2.5 

How do we write the default value of a parameter in the function definition? 

• func test(a: Int = 10) 
• func test(a = 10: Int) 
• func test(10 = a: Int) 

 
 
 



Functions | FITPED 

106 

🕮 5.2.6 

Variadic parameter 

The variadic parameter accepts none, one, or more values of the specified type. 
You use a varied parameter to pass a different number of parameter values when 
calling a function. You write the VIC parameters with three periods (...) after the 
name of the parameter type. The function can have a maximum of one variation 
parameter. 

The values of the variadic parameter are made available in the body of the function 
as a field of the appropriate type: 

func arithmeticMean(_ numbers: Double ...) -> Double { 

  var total: Double = 0 

  for number in numbers { 

    total += number 

  } 

  return total / Double(numbers.count) 

} 

arithmeticMean (1, 2, 3, 4, 5) 

// returns 3.0, which is the arithmetic mean of these five 

numbers 

arithmeticMean (3, 8.25, 18.75) 

// returns 10.0, which is the arithmetic mean of these three 

numbers 

 

📝 5.2.7 

What type is the variadic parameter (...) of the function represented? 

• the same type as the parameter 
• N-tuples of the same type as the parameter 
• a field of the same type as the parameter 

 

🕮 5.2.8 

In-out parameters 

By default, the function parameters are constants. Attempting to change the value 
of a function parameter in the body of the function will cause a compilation error. If 
you want the function to modify the value of a parameter, and you want these 
changes to persist after the function call is completed, define this parameter as in-
out. To do this, add the keyword inout before the parameter type. As an in-out 



Functions | FITPED 

107 

parameter, you can only pass a variable to the function, not a constant. In-out 
parameters cannot have default values and varied parameters cannot be marked as 
inout: 

func swapTwoInts (_ a: inout Int, _ b: inout Int) { 

  let tempA = a 

  a = b 

  b = tempA 

} 

The names of someInt and anotherInt must be prefixed with an ampersand when 
passed to the swapTwoInts (_: _ :) function: 

var someInt = 3 

var anotherInt = 107 

swapTwoInts (&someInt, &anotherInt) 

print("someInt is now \(someInt), and anotherInt is now 

\(anotherInt)") 

// prints "someInt is now 107 and anotherInt is now 3" 

 

📝 5.2.9 

What character do we write before the inout variable of the function parameter 
when calling it? 

• * (asterisk) 
• # (hash) 
• & (ampersand) 

 

5.3 Types of functions 

🕮 5.3.1 

Types of functions 

Each function has its specific type, composed of parameter types and the return 
type of the function: 

func addTwoInts (_ a: Int, _ b: Int) -> Int { 

  return a + b 

} 

func multiplyTwoInts (_ a: Int, _ b: Int) -> Int { 

  return a * b 



Functions | FITPED 

108 

} 

This example defines two simple math functions called addTwoInts and 
multiplyTwoInts. Each of these functions takes two Int values and returns the Int 
value that results from performing the corresponding mathematical operation. 

The type of both of these functions is (Int, Int) -> Int. 

Here is another example of a function without parameters and return values: 

func printHelloWorld () { 

  print("hello, world") 

} 

The type of this function is () -> Void. 

 

📝 5.3.2 

How is a function type defined? 

• only types of all parameters 
• return type only 
• types of all parameters and the type of return value 

 

🕮 5.3.3 

Using feature types 

Use function types just like any other type in Swift. For example, you can define a 
constant or variable to be a function type and assign that function to that variable: 

var mathFunction: (Int, Int) -> Int = addTwoInts 

The addTwoInts (_: _:) function has the same type as the mathFunction variable, so 
this assignment is enabled by a Swift type check. 

You can now call the assigned function named mathFunction: 

print ("Result: \(mathFunction(2, 3))") 

// Prints "Result: 5" 

"Another function with the same type can be assigned to the same variable: 

mathFunction = multiplyTwoInts 



Functions | FITPED 

109 

print ("Result: \(mathFunction(2, 3))") 

// Prints "Result: 6" 

As with any other type, you can let Swift derive the function type when assigning a 
function to a constant or variable: 

let anotherMathFunction = addTwoInts 

// anotherMathFunction is of derived type (Int, Int) -> Int 

 

🕮 5.3.4 

Types of functions as types of parameters 

You can use the function type eg (Int, Int) -> Int as the parameter type for another 
function. This allows you to keep some aspects of the function implementation for 
the function caller who provides the callback: 

func printMathResult(_ mathFunction: (Int, Int) -> Int, _ a: 

Int, _ b: Int) { 

  print ("Result: \(mathFunction(a, b))") 

} 

printMathResult (addTwoInts, 3, 5) 

// Prints "Result: 8" 

When printMathResult (_: _: _:) is called, the addTwoInts (_: _:) function is passed 
and the integer values 3 and 5. The function calls the provided function with values 
3 and 5 and prints the result 8. 

 

🕮 5.3.5 

Types of functions as return types 

You can use a function type as the return type of another function. To do this, type 
the full type of function immediately after the return arrow (->) of the return 
function: 

func stepForward(_ input: Int) -> Int { 

  return input + 1 

} 

func stepBackward(_ input: Int) -> Int { 

  return input - 1 

} 

func chooseStepFunction(backward: Bool) -> (Int) -> Int { 

  return backward ? stepBackward : stepForward 



Functions | FITPED 

110 

} 

var currentValue = 3 

let moveNearerToZero = chooseStepFunction (backward: 

currentValue> 0) 

// moveNearerToZero now references the stepBackward() function 

This function can now be used to count to zero: 

print("Counting to zero:") 

// Counting to zero: 

while currentValue != 0 { 

  print ("\(currentValue) ...") 

  currentValue = moveNearerToZero(currentValue) 

} 

print ("zero!") 

// 3 ... 

// 2 ... 

// 1 ... 

// zero! 

 

📝 5.3.6 

Can a function in Swift return another function as its return value? 

• Yes 
• No 

 

🕮 5.3.7 

Nested functions 

All the functions you have encountered in this chapter so far have been examples of 
global functions that are defined on a global scale. You can also define functions 
within the bodies of other functions - nested functions. 

Nested functions are hidden from the outside world by default, but they can still be 
called and used in the function where they are defined. This function can also 
return one of its nested functions so that the nested function can be used outside 
the function where the nested functions are defined: 

func chooseStepFunction(backward: Bool) -> (Int) -> Int { 

  func stepForward(input: Int) -> Int {return input + 1} 

  func stepBackward(input: Int) -> Int {return input - 1} 



Functions | FITPED 

111 

  return backward ? stepBackward : stepForward 

} 

var currentValue = -4 

let moveNearerToZero = chooseStepFunction(backward: 

currentValue> 0) 

// moveNearerToZero now references the stepForward() nested 

function 

while currentValue != 0 { 

  print ("\(currentValue) ...") 

  currentValue = moveNearerToZero(currentValue) 

} 

print ("zero!") 

// -4 ... 

// -3 ... 

// -2 ... 

// -1 ... 

// zero! " 

 

📝 5.3.8 

Is the following code correct? 

func test (a: Int) -> Int { 

  func subtest(a: Int) -> Int {a * 2} 

  return subtest(a: a) * 3 

} 

print(subtest(a: 2)) 

• No 
• Yes 

 
 



 

 

Closure 

Chapter 6 

  



Closure | FITPED 

113 

6.1 Closures 

🕮 6.1.1 

Closures 

Closures are separate blocks of code that can be passed and used in your code. 
The closures in Swift are similar to the blocks in C and Objective-C. Closures can 
capture and store references to any constants and variables from the context in 
which they are defined. 

Closures have one of three forms: 

Global functions are closures that have a name and do not capture any values. 

Nested functions are closures that have a name and can capture values from their 
closure function. 

Closure expressions are unnamed closures written in light syntax that can capture 
values from the surrounding context. 

 

🕮 6.1.2 

Sorting method 

The standard Swift library provides a method called sorted(by:), which sorts a 
series of values of a known type based on the output of the sort closures that you 
specify. Once the sorting process is complete, the sorted(by:) method returns a new 
field of the same type and size as the old one, with the elements in the correct 
sorted order. 

let names = ["Chris", "Alex", "Ewa", "Barry", "Daniella"] 

The sorted(by:) method accepts a closure that takes two arguments of the same 
type as the contents of the array and returns a Bool value that indicates whether the 
first value should appear before or after the second value. The sort closure must 
return true if the first value should appear before the second value, otherwise false. 

In this example, the sort field is a String value, so the sort closure must be a 
function of type (String, String) -> Bool. 

One way to ensure that the sort is closed is to write a normal function of the correct 
type and pass it as an argument to the sorted method: 

func backward(_ s1: String, _ s2: String) -> Bool { 



Closure | FITPED 

114 

  return s1 > s2 

} 

var reversedNames = names.sorted(by: backward) 

// reversedNames equals ["Ewa", "Daniella", "Chris", "Barry", 

"Alex"] 

 

🕮 6.1.3 

Syntax of the closure expression 

The syntax of the closing expression has the following general form: 

{(parameters) -> return_type in 

  body closures 

} 

Parameters in the closure expression syntax can be input and output parameters, 
but they cannot have a default value. Variadic parameters can be used if you name 
them. N-tuples can also be used as parameter types and return types. 

reversedNames = names.sorted(by: {(s1: String, s2: String) -> 

Bool in 

  return s1 > s2 

}) 

Because the body of the closure is so short, it can be written on one line: 

reversedNames = names.sorted (by: {(s1: String, s2: String) -> 

Bool in return s1> s2}) 

 

📝 6.1.4 

Can closure parameters have default values? 

• no 
• yes 

 

🕮 6.1.5 

Derivation of a type from a context 

Because the sort closure is passed as an argument to the method, Swift can derive 
the types of its parameters and the type of value it returns. The sorted (by:) method 



Closure | FITPED 

115 

is called on an array of strings, so its argument must be a function of type (String, 
String) -> Bool. This means that the types (String, String) and Bool do not need to be 
written as part of the expression definition. Because all types can be derived, you 
can also omit the return arrow (->) and parentheses around parameter names: 

reversedNames = names.sorted (by: {s1, s2 in return s1 > s2}) 

 

🕮 6.1.6 

Default return value 

Closures with a single expression in the body can return a result without the return 
keyword by default: 

reversedNames = names.sorted(by: {s1, s2 in s1 > s2}) 

 

🕮 6.1.7 

Automatic argument names 

Swift automatically provides argument names for embedded closures that can be 
used to reference argument values named $0, $1, $2, etc. If you use these shortcut 
names in your closure, you can omit the argument list from the definition and the 
number and type of shortcut names will be derived from the expected type of 
function. The keyword in can also be omitted because the closing expression 
consists exclusively of its body: 

reversedNames = names.sorted(by: {$0 > $1}) 

 

📝 6.1.8 

How are automatic closing arguments named? 

• #0, #1, #2 
• #1, #2, #3 
• $0, $1, $2 
• $1, $2, $3 

 
 
 
 
 



Closure | FITPED 

116 

🕮 6.1.9 

Operator methods 

In fact, there is an even shorter way to write the expression before. Swift type String 
defines its implementation of the greater than (>) operator for a particular string as 
a method that has two parameters of type String and returns a value of type Bool. 
This corresponds exactly to the type of method required by the sorted (by:) method. 
Therefore, you can simply pass an operator greater than and Swift infers that you 
want to use its string-specific implementation: 

reversedNames = names.sorted(by: >) 

 

6.2 Types of closures 

🕮 6.2.1 

Trailing Closures 

If you need to pass a closure expression to a function as the function’s final 
argument and the closure expression is long, it can be useful to write it as a trailing 
closure instead. You write a trailing closure after the function call’s parentheses, 
even though the trailing closure is still an argument to the function. When you use 
the trailing closure syntax, you don’t write the argument label for the first closure as 
part of the function call. A function call can include multiple trailing closures; 
however, the first few examples below use a single trailing closure. 

func someFunctionThatTakesAClosure (closure :() -> Void) { 

  // the body of the function goes here 

} 

// Here's how to call this function without using endpoint: 

someFunctionThatTakesAClosure (closure: { 

  // the closure body goes here 

}) 

// Here's how to call this function with an end cap instead: 

someFunctionThatTakesAClosure () { 

  // the trailing closure's body goes here 

} 

The string sort can be written as a trailing closure 

reversedNames = names.sorted() {$0 > $1} 



Closure | FITPED 

117 

If the closure expression is provided as a single argument to a function or method, 
and you specify that expression as an end closure, you do not need to write a pair 
of parentheses() after the function or method name when calling the function: 

reversedNames = names.sorted {$0 > $1} 

 

🕮 6.2.2 

Multiple trailing closures 

If a function takes multiple closures, you omit the argument label for the first 
trailing closure and you label the remaining trailing closures. For example, the 
function below loads a picture for a photo gallery: 

func loadPicture (from server: Server, completion: (Picture) -

> Void, onFailure: () -> Void) { 

  if let picture = download ("photo.jpg", from: server) { 

    completion(picture) 

  } else { 

    onFailure() 

  } 

} 

The first closure is a completion handler that displays the image after a successful 
download. The second closure is the error handler, which displays the error to the 
user. 

loadPicture(from: someServer) {picture in 

  someView.currentPicture = picture 

} onFailure: { 

  print("The following image cannot be downloaded.") 

} 

 

🕮 6.2.3 

Capturing Values 

A closure can capture constants and variables from the surrounding context in 
which it’s defined. The closure can then refer to and modify the values of those 
constants and variables from within its body, even if the original scope that defined 
the constants and variables no longer exists. 

In Swift, the simplest form of a closure that can capture values is a nested function, 
written within the body of another function. A nested function can capture any of its 



Closure | FITPED 

118 

outer function’s arguments and can also capture any constants and variables 
defined within the outer function. 

func makeIncrementer(forIncrement amount: Int) -> () -> Int { 

    var runningTotal = 0 

    func incrementer () -> Int { 

        runningTotal += amount 

        // the incrementer function accesses the runningTotal 

variable and the amount parameter of the function that defines 

it 

        return runningTotal 

    } 

    return incrementer 

} 

 

📝 6.2.4 

Can a nested function change the variables that are defined in the function that 
defines the nested function? 

• No 
• Yes 

 

🕮 6.2.5 

Closures are reference types 

We can write: 

let incrementByTen = makeIncrementer(forIncrement: 10) 

let incrementBySeven = makeIncrementer(forIncrement: 7) 

incrementBySeven and incrementByTen are constants, but the closures referenced 
by these constants are still able to increment the runningTotal variables they 
captured. This is because functions and closures are reference types. 

let alsoIncrementByTen = incrementByTen 

alsoIncrementByTen() 

// returns the value 50 

incrementByTen() 

// returns the value 60 



Closure | FITPED 

119 

The example above shows that calling alsoIncrementByTen is the same as calling 
incrementByTen. Because they both refer to the same closure, they both increment 
and return the same sum. 

 

🕮 6.2.6 

Escaping closures 

A closure is said to escape a function when the closure is passed as an argument 

to the function, but is called after the function returns. When you declare a 

function that takes a closure as one of its parameters, you can 

write @escaping before the parameter’s type to indicate that the closure is 

allowed to escape. 

One way that a closure can escape is by being stored in a variable that’s defined 
outside the function. As an example, many functions that start an asynchronous 
operation take a closure argument as a completion handler. The function returns 
after it starts the operation, but the closure isn’t called until the operation is 
completed—the closure needs to escape, to be called later. For example: 

var completionHandlers = [() -> Void] () 

func someFunctionWithEscapingClosure (completionHandler: 

@escaping () -> Void) { 

  completionHandlers.append (completionHandler) 

} 

The someFunctionWithEscapingClosure(_:) function takes a closure as its 

argument and adds it to an array that’s declared outside the function. If you didn’t 

mark the parameter of this function with @escaping, you would get a compile-

time error. 

 

📝 6.2.7 

How do you mark a closure that is allowed to escape? 

• @esc 
• @escape 
• @escaping 

 
 
 
 



Closure | FITPED 

120 

🕮 6.2.8 

Autoclosure 

An autoclosure lets you delay evaluation, because the code inside isn’t run until you 
call the closure. Delaying evaluation is useful for code that has side effects or is 
computationally expensive, because it lets you control when that code is evaluated. 
The code below shows how a closure delays evaluation: 

var customersInLine = ["Chris", "Alex", "Ewa", "Barry", 

"Daniella"] 

print(customersInLine.count) 

// prints "5" 

 

let customerProvider = {customersInLine.remove (at: 0)} 

print (customersInLine.count) 

// prints "5" 

 

print ("Now \(customerProvider()) is serving!") 

// prints "Now Chris is serving!" 

print(customersInLine.count) 

// prints "4" 

You get the same behavior with delayed evaluation when you pass a closing as an 
argument to a function: 

// customersInLine contains ["Alex", "Ewa", "Barry", 

"Daniella"] 

func serve (customer customerProvider: @autoclosure () -> 

String) { 

  print ("Now \(customerProvider ()) is serving!") 

} 

serve(customer: customersInLine.remove(at: 0)) 

// prints "Now Alex is serving!" 

 

📝 6.2.9 

How do you mark an autoclosure? 

• @auto 
• @autoclose 
• @autoclosure 

 



Closure | FITPED 

121 

🕮 6.2.10 

Autoclosure 

If you want an autoclosure that is allowed to escape, use the @autoclosure and 
@escaping attributes: 

// customersInLine contains ["Ewa", "Barry", "Daniella"] 

var customerProviders: [() -> String] = [] 

func collectCustomerProviders (_ customerProvider: 

@autoclosure @escaping () -> String) { 

  customerProviders.append(customerProvider) 

} 

collectCustomerProviders(customersInLine.remove (at: 0)) 

collectCustomerProviders(customersInLine.remove (at: 0)) 

print("" Collected \(customerProviders.count) closures.") 

// prints "Collected 2 closures." 

for customerProvider in customerProviders { 

  print ("Now \(customerProvider()) is serving!") 

} 

// Prints "Now Ewa is serving!" 

// Prints "Now Barry is serving!" 

 

📝 6.2.11 

Is it allowed to mark one closure as autoclosure and escaping at the same time?  

• yes 
• no 

 
 



 

 

Enumerations 

Chapter 7 

  



Enumerations | FITPED 

123 

7.1 Enumerations 

🕮 7.1.1 

Enumerations 

An enumeration defines a common type for a group of related values and enables 
you to work with those values in a type-safe way within your code. 

If you are familiar with C, you will know that C enumerations assign related names 
to a set of integer values. Enumerations in Swift are much more flexible, and don’t 
have to provide a value for each case of the enumeration. If a value (known as 
a raw value) is provided for each enumeration case, the value can be a string, a 
character, or a value of any integer or floating-point type. 

 

🕮 7.1.2 

Enumeration syntax 

You introduce enumerations with the enum keyword and place their entire definition 

within a pair of braces: 

enum CompassPoint { 

    case north 

    case south 

    case east 

    case west 

} 

Swift enumeration cases don’t have an integer value set by default, unlike languages 
like C and Objective-C. In the CompassPoint example 

above, north, south, east and west don’t implicitly equal 0, 1, 2 and 3. Instead, 

the different enumeration cases are values in their own right, with an explicitly 
defined type of CompassPoint. 

Multiple cases can appear on a single line, separated by commas: 

enum Planet { 

    case mercury, venus, earth, mars, jupiter, saturn, uranus, 

neptune 

} 

 
 



Enumerations | FITPED 

124 

📝 7.1.3 

How do you define a new enumeration? 

• enum Enum {case nahoru, dolu, doleva, doprava} 
• type Enum {case nahoru > dolu > doleva > doprava} 
• enum Enum {case nahoru > dolu > doleva > doprava} 

 

🕮 7.1.4 

Enumeration is a type 

Each enumeration definition defines a new type. Like other types in Swift, their 
names (such as CompassPoint and Planet) begin with a capital letter. Instead, use 
multiline enumerations to make your code more readable. 

var directionToHead = CompassPoint.west 

The directionToHead type is derived at initialization with one of the possible 
CompassPoint values. Once directionToHead is declared as CompassPoint, you 
can set it to a different CompassPoint value using shorter syntax: 

directionToHead = .east 

 

🕮 7.1.5 

Enumeration in the switch statement 

You can compare the individual enumeration values in the switch statement: 

directionToHead = .south 

switch directionToHead { 

case .north: 

  print("Lots of planets have north") 

case .south: 

  print("Beware of penguins") 

case .east: 

  print("Where the Sun Rises") 

case .west: 

  print("Where the sky is blue") 

} 

// prints “Beware of penguins” 

 



Enumerations | FITPED 

125 

🕮 7.1.6 

Enumeration iteration 

For some enumerations, it is useful to have a collection of all their values. To 
enable this, type: CaseIterable after the enumeration name. Swift makes a 
collection of all values available as an allCases property of the enumeration type: 

enum Beverage: CaseIterable { 

  case coffee, tea, juice 

} 

let numberOfChoices = Beverage.allCases.count 

print("\(numberOfChoices) drinks available") 

// prints "3 drinks available" 

for beverage in Beverage.allCases { 

  print(beverage) 

} 

// coffee 

// tea 

// juice 

 

📝 7.1.7 

Is the following code valid? 

enum Enum {case up, down, left, right} 

for item in Enum.allCases { 

  ... 

} 

• No 
• Yes 

 

7.2 Related values, Raw values 

🕮 7.2.1 

Related values 

Sometimes it is useful to be able to store values of other types in addition to 
enumeration values. This additional information is called the related value and 
differs each time you use this case as a value in your code. 



Enumerations | FITPED 

126 

The UPC bar code and QR code will serve as an example. For UPC barcodes we will 
store n-tuples of four integers and for QR code a string of any length. 

In Swift, the list for barcodes for both types of products can look like this: 

enum barcode { 

  case upc (Int, Int, Int, Int) 

  case qrCode (String) 

} 

Define an enumeration type called Barcode, which can take either upc values with a 
related type value (Int, Int, Int, Int), or qrCode values with a related String value. 

You can then create new barcodes using one of the following types: 

var productBarcode = Barcode.upc(8, 85909, 51226, 3) 

productBarcode = .qrCode("ABCDEFGHIJKLMNOP") 

switch productBarcode { 

case .upc (let numberSystem, let manufacturer, let product, 

let check): 

  print("UPC: \(numberSystem), \(manufacturer), \(product), 

\(check).") 

case .qrCode(let productCode): 

  print("QR code: \(productCode).") 

} 

// prints "QR code: ABCDEFGHIJKLMNOP." 

 

🕮 7.2.2 

Simplification of syntax 

If all of the associated values for an enumeration case are extracted as constants, or 
if all are extracted as variables, you can place a single var or let annotation before 

the case name, for brevity: 

switch productBarcode { 

case let .upc (numberSystem, manufacturer, product, check): 

  print ("UPC: \(numberSystem), \(manufacturer), \(product), 

\(check).") 

case let .qrCode (productCode): 

  print("QR code: \(productCode).") 

} 

// prints "QR code: ABCDEFGHIJKLMNOP." 

 



Enumerations | FITPED 

127 

🕮 7.2.3 

Raw values 

As an alternative to related values, the enumeration may include pre-populated 
default values (called raw values) that are of the same type: 

enum ASCIIControlCharacter: Character { 

  case tab = "\t" 

  case lineFeed = "\n" 

  case carriageReturn = "\r" 

} 

 

📝 7.2.4 

What are the raw values of the following enumeration? 

enum Enum {case up, down, left, right} 

• none 
• 0, 1, 2, 3 
• 1, 2, 3, 4 
• case up, down, left, right 

 

🕮 7.2.5 

Implicitly assigned raw values 

When working with enumerations that store integer or string raw values, you do not 
have to explicitly assign a raw value for each case. If you do not do this, Swift will 
automatically assign values. 

For example, when integers are used for raw values, the default value for each case 
is one more than the previous case. If the first case does not have a set value, its 
value is 0: 

enum Planet: Int { 

  case mercury = 1, venus, earth, mars, jupiter, saturn, 

uranus, neptune 

} 

In the example above, Planet.mercury has an explicit raw value of 1, Planet.venus 
has an default raw value of 2, and so on. 



Enumerations | FITPED 

128 

📝 7.2.6 

What are the raw values of the following enumeration? 

enum Enum {case up = 2, down, left, right} 

• 0, 1, 2, 3 
• 1, 2, 3, 4 
• 2, 3, 4, 5 

 

🕮 7.2.7 

rawValue properties 

When strings are used for raw values, the default value for each case is the text of 
the case name. 

The raw value of the enumeration gets its rawValue property: 

let earthsOrder = Planet.earth.rawValue 

// earthsOrder is 3 

let sunsetDirection = CompassPoint.west.rawValue 

// sunsetDirection is "west" 

 

🕮 7.2.8 

Initialization from raw value 

If you define an enumeration with a raw value type, the enumeration is 
automatically accepted by the initializer, which takes a raw value type value (as a 
parameter named rawValue) and returns either the enumeration case or nil. You 
can use this initializer to try to create a new enumeration instance: 

let possiblePlanet = Planet(rawValue: 7) 

// possiblePlanet is of type Planet? and equals Planet.uranus 

However, not all possible Int values will find a corresponding planet. For this 
reason, the raw value initializer always returns an optional enumeration case. 

If you try to find a planet with a raw value of 11, the optional Planet value returned 
by the raw value initializer will be nil: 

let positionToFind = 11 

if let somePlanet = Planet(rawValue: positionToFind) { 



Enumerations | FITPED 

129 

  switch somePlanet { 

  case .earth: 

    print("Suitable for life") 

  default: 

    print("It's not a safe place for humans") 

  } 

} else { 

  print("There is no planet at position \(positionToFind)") 

} 

// prints "There is no planet at position 11" 

 

📝 7.2.9 

What will be the value of the item constant? 

enum Enum {case up = 2, down, left, right} 

let item = Extract(rawValue: 4) 

• up 
• down 
• left 
• right 

 

🕮 7.2.10 

Recursive enumerations 

A recursive enumeration is an enumeration that has another instance of the 
enumeration as the associated value for one or more of the enumeration cases. You 
indicate that an enumeration case is recursive by writing indirect before it, which 

tells the compiler to insert the necessary layer of indirection. 

enum ArithmeticExpression { 

  case number(Int) 

  indirect case addition(ArithmeticExpression, 

ArithmeticExpression) 

  indirect case multiplication(ArithmeticExpression, 

ArithmeticExpression) 

} 

You can also write indirect before the start of the enumeration. Recursion will apply 
to all values: 



Enumerations | FITPED 

130 

indirect enum ArithmeticExpression { 

  case number(Int) 

  case addition(ArithmeticExpression, ArithmeticExpression) 

  case multiplication(ArithmeticExpression, 

ArithmeticExpression) 

} 

This enumeration can store three types of arithmetic expressions: simple number, 
addition, and multiplication of two expressions. Addition and multiplication cases 
have associated values that are also arithmetic expressions - these associated 
values allow the nesting of expressions: 

let five = ArithmeticExpression.number(5) 

let four = ArithmeticExpression.number(4) 

let sum = ArithmeticExpression.addition(five, four) 

let product = ArithmeticExpression.multiplication(sum, 

ArithmeticExpression.number(2)) 

 

🕮 7.2.11 

Processing of recursive enumerators 

A recursive function is a direct way to work with data that has a recursive structure. 
For example, here is a function that evaluates an arithmetic expression: 

func evaluate (_ expression: ArithmeticExpression) -> Int { 

  switch expression { 

  case let .number(value): 

    return value 

  case let .addition(left, right): 

    return evaluate(left) + evaluate(right) 

  case let .multiplication(left, right): 

    return evaluate(left) * evaluate(right) 

  } 

} 

print(evaluate(product)) 

// prints "18" 

This function evaluates a simple number simply by returning an associated value. 
Evaluates addition or multiplication by evaluating the expression on the left, 
evaluating the expression on the right, and adding or multiplying them. 



 

 

Structures and Classes 

Chapter 8 

  



Structures and Classes | FITPED 

132 

8.1 Structures and classes 

🕮 8.1.1 

Structures and classes 

Structures and classes are universal, flexible constructions that become the 
building blocks of your code. You define properties and methods by adding 
functions to your structures and classes using the same syntax as when defining 
constants, variables, and functions. 

Unlike other programming languages, Swift does not require the creation of custom 
interfaces and implementation files for custom structures and classes. In Swift, you 
define a structure or class in one file, and the external interface to that class or 
structure is automatically made available for use by other code. 

 

🕮 8.1.2 

Comparison of structures and classes 

Structures and classes in Swift have many things in common. Both can: 

• Define properties to store values 
• Define methods to provide functionality 
• Define subscripts to provide access to their values using subscript syntax 
• Define initializers to set up their initial state 
• Be extended to expand their functionality beyond a default implementation 
• Conform to protocols to provide standard functionality of a certain kind 

Classes have additional capabilities that structures don’t have: 

• Inheritance enables one class to inherit the characteristics of another. 
• Type casting enables you to check and interpret the type of a class instance 

at runtime. 
• Deinitializers enable an instance of a class to free up any resources it has 

assigned. 
• Reference counting allows more than one reference to a class instance. 

 

The additional capabilities that classes support come at the cost of increased 
complexity. As a general guideline, prefer structures because they’re easier to 
reason about, and use classes when they’re appropriate or necessary. In practice, 
this means most of the custom data types you define will be structures and 
enumerations. 



Structures and Classes | FITPED 

133 

📝 8.1.3 

Is it recommended to use more structures or use more classes in Swift?  

• structures 
• classes 

 

🕮 8.1.4 

Syntax of structures and classes 

Structures and classes have a similar definition syntax. You introduce structures with 
the struct keyword and classes with the class keyword. Both place their entire 

definition within a pair of braces: 

struct SomeStructure { 

    // define structure here 

} 

class SomeClass { 

    // definice class here 

} 

Whenever you define a new structure or class, you define a new Swift type. Give 
types UpperCamelCase names (such as SomeStructure and SomeClass here) 

to match the capitalization of standard Swift types (such as String, Int, 

and Bool). Give properties and methods lowerCamelCase names (such 

as frameRate and incrementCount) to differentiate them from type names. 

struct Resolution { 

    var width = 0 

    var height = 0 

} 

class VideoMode { 

    var resolution = Resolution() 

    var interlaced = false 

    var frameRate = 0.0 

    var name: String? 

} 

The example above defines a new structure called Resolution, to describe a pixel-

based display resolution. This structure has two stored properties 
called width and height. Stored properties are constants or variables that are 

bundled up and stored as part of the structure or class. These two properties are 
inferred to be of type Int by setting them to an initial integer value of 0. 



Structures and Classes | FITPED 

134 

The example above also defines a new class called VideoMode, to describe a 

specific video mode for video display. This class has four variable stored properties. 
The first, resolution, is initialized with a new Resolution structure instance, 

which infers a property type of Resolution. For the other three properties, 
new VideoMode instances will be initialized with an interlaced setting 

of false (meaning “noninterlaced video”), a playback frame rate of 0.0, and an 
optional String value called name. The name property is automatically given a 

default value of nil, or “no name value”, because it’s of an optional type. 

 

📝 8.1.5 

Which keywords are used to define structures and classes? 

• structure and class 
• struct and classes 
• struct and class 

 

🕮 8.1.6 

Structure and class instances 

The Resolution definition and the VideoMode class definition only describe what 
the Resolution or VideoMode will look like. They do not describe the specific 
resolution or video mode themselves. To do this, you must instantiate a structure or 
class: 

let someResolution = Resolution() 

let someVideoMode = VideoMode() 

Structures and classes use initializer syntax for new instances. The simplest form 
of initializer syntax uses a class or structure type name followed by empty 
parentheses, such as Resolution() or VideoMode(). This creates a new instance of 
the class or structure with any properties initialized to their default values. 

 

📝 8.1.7 

How do you create a new instance of a structure called MyStructure with its 
default properties? 

• new MyStructure 
• MyStructure() 



Structures and Classes | FITPED 

135 

• MyStructure[] 

 

🕮 8.1.8 

Accessing Properties 

You can access the properties of an instance using dot syntax. In dot syntax, you 
write the property name immediately after the instance name, separated by a period 
(.), without any spaces: 

print("The width of someResolution is 

\(someResolution.width)") 

// Print "The width of someResolution is 0" 

In this example, someResolution.width refers to the width property 

of someResolution, and returns its default initial value of 0. 

You can drill down into subproperties, such as the width property in 

the resolution property of a VideoMode: 

print("The width of someVideoMode is 

\(someVideoMode.resolution.width)") 

// prints "The width of someVideoMode is 0" 

You can also use dot syntax to assign a new value to a variable property: 

SomeVideoMode.resolution.width = 1280 

print("The width of someVideoMode is now 

\(someVideoMode.resolution.width)") 

// prints "The width of someVideoMode is now 1280" 

 

📝 8.1.9 

How do you access the width property of myInstance instance? 

• myInstance.width 
• myInstance -> width 
• width.myInstance 

 

🕮 8.1.10 

Initializers for structure types with values 



Structures and Classes | FITPED 

136 

All structures have an automatically generated initializer that you can use to 
initialize the properties of new instances of the structure: 

let vga = Resolution(width: 640, height: 480) 

 

📝 8.1.11 

Is a class initializer automatically available that sets class properties?  

• Yes 
• No 

 

8.2 Types of values, Indicators 

🕮 8.2.1 

Structures and Enumerations Are Value Types 

A value type is a type whose value is copied when it’s assigned to a variable or 
constant, or when it’s passed to a function. 

You’ve actually been using value types extensively throughout the previous 
chapters. In fact, all of the basic types in Swift—integers, floating-point numbers, 
Booleans, strings, arrays and dictionaries—are value types, and are implemented as 
structures behind the scenes. 

Consider this example, which uses the Resolution structure from the previous 
example: 

let hd = Resolution(width: 1920, height: 1080) 

var cinema = hd 

This example declares a constant called hd and sets it to a Resolution instance 

initialized with the width and height of full HD video (1920 pixels wide by 1080 pixels 
high). 

It then declares a variable called cinema and sets it to the current value of hd. 

Because Resolution is a structure, a copy of the existing instance is made, and 
this new copy is assigned to cinema. Even though hd and cinema now have the 

same width and height, they’re two completely different instances behind the scenes. 

cinema.width = 2048 

print("cinema is now \(cinema.width) pixels wide") 

// prints "cinema is now 2048 pixels wide" 



Structures and Classes | FITPED 

137 

print ("hd is still \(hd.width) pixels wide") 

// prints "hd is still 1920 pixels wide" 

When cinema was given the current value of hd, the values stored in hd were copied 

into the new cinema instance. The end result was two completely separate 

instances that contained the same numeric values. However, because they’re 
separate instances, setting the width of cinema to 2048 doesn’t affect the width 

stored in hd 

 

📝 8.2.2 

Does assigning a structure instance to another variable create a copy of the 
instance? 

• yes 
• no 

 

🕮 8.2.3 

Value types - enumeration assignment 

The same behavior applies to enumerations: 

enum CompassPoint { 

    case north, south, east, west 

    mutating func turnNorth() { 

        self = .north 

    } 

} 

var currentDirection = CompassPoint.west 

let rememberedDirection = currentDirection 

currentDirection.turnNorth() 

print ("Current direction is \(currentDirection)") 

print ("Remembered direction is \(rememberedDirection)") 

// prints "Current direction is north" 

// prints "Remembered direction is west" 

When the rememberedDirection parameter is assigned the currentDirection value, it 
is actually set to a copy of that value. Subsequent changes to the currentDirection 
value do not affect the copy of the original value that was stored in 
rememberedDirection. 

 



Structures and Classes | FITPED 

138 

📝 8.2.4 

Can an enumeration contain methods (functions)? 

• Yes 
• No 

 

🕮 8.2.5 

Classes Are Reference Types 

Unlike value types, reference types are not copied when they’re assigned to a 
variable or constant, or when they’re passed to a function. Rather than a copy, a 
reference to the same existing instance is used. 

Here’s an example, using the VideoModeclass defined earlier: 

let tenEighty = VideoMode () 

tenEighty.resolution = hd 

tenEighty.interlaced = true 

tenEighty.name = "1080i" 

tenEighty.frameRate = 25.0 

This example declares a new constant called tenEighty and sets it to refer to a 
new instance of the VideoMode class. The video mode is assigned a copy of the HD 

resolution of 1920 by 1080 from before. It’s set to be interlaced, its name is set 

to "1080i", and its frame rate is set to 25.0 frames per second. 

Next, tenEighty is assigned to a new constant, called alsoTenEighty, and the 

frame rate of alsoTenEighty is modified: 

let alsoTenEighty = tenEighty 

alsoTenEighty.frameRate = 30.0 

Because classes are reference types, tenEighty and alsoTenEighty actually 

both refer to the same VideoMode instance. Effectively, they’re just two different 

names for the same single instance 

print("The frameRate tenEighty property is now 

\(tenEighty.frameRate)") 

// prints "The frameRate tenEighty property is now 30.0" 

Note that tenEighty and alsoTenEighty are declared as constants, rather than 

variables. However, you can still 
change tenEighty.frameRate and alsoTenEighty.frameRate because the 



Structures and Classes | FITPED 

139 

values of the tenEighty and alsoTenEighty constants themselves don’t actually 
change. tenEighty and alsoTenEighty themselves don’t “store” 

the VideoMode instance—instead, they both refer to a VideoMode instance behind 
the scenes. It’s the frameRate property of the underlying VideoMode that’s 

changed, not the values of the constant references to that VideoMode. 

 

📝 8.2.6 

Does assigning a class instance to another variable create a copy of the instance?  

• Yes 
• No 

 

🕮 8.2.7 

Identity operators 

Because classes are reference types, it’s possible for multiple constants and 
variables to refer to the same single instance of a class behind the scenes. (The 
same isn’t true for structures and enumerations, because they’re always copied 
when they’re assigned to a constant or variable or passed to a function.) 

It can sometimes be useful to find out whether two constants or variables refer to 
exactly the same instance of a class. To enable this, Swift provides two identity 
operators: 

Identical to (===) 

Not identical to (!==) 

Use these operators to check whether two constants or variables refer to the same 
single instance: 

if tenEighty === alsoTenEighty { 

    print("tenEighty and alsoTenEighty refer to the same 

VideoMode instance.") 

} 

// prints “tenEighty and alsoTenEighty refer to the same 

VideoMode instance.“ 

 
 
 
 



Structures and Classes | FITPED 

140 

📝 8.2.8 

What operator is used to compare the same instance of a class? 

• = 
• == 
• === 

 

🕮 8.2.9 

Pointers 

If you have experience with C, C++, or Objective-C, you may know that these 
languages use pointers to refer to addresses in memory. A Swift constant or 
variable that refers to an instance of some reference type is similar to a pointer in 
C, but isn’t a direct pointer to an address in memory, and doesn’t require you to 
write an asterisk (*) to indicate that you are creating a reference. Instead, these 
references are defined like any other constant or variable in Swift. The standard 
library provides pointer and buffer types that you can use if you need to interact 
with pointers directly 

 

📝 8.2.10 

Do you need to indicate a reference to a class instance (pointer) with an 
*(asterisk)? 

• No 
• Yes 

 



 

 

 


