

JAVASCRIPT

2020

This document has been elaborated for the project FITPED (https://www.fitped.eu)

Work-Based Learning in Future

IT Professionals Education

(Grant. no. 2018-1-SK01-KA203-046382)

This project has been funded with support from the European Commission under the

ERASMUS+ Programme 2018, KA2, project number: 2018-1-SK01-KA203-046382.

Content

Introduction to JavaScript ... 5

1.1 Linking to a JavaScript ... 6

1.2 Outputs and comments ... 9

Variables ... 15

2.1 Variables ... 16

2.2 Numeric variables ... 21

2.3 Data types ... 25

If Command .. 29

3.1 IF statement I. ... 30

3.2 IF statement II. .. 35

Loops .. 41

4.1 FOR loop .. 42

4.2 While and do-while ... 46

4.3 Cycles (programs) .. 51

String... 54

5.1 String type ... 55

5.2 Substring ... 58

5.3 String (programs) .. 63

Arrays .. 66

6.1 Arrays .. 67

6.2 Arrays processing .. 70

6.3 Arrays (programs) ... 74

Functions .. 77

7.1 Functions ... 78

7.2 Function parameters ... 82

Document Object Model (DOM) ... 86

8.1 Introduction to DOM ... 87

8.2 Document properties .. 95

8.3 Accessing elements ... 103

8.4 Manipulation with elements ... 111

Manipulation with Elements ... 115

9.1 Changing element style ... 116

9.2 innerHTML .. 121

Event-driven Programming ... 124

10.1 Event-driven programming ... 125

10.2 More event types .. 128

10.3 Event handlers .. 131

Introduction to JavaScript

Chapter 1

Introduction to JavaScript| FITPED

6

1.1 Linking to a JavaScript

 1.1.1

JavaScript is known as the language of modern web browsers. JavaScript is a flexible, and

fast programming language which is used for web development.

Since JavaScript remains at the core of web development, it is often the first language

learned by self-taught coders eager to learn and build.

Be careful, JavaScript and Java are completely different languages, both in concept and

design. JavaScript was invented by Brendan Eich in 1995.

 1.1.2

JavaScript and Java are the same languages, JavaScript is a part of language Java containing

functions aimed at web development.

¶ False

¶ True

 1.1.3

JavaScript is the default scripting language in HTML.

What you can do with JavaScript:

¶ Add and remove content from the web page.

¶ Access and change element attributes, including source and class.

¶ Insert markup into a web page using function innerHTML.

¶ Change style attribute.

 1.1.4

The primary importance of JavaScript is in the area of website creation. JavaScript is inserted

into the HTML of the web page. There are two approaches to adding JavaScript to HTML

Introduction to JavaScript| FITPED

7

¶ Create a JavaScript source code in a separate file and then create in the HTML

code a link to JavaScript.

¶ Create an area in the HMTL code for a JavaScript embedding

 1.1.5

For inserting JavaScript code into HTML, JavaScript code is inserted into

element <script> between <script> and </script>.

It is able to insert scripts into elements <head> or <body>.

Both options have their own advantages:

Most of the external scripts which are inserted into web pages, for example Bootstrap,

JQuery and others are inserted into element <head>. In case of inserting custom scripts

into <head> we can have an overview of all scripts in one element.

Nowadays is common to use inserting of code JavaScipt at the end. <body>. The reason is

the effort for faster loading of web pages. Since the compilation of scripts slows down

showing of pages, it is better to load the content of pages for user and subsequently load

scripts.

 1.1.6

Which element in HTML can include a program with JavaScript?

¶ <javascript>

¶

¶ <code>

¶ <script>

¶ <p>

 1.1.7

In HTML code insert tags into element <body> for a Javascript code.

<!doctype html>

Introduction to JavaScript| FITPED

8

<html>

 <head>

 <title>First JavaScript</title>

 </head>

 <body>

 //k·d v JavaScripte

 </body>

</html>

 1.1.8

The next option for writing JavaScript code is in a separate file (saved with suffix .js), then to

create a link in an HTML code for the file and open it with a browser. The placement of

scripts into external files logically divides HTML code from JavaScript and simplifies reading

and additional editing of script.

Alike as inserting Javascript into pages, in case of external file we can insert element

<script> into element <head> or <body>. Important attribute is src, in which we specify

where the file is saved and how it is named.

For example:

<script src="my_scrip t.js"></script>

If the file with a JavaScript is available on web address, it is possible to load file from the

web by stating a correct url address into attribute src, for example:

<script src="https://www.my_page.com/js/my.js"></script>

 1.1.9

Which parameter is used for inserting Javascript link in an element <script> ?

¶ src

¶ link

¶ script

¶ js

¶ href

Introduction to JavaScript| FITPED

9

 1.1.10

In HTML code insert a link into element <body> on Javascript stored in a file test.js

<!doctype html>

<html>

 <head>

 <title>First JavaScript</tit le>

 </head>

 <body>

 <script src="_____"></script>

 </body>

</html>

 1.1.11

In HTML code insert a link into element <body> on Javascript stored in a url address

http://www.mypage.eu/js/test.js

<!doctype html>

<html>

 <head>

 <title>First JavaScript</title>

 </head>

 <body>

 <script _____="http://www.mypage.eu/js/test.js"></script>

 </body>

</html>

1.2 Outputs and comments

 1.2.1

The first step with the coding language JavaScript is to add comments. Comments are

commonly used by programmers, being part of the code, even though the computer

(JavaScript interpreter) ignores them. Their purpose is to save comments and notes for

programmers.

With using comments, the code is more efficient, when you return to rewrite it.

Programming is in larger projects a cooperative activity, and that is the reason why

commenting in source codes is compulsory for larger teams.

Introduction to JavaScript| FITPED

10

A comment can explain ideas of program creator, backup instructions for other developers

inside of the code or add other important notes.

 1.2.2

There are two types of JavaScipt comments:

1. A one-lined code. It is designated with characters //, behind which is the comment text,

for example:

// my comment starting at the beginning of the line

The end of the one-lined comment isn't designated, the end of the line is meant to be the

end

function my_f(input) // my second comment

2. A multiline comment. It usually includes large pieces of the text, probably for multiple

lines. This type of comment is inserted between characters /* and */.

Example:

/*

This whole text

will be

understood by the computer as a comment

*/

We can even use this type of commenting inside the line of the code, for example:

function my_f(/* can be even zero*/ input) //my own function

Introduction to JavaScript| FITPED

11

 1.2.3

Insert into Javascript code one-liner code comment with a text: I am excited about

Javascript.

<!doctype html>

<html>

 <head>

 <title>First JavaScript</title>

 </head>

 <body>

 <script>

 _____ I am excited about Javascript

 </script>

 </body>

</html>

 1.2.4

Insert into Javascript code a multiline comment of 3 lines beginning with "Lecture 1" and

ending with "I am excited, what is next."

<!doctype html>

<html>

 <head>

 <title>First JavaScript</title>

 </head>

 <body>

 <script>

 Lecture 1:

 Comments

 I am excited, what is next.

 </script>

 </body>

</html>

 1.2.5

Insert correct tags for a comment into Javascript code:

Introduction to JavaScript| FITPED

12

1. Mark the text beginning with „If you were“ and ending with “Then they would exclaim:”

into a multiline comment.

2.Insert the sentence „Oh, what a pretty house that is!” into a one-liner comment.

<!doctype html>

<html>

 <head>

 <title>First JavaScript</title>

 </head>

 <body>

 <script>

 If you were to say to the grown - ups:

 "I saw a beautiful house made of rosy brick, with geraniums in the

windows and doves on the roof," they would not be abl to get any idea of

that house at all.

 You would have to say to them:

 "I saw a house that cost $20,000."

 Then they would exclaim:

 _____ "Oh, what a pretty house that is!"

 </script>

 </body>

</html>

 1.2.6

The first function we will use is alert(). The function shows alerts with a message (text) and

a button OK. It is often used as a warning message for the user of a web application.

It isn't recommended to use the function too often, as it prevents the user access to some

parts of the web page, while the window with a message will not be closed.

In our course, we will use the function only for controlling the correctness of our code.

Therefore most of our scripts will be ended with a function alert() for final results output.

The important part of a function alert() is a parameter of a function. It is used to address an

input value into function. Input parameter will be a text which we will use in a shown window

to the user, for example:

Introduction to JavaScript| FITPED

13

alert("Hello world!");

Similar to other coding languages, even in the JavaScript it is important to end the line or a

function (at the end of the line) by inserting a semicolon ; (or line feed). It separates

individual commands from each other.

Theoretically, we could write the whole Javascript code into a one-liner. Semicolons are

important for the interpreter to identify the end of command. The division of the code into

single lines is only for transparency and readability of the source code.

 1.2.7

The majority of messages are text. If we want to work with a text in JavaScript (we will also

use numbers), it is important to insert the text into quotes.

Sometimes apostrophes are used, their purpose will be mentioned later.

Insert the function alert into JavaScript code and show a message "First message from

programmer!" to the user. Don`t forget semicilon at the end of the line!

<!doctype html>

<html>

 <head>

 <title>First JavaScript</title>

 </head>

 <body>

 <script>

 _____("First message from programmer!")_____

 </script>

 </body>

</html>

 1.2.8

Insert functions for showing two messages into a JavaScipt code. First message will include

text "Welcome to my web page" and the second one "Feel free to look around".

Don`t forget semicolons at the end of the line!

Introduction to JavaScript| FITPED

14

<!doctype html>

<html>

 <head>

 <title>First JavaScript</title>

 </head>

 <bod y>

 <script>

 _____("Welcome to my web page")_____

 _____("Feel free to look around")_____

 </script>

 </body>

</html>

Variables

Chapter 2

Variables| FITPED

16

2.1 Variables

 2.1.1

Variables are used for saving information, which is used in the computer program to point

and manipulate. The simplest is to imagine them as an area within the memory of the

computer where it is able to save the simple data. Data within the area can be changed

based on the actual status of a solving problem in the source code.

It is useful to consider variables as containers which can store information. The only purpose

is to design and store data in memory. The data can be later used in your program.

Working with variables in the JavaScript coding language:

var x = "the first word";

Explaining individual parts:

¶ var is a keyword informing about variable in the Javascript, it is used only once on

setup (creating) of variable,

¶ x is a name of the variable,

¶ = is an operator informing about assigning a value to the variable,

¶ ñthe first wordñ is a value for the variable to store.

The variables with a text should be set into quotes (in some cases apostrophes can be used).

 2.1.2

Create a variable car in code and assign a value "MPV".

Don`t forget the semicolon at the end of the line.

<!doctype html>

<html>

 <head>

 <title>JavaScript Example</title>

Variables| FITPED

17

 </head>

 <body>

 <_____>

 _____ _____="MPV";

 <_____>

 </body>

</html>

¶ /script

¶ var

¶ code

¶ /code

¶ script

¶ dar

¶ mar

¶ car

 2.1.3

The advantage of variables is in case of the need we can edit its value. For a repeatable use

of variable we don`t use keywords var. We can view a value of the variable for the user with

a function alert(), in which the parameter sets a name of the variable.

Assign into a variable car new value "SUV".

<!doctype html>

<html>

 <head>

 <title>JavaScript Example</title>

 </head>

 <body>

 <script>

 var car = "MPV";

 _____ = "_____";

 alert(car);

 </script>

 </body>

</html>

 2.1.4

We can set a value of a variable into another variable. Example:

Variables| FITPED

18

<!doctype html>

<html>

 <head>

 <title>JavaScript Example</title>

 </head>

 <body>

 <script>

 var car = "Cabrio";

 var my_car = car;

 alert(my_car);

 </script>

 </body>

</html>

 2.1.5

Linking variables with a text context are realized with the operator +. In the next example

we will see linking of three input variables with the text context into one output variable

which we will be shown to the user with a function alert().

<!doctype ht ml>

<html>

 <head>

 <title>JavaScript Example</title>

 </head>

 <body>

 <script>

 var part1 = "Good";

 var part2 = " ";

 var part3 = "morning";

 var together = part1 + part2 + part3;

 alert(together);

 </script>

 </body>

 </html>

 2.1.6

Which operator is used for linking text strings?

¶ + (plus)

¶ . (dot)

¶ , (comma)

Variables| FITPED

19

¶ - (dash)

 2.1.7

From the variables x, y and z we can create the sentece "I can't wait what's next". Save

the sentence into a variable result which will be shown to the user by a function alert().

It is also needed to realize that we don't need to insert the text with the space, as the text

begins with the space in the variable y and z.

<!doctype html>

<html>

 <head>

 <title>JavaScri pt Example</title>

 </head>

 <body>

 <script>

 var x = "I can't ";

 var y = " wait what's ";

 var z = " next";

 var result = "";

 result = _____ + _____ + _____;

 _____(_____)_____

 </script>

 </body>

</html>

¶ concate(x,y,z)

¶ print

¶ warning

¶ z

¶ ;

¶ result

¶ alert

¶ x.y.z

¶ y

¶ x

Variables| FITPED

20

 2.1.8

What will be shown in a window by the function alert()?

<!doctype html>

<html>

 <head>

 <title>JavaScript Example</title>

 </head>

 <body>

 <script>

 var planet1 = "Mercury";

 var planet2 = "Venus";

 var planet3 = "Earth";

 var planet4 = "Mars";

 alert(planet3);

 </script>

 </body>

</html>

¶ Earth

¶ Mercury

¶ Venus

¶ Mars

 2.1.9

What will be the output when using the function alert() in the next code?

<!doctype html>

<html>

 <head>

 <title>JavaScript Example</title>

 </head>

 <body>

 <script>

 var planet1 = "Mercury";

 var planet2 = "Venus";

 planet1 = "Earth";

 planet2 = "Mars";

 alert(planet1);

 </script>

 </body>

</html>

¶ Earth

Variables| FITPED

21

¶ Mercury

¶ Venus

¶ Mars

 2.1.10

What will be the output of the code using the function alert()?

<!doctype html>

<html>

 <head>

 <title>JavaScript Example</title>

 </head >

 <body>

 <script>

 var planet1 = "Mercury";

 // planet1 = "Venus";

 planet1 = "Earth";

 /*

 planet1 = "Mars";

 planet1 = "Jupyter";

 */

 alert(planet1);

 </script>

 </body>

</html>

¶ Earth

¶ Mercury

¶ Venus

¶ Mars

2.2 Numeric variables

 2.2.1

The programming language is not limited to writing simple texts, but it can also make

calculations. Numeric variables are dedicated for this purpose.

var a = 10;

var b = 20;

var sum = a + b; // 30

Variables| FITPED

22

So the result of calculation a + b, which is actually 10 + 20, is assigned into the variable sum.

First, the entire calculation is performed at the right of the "=" and the result is assigned into

the variable after its completion.

¶ addition (+)

¶ subtraction (-)

¶ multiplication (*)

¶ division (/)

If more than one operation is used in the calculation (commonly referred to as the

expression), the standard policy applies: multiplication and division take precedence

over addition and subtraction. If they are in brackets, the expression in them is

evaluated first. If they have the same priority, they move from left to right.

 2.2.2

What is the output of this part of program:

var a = 10;

var b = 20;

var sum = 2 * a + b;

alert(sum);

 2.2.3

Just as we could calculate the value with the output, we can do it with variables:

var a = 10;

var b = 5;

alert(a * b); // 50

In the output, the calculation is performed first - instead of the variables, the values they

contain are put in - and the result obtained is written.

Variables| FITPED

23

 2.2.4

What is the output of this part of program:

var a = 15;

var b = 20;

alert(a + b - 2 * (a - b));

 2.2.5

The variable may have potentially any name, but we have to follow the following rules:

¶ the name of the variable must begin with a letter, or "_" (or $, but it is not used)

¶ other characters may be letters, numbers, or underscores

¶ names are case sensitive

¶ the name of the variable must not be either commands or key words of the language

 2.2.6

Which of the following can be used as the variable name:

¶ my_var

¶ _cool

¶ cat

¶ d_og

¶ var

¶ woof-woof

¶ c 12 3

 2.2.7

Integral numbers offer a special operation that returns the remainder after division. For its

calculation is used the operator %.

E.g.:

¶ 10 % 3 = 1

¶ 10 % 2 = 0

Variables| FITPED

24

¶ 15 % 7 = 1

¶ 20 % 7 = 6

¶ 10 % 0 – division by zero = error

 2.2.8

What is the output of the following code?

var a = 27;

var b = 4;

var c = a % b;

alert(c);

 2.2.9

Change of the value of variable by 1 is done using the incremental and decremental operator

that replace the "long" notation that serve to increase or decrease the value of variable by

1.

Instead of log notation:

a = a + 1;

we can use the incremental operator ++:

a++;

Instead of long notation:

b = b - 1;

we can use the decremental operator --:

b-- ;

 2.2.10

What is saved in the variable a after the execution of the following commands?

Variables| FITPED

25

var a = 12;

a++;

a = a ï 3;

a++;

a-- ;

2.3 Data types

 2.3.1

We used datatypes number and string. Every type has different behaviour.

For:

var a = "word1"

var b = "word2"

is the result of expression a + b concatenation of string: word1word2.

For:

var a = 30

var b = 20

is the result of expression a + b sum of numbers: 50.

If we use combination of these types and add a number and a string, JavaScript will treat

the number as a string.

For:

var a = 30

var b = "years"

is the result of expression a + b sum of numbers: 30years.

 2.3.2

What is saved in the variable c at the end of program?

var a = 3

Variables| FITPED

26

var b = "winter"

var c = b + " " + a + " degrees"

 2.3.3

The combination of various types of variables bring various behaviour of operations. The

operation is executed as numeric operation if both value are of number type. If one of values

is textual type second value is converted to string and operation is executed with string

values.

E.g.

var a = 10;

var b = 15;

var c = "my result: ";

alert(c + a + b); // my result: 1015

alert(c + (a + b)); // my result: 25

In a second case is preffered operation a + b where both values are numeric and the "+" is

used as numeric addtion.

 2.3.4

What is saved in the variable d at the end of program?

var a = 3

var b = 7

var c = "value: "

var d = c + (a + b)

 2.3.5

Type of variable can be changed. It depends on value that is assigned to variable, e.g.:

var a; // a is undefined

a = 100; // a is a Number

a = "Anna"; // a is a String

The information about current variable type is available using typeof:

Variables| FITPED

27

var a = 10;

alert(typeof(a)); // number

var b = "hello";

alert(typeof(b)); // string

var c;

alert(typeof(c)); // undefine d

 2.3.6

Pair variables and types of their content.

var a = "" + 10; alert(typeof(a)); // _____

var b = 20 + 40.3; alert(typeof(b)); // _____

var c = 17; alert(typeof(c)); // _____

var d = ""; alert(typeof(d)); // _____

var e; alert(typeof(e)); // _____

¶ number

¶ number

¶ string

¶ undefined

¶ number

¶ string

¶ undefined

¶ number

¶ undefined

 2.3.7

We are working often also with logic values that can have the value true or false. Data type

boolean is used to save this kind of values.

Often it is the result of comparisson or evaluation of a condition.

E.g.:

var a = 10;

var b = 15;

var c = a > b; // false

c = a < b; // true

If we want to check if the values are identical we can use operator "==".

Variables| FITPED

28

var a = "winter";

var b = "winter";

var c = (a == b); // true

If we want to find out if the values are not identical we can use operator "!=".

var a = "winter";

var b = "winter";

var c = (a != b); // false

 2.3.8

Pair variables and their value.

var a = 10;

var b = 15;

var c = 20;

var d = "Paris";

var e = "London";

var f = "London";

var r1 = (a > b); // _____

var r2 = (a < b); // _____

var r3 = (a == b); // _____

var r4 = ((a + b) == c); // _____

var r5 = (e == f); // _____

var r6 = (a != b); // _____

var r7 = (d == f); // _____

¶ true

¶ true

¶ true

¶ true

¶ true

¶ false

¶ true

¶ false

¶ false

¶ true

¶ false

¶ false

¶ false

¶ false

If Command

Chapter 3

If Command| FITPED

30

3.1 IF statement I.

 3.1.1

Like other programming languages, JavaScript can use a non-sequential command

sequence. When executing a program, it is often necessary to decide which commands the

program has to run. The decision is made based on the result of the condition.

The ability to decide and execute other commands based on executing or not executing

condition is referred to as branching. It consists of a condition and commands to be running

in the event of execution or not execution of the condition

For example: The program will detect the age of the user. If the user is less than 25 years

old, it will say "Hello", if the user is more than 25, it will say "Good morning/afternoon". The

condition will be to determine if the user is under 25. The condition must always be

evaluable, i.e. we can always determine whether or not it is valid.

In JavaScript, branching is done using the if statement. We use this command to determine

a part of the code that is executed when the condition is valid. The command looks like this:

if (condition) {

 // part of the code, i.e. a command or group of commands to execute when

a condition is valid

 }

When using the if statement, the following must be observed:

¶ The condition is always written in brackets - ().

¶ The part of the code to be executed is enclosed in brackets - {}.

 3.1.2

Insert missing parts of code:

if _____condition_____ _____

 // commands

¶ }

¶ (

If Command| FITPED

31

¶ {

¶)

 3.1.3

The conditions use comparison operators for comparing values and/or variables:

¶ > - is bigger, e.g. a > b

¶ >= - is bigger or equal, e.g. a >= b

¶ < - is less, e.g. a < b

¶ <= - is less or equal, e.g. a <= b

¶ == - is equal, e.g. a == b

¶ != - is not equal, e.g. a != b

Using of symbols in wrong order will cause an error (e.g.: =>, or <>).

 3.1.4

Choose the correct operators accepted in conditions:

¶ ==

¶ <=

¶ >=

¶ !=

¶ <

¶ >

¶ =

¶ =>

¶ =<

¶ !

 3.1.5

Enter the correct characters for comparison in the code:

If Command| FITPED

32

input = - 5;

if (a _____ 0){

 alert("zero value");

}

if (a _____ 0) {

 alert("the number is greater than or equal to zero");

}

if (a _____ 0) {

 alert("the number is negative");

}

 3.1.6

The first example of the program is about identification, whether the user with the input

age is a child.

var age = 16;

if (age < 18) {

 alert("This is a child");

}

The program writes the information if the value of the variable age is less than 18, but in

the opposite case, i.e. if the value of age is 18 or older, we will not receive any information.

To handle the situation, i.e. to specify the commands to be executed when the condition

does not apply, is used else statement. This specifies one or a group of commands to be

executed if the condition is not valid.

The general registration shall take the form of:

if (condition) {

 // commands when the condition is valid;

} else {

 // commands when the condition is NOT valid;

}

Our initial program would have the form of:

var age = 16;

if (age < 18) {

 alert("This is a child");

} else {

 alert("This is an adult");

If Command| FITPED

33

}

 3.1.7

What pair of commands is used to execute so-called full branching?

¶ if – else

¶ if – then

¶ then – else

¶ condition – then

 3.1.8

Complete the program, which execute the number in the variable a whether it is positive or

negative number:

var a = - 5;

if _____a < __________ {

 alert("positive");

 } _____ _____

 alert("negative");

}

¶ <

¶ {

¶ else

¶ 0

¶ (

¶ }

¶ >

¶)

¶ {

¶ 1

 3.1.9

The command groups that are executed when a condition is valid or not are called

branches.

If Command| FITPED

34

The positive branch is represented by the commands in the section that is executed when

the condition are valid. The negative branch consists of the commands located in the branch

after the else command.

In the following program, we will ensure that if the wage is lower than the average, its value

increases by 100 and we report the increase.

var average = 1010;

var wage = 950;

if (wage < average) {

 wage = wage + 10 0;

 alert("The wage was increased");

}

alert("Your wage this month: " + wage);

 3.1.10

Complete the program that will write the absolute value of the number in the variable input.

Fill in to indicate whether the input was positive or negative number.

var input = - 5;

if (_____ < _____){

 alert("_____");

 input = - input;

} _____ {

 alert("_____");

}

alert("absolute value: " + _____);

¶ negative

¶ 1

¶ esle

¶ 0

¶ positive

¶ input

¶ input

¶ -input

¶ input

¶ else

If Command| FITPED

35

 3.1.11

Complete a program that greets the user according to his/her age. If the user is less than 25

years old, he will say hello, if more, he will say Good morning/afternoon.

_____ age = 19;

if(age _____ 25){

 alert("Hello");

} _____ {

 alert("Good morning/afternoon");

}

 3.1.12

What is the value written by command alert() after execution of commands:

var a = 10;

if (a < 0){

 a = a + 1;

} else {

 a = a - 1;

}

alert(a);

¶ 9

¶ 10

¶ 11

¶ 0

3.2 IF statement II.

 3.2.1

In the previous examples, we always put each branch in brackets {}. If there is only one

command in the branch, parentheses may not be used. However, this is not the case in real

programs.

The following entry can be used for one command per branch:

var age = 19;

if (age < 25)

If Command| FITPED

36

 alert("Hi");

else

 alert("Hello");

This is identical to the following code:

var age = 19;

if (age < 25) {

 alert("Hi");

} else {

 alert("Hello");

}

 3.2.2

Fill the gaps in program for compare two numbers and show the larger one.

_____ a = 10;

_____ b = 15;

if _____a > b_____

 _____(a);

else

 _____(b);

¶ print

¶ }

¶ int

¶ {

¶ (

¶ else

¶ var

¶ var

¶ int

¶ alert

¶ alert

¶ print

¶)

If Command| FITPED

37

 3.2.3

The result of comparisson can be used also in conditions so that we will get the result of the

expression and then use it in condition, e.g.

var a = 10;

var b = 5;

var res = a == b;

if (res == true)

 alert("Values are equal");

else

 alert("Values are different");

Notation

if (res == true)

can be usually written following

if (res)

because the result of the condition res == true is dependent on the value of the

variable res.

 3.2.4

Declare the variable x to save the result of the comparisson of variable y and the value 5 for

equality.

_____ x;

var y = 7;

x = y _____ 5;

 3.2.5

Many times there are tasks where we have to decide whether the given value is even or odd.

When searching for solution, we can use the fact that even numbers divided by 2 give the

remainder after division 0 and odd numbers give 1.

E.g.:

If Command| FITPED

38

¶ 20 % 2 = 0 – is even

¶ 15 % 2 = 1 – is odd

 3.2.6

Fill the gaps in the code to identify if number on input is even or odd.

var a = 12;

if (a _____ 2 == 0) {

 alert("_____");

} _____ {

 alert("_____");

}

¶ even

¶ odd

¶ %

¶ else

¶ **

¶ /

¶ -

 3.2.7

Often you combine in codes many conditions that can be in different relations. Mostly we

are in following situations:

¶ all of the conditions have to be met at the same time,

¶ it is enough that only one of the conditions is met.

Based on the given age of the employee decide whether he/she is in productive age -

between 18 and 70 years old.

The task can be solved following:

var age = 22;

if (age >= 18) // first condition is met

 // we verify whether the age is also less then the upper boundary

 if (age <= 70) // both of the conditions are met

If Command| FITPED

39

 alert("he/she is in productive age");

A simple notation makes it possible to write both notations into a one complex condition.

We use a logical connector AND (we use & in Java) to secure that both conditions have to

be met at the same time.

if ((age >= 18) && (age <= 70))

We put into the brackets each conditions as well as the whole expression.

 3.2.8

Fill in the expression so that it is true if both conditions are met at the same time:

var month = 7;

if ((month >= 6_____ _____ (month <= 9_____

 alert("summer");

 3.2.9

In some cases it is necessary that only one condition needs to be met. In that case is used

logical connector OR written using the symbol ||.

if ((a>0) || (b<0))

Evaluation of the expression is true if at least one of the conditions is met, i.e. it is enough if

a > 0 or b < 0.

If both conditions are met, the expression is also true.

Except the || operator can be used the alternative operator |. Between the |

and || operators is the difference that || will end the evaluation of the logical

expression in the moment it finds out that the condition is not true and the

following evaluation does not have effect on the result, where | evaluates till

the end.

The same rules apply to & and &&.

If Command| FITPED

40

 3.2.10

Fill in the code so that it print whether the time (defined in hours 0-23) corresponds to day

or night. Day is from 6 till 18.

var time = 16;

if (time _____ 6) _____ (time _____ 18))

 alert("_____")

 alert("_____")

¶ >=

¶ else

¶ day

¶ ||

¶ <=

¶ night

Loops

Chapter 4

Loops| FITPED

42

4.1 FOR loop

 4.1.1

If we need to repeat a command or sequence of commands multiple times, we can use a

loop. For example, to display 5-times message with the text "Hello" it will look like this:

alert("Hello");

alert("Hello");

alert("Hello");

alert("Hello");

alert("Hello");

But a much more logical option is to do this through a loop:

for(var i = 1; i <= 5; i++){

 alert("Hello");

}

 4.1.2

The loop is defined by the for statement as follows:

for(var i = 1; i <= 10; i = i + 1) { // loop control

 command; // loop body, list of commands to be executed

}

The individual parts of the for loop are as follows:

¶ for(é) – a loop statement defining a loop with a known number of repetitions

¶ i – control variable

¶ i = 1 – set the initial value for the variable

¶ i <= 10 – condition until which the loop will be executed; as long as the condition is

true, the statement is executed in the body of the loop; if the condition is not true,

the cycle ends

¶ i = i + 1 – loop step, after executing the body of the loop, the value of the control

variable will always change according to the entry, i.e. it is incremented by 1.

Typically, the replacement is shorter: i++.

Loops| FITPED

43

The run of the loop is controlled by an integer control variable, which is initially set to the

default value and changes at each step of the loop. If the condition of a loop is not valid as

a result of a variable change, execution of commands after the cycle is continued.

 4.1.3

Complete the program so that the text "Hello" is displayed 3 times.

_____(var i = 1; i <= _____; i++){

 alert("Hello");

}

 4.1.4

The value contained in the control variable can be used in the loop for any operation.

As an example, we use a program for listing numbers from 1 to 10. We also used the control

variable i in the body of the loop and included it in the variable output, which we report

using the alert() function at the end of the loop.

var output = "";

for(v ar i = 1; i <= 10; i++){

 output = output + i + ",";

}

alert(output);

As you execute the loop, each step adds a value to the text variable that contains i, followed

by a comma.

For individual i the content of the variable output will be as follows:

¶ 1 - 1, - to the empty variable output is added the value 1 and a comma

¶ 2 - 1,2, - to the content of the variable output (1,) is added the content i, i.e. 2 and

comma

¶ 3 - 1,2,3, - to the content of the variable output (1,2,) is added the content i, i.e. 3

and comma

¶ 4 - 1,2,3,4 - to the content of the variable output (1,2,3) is added the content i, i.e. 4

and comma

¶ ...

Loops| FITPED

44

¶ 10 - 1,2,3,4,5,6,7,8,9,10 and it ends.

 4.1.5

Fill in the correct values and variables in the program so that the program lists numbers from

5 to 15.

var output = "";

for(var i = _____; i <= _____; i++){

 output = output + _____ + ", ";

}

alert(output);

 4.1.6

How many times the following loop puts the word "Hello" in the variable output?

var output = "";

for(var i = 1; i < 5; i++){

 output = output + "Hello, ";

}

alert(output);

¶ 4 times

¶ 5 times

¶ 0 times

¶ 6 times

 4.1.7

Although most of loops use a change of 1 (i.e. i ++ or i = i + 1) to change the value of the

control variable, there are no limitations on its ability to change it. You can decrease the

value, change it by another value, multiply it, etc.

Here are three solutions for listing all even numbers from 2 to 100.

Increasing the control variable by 2.

var output = "";

for(var i = 2; i <= 100; i = i + 2){

 output = output + i + ", ";

Loops| FITPED

45

}

alert(output);

Multiplying the control variable by 2.

var output = "";

for(var i = 1; i <= 50; i = i + 1){

 output = output + (i * 2) + ", ";

}

alert(output);

... and other variations we could find more.

 4.1.8

Complete parts of the for loop so that the script lists all powers (multiples) of two from 2 to

1024.

var output = "";

for(var i = 2; i _____ 1024; i = i _____ 2){

 output = output + i + ", ";

}

alert(output);

 4.1.9

Complete parts of the for loop so that the script prints numbers from 10 to 1 from largest

to smallest (i.e. 10, 9, 8,…, 2,1).

var output = "";

for(var i = _____; i >= 1; i = i _____ 1){

 output =output + i + ", ";

}

alert(output);

 4.1.10

What does the following code print on the screen?

var output = "";

for(var i = 1; i < 3 ; i = i + 1){

Loops| FITPED

46

 output = output + i + ", ";

}

alert(output);

¶ numbers 1 and 2

¶ mumbers 1, 2, and 3

¶ nothing

¶ numbers 2 and 3

¶ number 2

4.2 While and do-while

 4.2.1

Sometimes we do not know how many times the loop will have to be repeated, but we can

determine the condition by which the loop should be repeated. E.g.: while you are hungry,

eat a cupcake.

In this case, the execution of the loop can be ensured through the while statement and the

condition that the execution of the statements in the body of the loop will be executed.

The start of a condition loop is:

while (condition) {

 command;

}

The condition must be enclosed in brackets.

 4.2.2

Complete the parts of the loop with a start condition:

_____ ____ _condition_____ _____

 // commands;

¶ }

¶ if

¶)

¶ while

Loops| FITPED

47

¶ {

¶ (

¶ do

¶ for

 4.2.3

The while loop will execute the commands defined in the loop until the defined condition

is valid.

For example:

var weight = 80;

while (weight < 100){

 alert("Eat!");

 weight = weight + 5;

}

alert("Ooh, I gained weight");

... increases the value of the variable weight (and prints "Eat!") until it is less than 100.

 4.2.4

What will be in the variable i after the loop ends?

var i = 5;

while (i < 100) {

 i = i * 2;

}

 4.2.5

The while loop can solve similar problems than the for loop, and can do the same as the

for loop if properly written.

In this case, it displays values 1-10.

var i = 1;

var output = '';

Loops| FITPED

48

while (i <= 10) {

 output = output + i + ", ";

 i++;

}

alert(output);

If you forget to change (increase) the variable even used in the state, the loop

will never end. This will cause the browser to crash.

 4.2.6

What does the following script do?

var i = 1;

while (i > 10) {

 alert("Hello")

 i++;

}

¶ Nothing

¶ Prints "Hello" 10 times

¶ Prints "Hello" 9 times

¶ Prints "Hello" once

¶ Prints "Hello" 11 times

 4.2.7

Write a script that prints the sum of numbers from 1 to 20.

sum = 0;

number = 1;

while (_____ <= _____) {

 sum = _____ + number;

 number_____;

}

alert("Sum of the first 20 numbers are: " + sum);

¶ number

¶ 21

¶ +

¶ 19

Loops| FITPED

49

¶ sum

¶ ++

¶ 20

¶ number

 4.2.8

The do-while loop executes a block of code and then checks whether the condition is valid.

Then, the code block execute the repetition as long as the condition is valid.

This kind of loop does the activity as long as the condition is valid - but in the order that it

first does, then checks e.g. Eat the cake while you're hungry.

The form is:

do {

 command1;

 ...

 commandn;

} while (condition);

e.g.:

int i = 1;

do {

 alert(i);

 i = i + 1;

} while (i < 5);

The main difference from other loops is that the commands in the body of the loop are

executed at least once. Only after their first execution it is checked whether the repetition

should be continued.

 4.2.9

Complete the program so that it prints even numbers between 1-33.

var number = 1;

var end = 33;

_____ {

Loops| FITPED

50

 if (number _____ 2 == _____)

 alert(number);

 number++;

} _____ (number <= end);

¶ 1

¶ while

¶ if

¶ 0

¶ /

¶ %

¶ for

¶ -1

¶ do

 4.2.10

Ensure that the 5 liter pot is filled with 1 liter jars until full.

var number_of_jars = 0;

do {

 alert("Pour!");

 number_of_jars++;

} while(number_of_jars < 6)

alert("Full pot");

 4.2.11

Complete the program so that the do-while loop prints numbers from 1 to 50

var output = '';

var i = 1;

_____{

 output = output + i + ',';

 i++;

}

_____(i <= _____)

alert(output);

Loops| FITPED

51

4.3 Cycles (programs)

 4.3.1

Fill in the code to show the values from 5 to 9:

for(i = _____ ; i < _____; i = i _____ 1) {

 alert(i);

}

 4.3.2

Make sure that the loop terminates:

for(var i = 10 ; i >= 5; i = i _____ 1) {

 alert(i);

}

 4.3.3

Calculate the sum of the first 1000 positive numbers.

var sum = 0;

for(_____ i = _____; i <= _____; i_____) {

 sum = _____ + i;

}

alert(sum);

 4.3.4

Calculate the product between numbers stored in variables a and b where a < b.

var a = 10;

var b = 15;

var prod = _____;

for(var i = _____; i >= _____; i --) {

 prod = _____ * i;

}

alert(prod);

Loops| FITPED

52

 4.3.5

Fill in the code so 8 dots are printed:

var i = 4 ;

var result = "";

_____ (i <= _____) {

 result = result + ".";

 i = i + 1;

}

alert(result);

 4.3.6

Fill the gaps in program to get the number of divisors of the number stored in variable num.

var num = 12;

var count = _____;

for(var i = 1; i <= _____; i++) {

 if (num _____ i _____ 0)

 count_____;

}

alert(count);

¶ count

¶ i

¶ --

¶ 1

¶ ==

¶ -1

¶ ++

¶ num

¶ !=

¶ /

¶ 0

¶ %

 4.3.7

Fill the gaps in program to identify if the number stored in variable num is a prime number.

var num = 47;

Loops| FITPED

53

var count = 0;

for(var i = 1; i <= num; i++) {

 if (num _____ i _____ 0)

 count++;

}

if (count == _____)

 alert("is prime number");

else

 alert("is not prime number");

String

Chapter 5

String| FITPED

55

5.1 String type

 5.1.1

String is a basic data type in JavaScript. It consists of serie of characters like "I am hungry".

In addition to the ability to keep text, it provides options for browsing content, retrieving

part of the stored text, counting characters, and more. Strings are written with quotes and

you can use both: single or double quotes.

The most simple operation is getting the number of characters of the saved content. We get

it using the length method.

The method is separated from the name using the dot ".":

var data = "I am hungry";

var count = data.length;

alert(count);

Into the variable count is saved the number of characters that are contained in the

variable data, i.e. it's 11.

 5.1.2

What is the result of the following code. What value is stored in the variable len?

var data = "I want dog, cat and car.";

var len = data.length;

alert(len);

 5.1.3

Complete the code below:

var _____ = "Jan";

alert("Your name consists of " + name._____ + " chars.");

String| FITPED

56

 5.1.4

The string consists of characters. Each character has its place in the string that is defined by

the index. JavaScript indexes start from zero.

The first character in string is on the position 0, second is on the position 1, etc. The last

character is places on the position decreased by one from the whole count of characters in

string.

E.g. for:

var data = "Superman";

are characters placed on each position following:

0 - S

1 - u

2 - p

3 - e

4 - r

5 - m

6 - a

7 - n

 5.1.5

Type character on position 7 in string defined as:

var data = "It is cold here."

 5.1.6

If we want to read a specific character on specific position, we use the following code:

var data = "It is cold here.";

var character = data[7];

The variable character cointains 'o'.

The position of the character we want to get is written to [].

String| FITPED

57

 5.1.7

Type the content stored in the variable x after the end of the next part of the program:

var data = "Alphabet in computer."

var result = data[3] + data[5] + data[8] + data[13] + data[15] ;

 5.1.8

If we want to compare strings, the character 'A' is not the same as the character 'a'.

Therefore, when writing the code we must be careful and write code for both both

situations:

Check if the first letters of strings in variable a is 'h'.

var a = "Hell o.";

if (a[0] == 'h' || a[0] == 'H')

 alert("yes, it is");

else

 alert("no, it is not");

Alternatively, you can use transformation to convert text to uppercase or lowercase.

The notation takes the form:

var a = "Hello.";

var low_a = a.toLowerCase(); // hello.

If we want edit only condition, we can use:

var a = "Hello.";

if (a[0].toLowerCase() == 'h') // one character is converted

 alert("yes, it is");

else

 alert("no, it is not");

Alternative toLowerCase() is toUpperCase() working under the same

rules.

String| FITPED

58

 5.1.9

Fill the gap in code to check if the first characters in variables a and b are the same.

var a = "Hello.";

var b = "hello.";

if (a[_____]._____ _____ b[_____]._____)

 alert("the same");

else

 alert("different");

¶ 0

¶ ==

¶ toLowerCase()

¶ =

¶ 0

¶ 1

¶ toLowerCase()

¶ toUpperCase()

¶ !<>

¶ 1

5.2 Substring

 5.2.1

We often need to get from the string not only one character but a substring. To obtain the

part of the string is used:

¶ substr method, where is defined the beginning position and count of characters after

this position,

¶ substring method, where is defines the beginning position and the ending position

of the substring. Character chosen at the ending position is not counted to the

substring. The method takes into account the characters from the beggining position

to the character before the ending position:

 var str = "Sagarmatha";

 var res = str.substr(2, 5); // garma 2,3,4,5,6 (5 chars)

 alert(res);

String| FITPED

59

 var res = str.substring(2, 5); // gar 2,3,4 (chars 2 to 5 - 1=4)

 alert(res);

The substring method has also a second form. In the case when we input only one parameter

it will return a substring from the given position till the end of the string.

 var str = "My long string";

 alert(str.substring(8)) // string

 5.2.2

What is the result of the following code. What is a value of the variable result?

var str = "New York City";

var res = str.substring(4, 6);

 5.2.3

What is the result of the following code. What is a value of the variable result?

var str = "Don Quijote de la Mancha";

var res = str.substring(12);

 5.2.4

Fill the gaps to get first and last character of content stored in string variable.

 var str = "My long string";

 var first = str[_____];

 var last = str[str._____ - _____];

 alert(first + last); // Mg

 5.2.5

The occurence of the substring in existing string is verified by the indexOf() method and

returns the position where the substring is placed.

var text = "Jan Amos Comenius";

var pos = text.inde xOf("Amos");

String| FITPED

60

The variable pos will contain the value 4 because on the 4th position was first found the

beginning of the searched substring.

In case that the searched substring is not found in the string, it returns the value -1. This can

be used to notify the user.

 var text = "Jan Amos Comenius";

 var pos = text.indexOf("abc");

 if (pos == - 1)

 alert("Substring was not found.")

 else

 alert("Substring beginns at position " + pos + ".");

 5.2.6

Complete the code to find if first string contains second string or second string contains first

one:

 var first = "winter is nice";

 var second = "nice";

 var pos = _____.indexOf(_____);

 if (pos > _____)

 alert("first contains second")

 else

 alert("first doesn't contains second");

 var pos2 = _____.indexOf(_____);

 if (pos2 _____ - 1)

 alert("second doesn't contains first")

 else

 alert("second contains first");

¶ -1

¶ second

¶ 0

¶ >=

¶ second

¶ first

¶ 1

¶ first

¶ ==

String| FITPED

61

 5.2.7

What is the result of the following code written in alert?

var a = "New York";

var b = "or";

alert(b.indexOf(a));

 5.2.8

Complete the code to find the initials of the name stored in the variable name. The initials

always start after the space:

var name = "don Quijote de la Mancha";

var initials = _____; // prepare empty inicials

do { / / al least one initial must be in name

 initials = initials + name[_____]; // first character is initial

 var pos = name.indexOf(_____); // separator of names

 if (pos > _____) // if there is some space delete part to space

 name = name._____(___ __); // copy string from char after space

} _____ (pos > _____) // while was space in name

alert(initials);

¶ pos

¶ 0

¶ -1

¶ pos + 1

¶ pos - 1

¶ 1

¶ 0

¶ 1

¶ -1

¶ 0

¶ while

¶ substring

¶ " "

¶ substr

¶ ""

String| FITPED

62

 5.2.9

We need to transform string to number sometimes. The parseInt() function parses a string

and returns an integer.

E.g.:

var sNum = "100";

var num = parseInt(sNum);

alert(sNum + sNum) ; // 100100

alert(num + num) ; // 200

If the first character cannot be converted to a number, parseInt() returns

NaN. If some of next characters cannot be converted parseInt return only a

converted part e.g. parseInt("12a3") returns 12.

To check the result of conversion we use isNan(variable).

The reverse conversion can be achieved by adding the numerical value to the string value

(e.g. empty string).

var num = 10;

var sNum = "" + num;

 5.2.10

Complete the following program. if the number is stored in the variable, write his double

side otherwise, request it to be re-entered.

var a = "105";

var num = _____(a);

if (_____(num))

 alert("try again");

else

 alert(num*2);

String| FITPED

63

5.3 String (programs)

 5.3.1

Complete the code that will create a mirror image of the given text, e.g.:

Mother - > rehtoM

winter - > retniw

var text = "Aladin";

var res = "";

var character = "";

for(var i = 0; i < text._____; i++) {

 character = text.substring(i,_____);

 res = _____ + _____; // the char is put before string

}

alert(res);

 5.3.2

Complete the following code and find out how many times is the digit 7 repeated in the

given string.

var text = "676776";

var count = 0;

var character, num;

for(var i = 0; i < text._____; i++) {

 character = text._____(i,_____);

 if (character _____ "7")

 count++;

}

alert(count);

 5.3.3

Complete the code that returns the count of the digits stored in string variable.

var text = "125a4as0";

var count = _____;

var character, num;

for(var i = 0; i < text.length; i++) {

String| FITPED

64

 character = text.substring(_____,_____);

 num = parseInt(character);

 if (!_____(num))

 count++;

}

alert(count);

 5.3.4

Complete the code that returns the digits sum of the number you entered.

Input : 123

Output: 6

var text = "12548";

var sum = _____;

var character, num;

for(var i = 0; i < text._____; i++) {

 character = te xt._____(i,i+1);

 num = _____(character);

 sum = sum + _____;

}

alert(sum);

¶ character

¶ substring

¶ length()

¶ 1

¶ parseInt

¶ num

¶ substr

¶ 0

¶ length

¶ int

 5.3.5

Complete the code that returns the digits product of the number you entered.

Input : 123

Output: 6

String| FITPED

65

var text = "12548";

var prod = _____;

var character, num;

for(var i = 0; i < text._____; i++) {

 character = text._____(i,i+1);

 num = _____(character);

 prod = prod * _____;

}

alert(prod);

Arrays

Chapter 6

Arrays| FITPED

67

6.1 Arrays

 6.1.1

More than 90 % application need for their work some lists. The example of lists are: people,

invoices, cars, meassured values, etc.

The most simple list that we have already worked with is string - it contains of the list of

characters ordered into a string that allows reading, adding, deleting, etc.

The access to specific characters of the list was secured through index:

var str = "Aladin"

str[0] - A

str[1] - l

str[2] - a

str[3] - d

str[4] - i

str[5] - n

 6.1.2

What is the result on output of program?

var str = "South America";

alert(str[str.length - 2]);

 6.1.3

To create lists of data of the same type is used the data type array. We can create array

with values using:

var cars = ["Audi", "Peugeot", "BMW"];

or

var cars = new Array("Audi", "Peugeot", "BMW");

The access to each element is done using index where the first value is saved at position 0,

e.g.:

Arrays| FITPED

68

alert(cars[0]); // Audi

alert(cars[1]); // Peugeot

alert(cars[2]); // BMW

 6.1.4

What is the result on output of program?

var cars = [" Audi", "Peugeot", "BMW"];

alert(cars[0]+cars[2]);

 6.1.5

The last element in array has the index numberOfElements - 1. We can get the number

of element using array.length, e.g.

var cars = ["Audi", "Peugeot", "BMW"];

alert(cars.length); // 3

During the execution of the program can be the value of the element changed following

way:

cars[0] = "Suzuki";

 6.1.6

What is the result on output of program?

var numbers = [1, 2, 3, 8, 9, 7, 5];

for(var i = 0; i < numbers.length; i++) {

 numbers[i] = num bers[i] + i;

}

alert(numbers[3] + numbers[5]);

 6.1.7

To add new element into array we have two ways:

Arrays| FITPED

69

The simplest way is to use push to add new element to the end of array:

var data = [10, 20, 30, 50];

data.push(321); // [10, 20, 30, 50, 321];

 6.1.8

Fill the gap in the code to add new element to the end of array and show the list of element

in alert:

var data = ["A", "B", "C", "D", "E"];

data._____("X"); // add new element to the end of array

var res = "";

for(var i = 0; i < data._____; i++) {

 res = res + data[i] + ",";

}

alert(res); // list of elements separated by comma

 6.1.9

The second way allows to set the i-th element to new value.

If we use the index immediately following the index of the last element, new element after

last one will be added.

var myInputs = ["A", "B", "C", "D", "E"];

myInputs[5] = "F"; // A B C D E F

If we use the the index not immediately following the index of the last element, new element

will be added and elements between last and new element will set to undefined.

var myInputs = ["A", "B", "C"];

myInputs[5] = "X"; // A B C undefined undefined X

 6.1.10

Fill the gap in the code to add new element after the end of array to achieve following result:

A, B, C, D, E, undefined, X

Arrays| FITPED

70

var data = ["A", "B", "C", "D", "E"];

data[_____] = "X";

var res = "";

for(var i = 0; i < data.length; i++) {

 res = res + data[i] + "_____";

}

alert(res);

6.2 Arrays processing

 6.2.1

The arrays in JavaScript can contain different types of values, e.g.:

var data = ["Paris", "Franc e", - 8000, 105, 2148271];

where the data represents name, country, year of foundation, area and population.

To get data we use a familiar approach:

data[0] .. data[4]

 6.2.2

Fill the gap to achieve a population of Madrid.

var data = ["Madrid", "Spain", 900, 605, 3165541];

alert(_____[_____]);

 6.2.3

Useful method to prepare output with arrays elements is toString(). The method converts

an array to a string of comma separated array values.

var data = ["Anna", "Ivan", "Juanita", "George", "Dieter"];

alert(data.toString()); // Anna,Ivan,Juanita,George,Dieter

Arrays| FITPED

71

The join() method creates output of all array elements, but we can specify the separator

too, e.g.:

var data = ["Anna", "Ivan", "Juanita", "George", "Dieter"];

alert(data.join(" - ")); // Anna - I van - Juanita - George - Dieter

 6.2.4

Use methods toString() and join() to achieve following outputs:

var data = ["A", "B", "C", "D", "E"];

alert(data._____); // A,B,C,D,E

alert(data._____(_____)); // A, B, C, D, E

alert(data._____(_____)); // A , B , C , D , E

alert(data._____(_____)); // A - B - C - D - E

¶ " , "

¶ ","

¶ toString

¶ " - "

¶ join

¶ toString()

¶ tostring

¶ ", "

¶ toString()

¶ ", "

¶ join

¶ join

 6.2.5

The pop() method removes the last element from an array:

var data = ["A", "B", "C", "D", "E"];

data.pop(); // A, B, C, D

Arrays| FITPED

72

 6.2.6

What is the result of following code? What content is stored in variable res after its

execution?

var data = ["A", "B", "C"];

data.pop();

data.push("X");

data.push("Y");

data.pop();

data.push("Z");

var res = data.join(",")

alert(res);

 6.2.7

Method splice() is used for:

¶ adding new element(s) into array to any position,

¶ remove existing element(s) from any position.

To add elements is simple:

var data = ["A", "B", "C", "D", "E"];

data.splice(3,0,"X","Y"); // A,B,C,X,Y,D,E

¶ The first parameter (3) defines position where new elements (defined later) will be

inserted.

¶ The second parameter (0) is used for deletion - not intresting for us now.

¶ Next parameters (any count) defined elements for insertion.

In code we add new elements starting from position 2.

 6.2.8

Update the array to achieve result A, B, X, Y, Z, C, K, L, D, E, F.

Arrays| FITPED

73

var data = ["A", "B", "C", "D", "E"];

data._____(_____, 0, "X", "Y", "Z");

data._____(_____, 0, "K", "L");

data._____(_____, 0, "F");

 6.2.9

Method splice() can be used for removing elements:

To remove elements is simple:

var data = ["A", "B", "C", "D", "E"];

data.splice(1,2); // A,D,E

¶ The first parameter (1) defines position where to start with deletion.

¶ The second parameter (2) defines how many elements we want to delete.

¶ Parameters for insertion we don't define now.

In code we removed 2 elements starting on position 1.

 6.2.10

Update the array to achieve result A, B, C, F.

var data = ["A", "B", "C", "D", "E", "F"];

data._____(_____, _____);

 6.2.11

We can use a combination of removing and inserting (replacing) elements.

In the same splice () command, we can remove elements started at the defined position and

later add elements placed from the same position.

The structure of command is as follow:

var data = ["A", "B", "C", "D", "E"];

data.splice(1, 2, "X", "Y", "Z"); // A, X, Y, Z, D, E

Arrays| FITPED

74

¶ The first parameter (1) defines position where to start with deletion.

¶ The second parameter (2) defines how many elements we want to delete.

¶ Parameters for insertion are three and they are inserted from position 1 in array.

In code we removed 2 elements and added 3 elements. Both operaion started at position 1

 6.2.12

Update the array to achieve result A, B, X, Y, F.

var data = ["A", "B", "C", "D", "E", " F"];

data.splice(_____, _____, "_____", "_____");

6.3 Arrays (programs)

 6.3.1

Complete the program that prints the number of occurrences of a given value in the given

array.

var data = [10, 5, 15, 5, 7, 11, 5];

var el = 5

var count = _____;

for(var i = 0; i < data._____; i++) {

 if (data[_____] _____ el)

 count_____;

}

alert(count);

 6.3.2

Complete the code that prints the largest value of the given array.

var data = [10, 5, 15, 5, 7, 11, 5];

var max = data[0];

for(var i = _____; i < data._____; i_____) {

 if (data[i] > _____)

Arrays| FITPED

75

 max = data[_____];

}

alert(max);

 6.3.3

Complete the code that calculates the average value of a given array.

var data = [10, 5, 15, 5, 7, 11, 5];

var sum = 0

for(var i = 0; i < data._____; i++) {

 sum = sum _____ data[_____];

}

var avg = sum/data._____;

alert(avg);

 6.3.4

Complete the code that prints all the array elements divisible by a given value for the given

integer array.

var data = [6, 24, - 8, - 12, 21, 7, 4, 4];

var number = 4;

var res = "";

for(var i = 0; i < data._____; i++) {

 if (data[i] _____ number _____ _____)

 res = res + data[i] + ",";

}

alert(res);

 6.3.5

Complete the program to create a new array based on the data from the default array. Copy

only items containing the specified string.

var data = ["Madrid", "Paris", "Stockholm", "London", "Florida"];

var search = "ri";

var new_array = _____; // empty array definition

var res = "";

for(var i = 0; i < data._____; i++) {

 if (data[i]._____(search) > - 1)

 new_array._____(data[i]);

Arrays| FITPED

76

}

alert(new_array.toString());

Functions

Chapter 7

Functions| FITPED

78

7.1 Functions

 7.1.1

A function is a fragment of code (a set of statements), which can be called by code external

to the function. Functions can also be called internally in case of recursion.

A function has a name, body, and parameters.

function myFunction(par1, par2) {

 // body of function

}

The name identifies the function within an application. Simply defining a function does not

execute it; we need to call it. Calling a function actually performs the specified code

statements from the function body with the indicated parameters.

...

myFunction(1,2)

Moreover, each function returns a value. The default return value is undefined, but you can

change it by using the keyword return.

There are also functions without names, we call them anonymous

functions and they will be described in the next sections.

In JavaScript, functions are objects (they are prototypes of

the Function object), which means you can add new properties and methods

to them. However, functions can be called, and this is what distinguishes

them from other objects. Functions have an important role in JavaScript

because they create new variable scopes.

 7.1.2

Complete the function structure:

_____ _____(_____) _____

}

Functions| FITPED

79

¶ parameter

¶ {

¶ // function body

¶ function

¶ functionName

 7.1.3

What does the below function return?

function foo() {

 alert('Fitped');

}

¶ undefined

¶ Fitped

¶ null

 7.1.4

The first way of defining a function is a function declaration. The function declaration

starts with the function keyword, followed by a function's name, a list of parameters, and

code statements enclosed in curly brackets {}. See the basic code below:

function functionName(parameter1, parameter2) {

 statements;

}

As you can see, the list of parameters to the function is enclosed in parentheses and

separated by commas. Parameters are input data, and we use them to pass values for the

function's code. Parameters are also called arguments. Let's start with the declaration of a

very basic summation function:

function sum(a, b) {

 return a + b;

}

sum(1, 2); // 3

The above function adds two numbers and returns the result of this summation.

Functions| FITPED

80

 7.1.5

What is the result of this code:

function process(a, b) {

 return a * b + 5 - b;

}

process(10, 2); // ???

 7.1.6

The console.log function is a procedure that allows displaying values in the console.

The function is available either in every modern browser (use the F12 key to

open it) or the Node.js interpreter.

Functions must be in scope when they are called, but the function declaration can be

hoisted, which means you can call a function before its declaration. Note, this works only

for named functions with functions declarations. See the example below:

console.log(sum(1, 2)); // 3

function sum(a, b) {

 return a + b;

}

The scope of a function is the function in which it is declared, or the entire program if it is

declared at the top level.

 7.1.7

Complete the code to output the function result to the console:

function process(a, b) {

 return a * b;

}

Functions| FITPED

81

_____._____(sum(5, 8)); // 40

 7.1.8

The second method of defining a function is a function expression. A function is just a

value and can be assigned to a variable:

let foo = function (a, b) {return a * b};

After a function expression has been stored in a variable, the variable can be used as a

function. A function expression stores in a variable does not require a name; hence, we call

it an anonymous function.

console.log(foo(5, 3)); // 15

There are several different ways that function expressions become more useful than

function declarations:

¶ using them as closures,

¶ using them as arguments to other functions,

¶ using them as Immediately Invoked Function Expressions (IIFE).

 7.1.9

Complete the function as expression:

_____ sum = _____ (a, b) {_____ a + b};

¶ funct

¶ let

¶ func

¶ run

¶ def

¶ function

¶ return

Functions| FITPED

82

7.2 Function parameters

 7.2.1

Function parameters is the list of variable names listed in the function definition,

whereas arguments are the real values passed to (and received by) the function.

function foo(parameter1, parameter2, parameter3) {

 // ...

}

A JavaScript function definition does not specify data types for parameters (it can be done

in other languages like TypeScript) and hence does not perform type checking on the passed

arguments.

JavaScript functions do not even check the number of arguments received.

If a function is called with missing arguments (less than declared), the missing values are set

to: undefined.

function foo(parameter1, parameter2, parame ter3) {

 console.log(parameter1);

 console.log(parameter2);

 console.log(parameter3);

}

foo(1, 2); // 1 2 undefined

 7.2.2

What is the name of the special object that contains all values passed to a function?

¶ arguments

¶ variables

¶ parameters

 7.2.3

Does it need to specify a data type of parameters in the function header?

¶ no

Functions| FITPED

83

¶ yes

 7.2.4

In the newer version of JavaScript, it is allowed assigning default parameter values in the

function declaration:

function foo(parameter1, parameter2, parameter3=3) {

 console.log(parameter1);

 console.log(parameter2);

 console.log(parameter3);

}

foo(1, 2); // 1 2 3

If a function is called with too many arguments (more than declared), these arguments can

be reached using the arguments object. The argument object contains an array of the

arguments used when the function was called (invoked):

function foo() {

 console.log(arguments);

}

foo(1, 2, 3); // [1, 2, 3]

 7.2.5

Given the following code, what will be the console output when foo() is executed?

function foo(a, b, c) {

 console.log(a + b + c);

};

foo('a ', 'b ');

¶ a b

¶ a b undefined

¶ a b c

 7.2.6

Fill the gaps in the code to achieve output:

Functions| FITPED

84

1

8

2

Code:

function foo(parameter1_____, parameter2_____, parameter3_____) {

 console.log(_____);

 console.log(_____);

 console.log(_____);

}

foo(1, 2);

¶ parameter3

¶ parameter2

¶

¶ = 8

¶ parameter1

¶

 7.2.7

Fill the gaps in the following code:

_____ foo(a, b=_____) {

 _____ a*b;

}

console.log(foo(5)); // should be 15

 7.2.8

Arrow functions are a more concise syntax for writing function expressions. There are

several syntaxes available for declaring arrow functions:

let foo = (parameter1, parameter2, ..., parameterN) => { statements }

let foo = (parameter1, parameter2, ..., parameterN) => expression

// equivalent to: => { return expression; }

// Parentheses are optional when there's only one parameter name:

let foo = (singleParameter) => { statements }

let foo = singleParameter => { statements }

// The parameter list for a function with no parameters should be written

with a pair of parentheses.

Functions| FITPED

85

let foo = () => { statements }

 7.2.9

Fill the gaps in the following code:

let foo = (a,b) _____ a + b;

console.log(foo(10, 5)); // should be 15

Document Object Model

(DOM)

Chapter 8

Document Object Model (DOM)| FITPED

87

8.1 Introduction to DOM

 8.1.1

The DOM (Document Object Model) is a cross-platform and language-independent

interface that is an API for HTML and XML documents. The DOM represents the structure of

a document as a logical tree, wherein each node is an object representing a part of the

document.

Additionally, the DOM is the programming interface for events, aborting activities, and

accessing the tree, which can be used for changing the structure, style or content of the

document.

The DOM model is based on the W3C DOM standard, see this link if you want to learn

more about it.

The consecutive versions of the DOM specification are called DOM Levels. Each new level

of the DOM adds or changes specific sets of features.

¶ The DOM Level 1 defines the core elements of the Document Object Model.

¶ The DOM Level 2 extends those elements and adds events.

¶ The DOM Level 3 extends the DOM Level 2 and adds more elements and events.

¶ The DOM Level 4 was published in 2015. It was a snapshot of the DOM Living

Standard, which is the current standard.

 8.1.2

What is the meaning of DOM?

¶ Document Object Model

¶ Developer Object Model

¶ Development Object of Model

¶ Development Object Model

https://dom.spec.whatwg.org/

Document Object Model (DOM)| FITPED

88

 8.1.3

DOM is just an interface and not a ready-to-use library. In this section, the implementation

of DOM for web browsers will be described. It is known as the HTML DOM (the standard

model for HTML documents). It defines:

¶ the HTML elements as objects,

¶ the properties of all HTML elements,

¶ the methods to access all HTML elements,

¶ the events for all HTML elements.

We can say that the HTML DOM is a standard for how to get, change, add, or delete HTML

elements. Besides that, there are other standards like the Core DOM and XML DOM,

which are not explained in this course.

 8.1.4

Which of the following sentences are correct?

¶ The DOM was created especially for the CSS technology.

¶ The DOM is a programming interface.

¶ The DOM uses a queue structure for the document representation.

¶ The DOM allows handling events through the API.

¶ The DOM is a binary description of a web page.

 8.1.5

Select the parts defined in DOM

¶ HTML elements

¶ properties of HTML elements

¶ methods to access HTML elements

¶ events for HTML elements

¶ links to other web pages

¶ targets of links defined in the webpages

Document Object Model (DOM)| FITPED

89

 8.1.6

When a web page is loaded, the browser creates the Document Object Model (also known

as a DOM tree) - the browser needs to know the entire structure before building a tree. See

the example of HTML code below:

<!DOCTYPE html>

<html lang="en">

 <head><title>Sample title</title></head>

 <body>

 <h1>Sample header</h1>

 <p class="lead">A sample paragraph</p>

 </body>

</html>

The above code will produce the following DOM model:

As you can see, the structure consists of all elements from the original HTML code,

special #text nodes, which are in fact new-lines, tabs and spaces from the source code. You

can easily create more examples by using the following tool. The next cards in this section

will outline more details of the DOM tree.

 8.1.7

Is the following DOM tree is correct according to the code?

<!DOCTYPE html>

<html lang="en">

 <head><title>Sample title</title></head>

Document Object Model (DOM)| FITPED

90

 <body>

 <h1>Sample header</h1 >

 <p class="lead">A sample paragraph</p>

 <p>Click here.</p>

 </body>

</html>

¶ Yes

¶ No

 8.1.8

Is the following DOM tree is correct according to the code?

<!DOCTYPE html>

<html lang="en">

 <head><title>Sample title< /title></head>

 <body>

 <h1>Sample header</h1>

 <p class="lead">A sample paragraph</p>

 <p>Click here.</p>

 <p class="footer">Copyright © 20xx</p>

 </body>

</html>

Document Object Model (DOM)| FITPED

91

¶ No

¶ Yes

 8.1.9

Websites are built based on three technologies: HTML (HyperText Markup Language),

CSS (Cascading Style Sheets) and JavaScript. All of them are handled directly by a

browser (e.g. Chrome or Firefox).

The implementation of the HTML DOM in web browsers is written in JavaScript, so with

JavaScript code you can:

¶ change all the HTML elements in the page,

¶ change all the HTML attributes in the page,

¶ change all the CSS styles in the page,

¶ remove existing HTML elements and attributes,

¶ add new HTML elements and attributes,

¶ react to all existing HTML events in the page,

¶ create new HTML events in the page.

It is assumed that the reader is already familiar with basics of HTML and CSS.

Document Object Model (DOM)| FITPED

92

 8.1.10

The HTML DOM tree, wherein all HTML elements are defined as objects, can be accessed

through JavaScript.

The DOM programming interface for JavaScript is just a set of properties and methods of

each object. Properties of HTML elements are values that you can set or change, whereas

methods are actions you can perform on HTML elements.

The object document is the entry point for accessing the DOM API. In simple terms,

the document object is the root of the DOM tree. Each node in the tree has its own type

that provides properties and methods proper for the element represented by the node. See

the below image to learn more about JavaScript's DOM class hierarchy.

There are 12 node types, but in practice, we usually work with 4 of them:

¶ Document (the document object)

¶ Element (HTML elements);

¶ Node (more general type than element);

¶ Text/comment.

 8.1.11

What are the most used elements of DOM

¶ document

Document Object Model (DOM)| FITPED

93

¶ element

¶ node

¶ text/comment

¶ picture

¶ common object

¶ page of web

 8.1.12

Look at the below example of using the DOM API. Let's have the following code:

<p class="lead">A sample paragraph</p>

We can modify the HTML structure with the API:

document.querySelector('.lead').id = 'test';

The modified version of the code after the execution of the above JavaScript code:

<p id="test" class="lead">A sample paragraph</p>

In order to use the DOM API, the logical structure of a page needs to be loaded completely.

To make sure that your JavaScript code will work properly, put your code before the end of

the <body> tag or use events (these will be explained later in this course).

You can press the F12 key to open the developer tools and depending on a browser, go to

the tab called HTML/Elements to check the DOM tree of the current page.

 8.1.13

Which key opens the developer console in modern web browsers?

¶ F12

¶ F11

¶ F10

Document Object Model (DOM)| FITPED

94

 8.1.14

The nodes in the DOM tree have a hierarchical relationship to each other. The terms: parent,

child, and sibling are used to describe connections between the nodes. See the example

below:

<!DOCTYPE html>

<html lang="en">

 <head><title>Sample title</title></head>

 <body>

 <h1>Sample header </h1>

 <p class="lead">A sample paragraph</p>

 </body>

</html>

¶ <html> is the root node.

¶ <html> has no parents.

¶ <html> is the parent of <head> and <body>.

¶ <head> is the first child of <html>.

¶ <body> is the last child of <html>.

¶ <head> has one child: <title>.

¶ <title> has one child (a text node): Sample title.

¶ <body> has two children: <h1> and <p>.

¶ <h1> has one child: Sample header.

¶ <p> has one child: Hello world!.

¶ <h1> and <p> are siblings.

 8.1.15

Fill the gaps to describe the following DOM tree:

Document Object Model (DOM)| FITPED

95

<!DOCTYPE html>

<html lang="en">

 <head><title>Sample title</title></head>

 <body>

 <h1>Sample header</h1>

 <p class="lead">A sample paragraph</p>

 <p>Click here.</p>

 <p class="footer">Copyright & copy; 20xx</p>

 </body>

</html>

¶ _____ is the root node.

¶ <body> has _____ children.

¶ <h1> has _____ child: Sample header.

¶ <p> is the _____ of <a>.

¶ one

¶ <head>

¶ parent

¶ click

¶ <html>

¶ </body>

¶ four

8.2 Document properties

 8.2.1

To access any element in an HTML page, you always start with accessing the document

object. The document object provides a set of properties and methods for manipulating

and finding objects in the tree.

The document object is easily accessible with the global variable document. See the

example below:

console.log(typeof document); // object

Document Object Model (DOM)| FITPED

96

The document properties provide access to the tree's elements. For

example document.body is a reference to the <body> element.

 8.2.2

What part of DOM provides access to the tree's elements?

¶ document properties

¶ document content

¶ document getters

 8.2.3

New nodes in the DOM tree (as well as in the structure of the document) can be created

with the method document.createElement({tag name}).

You should provide the tag`s name that you want to create, as an argument of the method.

document.createElement("p"); // creates a <p> element

document.createElement("a"); // creates a <a> element

document.createElement("button"); // creates a <button> element

After the element creation, use the parent.appendChild({new

element}) or parent.insertBefore({new element}, {existing element}) method to insert

it to the document. Let's have the following HTML code:

<!DOCTYPE html>

<html lang="en">

 <head><title>Sample title</title></head>

 <body>

 <h1>My content</h1>

 <script>

 var p = document.createElement("p");

 p.innerHTML = "Some text..."; // insert text

 document.body.appendChild(p);

 var q = document.createElement("p");

 q.innerHTML = "Some second text..."; // insert text

 document.body.appendChild(q);

 </script>

 </body>

</html>

Document Object Model (DOM)| FITPED

97

After execution, the document should be as follows:

MY CONTENT

Some text...

Some second text...

The parent.appendChild({new element}) method appends a node as the last child of a

node.

 8.2.4

Order the lines on the web page after script code execution:

<!DOCTYPE html>

<html lang="en">

 <head><title>Sample title</title></head>

 <body>

 <script>

 <script>

 var p = document.createElement("p");

 p.innerHTML = "My first text"; // insert text

 document.body.appendChild(p);

 var q = document.createElement("p");

 q.innerHTML = "My second text"; // insert text

 document.body.appendChild(q);

 </script>

 <p>Prepared content in paragraph</p>

 <script>

 var p = document.createElement("p");

 p.innerHTML = "My third text"; // insert text

 document.body.appendChild(p);

 </script>

 </script>

 </body>

</html>

¶ My third text

¶ Prepared content in paragraph

¶ My second text

¶ My first text

Document Object Model (DOM)| FITPED

98

 8.2.5

The following code:

var p = document.createElement("p");

p.innerHTML = "Some text...";

document.body.appendChild(p);

document.body.appendChild(p);

The above code will not add two <p> elements.

This is because the second call of the appendChild will try to add an element that is already

in the tree.

The solution for creating the same object twice is method element.cloneNode({deep}).

The code below:

var p = document.createElement("p");

p.innerHTML = "Some text..."; // insert text

document.body.appendChild(p);

var clonedP = p.cloneNode(true);

document.body.appendChild(clonedP);

The element.cloneNode({deep}) method creates a copy of a node, and returns the clone.

Set the deep parameter value to true if you want to clone all children, otherwise false.

 8.2.6

Order the lines on the web page after script code execution:

<!DOCTYPE html >

<html lang="en">

 <head><title>Sample title</title></head>

 <body>

 <script>

 var p = document.createElement("p");

 p.innerHTML = "Start line with text"; // insert text

 document.body.appendChild(p);

 var clone = p.cloneNode(true);

 document.body.appendChild(clone);

 </script>

Document Object Model (DOM)| FITPED

99

 <p>Prepared content in paragraph</p>

 <script>

 var p = document.createElement("p");

 p.innerHTML = "Last line with text"

 document.body.appendChild(p);

 </script>

 </body>

</html>

¶ Start line with text

¶ Prepared content in paragraph

¶ Start line with text

¶ Last line with text

 8.2.7

The following code inserts the element to the specific position:

<!DOCTYPE html>

<html lang="en">

 <head><title>Sample title</title></head>

 <body>

 <script>

 var p = document.createElement("p");

 p.innerHTML = "Some text..."; // insert text

 document.body.appendChild(p);

 var a = document.createElement("a");

 a.innerHTML = "Link";

 document.body.insertBefore(a, p);

 </script>

 </body>

</html>

After execution, the structure of the document should be as follows:

<a>Link

<p>Some text...</p>

 8.2.8

Order the lines on the web page after script code execution:

<!DOCTYPE html>

<html lang="en">

Document Object Model (DOM)| FITPED

100

 <head><title>Sample title</title></head>

 <body>

 <script>

 var a = document.createElement("p");

 a.inne rHTML = "1111111"; // insert text

 document.body.appendChild(a);

 var b = document.createElement("p");

 b.innerHTML = "2222222";

 document.body.insertBefore(b, a);

 var c = document.createElement("p");

 c.innerHTML = "3333333";

 document.body.insertBefore(c, a);

 var d = document.createElement("a");

 d.innerHTML = "4444444";

 document.body.insertBefore(d, b);

 </script>

 </body>

</html>

¶ 1111111

¶ 4444444

¶ 2222222

¶ 3333333

 8.2.9

The parent.appendChild({new element}) method appends a node as the last child of a

node.

The parent.insertBefore({new element}, {existing element}) inserts a new child node

before a specified, existing, child node.

The creation of nodes is not limited to HTML elements, you can also create a text node:

var h = document.createElement("h1"); // creates a <h1> element

var t = document.createTextNode("Sample header"); // creates a text node

h.appendChild(t); // appends the text to <h1>

The above code should produce the following HTML structure:

<h1>Sample header</h1>

Document Object Model (DOM)| FITPED

101

 8.2.10

Which of the following methods create new objects?

¶ parent.replaceChild

¶ document.createElement

¶ parent.removeChild

¶ parent.appendChild

¶ document.createTextNode

 8.2.11

Complete the code to achieve this structure:

Main header

text of paragraph

Header

<!DOCTYPE html>

<html lang="en">

 <head><title>Sample title</title></head>

 <body>

 <script>

 var ha = document._____("h1");

 var ta = document._____("Main header");

 var hb = document._____("h2");

 var tb = document._____("Header");

 var hc = document._____("p");

 var tc = document._____("text of paragraph");

 ha.appendChild(ta);

 hb.__ ___(tb);

 hc._____(tc);

 document.body.appendChild(hc);

 document.body.insertBefore(_____, _____);

 document.body.appendChild(_____);

 </script>

 </body>

</html>

¶ createElement

¶ hb

¶ createElement

Document Object Model (DOM)| FITPED

102

¶ createTextNode

¶ hc

¶ createTextNode

¶ appendChild

¶ createTextNode

¶ appendChild

¶ ha

¶ createElement

 8.2.12

Sometimes, you want to add several elements at the same moment. Adding them one by

one using appendChild is not efficient, because the DOM tree is reloaded after

each appendChild call. You should use

the document.createDocumentFragment() method instead.

var d = document.createDocumentFragment();

d.appendChild(document.createElement("h1"));

d.appendChild(document.createElement("p"));

document.body.appendChild(d);

The createDocumentFragment method creates an imaginary node, where you can

change, add, or delete, some of the content. These changes do not destroy the document

structure, so it can be safer to extract only parts of the document, modify them and insert

back to the document.

 8.2.13

Complete the code to achieve this structure using fragment document:

Main header

Header

text of paragraph

<!DOCTYPE html>

<html lang="en">

 <head><title>Sample title</title></head>

 <body>

 <script>

 var ha = document.createElement("h1");

Document Object Model (DOM)| FITPED

103

 var ta = document.createTextNode("Main header");

 var hb = document.createElement("h2");

 var tb = document.createTextNode("Header");

 var hc = document.createElement("p");

 var tc = documen t.createTextNode("text of paragraph");

 ha.appendChild(ta);

 hb.appendChild(tb);

 hc.appendChild(tc);

 var frag = document._____(); // create fragment

 frag._____(ha);

 frag._____(hb);

 frag._____(hc);

 document._____._____(frag);

 </script>

 </body>

</html>

¶ doc.appendChild

¶ doc.appendChild

¶ appendChild

¶ body

¶ appendFragment

¶ appendChild

¶ doc.appendChild

¶ fragment.appendChild

¶ fragment.appendChild

¶ createDocumentFragment

¶ fragment.appendChild

¶ appendChild

¶ appendChild

8.3 Accessing elements

 8.3.1

To access elements of the DOM tree, you can use several methods, i.e.:

¶ finding elements based on a document structure,

¶ finding elements based on CSS classes, HTML tags, IDs, and names,

¶ accessing elements based on pre-defined collections.

Document Object Model (DOM)| FITPED

104

Based on a web browser and used method, there are 3 possible outcomes:

¶ a NodeList object, which is a list (collection) of nodes (it can contain any type of

nodes, like text, elements, and so on);

¶ an HTMLCollection object, which is a list of elements limited to the Element type;

¶ a Node or Element type object.

All returned collections are sorted as they appear in the source code and can be accessed

by index numbers. The index starts at 0.

It is worth stressing that collections mentioned here are not arrays. You can

loop through them and refer to their nodes like an array, but you cannot use

methods, like valueOf(), push(), pop() or join().

 8.3.2

Is it true?

The elements of the DOM tree can be processed with some of array functions. It is possible

to achieve them using indexes.

¶ yes

¶ no

 8.3.3

Traversing the DOM tree means finding HTML elements based on their relation to other

elements. With traversing, you can move up (ancestors), down (descendants) and sideways

(siblings) in the DOM tree, starting from the selected (current) element.

Each element has build-in methods that allow accessing related objects.

The childNodes property returns a collection of a node's child nodes, as a NodeList object.

See the example below.

<!DOCTYPE html>

<html lang="en">

 <head><title>Sample title</title></head>

Document Object Model (DOM)| FITPED

105

 <body>

 <h1>Sample header</h1>

 <p>A sample paragraph</p>

 </body>

</html>

console.log(document.body.childNodes); // [text (new line and spaces), h1

eleme nt, text, p element, text]

A similar method to the childNodes is the children property, which returns a collection of

an element's child elements, as an HTMLCollectionobject, so the outcome of that method

will be limited to HTML elements only.

console.log(document.body.children); // [h1 element, p element]

We can easily access the first and last child of the specified element. The firstChild property

returns the first child node, whereas thelastChild property returns the last child node.

The firstChild and lastChild properties return the relevant node as a Node object.

console.log(document.body.firstChild); // text

console.log(document.body.lastChild); // text

To return HTML elements only, use the firstElementChild and lastElementChild property

instead.

console.log(document.body.firstElementChild); // h1 element

console.log(document.body.lastElementChild); // p element

Finally, the hasChildNodes() method returns true if the specified node has any child

nodes, otherwise false.

 8.3.4

In following html structure:

<!DOCTYPE html>

<html lang="en">

 <head><title>Sample title</title></head>

 <body>

Document Object Model (DOM)| FITPED

106

 <h1>My article</h1>

 <p>A sample paragraph</p>

 <h2>Second level</h2>

 </body>

</html>

choose the correct answers:

console.log(document.body.firstElementChild); // _____

console.log(document.body.lastElementChild); // _____

console.log(document.body.firstChild); // _____

console.log(document.body.lastChild); // _____

¶ h2

¶ h1

¶ text

¶ A sample paragraph

¶ p

¶ text

¶ My article

¶ Second level

 8.3.5

Let's have the following HTML structure:

<!DOCTYPE html>

<html lang="en">

 <head><title>Sample title</title></head>

 <body>

 <h1>Sample header</h1>

 <p>A sample paragraph</p>

 </body>

</html>

The nextSibling property returns the node immediately following the specified node, at

the same tree level.

console.log(document.body.firstChild.nextSibling);

// h1 element, the first child is a text node

Respectively, the nextElementSibling property returns the element immediately

following the specified element, in the same tree level.

Document Object Model (DOM)| FITPED

107

console.log(document.body.firstChild.nextSibling.nextElementSibling);

// p element, not a text node

Correspondingly, the previousSibling property returns the previous node of the specified

node and the previousElementSibling property returns the previous element of the

specified element, at the same tree level.

console.log(document.body.lastChild.previousSibling); // p element

console.log(document.body.lastChild.previousSibling.previousEl ementSibling

);

// h1 element

In order to access the parent node of the specified node, use the parentNode property,

which returns a Node object.

console.log(document.body.firstChild.parentNode);

// body

The parentElement property returns the parent element of the specified element.

 8.3.6

Let's have the following code:

<!DOCTYPE html>

<html lang="en">

 <head><title>Sample title</title></head>

 <body>

 <h1>Sample header</h1>

 <p class="lead">A sample paragraph</p>

 </body>

</html>

Which of the following methods return the <h1> element?

¶ document.firstChild

¶ document.firstElementChild

¶ document.firstChild.nextElementSibling

¶ document.lastChild.previousElementSibling

¶ document.parentNode

Document Object Model (DOM)| FITPED

108

 8.3.7

To find elements in the DOM tree, you can use identifiers like a tag name, ID attribute, and

class name.

A basic HTML tag structures for these cases are:

<tagname id="{id attribute}" class="{class(es) name(s)}">...</tagname>

<p class="head" id="mainhead"></p>

Let's have the following HTML structure:

<!DOCTYPE html>

<html lang="en">

 <head><title>Sample title</title></head>

 <body>

 <h1 id="main - title">Sample header</h1>

 <p class="lead">A sample lead</p>

 <p>A sample paragraph</p>

 </body>

</html>

The method getElementById({id}) returns the element that has the ID attribute with the

provided value. The method returns an Elementobject that represents an element with the

specified ID, null if no elements with the specified ID exists.

document.getElementById('main - title'); // h1 element

document.getElementById('lead'); // null

The method getElementsByTagName({tag name}) returns a collection of all elements

in the document with the specified tag name, as a NodeList object.

document.getElementsByTagName('p'); // [p element, p element]

document.getElementsByTagName('h2'); // [], an empty collection

To find all elements that have a specified class name, use

the getElementsByClassName({class name}) method. It returns a collection of

elements as a NodeList object.

document.getElementsByClassName('lead'); // [p element]

document.getElementsByClassName('footer'); // [], an empty collection

The last method is getElementsByName({name}), that return a collection of all elements

in the document with the specified name (the name attribute).

Document Object Model (DOM)| FITPED

109

 8.3.8

Let's have the following code:

<!DOCTYPE html>

<html lang="en">

 <head><title>Sample title</title></head>

 <body>

 <p id="xyz" class="abc">Fitped</p>

 <div class="abc">Fitped</div>

 <p name="xyz" clas s="abc">Fitped</p>

 </body>

</html>

Which of the following methods you will use to get the all elements with text "Fitped" ?

¶ document.getElementById()

¶ document.getElementsByClassName()

¶ document.getElementsByName()

 8.3.9

You can use CSS selectors to find elements in the DOM tree with the

methods querySelector({css selector}) and querySelectorAll({css selector}). In general,

CSS selectors are patterns used to select elements you want to style (in CSS).

The querySelector({css selector}) method returns the first element that matches a

specified CSS selector(s) in the document, whereas the querySelectorAll({css

selector}) method returns all the matches.

Let's look at the following example:

<!DOCTYPE html>

<html lang="en">

 <head><title>Sample title< /title></head>

 <body>

 <h1 id="main - title">Sample header</h1>

 <p class="lead">A sample lead</p>

 <p>A sample paragraph</p>

 </body>

</html>

Document Object Model (DOM)| FITPED

110

document.querySelector('p'); // p element

document.querySelector('h1'); // h1 element

document.querySelector('h2'); // null

document.querySelector('#main - title'); // h1 element

document.querySelector('.lead'); // p element

document.querySelectorAll('p'); // [p element, p element]

document.querySelectorAll('h1'); // [h1 element]

document.querySelectorAll('h2'); // []

document.querySelectorAll('#main - title'); // [h1 element]

document.querySelectorAll('.lead'); // [p element]

 8.3.10

You should use document.querySelector({css selector}) method to get all elements that

match the specified selector.

¶ False

¶ True

 8.3.11

The last way of accessing elements in the DOM tree is using pre-defined collections, which

are properties of the document object.

We have already mentioned the document.body property, which returns

the <body> element. Respectively, the document.head property returns

the <head> element.

The document.documentElement property returns the <html> element and

the document.title property returns the <title> element.

The document.anchors property returns all <a> elements that have a name attribute.

The document.forms property returns all <form> elements.

The document.images property returns all elements.

The document.links property returns a collection of all links in the document.

The document.scripts property returns all <script> elements.

Document Object Model (DOM)| FITPED

111

 8.3.12

Fill the gap in the following statement:

Use the document._____ property to get access to the <head> element.

8.4 Manipulation with elements

 8.4.1

To replace an element with another use the parent.replaceChild({new element}, {old

element}) method. The new node could be an existing node in the document, or you can

create a new node.

var h = document.createElement("h1");

document.body.appendChild(h);

var p = document.createElement("p");

document.body.replaceChild(p, h) ; // replaces the existing element

The above code should produce the following HTML structure:

<p></p>

 8.4.2

Complete the code to achieve this replacement of Header 1 by Header 3:

<!DOCTYPE html>

<html lang="en">

 <head><title>Sample title</title></ head>

 <body>

 <script>

 var ha = document.createElement("h1");

 var ta = document.createTextNode("Main header");

 ha.appendChild(ta);

 var hb = document.createElement("h2");

 var tb = document.createTextNode("Header2");

 hb.appendChild(tb);

 document.body.appendChild(ha);

Document Object Model (DOM)| FITPED

112

 document.body.appendChild(hb);

 var hc = document._____("h3");

 var tc = document._____("Header3");

 _____._____(tc);

 _____._____._____(_____, _____);

 </script>

 </body>

</html>

¶ ha

¶ hb

¶ appendChild

¶ createTextNode

¶ createElement

¶ hc

¶ hb

¶ hc

¶ replaceChild

¶ body

¶ appendChild

¶ ha

¶ document

¶ hc

¶ createElement

 8.4.3

An existing element can be removed from the DOM in two ways:

¶ the element.remove() method,

¶ the parent.removeChild({element}) method.

var p = document.createElement("p");

document.body.appendChild(p);

p.remove();

document.body.removeChild(p); // does the same as the remove() method from

previous line

Document Object Model (DOM)| FITPED

113

The element.remove() method returns nothing but it removes the object from memory.

The parent.removeChild({element}) method returns the removed node or null if the node

does not exist, but it does not remove the object.

 8.4.4

Complete the code to achieve this replacement of Header 1 by Header 3:

<!DOCTYPE html>

<html lang="en">

 <head><title>Sample title</title></head>

 <body>

 <script>

 var ha = document.createElement("h1");

 var ta = document.createTextNode("Main header");

 ha.appendChild(ta);

 var hb = document.createElement("h2");

 var tb = document.createTextNode("Header2");

 hb.appendChild(tb);

 document.body.appendChild(ha);

 document.body.appendChild(hb);

 var hc = document.___ __("h3");

 var tc = document._____("Header3");

 _____._____(tc);

 _____._____._____(_____, _____);

 </script>

 </body>

</html>

¶ hc

¶ hc

¶ appendChild

¶ hb

¶ body

¶ createElement

¶ hc

¶ appendChild

¶ createTextNode

¶ hb

¶ replaceChild

¶ ha

¶ createElement

Document Object Model (DOM)| FITPED

114

¶ ha

¶ document

 8.4.5

The element.remove() keeps an object in memory.

¶ False

¶ True

 8.4.6

The element.removeChild({child}) keeps an object in memory.

¶ True

¶ False

Manipulation with Elements

Chapter 9

Manipulation with Elements| FITPED

116

9.1 Changing element style

 9.1.1

To change the style of an HTML element, use the following syntax:

element.style.property = new style

Where the property is one of the CSS properties, e.g. backgroundColor. All CSS properties

with a dash, like font-family, text-aling, border-top-width, etc. are represented in the

camel-case form, i.e. fontFamily, textAlign, borderTopWidth, and so on.

 9.1.2

Is it possible to change content or properties of objects placed in DOM?

¶ yes

¶ no

 9.1.3

Let's have the following document:

<!DOCTYPE html>

<html>

 <head><title></title></head>

 <body>

 <p id="par">Fitped</p>

 </body>

</html>

The code below should change the color of the paragraph text as well as its font size.

document.getElementById('par').style.color = 'red';

document.getElem entById('par').style.fontSize = '18px';

Manipulation with Elements| FITPED

117

 9.1.4

Let's have the following document:

<!DOCTYPE html>

<html>

 <head><title></title></head>

 <body>

 <p id="ppp">Fitped</p>

 </body>

</html>

Fill the gaps to change the color of the paragraph text to green.

document.getElementById('_____')._____._____ = 'green';

 9.1.5

The computed style is the style actually used for displaying the element, i.e. the values of

CSS properties, which are set based on multiple sources, like internal style sheets, external

style sheets, inherited styles and browser default styles.

To get the computed style object (i.e. an object containing the values of all CSS properties

of the element) use the window.getComputedStyle({element}) method.

Let's have the following HTML code:

<!DOCTYPE html>

<html>

 <head><title></title></head>

 <body>

 <p style="color: blue;">Fitped</p>

 </body>

</html>

The script below should display a value of the color property.

let style = window.getComputedStyle(document.querySelector('p'));

console.log(style.color); // blue

Manipulation with Elements| FITPED

118

 9.1.6

Fill the gap to set font color of heading to the same color as paragraph text:

<!DOCTYPE html>

<html>

 <head><title></title></head>

 <body>

 <p id="para" style="color: blue; background - color:red">Fitped</p>

 <h1 id="main - title">Heading1</h1>

 <script>

 let _style = window.getComputedStyle(document._____('p'));

 hd = document._____('main - title');

 hd.innerText = 'Changed heading';

 hd.style._____ = _____.color;

 </script>

 </body>

</html>

¶ getElementByTag

¶ color

¶ _style

¶ getStyle

¶ querySelector

¶ getElementById

¶ color

¶ backgroud-color

¶ style

 9.1.7

The second method of changing HTML style is modifying the value of the

element's class attribute.

To change a class, the className property can be used. The property sets or returns the

class name of an element (the value of an element's class attribute).

<p class="lead">Fitped</p>

<h1 class="main - header black - version">Fitped</h1>

console.log(document.querySelector('p').className); // lead

console.log(document.querySelector('h1').className); // main - header black -

version

document.querySelector('h1').className = 'second - header';

console.log(document.querySel ector('h1').className); // second - header

Manipulation with Elements| FITPED

119

 9.1.8

Which of the following piece of code is the correct way of changing style?

¶ document.getElementById("a").style.backgroundColor = 'red';

¶ document.getElementById("a").style.background-color = 'red';

¶ document.getElementById("a").css.backgroundColor = 'red';

¶ document.getElementById("a").styleSheet.backgroundColor = 'red'

 9.1.9

In order to get the computed style object, you should use the window._____({element})

method.

 9.1.10

Which of the following piece of code is correct?

¶ document.getElementById("a").classname

¶ document.getElementById("a").class-name

¶ document.getElementById("a").className

¶ document.getElementById("a").classNames

 9.1.11

Similar to className is the classList property. This property is useful to add, remove and

toggle CSS classes on an element.

<h1 class="main - header black - version">Fitped</h1>

To get the number of CSS classes of an element's class attribute, use

the element.classList.length property.

Manipulation with Elements| FITPED

120

console.log(document.querySelector('h 1').classList.length); // 2

To add a new class to a specified element, use the element.classList.add({class1},

{class2}, ...) method.

document.querySelector('h1').classList.add('c1');

document.querySelector('h1').classList.add('c2', 'c3');

console.log(document.querySelector('h1').className); // main - header black -

version c1 c2 c3

The element.classList.contains({class}) method returns a boolean value, indicating

whether an element has the specified class name or not.

console.log(document.quer ySelector('h1').contains('c1')); // true

console.log(document.querySelector('h1').contains('c4')); // false

The element.classList.item({index}) method returns the class name with a specified index

number from an element. Index starts at 0. Returns null if the index is out of range.

console.log(document.querySelector('h1').item(0)); // main - header

console.log(document.querySelector('h1').item(1)); // black - version

console.log(document.querySelector('h1').item(5)); // null

The element.classList.toggle({class}) method toggles between a class name for an

element.

console.log(document.querySelector('h1').toggle('c2')); // false

console.log(document.querySelector('h1').className); // main - header black -

version c1 c3

console.log(document.querySelector('h1').toggle('c2')); // true

console.log(document.querySelector('h1').className); // main - header black -

version c1 c3 c2

 9.1.12

Let's have the following HTML and JS code:

<p class="a b c"></p>

Manipulation with Elements| FITPED

121

document.querySelector('p').classList.add('d');

After the execution, the class name of the <p> will be equal to:

¶ a b c

¶ a d b c

¶ a b d c

¶ a b c d

 9.1.13

Let's have the following HTML and JS code:

<p class="a b c"></p>

document.querySelector('p').classList.toggle('b');

After the execution, the class name of the <p> will be equal to:

¶ a c

¶ a c b

¶ a b c

¶ a

9.2 innerHTML

 9.2.1

Property innerHTML is used for changing the HTML structure dynamically. It can be used

with every HTML DOM element.

In order to get a string that represents the HTML content of an element use the following

syntax:

element.innerHTML

Set the innerHTML property:

element.innerHTML = "<p>Lorem ipsum...</p>"

Manipulation with Elements| FITPED

122

 9.2.2

Which of the following piece of code is correct?

¶ document.getElementById("a").innerHtml

¶ document.getElementById("a").innerHTML

¶ document.getElementById("a").innerhtml

¶ document.getElementById("a").inner_html

 9.2.3

Let's assume the following HTML code:

<div id="a"> <p id="b"> c </p> </div>

In the first example, the content of the div element and p element is retrieved:

console.l og(document.getElementById("b").innerHTML); // c

console.log(document.getElementById("a").innerHTML); // <p id="b">c</p>

After applying the following code:

document.getElementById("b").innerHTML = "d";

The result structure will be as follow:

<div id="a"> < p id="b"> d </p> </div>

You can remove all children elements in this way as well. If you apply the next code:

document.getElementById("a").innerHTML = "";

The result will be as follow:

<div id="a"></div>

Manipulation with Elements| FITPED

123

 9.2.4

Assume that, you have the following code:

<!DOCTYPE html>

<html>

 <head><title></title></head>

 <body></body>

</html>

Fill the gap, in order to get the following result:

<!DOCTYPE html>

<html>

 <head><title></title></head>

 <body><p></p></body>

</html>

document.body.innerHTML = '_____ ';

 9.2.5

Which of the following piece of code removes all children elements in the <body> element?

¶ document.body.innerHTML = '';

¶ document.body.innerHtml = '';

¶ document.querySelector('.body').innerHTML = '';

¶ document.getElementById('body').innerHTML = '';

Event-driven Programming

Chapter 10

Event-driven Programming| FITPED

125

10.1 Event-driven programming

 10.1.1

Event-driven programming is a programming paradigm in which the flow of the program

is determined by events, like mouse clicks, key-presses, time events, and so on.

An event handler is a function that is called when a particular event occurs. The event

handler gets an event object as an argument. The event object has properties and

methods related to the raised event, e.g., information about which mouse button was

pressed when the mouse event was triggered.

HTML DOM events allow JavaScript to register different event handlers on elements in an

HTML document. Each event is limited to the certain HTML elements, e.g. the onload event

has the following supported HTML tags: <body>, <frame>, <iframe>, , <input

type="image">, <link>, <script> and <style>.

 10.1.2

What is event-driven programming?

¶ programming paradigm where the program is controlled by events like mouse-click,

key-press etc.

¶ library (of functions) supporting identification and processing of events like mouse-

click, key-press etc.

¶ part of DOM focused on the processing of special types of events at DOM elements

 10.1.3

The onclick attribute can be used to attach an event handler to the element.

Let's have the following function:

function clicked() {

 console.log('Clicked!');

}

Event-driven Programming| FITPED

126

Now, we will attach the function to the <button> element by putting some JavaScript code

into the onclick attribute.

<button onclick="clicked()">Click me!</button>

The clicked() function will be called as a reaction for clicking the button.

In general, JavaScript code is allowed to be added to HTML elements through event handler

attributes.

<element event="some JavaScript">

Hence, the same effect as in the above example can be achieved with the following code:

<button onclick="console.log('Clicked!')">Click me!</button>

 10.1.4

Fill the gap to call function clicked() after click to defined button.

<button _____="_____()">Click me!</button>

 10.1.5

The most common events are mouse events.

The onclick event occurs when the user clicks on an element, whereas

the oncontextmenu event occurs when the user right-clicks on an element to open a

context menu.

Lastly, the ondblclick event occurs when the user double-clicks on an element.

The onmousedown event occurs when the user presses a mouse button over an element,

and the onmouseup event occurs when a user releases a mouse button over an element.

The last group of events is related to the movement of a mouse cursor.

The onmouseenter event occurs when the pointer is moved onto an element, and

respectively, the onmouseleave event occurs when the pointer is moved out of an

element. The onmousemove event occurs when the pointer is moving while it is over an

Event-driven Programming| FITPED

127

element. The onmouseover event occurs when the pointer is moved onto an element, or

onto one of its children.

 10.1.6

Choose correct mouse event:

¶ simple click - _____

¶ right-click - _____

¶ pressed mouse button - _____

¶ released mouse button - _____

¶ mouse pointer is moved onto an element - _____

¶ mouse pointer is moving over an element - _____

¶ onmousedown

¶ onmousemove

¶ onclick

¶ onmouseenter

¶ onmouseup

¶ oncontextmenu

 10.1.7

As an argument, an event handler function will receive the MouseEvent object, which

provides properties and methods describing mouse interactions.

function mouseEventHandler(event) {

 if (event.button == 0) {

 console.log('Left mouse button clicked!');

 } else if (event.button == 1) {

 console.log('Middle mouse button clicked!');

 } else if (event.button == 2) {

 console.log('Right mouse button clicked!');

 }

}

<button onmousedown="mouseEventHandler(event)">Click me!</button>

As you can see in the above example, you have to pass the event object into the event

handler.

Event-driven Programming| FITPED

128

 10.1.8

Fill the gaps:

function mouseEventHandler(_____) {

 if (event.button == 0) {

 console.log('_____ mouse button clicked!');

 } else if (event.button == 1) {

 console.log('Middle mouse button clicked!');

 } else if (event.button == 2) {

 console.log('_____ mouse button clicked!');

 }

}

<button onmousedown="mouseEventHandler(_____)">Click me!</button>

¶ Left

¶ eventHandler

¶ event

¶ Right

¶ event

 10.1.9

Assume that the message should be shown after a mouse double-click, fill the gap with the

right event name.

<button _____="showMessage())">Click me!</button>

10.2 More event types

 10.2.1

The next popular group of events is keyboards events. The onkeydown event occurs when

the user is pressing a key, and respectively, the onkeyup event occurs when the user

releases a key. The onkeypress event occurs when the user presses a key.

As an argument, an event handler function will receive the KeyboardEvent object, which

provides properties and methods describing keyboard interactions.

Event-driven Programming| FITPED

129

function keyboardEventHandler(event) {

 console.log(event.key); // a single character (like "a", "4" or "$") or

a multicharacter (like "F1" or "Enter")

}

<input onkeydown="keyboar dEventHandler(event)" type="text" />

 10.2.2

Assume that the message should be shown after a key pressed, fill the gap with the right

event name.

<input _____="showMessage())" />

 10.2.3

Events that are triggered by the user interface belongs to the UI events group.

The onload event occurs when an object has loaded.

The onresize event occurs when the document view is resized.

The onscroll event occurs when an element's scrollbar is being scrolled.

 10.2.4

Choose correct event:

¶ The _____ event occurs when an object has loaded.

¶ The _____ event occurs when the document view is resized.

¶ The _____ event occurs when an element's scrollbar is being scrolled.

¶ ondrag

¶ onresize

¶ onload

¶ onscroll

¶ onmove

 10.2.5

Event-driven Programming| FITPED

130

So far, we have used the combination of an HTML element event attribute and a JavaScript

function. Now, we attach an event handler with JavaScript only, see the below syntax:

element.onload = function(event) { ... };

The above code attaches a single event handler to an element without an HTML attribute.

See the below examples:

document.body.onload = function () {

 console.log('The page is loaded.');

};

document.querySelector('p').onclick = function () {

 console.log('The paragraph was clicked.');

};

 10.2.6

Fill in the space and set the response to clicking on the paragraph:

document.querySelector('p')._____ = _____ () {

 console.log('The paragraph was clicked.');

};

¶ func

¶ funct

¶ onclicked

¶ onclick

¶ function

¶ onClicked

¶ clicking

 10.2.7

JavaScript allows execution of code at specified time intervals. These time intervals are

called timing events. The two key methods to use with JavaScript are:

¶ The setTimeout({function}, {milliseconds}) method executes a function, after

waiting a specified number of milliseconds.

¶ The setInterval({function}, {milliseconds}) method, same as setTimeout(), but

repeats the execution of the function continuously.

Event-driven Programming| FITPED

131

The clearTimeout() method stops the execution of the function specified in

the setTimeout() method.

let timer = setTimeout(function () {}, 1000);

clearTimeout(timer);

The clearInterval() method stops the executions of the function specified in

the setInterval() method.

let timer = setInterval(function () {}, 1000);

clearInterval(timer);

 10.2.8

Is it true?

The setTimeout method repeats the execution of the event handler function continuously.

¶ False

¶ True

10.3 Event handlers

 10.3.1

You can add multiple event handlers with the element.addEventListener({event},

{function}, {useCapture}). The method takes three arguments:

¶ required event that specifies the name of the event;

¶ required function that specifies the function to run when the event occurs;

¶ optional useCapture, a Boolean value that specifies whether the event should be

executed in the capturing or in the bubbling phase (this will be explained in the next

card).

Event-driven Programming| FITPED

132

The following code presents exemplary usage of the addEventListener method:

let btn = document.querySelector('button');

btn.addEventListener('click', function(e) {

 console.log('First mesage');

});

btn.addEventListener('click', function(e) {

 console.log('Second message');

});

After clicking on the button, two messages should be displayed.

Do not use the on prefix in event names. For example, use click instead of onclick.

 10.3.2

Is it possible to use the addEventListener method to attach multiple event handlers.

¶ yes

¶ no

 10.3.3

Suppose you have assigned a click event handler on a <a> element, which is nested inside

a <p> element. Now, if you click on that link, the handler will be executed. But, instead of

the link, if you assign the click event handler to the paragraph containing the link, then even

in this case, clicking the link will still trigger the handler. That's because events don't just

affect the target element - they travel up and down through the DOM tree to reach their

target. This is known as event propagation.

Event propagation is a mechanism that defines how events propagate or travel through the

DOM tree to arrives at its target and what happens to it afterward. Event propagation

proceeds in three phases: capturing, bubbling, and target phase. Take a look at the

following illustration:

Event-driven Programming| FITPED

133

Source: Medium: Event Bubbling and Event Capturing in JavaScript.

Event bubbling is the event starts from the deepest element or target element to its

parents, then all its ancestors which are on the way to bottom to top , whereas

event capturing is the event starts from top element to target element. Modern

browsers do not support event capturing by default, but you can turn it on with the

previously mentioned useCapture argument. The target phase is when the event reached

the target element.

See the example below:

<html>

 <head><title></title></head>

 <body>

 <p><button></button></p>

 </body>

</html>

document.querySelector('p').addEventListener('click', function (event) {

 console.log('Second message');

});

document.querySelector('button').addEventListener('click', function

(event) {

Event-driven Programming| FITPED

134

 console.log('First message');

});

In the example above, after clicking on the button, both messages will be displayed.

 10.3.4

What is the order of the numbers written after clicking on the image:

<!DOCTYPE html>

<html>

 <head><title></title></head>

 <body>

 <p></p>

 <script>

 document.querySelector('p').addEventListener('click', function

(event) {

 console.log('10');

 });

 document.querySelector('img').addEventListener('click', function

(event) {

 console.log('20');

 });

 </script>

 </bod y>

</html>

¶ 20, 10

¶ 10, 20

¶ 10

¶ 20

¶ nothing

 10.3.5

If you want to stop the event bubbling, use of the event.stopPropagation() method. See

the example below:

<html>

 <head><title></title></head>

 <body>

 <p><button></button></p>

 </body>

Event-driven Programming| FITPED

135

</html>

document.querySelector('p').addEventListener('click', fucntion (event) {

 console.log('Second message');

});

document.querySelector('button').addEventListener('click', fucntion

(event) {

 console.log('First message');

 event.stopPropagatio n();

});

In the example above, after clicking on the button, the first message will be displayed only.

You can use event.stopImmediatePropagation() to stop event propagation as well. The

difference is that this method will also stop the rest of the attached event handlers from

being executed.

 10.3.6

Use the event.stopPropagation() method to prevent attached event handlers from being

executed.

¶ False

¶ True

 10.3.7

The element.removeEventListener({event}, {function}, {useCapture}) method removes

an event handler that has been attached to the element. The arguments of the method are

the same as in the addEventListener method. To remove event handlers, the function

specified with the addEventListener method must be an external, named function, see

the example below:

function clicked(event) {

 console.log('Clicked!');

}

document.querySelector('button').addEventListener('click', clicked);

document.querySelector('button').removeEventListener('click', clicked); //

removes the event handler

Event-driven Programming| FITPED

136

If the event handler was attached two times, one with capturing and one bubbling, each

must be removed separately.

 10.3.8

Fill the gap to remove event listener:

document.querySelector('button').addEventListener('click', clicked);

document.querySelector('button')._____(' click', clicked);

¶ deleteEventListener

¶ removeListener

¶ removeEventListener

¶ deleteListener

 10.3.9

The event.preventDefault() method cancels the event if it is cancelable, meaning that the

default action that belongs to the event will not occur. For example, clicking on

a Submit button, prevent it from submitting a form or clicking on a link, prevent the link

from following the URL. Not all events are cancelable. Use the cancelable property to find

out if an event is cancelable.

document.querySelector('a').addEventListener('click', function (event) {

 event.preventDefault();

});

 10.3.10

Use the event._____() to cancel the default action of an element.

Event-driven Programming| FITPED

137

 10.3.11

You can use the CustomEvent({eventName}, {detail}) for creating custom events.

The eventName represents the name of the event. The detail argument is optional, and it

is an event-dependent value associated with the event. See the example below:

let event = new CustomEvent('customEvent', {

 detail: {

 message: 'Fitped'

 }

});

You can attach the event name to an element.

document.querySelector('a').addEventListener('customEvent', function

(event) {

 console.log(event.detail.message);

});

To trigger the event, use the following code:

document.querySelector('a').dispatchEvent(event); // should display the

Fitped message

You can also trigger standard events like click or load, with the Event. See the example

below:

const event = new Event('click');

document.querySelector('button').dispat chEvent(event);

 10.3.12

Use the _____ to create custom events.

