

JUnit Testing

2020

This document has been elaborated for the project FITPED (https://www.fitped.eu)

Work-Based Learning in Future

IT Professionals Education

(Grant. no. 2018-1-SK01-KA203-046382)

This project has been funded with support from the European Commission under the

ERASMUS+ Programme 2018, KA2, project number: 2018-1-SK01-KA203-046382.

Content

Introduction .. 4

1.1 Introduction .. 5

1.2 First test .. 10

Accuracy in Tests... 16

2.1 Real numbers in test ... 17

Exceptions ... 20

3.1 Division by zero ... 21

Testing Methods ... 24

4.1 Testing methods .. 25

Introduction

Chapter 1

Introduction| FITPED

5

1.1 Introduction

🕮 1.1.1

JUnit is a simple open-source framework for Java source testing (www.junit.org). It is

intended to verify if piece of code works as is expected. It uses principles based on

comparison of expected and obtained outputs.

JUnit is a special tool that allows to write Java tests using a simple interface.

It can test functions, methods, classes, packages, subsystems and supports automated

testing.

JUnit is intended to run tests that have already been prepared - after editing code and

making changes.

🕮 1.1.2

The libraries for JUnit are shipped with IntelliJ IDEA, but are not included in the classpath of

your project or module by default.

To add the necessary library to the classpath, you can use the general procedure of adding

a dependency to a module. The corresponding libraries are located in the following

directories:

 JUnit libraries (hamcrest-core-1.3.jar and junit-4.12.jar): <IntelliJ IDEA

directory>\lib.

IntelliJ IDEA can add the necessary library to the classpath automatically. The corresponding

features are available when creating a test for a class or when writing the code for a test.

https://www.junit.org/

Introduction| FITPED

6

🕮 1.1.3

Create a class Calculator with methods:

 sum - adds two integers obtained as parameters and returns the result as an integer,

 multi - multiplies two integers obtained as parameters and returns the result as an

integer,

Write tests to verify that the class you created is working properly.

🕮 1.1.4

To create new class is easy - we create it in new project:

public class Calculator {

 public int sum(int a, int b) {

 return a + b;

 }

 public int multi(int a, int b) {

 return a * b;

 }

}

🕮 1.1.5

Ta add tests we can proceed in several ways:

 we can place the test files directly into package with code (it is not the best solution)

 we can create separated group for tests.

To initialise tests we should press Alt+Enter in the name of our class.

Introduction| FITPED

7

The warning after Create test option selection is that the application doesn't have place

for roots

We cancel dialogue, and:

We create new folder in project structure (e.g. Tests)

The result is new folder:

Introduction| FITPED

8

We mark this created folder in project structure (File -> Project structure) in the Module

Group on tab Sources to Tests:

Next use of Alt + Enter opens window for test parameters settings.

Introduction| FITPED

9

If we prepare first test, we probably need to install library and use Fix button to solve actual

situation.

After install (the window is still opened) we set following selections:

🕮 1.1.6

The result of test dialogue activity bring some code:

package com.company;

import org.junit.jupiter.api.AfterEach;

import org.junit.jupiter.api.BeforeEach;

import org.junit.jupiter.api.Test;

import static org.junit.jupiter.api.Assertions.*;

class CalculatorTest {

 @BeforeEach

 void setUp() {

 }

 @AfterEach

Introduction| FITPED

10

 void tearDown() {

 }

 @Test

 void sum() {

 }

 @Test

 void multi() {

 }

}

Every test class consists of optional parts defined by notations (the method names are not

important):

 @BeforeEach - must be performed before each test in the class to set the

parameters needed for the test,

 @AfterEach - must be performed after each test in the class (e.g. reset

parameters, etc.),

 @Test - the method of testing itself

1.2 First test

🕮 1.2.1

The program has to work to every time with an independent instance. We can achieve it

with new independent calculator create before every test.

We use @BeforeEach notation method:

class CalculatorTest {

 Calculator calc;

 @BeforeEach

 void setUp() {

 calc = new Calculator();

 }

Introduction| FITPED

11

🕮 1.2.2

The use of method with @AfterEach notation is not necessary. We can let it empty.

🕮 1.2.3

The tests are realised in methods with notation @Test. We can prepare its content on

ourself, but the idea of test writing is to prepare easy understandable code - we use the

methods in test class for testing in methods with the same name.

The most commonly used method for testing is the AssertEquals method, which

compares the expected value with the result obtained from the tested class.

assertEquals(5, calc.sum(2, 3));

 the first parameter is the expected value

 the second parameter is the value obtained as a result of the test class

The code with tests for sum has the following form:

class CalculatorTest {

 Calculator calc;

 @BeforeEach

 void setUp() {

 calc = new Calculator();

 }

 @AfterEach

 void tearDown() {

 }

 @Test

 void sum() {

 assertEquals(5, calc.sum(2, 3));

 assertEquals(-3, calc.sum(-8, 5));

 }

Introduction| FITPED

12

🕮 1.2.4

To run created test you have to start it as follow:

Using context menu you can Run CalculatorTest. Or you can run application using button

on the toolbar.

The result of run should be:

 all tests passed is successfull:

Introduction| FITPED

13

 some tests failed:

The environment shows you:

 expected value: value what was written by user as expected value of tested function

 actual value: value returned by tested function

... and now you can looking for where is the mistake.

🕮 1.2.5

Let's go to finish our tests.

We add new asserts for second tested method:

class CalculatorTest {

 Calculator calc;

Introduction| FITPED

14

 @BeforeEach

 void setUp() {

 calc = new Calculator();

 }

 @AfterEach

 void tearDown() {

 }

 @Test

 void sum() {

 assertEquals(5, calc.sum(2, 3));

 assertEquals(-3, calc.sum(-8, 5));

 }

 @Test

 void multi() {

 assertEquals(8, calc.multi(2, 4));

 assertEquals(40, calc.multi(-8, -5));

 assertEquals(0, calc.multi(0, -5));

 }

}

The final test show us that our tests passed and we have probably correct code.

🕮 1.2.6

If the expected value differs from the obtained value, an error (AssertionError) is

generated, usually with a message why it is unsuccessful:

org.opentest4j.AssertionFailedError:

Expected :1

Actual :0

<Click to see difference>

 at org.junit.jupiter.api.AssertionUtils.fail(AssertionUtils.java:55)

 at

org.junit.jupiter.api.AssertEquals.failNotEqual(AssertEquals.java:195)

 at

org.junit.jupiter.api.AssertEquals.assertEquals(AssertEquals.java:152)

 at

org.junit.jupiter.api.AssertEquals.assertEquals(AssertEquals.java:147)

Introduction| FITPED

15

It should be noted that the system cannot identify that this is a tester error and if the tester

makes a mistake when entering the expected value, the test tool attributes a program error.

It should be noted that the test lists only and mismatch between the expected and the

obtained value.

Accuracy in Tests

Chapter 2

Accuracy in Tests| FITPED

17

2.1 Real numbers in test

🕮 2.1.1

Modify the previous program and tests to use decimal/real numbers.

The original task was to create a Calculator class with methods:

 sum - adds two integers obtained as parameters and returns the result as an integer,

 multi - multiplies two integers obtained as parameters and returns the result as an

integer,

Write tests to verify that the modified class you created is working properly.

🕮 2.1.2

The modified class has following form:

public class Calculator {

 public double sum(double a, double b) {

 return a + b;

 }

 public double multi(double a, double b) {

 return a * b;

 }

}

🕮 2.1.3

The accuracy of real numbers processing is often a problematic part of calculation using

digital computers.

Accuracy in Tests| FITPED

18

According with this fact, the tests used in programming, support the parameter accuracy as

the third parameter in assertEquals, e.g.:

 assertEquals(8, calc.multi(2, 4), 0.001);

If the result of inspected method and the result set by tester differ by less than the specified

accuracy, the test is passed.

🕮 2.1.4

We prepare the tests for modified Calculator:

class CalculatorTest {

 Calculator calc;

 @BeforeEach

 void setUp() {

 calc = new Calculator();

 }

 @AfterEach

 void tearDown() {

 }

 @Test

 void sum() {

 assertEquals(5.5, calc.sum(2.5, 3),0.0001);

 assertEquals(-3.01, calc.sum(-8.01, 5),0.0001);

 }

 @Test

 void multi() {

 assertEquals(6.25, calc.multi(2.5, 2.5),0.0001);

 assertEquals(40, calc.multi(-8.0001, -5),0.01);

 assertEquals(0, calc.multi(0, -5.99),0.0001);

 }

}

Accuracy in Tests| FITPED

19

🕮 2.1.5

Look to the second test in multiplication:

 @Test

 void multi() {

 assertEquals(6.25, calc.multi(2.5, 2.5),0.0001);

 assertEquals(40, calc.multi(-8.0001, -5),0.01);

 assertEquals(0, calc.multi(0, -5.99),0.0001);

 }

}

Even though the result of multiplication is 40.0005, the test ignores the difference between

the expected result (40) and the actual result. The difference is considered to be irrelevant

because the acceptable deviation is 0.01.

🕮 2.1.6

Be carefully:

if we allow big inaccuracy, system will pass this test as well:

assertEquals(-5, calc.sum(-8, 5), 3);

Exceptions

Chapter 3

Exceptions| FITPED

21

3.1 Division by zero

🕮 3.1.1

Enrich the class Calculator to the division and solve situation with division by zero.

We can add new method to get quotient:

public class Calculator {

 public double sum(double a, double b) {

 return a + b;

 }

 public double multi(double a, double b) {

 return a * b;

 }

 public double quotient(double a, double b) {

 if (b!=0)

 return a / b;

 }

}

The result of new method is decimal value - it is defined via type of method.

To return some text in the form of "do not divide by zero" is therefore quite problematic.

But, we can create a “managed” exception that can be caught and handled in the code using

the Calculator.

🕮 3.1.2

The exception generation is common method in work with classes and methods. We can

aply it using keyword throw.

public double quotient(double a, double b) {

 if (b!=0)

 return a / b;

 else

 throw new IllegalArgumentException("zero division");

}

Exceptions| FITPED

22

This exception is catch in application using:

public static void main(String[] args) {

 Calculator calc = new Calculator();

 try {

 calc.quotient(4,0);

 } catch (Exception e) {

 System.out.println(e.toString());

 }

}

The output is:

java.lang.IllegalArgumentException: zero division

🕮 3.1.3

Exceptions testing is important and common. This type of testing needs special method to

process the returned exceptions.The method assertThrows is used to assert that the

supplied executable will throw an exception of the expectedType. If there is no exception

of expectedType, the method will fail.

The definition of assertThrow consists of two parameters:

public static void assertThrows(Class<? extends Throwable> expectedType,

Executable executable)

Second part is defined as executable. We can use the lambda notation and set this

parameter as

() -> method()

The final code has following form:

assertThrows(IllegalArgumentException.class, () -> calc.quotient(2, 0));

When writing tests, keep in mind that we separately test the values for the standard result

and the values giving the exception.

Exceptions| FITPED

23

@Test

public void quotient_common() {

 assertEquals(2,calc.quotient(2, 1));

 assertEquals(2,calc.quotient(3, 1.5),0.0001);

}

@Test

public void quotient_exception() {

 assertThrows(IllegalArgumentException.class, () -> calc.quotient(2,

0));

}

Testing Methods

Chapter 4

Testing Methods| FITPED

25

4.1 Testing methods

🕮 4.1.1

In addition to the methods described above, we also have others available:

 assertArrayEquals() - return true if two arrays contain the same elements

 assertNotEquals() - return true if two values are not the same

 assertNotNull() - return true if the value is not null

 assertNotSame() - return true if two references don't address to the same object

 assertSame() - return true if two references address to the same object (compares

with ==)

 assertTrue() - return true if result of expression or method is true

 assertFalse() - return true if result of expression or method is false

🕮 4.1.2

Example of assertions:

public class TestAssertions {

 @Test

 public void testAssertions() {

 String str1 = new String ("abc"), str2 = new String ("abc");

 String str3 = null;

 String str4 = "abc", str5 = "abc";

 int val1 = 5, val2 = 6;

 String[] expectedArray = {"one", "two", "three"};

 String[] resultArray = {"one", "two", "three"};

 //Check that two objects are equal

 assertEquals(str1, str2);

 //Check that a condition is true

 assertTrue (val1 < val2);

 //Check that a condition is false

 assertFalse(val1 > val2);

 //Check that an object isn't null

 assertNotNull(str1);

 //Check that an object is null

 assertNull(str3);

 //Check if two object references point to the same object

 assertSame(str4,str5);

 //Check if two object references not point to the same object

 assertNotSame(str1,str3);

Testing Methods| FITPED

26

 //Check whether two arrays are equal to each other.

 assertArrayEquals(expectedArray, resultArray);

 }

}

